
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

AN OBJECT-ORIENTED
TEMPORAL MODEL

por
NINA EDELWEISS

JOSÉ PALAZZO M. DE OLIVEIRA
BARBARA PERNICI

RP-204 Dezembro/92
Relatório de Pesquisa

6 llsiiil I
UFRGS 0523493 1

UFRGS-11-CPGCC
Caixa Postal15064- CEP 91501-970
Porto Alegre- RS- BRASIL
Telefone: (051) 336-8399 e 339-1355
Fax: (051) 336-5576
Email: PGCC@INF.UFRGS.BR

UFRGS
INSTI UTO o·= l1'· FORMATICA

BIBLIOTECA

Universidade Federal do Rio Grande do Sul
Reitor: Prof. Hélgio Casses Trindade
Pró-Reitor de Pesquisa e Pós-Graduação: Prof. Claudio Scherer
Diretor do Instituto de Informática: Prof. Clésio S. dos Santos
Coordenador do CPGCC: Prof. Ricardo A. da L. Reis
Bibliotecária do Instituto de Informática: Celina Leite Miranda

2

·.· (•

35

ABSTRACT

The representation of complex objects anel behaviors (state transition s) in
infmmation systems is a central issue in software engineering. In an infonnation system,
supported by a conventional database , the only available state is the set of present values.
The object's behavior is controlled by integrity constrains defining only the valid ~;tates.

Almost all the representation of the dynamic evolution is lost in the traditional modeling
process. In this paper the main concern is to present the extensions made on an Object­
Oiiented Model, the F-ORM model [DeAntonellis 91 J to expand the representation o f the
object's evolution and to support the teniporal aspects involved. Temporal object-oriented
rnodels can be used to specify behavioral requirements of information systems . Four
different model ing concepts are defined to represent temporal information: (l) a set o f
temporal data types anel their associated function s, to be used in properties' definitions;
(2) time stamps assoei ateei to instances anel to dynamic properties; (3) a special null value
for attribute values outside the validity period ; and (4) temporal conditions added to
rules, written in a temporal logic language. An example showing the use of the Temporal
F-ORM is developed.

KEYWORDS : REQUIREMENT SPECIFICATION, INFORMATION SYSTEMS ,
OBJECT-ORIENTED DATA MODEL, TEMPORAL MODELING.

CONTENTS

1 INTRODUCTI()N 05

2 AN APPLICATION EXAMPLE 06

3 THE F-ORM MODEL 07

4 TEMPORAL REQUIREMENTS FOR INFORMATION SYSTEMS 09

4.1 Unconditional Temporal Requirements 09

4.2 Conditional Temporal Requirements 09

5 TEMPORAL DATA TYPES 10

5.1 Time points I O

5.2 lntervals 11

5.3 Span 11

5.4 Data Types for lncomplete Temporal Requirements 12

5.5 Functions and Operations on Data Types 12

6 TRANSACTION AND V ALIO TIME REPRESENTATION 13

6.1 Transaction Time 1 3

4

6.1.1 Properties Timestamping 13

6.1.2 Instances Times tampin g 14

6.2 Valid Time 15

7 TEMPORAL LOG IC 16

8 CONCLUSION 18

REFERENCES 18

APPENDIX 1 21

5

1. INTRODUCTION

Infmmation systems specification can be done through the use of data models . In
the framework of object-orientation much work has been clone on the modeling of static
anel behavioral properties, but temporal aspects have not been explored in profunelity.
One isolated example is the language RML IGreenspan 86] . Some studies about these
aspects are available [Arapis 91, Clifford 88a].

Object-orienteel models should provide definition of time properties when intendeel
to be used in time criticai systems, e.g ., plant control systems, office information systems.
Our basic concern is the modeling of information systems. Time aspects are necessary to
represent objects dynamic evolution within these infonnation system environments.
Temporal properties are used to define properties (attributes) with time values, to time
stamp properties in temporal databases, oreler activities' execution through rules, etc.

Recent works present different fonns of time modeling. Time definitions may be
clone explicitly, usually through timestamping (a time value associated with some object,
e .g ., an attribute value or a tuple) or implicitly, using some sort of temporal logic
language.

The explicit time representation requires the choice of a primitive temporal
element, like events (isolated instants of time) or intervals (the time between two events).
When using events as the primitive temporal notion, there is a special time po.int
cotTesponding to the clfrrent time , constantly moving along the temporal axis. The time
concept may be represented as a continuous or a discrete variable. Events belong to the
continuous time representation . An event is an isolated instant of time. lt is said to occur
at time t if it occurs at any time during the chronon represented by t Pensen 92]. A
chronon is the shortest duration of time supportecl by a temporal DBMS ; it belongs to the
discreet time representation . Many applications show the need of defining clifferent
granularities for information: hours , days, years. This makes the retrieving of the temporal
infom1ation a complex affair but produces a much better representation of reality . Other
time clomains, such as time intervals, may be defined as pairs of events, representing the
lower anel the upper end of the time interval.

In systems where reasoning on time duration is central, such as scheduling
systems, the notion of time interl'a! is a primitive anel events are represented by very little
intervals . One important approach for time modeling is Allen's interval algebra [AIIen 83],
were time intervals are related to each other by temporal relations , represented by
preelicates expressed in a temporal logic language. The languages TELOS [Mylopoulos
90] anel RML [Greenspan 86] are based on this theory.

The use of temporallogic is also found in some systems and languages fBolour 83,
Corsetti 91, Greenspan 86, Loucopoulos 91, Maiocchi 9l, Schiel 83]. In the Event
Calculus [Kowalski 86J, reasoning about events anel time is petfonned within a logical

UFRGS
INSTITUTO DE INFORMÁTICA

BIBLIOTECA

6

programming framework. The most important contribution of this approach is the
possibility of dealing with uncertain and imprecise infmmation like before and after.

This papers main concern is to extend an object-oriented model, the F-ORM model
[DeAntonellis 91], so that it supports temporal aspects. The chosen primitive temporal
element is the event. We add four different mocleling concepts for temporal definitions : (1)
a set of temporal data types and their associated functions and operations, to be used in
properties' definitions; (2) time stamps associated to instances of objects in the database
and to dynamic properties; (3) a special nu/1 value for attribute values outside the validity
period; and (4) temporal conditions added to rules, written in a temporallogic language.

Snodgrass anel Ahn proposed a taxonomy of time in databases lSnodgrass 851.
consisting o f three distinct time concepts: (1) transaction time, the update time; (2) v aliei
time, the period of validity of the stored infonnation and (3) user-defined time, temporal
properties defined explicitly on a time domain and manipulated by the user program. With
the definition of the set of temporal data types , the need of user-defined temporal
properties decreases. Dynamic properties timestamping anel the null value represent the
transaction and valid times . Temporal conditions added to static and dynamic integrity
rules constrain the set of possible state transitions of the application.

The paper is organized as follows. A small appJication case is presented in Section
2, to be used in examples in the other sections. Section 3 clescribes briefly the main aspects
of the F-ORM model [DeAntonellis 91]. The temporal requirements needed to specify
infonnation systems are listed in Section 4. In Section 5, special temporal data types and
the conesponding functions and operations are presented. Section 6 describes the
representation of transaction times and valid times and Section 7 introduces briefly the
adopted temporal logic language.

2. AN APPLICATION EXAMPLE

This paper uses a part of a Vídeo Rental Store specification in the examples: the
infmmation on clients, employees, tapes anel rentals . A client is identified by a unique
code, a name and an address. Additional infonnation may be necessary, like his or her
in.scription date in the Vídeo Rental Store , ali the tapes he or she rented and the
conesponding periods , anel if he or she is allowed to rent tapes . An employee is identified
by the name and has the properties: address, the hiring date anel salary. The tapes are
identified by a unique tape code. Each tape has the following information: the movie
name, the category and the date of acquisition. A rental is made associating the client's
and the tape's codes, and a starting date . A rental is only possible if some conditions are
satisfied: the tape must be in the shop , the client must be allowed to rent tapes, can have a
maximum of 5 tapes and is not allowed to keep up a tape for more than 30 days.

7

3. THE F-ORM MODEL

The F-ORM model (Functionality in Object with Roles Model) fDeAntonellis 911
is an object-orientecl design framewÓrk for infonnation systems requ irements'
specification 1• Objects' behavior is clescribed using the concept of roles. Two distinct
types of classes are identified : resource classes anel process classes. A resource class
defines the structure of the resources (agents, data and clocuments) in tenns of roles the
resource can have in its life-cycle. Process classes integrate the resource classes allowing
to describe how the work is actually petformecl in its organization anel in the cooperation
among agents. The concept of role in process classes moelels the elifferent tasks executeel
in the process and their relationships in tenns of communication anel cooperation rules
together with the involved resources.

A class is defined by a name c, anel a set of roles R;. each one representing a
different behavior of this object:

Each role R;consists of a role nome Rn;, a set of properties P; of that role (abstract
descriptions of data types implementecl as instance variables), a set of abstract states S; the
object can be at while playing this role, a set of messages M; that the object can receive
anel senel in this role, anel a set of rufes Ru; (the state transition rules anel integrity rules) :

R.=< Rn .. P .. S .. M .. Ru. >
I I I I I I

Ali instances of roles evolve independently, the interactions being allowed through
message passing. An object can play clifferent roles at eljfferent times, can play more than
one role at the sarne time, anel can have more than one instance of the same role at the
same time.

Every object has a base role Ro that describes the initial characteristics of an
instance and the global properties conceming its evolution . The properties of the base role
are inherited by the remaining roles; the rnessages are used to adcl , clelete suspenel anel
resume instances of other roles; the possible states are pre-defineel, actil'e anel suspended;
anel the rules define transitions between roles and global constraints for the class .
Properties' definitions describe the clomain each property should have .

A class can be defined as a subclass of one or of severa! classes (multiple
inheritance). A subclass inherits ali components specifieel in the parent class or classes.

I Project INFOKIT. ltali:m Nationnl Rcscarch Council nnd ProjcctiTHACA . ESPRIT 11 .

UFRGS
\NST\TUTO DE \NfORMAT\C~

B\ L\OTECA

8

New components can be added to a subclass definition in two ways: (1) adding
specifications of new roles and (2) modifying the specification of inherited roles .

Considering the class tape of the proposed application case, the properties of the
base-role are the tape's coele, the name of the film and the type of the movie (e.g ., drama,
comedy). The following roles can be identified: (1) Life- time, modeling the actions to be
executed to buy the tape, let the tape available for rental eluring a period of time anel sell it
afterwards; (2) Rentals , moeleling the possible rentals of a tape ; anel (3) Tape _loss,
modeling what shall be done when a tape is lost. Considering the role Rentals , some
required properties are the client's code and the rental starting and ending dates . Possible
states in this role are al•ailahle and rented. This role can receive and send the following
messages: rental from Rental_control, tape _de1•olution from Rental_control and
rented_time to Rental _control. State transition rules control the behavior. Representing
incoming messages by the prefix "<-" anel outgoing messages by "->", we have the
following class definition :

rcsource class (
TAPE.
< base_role.

>.

propcrt ics = ((tapc_number. INTEGER).
(tapc_film. STRING).
(filrn_type . STRING)

messagcs = (... }.
}.

states = (... }.
rules = (... }.

< Life_time.

>.
< Rentals.

>.

prope rties = ((clicnt_code . INTEGER).
(beg innin g_date. DATE) .
(end_dnte. DATE) }.

messages = { rental (Tnpe: INTEGER. Client:INTEGER) from Rent:.tl_controL
tapc_devolution (Tnpe:INTEGER) frorn Rental_contro l,
rented_time (Time:TNTEGER.Ciient:TNTEGER)) to Rental_control }.

states = (availnble. rented 1.
rulcs = (rui e I : rnsg(<-mld_rolc) => state (nvnilablc).

rulc2: stnte(nvnilnble). msg(<- rental(T.C)) => stnte(rented) .
rule3 : statc(rented) . msg(<- tape_devolution(T)) =>

msg(-> rcnted_t ime(T.C)) . s tate(avni lable)

< Tape_loss.

>)

9

4. TEMPORAL REQUIREMENTS FOR INFORMATION SYSTEMS

Temporal aspects are important in information systems not only to represent
temporal infonnation to be introduced in the corresponding database but also to model the
interaction of the possible processes to be executed. Temporal F-ORM, an extension of
the F-ORM model , was created to permit temporal modeling. Analyzing the domain of
infmmation systems, two different types of temporal requirements can be identified:
unconditional and conditional temporal information about events.

4.1. UNCONDITIONAL TEMPORAL REQUIREMENTS

Unconditional temporal requirements are explicitly defined, representing a specific
moment of time associated to an infonnation. These requirements can be well-defined and
incompletely defined . We/1-defined static requirements are of three different types:

• registration of a temporal element associated to an event, like the birthday of a
person or the hour of a meeting;

• the duration of an event, like the duration of a meeting;

• the period of time during which a value is valid, as the case of an exchange rate
that is valid during a certain period .

These requirements are represented in Temporal F-ORM through appropriate
temporal data types, presented in Section 5. The valid times of an infonnation, analyzed in
Section 6, also represent well-clefined static temporal requirements .

In many applications there is also the need to represent incomplete information:

• the occurrence of an event before or ajier a date, as the case of the Individual
Income Tax Return forn1 that must be posted before the end of May;

• the occurrence of an event within an interval, like the inscription of a student in a
com·se that must be done during the first week of September.

Incomplete information is also defined through some specific data types, as will be
explained in Section 5.4.

4.2. CONDITIONAL TEMPORAL REQUIREMENTS

Two types of conditional temporal requirements can be identified:

• conditional temporal requirements that represent casual constraints on the
possible execution of processes, like the case of a process that is executed when an event

10

occurs, or before (or after) the occurrence of another event; these requirements control
the beginning and coordinate the execution of concurrent processes through constraints on
the temporal order in which messages can be sent and received by instances of roles;

• another fonn of conditional temporal rest:rictions is used to represent implicitly
or explicitly defined temporal infonnation, relative to other infom1ation ; as an example,
there can be a restriction that controls the fact that a new salary is never less than a
previous one.

Condüional temporal infotmation is represented through the use of logic
conditions associated to the transition and integrity rules, as explained in Section 7. These
conditions modeling temporal requirements represent constraints to the information
systems evolution.

5. TEMPORAL DATA TYPES

A set of temporal data types is usecl on properties' definition, to represent well­
defined static temporal requirements. These data types present different time granularity
like hour, year, interval. The different granularities are necessary to make it possible to
model reality in a natural way with concepts we are used to.

The F-ORM method has the following pre-defined domains : BOOLEAN, DA TE,
IMAGE, INTEGER, PLACE, STRING, TEXT, TIME, TITLE. Two temporal data types ,
DATE and TIME, are alreacly defined in F-ORM. Depending on the application to be
modeled, other temporal data types are necessary. Four different temporal types can be
identified [Adiba 85, 87]: time points, intervals, span (duration) and periodic time. In our
approach we introduce the first three, considering that periocls could be defined using
rules defining temporal constraints on intervals .

5.1 TIME POINTS

The selected primitive temporal element for explicit time representation is the time
point. Analyzing the applications in the infonnation systems domain, the finest time
granularity necessary to define human activity is the minute, chosen to be the chronon
[Jensen 92] of the data model. To define completely a time point it is necessary to set a
date (year, month and day) and a time (hour and minute) . This is clone defining the basic
temporal type INSTANT. Using a simplified BNF notation, the basic temporal data type
INST ANT is defined as :

<instanl> ::= <year> "/" <monlh> "/" <da y> <hour> ":" <minute>

Other temporal types with different time granularity, needed to model information
systems applications , can be derived from this basic one. The derivation mechanism is
based on a restriction appliecl to the basic type. Derived temporal types are: DA TE,

\

UFR GS
T\TUTO OE \NFORMAT\CA .

B\BL\OTECA

11

YEAR, MONTH, DA Y, TIME, HOUR and MINUTE. Some other types are needed to
model reality in a natural way, representing special intervals that are considered as time
points: WEEK and SEMESTER. The set of temporal types representing tirne points is
completed with the type WEEKDA Y representing the correspondent infonnation for a
date in the enumeration Sunday to Saturday .

5.2. INTER V ALS

Intervals of time can be used to define a set of time points between two limit
events. The two limits of an interval must have the same granularity. The chronon within
the interval is implicitly defined by the limits' type. Four different types of intervals can be
defined, depending if the limit events belong to the interval or not: closed inter\'Ctl, when
the interval contains both limits; semi-open interl'al, when one of the limits belongs to the
interval; open inten•al when both limits are not in the interval; and j7oatíng ínterl'(t/, 111

case one of the limits is the actual time. For instance, a closed interval is defined as:

<closed interval> ::= <limit> ":" <limit>

<limit> := INST ANTI DATE I TIME I YEAR I MONTH I DA Y I HOUR I MINUTE

As an example of time points and interval's definition consider the resource class
PERSON properties (Appendix I):

resource class (
PERSON.
< base-role.

5.3. SPAN

static propcrties =I (mune . STRING). (birthdny. DATE)}.
dynnmic properties = I (ohject_instnnce. INSTANT). (end_object. lNST ANT) .

(address, STRING). (vacations. INTERVAL(DA YS.CLOSED)) }

Another important type is the span (directed duration) of an act1v1ty. This
infmmation is represented by an integer number followed by the appropriate time unit -
e.g., days, hours, weeks . A possible span type is:

<month_spnn> := <integer> MONTH

An example of this data type is the span of time a tape is held in the store for
locations before it is solei:

resource class (
TAPE.

< Life_time.
dynamic properti es = 1 role_instance . INST ANT) . (end_role . INST ANT).

(time.SPAN(YEARS))).

12

5.4. DATA TYPES FOR INCOMPLETE TEMPORAL INFORMATION

Some applications need the representation of incomplete temporal infom1ation. For
these, Temporal F-ORM presents some specific temporal data types. When the
requirement only states that an event shall occur after or before a specific instant, date or
hour, one of the following types can be used (considering a date as limit type):

<limil_dale> ::= AFTER <date> I BEFORE <cl:lle>

The meaning of this data type is the same as an interval with one limit equal to
infinity, and considering only one point within the inlerval. Another special data type for
incomplete infonnation is used to represent only one point within an interval , not defining
which point:

<within intervnl> ::= WITHIN <inlervnl>

5.5. FUNCTIONS ANO OPERATIONS ON DATA TYPES

The uses of data types of different granularity offer some difficulties iri the
manipulation and operation o f the di fferent times I Clifford 88b, Wiederhold 91 J. A set o f
functions (predicates) that convert the different types is defined to accomplish thi s
manipulation. The specialization of classes with inheritance of properties and messages
allows the definition of functions for INSTANT (basic temporal type) that can be
specialized for DATE or TIME, as needed. The functions return a temporal information,
e.g., the weekday corresponding to a date, a different temporal granularity of a given time
point, the span of an interval. Some examples are:

year(<inslnnt>)
weekday(<date>)
begin(<inlcrval>)
spa11(<intcrval>)

- cxtracls thc ycnr of an instnnt
- rcturns lhe weekdny of lhe given dnle
- rcturns the lower bound of an interval
- computes the spnn of nn interval

Operations using different time granularity are also defined :

a) arithmetic operations like sum and subtraction can be applied in particular cases,
like: (1) the two operands are of the type SPAN, resulting in a value of the same type; (2)
the first operand is of type INSTANT, DATE or TIME and the second of type SPAN ,
resulting the type of the first operand ; (3) the two operands are INTER V ALS having the
same granularity, resulting in an INTERVAL or in an undefined result;

b) the relations "<" (less than) , ">" (greater than) , "=" (equal to), "<=" (less than
or equal to) and ">=" (greater than or equal to) can be used to compare two time points
o r two spans o f di fferent granulari ty , converti ng internally the values to the finest
granularity and resulting in a logical value ; the allowed types for time points are
INSTANT, DATE, TIME, YEAR , MONTH , DAY, HOUR , MINUTE;

13

c) operations defined for sets that can be applied to INTER V ALS, like union ,
intersection and mvnership, resulting intervals or undefined results, or logical values .

6. TRANSACTION ANO V ALIO TIME REPRESENTATION

Two different time concepts must be represented in an application - transaction
time and valid times LJensen 92, Snodgrass 851. The transaction time represents the time
when an infonnation is stored in a database; valid time corresponds to the time when the
infonnation models reality.

6.1. TRANSACTION TIME

The transaction time is implicitly clefined by the DBMS. The definition of
transaction times in Temporal F-ORM is done timestamping dynamic properties anel
timestamping objects' instances.

6.1.1. PROPERTIES TIMESTAMPING

An analysis of the possible properties a role can present shows that there are some
properties that never change, like the "social security number" for a person object. These
properties are called static properties; they are supposed to be defined once and valid ali
over the instance's life.

The properties that may change with time are defined as dynamic pro]Jerties.
Transaction times are associated to dynamic properties by timestamping. A dynamic
property consists of a set of pairs mapping the clefinition time to the property's value
domain, as proposed in fCiiffonl R8al . The temporal domain of these time stampings is the
concatenation of the date and the time- the INSTANT data type. Appropriate operations
can be used in the query language anel in the rules to compare these values and to extract
specific infonnation (e .g., year, month, hour, minute, weekday). The instances' whole
history may be retrieved through the dynamic properties' values.

As an example, static and dynamic properties are defined in the role employee of
the PERSON class:

Employee.
static propcrtics =I (name. STRING) }.
dynnmic propcrtics = I (salary . REAL). (hirc_dnte. DATE). (out_dnte. DATE) I

Considering the dynamic property salary, it is represented by the pairs:

sal;~ry: INST ANT X REAL

UFRGS
lNSTlTUTO DE INFORMATlCA

BlBLlOTECA

14

A special 111111 value can be used to represent the periods of time during which
dynamic properties have undefined values. Immecliately after the creation of the instance,
ali the properties receive a default 111111 value. Static properties hold this value until the first
nonnull value is assigned to them, anel then retain the new value during ali their lifetime.
For the dynamic properties the 1111!1 value holcls until a new value is defined. Ali the
changes of dynamic properties' values are time stamped. During an application. there can
be periods of time when a property has an undefined value . This can be represented
associating again the null value to this dynamic property. This special value can be used in
all the property domains.

6.1.2. INSTANCES TIMESTAMPING

Instances of objects are managed through special messages. A special dynamic
property of the basic role, object_i11sta11ce, keeps the time correspondent to the creation
of an instance of that object, done through the message create _ol~ject. This property may
have one of the two special values defined to represent the instances' life span - null and
nonu/1. An instances' existence starts at the creation moment, with the value no11ull
associated to object _instance, and may have some valid disjoint periods, depending on the
income o f the messages suspend _o!Jject and resume _object. The beginnings o f the periods
when the instance is suspended are represented in o!Jject _i11stance through the v alue 11UII
associated to the corresponding temporal information. The moment the instance is
resumed is again associated to nonuff. The message kiff terminates the object instances'
life. As the implemented database corresponding to this model will be a temporal database,
keeping ali the values of the past, the active life of the instance is discontinued but the
instance is not removed. The instant when an instance is killed is kept in another special
dynamic property. called e11d_ohject. referencing the end of the instances' life .

In Temporal F-ORM there are not only object instances, but also role instances,
managed through the messages add _role, resume _role, suspend _role and termi11ate _role.
The validity periods of a role instance are stored the same way as the object instances,
using a special role dynamic property, called role _instance. The end of an instance o f a
role is stored in another dynamic property, e11d_role.

The validity of a role instance depends on the validity of the corresponding objects'
instance. Therefore. the values stored in o!Jject _instance and end _instance are temporal
restrictions imposed on those kept in role _instance and end _role. The tennination o f an
objects' instance kills ali the role instances of that object.

The dynamic properties object_instance and end_instance are implicitly defined
for each base role, and role_instance and end_role for each role.

15

6.2. V ALIO TIME

The valid time corresponding to an information can be different from the
transaction time. Both these values shall be stored in the database that models the
application . Two ways can be used to represent the valid time: (I) augment the definition
of dynamic properties to three dimensions, representing respecti vely the transaction time,
the valid time and the infonnation domain ; anel (2) to define special dynamic properties
that keep the valid time, present only when defined . As the existence of valid time
definition is not so frequent , the first option would lead to an unnecessary augment in
storage. In Temporal F-ORM the second alternative is used. The name of the special
properties used to define valicl time is formed by the concatenation of the prefix I'Oiid_ anel
the name of the property. For instance, considering the property salary of the role
employee of the PERSON class, when a valid time is defined it is stored in a property
called valid _salary, associated with the value o f the inf01mation. For each defined
dynamic property there is the implicit creation of a corresponding valid dynamic property .
In the Appendix 1 example, the dynamic properties of employee, a role of the object
person, are internally clefined as:

< Employee.
dynamic properties = I (rolc_ instance. INSTANT). (end_role. INSTANT).

(salary. REAL). (valicl_salary. REAL) .
(hire_clatc. DATE). (valid_hire_date. DATE) .
(out_datc. DATE). (valid_out_dnte. DATE).
(function . INTEGER). (valid_fuction)) .

The values stored in the database are defined as arguments by messages sent anel
received by the roles. A special argument is used to define valid times : Valid_ Tim e. This
argument is optional, used only when the valid time can be different from the transaction
time. The conesponding query language must take care of the possibility of existence of a
valid time definition, when storing and retrieving an infotmation.

As an example lets consicler the change of an employee's salary. Let's suppose that
on the 92/May/10 (transaction time) there is the definition of a new salary for the
employee, and that this new salary counts from the first day of that month (valid time) .
Two possible messages are :

messages = { modify _salary(Value:REAL. Valid_ Time: DATE)
from employcc_control.

end_employmcnt (Valid_ Time: DATE)
from employcc_control 1

UF RGS
INSTITUTO O' I "~FORMATICA

BIBLIOTECA

16

7. TEMPORAL LOGJC

Two types of rules are used in Temporal F-ORM: state transttlon rules and
integrity rules . A state transition mie characterizes valid transitions between states,
eventually depending on the arrival of a message. The transition may cause the sending
another message . In some applications there is the need to define dynamic integrity
conditions - conditions that compare two different states of the application's information.
Therefore a condition was added to the Temporal F-ORM transition rules . This condition
is evaluated just before the state transition is activated. The transition between the two
states will only happen if the condition is satisfied. The extended state transition rule has
one of the following fonns:

<statc tr::msition rule> ::= <rulc idcntifier>":"
<stat c I>]" ."<rnessagc I> 1 "=>"]<rncssage2>]" ."<statc2>":" l<tcmporal condition> I

<state tran sition rulc> ::= <rule identifi er>":"
<mcssagc I> "=>"[<mcssagc2>)" ."<state2> ":" I <temporal condition> J

The second fonn, when there is no <state 1 > defined, represents a special state
t:ransition rule; the arrival of the message <message 1> will cause the transition to the new
state, independently of the actual state. This makes it possible to represent actil 'e ol~jecrs,
that have a clefined behavior when receiving a message with a pre-defined temporal
argument. In these cases an object clock sends messages (eventually virtualmessages) ata
defined interval to ali the active objects. A condition added to these rules represents a
limitation of that behavior - the rule will be executed at the moment this condition is
satisfied, without considering the actual state.

lntegrity mies represent static integrity conditions - conditions that must always
hold; they must be satisfied by ali instances of a role at ali times . An integrity rule has the
following form:

<integrity rule> ::= "constraint" "(" <condition I> "=>" <cond ition2> ")"

The rule represents a constraint: if the first condition is satisfied, than the second
conclition must also hold. A constraint is evaluated the first time at the moment when the
roles' instance is created. It must be satisfied, otherwise the instance will be discontinued .
Afterwards, the constraint will be evaluated each time a state transition involving the first
conditions' parameters is executed, just before the sending of the outgoing message . If it
happens that the constraint is not satisfied, the transition will be undone; if there is an
outgoing message, it will not be sent; and a NA ck message is sent to the role that sent the
incorning message . I f the constraint is satisfied, then the outgoing rnessage is sent.

The conditions used in state transition and integrity rules are expressed in
temporal logic . Temporal logic is a specialization of modallogic- while the interpretation

17

domain of the last is a generic set of states anel the relations between these states, temporal
logic requires that these states forma linear discrete sequence fManna 81] . A two-state
discrete sequence can be used to moclel dynamic changes at discrete instants .

Through the use of temporal logic situations that change clue to the passage of
time can be represente<.! . We assume that the time variati'bn is discrete , presenting a linear
past and allowing branching in the future . Logic fonnalisms have been widely used to
express requirements involving time and to model dynamic applications !Castilho 82,
Carmo 88, Finge r 91, Gabbay 91, Lipeck 87, Segev 881. One of the advantages o f this
fonnalism is that the use of temporal operators, as since or tmtil make it possible to
represent i ncomplete in fonnation.

The symbols that can be used in the condition fonnula are: (1) atomic
propositions, referencing values of static and dynamic attributes and names of states; (2)
values transmitted as arguments by the incoming message; (3) relational operators; (4)
Boolean connectives and, or and not; (5) existential and universal quantifiers f or_all and
exists; and (6) a set of temporal operators , listed in Table 1.

Operator Semantics
SOIIICiime fJOSI Â A hc.ld nt sornetime in the pnst

immcdiately past A A held nt the previous moment
always f}(1Sf A A hcld nt nll times in the past

sometime future A A will hcld sometime in th e future
immediately fillure A ;\ will hold in th e nex t rnoment

always futur e A A will hold at nll times of thc future
A sino.' H A hcld nt ali times since H held
A 1111til 8 A holds nt nll times until 8 holds

A bef ore 8 ;\ held som etime bcfore 8 hold
;t after B A held sometirne after 8 hold

Table 1: Temporal Operators

As we are in an object-oriented framework. operators referencing the past consider
only those times beginning with the creation of the instance of the role; as for the future,
they will be limited by the life span of the instance.

As an example of a state transition rule with an associate condition , we can use the
representation of an employee's salary upclate . Suppose there is a law stating that an
employee's salary can never decrease . The corresponding state tran sition rule is:

q: state(employed) . msg(moclify _snlary(V)) => statc(cmployed) :
immcdiately pnst ex ists V I (snlary(V I) and V> V I)

18

8. CONCLUSION

Socio-technical systems compose a category of applications to which temporal
modeling is an essential requirement. In this class of systems the close interaction
associating human anel automated activities requires mocleling and control of temporal
characteristics. Object-oriented models are a good option to represent this interaction .
They should provide definition of time properties to be used in time criticai systems. Time
aspects are necessary to represent objects dynamic evolution within an information system
environment. The F-ORM model is an object oriented model , anel has the pre-clefined
domains DATE anel TIME to support explicit time manipulation .

This work describes Temporal F-ORM , an extension of thi s model for temporal
modeling purposes . With Temporal F-ORM it is possible to represent different temporal
data types, transaction and valid time , and temporal conditions. A support environment is
being implemented, with tools that support the requirements' specification, using a class
library for reusing fonner definecl requirements . The implementation is based on a
deductive temporal elatabase anel a Prolog-like query language . The past history of the
objects' instances is held in the database , which enables the retrieving of severa! different
versions of the object, relative to logical anel physical time.

State transition and integrity rules are used in Temporal F-ORM to represent
complex objects anel behaviors (state transitions) in information systems. A transition rule
characterizes valid transitions between states. A condition added to the Temporal F-ORM
transition rules enables the representation of dynamic integrity rules - conditions that
compare two different states of the application's infonnation. This condition is evaluated
just before the state transition is activated , anel the transition will only happen if the
condition is satisfied. The extended transition rule allows the representation of complex
temporal behavior.

REFERENCES

[Adiba 85] ADIBA,M .; QUANG.N.B.; de OLIVEIRA,J .P.M. Time concept in
generalized data bases . In : ACM ANNUAL CONFERENCE, Denver, Oct.
14-16, 1985. Proceedings. New York, ACM, 1985. p.214-23 .

[Adiba 87] ADIBA,M. ; BUT QUANG ,N.; COLLET,C. Aspect temporels, historiques et
dynamiques des bases de données, TSI - Technique et Science
lnformatiques, AFCET-Bordas, v.6, n.5, p.457-478, 1987.

[Allen 83] ALLEN,J .F. Maintaining knowledge about temporal intervals.
Communications of lhe ACM, New York, v.26, n.11 , p.832-43, Nov . 1983.

UFRGS
INSTITUTO DE INF.OPMATICA

BIBLIOTECA

19

[Arapis 91] ARAPIS.C. Specifying object interactions. TSICHRITZIS ,D. (ed .) Objects
Composition . Genebra , Université de Geneve, 1991. p.303-22.

[Bolour 83] BOLOUR,A. & DEKEYSER,L.J. Abstractions in temporal information .
lnformation Systems, Great Britain , v .8, n. l , p.41 -9, 1983.

[Carmo 88J CARMO,J. & SERNADAS,A. A Temporallogic framework for a layered
approach to systems specification and verification. In : ROLLAND,C.;
BODART,F.; LEONARD,M. (eds .) Temporal Aspects in lnformation
Systems. Amsterdam, North -Holland, 1988. p.31 -46.

[Castilho 821 CASTILHO,J.M.V.: CASANOVA,M.A.; FURTADO,A.L. A Temporal
framework for database specifications. In: INTERNATIONAL
CONFERENCE ON VERY LARGE DATA BASES, 8., Mexico City, Sept.
1982. Proceedings. Mexico City. 1982. p.280-9l.

[Clifford 88aJ CLIFFORD,J . & CROKER,A . Objects in time. Data Engineering,
Washington. v. 11, n.4 , p.ll - 18, Dec. 1988.

[Clifford 88b] CLIFFORD,J. & RAO,A. A Simple, general structure for temporal
domains. In: IROLLAND.C.; BODART,F.; LEONARD,M. (eds .) Temporal
Aspects in lnformafion Systems. Amsterdam, North-Holland, 1988. p. 17-
28.

[Corsetti 91] CORSETII,E.; CRIVELLI,E.; MANDRIOLI ,A.; MONTANARI ,A.;
MORZENTI ,A.C. ; SAN PIETRO,P.; RA lTO,E. Dealing with different time
scales in formal specifications. INTERNATIONAL WORKSHOP ON
SOFTWARE SPECIFICATION ANO DESIGN , 6., Como, Italy; Oct. 25 -6,
1991. Proceedings. IEEE Computer Society Press, 1991. p.92-l0l.

[DeAntonellis 9IJ DeANTONELLIS,V.; PERNICI,B .; SAMARATI,P. F-ORM Method:
a F-ORM Methodology for reusing specifications. In: ASSCHE,F.V.;
MOULIN.B. ; ROLLAND,C. Object Oriented Approach in Information
Systems. Amsterdam , North -Holland , 1991. p. 117-35 .

[Finger 91] FINGER,M .; McBRIEN ,P.; OWENS ,R. Databases and executable temporal
logic. IN : ESPRIT '9 1 ANNUAL ESPRIT CONFERENCE, Brussel s, Nov.
25-29, 1991 . Proceedings. Brussel s, ECSC, 1991 . p.289-302.

[Gabbay 91] GABBA Y,D. & McBRIAN ,P. Temporallogic & historical databases. In:
INTERNATIONAL CONFERENCE ON VERY LARGE DATABASES,
17 ., Barcelona, Sept. 3-6, 1991 . Proceedings. Barcelona, Industria Grafica,
1991. p.423-30.

20

[Greenspan 86] GREENSPAN,.S.J .; BORGIDA,A.; MYLOPOULOS,J. A Requirements
modeling language anel its logic . In : BRODIE,M.L. & MYLOPOULOS,J .
(eds.) On Knowledge Base Systems . Springer-Verlag, New York, 1986.
p.471-502.

[Jensen 92] JENSEN, C.S. et al. A Glossary of temporal database concepts . SIGMOD
RECORD, v.21, n.3, p.35 -43, Sept. 1992.

[Kowalski 86] KOWALSKI ,R. & SERGOT,M. A Logic based calculus of events. New
Generation Computing, 4, 1986. p.67-95 .

[Lipeck 87] LIPECK,U.W. & SAAKE,G. Monitoring dynamic integrity constraints
baseei on temporallogic . Information Systems, GB, v. l2, n.3, p.255-69,
1987.

[Loucopoulos 91] LOUCOPOULOS,P.; McBRIEN ,P.; PERSSON ,U.;
SCHUMACKER,F.; VASEY,P. TEMPORA- Integrating database
technology, rule-based systems and temporal reasoning for information
systems development. (to be included in the IEEE Knowledge Engineering
NewsleUers, Feb. 1991 .

[Maiocchi 91] MAIOCCHI ,R.; PERNICI,B .; BARBIC,F. Automatic deduction of
temporal infonnation . University of Udine, Dipartimento de Matematica e
lnformatica, 1991. 5Xp. (Research Report) . (to be published in ACM
Transactions on Database Systems)

[Manna 81] MANNA,Z. & PNUELI,A. Verification of concurrent programs: the
temporal framework . In : BOYE MOORE (de.) The Correctness Problem of
Computer Science. Academic Press , 1981. p.215-73 .

[Mylopoulos 90] MYLOPOULOS,J .; BORGIDA,A.; JARKE,M.; KOUBARAKIS,M .
Telos : representing knowledge about infonnation systems. ACM
Transactions on lnformation Systems, New York, v.8, n.4, p.325 -62 , Oct.
1990.

[Pernici 90] PERNICI,B . Objects with Roles . In: CONFERENCE ON INFORMATION
SYSTEMS, Cambridge, Massachussetts, April 25-27, 1990. Proceedings.
SIGOIS Bulletin, v. I I, n.2-3, p.205 - 15, 1990.

[Schiel 83] SCHIEL,U . An Abstract introduction to the Temporal -Hierarchic Data
Model (THM). INTERNATIONAL CONFERENCE ON VERY LARGE
DATA BASES , 9., Florence (ltaly), Oct. 31 - Nov. 2, I 983. Proceedings.
Italy, VLDB , 1983. p.322-30.

[Segev 88] SEGEV,A . & SHOSHANI ,A. Modeling temporal semantics . In :
ROLLAND,C. ; BODART,F.; LEONARD,M . (eds.) Temporal Aspects in
Information Systems. Amsterdam, North -Holland , 1988. p.47 -57.

21

[Snodgrass 851 SNODGRASS,R. & AHN,I. A Taxonomy of time in databases. In: ACM
SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF
DATA , Texas , May 28-31, 1985 . Proceedings. New York, ACM, 1985.
p.236-46.

[Wiederhold 911 WIEDERHOLD ,G.; JAJODIA,S .; LITWIN,W. Dealing with
granularity of time in temporal databases . In: INTERNATIONAL
CONFERENCE CAISE'9 L 3., Trondheim, Norway, May 13-15, 1991.
Proceedings. Berlin , Springer- Verlag, 1991 . p.124-40.

APPENDIX I

VIDEO RENTAL STORE APPLICATION EXAMPLE

Three classes of the Vídeo Rental Store applications are illustrated. As the
objective of this example is just to show the temporal extensions defined for the F-ORM
model, we don't present the whole spec ification , just some important parts .

process class (
Rentnl,
< base-role.

>

stntic propcrtics = { (crca tion . INST ANT) }.
dynamic propcrtics = { (clicnt. C LI ENT) . (tape. TAPE) }.
rules = { rule I : msg(->c reate_ohjec1) => msg(<-allow _rolc(rcntal_serv ice)).

rulc2 : msg(->c rcat c_ohjcct) =>
msg(<-a llow _rolc(t:lpe_devolut ion)).

ruld : msg(->create_ohjcct) => msg(<-allow_ro le(rcnt al_contro l)).
rulc4 : msg(->crea tc_ohject) => msg(<-allow _role(c li ents_rcntal))}

f* The attendant receives the client's rental request and nsks for infonnntion ahout the c licnt : if thc clicnt
is allowed to rentthc tape. the attcndant infonns the rental control and gives the tape to thc clie nt : if no t.
he gives this infonnation to thc clicnt. */

< Rental_scrvice.
static propcrtics = { ... l
statcs = { wait_rcqucst. wait _chcck I
messages = {

tapc_rcquest(c lic nt :CLIENT. tape:T APE) from clients_re ntal.
chcck_clicnt (clicnt :C LI ENT) to rental_control.
allowed from rcntal _control.
rcjcctcd from rental_control.
bcgin_rcntalto re ntal_control.

>.

request_denied to c li ents_rental l
rules = (rui e I : rn sg(<-adcl _rolc) => stale(wai t_requesl) .

rule2 : stale(wail_requesl) . msg(<-l:lpe_requesl) =>
msg(->chcck_c lient). stal e(wa it _check).

rulc3 : stale(wait_check). msg(<-rejected) =>
msg(->requcst_denied) . stat e(wai t_requesl).

rulc4 : statc(wait_chcek). msg(<-allowcd) =>
msg(->begin_rental). state(wait_requcsl) l

I* The attendant reccives the devolution of a tape and sencls lhe information to thc rcntal control. *I
< Tape_devolution.

>.

22

I* Receives request of a c lients checkin g. verífíes íf lhe clícnt ís allowed to renl n new tape nncl se ncl s thc
answer to Rental _servicc: rcce ives inform alion of hcginning anel end of rentnl s and storcs lhe
correspondent information . */
< Rental_control.

>.
I* The client makes a rental rcquest lo Rental_scrvice. rece ives a dcnial or lhe tape: if hc recc ives lhe

tape. he !ater re turns the tape to Rental_se rvice . */
< Clients_rental.

>)

process class (
ACCOUNTING.
< base-role.

>
< employee_control.

>.
< rental_accounl.

>)

resourcc class (
PERSON.
< base-role.

>,

static propcrtics = ((namc. STR ING) . (birthclay. DATE) l.
dynamíc propcrtics = { (ohjccl_instance.INSTANT). (end_ohject.INSTANT).

(addrcss. STRING). (vac:~líons.INTERVAL(DAYS.CLOSED)) j.

messages = I ... l.
stntes = { ... l.
rulcs = { ... l

< Client.

>.
< Employee.

dynamic propcrtics !::: { (rolc_inslance.INSTANT). (end_role. INSTANT).
(salary. REAL). (hire_date. DATE). (out _date. DATE). (function.INTEGER)) .

messages = {

>)

modify_salary(Valuc :REAL. Vali<!_ Time: DATE) from employcc_control.
end_employmc nt (Vnlid_ Time: DATE) from employce_control.
employment _ time(Time:SPAN(DA YS)) to .
employmcnt_cndcd from employcc_control .
... }.

statcs = (employcd. waiting_cnd_cmplyment. disconncctccl } .
rules = (rui c I : msg(<-add_rolc) => s tntc(cmploycd) .

rulc2: state(cmploycd). msg(<-modify_salnry(V)) => stnte(employcd):
immcdiatcly past cx ists V I (salary(V I) and V> V I).

rulc3 : statc(cmploycd). msg(<-cnd_cmploym cnt) =>
msg(employmcnt_l i mc(T)) . statc(wait in g_ cnd_ employment) .

ru le4 : statc(w::tit ing_ cnd_cmploym ent). msg(<-employme nt_ ended) =>
stnte(di sconncc tcd)

.. . I

resource class (
TAPE.
< base_ role.

>.

static propcrties = ((objcct_ inst;Jncc:INSTANT). (cnd_objcc l. INSTANT) .
(tnpc_numhcr . INTEG ER) } .

dynmnic properti cs = ((tnpc_ film . STRING). (film _lypc . STRING) }.

messages = (... I.
states = (.. . } .
rules= { .. . }.

< Life_ time.

>.

dynmnic propcrtics = (rolc_ instancc. INST ANT). (end_role . INST ANT).
(timc.SPAN(YEARS)) }.

< Rentals.

>.

dynamic propcrties = (rolc_ instancc . INST ANT). (cnd_rolc. INST ANT).
(clicnt_codc. INTEGER). (hcginning_date. DATE). (cnd_datc . DATE) } .

messngcs = (
rcntal (Tnpc. INTEGER. C licnt :INTEGER) from Rc ntnl_control.
tapc_dcvolution (Tnpc:INTEGER . C li cnt:INTEGER) from Rc nt:ll _control.
rentcd_ timc (Timc:SPAN(DA YS). Client :INTEGER) to Rental _account} .

statcs = (availahle. i·cntcd I.
rulcs = (rulc I : msg(<-add_rolc) => state(;Jvailable).

rulc2 : statc(availahlc). msg(<-rentai(T.C)) => state(rented).
ruld : statc(rcntcd) . msg(tapc_dcvolution(T.C)) =>

msg(-> rcntcd_ timc(T.C)). statc(availablc) }

< Tapc_ loss .

>)

UfRGS
\NST\TUTO O c \Nf ORMÁ T\CA

B\BL 01ECA

23

RP-203

RP-202:

RP-201:

RP-200:

RP-199:

RP-198:

RP-197:

RP-196:

RP-195:

RP-194:

Relatórios de Pesquisa

"Hardware Description in C - HOC - v. 2.0"
Novembro/92
CESAR AUGUSTO MISSIO MARCON, ALTAMIRO AMADEU SUZIM

"A Rede da UFRGS",
Novembro/92.
FERNANDO LUIS DOTTI

"Um modelo orientado a objetos para especificação de
informações temporais em sistemas de informação de es­
critórios apropriado ao paradigma de reutilização",
Novembro/92.
NINA EDELWEISS

"Primitivas de acesso ao Banco de Dados do Projeto
AMPLO",
outobro/92.
LIA GOLDSTEIN GOLENDZINER

"Semântica formal de linguagens de
setembro 1992.

programação",

A.S. CASTRO VERA

"Métodos e linguagens de
setembro 1992.

especificação formal",

A.S. CASTRO VERA

"LINGUAGENS VISUAIS: uma abordagem para a programação
de computadores, especificação de interfaces gráficas,
visualização de software e acesso a bancos de dados",
setembro 1992.
C.M.D.S. FREITAS

"LIBTEX: uma biblioteca para síntese de texturas em
imagens de computação gráfica. Agosto 1992.
M. WALTER

"A cross-indexed guide to the
literature". Julho 1992.
M. WALTER

texture

"PGX-Pacote de rotinas gráficas para o AMPLO
ambiente Xwindow". Julho 1992.
D. G. FRIDMAN; F. HESSEL; A. E. NEUJAHR

2

em

