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ABSTRACT

Games are primarily a source of entertainment, but also a substrate for developing,

testing  and  proving  theories.  When  video  games  started  to  popularize,  more  ambitious

projects  demanded  and  pushed  forward  the  development  of  sophisticated  algorithmic

techniques to handle real-time graphics, persistent large-scale virtual worlds and intelligent

non-player characters.  

Our goal in this work is to develop a game of the roguelike genre, and to analyze and

compare the algorithmic techniques used to address the challenges of such process.  More

specifically, we are going to focus on two design features, the first one being the procedural

generation of dungeons, and the second being the artificial intelligence for enemies.

Some  of  the  results  we  have  shown  include,  concerning  generating  procedural

dungeons, that the techniques of basic iteration and BSP trees can be applied to any practical

dungeon size, while cellular automata and maze generation through depth-first search must be

optimized  or  restricted  in  some ways  to  increase  scalability.  Also,  when it  comes  to  the

artificial intelligence for enemies, we concluded that both stateless and state-based techniques

can  be  used  with  any  practical  number  of  concurrent  actors  without  noticeable  delay.

However,  we argued that state-machine actors can be designed to present  more  complex,

flexible intelligent behavior. Regarding path-finding, we have shown that breadth-first search

is satisfactory in terms of effectiveness, while in terms of efficiency it performs poorly if no

substantial reductions of the search space are employed.

Keywords:  Procedural  Dungeon  Generation.  Artificial  Intelligence.  Game  Development.

Roguelike.



Análise e Desenvolvimento de um Jogo do Gênero Roguelike

RESUMO

Jogos são primeiramente uma fonte de entretenimento, mas também um substrato para

o desenvolvimento,  teste e prova de teorias. Quando os jogos eletrônicos começaram a se

popularizar,  projetos  mais  ambiciosos  exigiram  e  empulsionaram  o  desenvolvimento  de

sofisticadas  técnicas  algorítmicas  para lidar  com gráficos em tempo real,  mundos virtuais

persistentes de larga escala e personagens não-jogadores inteligentes.

Nosso objetivo neste trabalho é desenvolver um jogo do gênero roguelike, e analisar e

comparar  as técnicas algorítmicas usadas para lidar com os desafios desse processo. Mais

especificamente,  focaremos em duas características  de design,  sendo a primeira  a geração

procedural de geração de masmorras, e a segunda a inteligência artificial de inimigos.

Alguns dos resultados que mostramos incluem, em relação à geração procedural de

masmorras, que as técnicas de iteração básica e árvores de partição de espaço binário podem

ser aplicadas para qualquer tamanho prático de masmorra, enquanto que autômatos celulares e

a  geração  de  labirintos  utilizando  busca  em  profundidade  precisam  ser  otimizadas  ou

restringidas de alguma forma para aumentar a escalabilidade. Além disso, no que concerne a

inteligência  artificial  de  inimigos,  concluímos  que  tanto  as  técnicas  de  atores  que  não

guardam estados  quanto  as  que  possuem máquinas  de  estados  podem ser  utilizadas  para

qualquer número prático de atores concorrentes sem atraso notável.  Porém, argumentamos

que atores com máquinas de estados podem ser projetados para apresentar comportamento

inteligente mais  complexo e flexível.  Em relação à busca de caminhos,  mostramos que a

busca por amplitude é satisfatória em termos de efetividade, porém em termos de eficiência

ela tem baixo desempenho se não há reduções substanciais no espaço de buscas.

Palavras-Chave:  Geração  Procedural  de  Masmorras.  Inteligência  Artificial.

Desenvolvimento de Jogos. Roguelike.
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1 INTRODUCTION

Games have been used throughout the history of mathematics and computer science to

develop, test and prove theories. Many are the emblematic examples of how mathematicians

and computer scientists developed algorithms to beat humans in games, one of them being the

Deep Blue computer program, which won a chess match against grandmaster Garry Kasparov

(IBM, 2015). When video games started to popularize, more ambitious projects demanded

and pushed forward the development of more sophisticated algorithmic techniques to handle

real-time graphics, persistent large-scale game worlds and intelligent non-player characters

(NPCs).

Our study revolves  around this  substrate,  but  before  going more  into  details,  it  is

important  to  characterize  the  Roguelike  genre,  as  well  as  to  acknowledge  the  historical

evolution of it, so that we can have a clear vision on where our goals stand.

1.1 Definition of Roguelike

One simple definition of the term Roguelike is to say that it is characterized by games

that  were  inspired  directly  or  indirectly  by  the  game  Rogue (PETER,  2010). More

specifically, it is a sub-genre of role-playing games (RPGs) that share certain features with the

genre's  archetype,  such as  the  permanent  death  of  the  player  character  (or  perma-death),

random (or  procedurally  generated)  dungeons and turn-based movement  (ROGUEBASIN,

2013).

While  that  is  a  generally  accepted  loose definition  (BISKUP, 2000) (LAIT, 2009)

(ROGUETEMPLE, 2015), various attempts were made to define the genre more rigidly. One

of  the  most  well  known  is  called  the  “Berlin  Interpretation”,  which  was  created  at  the

Roguelike  Development  Conference  2008 (ROGUEBASIN,  2008). Several  game  features

were discussed by the attendants, and were weighed as “high value” or “low value” factors.

Among the high value factors, we mention:

• Random environment generation: the world is procedurally generated, and most likely

the player will never see the same dungeon level twice;

• Perma-death: when the player character dies, it can no longer be played with;

• Turn-based: The game does not run in real-time, so it only changes whenever the user

acts in some way;



• Grid-based: The world is represented by a uniform grid of tiles;

• Complexity:  The game is  complex enough so that  there are  several  solutions  to  a

common goal. This is achieved by having several interactions between items and monsters;

• Resource  management:  The  player  has  limited  resources,  and  must  come  up with

strategies to manage them in the best way possible to advance in the game;

• Hack'n'Slash: Fighting a large number of monsters is an important part of the game;

• Exploration: The player has to explore new dungeon levels for every new game, and

must make it so in a careful, planned way.

Although we can intuitively look at a game and see if it meets some or most of the

above  criteria,  we  believe  it  is  difficult  to  establish  a  concrete  definition  for  the  genre.

Ultimately, instead of saying which games belong to the genre, we define how “rogue-like” a

game is. This means that the more features of the genre it has, the more it is considered a

Roguelike. One way to better exemplify such features is to show which games have been

related to the genre historically, and that is what we show below.

1.2 Historical Context

Being a sub-genre of role-playing video games, our first step towards understanding

Roguelikes is to start with the beginnings of the former. Computer role-playing video games

(CRPGs) are games in which the player controls one character (or a party), immersed in a

well-defined world, through a computer  (ROLLINGS; ADAMS, 2003).  They in turn were

inspired by the so-called tabletop (or “pen and paper”) role-playing games. In those, players

create  characters  and assume their  roles,  guided by a  set  of  rules  and the  narration  of  a

specially designated player called the game master (COVER, 2010). Originally played face-

to-face, they inspired the first CRPGs to be developed for the mainframes in the mid 1970's,

being dnd one of the first examples of games inspired by the tabletop RPGs like Gary Gygax's

D&D. Other examples of games that helped define the CRPG genre include  Dungeon and

pedit5 and later the Ultima series (BARTON, 2007).

From that substrate came the canon for the genre, which is Rogue. Inspired by the

aforementioned  dungeon crawlers,  it  presented  a  distinctive  set  of  features  that  led  other

developers to create a number of variants for it, which made it the archetype for the “rogue-

likes”. In every game, the player started from scratch in an unknown dungeon, and had to
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fight hordes of monsters of increasing difficulty. For that, he had to pick up equipments to aid

him in his quest, as well as level up his character to become more powerful. If it was killed,

the only thing that was preserved was a high-score entry showing his progress up until that

moment (WICHMAN, 1997). Figure 1.1 shows a typical Rogue session. The “@” represents

the player, and the “H” represents an attacking hobgoblin.

Figure 1.1 – Typical Rogue session. 

Source: Screen capture of the game by the author.

Rogue  was  considered  a  very  addictive  game  in  some  universities  in  the  1980's,

especially  because  the  combination  of  permanent  death  and  randomly  generated  levels

resulted in a high level of replayability.  Two important descendants of Rogue –  Hack and

Moria – were an attempt of their creators to extend Rogue in some way. Hack 1.0, the first

widespread version of the game featured the same number of dungeon levels as Rogue and

had the same objective, though the number of monsters was doubled, as well as addition of a

pet  companion,  persistent  levels  and the  need for food management  (BROUWER, 2003).

Moria  on  the  other  hand  kept  Rogue's  non-persistence  of  dungeon  levels,  but  added  an

overworld, that is, a town where the player could trade and store items (GRABINER, 2015).

Figure  1.2  shows a  screenshot  of  a  Moria  session  where  the  player  is  in  the  town.  The

presence of a town was one of the main differences from Rogue.



Figure 1.2 – Moria overworld.

Source: Screen capture of the game by the author.

Moria and Hack in turn inspired their  own, more ambitious,  descendants.  Angband

(ANGBAND, 2015), the most important variant of Moria, had 100 dungeon levels, some of

them with unique features called  vaults,  where the player  would face harder enemies  but

would be rewarded with treasures. It also added a number of unique items, called artifacts,

which would be invaluable to defeat the large number of unique monsters also added to the

game.

NetHack (NETHACK,  2015),  Hack's  successor,  unified  various  independent

development branches of his predecessor as a means to aggregate the additions they made.

The game was ported to other operating systems (as opposed to only BSD) and featured more

player classes, monsters and dungeon levels, as well as more unique items and monsters. 

Recently, both NetHack and Angband started to support the use of tile-based graphics,

as well as the traditional ASCII style characters. Figure 1.3 shows screenshots of the tiled

versions of both games (NetHack to the left, Angband to the right).

Figure 1.3 – Tiled-graphic versions of NetHack and Angband.

Source: Screen captures of the games by the author.



13

In the mid 90s, Many roguelikes were developed inspired by NetHack and Angband.

Of  those,  we cite  Crawl,  first  released  in  1995 by Linley  Henzell,  it  followed  the  same

principle of finite resources NetHack had, which meant that the player could not stay at a

same level while gaining experience. Its plot was also simple: to dive down a single dungeon

and retrieve an artifact at the bottom, and subsequently rise up to the surface again. Currently,

Crawl's most active variant is Dungeon Crawl Stone Soup (DCSS), and it is developed openly

by the community (DCSS, 2015).

Ancient Domains of Mystery (ADOM), first released in 1994, on the other hand had a

mix between persistent and non-persistent dungeon levels, which left some room for the so-

called “grinding”,  that is,  staying in the same place while defeating monsters  and gaining

experience. Also, it featured a much more detailed storyline, a number of side quests and an

overworld  to  connect  them.  In  2012,  ADOM underwent  a  crowdfunded campaign  called

“ADOM Resurrection”. As a result, there were several additions to the game, one of which is

the  integration  with  NotEye,  which  made  it  possible  to  provide  tile  support  to  the  game

(BISKUP, 2012). Figure 1.4 shows a screenshot of ADOM both in ASCII (right) and tile-

based graphics.

Figure 1.4 – ADOM in graphical tiles and ASCII.

Source: Screen captures of the game by the author.

We would also like to mention  Tales of Middle-Earth (ToME), arguably the most

successful Angband variant (DOULL, 2013). It was developed with the intent of merging

several ideas from other Angband variants. Many were the additions, including an expansive

overworld (comprising most of Middle-Earth), several branching quests and reworked races

and classes. Also, the creators wanted to further approximate the game to J.R.R Tolkien's

mythos. In 2012, the ToME 4 was released,  and it  was renamed to Tales of Maj'Eyal,  to

distance itself from Tolkien's mythology and instead creating it's own original fantasy setting.



Finally,  we would like to mention one of the most remarkable examples of deeply

complex roguelike experience, which is that of Dwarf Fortress. In it, you can choose to play

an adventurer and explore the massive, randomly-generated world, or you can simulate the

building and management of a dwarven civilization.  To summarize the complexity of this

game, entire worlds are randomly generated,  including civilizations, wars, towns, down to

single individuals. Regarding battle mechanics, it simulates individual body parts (including

internal organs) and the several types of damage they can suffer from, like cut, burn, rot and

freeze, among others (ADAMS, 2015).

We  observe,  from  the  context  described  above,  that  the  genre's  development

intertwines  with  that  of  modern  computers  in  general,  starting  from mainframes  running

simple  terminal-based  dungeon  crawlers,  passing  through  games  still  simple  in  graphics,

though with great depth of content, and recently even fully-fledged commercial games, with

sophisticated graphics and well-developed storylines.

1.3 Objectives

It is based on what was stated before, while keeping in mind the context of the area,

that this work has been elaborated. Our goal is to develop the prototype of a game of the

roguelike genre, and to analyze and compare the algorithmic techniques used to address the

challenges of such process. Of those challenges, we are going to focus on two, the first one

being procedural generation of dungeons, and the second being the artificial intelligence for

the enemies.

More specifically, we will:

• Present the main challenges of developing a game of the Roguelike genre, both from a

computational and a design points of view;

• For two of them, explore and compare different approaches to solve them;

• Implement a prototype of a Roguelike as a means to test and validate the approaches

explored;

• Analyze the results of the implementation, from a performance point of view, as well

as in terms of playability;

• Conclude  with  the  best  configuration  of  features,  and  point  out  the  direction  of

possible future work in the game.
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1.4 Related Work

While searching for related work, we focused in two aspects. First we searched for

publications related to the Roguelike genre in general. Then, we moved on to work related to

the  two  design  features  explored,  that  is  procedural  dungeon  generation  and  monster's

artificial intelligence.

1.4.1 Work Related to the Roguelike Genre

Based on our research, few works aim specifically for the genre. Most of the related

work focus on “dungeon crawlers” in general, so we ought to name the few we have found.

(ALMGREN et al, 2012) is the one that most closely relates to ours. It features the

development of a space-themed roguelike, and, much like our work, analyzes design features,

focusing on procedural content generation. It also talks about the artificial intelligence, albeit

with less emphasis that we do.

(IBÁÑEZ,  2014),  similarly  to  the  previously  pointed  work,  deals  with  the

development of a roguelike, and the various design choices that come with it. It also focuses

on procedural generation,  by generating both random dungeon maps and random items. It

seemed to us that  both theses focus on the game as the main  end-product  of their  work,

whereas we use it as a means to analyze, in theory and practice, the chosen design features in

depth.

Another work in the genre, but from a different perspective, was found in (AMARI,

2009). In it, the authors simulate the world of a roguelike game by using artificial chemistry

simulations. Then, it removes a part of the simulation to transform it into a playable game.

They show that a simple roguelike can come out of a set of chemical rules embodied into an

abstract chemical model.

Finally, we mention (GARDA, 2013), not as a work aimed at algorithmic techniques

or actual implementation of games, but instead as a source of information for the definition of

the genre itself. It also aims to characterize the term the author calls “neo-rogue”. The term

would mean, in simple terms, the recent wave of games inspired by Rogue and roguelikes,

which branched from the more strict design features of the genre and adopted other ones from

different genres. These are also dubbed by the community “roguelike-like”, “roguelite” (this

one, coming from 'rogue' and 'light', was popularized specially because of the more lenient

approaches to perma-death), “roguelike-renaissance”, among others.



1.4.2 Work Related to the Design Features

Several works, including two of the ones already mentioned in the previous section,

focus on procedural content generation for CRPGs, especially for dungeon level  (or map)

generation. We chose some of the more closely related to our chosen genre, especially in the

scope of dungeon crawlers.

The first we mention is (VALTCHANOV, 2012), which explores the generation of

dungeon levels by using genetic programming. The author generates random maps through

mutations, crossovers and the combination of both, and then evaluates them through a fitness

function,  which,  in  the  author's  words,  “guides  the  search  toward  finding  maps  that  are

composed of small, tightly packed clusters of rooms that are connected to efficient paths of

hallway.” This work is our main source for dungeon generation using genetic  algorithms,

which we will talk about in chapter 3.

The next one,  (DORMANS, 2012) aims at  a broader spectrum of games,  which is

action adventure games. In his work, he makes a separation between missions and spaces: the

former being a logical flow of the game and the latter serving as a medium for the events to

happen. That way, by using a generative graph grammar, he creates missions in the form of

graphs. He then uses that specification to generate spaces, as well as using shape grammars

for generating spaces. We chose not to explore generative grammars in this work for space

reasons, so his work can be considered a complementary read to ours.

Finally, in the context of procedural generation, we talk about (CRUZ, 2014). In this 

monograph, the author tries to evaluate the quality of procedurally-generated maps by using a 

number of metrics. Such metrics include the number of steps walked, items collected, money 

collected, among others. We studied his methodology so that we could devise our own 

experiments.

Concerning Artificial Intelligence, aside from the two papers we mentioned in section 

1.3 that dealt with the subject, we only found more general works of Artificial Intelligence for

agents. Because of that, we will mention them when exploring their theory in Chapter 5.
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2 DESIGN FEATURES

When designing a game, and in our case a roguelike, there are several design features

which must be addressed. For some of them, simple (or complex but fail-proof) solutions

exist, while others present challenges both in terms of computational complexity as well as

perceived  playability.  In  the  next  section  we  will  list  some  of  the  aspects  involved  in

developing the game prototype. After that, we will talk more in depth about the two chosen

design features for the thesis.

2.1 General Features 

The following are some of the main features which must be addressed in possibly any

genre of games, but with different levels of emphasis. For example, while CRPGs are heavily

based  on  character  development,  platform  adventures  are  less  focused  on  it,  but  focus

considerably on user interface. Thus, we will try to define them in terms of our chosen genre.

2.1.1 Game Workflow

One of the first decisions a designer must make about a game is the workflow, that is,

how the different game events (or screens) will be built and how they will relate to each other.

For instance, a game usually starts on a main menu, and from there different choices can be

made, such as playing a new game, loading a saved game, changing options and exiting the

game. Usually, the game workflow is represented by a finite-state machine (FSM), where the

events are states and transitions happen based on user input. Diagrams of different levels of

abstraction can be made to represent the chain of events that happen in a game. Figure 2.1

shows a simple one of these.

One important aspect that must be thought about is the game pace, that is, how the

game will progress. Most games fall in either the turn-based or real-time categories, although

some games may present a mix of the two. In turn-based progress, the game will wait for the

user-input and change the game state accordingly, while in real-time, the game will progress

even when no action is performed by the player. In the case of roguelikes, the majority is turn-

based, but there are a few with real-time progression, such as Angband's variant Mangband



(MANGBAND, 2015), Diablo (DIABLO, 2015), which shares most traits of a roguelike, and

is thus recognized by some as one, and Pyromancer (ROGUECENTRAL, 2015).

As the complexity of the game increases, so will the game workflow become more

complicated. That means careful planning of the game features, modes and interactions must

be made before the game starts to be developed. The game developed for this work aimed for

a simple workflow, so that the chosen features could be tested at length without unnecessary

complications. This was facilitated by the fact that both features were modular, that is, their

logic mostly did not depend on the rest of the game, so in theory they could be applied (with

eventual necessary modifications) to any game that followed roughly the same set of rules.

Figure 2.1 shows a visual representation of a simple workflow for a video game.

Figure 2.1 – A simple workflow for a video game.

Source: Created by the author.

2.1.2 Graphics

When it  comes to  displaying  the game information  to  the user,  different  levels  of

graphics can be used, from pure text, to ASCII graphics to full 3D games. Roguelikes though

have historically represented, and are generally recognized by their ASCII characters. The

reason for that is that most of the roguelike developers choose to focus on game content rather

than graphics, as developing a game with sophisticated graphics is resource demanding. Also,
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it is important to mention that graphics alone do not make the game user-friendly. For that,

the way the user inputs commands must also be taken into account when designing the game. 

The game developed for this work followed the tradition of ASCII, although we use

colors to make it more aesthetically pleasing. Aside from that, different colors can be used to

represent distinct creatures with the same letter. Thus, a brown “o” might represent a regular

orc, while a dark blue “o” might be an orc chieftain.

2.1.3 User Interface

As  stated  above,  well-drawn graphics  do  not  guarantee  a  good  player  experience

regarding the game interface. The game designer must also plan how the information will be

displayed to the player, and also how the input devices will be applied to the game actions.

For instance, most roguelikes focus the majority of commands in keyboard input, with some

minor  functionalities  attributed  to  the  mouse  (like  displaying  information  on  mouse-

hover/click).   Because roguelikes  tend to  prioritize  complexity  over  graphical  design,  the

large  number  of  commands  in  the games  of  the  genre tend to  make the learning of  key

bindings (which keys do what) an important part of becoming skilled at a particular game.

Games such as ToME try to make better use of the mouse so as to provide more intuitive user

input.

In our game, we kept to the traditional key bindings most classic roguelikes possess.

Despite that, as our game has relatively simple interactions,  the user will have no trouble

memorizing them. Aside from that,  we will explore limited use of the mouse,  to perform

simple actions such as looking at dungeon entities to find out information about them.

2.1.4 Storyline and Quests

While the storyline and quests are not usually a priority for the genre (especially for

the older games), in general there is a main goal for the game. In games such as Rogue, Moria

and Nethack, and their descendants Angband, Crawl, ADOM and others, the goal is to go to

the deepest level in the dungeon to either defeat the final boss or retrieve an important artifact.

Aside from that, most of them also present side-quests. These include defeating intermediate

bosses, retrieving other artifacts that facilitate or are even mandatory for the progression of

the player, and some even include puzzles to the game (we cite NetHack's Sokoban puzzle

and ADOM's labyrinth).



Most of those quests  and storylines  are devised beforehand by the game designer,

although  there  is  research  on  procedurally  generating  them (see  related  work).  We  also

mention games with procedural quests or storylines, like Dwarf Fortress's world generation,

which creates an entire world and simulates its history, down to the stories and relationships

of  individual  beings  (people  and  notable  monsters).  Figure  2.2  shows  an  example  of

procedurally generated story for an individual in Dwarf Fortress.

Another recent example of such system is Middle-earth: Shadow of Mordor's Nemesis

System (MIDDLEEARTH, 2015), in which the players must gather information regarding orc

warchiefs, by finding pieces of intelligence or by killing their subalterns, so that they can find

and  defeat  them,  so  as  to  increase  the  power  of  their  weapons.  Much  of  this  system is

randomly generated, including the bosses' names, strengths and weaknesses, their hierarchy

and the information that leads the player to them. The bosses also do their own quests, and

may become stronger and advance in ranks on the hierarchy.

In our work, we decided to keep the game objectives simple, so as to focus on other

design features. However, in Chapter 6 we will point out how our game could be expanded in

this direction.

Figure 2.2 – A procedurally generated story in Dwarf Fortress.

Source: Screen capture of the game by the author.
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2.1.5 Time Progression

The time progression of a game relates to how the player perceives the changes in the

game as time passes, based on how it shows the information on the screen and how user input

is handled.   Games are usually either turn-based or real-time, as stated before. In a turn-based

game, information will be shown to the player and the game will not progress as long as the

player does not enter input. In real-time, on the other hand, events will continue to happen

even though the player does no action.

This means, from a design viewpoint, that turn-based game progression will imply a

more sequential workflow, whereas with real-time progression, the user input will be non-

blocking, thus the game design will have to be adapted, or else playability problems could

arise. For instance, if there are no turns, will the monsters keep attacking the player every

clock tick even if he is not active? Also, what happens if a player and a monster try to move at

the same time to the same location?

Those problems can be solved by adding a speed attribute to every individual, and

making an action cost a certain amount of clock ticks. Also, there is a need to manage the

order of actions based on their time duration, thus a dynamic queue is a common solution.

Our  game  uses  turn-based  time  progression,  so  that  no  further  complications  arise  with

relation to the artificial intelligence.

2.1.6 Character Development

Character development is one of the most (if not the most) important aspect of the

CRPG genre (and its sub-genres such as roguelike), as, the name implies, the player is playing

a role  of a character,  so it  must  evolve in  some way.  The most  common way of  adding

character development is the experience/level model. In it, the player must kill monsters or

complete tasks in order to gain experience, which in turn makes the character advance levels.

When he advances a level,  he becomes stronger in general,  with improvements  being for

instance the increase of hit points (HP), attributes or abilities.

Additionally, other systems can be added to the game to make it richer in depth. One

of them is the skill system, in which the character learn skills  as they progress the game.

Those skills will  aid the player  in some way, in areas such as combat,  crafting items and

interaction  with  NPCS.  In  roguelikes,  two  ways  of  implementing  skill  acquirement  (and

improvement) can be recognized: by spending points gained at level up and by using the skills

a certain number of times. The skills themselves may be just a simple list, or they can be



organized into prerequisites, which becomes the so-called “skill tree”. Figure 2.3 shows both

a simple skill list from ADOM, on the left, and a complex skill tree from Path of Exile (POE,

2015), on the right.

Figure 2.3 – Skills from ADOM and Path of Exile.

Source: (left) Screen capture of ADOM by the author, (right) (IGN, 2015).

Another  way of  enhancing  character  development,  which  usually  intertwines  with

skills,  is  that  of  player  classes  and races.  Both classes  and races  are  a  way to  guide the

gameplay to some kind of style (like being a melee fighter or a spell caster), though races

usually deal with starting characteristics and restrictions (sometimes including which classes

can be played), while classes guide the way the character progresses throughout the game.

In our  game,  we chose to  keep the player  simple,  without  races,  skills  or classes.

However, we added experience levels which give the player attribute improvements, as well

as the possibility to collect items to aid him in the adventure.

2.2 Procedural Dungeon Generation

Procedural (or random) dungeon generation, the first of our chosen design features to

focus, is part of a larger concept called Procedurally Generated Content (PCG). PCG deals

with generating content in general for games in a procedural fashion. This includes dungeon

levels, quests and plots,  monsters, and even music and graphics, among others. We chose to

concentrate on this because:

• It is a recognizable feature of roguelikes;

• A good number of techniques were designed over time for this;

• Some of those techniques may provide good results, albeit not scaling well.
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Because of that, we believe testing those techniques, of varying levels of complexity,

may lead us to derive useful conclusions. To start with, PCG can be categorized in a number

of ways. According to (DOULL, 2008), there are seven loose types of procedural generation,

namely:

• Runtime  random  level  generation:  Deals  with  creating  dungeon  levels  by  using

randomized algorithms while  the game is  being played,  generally when the player

changes levels (in the case of roguelikes, typically when he goes down a stair).

• Design of level content: It is used when the above method does not reliably produce

satisfactory results. In this case, the maps are generated randomly in a level design

tool, as opposed to runtime, and then supervised for correctness by a level designer.

• Dynamic world generation: This technique uses a random seed to iteratively grow the

playing field by permuting  it  with pseudo-random number  generator  techniques.  It

usually  subdivides  from  a  top-down  perspective,  thus  working  well  with  fractal

generation and level of detail techniques.

• Instancing of in-game entities:  Consists  of randomizing the parameters  of in-game

entities (like monsters) so that large populations of unique entities can be created with

insignificant chance of repetition.

• User  mediated  content:  This  technique  employs  PCG  to  generate  a  range  of

possibilities,  which can then be chosen, and subsequently fine-tuned by the user if

desired.

• Dynamic  systems:  Refers  to  the  modeling  of  systems  such as  weather  and crowd

behavior by using PCG techniques, as a means to create (statistically) unrepeatable

situations in a game, thus increasing replayability.

• Procedural puzzles and plot generation: In this category,  procedural  techniques are

used to make the stories and challenges of a game more unpredictable. For example,

randomness  may be added to parts  of the game's  quest  dependency graph, so that

consulting walkthrough manuals would be less game-breaking.

Of  those,  we  will  focus  on  run-time  random  level  generation,  which  deals  with

creating dungeons while the game is progressing. Also, we will experiment with instancing of

in-game entities in Chapter 4. This kind of PCG is related to randomizing the parameters for

the generation of content so that unique instances of content (in our case monsters) appears.



2.3 Artificial Intelligence

Artificial intelligence in games refers to handling actors not controlled by the player.

When it comes to monsters, this most of the time means planning ways to attack (and defeat)

the player. In most roguelikes, the classic way to achieve that is to calculate the shortest path

from the monster to the player character, move in its direction, and attack if close enough.

This type of behavior can be modeled by stateless actors, which would, at any given time,

check  for  a  set  of  conditions  and  act  based  on  them,  without  considering  any  internal

information they may have acquired throughout the gameplay session. Also, the problem of

finding the shortest (or most interesting) path is known as path-finding.

However, if the game designer intends to deliver a more interesting experience to the

player, several techniques may be employed to enrich the NPCS. We mention some of the

categories of techniques which can be used, which we will analyze in Chapter 4:

• Stateless Actors: The simplest form of actors, they consist of a series of if-conditions

(generally forming a tree of conditionals) which are tested every turn. Depending on

the result of the tests, the actor will react accordingly.

• State-machine Actors: By adding internal states to actors, more sophisticated behavior

can be modeled, since they can become less “reflexive” and more “cognitive” entities.

• Swarm Intelligence: Deals with using decentralized, collective behavior to add group

intelligence to actors at low computational cost.

• Randomization  of  Parameters:  Previously  mentioned  as  “instancing  of  in-game

entities”, it can be used in the context of AI, in combination with other, parameter-

based techniques, to generate a large number of unique actors.

• Genetic Algorithms: They can be used to evolve the decision-making of a certain kind

of monster by random mutations and crossovers.

• Emotion-based Actors: It consists of modeling human (or animal) emotions into a set

of traits  and adding them to actors,  thus  defining  their  “personality”,  so that  their

personalities determine (or at least influence) their courses of action.

The above categories can be used not only by themselves,  but also in combination

with each other to create unique NPC behavior for a game, as well as to generate the levels of

challenge, fun and replayability desired by the designer. In chapter 5 we will present the set of

AI techniques implemented for our game and their practical results.
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3 PROCEDURAL DUNGEON GENERATION

In  this  chapter,  we  will  focus  on  the  problem  of  generating  dungeon  levels

procedurally.  As  stated  in  the  previous  chapter,  we  will  specifically  focus  on  run-time

dungeon generation, that is, the techniques will be applied while the game is running. If the

results take a perceptible time to calculate, a loading screen (which will serve to notify the

user processing needs to be done before the game proceeds) might be needed. Otherwise, the

game will simply calculate and present the new level to the player once he reaches a changing

level point (like stairs or portals).

There are several techniques that can be used for this purpose, and all of them make

use of randomness in some way. For that matter, a technique called random number generator

(RNG) must be employed. While it is generally implicit, games actually use pseudo-random

generating methods (PRNGs), which have several advantages over true random methods for

this application. Two of them are:

• Non-blocking generation: While true (or natural) random number sources have a limit

on  the  throughput  (because  of  their  limited  entropy  over  time),  PRNGs  have

theoretically  unlimited  possibilities  (they  must  be  built  so  as  to  provide  enough

repetition-free sequences for the specific application).

• Predictability: For developing, testing and debugging purposes, the fact that a certain

seed (initial value from which the random numbers are extracted) will always result in

the same sequence of numbers is desirable, because true random sources will generate

unpredictable outputs, which makes analysis harder.

In  the  following  sections,  we  will  present  several  random  dungeon  generation

techniques. They vary in computational complexity and perceived quality, the latter being a

subjective evaluation (although we mentioned a related work which attempted to measure

them in  a  more  principled  fashion).  Because  of  that,  in  section  3.8 we will  analyze  and

compare them in those regards. 

3.1 Basic Iteration

The most  basic technique,  present in some form in most  of the classic roguelikes,

consists of creating a number of randomly placed rectangles, which will represent the rooms,
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and try to connect them by corridors.  To make sure the player can reach every room from any

starting point, one must check the connectivity of the rooms. A simple way to guarantee that

is to always connect a newly created room to the previous one (after the first), thus making

sure  every  room  added  will  keep  the  rooms  fully  reachable  between  each  other.  One

characteristic  of  this  approach  is:  the  connection  of  corridors  will  not  take  into  account

previously  created  rooms,  so some corridors  may cross  other  rooms  and corridors.  Also,

because new rooms are always connected to the last one created, the level may appear to be a

single path of successive rooms. Both may not be a desired effect by the designer.

One way to avoid those problems is to model the dungeon into a graph, where vertices

would represent the rooms, and the corridors would be edges. Following that, the following

can be done:

• Start  from any room, connect  it  to another  room (based on some criteria,  like the

closest, or even a randomly chosen room) and then do a search by using algorithms

such as depth-first search, breadth-first search or Dijkstra's, successively until every

room is connected to the others.

• Connect  every room to the others  by using corridors,  and then find the minimum

spanning  tree  for  this  graph.  After  that,  just  prune  the  unwanted  corridors.  One

interesting approach to this problem is to make the center coordinate of the rooms to

be  the  vertices  of  the  graph,  and  then  apply  the  Delaunay  Triangulation

(DELAUNAY,  1934)  to  it.  This  way,  the  resulting  edges  will  represent  non-

intersecting corridors, which may be desirable.

After we guarantee the dungeon is fully connected in some way, we can add further

corridors for an added effect. For instance, a number of corridors, based on the number of

rooms, may be added to increase the number of paths of the dungeon level. In addition to that,

corridors that lead nowhere may be added, characterizing dead ends. Figure 3.1 shows the

difference  between  dungeon  levels  generated  using  corridor  connections  to  previously

inserted rooms (left) and using minimum spanning trees (right).
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Figure 3.1 – Room connectivity approaches in dungeon generation.

Source: Created by the author.

3.2 Unique Dungeon Features

Unique dungeon features  are  predefined structures,  usually modular,  which can be

added to levels. While not necessarily random by themselves,  those features are generally

used in combination with other procedural generation techniques so that,  in the end, their

placement and varying parameters will make them a useful tool for map variability. Dungeon

features can also span an entire level, although in this case the random factor of it will be

generally restricted to the monsters and items inside it. Some of the most common unique

dungeon features include:

• Vaults: Rooms with pre-designed structures that can contain monsters, items and traps.

The general idea behind them is to offer the player a chance for high reward, at the

cost of higher danger.

• Temples: Features that are geared towards the player's interaction with divinities. They

contain  an  altar  for  the  interaction  to  happen,  and sometimes  NPCs called  priests

wander inside it, with various divinity-related events.

• Shops: Shops are dungeon features that allow players to trade items. Usually, the trade

is mediated by a special NPC called the shopkeeper. Items can be completely random,

or the shop can have a theme, for instance a “magic shop” or an “armor shop”.
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• Towns:  Normally  occupying  an  entire  level,  towns  are  generally  the  place  for  a

number of shops and quest-giver NPCs. While most towns in classic roguelikes have

fixed  building  placement,  there  are  examples  where  the  town  itself  is  randomly

generated.

• Fountains:  Fountains  are  mentioned  here  because  they  greatly  contribute  to  the

randomness of a gameplay session. When drunk from, various outcomes may happen,

such as simply satisfying thirst, attribute changing, mutation acquirement and others. 

• Vegetation: In some roguelikes, vegetation is implemented first as a way to increase

variability,  but  also as producing a number  of  interactions.  Some of them include

chopping trees  down for  wood,  strategic  positioning,  transformation  into  monsters

(“Ents”) and agriculture. Sparse vegetation may be randomly placed in the dungeon,

or more intricate arrangements may be used for added effect, such as growth based on

cellular automata (as seen in ADOM's herbs).

• Waterways:  As  vegetation,  waterways  (rivers,  lakes  and  ponds)  can  be  used  to

increase level variability, as well as being strategic geographic components. They can

be generated using techniques such as the Drunkard's Walk or cellular automata. The

Drunkard's Walk is a form of random walk, which consists of a series of random steps

in  succession  through  a  medium  (in  the  case  of  waterways,  randomly  traversing

through the dungeon rectangle). It differs from the regular walk in that its termination

conditions lead to a biased ending state (VOLCHENKOV; BLANCHARD, 2011).

3.3 Mazes

As opposed to the classic “rooms connected by corridors” approach, mazes consist

mostly (if not only) of long, winding corridors, which the player must venture in order to

advance in the game. Some of the approaches to generating mazes include:

• Depth-first Search: By modeling the search space to be a two-dimensional grid, with

the squares as the vertices and the transition to neighbors as the edges, as well  as

randomizing the  choice  for  neighbor  visitation,  a  maze  can  be built.  For  different

effects,  some  choices  of  neighbor  visiting  can  be  favored  through  weighted

randomness. Thus, for example, if horizontal visitation is favored over vertical,  the

algorithm will produce more long horizontal corridors.
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• Kruskal's algorithm (KRUSKAL, 1956): First, we create a list of all walls, and create

a set for each grid square,  containing initially only itself.  After that,  for each wall

(randomly picked), if the squares divided by this wall belong to different sets, then

remove  the  wall  and join the  original  sets  together.  Because  of  Kruskal's  original

purpose, which is to find a minimum spanning tree on equally weighted edges, the

resulting patterns will be usually easy to solve. 

• Prim's  algorithm  (PRIM,  1957):  Also  being  a  minimum  spanning  tree  algorithm,

regular  Prim will  yield  similar  results  to  those  of  Kruskal's.  However,  instead  of

keeping a list of edges for it, we keep a list of adjacent grid squares. By doing that, and

by  randomly  selecting  adjacent  square  grids  for  visiting  for  cells  with  multiple

neighbors, the algorithm will tend to branch out more in comparison to the regular

approach.

• Cellular Automata: They can also be used for maze generation. Particularly, two rule

sets for Conway's Game of Life (GARDNER, 1970) have been widely used for this

purpose,  namely  Maze and Mazectric  (WOJTOWICZ,  2001).  The rule  strings  for

them, which are B3/S12345 and B3/S1234, mean that a dead cell will become alive if

it has three alive neighbors, and a live cell will continue to live if it has from 1 to 4

(and also 5, in the case of Mazectric) live neighbors, dying otherwise. These, based on

a random starting pattern (which can be considered a seed), will result in complex

maze-like structures. While the generated patterns are more complex than the previous

approaches,  it  has  some drawbacks,  the  most  important  one  being  not  guaranteed

connectivity between two points. Some kind of workaround must be used to solve

that,  like  randomly placing  the up stair  and the  down stair  of  the  level,  and then

running a  search algorithm to make sure it  is  connected.  Another  possibility  is  to

generate  a  path  independent  of  the  automaton's  maze,  and  then  overwriting  the

resulting corridors to it, thus guaranteeing at least one path between the stairs. Another

possibility would be to allow the player  to dig through walls,  thus not needing to

worry about connectivity.

Figure 3.2 shows examples of mazes generated by the above techniques. Upper-left

shows a maze generated by randomized Kruskal's, upper-right by modified Prim, lower-left

by “Maze” cellular automaton rule and lower-right by “Mazectric” cellular automaton rule.
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Figure 3.2 – Examples of procedurally generated mazes.

Source: (upper) (WIKIPEDIA, 2015), (lower) created by the author using the Golly
simulator.

3.4 Cellular Automata

Aside from the previously mentioned application on mazes (for the rules Maze and

Mazectric),  cellular  automata  can  be  used  to  generate  natural-looking,  cave-like  dungeon

levels. To do this, first the designer must find an applicable rule set, by either choosing from

previously tested ones, or by creating its own. A common rule set used in this application is

known as the “4-5” rule, which states that, in terms of dungeons, a floor will “be born” if

there are more than five floors around it, and it will not “die” if there are four or more floors

around it. The result of this is that floors will tend to stay in organic structures, and fine-

grained cells will tend to disappear after a certain number of simulation steps.

After  an appropriate  rule  set  is  chosen, the designer must  populate  the space with

floors randomly through the dungeon space. An adequate ratio of walls/floors must be found

by experimenting, but we have found out that 40-50% of floors in the space yields the best

results.  Next,  a  certain  number  of  iterations  must  be  made  in  the  simulation,  so that  the

randomness is transformed into the desired cave-like appearance. Again, experimenting must
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be done on the number of the steps simulated for the best results, but we have found that after

3-5 steps most “artifacts” disappear from the simulation.

Finally, the last step in this process is verifying connectivity, since in this process it is

not rare that isolated areas occur. One way to handle this is by using the Flood fill algorithm,

which  consists  in,  starting  from a  chosen point  (where  the  stairs  will  be),  to  recursively

“color” the 2D square grid until it  is constrained by walls. In the end, if all the walkable

spaces  in  the  dungeon  were  colored,  it  means  that  it  is  fully  connected.  If  there  were

disconnected areas, the designer must generate another level, connect the areas in some way,

refrain from adding anything on unreachable areas or make wall-digging possible. Figure 3.3

shows an example of the above process. In it, “# represents walls and “.” represents walkable

spaces.

Figure 3.3 – Example of a cave-like dungeon level using cellular automata.

Source: Created by the author.

3.5 BSP Tree

The binary space partitioning method (BSP) can also be applied to level generation. It

is used to make recursive subdivisions of a given space by using hyperplanes. In the case of a

two-dimensional, grid-based game, a rectangle with the dimensions of the dungeon level is
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recursively subdivided, horizontally or vertically, into two smaller rectangles of arbitrary size,

resulting in the end in a structure called the BSP tree. Dungeons can be generated with this

method by using the following procedure:

1. Start with a rectangular dungeon filled with walls.

2. Randomly choose a splitting direction, horizontal or vertical, and the corresponding

coordinate for the split.

3. Split the dungeon rectangle into two sub-dungeons.

4. Repeat steps 2 and 3 for every resulting sub-dungeon a set number of times, or until

no further subdivisions can be made, the criteria being a given minimal rectangle size.

5. For each sub-dungeon, create a room inside it, with size ranging from the minimum

room size to the size of the sub-dungeon rectangle.

6. After all rooms are created, connect all leaves (last sub-dungeon divisions) from the

tree to their sister.

7. Go up one level in the BSP Tree and connect all sub-regions to their sisters, the same

way done in step 6, thus connecting a room in a sub-region to a room in their sister, or

even to corridors.

8. Repeat step 7 until every level of sub-dungeon is connected to their sister.

One direct advantage of this process is that, because of the properties of a BSP Tree,

the rooms will  all be reachable between themselves.  Figure 3.4 shows an example of this

process. In it, the green lines represent the binary partitions, made in 4 iterations on a 50×50

map, with equal ratio for horizontal/vertical splits.

3.6 Genetic Algorithms

Genetic algorithms is a paradigm inspired by biological evolution in which candidates

for the solution of a problem are successively mutated, crossed-over and selected through a

fitness  function,  so that  better  candidates  evolve,  eventually  possibly to  the  best  possible

solution.  When  applied  to  dungeon  generation,  the  candidates  are  the  dungeon  levels

themselves (coded in some way),  the mutation and crossover operations are,  respectively,

random changes in a dungeon level and the combination between two different candidates.
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Figure 3.4 – Example of a dungeon level generated using the BSP tree.

Source: Created by the author using the Eskerda dungeon simulator (ESKERDA, 2015).

The first step is to find a way to represent candidates, commonly called chromosomes,

in an appropriate format. One simple (yet impractical) alternative is to represent each cell of

the dungeon level  as  a  bit,  which  will  be turned on if  the cell  is  a  wall,  and turned off

otherwise. Another way, encountered in (VALTCHANOV, 2012), is to represent the rooms in

a tree structure, with the vertices representing rooms, and edges representing the corridors (or

connections) to other rooms.

Then,  the  operations  of  mutation  and  crossover  must  be  defined.  An  example  of

mutation operator for tree-structured chromosomes is to randomly select a number of nodes

with at least one available door (leading to a corridor) and then add another number of child

nodes  to  them.  For  crossover,  we  mention  exchanging  a  random  sub-tree  between  two

candidates.

Finally, when it comes to selection, a fitness function must be defined. This means that

a way to evaluate the quality of a given dungeon level must be embodied in a function, so that

the  process  of  selection  gradually  improves  the  candidates  throughout  the  generations.

Valtchanov's fitness model is characterized by favoring clusters of rooms with little space

between them, connected by efficient hallways. It also favors maps with up to three unique

feature rooms which are close to the edges of the map. The way those characteristics are
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analyzed is by first translating the tree structures to actual dungeon levels, and then evaluating

them.

After  the  fitness  function  is  defined,  the  candidates  of  a  generation  are  randomly

organized into groups called tournaments. Then, each tournament has their candidates sorted

by the fitness function, and the bottom half of them is replaced by the children of the top half.

This process is repeated by a set number of generations, or until a certain threshold of fitness

is reached. Figure 3.5 shows an example of map generated by the above process. The colored

areas indicate special rooms.

Figure 3.5 – An example of dungeon level generated by using genetic algorithms.

Source:  (VALTCHANOV, 2012).

3.7 Parametrization

Parametrization  is  the  concept  of  adding  parameters,  that  is,  directives  on  how a

generator should work, and then varying their values, as a means to increase the variability of

results. They can also be set by the player in a new game setup, as a way to generate the same

levels, in the scope of the whole dungeon, not just a single level. Common parameters are:

• Seed: A constant (numeric value or string) used to build a level (or a dungeon) in a

specific manner. It is generally passed to the pseudo-random number generator, which
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affects  the whole dungeon (or world) creation.  Multiple  seeds can also be used to

generate different aspects of the game.

• Motif: A parameter which represents the type of environment which will be generated.

For  instance,  a  dungeon  can  be  set  to  be  generated  with  a  volcanic,  aquatic  or

cavernous motif, among others. 

• Dead ends: Corridors which lead the player nowhere can be generated at a given rate,

from no dead ends to many.

• Unique features: This parameter can mean the rate in which unique features such as

vaults, shops and temples appear throughout the dungeon (none to many).

• Dungeon size: The size of the dungeon can be decided by a parameter. It is important

to note that if the dungeon size is bigger than the game window size, a decision must

be made on what approach will be used to handle that. For instance, the game may be

always centered on the player, so the game draws only the parts visible to the player's

current position. Another way is to use a sliding window, in which the game slides the

viewing screen a certain amount whenever the player reaches the edges of it.

• Type of corridors: Corridors can be set to form straighter or more convoluted patterns.

• Difficulty:  Sets the difficulty the player will encounter throughout the game. It can

affect the game in different ways, such as the monsters' spawn rate, monster strength

and intelligence, the number of traps, among others.

3.8 Analysis and Comparison

In this section we will briefly analyze every technique described above, and compare

them  both  in  complexity  and  apparent  quality  of  the  results,  starting  from the  standard

dungeon algorithm. When creating a dungeon with classic “rooms and corridors” layout, the

technique of iteratively creating a room and connecting it  to the last created room with a

corridor will yield results in linear time. If we call the operation of setting a tile to walkable

setToWalkable, let  n be the maximum number of rooms to be created, and for every room

creation we will have to set to walkable a rectangle of cells with maximum height h and width

w, we will have, in the worst case, n×w×h operations of setToWalkable. However, since in

practice w and h are bounded to a small maximum number (for example 10) due to the usual

size constraint of rooms in roguelikes, we can say that the algorithm will run the so-called

makeRoom n times, making it linear in the number of rooms. In fact, experiments showed that
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after a number of rooms have been created, most room creation attempts will fail because of

lack of space, thus this technique will run fast enough even for big dungeon sizes.

Concerning unique dungeon features, most of them, like shops, temples and castles

have  fixed  size,  thus  their  construction  can  be  considered  constant  in  time  complexity.

However, features such as waterways or vegetation may use techniques which do not run in

constant time. For techniques which use Cellular Automata, we will mention them below. For

the creation of a waterway using the Drunkard Walk, which we call drunkardWalk, we define

its size by the number of cells we want it to occupy. In theory, this number, which we can call

waterwaySize,  is  bounded  by  the  dungeon  size,  which  is  w×h.  So,  in  the  worst  case,

waterwaySize =  w×h, and drunkardWalk(waterwaySize)  ∈ O(w×h). In practice, waterways

rarely occupy the whole dungeon, instead they are a small fraction of the dungeon, like 5%.

This means that it has a negligible computational cost even for large dungeons.

Mazes, on the other hand, will need slightly more processing time to be created. Using

depth-first search will result in every possible walkable cell being visited exactly once, which

means, if we call the number of cells (or vertices) V = w×h, and E = V×4 (because each cell

will have four visitable neighbors in the case of non-diagonal maze-creation,  not counting

map edges), they will run in O(V) time complexity.  It is important to note that, since this

technique may involve deep recursion, especially at large dungeon sizes, it may cause stack

overflow  problems,  thus  it  is  advised  to  program  it  in  an  iterative  way,  by  storing

backtracking information in the maze itself.

Kruskal  and  Prim,  being  minimum  spanning  tree  algorithms,  will  involve  further

calculations such as sorting the weights of the edges, they will run slower than the depth-first

search. Kruskal was shown to run in O(E log V), while Prim runs in O(|E| + |V| log |V|) if it

uses a Fibonacci heap and an adjacency list as data structures. In practical terms, any of these

alternatives will run efficiently enough for any practical dungeon size.

In the case of Cellular Automata, the most intuitive way of running the simulation for

a fixed-size dungeon level is, at every generation, to calculate the number of neighbors for

each cell and decide if they become alive, stay alive or die. This means, for  g generations,

dungeon size w×h, and the maximum number of neighbors for a cell being nine (including the

cell itself), the algorithm will perform 9×w×h×g cell updates. However, every application of

cellular  automata  mentioned  in  this  work  uses  a  fixed,  small  number  of  generations,  for

example  five.  This  means  that,  in  our  case,  the  worst  case  will  be  O(w×h).  In  practice,

because of this fixed number of generations, we can assume that all of the applications of

cellular automata in this paper will run efficiently enough for any practical map sizes.
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Concerning the binary space partitioning technique described in this thesis, the number

of subdivisions made in the map space will be constrained by a set number of iterations, or

until it reaches a minimum rectangle size. For the version with set number of subdivisions k,

the algorithm will have to run the makeRoom function 2k times. Thus, it is important to keep

k small,  or else,  for large maps,  the amount  of function calls  may exceed the stack size.

Fortunately, the number of iterations is generally a small number, like five. 

According  to  (VALTCHANOV,  2012),  experiments  with  on-demand  dungeon

generation  by  using  genetic  algorithms,  setting  the  number  of  generations  to  500  and  a

maximum of  100 rooms,  dungeons were generated  in  approximately 30 seconds,  using a

single core of a  2.4 GHz processor,  with room for optimization.  This  means  that,  if  this

technique were to be used in runtime dungeon generation, some kind of measure should be

employed so that this processing time would not affect gameplay. Solutions include adding a

loading screen after the user changes a level and generating the next level while the user is

exploring the current level.

Finally,  as  parametrization  is  simply  a  way  to  increase  variability  through

configuration, and not a technique to generate maps by itself, the running time in this case

depends on the techniques employed by a given configuration.

Next,  we will  compare  the above regarding overall  quality.  While  this  is  a highly

subjective measure, we can get some guidelines by talking about desirable characteristics they

can have. Some of them include:

• Scalability: This relates to how it scales on larger dungeon sizes. It is tightly related to

computational complexity.

• Connectivity:  Whether it is fully connected by default,  or further methods must be

employed to guarantee it.

• Combinability: Ease of combination with other techniques or unique design features.

• Reliability: Relates to how much the technique is expected to give useful results in a

practical time.

• Variability: How different each random generation of this technique will be from the

others. 

• Uniqueness: This means whether the technique creates results that are not made by

others. 
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Based on the above characteristics, and keeping in mind the subjectivity of quality, we

chose to compare the techniques visually by using a table. In table 3.1, we list the techniques 

and cross them with the desired characteristics. When no comparison is applicable, “--” is 

used.

Table 3.1 – Procedural dungeon generation techniques vs. desired characteristics.
Technique Scalability Connectivity Combinability Reliability Variability Uniqueness

Standard Scalable Fully connected Yes Reliable Medium Not unique

Unique Features Scalable -- Yes Reliable -- Unique

Mazes Scalable1 Fully connected No Reliable Low Not Unique

Cellular Automata Scalable2 Verification needed No Non-
reliable

High Unique

BSP Tree Non-scalable Fully connected Yes Reliable Medium Not unique

Genetic Algorithms Non-scalable Fully connected Yes Non-
reliable

Medium Not Unique

Parametrization Scalable  -- -- Reliable High Unique

Source: Created by the author.

1 After implementing the technique, we discovered that it can only be considered scalable if it is implemented in
an iterative way.

2 After implementing the technique, we discovered that the number of generations must be small, or an efficient
evaluation technique must be applied for it to be scalable.
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4 ARTIFICIAL INTELLIGENCE

In  this  chapter,  we  will  describe,  analyze  and  compare  a  number  of  artificial

intelligence techniques which can be applied to agents in games. More specifically, we will

express them in terms of their application in roguelikes. 

One distinction which comes up when defining artificial intelligence for games is that

of “pseudo-intelligence”. This means that, even though the actor works as intended, which is

to  provide  challenge  and  fun  for  the  player's  gameplay,  the  actual  programming  may

sometimes be considered “mindless”. For instance, agents following a set of if-then rules may

not  be  considered  rational,  whereas  an  agent  which  possesses  complex  tactical  planning,

learning capabilities and emotions that regulate its interactions with the environment, may be

called  truly  “artificially  intelligent”.  Regardless,  in  our  work  we will  acknowledge  those

differences,  but ultimately ignore them. The reason for that is because in the area we are

exploring,  which is  games,  what  really matters  is  the resulting gameplay effect  (and also

performance), not philosophical considerations.

The  following  sections  will  contain  a  number  of  techniques  for  actors'  artificial

intelligence, fine-tuned to roguelike games. After that, in section 4.8 we will analyze them in

terms  of computational  complexity,  qualities  and drawbacks,  so that  we can increase our

understanding of what techniques to use in a practical implementation, by themselves or in

combination.

4.1 Path-finding

To start with, we discuss a technique which, despite being essentially a shortest path

graph problem, is a cornerstone technique for most games that involve actors traversing over a

terrain.  It  consists  of  finding the  best  path  an  actor  can  traverse  to  reach a  certain  goal.

However, the definition of “best” path depends on the application, because the game designer

has to set the parameters for evaluating path quality. For instance, the most basic (and most

commonly used) parameter is distance, which means, in the case of roguelikes, the number of

squares in the grid the actor must walk in order to reach its goal. Other parameters include

exposure to enemies, smoothness of path and avoidance of undesired areas.

Next, we mention some examples of techniques for path finding used in roguelikes.

These are:



40

• Euclidean distance: In this technique, the actor will calculate the straight line between

it and its target, and move in that direction. The euclidean distance can be calculated

this way:

◦ Calculate the vertical and horizontal distances, dx and dy, between the actor and its

target;

◦ Calculate the euclidean distance between them, by using D=√(dx) ²+(dy )² .

◦ Normalize  it  to  length  one,  and  separate  it  into  two  coordinates,  by  using

dx=round (dx /distance) and dy=round (dy /distance ).

◦ Move the actor by offsetting its current position by dx and dy.

While this technique is simple to implement and negligible in computational cost, the 

actor may move unnaturally and may be stuck in corners, so the designer must find 

ways to handle these issues.

• Breadth-first Search: In this technique, the actor will search the space for its target by

iteratively increasing its search range. It will start by looking at all adjacent cells (that

is, of distance 1). If it finds the target, it means the target is right next to him and he

can act directly.  If not, it will increase the range by 1, thus covering all squares of

distance 1 and 2. It is important to note that the process does not start all over when

the range is increased, but instead just continues from the previously visited nodes.

When the target is found, the algorithm backtracks the tiles that led to the target and

builds a path. This process is guaranteed to end and to find the target, if such a path

exists.

• Dijkstra's Algorithm: A technique for finding the shortest path between two nodes in a

graph,  Dijkstra's  can be applied to  roguelikes  by modeling  the dungeon map as a

graph, where the squares in the grid are vertices and the edges are represented by

which neighbors a certain square can access. After that, the algorithm can be applied

directly as intended, by visiting every other nodes, starting from the actor's node, and

successively calculating the shortest distances to them until the target node is visited,

which will then mean a shortest distance to it was found.

• A*  algorithm:  While  the  shortest  path  is  guaranteed  to  be  found  by  Dijkstra's

algorithm (if there is any), depending on the size of the dungeon and the number of

simultaneous agents, the cost for its worst case scenario, which is to visit every node
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in the graph, can be prohibitive. A* algorithm is a generalization of Dijkstra's, where

the function cost is, instead of the real distance cost, an approximation of it by the use

of heuristics. What this accomplishes is, at the cost of possibly losing the guarantee to

always  find  the  best  possible  path,  the  number  of  searched  nodes  can  be  greatly

reduced when adequate heuristics are chosen. According to (STERREN, 2008), “The

heuristic  function  typically  provides  an  estimate  of  the  remaining  costs  to  the

destination, such as the vector length divided by the maximum speed.”

Finally,  it  is  important  to mention  that  several  optimizations  can be done to path-

finding. Those can be either aesthetic or performance optimizations. In the case of A*, as an

example of aesthetic optimization we cite the procedure of straightening paths in (RABIN,

2008). In it, bearing in mind that there may be several shortest paths to a target, the idea is to

slightly penalize the heuristic value of non-straight paths, for instance by -0.0000001, so that

in the end the straightest  path will  be marginally shorter than the alternatives,  thus being

chosen.  However,  in  this  process  the  game  designer  must  be  aware  of  the  performance

tradeoff, because this procedure will make the pathfinder consider many more permutations to

find the straightest one. 

One  way  described  by  Rabin  to  resolve  this  issue,  which  is  also  an  example  of

performance optimization, is to utilize hierarchical pathing. This consists of breaking down

the terrain into zones (in the case of roguelikes, a room would be a perfect characterization of

a zone), so that an actor that wants to reach a target in another zone will compute only the

path  to  the  next  adjacent  zone  in  the  path  to  the  target  instead  of  the  whole  path.

Consequently, the permutations of paths will drastically reduce, and the extra steps for path

straightening can be considered trivial in processing cost.

4.2 Stateless Actors

Stateless actors are the most simple form of artificial intelligence for monsters. They

consist of a set of cause-effect rules which an actor will check at every game cycle and act

based  on  them.  This  means  that  they  do  not  possess  internal  memory  whatsoever.  For

instance, a simple monster could follow this procedure:

1. If I can reach the player, then attack him;

2. Else if I can't reach the player, but can see him, then move towards him;
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3. Else, stand still.

By repeating this procedure every turn, the monsters will blindly move towards, and

attack the player. While this works, further checks and reactions can be added so that more

complex behavior can appear. For example, the actor might check if its health is too low and

run away from the player, or it can use ranged weapons while in range, and only use close

combat attacks when cornered, among others.

4.3 State-machine Actors

State-machine actors, on the other hand, have an internal memory, that is, pieces of

knowledge,  innate  or  acquired  through experience,  that  will  help them act  more  flexibly.

When  it  comes  to  innate  knowledge,  it  can  be  a  piece  of  information  the  actor  has

intrinsically,  such as the number of current and total  hit  points it  has. Knowledge gained

through experience, on the other hand, is gained through the observation of events that happen

during the actor's life. For instance, a monster might evaluate the strength of the player by

watching it battle other monsters, and run it he is too strong, or charge immediately if he is

too week. Another example would be a monster getting angry if he watches the player kill

another monster of the same species, and change from a state of caution to anger.

The kind of state we exemplified as the monster being angry or cautious is called by

(DILLINGER, 2010a) “tactical state”. This is a form of internal memory that indicates, as the

name implies, in which tactical situation the monster is at a given moment. For example, a

monster  could  be  ignoring  the  player,  and based on some event  in  the  game,  like  being

attacked by the player, or getting cornered, it could become hostile.

Table 4.1 shows an example of a state-based monster,  with its  possible  states and

transitions. In it, the “State” column denotes the name of the state, “Observation” means the

observation  level,  “loud-noises”  being  only  hearing  noises  loud  enough  to  wake  it  up,

“regular”  being  observing  anything  casually  visible,  and  “extended”  meaning  observing

everything  attentively.  The  “Missing  Treasure”,  “Hungry”  and  “None”  columns  are  the

transition rules. Thus, for example, if an actor currently in the state SLEEPING hears loud

noises,  it  transitions  to  state  WAKING.  In  addition  to  that,  for  every  state,  there  is  a

corresponding behavior pattern, implicit in the names of the states for brevity.
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Table 4.1 – Example of a state-based monster with tactical states and transitions.
State Observation Loud-noises Missing Treasure Hungry None

SLEEPING loud-noises WAKING HUNGRY
WAKING regular ENRAGED HUNGRY CURIOUS

ENRAGED regular WAKING
HUNGRY regular ENRAGED
CURIOUS extended ENRAGED HUNGRY

Source: Adapted from (DILLINGER, 2010a).

4.4 Swarm Intelligence

Swarm intelligence is a technique of stateless intelligence in which a number of agents

coordinate their movements so that collective intelligence emerges from irrational behavior.

One example of swarm intelligence technique was inspired by the way migratory birds fly in

formation by local coordination, which is called flocking. In (RAYTHEON, 2008), the author

talks about four rules, labeled  steering behaviors, which can be used to govern groups of

autonomous agents so that they present realistic patterns of conduct. These are:

• Separation: An individual should steer to avoid collision with flockmates.

• Alignment: Which means steering toward the average flock direction. 

• Cohesion: Steering to move toward the average position of the flockmates.

• Avoidance: A behavior in which an individual will steer to avoid running into local

obstacles or enemies.

The idea, then, is to calculate a velocity vector for the flocking agent at each turn,

guided by the above rules.  This means,  in terms of a  turn-based roguelike,  that  we must

calculate the direction in which the agent will move, so that those rules are satisfied the best

way possible. Also, it is important to decide on conflict resolution, when those rules favor

antagonizing  movements.  A simple  way to  do  that  is  to  set  priorities  on  the  rules,  like

prioritizing separation, so that the agent will try its best not to collide with the flockmates, or

crowd an area too much.

The designer can also define a number of constraints which can be applied to how the

agents can move and react. These change the way the overall flocking behavior will happen.

For  instance,  what  Raytheon  considers  possibly  the  most  influential  constraint  is  the

perception range of each agent, that is, how far it can look to check for flockmates, obstacles

and enemies. Another constraint is regarding speed, which, in the case of roguelikes, would

be the time it takes to move one tile or execute an action.
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Although these four rules were defined in the context of flocking, the general idea can

be applied to other patterns. For instance, the rules could be defined in a way such that the

flockmates would always try to approach a single target all at the same time, which would

characterize ambushes instead of squad formation. There are also several other techniques for

swarm intelligence,  such as  the  bees  algorithm and ant  colonies,  but  as  we couldn't  find

applications for them on roguelikes (or dungeon crawlers in general), we chose not to explore

them in this work.

4.5 Genetic Algorithms

Applying  genetic  algorithms  to  actors,  the  chromosomes  would  represent  a  set  of

built-in  knowledge  and  behaviors,  which  would  be  progressively  modified  by  genetic

operators as a means to be selected through a fitness function. In this case, the fitness function

would be defined so as to select the best features for an actor, such as smart decision-making

and natural behavior. As usual with genetic algorithms, the designer has to model and fine-

tune the technique specifically to the application. In the case of roguelikes, (DILLINGER,

2010b) talks about the setup of several parameters, including:

• Population size: Total number of individuals in the simulation. Large population sizes

will make the process take too long for convergence, while small ones may lead to fast

convergence, but unimpressive results.

• Mutation  rate:  This  represents  both  the  frequency  in  which  mutations  occur  to

individuals,  and the amount  of change each individual  mutation  will  do.  Dillinger

argues that it has to be considered in combination with the types of mutation operators

and the fitness function. Functions that generate fitness landscapes with broad curves

and a few local optima should have a high mutation rate, with each mutation changing

only small portions of the candidates, whereas for complex landscapes, it is better to

have low mutation rates, since the changes made will necessarily be large.

• Gene map: The gene map, also called chromosome, usually a vector or sequence of

values, will represent the characteristics of the candidate, and the way this is modeled

is important. One useful property is that of locality,  which means that features that

tend to influence each other should be close together on the vector. This way, if the

combination  method  is  set  to  the  common  cross-over  operator,  which  consists  of

transferring a contiguous number of values of both parents to the new candidate, those
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closely related features will be transported together to it. One way to define the gene

map for stateless agents is, because they are a set of nested if-conditions, to map the

logical tree structure into the vector, with each value representing an if condition. This

way, the intermediate nodes in the tree will represent the if-conditions, and the leaves

will be the actions. This is advantageous to the combination operator, as explained

below.

• Method of combination: With the tree structure, you will get isomorphic structures

between different candidates, thus the same gene will always mean the same thing for

any individual in the population. Also, the combination operator can be defined as

sub-tree swapping, which means you remove a branch of one candidate, and replace it

with  another  branch  from  a  different  candidate,  thus  preserving  the  complex

hierarchical  relations  on the swapped branches.  This  means  good combinations  of

genes will be selected together throughout the simulation, and that way convergence to

the best possible set of genes will be faster.

• Fitness function: Usually the most important, yet the hardest parameter to define, it is

no exception in roguelikes. Dillinger states that fitness functions are particularly hard

to define for RPG games, because most enemies have very short lives (the time it

takes for the player see them and reach them). One possibility is to define the criterion

as the average time a certain candidate lives, but that would only means the monsters

would become good at  running away,  which is not necessarily the best option for

every type of monster. Another option is the amount of damage inflicted to the player,

but  most  monsters  in  roguelikes  don't  damage  the  player  at  all,  and  the  most

challenging ones inflict  hardship to the player  by other creative means. Finally,  he

states that a good technique for measuring fitness is by evaluating, over a monster's

lifetime, how much it cost to the player, for instance in the form of damage, spell

charges and equipment damaged or destroyed.

• Elitism:  Expresses  how  much  a  more  fit  individual  will  be  preferred  for  gene

propagation  over  the  other  less  fit  ones.  It  is  important  to  find  a  middle  ground

between high elitism, which would potentially discard good genetic material, and pure

random choice, which would give no advantage to more fit individuals whatsoever.

The  procedure  preferred  by  him  consists  of  picking  three  candidates  randomly,

ordering them according to their fitness value, then assigning chances to breed and to
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be replaced depending on their rank within the three. Table 4.2 shows examples of

percentages for this form of elitism.

Table 4.2 – Degrees of elitism for three randomly chosen candidates.

Candidate “Normal” elitism “Small” elitism “Slight” elitism
Breed Replace Breed Replace Breed  Replace

Best 50% 20% 40% 25% 35% 32%
Medium 30% 30% 35% 35% 34% 33%
Worst 20% 50% 25% 40% 31% 35%

Source: Adapted from (DILLINGER, 2010b).

4.6 Emotion-based Actors

By employing psychology models of emotions to actors, they can behave in a more

natural, unexpected way. For instance, a monster would be more prone to run away from an

encounter if its courage parameter was lower than the average. Such models of emotion are

taken from research in areas such as psychology and cognitive science.

One extensively  used  model  of  emotion  is  that  of  OCC (ORTONY, 1988).  In  it,

emotions are broken down into three categories, taking into account their timescale:

• Emotion:  This  category  is  represented  by  reactions  to  events,  objects  and  agents

expressed on a small timescale, such as minutes and even seconds. An example on

roguelikes would be a monster watching a player attack another monster of the same

category and disliking it.

• Mood: Emotional situation over a timescale ranging from a few days to a few months.

A way to represent this in a simplified manner was proposed by (EGGES, 2004), in

which the emotional state of an actor varies in the range -1 to 1, floating-point. This

way, negative values would represent “bad mood”, which would affect the way the

actor perceives events accordingly.

• Personality: Personality is a set of traits that guide the actor's actions throughout its

existence,  rarely  (if  ever)  changing.  The  OCEAN  model,  presented  in  (MCRAE,

1996), separates the traits as openness, conscientiousness, agreeability,  extroversion

and  neuroticism.  Each  of  these  traits  are  represented  by  a  floating-point  number

ranging from 0 to 1. Thus, for instance, an actor with neuroticism set to 1 would be

very prone to attack a possible foe at first sight, whereas if set to 0, it would always

wait for provocation before attacking.
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After an emotion model is chosen, it must be embodied in an architecture so that it can

have practical effects on the actors' behavior. In (CARLISLE, 2011), the author utilizes an

emotional framework consisting of a blackboard which will be inspected by a simple behavior

tree. A blackboard is a common knowledge base, which is iteratively updated by a number of

specialist knowledge bases, starting from the problem specification and trying to achieve a

solution. In this case, the actor's behavior tree, which is in practice a state machine that guides

the actor's conduct, will serve as the specialist.

After that, an appraisal technique must be defined. It serves the purpose of creating

new goals and evaluating objects and events. Also, a way to map sensory input into changes

in the agent's emotional framework must be defined, which Carlisle calls arousal.

An example of both processes in working in conjunction would be the behavior tree

executing a sequence of nodes, result in the query for the availability of food in the vicinity.

The appraisal/arousal  class,  then,  has  to  determine  the  agent's  emotional  reaction  to  each

sensed object. Thus, from a list of possible sensed objects, it  will evaluate and sort them,

based on previous experience, current mood and personality. This will influence the actor to

try and attain the best object in the sense of nutrition it has evaluated. Figure 4.1 shows an

example on how a typical emotional update loop could be represented.

Figure 4.1 – A diagram representing an update loop for an emotion-based agent.

Source: Adapted from (CARLISLE, 2011).

4.7 Instancing of In-game Entities

Instancing of in-game entities is a technique of procedural content generation (PCG)

which can be applied to monsters' artificial intelligence. In it, the parameters of the creation of

an actor would be randomized so as to generate  a population of unique individuals,  with
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statistically  insignificant  chance  of  repetition.  For example,  if  the parameters  of  emotion-

based actors were randomized, actors with different “personalities” would appear. Examples

of parameters that could be randomized while instancing include:

• Attributes: Strength, dexterity, intelligence and others can be varied to create unique

enemies.  While  these  are  not  considered  artificial  intelligence  techniques  by

themselves, the monster can be programmed to act accordingly to its strengths and

weaknesses. Thus, for instance, a weak monster could favor ranged combat.

• Personality: As stated before, emotion-based techniques can be randomized so that a

population  of  monsters  present  greater  variability.  In  this  case,  the  more  slow-

changing,  or  even  fixed  aspects  of  emotions  should  be  varied,  which  means

personality. Personality traits such as extroversion, neuroticism and agreeability could

be randomized in certain ways so that actors with unpredictable emotional behavior

can appear to the player.

It is important to note that, by blindly randomizing the parameters of actors, unsuitable

results may appear.  For example, a monster which was randomized to have extremely low hit

points, high ranged combat capabilities, yet had the emotional propensity to blindly charge at

the player on first sight, would be an impractical one. Thus, it is important that the designer

guides the process in some way, like adding constraints and cross-exclusions so that undesired

combinations can't be created.

4.8 Analysis and Comparison

In  this  section,  we  will  briefly  analyze  and  compare  the  artificial  intelligence

techniques described above, when applied to roguelikes. To start with, we will consider the

path-finding problem, which is used, with varying levels of sophistication, in every actor in

CRPGs.

Path-finding is the problem of finding the shortest way to a certain target. This can be

as simple as blindly walking toward the target in a straight line, as in the euclidean distance

procedure,  or it can potentially involve going through every square in the dungeon at least

once. In the case of euclidean distance, the procedure is constant in time complexity. In the

case of Dijkstra's shortest path algorithm, it has been shown that its complexity in worst-case

scenario, using Fibonacci heaps, is O(|E| + |V| log |V|), where V is the number of square cells
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in the dungeon level, and E is the number of sum of the possibilities of movement for every

cell (edges).

For the A* algorithm, the time complexity depends on the heuristic used. If there is a

single goal, the search space is infinite, and the error of the heuristic function will not grow

faster than the logarithm of a hypothetical perfect heuristic, then its time complexity will be

polynomial in the branching factor. In the case of usual square-grid roguelikes, the branching

factor is never higher than eight, since there are at most 8 neighboring squares to visit. Also,

in roguelikes the search space is finite (limited to the size of the dungeon), and there is a

single target in the search, which is the player or a target square to move by the monster.

Finally,  we  mention  that  the  search  space  can  be  greatly  simplified  by  the  use  of  the

hierarchical path-finding, as it will be reduced from a graph of square cells to a much smaller

graph of interconnected rooms. 

Next,  we  will  talk  about  the  complexity  of  stateless  actors.  Given  their  simple

reflexive nature, their computational cost is trivial.  They consist of a loop of checks, with

each check being a  constant-time if-condition.  Thus,  this  technique  runs in  constant  time

complexity. However, if any of the checks include an operation that is more complex in time,

then the  whole  procedure  has  the  time  complexity  of  that  operation.  For  instance,  if  the

monster has the possibility to attack all other actors, including monsters (he may be enraged),

and he has to evaluate the best creature to attack, then he will have to check a list of all visible

actors for such an evaluation.

Thus, in the worst case scenario, which is the monster being able to see all other actors

in the dungeon level (for instance in a big room fully illuminated), the procedure would be

linear  in  the  number  of  monsters  in  the  dungeon.  This  leads  us  to  conclude  the  time

complexity  for  stateless  actors  can  only  be  properly  defined  after  designing  the  specific

procedure, and not in a general basis. In practical terms, as stated before, we can consider

their processing time to be negligible.

Similar to stateless actors, the loop itself of state-machine actors is trivial. The monster

will  check  for  its  current  state,  input  and  internal  knowledge,  and  will  trigger  a  certain

Artificial  Intelligence behavior.  Also, if  the inputs trigger a state transition,  it  will simply

change the state variable, which is also trivial. Thus, the time complexity for this kind of actor

is dependent on the kind of artificial intelligence techniques employed for each of its tactical

states.

Swarm intelligence is a form of collective behavior which supposes mindless actors

which act coordinately, which means it is also a form of stateless intelligence. This means the
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processing cost for this kind of technique is dependent on the specific behavior which is going

to be emulated. For instance, in the case of flocking, the method each actor uses is to check

the position of each other visible flockmate and calculate a motion vector which maximizes

the steering behaviors the best way possible. In the worst case scenario, the agent will have no

visibility constraints and will be, at a given moment, seeing every other flockmate at the same

time. This means that the time complexity will be linear in terms of the size of the flock. In

practice,  most  practical  uses for flocking will  add visibility constraints  to the actors,  thus

reducing the number of flockmates to be checked to a fraction of the flock size.

Unlike the previous techniques, genetic algorithms applied to roguelike actors take too

much time for run-time scenarios.  This means it is considered a pre-processing technique, in

which  programmed knowledge or  past  gameplay  experience  is  used to  define  the  fitness

function to be used by the selection process.  According to (DILLINGER, 2010b),  all  the

parameters  of  the process must  be fine-tuned so that  convergence  to  desirable  candidates

happen  in  a  feasible  time.  For  instance,  population  size  must  not  be  too  large,  or  each

simulation step will take unacceptable amounts of time. Also, the operators must be tested so

as to find good combinations, or else the process may get stuck in local optima, or even not

converge  at  all.  Thus,  the  game designer  must  decide  when this  process  will  take place.

Alternatives include once every certain number of games, whenever the player starts to learn

the monster  patterns  and becomes  too  efficient  at  defeating  them and whenever  a  player

character dies.

When it comes to the presented framework for emotion-based actors, we must break it

down into its components, so that we can analyze them separately:

• Behavior  Tree:  Acting  as  the  knowledge  specialist  in  the  blackboard  system,  it

consists of organizing the execution of plans into a tree of tasks. This means that the

processing time depends on the complexity of the tasks themselves. For instance, the

act of shooting an arrow at a chosen target consists of a series of sub-tasks, namely:

check if the quiver has an arrow, pull an arrow from the quiver, aim at the target and

shoot.  All  of  those  tasks  are  constant  in  time,  thus  the  complete  process  is  also

constant. However, there are cases where non-constant time tasks are necessary such

as deciding where to run to, as a means to escape from a strong enemy, which would

take the actor path-finding calculations. 

• Appraisal: Acting as the primary input processor in the system, it maps the input into

changes in the blackboard. It may add or remove goals, and also affect the emotional
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values that are associated with entities stored in the blackboard. An example of task

for the appraisal module is to return a sorted list of entities queried by the behavior

tree according to their emotional  value,  so that the best  one can be attained. Such

process is linear in the number of objects within the line of sight of the actor. Another

task is to simply change the emotional value of a certain entity in the blackboard,

which would be constant in time.

• Blackboard: The blackboard system, being a dynamic repository of knowledge, goals

and partial solutions to goals, has no laborious processing, as it simply a place where

the specialists (appraisal, locomotion, behavior tree, etc), look for knowledge and act

upon.

Thus,  it  can  be  said  that  the  complexity  of  this  framework  is  dependent  on  the

application  and consequently the complexity  of  its  specialist  modules.  In  the  case of  the

emotional  framework applied  to  roguelike  actors,  as  the  variables  involved in  the  inputs,

locomotion and even the behavior tree are generally simple, it seems that such an approach

would scale well for all practical sizes of dungeon and number of agents.

Finally,  concerning  instancing  of  in-game  entities,  as  it  merely  randomizes  the

parameters for the spawning of actors, which would have been spawned anyway, it can be

considered negligible in time overhead.

Following, we will compare the techniques in terms of their overall quality so that we

can have  a  better  understand of  their  strengths  and weaknesses.  This  way,  it  is  easier  to

choose which ones to use, by themselves or in combination, while designing a game. Some of

the desirable characteristics for these techniques are:

• Scalability:  Whether  or  not  the  technique  will  run  at  acceptable  times  for  a  large

number of actors.

• Combinability: Relates to how well a technique can be combined with the other ones.

• Reliability: In the sense of artificial intelligence for actors, this relates to the amount of

trust a given technique will produce behaviors that will work in interesting ways, as

opposed to, for instance, getting the actor stuck or doing remarkably senseless actions.

• Uniqueness: This means whether a technique will generate behavior that only it can.

Next, we will compare the techniques according to these characteristics. This can help

understand what techniques are better for what kinds of applications. Contrary to chapter 3,
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we chose to make the comparisons of the techniques in the form of prose, because some of

them are dependent on the “building blocks” that are used for their design, thus a table would

not be instructive enough, and would have several exceptions.

Concerning scalability,  which is closely related with computational complexity,  we

have concluded that the stateless techniques have no inherent complex computation, and are

scalable  for  any  practical  number  of  concurrent  actors  for  roguelikes,  provided  their

constituent modules are also tractable. This is also the came for the state-based actors, as the

addition of states does not add significant  overhead. Concerning emotion-based actors,  as

long as the tasks of their behavior tree are not overly complex and their appraisal module does

not have to process too many complex interactions with the environment, which is generally

the case for roguelikes, they are scalable too. Genetic Algorithms, on the other hand, must not

have a very large population size, and their operators must be fine-tuned so as to achieve

convergence  fast,  otherwise  it  would  be  impractical.  Regarding  path-finding,  if  euclidean

distance or A* with hierarchical pathing is used, large dungeon sizes, with large concurrent

actors may be used without noticeable delay. Finally, instancing of in-game entities does not

incur extra processing, thus it works for any number of actors.

Concerning  combinability,  Path-finding  is  used  by  every  other  actor  intelligence

technique, so it is fully combinable. Swarm intelligence, on the other hand, does not combine

with the other techniques, as it has its own rules of behavior. The emotional framework is a

form of state-based machine intelligence, so it does not work with stateless actors. Also, once

the genetic algorithm procedure chooses the best candidate, its characteristics will be defined

by its genes, so it does not combine with other techniques. Finally,  instancing of in-game

entities will work for every technique that has randomizable parameters.

In regards to reliability, the techniques of path-finding, stateless and state-based actors

will always work as expected. However, the other techniques may present unexpected results.

In the case of emotion-based actors,  some combinations  of personality traits  may lead to

behavior detrimental to the actors, such as suicidal or excessively indecisive behavior. As for

genetic algorithms, as there is much fine-tuning to be made, the process is prone to error, and

convergence  to erratic-behaving actors  can happen.  The same goes,  to a  lesser  extent,  to

swarm intelligence techniques, because the steering behaviors and constraints must also be

fine-tuned,  so erratic  behavior  may happen without  thorough testing.  Finally,  unrestricted

parameter randomization may lead to impractical combinations of parameters, so the designer

must define constraints for the procedure.
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Lastly, when it comes to uniqueness, we note that more unique, interesting behavior

happens when more  sophisticated  techniques  are  used.  Thus,  for  instance,  while  stateless

actors are simple in nature, by adding a large number of conditions to them the designer can

expect predictable, but interesting results. However, unique behavior comes more naturally to

techniques with different proposals, such as swarm techniques and the addition of emotions to

characters. We also note that, while genetic algorithms can provide interesting results, they

can be programmed into both state-based and stateless actors. Ultimately, we believe the best

form of adding uniqueness to the behavior of actors is to add randomization of parameters

while instancing.
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5 IMPLEMENTATION

In this chapter, we will detail the development process of the roguelike game for this

thesis. In the next section, we will describe and analyze the general implementation of the

game, from a practical point of view. Then, in the following sections, we will talk about the

development of some of the techniques explored in chapters 4 and 5. More specifically, we

will detail the implementation choices we made for those features after having analyzed and

described them from a theoretical point of view. Finally, in the last section we will present the

results of the benchmarking process made for this work, which comprises the implemented

techniques for dungeon generation and artificial intelligence. Also, based on these results we

will compare these techniques regarding performance.

5.1 Experimental Environment

The programming language used for the development of the prototype was Python,

compiled under version 2.7.9. A library called libtcod (ROGUECENTRAL, 2015), aimed at

aiding the development of roguelikes, was used. It provided certain features that were not the

focus of our development, such as graphical output, so that we could focus on the general

implementation and chosen design features. Also, the experimentation was made on a PC

using Intel® CoreTM i3-4150 CPU @ 3.50 Ghz,  with 8GB of DDR3 RAM. The operating

system running was Microsoft Windows 7 Home Premium.

5.2 General Implementation

In this section, we will detail the choices we made for the general implementation of

the prototype. It comprises features that were not central to the analysis and development of

the chosen design features, but nonetheless had to be carefully thought of, so that they would

facilitate the embodiment of dungeon level generation and artificial intelligence techniques.

As mentioned in chapter 2, the game designer must decide how to build the game

processes  and the  transitions  between  them triggered  by the  player's  interaction  with  the

game. Such a process is called the game workflow. Figure 5.1 shows a high-level abstraction

of the workflow for the game designed for this thesis.
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Figure 5.1 – Workflow for the game prototype developed for the thesis.

Source: Created by the author.
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When it comes to time progression, we used a simple turn-based approach: For every

turn, first process the player input (moving, attacking enemies, going down stairs, etc.), then

process the turns of every enemy (moving, attacking, standing still). This equates to a simple

yet  effective order where the player  is always  the first to move, which we found to be a

common choice for classic  roguelikes. The drawback of this is that a speed system (where

faster actors act more) is not straightforward to add to the game. A simple way we found to

add speed to the player is, depending on how fast he is, he may have the chance to take a

double turn, according to a dice roll. However, this was not added to the final version of the

prototype.

Regarding graphics, the output method used in the prototype can be called "colored

ASCII", as the graphics are restricted to RGB-colored characters and also the background

color  of  every grid cell  in  the viewing window. The exception  to that  is  the main  menu

background, which features a picture in the png format. Figure 5.2 shows a typical session of

the game. In it, the player has already explored some of the dungeon rooms, killed an enemy

(whose body is represented by '%') and is now facing an Orc (represented by 'o'). We note that

the player's hp is low (9 of 30), so it might be a good idea at this point to run or drink a

potion.

For  the  user  interface,  we  followed  the  traditional  roguelike  system,  which  relies

heavily on keyboard interaction. In it, a set of keys are mapped to their respective effects in

the  game,  like:  Directional  keys  for  moving  the  character  and  attacking  enemies,  'i'  for

showing the inventory, '>' for going downstairs, ',' for picking up items and 'Esc' for going

back to the main menu. We also added minimal mouse support, restricted to 'mouse-look',

which means pointing at a certain entity and getting its information.

Concerning storylines and quests, our prototype featured a single, simple objective: To

go down dungeon levels, defeating enemies, collecting items and getting stronger, so that in

the last level the player will have to face and defeat the final boss monster. In case the player

defeats the final boss, the game is considered won and ends.

The above-mentioned  'getting stronger'  relates  directly to what  is  called character

development. In our prototype, whenever the player character defeated a monster, it received

experience points. When he reached a certain threshold, he advanced an experience level, in

which case he could improve one of his attributes, namely strength, dexterity and constitution.

Each  of  these  provided  him with  advantages  while  fighting  monsters,  like  dealing  more

damage when attacking, blocking more damage when defending and having more hit points.
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Figure 5.2 – A typical session of the game developed for the thesis.

Source: Created by the author.

5.3 Procedural Dungeon Generation

The  first  technique  for  dungeon  generation  we  experimented  with  was  the  basic

iterative approach, which consists of creating rectangles of variable sizes in random positions

over the dungeon level, and then connecting them with corridors. We call this the iterative

approach because of the way the corridors are connected: For every new room, we connect its

center to the center of the previously created room. This way, connectivity is guaranteed. The

parameters for this process are the maximum number of rooms (which may not be achieved

depending on the size of the dungeon) and the minimum and maximum size of the rooms.

Figure 5.3 shows a dungeon level using the basic iterative approach. The '@' represents the

player, and the squares are brighter when inside the player's field of view (FOV).

The  next  technique  we  programmed  was  cellular  automata,  in  which  the  life  of

'organisms' is simulated on a two-dimensional, grid-based rectangle, based on a set of rules

for reproduction. When applied to roguelike, we started by setting the whole dungeon level as
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Figure 5.3 – Example of a dungeon level generated using the basic iteration technique.

Source: Created by the author.

walls, and defined the 'organisms' as walkable tiles (floors). Then, we added randomly placed

floors throughout the dungeon level, at a ratio of 50% of the wall tiles. After that we ran the

simulation by following the 4-5 rule, which states that cells with less than 4 alive neighbors

die of starvation, between 4 and 5 stay the way they are, and with more than 5 they become

alive (which in our case means becoming a floor). The parameters for this process are number

of generations and starting wall/floor ratio. Figure 5.5 shows a dungeon created using the

cellular automata technique with the 4-5 rule.

The last technique we experimented with was the generation of mazes. For that, we

implemented a randomized depth-first search. Starting from a dungeon level filled with walls,

the algorithm advanced recursively in one of the four horizontal and vertical directions (which

means  not  diagonal  pathways),  always  making  two  moves  at  a  time  and  checked  if  the

direction to where it was going to advance was not already a floor. Because of that, a tree of

corridors was generated, with its root at the starting location. Thus, no check for connectivity

was necessary. We have also experimented with biases for certain directions, which means the

algorithms generate longer corridors in that direction,  but we did not add that to the final

version of the prototype. This means there were no parameters for this technique. Figure 5.6

shows an example of a maze generated using this technique. 
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Figure 5.4 – Example of a dungeon level generated using the BSP Tree technique.

Source: Created by the author.

5.4 Artificial Intelligence

The first step when implementing artificial intelligence in a roguelike is to decide how

the actors will move towards their goals (generally the player). This is called the problem of

path-finding. In our prototype we experimented with two different approaches for it:

• Euclidean Chase:  In this,  the monster  that entered the player's  FOV calculated the

shortest distance vector by using the euclidean distance method. After that, he would

move to the next square in the player's direction. While this process is negligible in

time cost, it has a drawback: if the square is already occupied (by a wall or another

monster),  the  monster  will  stand  still.  Thus,  we  had  to  check  if  the  square  was

occupied, and if so, move to an adjacent square in that general direction;

• Breadth-first  search:  The  process  of  finding  the  target  by  breadth-first  search  is

infallible,  albeit  costly.  The search recursively looked at all  the squares of a given

distance before moving to distance  + 1.  Because of that,  even a small  number  of

concurrent actors can lead to a noticeable delay. Thus, some kind of countermeasures

had to be implemented, such as calculating the path only for monsters in the player's

FOV and considering only squares inside the player's FOV as eligible for search.
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Figure 5.5 – Example of a dungeon level generated using the cellular automata technique.

Source: Created by the author.

Figure 5.6 – Example of a maze dungeon level generated using the depth-first search technique.

Source: Created by the author.
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In regards to the actual behavior of the enemies, we started with stateless actors. That

means the actor has no intrinsic information nor states in which he can base his behavior. On

one side, this means actors of this kind will be less flexible, and harder to adapt to different

contingencies  in  the  gameplay.  On  the  other,  they  are  easy  to  implement  and  generally

negligible in time cost. Our version consisted of a simple “look and chase” actor. In other

words, once the monster sees the player, it will blindly charge towards him.

State-machine actors, on the other hand, possess intrinsic information, which can be

innate or learned by experience. In our implementation, the information was embodied in the

form of behavioral states, which would have transitions among them by certain kinds of input.

Table 5.1 shows the state-based actor implemented for the final version of the prototype. The

'roaming_ai' means the monster will move randomly until the player appears, 'chasing_ai' is

going towards and attacking the player, 'escaping_ai' is trying to move away from the player,

'sleeping_ai'  is  doing  nothing  until  it  wakes  up  and  'cornered_ai'  is  attacking  the  player

because there aren't adjacent squares that aren't next to the player (no flight squares). Where

there is a number after the state name, it represents the chance of the transition after a dice

roll.

Table 5.1 – State-machine actor implemented for the game prototype of the thesis.

State AI LOW_HP IN_FOV OUT_OF_FOV CORNERED
ROAMING roaming_ai CHASING
CHASING chasing_ai ESCAPING ROAMING:0.8,

SLEEPING: 0.2
ESCAPING escaping_ai ROAMING CORNERED
SLEEPING sleeping_ai ESCAPINGROAMING:0.2

CORNEREDcornered_ai ROAMING
Source: Created by the author.

Finally, concerning instancing of in-game entities, the enemies we added to a level had

their  attributes  randomized  on  an  interval,  based  on  which  their  experience  points  were

calculated. In addition to that, they could be either stateless or state-based, which influences

gain of experience points after defeating as well. Lastly, they would be selected from a list of

'races' taken from classic roguelikes, which came with specific names and symbols, as well as

affecting the range of attributes  to  be randomized.  Thus,  for instance,  a  goblin would be

generally weak and fast, whereas an orc would be strong and slow.
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5.5 Benchmarking Results

When building the benchmarking structures for the implemented techniques, we had to

define metrics and parameters. They are:

• For dungeon generation,  the interval  of dungeon sizes to be tested,  as well  as the

increment between each iteration. We tried to find the best configuration possible so

as to evidence the time growth of the techniques, and at the same time avoiding sizes

too large for practical  purposes.  Because of that,  we defined the dungeon sizes to

range from 100×100 to 1000×1000, with increments of 50 on both dimensions. We

also had to experiment with the number of times to repeat each dungeon size, so as to

minimize eventual fluctuations generated by overloads in the operating system. We

found out that averaging 20 times per dungeon size gave satisfactory results without

taking impractical processing times.

• For the artificial intelligence techniques, the interval of number of concurrent actors to

be tested was set to be 10-200, with increments of 10 actors per iteration. Just as in

dungeon generation, we defined 20 repetitions for each number of actors.

• Finally, for each technique, we had to define their specific parameters, like minimum

and maximum room size. We will describe these while talking about their respective

techniques.

The first technique we tested was the basic iterative dungeon generator. We defined

the maximum number  of  rooms to 1000.  The reason for  that  is  to  keep it  a  fixed  value

throughout  the  benchmarks,  and also so that  the number  of  rooms would accompany the

dungeon size, as this approach will only create extra rooms if there is space left for them. In

addition to that, we set the room size range to 9-10 for both dimensions.  Figure 5.7 shows a

graph of the performance analysis made for the basic iterative approach. We can see from it

that  the  interval  from 100  to  250  can  be  considered  constant  in  time  (we  believe  slight

downward tendency is due to fluctuation), which can be explained by the fact that for that

range of dungeon size the algorithm finishes below (or right at) the accuracy time of the time-

measuring  function  we used in  python,  which is  time.clock().  After  that,  we see a  linear

increase in the growth function, which corroborates our expectations of this process being

linear  in relation  to the number of rooms actually added to the dungeon,  which size was
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increased in a linear way for the experiment. We can thus infer that this technique will work

even for much larger sizes of dungeons.

Figure 5.7 – Dungeon size vs. time to generate using the basic iterative approach.

Source: Created by the author.

Regarding binary space partitioning, we defined the number of iterations to 4, which

seemed to generate an ideal number and size of partitions after some testing. The room size

ranged from 9-10 as in the basic iteration technique. Finally, we defined both the horizontal

and the vertical ratios to be 1.0, which seemed to give satisfactory visual results after some

testing. Figure 5.8 shows the performance analysis for the BSP Tree technique. Compared to

the basic approach, we can see that the BSP technique is one order of magnitude more time

consuming. This is due to the exponential nature of the technique, which is limited because of

the small number of iterations we set.

Concerning cellular automata, we defined the chance of a square being a floor to be

equal of it being a wall, which means on average half of the dungeon will start off as 'alive'.

Also,  we  set  the  number  of  generations  to  20,  which  may  seem  excessive,  but  after

experimentation we have found that extra generations make the resulting cave-like structures

more  organic,  and  tends  to  remove  more  artifacts.  Figure  5.9  shows  a  graph  of  the

performance  analysis  for  the  cellular  automata  technique.  We  observe  that  the  resulting

growth function tends to a parabola (which would have been even more evident if larger sizes
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Figure 5.8 – Dungeon size vs. time to generate using the BSP Tree technique.

Source: Created by the author.

were  tested,  but  we  decided  to  test  all  techniques  with  the  same  size  range,  and  a  few

experiments with larger sizes proved to be prohibitive in time cost). We also note that the

algorithm  is  several  orders  of  magnitude  slower  than  the  previous  techniques.  Both

corroborate the fact that this technique grows linear in the total size of the dungeon, and thus

quadratic  in  n,  which  is  the  side  of  the  quadrilateral  dungeons  benchmarked.  More

specifically, it checks the neighbors of every square (including itself) on each iteration, which

in total is 9n² checks for every generation. Suggested optimizations to this process include:

keeping track of unchanged cells, because if a cell and its neighbors haven't changed in the

last step, they are guaranteed to not change in the current step; and also to use as storage one

array and three line buffers, in which one buffer would be used to calculate the new states for

a line and the other buffer would calculate for the next line, successively until the generation

is simulated.

The last technique we tested for dungeons was the generation of mazes using depth-

first search. Unfortunately, because we implemented it using a recursive procedure, none of

the dungeon sizes used for the above-mentioned techniques could be applied to this technique,

as the maximum function call stack size in python was exceeded. We have found out after

experimentation that the largest dungeon size this approach could handle safely was 80×80.

After that, we benchmarked three artificial  intelligence techniques for path-finding:

euclidean chase, wort-case breadth-first search and breadth-first search with optimizations.

An important parameter to be defined is the dungeon size for the tests, because it is a determi-
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Figure 5.9 – Dungeon size vs. time to generate using cellular automata.

Source: Created by the author.

ning factor for search-based path-finders. We define the dungeon to be 200×200 forall tests,

because this way there will be enough space for all quantities of concurrent actors. Also, it is

important  to  note the reason why we choose to  test  artificial  intelligence  in  terms of the

number  of  concurrent  actors,  rather  than  other  kinds  of  metrics:  While  it  doesn't  go  far

towards the understanding of the individual growth function of the techniques as would, for

instance, varying the dungeon size and testing for a single actor, it helps us understand the

practical  limitations  of  such techniques  in  terms  of  concurrency,  which  is  what  we were

aiming for in this case.

For the euclidean chase, we set the player's FOV to be unlimited, which meant all the

monsters would see him at any time. Other than that, no other specific parameters needed to

be set. Figure 5.10 shows the performance analysis for the euclidean chase technique. We can

see from the graph that  the total  cost of computing all  concurrent actors follows a linear

growth function. That is what we expected, since each actor does calculates in constant time,

thus the sum of their calculations is linear on the number of actors.

Finally, we talk about path-finding with breadth-first search. We analyze two versions

of this technique:

• Worst-case scenario, where all monsters can see the player (unlimited FOV). Also, no

optimization measures were added to this test, so that we can compare these results

with the optimized technique.
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Figure 5.10 – Number of concurrent A.I actors vs. total processing time in the euclidean chase.

Source: Created by the author.

• Optimized by calculating paths only for monsters that are in the player's FOV. For this
experiment,  we set  the FOV range to 9,  which was also implemented in the final
version of the prototype.

Figure 5.11 shows the performance analysis  for both breadth-first search scenarios.

We can see that, by simply limiting the path-finding search to monsters inside the player's

FOV, we drastically reduce the amount of calculations needed. It is important to note that the

seemingly constant optimized version appears so because of the small  FOV range we set,

which equates to only a few monsters searching concurrently. In fact, the worst-case scenario

is basically the same technique, except that, with unlimited FOV range, and in a room big

enough to comport all monsters, everyone of them will perform the search.



67

Figure 5.11 – Number of concurrent A.I actors vs. total processing time breadh-first search path-

finding.

Source: Created by the author.
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6 CONCLUDING REMARKS AND FUTURE WORK

In this work, we have gone through the process of designing and developing a game of

the roguelike genre. We focused on two main design features, namely procedural dungeon

generation and artificial intelligence for the enemies. First, we described several techniques

for both features when applied to the genre. Then, we implemented some of these techniques

and experimented with them regarding performance and overall  quality,  so that  we could

derive practical conclusions on their viability for the game prototype developed for this thesis.

Regarding procedural dungeon generation, we concluded that the techniques of basic

iteration and BSP tree can be used to generate dungeons of any practical size due to their low

processing cost. Concerning cellular automata, we found that for it to work on larger dungeon

sizes in practical time,  we must  either reduce the number of iterations to a small  number

(below 5) or implement some of the optimization techniques suggested for the simulation

process. In addition to that,  we have observed that the use of depth-first search for maze

generation using recursion is costly in space complexity, and may exceed the stack limit for

function  calls  for  larger  dungeon  sizes.  Despite  that,  it  seemed  to  generate  dungeons  in

acceptable times for small to medium dungeon sizes.

With  respect  to  artificial  intelligence  for  enemies,  we  have  discovered  that  the

technique of path-finding using euclidean distance can be used in any number of concurrent

actors. However, due to its disregard for obstacles, it is necessary to add countermeasures so

that the enemies don't get stuck in corners or behind other enemies. Also for path-finding, we

have shown that using breadth-first  search without severely restricting the search space is

impractical.  However, after  simply restricting the number of path-calculating actors to the

ones inside the player's field of view, and setting the FOV range to a reasonably small number

(like 9), the process becomes practically negligible in processing cost. Concerning the actual

behavior of actors, we have argued that both stateless and state-machine techniques can be

used  without  any  relevant  time  overhead.  However,  we  concluded  that  the  use  of  state-

machine actors provides richer gameplay experience and behavioral flexibility than that of

stateless ones.

Regarding practical knowledge we gained in the development process, we can mention

that:

• Designing a game requires a large amount of dedication and carefully thought design

process,  lest  eventual  necessary  modifications  become  impossible  to  implement

because of a too much coupled game engine;
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• We understand the historical preference roguelike developers had for in-depth content

over  aesthetics,  because  simple  graphical  improvements  take  considerable  time  to

implement;

• Learning a new topic using a new programming language has advantages, like porting

only abstract knowledge in the form of algorithmic techniques, rather than language-

specific structures. However it also has drawbacks,  mainly the slower development

process, due to also having to learn the specifics of the new language.

Additionally, we would like to point out some directions in which this work, and also

the game which was prototyped, could be further explored:

• Implementing faster simulation techniques for the cellular automata;

• Implementing an iterative depth-first search for the maze generation technique;

• Exploring the rest of the techniques that were explained only theoretically;

Finally, we believe we have accomplished the end-goal of the work, which is to bring-

closer the generally informal,  ad hoc process that  is  game development,  with algorithmic

techniques that were extensively studied and formalized in the scientific environment.  We

hope that this work contributes towards raising awareness and interest to the fascinating game

genre that is roguelike.
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