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ABSTRACT

The representation of complex objects and behaviors (state transitions) in
information systems is a central issue in software engineering. In an information system,
supported by a conventional database, the only available state is the set of present values.
The object's behavior is controlled by integrity constrains defining only the valid states.
Almost all the representation of the dynamic evolution is lost in the traditional modeling
process. In this paper the main concern is to present the extensions made on an Object-
Oriented Model, the F-ORM model [DeAntonellis 91] to expand the representation of the
object's evolution and to support the temporal aspects involved. Temporal object-oriented
models can be used to specify behavioral requirements of information systems. Four
different modeling concepts are defined to represent temporal information: (1) a set of
temporal data types and their associated functions, to be used in properties’ definitions;
(2) time stamps associated to instances and to dynamic properties; (3) a special null value
for attribute values outside the validity period; and (4) temporal conditions added to

rules, written in a temporal logic language. An example showing the use of the Temporal
F-ORM is developed.

KEYWORDS: REQUIREMENT SPECIFICATION, INFORMATION SYSTEMS,
OBJECT-ORIENTED DATA MODEL, TEMPORAL MODELING.
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1. INTRODUCTION

Information systems specification can be done through the use of data models. In
the framework of object-orientation much work has been done on the modeling of static
and behavioral properties, but temporal aspects have not been explored in profundity.
One isolated example is the language RML [Greenspan 86]. Some studies about these
aspects are available [Arapis 91, Clifford 88a].

Object-oriented models should provide definition of time properties when intended
to be used in time critical systems, e.g., plant control systems, office information systems.
Our basic concern is the modeling of information systems. Time aspects are necessary to
represent objects dynamic evolution within these information system environments.
Temporal properties are used to define properties (attributes) with time values, to time
stamp properties in temporal databases, order activities' execution through rules, etc.

Recent works present different forms of time modeling. Time definitions may be
done explicitly, usually through timestamping (a time value associated with some object,

e.g., an attribute value or a tuple) or implicitly, using some sort of temporal logic
language.

The explicit time representation requires the choice of a primitive temporal
element, like events (isolated instants of time) or intervals (the time between two events).
When using events as the primitive temporal notion, there is a special time point
corresponding to the current time, constantly moving along the temporal axis. The time
concept may be represented as a continuous or a discrete variable. Events belong to the
continuous time representation. An event is an isolated instant of time. It is said to occur
at time ¢ if it occurs at any time during the chronon represented by ¢ [Jensen 92]. A
chronon is the shortest duration of time supported by a temporal DBMS; it belongs to the
discreet time representation. Many applications show the need of defining different
granularities for information: hours, days, years. This makes the retrieving of the temporal
information a complex affair but produces a much better representation of reality. Other
time domains, such as time intervals, may be defined as pairs of events, representing the
lower and the upper end of the time interval.

In systems where reasoning on time duration is central, such as scheduling
systems, the notion of time interval is a primitive and events are represented by very little
intervals. One important approach for time modeling is Allen's interval algebra [Allen 83],
were time intervals are related to each other by temporal relations, represented by
predicates expressed in a temporal logic language. The languages TELOS [Mylopoulos
90] and RML [Greenspan 86] are based on this theory.

The use of temporal logic is also found in some systems and languages [Bolour 83,
Corsetti 91, Greenspan 86, Loucopoulos 91, Maiocchi 91, Schiel 83]. In the Event
Calculus [Kowalski 86], reasoning about events and time is performed within a logical
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programming framework. The most important contribution of this approach is the
possibility of dealing with uncertain and imprecise information like before and after.

This papers main concern is to extend an object-oriented model, the F-ORM model
[DeAntonellis 91], so that it supports temporal aspects. The chosen primitive temporal
element is the event. We add four different modeling concepts for temporal definitions: (1)
a set of temporal data types and their associated functions and operations, to be used in
properties’ definitions; (2) time stamps associated to instances of objects in the database
and to dynamic properties; (3) a special null value for attribute values outside the validity
period; and (4) temporal conditions added to rules, written in a temporal logic language.

Snodgrass and Ahn proposed a taxonomy of time in databases [Snodgrass 85],
consisting of three distinct time concepts: (1) transaction time, the update time; (2) valid
time, the period of validity of the stored information and (3) user-defined time, temporal
properties defined explicitly on a time domain and manipulated by the user program. With
the definition of the set of temporal data types, the need of user-defined temporal
properties decreases. Dynamic properties timestamping and the null value represent the
transaction and valid times. Temporal conditions added to static and dynamic integrity
rules constrain the set of possible state transitions of the application.

The paper is organized as follows. A small application case is presented in Section
2, to be used in examples in the other sections. Section 3 describes briefly the main aspects
of the F-ORM model [DeAntonellis 91]. The temporal requirements needed to specify
information systems are listed in Section 4. In Section 5, special temporal data types and
the corresponding functions and operations are presented. Section 6 describes the
representation of transaction times and valid times and Section 7 introduces briefly the
adopted temporal logic language.

2. AN APPLICATION EXAMPLE

This paper uses a part of a Video Rental Store specification in the examples: the
information on clients, employees, tapes and rentals. A client is identified by a unique
code, a name and an address. Additional information may be necessary, like his or her
inscription date in the Video Rental Store, all the tapes he or she rented and the
corresponding periods, and if he or she is allowed to rent tapes. An employee is identified
by the name and has the properties: address, the hiring date and salary. The rapes are
identified by a unique tape code. Each tape has the following information: the movie
name, the category and the date of acquisition. A rental is made associating the client's
and the tape's codes, and a starting date. A rental is only possible if some conditions are
satisfied: the tape must be in the shop, the client must be allowed to rent tapes, can have a
maximum of 5 tapes and is not allowed to keep up a tape for more than 30 days.



3. THE F-ORM MODEL

The F-ORM model (Functionality in Object with Roles Model) [DeAntonellis 91]
is an object-oriented design framework for information systems requirements'
specification!. Objects’ behavior is described using the concept of roles. Two distinct
types of classes are identified: resource classes and process classes. A resource class
defines the structure of the resources (agents, data and documents) in terms of roles the
resource can have in its life-cycle. Process classes integrate the resource classes allowing
to describe how the work is actually performed in its organization and in the cooperation
among agents. The concept of role in process classes models the different tasks executed

in the process and their relationships in terms of communication and cooperation rules
together with the involved resources.

A class is defined by a name ¢, and a set of roles R, each one representing a
different behavior of this object:

class = (c RadR, .. Rn)

il

Each role R; consists of a role name Rn,, a set of properties P, of that role (abstract
descriptions of data types implemented as instance variables), a set of abstract states S, the
object can be at while playing this role, a set of messages M, that the object can receive
and send in this role, and a set of rules Ru, (the state transition rules and integrity rules):

R|_<Rn P S M Ru>

All instances of roles evolve independently, the interactions being allowed through
message passing. An object can play different roles at different times, can play more than

one role at the same time, and can have more than one instance of the same role at the
same time.

Every object has a base role Ry that describes the initial characteristics of an
instance and the global properties concerning its evolution. The properties of the base role
are inherited by the remaining roles; the messages are used to add, delete suspend and
resume instances of other roles; the possible states are pre-defined, active and suspended,
and the rules define transitions between roles and global constraints for the class.
Properties' definitions describe the domain each property should have.

A class can be defined as a subclass of one or of several classes (multiple
inheritance). A subclass inherits all components specified in the parent class or classes.
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New components can be added to a subclass definition in two ways: (1) adding
specifications of new roles and (2) modifying the specification of inherited roles.

Considering the class tape of the proposed application case, the properties of the
base-role are the tape's code, the name of the film and the type of the movie (e.g., drama,
comedy). The following roles can be identified: (1) Life-time, modeling the actions to be
executed to buy the tape, let the tape available for rental during a period of time and sell it
afterwards; (2) Rentals, modeling the possible rentals of a tape; and (3) Tape loss,
modeling what shall be done when a tape is lost. Considering the role Rentals, some
required properties are the client's code and the rental starting and ending dates. Possible
states in this role are available and rented. This role can receive and send the following
messages: rental from Rental_control, tape devolution from Rental_control and
rented time to Rental_control. State transition rules control the behavior. Representing

incoming messages by the prefix "<-" and outgoing messages by "->", we have the
following class definition:

resource class (
TAPE,
< base_role.
properties = { (tape_number, INTEGER),
(tape_film, STRING),
(film_type, STRING) },
messages = { ... },
states = { ... }.
rules = { ... }.
>,
< Life_time,

>5
< Rentals.
properties = { (client_code, INTEGER),
(beginning_date, DATE),
(end_date. DATE) ).
messages = rental (Tape:INTEGER, Client:INTEGER) from Rental_control,
tape_devolution (Tape:INTEGER) from Rental_control,

rented_time (Time:INTEGER Client:INTEGER)) to Rental_control }.
states = { available. rented }.

rules = { rulel : msg(<-add_role) => state(available),
rule2 : state(available). msg(<-rental(T,C)) => state(rented),
rule3 : state(rented). msg(<-tape_devolution(T)) =>

msg(->rented_time(T,C)). state(available) }
>

< Tape_loss,

>)



4. TEMPORAL REQUIREMENTS FOR INFORMATION SYSTEMS

Temporal aspects are important in information systems not only to represent
temporal information to be introduced in the corresponding database but also to model the
interaction of the possible processes to be executed. Temporal F-ORM, an extension of
the F-ORM model, was created to permit temporal modeling. Analyzing the domain of
information systems, two different types of temporal requirements can be identified:
unconditional and conditional temporal information about events.

4.1. UNCONDITIONAL TEMPORAL REQUIREMENTS

Unconditional temporal requirements are explicitly defined, representing a specific
moment of time associated to an information. These requirements can be well-defined and
incompletely defined. Well-defined static requirements are of three different types:

e registration of a temporal element associated to an event, like the birthday of a
person or the hour of a meeting;

¢ the duration of an event, like the duration of a meeting;

e the period of time during which a value is valid, as the case of an exchange rate
that is valid during a certain period.

These requirements are represented in Temporal F-ORM through appropriate
temporal data types, presented in Section 5. The valid times of an information, analyzed in
Section 6, also represent well-defined static temporal requirements.

In many applications there is also the need to represent incomplete information:

e the occurrence of an event before or after a date, as the case of the Individual
Income Tax Return form that must be posted before the end of May;

e the occurrence of an event within an interval, like the inscription of a student in a
course that must be done during the first week of September.

Incomplete information is also defined through some specific data types, as will be
explained in Section 5.4.

4.2. CONDITIONAL TEMPORAL REQUIREMENTS
Two types of conditional temporal requirements can be identified:

e conditional temporal requirements that represent casual constraints on the
possible execution of processes, like the case of a process that is executed when an event
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occurs, or before (or after) the occurrence of another event; these requirements control
the beginning and coordinate the execution of concurrent processes through constraints on
the temporal order in which messages can be sent and received by instances of roles;

¢ another form of conditional temporal restrictions is used to represent implicitly
or explicitly defined temporal information, relative to other information; as an example,
there can be a restriction that controls the fact that a new salary is never less than a
previous one.

Conditional temporal information is represented through the use of logic
conditions associated to the transition and integrity rules, as explained in Section 7. These
conditions modeling temporal requirements represent constraints to the information
systems evolution.

5. TEMPORAL DATA TYPES

A set of temporal data types is used on properties' definition, to represent well-
defined static temporal requirements. These data types present different time granularity
like hour, year, interval. The different granularities are necessary to make it possible to
model reality in a natural way with concepts we are used to.

The F-ORM method has the following pre-defined domains: BOOLEAN, DATE,
IMAGE, INTEGER, PLACE, STRING, TEXT, TIME, TITLE. Two temporal data types,
DATE and TIME, are already defined in F-ORM. Depending on the application to be
modeled, other temporal data types are necessary. Four different temporal types can be
identified [Adiba 85, 87]: time points, intervals, span (duration) and periodic time. In our
approach we introduce the first three, considering that periods could be defined using
rules defining temporal constraints on intervals.

5.1  TIME POINTS

The selected primitive temporal element for explicit time representation is the time
point. Analyzing the applications in the information systems domain, the finest time
granularity necessary to define human activity is the minute, chosen to be the chronon
[Jensen 92] of the data model. To define completely a time point it is necessary to set a
date (year, month and day) and a time (hour and minute). This is done defining the basic

temporal type INSTANT. Using a simplified BNF notation, the basic temporal data type
INSTANT is defined as:

<instant> ::= <year> "/" <month> "/" <day> <hour> ":" <minute>

Other temporal types with different time granularity, needed to model information
systems applications, can be derived from this basic one. The derivation mechanism is
based on a restriction applied to the basic type. Derived temporal types are: DATE,
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YEAR, MONTH, DAY, TIME, HOUR and MINUTE. Some other types are needed to
model reality in a natural way, representing special intervals that are considered as time
points: WEEK and SEMESTER. The set of temporal types representing time points is

completed with the type WEEKDAY representing the correspondent information for a
date in the enumeration Sunday to Saturday.

5.2. INTERVALS

Intervals of time can be used to define a set of time points between two limit
events. The two limits of an interval must have the same granularity. The chronon within
the interval is implicitly defined by the limits' type. Four different types of intervals can be
defined, depending if the limit events belong to the interval or not: closed interval, when
the interval contains both limits; semi-open interval, when one of the limits belongs to the
interval; open interval when both limits are not in the interval; and floating interval, in
case one of the limits is the actual time. For instance, a closed interval is defined as:

<closed interval> ::= <limit> ":" <limit>
<limit> := INSTANT | DATE | TIME | YEAR | MONTH | DAY | HOUR | MINUTE

As an example of time points and interval's definition consider the resource class
PERSON properties (Appendix 1):

resource class (
PERSON,
< base-role,
static properties = { (name, STRING), (birthday, DATE) }.
dynamic properties = { (object_instance, INSTANT), (end_object, INSTANT),
(address, STRING). (vacations, INTERVAL(DAYS.CLOSED)) }

5.3. SPAN

Another important type is the span (directed duration) of an activity. This
information is represented by an integer number followed by the appropriate time unit -
e.g., days, hours, weeks. A possible span type is:

<month_span> := <integer> MONTH

An example of this data type is the span of time a tape is held in the store for
locations before it is sold:

resource class (
TAPE.

< Life_time.
dynamic properties = { role_instance. INSTANT). (end_role. INSTANT),
(time.SPAN(YEARYS)) }.
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5.4. DATATYPES FOR INCOMPLETE TEMPORAL INFORMATION

Some applications need the representation of incomplete temporal information. For
these, Temporal F-ORM presents some specific temporal data types. When the
requirement only states that an event shall occur after or before a specific instant, date or
hour, one of the following types can be used (considering a date as limit type):

<limit_date> ::= AFTER <date> | BEFORE <date>

The meaning of this data type is the same as an interval with one limit equal to
infinity, and considering only one point within the interval. Another special data type for
incomplete information is used to represent only one point within an interval, not defining
which point:

<within_interval> ::= WITHIN <interval>

5.5.  FUNCTIONS AND OPERATIONS ON DATA TYPES

The uses of data types of different granularity offer some difficulties in the
manipulation and operation of the different times [Clifford 88b, Wiederhold 91]. A set of
functions (predicates) that convert the different types is defined to accomplish this
manipulation. The specialization of classes with inheritance of properties and messages
allows the definition of functions for INSTANT (basic temporal type) that can be
specialized for DATE or TIME, as needed. The functions return a temporal information,
e.g., the weekday corresponding to a date, a different temporal granularity of a given time
point, the span of an interval. Some examples are:

year(<instant>) - extracts the year of an instant
weekday(<date>) - returns the weekday of the given date
begin(<interval>) - returns the lower bound of an interval
span(<interval>) - computes the span of an interval

Operations using different time granularity are also defined:

a) arithmetic operations like sum and subtraction can be applied in particular cases,
like: (1) the two operands are of the type SPAN, resulting in a value of the same type; (2)
the first operand is of type INSTANT, DATE or TIME and the second of type SPAN,
resulting the type of the first operand; (3) the two operands are INTERVALS having the
same granularity, resulting in an INTERVAL or in an undefined result;

b) the relations "<" (less than), ">" (greater than), "=" (equal to), "<=" (less than
or equal to) and ">=" (greater than or equal to) can be used to compare two time points
or two spans of different granularity, converting internally the values to the finest
granularity and resulting in a logical value; the allowed types for time points are
INSTANT, DATE, TIME, YEAR, MONTH, DAY, HOUR, MINUTE;
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c) operations defined for sets that can be applied to INTERVALS, like wunion,
intersection and ownership, resulting intervals or undefined results, or logical values.

6. TRANSACTION AND VALID TIME REPRESENTATION

Two different time concepts must be represented in an application - transaction
time and valid times [Jensen 92, Snodgrass 85]. The transaction time represents the time

when an information is stored in a database; valid time corresponds to the time when the
information models reality.

6.1. TRANSACTION TIME

The transaction time is implicitly defined by the DBMS. The definition of
transaction times in Temporal F-ORM is done timestamping dynamic properties and
timestamping objects' instances.

6.1.1. PROPERTIES TIMESTAMPING

An analysis of the possible properties a role can present shows that there are some
properties that never change, like the "social security number" for a person object. These

properties are called static properties; they are supposed to be defined once and valid all
over the instance's life.

The properties that may change with time are defined as dynamic properties.
Transaction times are associated to dynamic properties by timestamping. A dynamic
property consists of a set of pairs mapping the definition time to the property's value
domain, as proposed in [Clifford 88a]. The temporal domain of these time stampings is the
concatenation of the date and the time - the INSTANT data type. Appropriate operations
can be used in the query language and in the rules to compare these values and to extract
specific information (e.g., year, month, hour, minute, weekday). The instances' whole
history may be retrieved through the dynamic properties' values.

As an example, static and dynamic properties are defined in the role employee of
the PERSON class:

Employec.
static properties = { (name., STRING) }.
dynamic propertics = { (salary. REAL). (hire_date, DATE). (out_date, DATE) }

Considering the dynamic property salary, it is represented by the pairs:

salary: INSTANT X REAL
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A special null value can be used to represent the periods of time during which
dynamic properties have undefined values. Immediately after the creation of the instance,
all the properties receive a default nu/l value. Static properties hold this value until the first
nonnull value is assigned to them, and then retain the new value during all their lifetime.
For the dynamic properties the null value holds until a new value is defined. All the
changes of dynamic properties' values are time stamped. During an application, there can
be periods of time when a property has an undefined value. This can be represented

associating again the null value to this dynamic property. This special value can be used in
all the property domains.

6.1.2. INSTANCES TIMESTAMPING

Instances of objects are managed through special messages. A special dynamic
property of the basic role, object _instance, keeps the time correspondent to the creation
of an instance of that object, done through the message create _object. This property may
have one of the two special values defined to represent the instances' life span - null and
nonull. An instances' existence starts at the creation moment, with the value nonull
associated to object_instance, and may have some valid disjoint periods, depending on the
income of the messages suspend object and resume_object. The beginnings of the periods
when the instance is suspended are represented in object instance through the value null
associated to the corresponding temporal information. The moment the instance is
resumed is again associated to nonull. The message kill terminates the object instances'
life. As the implemented database corresponding to this model will be a temporal database,
keeping all the values of the past, the active life of the instance is discontinued but the
instance is not removed. The instant when an instance is killed is kept in another special
dynamic property, called end_object, referencing the end of the instances' life.

In Temporal F-ORM there are not only object instances, but also role instances,
managed through the messages add role, resume_role, suspend _role and terminate_role.
The validity periods of a role instance are stored the same way as the object instances,
using a special role dynamic property, called role_instance. The end of an instance of a
role is stored in another dynamic property, end role.

The validity of a role instance depends on the validity of the corresponding objects'
instance. Therefore, the values stored in object instance and end_instance are temporal
restrictions imposed on those kept in role_instance and end role. The termination of an
objects' instance kills all the role instances of that object.

The dynamic properties object instance and end instance are implicitly defined
for each base role, and role_instance and end role for each role.
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6.2. VALID TIME

The valid time corresponding to an information can be different from the
transaction time. Both these values shall be stored in the database that models the
application. Two ways can be used to represent the valid time: (1) augment the definition
of dynamic properties to three dimensions, representing respectively the transaction time,
the valid time and the information domain; and (2) to define special dynamic properties
that keep the valid time, present only when defined. As the existence of valid time
definition is not so frequent, the first option would lead to an unnecessary augment in
storage. In Temporal F-ORM the second alternative is used. The name of the special
properties used to define valid time is formed by the concatenation of the prefix valid and
the name of the property. For instance, considering the property salary of the role
employee of the PERSON class, when a valid time is defined it is stored in a property
called valid salary, associated with the value of the information. For each defined
dynamic property there is the implicit creation of a corresponding valid dynamic property.
In the Appendix 1 example, the dynamic properties of employee, a role of the object
person, are internally defined as:

< Employee.

dynamic properties = { (role_instance. INSTANT). (end_role, INSTANT),
(salary, REAL). ( valid_salary, REAL),
(hire_date, DATE), (valid_hire_date, DATE),
(out_date, DATE), (valid_out_date. DATE),
(function, INTEGER), (valid_fuction) I

The values stored in the database are defined as arguments by messages sent and
received by the roles. A special argument is used to define valid times: Valid Time. This
argument is optional, used only when the valid time can be different from the transaction

time. The corresponding query language must take care of the possibility of existence of a
valid time definition, when storing and retrieving an information.

As an example lets consider the change of an employee's salary. Let's suppose that
on the 92/May/10 (transaction time) there is the definition of a new salary for the

employee, and that this new salary counts from the first day of that month (valid time).
Two possible messages are:

messages = { modify_salary(Value:REAL. Valid_Time:DATE)
from employce_control,
end_employment (Valid_Time:DATE)
from employee_control  }
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Ve TEMPORAL LOGIC

Two types of rules are used in Temporal F-ORM: state transition rules and
integrity rules. A state transition rule characterizes valid transitions between states,
eventually depending on the arrival of a message. The transition may cause the sending
another message. In some applications there is the need to define dynamic integrity
conditions - conditions that compare two different states of the application's information.
Therefore a condition was added to the Temporal F-ORM transition rules. This condition
is evaluated just before the state transition is activated. The transition between the two

states will only happen if the condition is satisfied. The extended state transition rule has
one of the following forms:

<state transition rule> ::= <rule identifier>":"

"o

<state I>["."<message I >] "=>"[<message2>]"."<state2>";"[<temporal condition>]

<state transition rule> ::= <rule identifier>":"

"won

<message 1> "=>"[<message2>]""<state2>":"[<temporal condition>]

The second form, when there is no <state1> defined, represents a special state
transition rule; the arrival of the message <messagel> will cause the transition to the new
state, independently of the actual state. This makes it possible to represent active objects,
that have a defined behavior when receiving a message with a pre-defined temporal
argument. In these cases an object clock sends messages (eventually virtual messages) at a
defined interval to all the active objects. A condition added to these rules represents a
limitation of that behavior - the rule will be executed at the moment this condition is
satisfied, without considering the actual state.

Integrity rules represent static integrity conditions - conditions that must always
hold; they must be satisfied by all instances of a role at all times. An integrity rule has the
following form:

<integrity rule> ::= "constraint” "(" <conditionl> "=>" <condition2> ")"

The rule represents a constraint: if the first condition is satisfied, than the second
condition must also hold. A constraint is evaluated the first time at the moment when the
roles' instance is created. It must be satisfied, otherwise the instance will be discontinued.
Afterwards, the constraint will be evaluated each time a state transition involving the first
conditions' parameters is executed, just before the sending of the outgoing message. If it
happens that the constraint is not satisfied, the transition will be undone; if there is an
outgoing message, it will not be sent; and a NAck message is sent to the role that sent the
incoming message. If the constraint is satisfied, then the outgoing message is sent.

The conditions used in state transition and integrity rules are expressed in
temporal logic. Temporal logic is a specialization of modal logic - while the interpretation
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domain of the last is a generic set of states and the relations between these states, temporal
logic requires that these states form a linear discrete sequence [Manna 81]. A two-state
discrete sequence can be used to model dynamic changes at discrete instants.

Through the use of temporal logic situations that change due to the passage of
time can be represented. We assume that the time variation is discrete, presenting a linear
past and allowing branching in the future. Logic formalisms have been widely used to
express requirements involving time and to model dynamic applications [Castilho 82,
Carmo 88, Finger 91, Gabbay 91, Lipeck 87, Segev 88]. One of the advantages of this
formalism is that the use of temporal operators, as since or until make it possible to
represent incomplete information.

The symbols that can be used in the condition formula are: (1) atomic
propositions, referencing values of static and dynamic attributes and names of states; (2)
values transmitted as arguments by the incoming message: (3) relational operators; (4)
Boolean connectives and, or and not; (5) existential and universal quantifiers for all and
exists; and (6) a set of temporal operators, listed in Table 1.

Operator Semantics
sometime past A A held at sometime in the past
immediately past A A held at the previous moment
always past A A held at all times in the past
sometime future A A will held sometime in the future
immediately future A A will hold in the next moment
always future A A will hold at all times of the future
A since B A held at all times since B held
A until B A holds at all times until B holds
A before B A held sometime before B hold
A dafier B A held sometime after B hold

Table 1: Temporal Operators

As we are in an object-oriented framework, operators referencing the past consider
only those times beginning with the creation of the instance of the role; as for the future,
they will be limited by the life span of the instance.

As an example of a state transition rule with an associate condition, we can use the
representation of an employee's salary update. Suppose there is a law stating that an
employee's salary can never decrease. The corresponding state transition rule is:

ri: state(employed). msg(modity_salary(V)) => state(employed) :
immediately past exists V1 (salary(V1) and V>V 1)
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8. CONCLUSION

Socio-technical systems compose a category of applications to which temporal
modeling is an essential requirement. In this class of systems the close interaction
associating human and automated activities requires modeling and control of temporal
characteristics. Object-oriented models are a good option to represent this interaction.
They should provide definition of time properties to be used in time critical systems. Time
aspects are necessary to represent objects dynamic evolution within an information system
environment. The F-ORM model is an object oriented model, and has the pre-defined
domains DATE and TIME to support explicit time manipulation.

This work describes Temporal F-ORM, an extension of this model for temporal
modeling purposes. With Temporal F-ORM it is possible to represent different temporal
data types, transaction and valid time, and temporal conditions. A support environment is
being implemented, with tools that support the requirements' specification, using a class
library for reusing former defined requirements. The implementation is based on a
deductive temporal database and a Prolog-like query language. The past history of the
objects' instances is held in the database, which enables the retrieving of several different
versions of the object, relative to logical and physical time.

State transition and integrity rules are used in Temporal F-ORM to represent
complex objects and behaviors (state transitions) in information systems. A transition rule
characterizes valid transitions between states. A condition added to the Temporal F-ORM
transition rules enables the representation of dynamic integrity rules - conditions that
compare two different states of the application's information. This condition is evaluated
just before the state transition is activated, and the transition will only happen if the
condition is satisfied. The extended transition rule allows the representation of complex
temporal behavior.
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APPENDIX 1

VIDEO RENTAL STORE APPLICATION EXAMPLE

Three classes of the Video Rental Store applications are illustrated. As the
objective of this example is just to show the temporal extensions defined for the F-ORM
model, we don't present the whole specification, just some important parts.

process class (
Rental,
< base-role,
static properties = { (creation, INSTANT) }.
dynamic properties = { (client, CLIENT). (tape. TAPE) },
rules = {rulel : msg(->create_object) => msg(<-allow_role(rental_service)),
rule2 : msg(->create_object) =>
msg(<-allow_role(tape_devolution)),
rule3 : msg(->create_object) => msg(<-allow_role(rental_control)).

ruled : msg(->create_object) => msg(<-allow_role(clients_rental))}
>

/* The attendant receives the client's rental request and asks for information about the client: if the client
is allowed to rent the tape. the attendant informs the rental control and gives the tape to the client: if not,
he gives this information to the client. */

< Rental_scrvice,

static propertics = { ... }

states = { wait_rcquest, wait_check }

messages = {
tape_request(cliecnt:CLIENT. tape: TAPE) from clients_rental.
check_client (client:CLIENT) to rental_control.
allowed from rental_control,
rejected from rental_control.
begin_rental to rental_control,
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request_denied to clients_rental }
rules = {rulel : msg(<-add_role) => state(wait_request).

rule2 : state(wait_rcquest). msg(<-tape_request) =>
msg(->check_client). state( wait_check).

ruled : state(wait_check). msg(<-rejected) =>
msg(->request_denied). state(wait_request),

ruled : state(wait_check). msg(<-allowed) =>
msg(->begin_rental). state(wait_request) }

/* The attendant reccives the devolution of a tape and sends the information to the rental control. */
< Tape_devolution,

>,

/* Receives request of a clients checking. verifies if the client is allowed to rent a new tape and sends the
answer to Rental_service: receives information of beginning and end of rentals and stores the
correspondent information. */

< Rental_control.

>,

/* The client makes a rental request to Rental_service. receives a denial or the tape: if he receives the
tape, he later returns the tape to Rental_service. */
< Clients_rental.

>)

process class (
ACCOUNTING.
< base-role,

>

< employee_control.

>,

< rental_account,

>)

resource class (
PERSON,
< base-role,

>,

static propertics = { (name, STRING). (birthday, DATE) },

dynamic propertics = { (object_instance INSTANT), (end_object, INSTANT),
(address. STRING). (vacations, INTERVAL(DAYS.CLOSED)) }.

messages = { ... }.

states = { ... }.

rules={ ... }

< Client,

>,

< Employee.

dynamic propertics = {  (role_instance, INSTANT). (end_role. INSTANT),

(salary, REAL), (hire_date, DATE). (out_date, DATE), (function, INTEGER) }.
messages =
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modily_salary(Value:REAL. Valid_Timec:DATE) from employec_control.
end_employment (Valid_Time:DATE) from employce_control,
employment_time(Time:SPAN(DAYYS)) to .
employment_ended from employce_control
o
states = { employed. waiting_end_emplyment. disconnected }.
rules = {rulel : msg(<-add_role) => state(employed).
rule2 : state(employed). msg(<-modify_salary(V)) => state(employed) :
immediately past exists V1 (salary(V1) and V>V1),
rule3 : statc(employed). msg(<-end_employment) =>
msg(employment_time(T)). state(waiting_end_employment).
ruled: state(waiting_cend_cmployment). msg(<-employment_ended) =>
state(disconnected)

>)

resource class (
TAPE,
< base_role.
static properties = { (object_instance:INSTANT). (end_object. INSTANT),
(tape_number. INTEGER) }.
dynamic properties = { (tape_lilm. STRING). (film_type. STRING) }.
messages = { ... }.
states={ ... }.
rules = {... }.
>,
< Life_time.
dynamic propertics = { role_instance. INSTANT). (end_role, INSTANT),
(time.SPAN(YEARS)) }.

>,
< Rentals.
dynamic properties = { role_instance. INSTANT). (end_role, INSTANT),
(client_code. INTEGER), (beginning_date. DATE). (end_date. DATE) }.
messages = |
rental (Tape. INTEGER. Client:INTEGER) from Rental_control,
tape_devolution (Tape:INTEGER. Clien:INTEGER) from Rental_control,
rented_time (Time:SPAN(DAYS). Clien:INTEGER) to Rental _account },
states = { available, rented },
rules = {rulcl : msg(<-add_role) => state(available).
rule2 : state(available). msg(<-rental(T.C)) => state(rented).
rule3 : state(rented). msg(tape_devolution(T.C)) =>
msg(->rented_time(T.C)). state(available) }
>,

< Tape_loss.

>)
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