

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA
PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GUILHERME SCHVARCZ FRANCO

S4FE: Sequential Feature Frequency Filter – Front-End for SLAM

Dissertação apresentada como requisito parcial
para a obtenção do grau de Mestre em Ciência
da Computação.

Orientador: Prof. Dr. Edson Prestes e
Silva Júnior

Porto Alegre
2016

CIP – CATALOGING-IN-PUBLICATION

Franco, Guilherme Schvarcz

 S4FE: Sequential Feature Frequency Filter – Front-End for
SLAM / Guilherme Schvarcz Franco. – 2016.

15 f.:il.
Advisor: Edson Prestes e Silva Junior;
Thesis (Master) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação. Porto Alegre, BR
– RS, 2015.

1. VisualSLAM. 2. Front-End 3. Bag of Words. I. Silva Júnior,
Edson Prestes.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

No man is an island,

Entire of itself,
Every man is a piece of the continent,

A part of the main.
If a clod be washed away by the sea,

Europe is the less.
As well as if a promontory were.

As well as if a manor of thy friend's
Or of thine own were:

Any man's death diminishes me,
Because I am involved in mankind,

And therefore never send to know for whom the bell tolls;
It tolls for thee. – John Donne

AGRADECIMENTOS

Tenho que agradecer a muitas pessoas por essa etapa concluída. A tantos e por
tantos motivos diferentes, que certamente não caberia em apenas uma folha de minha
dissertação. Em suma, o célebre poema de John Donne nunca me foi tão
evidentemente verdadeiro quanto nesses últimos anos que se passaram, nessa longa
aventura que foi o mestrado.

Gostaria de agradecer primeiramente a professora Dra. Simone Ceolin, por ter
posto fé em meu esforço, ainda lá em Santa Maria/RS, e ter começado a me moldar
como pesquisador dando a base necessária à minha formação científica. Agradeço
também ao professor Dr. Edson Prestes, por dado continuidade a minha formação e
ter me mostrado os passos mais avançados desse universo acadêmico.

Aos meus amigos de longa data, que ainda estão próximo e também aos que
infelizmente não estão mais, por terem me motivado e dado forças para que eu
pudesse chegar até este ponto. Especialmente ao Cleber Otto Pedrozo, que muito me
ensinou sobre a vida desde muito cedo, a longo dos meus tempos mais turbulentos e
dos seus também, até seus últimos dias. Aos amigos mais recentes, que espero que
se eternizem, por fazerem de cada um dos meus dias livres uma jornada revigorante
explorando a capital gaúcha e região. Por fim, aos colegas de laboratório, que me
auxiliaram em minhas dúvidas.

Por fim, mas não menos importante, a minha família e especialmente a minha mãe
Gislei Terezinha Schvarcz. Por ter me dado a base necessária que ninguém mais
poderia ter feito e a força que precisava quando nem mesmo eu a tinha mais.

S4FE - Sequential Feature Frequency Filter – Front-End for SLAM

RESUMO

Fechamento de loops é um dos principais processos das estratégias de SLAM

baseadas em grafos, usadas para estimar o erro de deslocamento acumulado à ser
minimizado pela técnica. Neste sentido, boas correspondências de cenas permitem
criar uma conexão entre dois nós do grafo que está sendo construído para representar
o ambiente. Contudo, falsas correspondências podem levar essas estratégias a um
estado irreversível de falsa representação do ambiente.

Neste trabalho, um método robusto baseado em features que usa sequências de
imagens para reconhecer áreas revisitadas é apresentado. Este método usa a
abordagem de Bag-of-Words para reduzir efeitos de iluminação e uma ponderação
TF-IDF para ressaltar as principais features que descrevem cada cena. Além disso,
um algoritmo baseado na técnica de Mean Shift é usado sobre uma matriz de
similaridade para identificar a possível trajetória seguida pelo robô e melhorar a
detecção de fechamento de loop. O método apresentado foi testado em um ambiente
aberto usando sequências de imagens coletadas com usando uma câmera de mão e
um drone modelo Parrot ArDrone 2.0.

Palavras-chave: VisualSLAM, Mean Shift, Bag of Words.

ABSTRACT

Loop closure recognition is one of the main processes of graph-based SLAM
strategies, used to estimate the accumulated motion error to be minimized by the
technique. Good scene correspondences allow to create constraints between two
nodes in the graph that is currently being built to represent the environment that the
robot is immersed. However, false correspondences can lead these strategies to an
irreversible wrong environment representation.

In this work, we present a robust feature-based loop closure approach that uses
image sequence matching to recognize revisited areas. This approach uses Bag-of-
Words to reduce the effects of lightning changes and a TF-IDF weighting to enhance
the main features that describe each scene. Besides, an algorithm based on Mean
Shift is used over a similarity matrix to identify the possible trajectory followed by the
robot and improve the loop closure detection. Our method is tested in a GPS-denied
outdoor environment using image sequences collected using a handheld camera and
a Parrot ArDrone 2.0.

Keywords: VisualSLAM, Mean Shift, Bag of Words.

LISTA DE FIGURAS

Figure 1.1 The three main tasks of an autonomous robot and their combinations,
emphasizing the SLAM problem (focus of this work). Figure adapted from (Makarenko et al.,
2002) ... 14
Figure 2.1 A common SLAM scheme. The initial known pose Xt and the sequential estimated
poses Xt + n after each respective robot’s input controls ut + n-1. The landmarks mk and
their respective observations Zk, t + n. ... 19
Figure 2.2 The SLAM problem modeled as a Bayesian Network. The observed variables are
the actions un and observations Zn. While the hidden variables are the robot’s poses Xn and
map m. .. 20
Figure 2.3 Bayesian Networks of the features. (a) The complete mutual information graph
that encodes the distribution QZ. (b) The spanning tree that maximizes the Kullback-Leibler
divergence. Image extracted from (Cummins; Newman, 2007). ... 28
Figure 2.4 Image extracted from (Milford, 2013). (a) SeqSLAM’s place recognition map
representing 7 datasets that sum 131 km of road travel and 1160 meters of indoor travel, into
an image of about 2 megapixels. (b) A single image of 2 megapixels extracted from one of
those datasets. ... 35
Figure 2.5 Contrast enhancement of the difference vector D to vector D to highlight the
strongly matchings. Dark cells represent stronger similarity and white cells represent weak
relation between images. Image extracted from (Milford; Wyeth, 2012). 37
Figure 2.6 Searching for a sequence of images with smallest difference score. For clarity,
only two projected trajectories over the matrix M is presented. .. 39
Figure 2.7 Red points represent the vector S indexed by the relative template number in
DT-Δs + 1. After the smallest element of S is selected, the second smaller element outside
the window Rwindow, blue region, is searched. .. 40
Figure 4.1 Trajectories of handheld camera (a) and Parrot ArDrone 2.0 (b) datasets. The
green mark represents the start of the trajectory, while the red mark represents the end. The
samples from Figure 4.2 and Figure 4.3 are labelled in (a) and (b), respectively. 48
Figure 4.2 Samples of the images registered by the handheld camera. 49
Figure 4.3 Samples of images registered by the Parrot ArDrone 2.0. 51
Figure 4.4 Subpaths followed by handheld camera, according to Figure 4.1. 52
Figure 4.5 Subpaths followed by Parrot ArDrone 2.0, according to Figure 4.1. 53
Figure 4.6 Matrices generated by SeqSLAM (b) and S4FE (c) for the handheld dataset. The
ground-truth (a) shows where the loop closure should have been matched. 53

Figure 4.7 Matrices generated by SeqSLAM (b) and S4FE (c) for the Parrot ArDrone 2.0
dataset. The ground-truth (a) shows where the loop closure should have been matched. 54
Figure 4.8 Sample of true positive returned by FAB-MAP, SeqSLAM and S4FE for the
handheld camera dataset with their coefficients pLiZk, μ and η, respectively....................... 57
Figure 4.9 Precision-Recall obtained by FAB-MAP, SeqSLAM and S4FE in the challenging
handheld outdoor dataset. .. 58
Figure 4.10 Samples of false positive obtained by SeqSLAM and S4FE in the handheld
camera dataset with their coefficients μ and η, respectively. FAB-MAP did not return any
false positive. .. 59
Figure 4.11 Sample of true positive returned by FAB-MAP, SeqSLAM and S4FE for the
Parrot ArDrone 2.0 dataset with their coefficients pLiZk, μ and η, respectively. 60
Figure 4.12 Precision-Recall obtained by FAB-MAP, SeqSLAM and S4FE in the challenging
Parrot ArDrone 2.0 outdoor dataset. .. 61
Figure 4.13 Samples of false positive obtained by FAB-MAP, SeqSLAM and S4FE in the
Parrot ArDrone 2.0 dataset with their coefficients pLiZk, μ and η, respectively. 62

LISTA DE TABELAS

Table 4.1 Parameters ... 55
Table 4.2 Maximum Recall with 100% of precision from Handheld Camera dataset. 58
Table 4.3 Maximum Recall with 100% of precision from ArDrone 2.0 dataset. 61

LISTA DE ABREVIATURAS E SIGLAS

BoW Bag of Words
FAB-MAP Fast Appearance-Based Mapping
ML Maximum Likelihood
MSA Mean Shift Algorithm
ROI Region of Interest
S4FE Sequential Feature Frequency Filter – Front-End
SAD Sum of Absolute Differences
SLAM Simultaneous Localization and Mapping
SSD Sum of Squared Differences
SURF Speeded Up Robust Features
TF-IDF Term Frequency – Inverse Document Frequency
VisualSLAM Visual Simultaneous Localization and Mapping
VPR Visual Place Recognition

SUMÁRIO

1 INTRODUCTION .. 12
1.1 Motivation ... 13
1.2 Objectives ... 16
1.3 Organization ... 17
2 SLAM FOUNDATION ... 18
2.1 SLAM ... 18
2.2 Graph-based SLAM and Visual SLAM ... 22
2.3 Related Work .. 25

2.3.1 FAB-MAP ... 25
2.3.2 SeqSLAM .. 34

3 S4FE ... 42
3.1 Loop Closure using Image Sequences .. 42
3.2 Preprocessing Phase .. 43
3.3 Processing .. 44
4 TEST ENVIRONMENTS ... 47
4.1 Similarity Matrix vs Difference Matrix .. 52
4.2 Precision-Recall ... 55
5 FINAL REMARKS AND FUTURE WORK. .. 63
REFERENCES ... 64

1 INTRODUCTION

Humans have always dreamed of going further than their physical capacities can

take them without put their lives in dangerous. Travel to outside space to explore the
unknown, visit inhabitable territories searching for basic resources to support life or go
to deep waters looking for what else the earth has to offer. There are many jobs that
may expose human lives to risk in their own habitat. Remove mines of an ancient
battlefield to allow the peaceful population of that region lives without afraid; safely
defuse bombs from terrorist attacks; search for remaining life on wreckage of buildings
after an environmental disaster or digging tunnels under the soil are some of them.
Alike these scenarios, an industrial job can expose an employee life to danger. On
several cases, a repetitive work, usually done in this kind of labor, can cause injuries
to the worker. Moreover, this job can be described as a tiresome employment where
the human cognitive abilities are not required.

For all these dull, dirty and dangerous issues, the possibility to use autonomous
robots looks promising. A mechanical instrument with certain intelligence could safely
perform the necessary work without costing the health or life of humans. However,
developing a robot capable to replace a human on these scenarios is a very complex
and challenging task. To build robots with such abilities some requirements have to be
fulfilled. For instance, for a robot that should move in an environment, three basic
abilities are required: (i) path planning, (ii) mapping and (iii) localization (Thrun;
Burgard; Fox, 2005). As can be seen in Figure 1.1.

Planning a path (i) is understood as the ability of a robot to determine and follow a
path in a known environment. It is not an easy mission to accomplish. The route must
be free of obstacles and be the shortest path between the robot’s current position and
the desired goal. Moreover, it should avoid regions with difficult traversing, such as
narrow spaces, grass or sand (Maffei; Jorge; Prestes; Kolberg, 2014; E Prestes;
Trevisan; Idiart; Engel, 2003; Edson Prestes; Idiart, 2009). Mapping (ii) is the task of
registering an unknown environment, where the robot is traversing, in a representation
that can be manipulated. The type of representation map is strongly related to the
navigation and localization strategies. This choice impacts directly the computational
cost and the precision of the robot’s approach (Siegwart; Nourbakhsh, 2004).

13

Finally, localization (iii) is the process where the robot identifies its current position
in an already mapped area. Many approaches use a localization system based on
beacons (Neuland et al., 2014; Yol; Delabarre; Dame; Dartois; Marchand, 2014). An
example of these systems is the positioning system using orbiting satellites, such as
GLONASS, GALILEO or GPS1, that localize any receiver device around the globe. The
drawback of this kind of system is that they require the presence of pre-localized
emitter equipment, which only can exist on a beforehand manipulated environment,
limiting the application. Besides that, these beacon systems can fail in several
situations. In outdoor environments where the robot is surrounded by buildings or in a
dense forest, for instance, a navigation based on GPS is not allowed due to satellite’s
poor signal and reflection problems.

In these cases, the robot needs to rely on usually not precise sensors such as speed
or odometer sensors. The continuum integration of nonsystematic errors from these
sensors eventually guide the robot to belief that it is in a position in the environment
that actually it is not. To address this problem, a usual approach is to try to recognize
regions where the robot already passed. Trusting that it has visited the same area, it
can estimate those errors accumulated from the last time that it was there.

This work proposes a loop detection strategy based only on cameras. Every image
gathered during the robot’s traversing is storage in a computational representation of
the world known by the robot. Then, new scenes registered by the robot are compared
and a confidence measurement is computed to each one of the already images learnt.

1.1 Motivation

Performing the three main necessary tasks to an autonomous mobile robot is
already a challenge. Nevertheless, in most robotics applications, these problems
cannot be solved independently. Figure 1.1 shows all possible combinations of these
tasks (Makarenko; Williams; Bourgault; Durrant-Whyte, 2002).

1 More information at https://glonass-iac.ru/ (GLONASS), http://www.gsa.europa.eu/ (GALILEO) and
http://www.schriever.af.mil/GPS/ (GPS).

Figure 1.1 The three main tasks of an autonomous robot and their combinations,
emphasizing the SLAM problem (focus of this work). Figure adapted from (Makarenko
et al., 2002)

The issue of Active Localization is given when the robot, based on a known map,

tries to recalculate the best path to follow during its traversing. This ability is important
to a robot that suffers with an imprecise odometry source. To be able to update its
current route towards the goal position, the robot must have an estimate about its
localization. This task assumes that the robot has an updated representation of the
environment which is immutable. However, this is unpractical on a real scenario, where
the robot in operating in a world under constant changes.

A more challenging problem is when the robot should navigate in a region where it
does not have any knowledge in advance to create a computational representation of
the area. On this problem, usually called exploration of an unknown environment, the
robot must read its sensors in each step to update its environment representation.
Then, the robot calculates a path towards the direction of the boundaries between the
mapped and unmapped regions. This task has the assumption that the robot has a
perfect odometer, what is unrealistic to be acquired in real scenarios. The robot usually
slips due to oil, water or other wastes that can be over ground. Sometimes, due to its
own physical features, the robot tends to move not respecting the planned route.

The third combination of the three main skills which an autonomous robot should
master, is the ability of performing Simultaneous Localization and Mapping (SLAM)
(Grisetti; Kummerle; Stachniss; Burgard, 2010; Thrun; Montemerlo, 2006). Unlike the
before combined tasks, this is a mandatory expertise that a robot must have in order
to navigate in the real world. These mapping strategies need to be robust enough to

15

deal with possible divergence of routes. Without assuming a perfect odometry, after
each movement, the SLAM process compares the robot’s knowledge about the world,
acquired so far, to what its sensors are collecting from the environment. This is made
to reduce eventual odometry errors that could lead it to build a wrong representation
of the world.

In contrast to the two before introduced abilities, which are hard to implement in a
real world, many scenarios require a teleoperated robot capable of mapping a new
region as it’s explored. For instance, this ability could be assigned with a search and
rescue task in a disaster region, where a hurricane or landslide made a significantly
change on the landscape. Without knowing the situation of the terrain affected by the
natural disaster, sending a rescue group of humans to seek for remaining lives could
put more people in risk. As a map of the environment is not available yet, a rescue
group of robot should have the SLAM ability to properly accomplish the mission.

Finally, the composition of these three previously tasks is known as Integrated
Exploration. This problem is given when the robot must plan its motion to explore an
unknown area, creating the very first registration of the region, at the same time that it
is trying to localize itself over this partial environment map. The navigation decision
must have a balance between a path that adds more knowledge about the environment
and a path that improves the robot’s localization. This is a complex problem which has
in the core the SLAM and Exploration strategies. Only after satisfactory solving the
SLAM problem, the robot is able to choose a navigation path that could help the
localization and mapping approaches.

Despite the efforts made by researchers developing new SLAM algorithms, a path
divergence still can happen. Commonly, many strategies employ the process of loop
closure detection to deal with these unhandled deviations. When the robot recognizes
a revisited region, in other words, when a loop is closed, the accumulated error along
the path can be measured by the difference of its expected and estimated positions
over the learnt map. Usually, in robots equipped with rangefinders, a loop closure is
detected when the robot measures a scan reading similar to a structure already stored
in the environment representation, according to a likelihood metric, next to its
localization belief. However, a single scan reading is poor of information and liable to
false positives matches.

In this sense, place recognition using cameras, commonly called Visual Place
Recognition (VPR), has received considerable attention in the latest years as a loop

closure detection strategy for SLAM techniques (Cummins; Newman, 2007, 2010;
Milford; Schill; Corke; Mahony; Wyeth, 2011; Milford; Wyeth, 2012). These algorithms,
that attempt to solve the SLAM problem using visual information, are known in the
literature as Visual SLAM (Davison; Kita, 2001). Cameras are low cost sensor, have
small size and low power consumption (Milford; Turner; Corke, 2013) compared to
other sensors used for place recognition (Bosse et al., 2003; Lee; Song, 2010; Milford;
Wyeth, 2012).

The main idea of VPR is to match two images or two sets of images in a sequence
collected during the robot motion to detect revisits and, consequently, close loop. While
some strategies prefer to rely on feature-based techniques to compare images, such
as SIFT (Lowe, 2004) or SURF (Bay; Ess; Tuytelaars; Gool, 2008; Bay; Tuytelaars;
Van Gool, 2006), others prefer to correlate images using appearance-based
approaches such as SSD or Mutual Information (Viola; Wells, W.M., 1995).

1.2 Objectives

This work proposes a new strategy for loop closure detection that searches for a

matching between two sequences of images to determine loop closures, as part of a
SLAM strategy. For our approach, each frame is described by a histogram of their
features which are weighted by the relevance of their information to distinguish the
scene.

Some prominent algorithms in the Visual SLAM literature (Davison; Kita, 2001) that
use features scheme to detect a revisited area have demonstrated encouraging
results. FAB-MAP (Cummins; Newman, 2007, 2010) is a state-of-the-art technique that
uses Bag-of-Words (BoW) (Sivic; Zisserman, 2003) combined with a Bayesian
Network to identify loop closures through a single frame matching. Others, as
SeqSLAM (Milford et al., 2013; Milford; Wyeth, 2012; Pepperell; Corke; Milford, 2014)
and Outdoor SLAM (Ho; Newman, 2007) indicate that the detection of sequences of
frames along a path tends to decrease incorrect place matching occurrences when
compared to a single frame matching. Previous results show evidence that SeqSLAM
significantly outperforms FAB-MAP (Milford; Wyeth, 2012).

This work proposes the use of BoW combined with a modified version of Mean Shift
Algorithm (MSA) (Fukunaga; Hostetler, 1975) to locally track matching sequences, that
may represent loops, in a co-occurrence matrix. Our proposal performs the

17

normalization of similarity values in every region of interest (ROI) in the co-occurrence
matrix to highlight distinguishable line patterns. If the mean normalized similarity is
above a certain threshold, then the corresponding ROI has a possible line that
represents a loop. In this situation, MSA is performed.

1.3 Organization

This dissertation is divided as follow: Chapter 2 reviews the fundamentals of SLAM

and Visual SLAM presenting two loop closure methods: FAB-MAP (Cummins;
Newman, 2007) and SeqSLAM (Milford; Wyeth, 2012). Chapter 3 introduces the core
ideas of our method comparing them to the state-of-art works. Then, an overview of
the proposed algorithm is presented followed by its formal derivation to clarify in details
each process of our approach. Chapter 4 presents all tested environments used to
appraise the present work along with a discussion about the challenges faced. Later,
the results obtained by our approach are compared to the FAB-MAP and SeqSLAM.
The differences between the tested techniques are highlighted and discussed. Finally,
Chapter 5 discusses the results obtained and presents the conclusion of this work with
a consideration about possible enhancement to our method as a future work.

2 SLAM FOUNDATION

This chapter starts with a review of the foundations of Simultaneous Localization

and Mapping techniques, describing the problem in details and formulating a basic
mathematical model. Then, a division of the SLAM approaches is introduced and the
Visual SLAM strategies are presented since their origin at Graph-based SLAM. Finally,
we introduce two main loop closure methods. First, we introduce the FAB-MAP
(Cummins; Newman, 2007) approach and the Bayesian Network tree used to deal with
noise on the features’ descriptors. Then, SeqSLAM (Milford; Wyeth, 2012) and the use
of sequence matching are presented.

2.1 SLAM

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in

robotics. As introduced in Section 1.1, SLAM problem arises when a robot tries to
navigate in a region without having a previous map and any knowledge about its own
pose on the environment. SLAM is a complex problem where the robot needs to
simultaneously estimate two interdependent variables: its pose on the space and an
accurate map representation of the environment. It is more difficult than Localization
problem, where the robot has the map and does not need to estimate it. Also more
difficult than mapping problem, considering that the poses are unknown and need to
be estimated during the mapping process.

Figure 2.1 shows the robot’s SLAM scheme. At time ݐ two observations ܼଵ,௧ and ܼଶ,௧
are made from landmarks ݉ଵ and ݉ଶ. Considering the robot has a perfect knowledge
about its pose ܺ௧, the position of the landmarks ݉ଵ and ݉ଶ can be estimated applying
the respective observations to the current pose of the robot. After performing an input
control ݑ௧, the robot estimates its new pose ܺ௧ାଵ and get two new observations: ܼଶ,௧ାଵ
and ܼଷ,௧ାଵ from the landmarks ݉ଶ and ݉ଷ. In the sequence, poses ܺ௧ାଶ and ܺ௧ାଷ are
estimated after the control inputs ݑ௧ାଵ and ݑ௧ାଶ, respectively, and the landmarks
position ݉ଷ and ݉ସ are estimated using the observations ܼଷ,௧ାଶ and ܼସ,௧ାଶ.

19

Figure 2.1 A common SLAM scheme. The initial known pose ܺ௧ and the sequential
estimated poses ܺ௧ା௡ after each respective robot’s input controls ݑ௧ା௡ିଵ. The
landmarks ݉ ௞ and their respective observations ܼ ௞,௧ା௡. Image generated by the author.

As introduced earlier, sometimes a robot movement could not be executed as

planned. This motion problem usually leads the robot to have a wrong belief about its
localization. A SLAM approach could try to improve the robot position exploiting two
observations of the same landmark in different positions. In our scenario, the robot
could estimate the position of the landmark ݉ଶ at time ݐ using ܺ௧ and ܼଶ,௧. Then, after
applying the input control ݑ௧ and estimate its new position ܺ௧ାଵ, the robot could
increase the precision of its estimated pose comparing the computed position of the
landmark ݉ଶ at time ݐ to its new observation ܼଶ,௧ାଵ at time ݐ + 1. With a more precise
position ܺ௧ାଵ as base, the observation ܼଷ,௧ାଵ allows the robot to calculate a better
position to the first time observed ݉ଷ, consequently creating a better representation of
the environment.

We must consider that the observations of presented scheme are not free of errors.
The sensors used to perceive the environment are susceptible to misreading. For
instance, a sonar used to measure the range from an obstacle, commonly surfer
interference from another source of acoustic wave or spectral reflection of a previously
sent signal. Therefore, all measurements made by the robot must have an associated
uncertainty. There are many forms to model this uncertainty. While the Extended

Kalman Filter SLAM (EKF SLAM) (Smith; Self; Cheeseman, 1988) represents that
uncertainty using an approximated Gaussian distribution, the GMapping (Grisetti;
Stachniss; Burgard, 2005) technique uses a Rao-Blackwellized particle filter scheme.

Beside their differences, all SLAM techniques are confronting the same problem,
which can be described by a Bayesian Network. Figure 2.2 shows the relations
between the observed and the hidden variables of this network. The observed
variables, the set of actions ݑଵ:௧ିଵ = ,ଵݑ} ,ଶݑ ,ଷݑ , … ,ସݑ ௧ିଵ} performed by the robot upݑ
to time ݐ − 1 and the set observations ܼଵ:௧ = {ܼଵ, ܼଶ, ܼଷ, ܼସ, … , ܼ௧} measured up to time
 are those ones that can be directly measured. Hidden variables, the set of robots ,ݐ
poses ܺଵ:௧ = {ܺଵ, ܺଶ, ܺଷ, ܺସ, … , ܺ௧} and the map ݉, are the variables not directly
measured by the robot and what a SLAM technique have to estimate. According to this
model, the observed states are dependent of the hidden states. Therefore, the hidden
variables can be inferred from the observed ones.

Figure 2.2 The SLAM problem modeled as a Bayesian Network. The observed
variables are the actions ݑ௡ and observations ܼ௡. While the hidden variables are the
robot’s poses ܺ௡ and map ݉. Image generated by the author.

The SLAM techniques can be divided in two groups: Online SLAM and Full SLAM
(Thrun et al., 2005). In Full SLAM the entire path ܺଵ:௧ and the map ݉ are the posterior
probability computed from all control inputs ݑଵ:௧ିଵ and observations ܼଵ:௧, as presented
in Figure 2.1. At each new information acquired by the robot, the entire path and map

21

estimation are re-computed to increase the precision. This improvement could be done
concerning the relation of each estimated element to the new observations acquired.

,ଵ:௧ܺ)݌ ݉|ܼଵ:௧, (ଵ:௧ିଵݑ

On the other hand, in Online SLAM formulation, all variables are estimated to a

specific moment ݐ. As shown at Equation 2.1, the robot’s pose ܺ௧ and the map ݉
estimation are the posterior probability computed from all observed states. Usually,
many online SLAM algorithms solve this problem by incrementally integrating the past
robot’s pose estimation. Instead of using all control inputs and observations, they use
the last estimation of map and robot’s pose to compute the next robot’s state.
Discarding the inputs already used to calculate an estimation.

௧ܺ)݌ , ݉|ܼଵ:௧ , (ଵ:௧ିଵݑ

 That way, an Online SLAM strategy can be described as the integration of the past

estimations from Full SLAM over time (Thrun et al., 2005):

,௧ܺ)݌ ݉|ܼଵ:௧ , (ଵ:௧ିଵݑ = න න න … න ,ଵ:௧ܺ)݌ ݉|ܼଵ:௧, (ଵ:௧ିଵݑ ସݔଷ݀ݔଶ݀ݔଵ݀ݔ݀ … ௧ିଵݔ݀

By operating incrementally, the Online SLAM has the advantage of be lightweight
and less computation need to be performed. On the other hand, an imprecise
estimation is propagated to all following poses and probably will never be corrected,
because the relation between new observations to the older ones is not full exploited.
For instance, the recognition that the robot’s pose ܺ௧ is the same of previously visited
pose ܺ௧ି௡ can help to correct only the current robot’s pose and observations, but not
to reduce the uncertainty of the hidden variables from the last time that the robot was
on that position.

2.1

2.2 Graph-based SLAM and Visual SLAM

Maybe the most studied algorithms in Full SLAM are the graph-based ones. The

formulation of this problem was first introduced at 1997 by Lu and Millos (Lu; Milios,
1997), but only became popular years later due to advances on error minimization
techniques (Thrun; Montemerlo, 2006). In graph-based SLAM, the robot’s poses ܺଵ:௧
and the landmarks ݉ଵ:௡ are represented as nodes in a graph and labeled according to
their positions on the world. The control inputs ݑଵ:௧ିଵ and the observations ܼଵ:௧ acquired
from the environment are the constraints represented by the edges of this graph.

The graph-based methods are divided into two parts. The front-end part is
responsible of constructing the graph representation and linking the learnt poses by
edges. These edges are created by the relation between two poses, given the inputs
 ଵ:௧ିଵ, and by the observations ܼଵ:௧, between a robot’s pose and landmark ݉ଵ:௡, orݑ
when the front-end method recognizes a revisited area. The second part, called back-
end, aims to determine the most reasonable global configuration of the robot’s poses,
respecting the constraints introduced by the edges of the graph. This configuration is
usually computed by an error minimization of a matrix that expresses the relation
between the estimated poses of the robot and the measured landmarks.

The graph construction does not care about global optimization, only about local
constraints. Therefore, the procedure of this task relies heavily on the raw sensor data.
In contrast, the back-end depends mainly on the graph representation of the
environment which is sensor agnostic. This knowledge is important to understand that
these two tasks can be resolved separately. A front-end strategy does not need to be
aware about the back-end methods to fulfil its duty properly. In the same way, the back-
end strategy does not need to be aware about the front-end strategy or the kind of
sensor used to construct the graph.

Since the first publications of graph-based methods, strategies to the back-end
segment have been proposed. Lu and Milios (Lu; Milios, 1997) work have
demonstrated how to globally optimize a graph-based map by reducing the error
introduced by constraints in a system of equations that express that graph. Although
this process has produced good results, it was costly. Exploiting the fact that this
technique usually creates a sparse matrix to represent the graph, Dallaert and Kaess
(Dellaert; Kaess, 2006) have proposed a sparse matrix factorization to improve the
computation time of these approaches. One year later, they add a column ordering

23

heurist to take advantage of the local dependency inherent to the SLAM problem
(Kaess; Ranganathan; Dellaert, 2007).

From a different point of view, Olson et. al. (Olson; Leonard; Teller, 2006) have
proposed an optimization method based on stochastic gradient descent to iteratively
converge to optimal solution. Their results have overcome the main iterative methods
to solve a system of equations, such as Gauss-Seidel or LU Decomposition. Following
this line of research, Grisetti et. al. (Grisetti; Stachniss; Burgard, 2009) extended
Olson’s algorithm to the 3D world introducing a parametrization to the nodes of the
graph that decreases the speed of convergence.

Finally, probably one of the major contributions to the back-end of the graph-based
SLAM theory was introduced by the method named GraphSLAM (Thrun; Montemerlo,
2006). Thrun et. al. introduced a method that method reduces the graph optimization
complexity using a variable elimination technique that allows the robot to build a
representation with more than 10଼ features. This advance had a great impact at graph-
based methods area and remains as the state-of-art.

All these approaches have been substantially reducing the computation complexity
across the years. In this work, we explain the common idea to compute the maximum
likelihood of a graph configuration that is behind all introduced methods. For a graph
where the poses are described by the vector ݔ = ,ଵݔ) … , and the Gaussian ்(்ݔ
distribution that represents an edge between two poses ݔ௜ and ݔ௝ is represented by the
mean ݖ௜௝ and the information matrix Ω௜௝ . The error ݁௜௝൫ݔ௜, ௝ݔ , ௜,௝൯ between theݖ
observation ݖ௜௝ and the predicted measurement ̂ݖ௜௝൫ݔ௜ , :௝൯ is given byݔ

 ݁௜௝൫ݔ௜ , ௝ݔ , ௜,௝൯ݖ = ௜௝ݖ − ௜ݔ௜௝൫ݖ̂ , ௝൯ݔ

The goal of the back-end of a graph-based SLAM is to minimize the global error

produced by all disagreements between the observations and predictions. This is done
by moving the nodes inside its zone of uncertainty in a manner to reach an optimized
global consistence, without losing the local constraints identified by the robot. Let C be
the set of pairs of indices for all measured constraints ݖ. The sum of forces (ݔ)ܨ given
by a graph configuration ݔ and weighted by the uncertainties Ω௜௝ is given by:

(ݔ)ܨ = ෍ ݁௜,௝்Ω௜,௝݁௜,௝
(௜,௝) ∈ C

In order to compute the maximum likelihood configuration ݔ∗ of the graph, we seek

for an argument that minimize the sum of forces (ݔ)ܨ. Which can be expressed by:

∗ݔ = argmin௫ (ݔ)ܨ

Methods to solve a non-linear least square problem, such as Gauss-Newton and
Levenberg-Marquardt, are usually employed to compute the maximum likelihood ݔ∗.
However, the approach based on a stochastic gradient descent method introduced by
Olso has shown better results with less computation time (Olson et al., 2006), as
commented previously.

Until this point we assume that we have a graph representation of the environment
which was abstracted from the raw measurements collected by the robot. Such
construction is done by converting the raw measurements to edges that connect the
poses of the robot to the landmarks identified in the environment. The construction of
a graph free of wrong connections is decisive to the right convergence of ݔ∗. However,
it must consider that the observation model ݔ)݌௧|݉, ௧), that expresses thoseݖ
connections, have a multi-modal distribution. Therefore, a single observation ݖ௧ has
multiple hypotheses to come from a specific landmark. Many front-end SLAM
approaches make a greedy decision and link the current robot’s pose to the most likely
landmark observation. Such strategy is weak and susceptible to false positive
matches. Especially when the sensor used by the robot is poor of information, such as
rangefinders or beacons system.

In this sense, cameras are a rich source of information to distinct two similar
landmarks. These sensors are low cost, have small size and low power consumption.
Besides, cameras provide a lot of information that can be used not only for performing
SLAM, but also for applications that involve semantic information processing, risk
situation analysis, etc. All these qualities have been driving researchers to seek for a
vision-based front-end SLAM strategy in the last years, which is commonly called
VisualSLAM (Milford et al., 2013). With a more descriptive data from the environment,
VisualSLAM have been enabling robots to explore areas substantial larger than before.

25

While many of those methods combines the depth information obtained from a
rangefinder or the heading information informed by a compass with the disambiguation
strength of visual information, other methods prefer to pursuit an approach based
exclusively on cameras, exploiting all information available from images to perform the
robot’s mapping and localization.

In the remainder of this work we will discuss about VisualSLAM techniques based
exclusively on cameras. First, we present the current state-of-art approaches, FAB-
MAP (Cummins; Newman, 2007) and SeqSLAM (Milford; Wyeth, 2012), followed by a
detailed explanation of S4FE, our contribution in this area of research, and a
comparison between these methods.

2.3 Related Work

At this section we will detail two loop closure methods that are the state-of-art of

VisualSLAM literature. These methods will serve as comparison to our approach at
Section 4. First, an explanation and mathematical derivation of FAB-MAP (Cummins;
Newman, 2007) is introduced. Later, a detailed revision of SeqSLAM (Milford; Wyeth,
2012) is presented. FAB-MAP is known by using a Bayesian Network tree to
probabilistic infers the robot’s pose while deal with missing features detections. While
SeqSLAM strength relays on the use of sequences of images to determine a loop
closure in drastic light changing scenarios.

2.3.1 FAB-MAP

FAB-MAP (Cummins; Newman, 2007, 2010) is an online probabilistic front-end

method to identify possible loop closures on the robot’s path. It uses a visual BoW
approach, introduced by Sivic et al (Sivic; Zisserman, 2003), to express the raw
information acquired from the environment into words to increase the robustness of
the features detector. As a probabilistic method, FAB-MAP expresses the SLAM
problem using a discrete Bayesian Network where the robot’s poses are conditioned
on the features observed. In real experiments (Cummins; Newman, 2009), FAB-MAP
has shown a great potential to recognize places in routes of 1000km in length using
only images.

For Cummins and Newman, the occurrence of the features is not independent from
each other. The presence of an object in the scene usually makes the features appear
in groups. Based on this assumption, FAB-MAP aims to model the co-occurrence of
those appearances in a Bayesian Network in order to increase the robustness of the
loop closure detection, even If there are some features not detected on the scene,
given the presence of other features. In other words, using such probabilistic model,
the method could better estimate the probability of an image to represent a local in the
space, even if not all features used to describe that location are detected. Moreover,
the co-occurrence probability measurement also decreases the robot’s belief on a
wrong feature detection, when performed. Also, FAB-MAP is based on the Markov
Chain assumption, which means that the robot’s pose belief at time ݇ is dependent
only on the belief at time ݇ − 1. This allows the use of a Recursive Bayesian Filter be
performed online.

Computing the Bayesian Network model

In order to represent scenes in a probabilistic manner given the features detected,

firstly a generative model of the observation need to be learnt. For that, FAB-MAP uses
a training dataset to learn this probabilistic model at a preliminary offline phase. This
model represents the co-occurrence dependency among the words which is used, in
the online phase, to probabilistically identify the possible robot’s pose. Let ܼ =
,ଵݖ} ,ଶݖ … , ,௩|ିଵ|ݖ Using the co-occurrence .|ݒ| ௩|} be the BoW’s vocabulary with size|ݖ
of the features in training dataset, FAB-MAP constructs a graph representation where
an edge ൫ݖ௜, ௝൯ express how much the occurrence of one variable predicts theݖ
occurrence of the other, as shown in Figure 2.3 (a). In order to build this graph, FAB-
MAP uses the mutual information measurement ܫ൫ݖ௜, ௝൯ to express the probability ofݖ
two words ݖ௜ and ݖ௝ appear together, which can be computed by:

,௜ݖ൫ܫ ௝൯ݖ = ෍ ௜ݖ൫݌ , ௝൯ݖ log ௜ݖ൫݌ , ௝൯ݖ

௝൯௭೔ ∈ ஐ, ௭ೕ ∈ ஐݖ൫݌(௜ݖ)݌

27

where Ω = {0,1} is the binary variable that represents the presence or absence of a
word. Thus, the mutual information ܫ൫ݖ௜ , .௝൯ is zero if the variables are independentݖ
Otherwise, the associated value to edge tends to increase.

Relying on a complete graph to compute a probabilistic model, could be
computational expensive. Work with a complete graph implies to compute the
associate probability to |௩|(|௩|ିଵ)

ଶ edges. In addition, working with a visual information
usually means have to deal with a high dimensional data. So, the use of a complete
graph to represent a probabilistic model of visual information could lead the method to
a problem with intractable size in the online phase. To deal with this, FAB-MAP
approximates the graph distribution ܳ(ܼ) to a tree-structured Bayesian network of
distribution ܲ(ܼ),as shown in Figure 2.3 (b). The tree-structured Bayesian network
needs to keep the main characteristics of the graph, like the strong relations between
the features and the joint distribution, while reduces the computational cost associated
to the problem. Then, the ܲ(ܼ) can be seen as the maximum spanning tree of ܳ(ܼ)
that minimizes the Kullback-Leibler divergence, computed by:

,ܳ)௄௅ܦ ܲ) = ෍ ܳ(ܼ) log ܳ(ܼ)

ܲ(ܼ)௓

Chow and Liu algorithm (Chow; Liu, 1968) was chosen by FAB-MAP to compute

the Bayesian Network tree. The Chow-Liu tree was selected by the authors due to its
capability to deal with large vocabulary and its requirement of only the first order
conditional probabilities, which can be estimated from the training dataset.
Furthermore, for sparse cases, as visual-based scenarios, the computation of this tree
can be accelerated by the algorithm described by Meilă (Meilă, 1999), which takes
advantage of the graph sparsity to speed up the pairwise of the marginal probabilities.

Figure 2.3 Bayesian Networks of the features. (a) The complete mutual information
graph that encodes the distribution ܳ(ܼ). (b) The spanning tree that maximizes the
Kullback-Leibler divergence. Image extracted from (Cummins; Newman, 2007).

The use of a tree-structured approximation allows us to compute the joint probability

of ܲ(ܼ) as a product of first-order conditionals, given by:

(ܼ)݌ = ,ଵݖ)݌ … , (௡ݖ = (௥ݖ)݌ ෑ ௣೔൯ݖ௜หݖ൫݌
௡

௜ୀଵ

where ݖ௣೔ is parent node of ݖ௜ and ݖ௥ is the root variable of the three. Thus, the full
distribution of ܳ(ܼ) in Figure 2.3 (a):

(ܼ)݌ = ,ଶݖ|ଵݖ)݌ ,ଷݖ ,ସݖ ,ଷݖ|ଶݖ)݌(ହݖ ,ସݖ ,ସݖ|ଷݖ)݌(ହݖ (ହݖ)݌(ହݖ|ସݖ)݌(ହݖ

Can be approximated to ܲ(ܼ), in Figure 2.3 (b), with distribution computed by:

(ܼ)݌ ≈ (ସݖ|ହݖ)݌(ଶݖ|ସݖ)݌(ଶݖ|ଷݖ)݌(ଶݖ|ଵݖ)݌(ଶݖ)݌

The conditional probability ݌൫ݖ௜หݖ௝൯ required by Equation 2.2 can be obtained by

computing the co-occurrence frequency of the involved words at the training phase.
However, usually the training dataset does not totally represent the real world. To

2.2

29

prevent ݌൫ݖ௜หݖ௝൯ to be assigned to an unrealistic probability of 0 or 1, a pseudo-
Bayesian ݌∗ estimator should be used.

Estimating a location via Recursive Bayes

As a front-end to VisualSLAM, FAB-MAP is based on images to determine the

robot’s pose on the environment. Then, a scene gathered by the robot at time ݇ is
encoded as an observation set Z௞ = ൛ݖଵ, ,ଶݖ … , ,௩|ିଵ|ݖ ௜ is a binary termݖ ௩|ൟ, where|ݖ
indicating if the ݅௧௛ word of the vocabulary is present on the respective image or not.
Let L௞ = ൛ܮଵ, … , ݊ ௡ೖൟ be a set ofܮ ௞ disjoint locations at time ݇. A location ܮ௜ is described
by the set of probabilities ൛݌(݁ଵ = ,(௜ܮ|1 … , |൫݁|௩݌ = 1หܮ௜൯ൟ, where ݌(݁௜ = ௜) encodesܮ|1
the probability of the ݅௧௛ word of the vocabulary be present at location ܮ௜. How
௜݁)݌ = ௜) belief is set and updated will be explained at section 0. Thus, estimatingܮ|1
the conditional probability of a location ܮ௜ given the observation set Z௞, can done by
the recursive Bayesian filter:

௜หZ௞൯ܮ൫݌ = ௜หZ௞ିଵ൯ܮ൫݌(௜ܮ|௞ܼ)݌

൫ܼ௞หZ௞ିଵ൯݌

where ܼ௞ is the set of features presented on the environment, ݌൫ܮ௜หZ௞ିଵ൯ is the prior
belief about the robot’s location, ݌൫ܼ௞หZ௞ିଵ൯ is a normalization term of the observation
model and ݌(ܼ௞|ܮ௜) is the observation likelihood that can be expanded by the Chow-
Liu tree:

௜หZ௞൯ܮ൫݌ ≈ ∏ (௜ܮ|௥ݖ)݌௜หZ௞ିଵ൯ܮ൫݌ ݌ ቀݖ௤ቚݖ௣೜ , ௜ቁ|௩|௤ୀଵܮ
൫ܼ௞หZ௞ିଵ൯݌

In order to go forward on this expansion, a probabilistic model of the feature

detector algorithm needs to be done. Influenced by light changing or perspective
transformations, sometimes a feature detector could fail in detecting a word. Therefore,
the probability of a word not be observed by FAB-MAP given it exist, ݖ)݌௜ = 0|݁௜ = 1),
and the probability of a word be declared as present on the scene given it not exist,

2.3

௜ݖ)݌ = 1|݁௜ = 0), need to considered here. To build a probabilistic model of the feature
detection algorithm, a ground truth of which words are presented in each image from
the training dataset needs to be provided, what is difficult to have in a real scenario.
Therefore, these two terms, ݖ)݌௜ = 0|݁௜ = 1) and ݖ)݌௜ = 1|݁௜ = 0), are pre-defined
parameters for FAB-MAP. Then, the probability ݌ ቀݖ௤ቚݖ௣೜ , :௜ቁ can be obtained fromܮ

෍ ݌ ቀ݁௤ = ௤ݖ௘೜ቚݏ , ௣೜ݖ , ௜ቁܮ = 1

௦೐೜ ∈ ஐ

෍ ݌ ቀݖ௤ቚ݁௤ = ௘೜ݏ , ௣೜ݖ , ௜ቁܮ ݌ ቀ݁௤ = ௣೜ݖ௘೜ቚݏ , ௜ቁܮ
݌ ቀݖ௤ቚݖ௣೜ , ௜ቁܮ = 1

௦೐೜ ∈ ஐ

݌ ቀݖ௤ቚݖ௣೜ , ௜ቁܮ = ෍ ݌ ቀݖ௤ቚ݁௤ = ௘೜ݏ , ௣೜ݖ , ௜ቁܮ ݌ ቀ݁௤ = ௣೜ݖ௘೜ቚݏ , ௜ቁܮ

௦೐೜ ∈ ஐ

Assuming that the detection errors are independent of the location ܮ௜ and the ݌൫ ௝݁൯

is independent of the observation ݖ௜, for all ݅ ≠ ݆, the probability ݌ ቀݖ௤ቚݖ௣೜ , ௜ቁ can beܮ
simplified to:

݌ ቀݖ௤ቚݖ௣೜ , ௜ቁܮ = ෍ ݌ ቀݖ௤ቚ݁௤ = ௘೜ݏ , ௣೜ቁݖ ݌ ቀ݁௤ = ௜ቁܮ௘೜ቚݏ

௦೐೜ ∈ ஐ

The probability of ݌ ቀݖ௤ቚ݁௤ , :௣೜ቁ can be computed by applying the Bayes theoremݖ

݌ ቀݖ௤ቚ݁௤ , ௣೜ቁݖ = ݌ ቀ݁௤ቚݖ௤ , ௣೜ቁݖ ݌ ቀݖ௤ቚ ݖ௣೜ቁ
݌ ቀ݁௤ቚݖ௣೜ቁ

Where ݌൫݁௤หݖ௣൯ can be expanded by the law of total probability to:

෍ ݌ ቀݖ௤ = ௭೜ቚ݁௤ݏ , ௣ቁݖ = 1
௦೥೜ ∈ ஐ

2.4

2.5

31

෍ ݌ ቀ݁௤ቚݖ௤ = ௭೜ݏ , ௣ቁݖ ݌ ቀݖ௤ = ௣ቁݖ௭೜ቚݏ
௣൯௦೥೜ ∈ ஐݖ൫݁௤ห݌

= 1

௣൯ݖ൫݁௤ห݌ = ෍ ݌ ቀ݁௤ቚݖ௤ = ௭೜ݏ , ௣ቁݖ ݌ ቀݖ௤ = ௣ቁݖ௭೜ቚݏ

௦೥೜ ∈ ஐ

Finally, assuming again that ݌൫݁௤หݖ௤ , ௣൯ݖ ≅ :௤൯, Equation 2.5 becomeݖ൫݁௤ห݌

݌ ቀݖ௤ቚ݁௤, ௣೜ቁݖ = ݌ ቀ݁௤ቚݖ௤ , ௣೜ቁݖ ݌ ቀݖ௤ቚ ݖ௣೜ቁ
∑ ݌ ቀ݁௤ቚݖ௤ = ௭೜ݏ , ௣೜ቁݖ ݌ ቀݖ௤ = ௣೜ቁ௦೥೜ݖ௭೜ቚݏ ∈ ஐ

݌ ቀݖ௤ቚ݁௤ , ௣೜ቁݖ = ቌ∑ ݌ ቀ݁௤ቚݖ௤ = ௭೜ݏ , ௣೜ቁݖ ݌ ቀݖ௤ = ௣೜ቁ௦೥೜ݖ௭೜ቚݏ ∈ ஐ
݌ ቀ݁௤ቚݖ௤, ௣೜ቁݖ ݌ ቀݖ௤ቚ ݖ௣೜ቁ ቍ

ିଵ

݌ ቀݖ௤ቚ݁௤ , ௣೜ቁݖ = ቌ1 + ݌ ቀ݁௤ቚݖ௤ , ௣೜ቁݖ ݌ ቀݖ௤ቚݖ௣೜ቁ
݌ ቀ݁௤ቚݖ௤ , ௣೜ቁݖ ݌ ቀݖ௤ቚ ݖ௣೜ቁቍ

ିଵ

݌ ቀݖ௤ቚ݁௤, ௣೜ቁݖ = ቌ1 + ݌௤ห݁௤൯ݖ൫݌௤൯ݖ൫݌ ቀݖ௤ቚݖ௣೜ቁ
݌௤ห݁௤൯ݖ൫݌௤൯ݖ൫݌ ቀݖ௤ቚݖ௣೜ቁቍ

ିଵ

Note that all probabilities at Equation 2.6 can be obtained from the offline phase or

from the pre-defined parameters. So, they are computed once at the preliminary phase
and then reused as requested. Looking back at the Recursive Bayes Filter, Equation
2.3, the only term that is needed at online phase to compute the observation likelihood
݌ is the (௜ܮ|௞ܼ)݌ ቀ݁௤ = ௜ቁ, seen at Equation 2.4. How this probability is estimatedܮ௘೜ቚݏ
according to the robot’s readings will be explained at the next section.

2.6

Representing and updating a location

FAB-MAP represents a location in the environment by a set of probabilities

൫݁ଵ݌} = 1หܮ௝൯, … , |൫݁|௩݌ = 1หܮ௝൯}, as described previously in this section. Initially, as any
information cannot be obtained from the location, all probabilities ݌൫݁௜ = 1หܮ௝൯ are
initialized to the marginal probability of ݌(݁௜ = 1), which is obtained by the training
dataset. When an observation related to a specific location is obtained, the method
updates its belief by the Recursive Bayes Filter given by:

൫݁௜݌ = 1หܮ௝ ,Z௞൯ = ൫ܼ௞ห݁௜݌ , ௝ܮ൫݁௜ห݌௝൯ܮ ,Z௞ିଵ൯

௝൯ܮ൫ܼ௞ห݌

where ݌൫݁௜หܮ௝ ,Z௞ିଵ൯ is the priori belief of the ݅௧௛ word of vocabulary exists at location
൫ܼ௞ห݁௜݌ ,௝ܮ , ௝൯ is the likelihood of a word generating an observation on that locationܮ
and ݌൫ܼ௞หܮ௝൯ is the normalization factor. The last term can be compute by the law of
total probability:

෍ ൫݁௜݌ = ௝ܮ௘หݏ ,Z௞൯

௦೐ ∈ ஐ
= 1

෍ ൫ܼ௞ห݁௜݌ = ௘ݏ , ௝ܮ ,Z௞ିଵ൯݌൫݁௜ = ௝ܮ௘หݏ ,Z௞ିଵ൯

௝൯௦೐ ∈ ஐܮ൫ܼ௞ห݌
= 1

௝൯ܮ൫ܼ௞ห݌ = ෍ ൫ܼ௞ห݁௜݌ = ௘ݏ , ௝ܮ ,Z௞ିଵ൯݌൫݁௜ = ௝ܮ௘หݏ ,Z௞ିଵ൯

௦೐ ∈ ஐ

Applying Equation 2.7 in Equation Error! Reference source not found.:

൫݁௜݌ = 1หܮ௝ ,Z௞൯ = ൫ܼ௞ห݁௜݌ , ௝ܮ൫݁௜ห݌௝൯ܮ ,Z௞ିଵ൯
∑ ൫ܼ௞ห݁௜݌ = ௘ݏ , ௝ܮ ,Z௞ିଵ൯݌൫݁௜ = ௝,Z௞ିଵ൯௦೐ ∈ ஐܮ௘หݏ

2.7

2.8

33

Finally, assuming that the detector behavior is independent of location and ݌(݁௜) is
independent of ݖ௝, for all ݅ ≠ ݆, Equation 2.8 can be simplified to:

൫݁௜݌ = 1หܮ௝ ,Z௞൯ = ௝,Z௞ିଵ൯ܮ൫݁௜ห݌(௜|݁௜ݖ)݌

∑ ௜|݁௜ݖ)݌ = ൫݁௜݌(௘ݏ = ௝,Z௞ିଵ൯௦೐ ∈ ஐܮ௘หݏ

It is important to notice that any inference about the existence of a word ݅ is made

based on the observations of other words at same location. Beside such inference
could be performed using the Chow-Liu tree, FAB-MAP as presented by Cummins
(Cummins; Newman, 2007, 2008) does not make use of that information. Also, this
updated is made up on a given location which the method believes that the
observations are related. To solve this data association problem, FAB-MAP chooses
the location with maximum likelihood (ML). However, as a SLAM technique, FAB-MAP
should not be limited to the mapped places. If the ML decision indicates an unmapped
place to be the most likely origin of the observations, then a new location is initialized
with all probabilities ݌൫݁௜ = 1หܮ௝൯ = .and then the update procedure is performed (௜݁)݌

New place or old place

If FAB-MAP were limited to deal only with the localization problem, the
normalization term of the Equation 2.3 could be easily computed by the total probability
of all locations learnt by the method. However, as a SLAM technique, this approach
should consider that the sensor information gathered by the robot could be observed
from an unmapped location. Thus, FAB-MAP considers that the world is divide in two
sets: the mapped region ܯ and the unmapped region ܯ. Then, we can obtain the
normalization term by the law of total probability:

෍ ௠หZ௞൯ܮ൫݌

௠ ∈ ெ
+ ෍ ௡หZ௞൯ܮ൫݌

௡ ∈ ெ
= 1

෍ ௠หZ௞ିଵ൯ܮ൫݌(௠ܮ|௞ܼ)݌
൫ܼ௞หZ௞ିଵ൯௠ ∈ ெ݌

+ ෍ ௡หZ௞ିଵ൯ܮ൫݌(௡ܮ|௞ܼ)݌
൫ܼ௞หZ௞ିଵ൯௡ ∈ ெ݌

= 1

൫ܼ௞หZ௞ିଵ൯݌ = ෍ ௠หZ௞ିଵ൯ܮ൫݌(௠ܮ|௞ܼ)݌
௠ ∈ ெ

+ ෍ ௡หZ௞ିଵ൯ܮ൫݌(௡ܮ|௞ܼ)݌
௡ ∈ ெ

While the first term can be computed from the mapped locations, the second part

cannot be directly calculated from the available data. So, an approximation of the all
unknown locations is performed by a sampling procedure. This sampling procedure
creates random place models by sampling possible features observations, according
to the relations encoded on the Chow-Liu tree. The last parameter to be user-defined
is the overall probability of an image be originated from a new location. Then, the priori
beliefs ݌൫ܮ௡หZ௞ିଵ൯ are uniformly distributed among all these new locations sampled by
the method.

Although FAB-MAP has shown good results in a set of experiments at daylight by
using all available information in a complete probabilistic framework, the fact that it still
based on the Markovian assumption could represent a drawback. For the Markovian
Chain assumption, the robot’s pose ݔ௧ is strongly dependent of the last pose estimation
 ௧ିଵ. Although this assumption makes sense when we are thinking about the robot’sݔ
navigation point of view, a false-positive match in the localization estimation procedure
could reflect directly on the future estimations and be propagated indefinably, until a
strong loop closure detection overcomes the false influence. In next section, we
present a method that aims to be robust to this perceptual light changing while
performs a global localization inside a VisualSLAM approach is presented.

2.3.2 SeqSLAM

The FAB-MAP main weakness is to ignore spatial or temporal correlations between

the collected information about the world. Observing this fact, Milford's SeqSLAM
(Milford et al., 2013; Milford; Wyeth, 2012; Pepperell et al., 2014) introduced a front-
end method for VisualSLAM that exploits these relations in search for loop closures
across different times of the day, disturbances of illumination, seasons or weather
conditions. This method declares that one of its key innovation is to consider the loop
closure problem not as a search problem for a single best match correspondence.
Instead of that, the algorithm searches for a sequence of high similarity

35

correspondence among two sets of images, which is more robust to false positives
than searching for a single pair of images (Milford; Wyeth, 2012).

This robustness allows SeqSLAM to reduce the amount of information needed to
describe each scene without sacrifice its precision. The insight of low information data
required by the method, carry another relevant goal. With less information to be stored,
this approach is able to represent very large environments through a slim map. To
illustrate how much data can be compressed, Figure 2.4 (a) shows seven datasets that
totalize 131 km of road travel and 1160 meters of indoor travel. They were encoded in
a map representation of size comparable to a single camera image of 2 megapixels,
Figure 2.4 (b), extracted from one of those datasets (Milford, 2013).

Figure 2.4 Image extracted from (Milford, 2013). (a) SeqSLAM’s place recognition map
representing 7 datasets that sum 131 km of road travel and 1160 meters of indoor
travel, into an image of about 2 megapixels. (b) A single image of 2 megapixels
extracted from one of those datasets.

Before computing a similarity estimation among two set of images, SeqSLAM firstly

processes all collected images converting them to grayscale and reducing them to a
thumbnail of dimensions ܴ௫ × ܴ௬. For each acquired frame by the robot, the method
associates a vector ܦ = ሾ݀ଵ, ݀ଶ, … , ݀௡ିଵ, ݀௡ሿ that encodes the difference between the
current image ܫ௖ to all ݊ images already learnt and recorded into a database I =
,ଵܫ} ,ଶܫ … , ,௡ିଵܫ ௡} . To compute a similarity measurement ݀௜ among two images, a Sumܫ

of Absolute Differences (SAD) approach is used on the reduced grayscale
representations of the scenes. To highlight the image details to the SAD algorithm,
SeqSLAM algorithm divides the camera images into a grid-like structure with enhanced
patches of size ܴ௣. Let ௫ܲ,௬ be a patch at column ݔ and line ݕ of the grid structure,
where 0 < ݔ ≤ ඌோೣ

ோ೛ඐ and 0 < ݕ ≤ ඌோ೤
ோ೛ඐ. In order to increase the contrast and highlight

the features of the images, each patch ௫ܲ,௬ is normalized. Then, the difference ݀௜ is
computed by:

݀௜ = 1
ܴ௫ܴ௬

෍ ෍ห݌௫,௬௜ − ௫,௬ห݌
ோ೤

௬ୀଵ

ோೣ

௫ୀଵ

where ݌௫,௬ is the pixel of the current image and ݌௫,௬௔ is the pixel value of an image ܫ௔ at
column ݔ and row ݕ, in the coordinate system of the image.

To improve the sequence match process, a local contrast enhancement is
performed over the vector ܦ to produce an enhanced image difference vector ܦ෡ =
{ መ݀ଵ, መ݀ଶ, … , መ݀௡ିଵ, መ݀௡}, as can seen in Figure 2.5, by the equation:

መ݀௜ = ݀௜ − ܦ
஽ߪ

where ܦ is the mean and ߪ஽ is the standard deviation of the vector ܦ.

37

Figure 2.5 Contrast enhancement of the difference vector ܦ to vector ܦ෡ to highlight the
strongly matchings. Dark cells represent stronger similarity and white cells represent
weak relation between images. Image extracted from (Milford; Wyeth, 2012).

The goal of SeqSLAM is to localize the robot using a sequence of images, which is
more robust to false positive. Hence, to recognize familiar places, this method keeps
an updated matrix ܯ of the normalized difference vectors associated to the last images
captured by the robot. Let ܶ be the current time and Δ௦ determine how back in time a
search needs to be performed to efficiently localize the robot. Therefore, the difference
matrix ܯ can be described as:

ܯ = ,෡்ି୼ೞାଵܦൣ ,෡்ି୼ೞାଶܦ … , ෡்൧ܦ

where ܦ෡௧ is the enhancement difference vector of the image ܫ௧ computed in relate to
all images from the database.

Determining a value to the parameter Δ௦ is not a trivial task and usually depends
on the environment structure. Searching for long sequences improves the matching
process in environments with repetitive patterns by offering more images to be
compared and, consequently, disambiguating the robot’s location. However, it reduces

the probability of detecting small loops. When the difference between Δ௦ and the
number of images that form a loop is high, more images unrelated to the loop closure
are evaluated to fill the sequence length requirement. On other hand, seeking for small
sequences enables the robot to identify short loop closures on its path. But it could
also increase the false positive response of the method. With less images to compare,
this approach become less robust to outliers. Therefore, just few wrong associating
high similarities are necessary to lead SeqSLAM to a wrong result.

To determine which sequence from the matrix ܯ is close to the last Δ௦ images
captured by the robot, SeqSLAM projects several possible matching sequences over
 Milford’s method assumes that the images are learnt in a fixed FPS rate and the .ܯ
robot is crossing the environment with an approximated constant velocity. Thus, all
possible sequences projected are linear, simulating different traversing velocities from

mܸin to mܸax in steps of sܸtep, starting from each image template of ܦ෡்ି୼ೞାଵ. An example
is shown in Figure 2.6. A difference score ܵ, associated to each possible sequence, is
computed by:

ܵ = ෍ መ݀௞௧
்

௧ୀ்ି୼ೞାଵ

where ݇ is the element of vector ܦ෡௧ that the associated trajectory is passing through,
at time ݐ, given by:

݇ = ݏ + ݐ)ܸہ − ܶ + Δ௦ − ۂ(1

where ݏ is the template number where the trajectory started and ܸ is the velocity of the
current trajectory.

39

Figure 2.6 Searching for a sequence of images with smallest difference score. For
clarity, only two projected trajectories over the matrix ܯ is presented. Image extracted
from (Milford; Wyeth, 2012).

Finally, SeqSLAM indicates if the current area that the robot is traveling is a
revisited area and, if it is the case, which evaluated sequence seems to be a true
matching for the loop closure. Directly choosing the sequence with the smallest score
ܵ could make the method to return many false positives. If none sequence of images
is similar to the last images captured by the robot, all scores ܵ will indicate a high
degree of difference. So, choosing the smallest score ܵ will make the method to select
a sequence that does not in fact represent a loop closure. Following the same idea, if
more than one sequence has a small difference score, SeqSLAM cannot be totally
sure about which sequence better represents the match.

Let S be a vector of all smallest difference scores ܵ associated to each start
element in ܦ෡்ି୼ೞାଵ. To give a certainty index, SeqSLAM computes the factor ߤ
between the smallest difference score of S and the second smaller difference score

outside of a window ܴwindow, as shown in Figure 2.7. If this ߤ is smaller than a threshold
 .min, than the sequence is deemed to be a matchߤ

Figure 2.7 Red points represent the vector S indexed by the relative template number
in ܦ෡்ି୼ೞାଵ. After the smallest element of S is selected, the second smaller element
outside the window ܴwindow, blue region, is searched. Image extracted from (Milford;
Wyeth, 2012).

SeqSLAM have been demonstrating good results in a range of scenarios not
tractable by others state-of-art algorithms. Milford et. al. (Milford et al., 2013)
demonstrated that their method could localize the robot at night from a map gathered
at daylight by using a camera in maximum exposure duration mode. Although the long
exposure mode generates extremely blurred images, SeqSLAM was robust enough to
identify similar sequences of images of the same location. In another experiment,
Neubert (Neubert; Sunderhauf; Protzel, 2013) demonstrated the long-term SLAM
capabilities of SeqSLAM evaluating this method in a dataset containing images in all
four seasons of the year. SeqSLAM was able to obtain good results localizing
sequences of images from one season using a map representation built in any other
season of the year.

Although some assumptions of this method are not so easily found in many real
situations, some improvements to SeqSLAM have been developed in the last years.
Hansen (Hansen; Browning, 2014) showed how to relax the constant velocity
assumption by using an approach based on Dynamic Time Warping techniques,
commonly found on speech recognition researches, to find the optimal alignment
between two sequences. In the same year, Naseer et. al. (Naseer; Spinello; Burgard;

41

Stachniss, 2014) formulated the sequence matching process as a minimum cost flow
problem in a graph built over the matrix ܯ, which allowed to deal with loop closures
partially occluded. On the following year, the same authors decided to use deep
convolutional neural networks to extract an image descriptor, instead of use a patch-
normalized thumbnail as in SeqSLAM (Naseer; Ruhnke; Stachniss; Spinello; Burgard,
2015).

Looking back to Milford’s researches, a successor of SeqSLAM called SMART was
introduced in 2014 (Pepperell et al., 2014). This proposed method uses a source of
odometry to learn images equally spaced on the environment to mitigate the constant
velocity assumption. In addition to that, it uses a sky detector component to eliminate
the weather condition variable from the SAD comparison. One year later, the same
authors updated their technique to use depth information estimated from the scenes to
auto scale images collected near each other, with the purpose of increase their
similarity (Pepperell; Corke; Milford, 2015).

Although SeqSLAM have been demonstrated its strength at scenarios that suffer
with high degree of illumination changing, the SAD comparison represents a weak
point of this method. A comparison by patches, as SAD or the Sum of Squared
Differences (SSD), are dependent of camera’s point of view. Depend on collect data
from the same point of view to have a loop closure detection is not ideal to many
scenarios in robotics. For instance, a robot that is exploring an unknown area, without
a fixed road to follow, should be able to self-localize even if it is not following the exactly
same path as before.

3 S4FE

Besides the goods results obtained by the global localization process of SeqSLAM,

Milford’s method defends the use of SAD technique to compare images. The use of
such approach have demonstrated to be robust to light changing scenarios, but makes
the method dependent to the robot’s point of view. In this work, we present our proposal
method named Sequential Feature Frequency Filter – Front-End for SLAM (S4FE).
S4FE uses a combination of BoW (Sivic; Zisserman, 2003), TF-IDF (Nakashima;
Nakamura, n.d.) and Mean Shift Algorithm (MSA) (Fukunaga; Hostetler, 1975) to
detect loop closure during the robot navigation in an outdoor environment. This
combination aims to improve the image sequence matching through the use of features
descriptors which are robust to illumination differences and affine transformations while
performs an efficient global localization tracking method that focuses precisely in the
correct matchings that appears in the similarity matrix.

This subsection is divided as follows. First, we will formalize the loop closure
detection using sequences of images. Then, S4FE will be presented divided into two parts:
the preprocessing and processing phases. Preprocessing phase constructs the BoW
vocabulary from the training video and estimates the occurrence frequency of the
words of the vocabulary (IDF method) from this video. Processing phase identifies
words frequency (TF method) for each video image, constructs the similarity matrix
and tries to find loops using MSA.

3.1 Loop Closure using Image Sequences

The robot captures images sequentially at a constant time interval during its motion.

This image sequence is described by Iଵ:் = ,ଵܫ} … , ,ଵି்ܫ ்ܫ , }, where ܫ௞ represents the
image captured at time instant ܫ ≤ ݇ ≤ ܶ; and ܶ corresponds to the sequence size. In
general, a loop closure strategy tries to find correspondence among images spaced
temporally to identify if the robot is revisiting a specific environment area.

Without loss of generality, consider two image sub-sequences I௔ = I௣:௤ and I௕ =
 I௥:௨ from I that may contain images captured in a same environment area, with 1 ≤
݌ ≤ ݍ < ݎ ≤ ݑ ≤ ܶ. After detecting the first correspondence between one image from
each sequence, ൫ܫ௜௔ , ௝௕൯, it is plausible to assume that exists a set of matchesܫ

43

M = ൛ܫ௜ା୼೘

௔ , ௝ା∆೙ܫ
௕ หΔ௠ > 0 and Δ௡ > 0ൟ

If |M| = 0 then probably the correspondence ൫ܫ௜௔ , ௝௕൯ is a false positive becauseܫ

there are no other evidence that a loop has been found. The larger the set M, the
higher the probability that a loop has been detected. As a loop should be detected as
soon as possible, then I௕ = I்ି୼ೞ:் should contain the most recent images, with a
sequence length Δ௦ > 0, while I௔ = I௣:௤ should contain old images sequence, with ݍ <
Δ௦.

3.2 Preprocessing Phase

As FAB-MAP, our approach also relies on a training dataset to learn an appearance

model of the world. Given a set of image samples of an area with similar structures to
the environment that the robot will pass through, our proposal uses an algorithm to
extract the most relevant environment features and to cluster them into words, using a
visual BoW scheme. These words comprise a reduced discrete space, which gives us
the advantage to be more robust to illumination variations. Each word has an assigned
weight that is used to reduce the influence of not relevant words in the loop detection
process in order to filter false positives.

All features are extracted using a combination of STAR detector (Agrawal;
Konolige; Blas, 2008) and SURF descriptors (Bay et al., 2008), which have obtained
good results during the preliminary testing stage of the method. Initially, STAR is used
to find relevant points in images that may represent distinguishable features. After, a
SURF descriptor is computed for each point detected by STAR to guarantee that the
features associated with that point are recognized under different lighting conditions
and affine transformations. The descriptors extracted are clustered using the clustering
scheme proposed by Teynor et al (Teynor; Burkhardt, 2007), which is able to deal with
a high number of features. Each cluster represents a visual word of BoW.

Some words may appear repeatedly along the environment without increasing the
perceptual information that distinguishes the current scene from the others. For
instance, consider a robot navigating in an indoor environment where all walls have
the same specific pattern. The words that describe this common pattern will not be

relevant to distinguish a particular scene from the others. Moreover, two distinct scenes
that contain a high occurrence of this pattern might be considered highly similar and,
consequently, may badly influence the loop detection process. Thereby, words that are
associated to not frequent patterns are better to distinguish different scenes and
identify correctly similar ones.

To deal with this situation, the words are weighted using a TF-IDF statistical model
(Sparck Jones, 1972) commonly used in text mining. The weight corresponds to the
Inverse Document Frequency (IDF) of that word in a training image sequence. That is,
for a word ݒ, its weight ݓ௩ in a training image sequence T is:

௩ݓ = log ቆ |T|

ܫ}| ∈ T|ݒ ∈∗ ቇ|{ܫ

where ݒ ∈∗ .ܫ appears in image ݒ means that word ܫ

3.3 Processing

After classifying the visual features into words and determining the most relevant

words that could describe each scene, a matching strategy can be performed. Each
new frame captured by the robot is represented by a weighted histogram of words
H = ݒ|௩ܪ} ∈ V}, where V is the BoW vocabulary and 0 ≤ ௩ܪ ≤ 1 is the frequency of
word ݒ in that particular frame weighted by its IDF measure. This histogram is
calculated as follows. The algorithm extracts the features from a particular image ܫ௝, in
a similar way, as presented before in the preprocessing phase, and classifies each one
into one of the words contained in V. For each word ݒ that appears in that frame ܫ௝, its
corresponding entry in H௝ is

௩௝ܪ = ,ݒ௩݂൫ݓߩ ௝൯ܫ

where ߩ = ൬݉ܽݔ௣∈∗ூೕ݂൫݌, ,ݒ௝൯൰ିଵ and ݂൫ܫ ௝൯ counts the number of occurrences of wordܫ
 .௝ܫ in the image ݒ

45

Using this information is possible to compute the similarity matrix S = ൛ܵ௠,௡ൟ where
ܵ௠,௡ is the similarity among two images ܫ௠ and ܫ௡ defined by

ܵ௠,௡ = ෍ ௩௡ܪ௩௠ܪ

௩∈V

Once the similarity matrix is built and normalized, for every possible sequence

match we calculate a disorder measurement defined by

D௥భ:௥మ;௖భ:௖మ = ߶ ෍ ෍ ௜ܵ,௝
௖మ

௝ୀ௖భ

௥మ

௜ୀ௥భ

where ߶ = (Δ௦ଶ)ିଵ, |ݎଵ − ଶݎ + 1| = |ܿଵ − ܿଶ + 1| = Δ௦, to discard regions in this matrix
with indistinguishable patterns and focus only on relevant ones. The probability to have
a loop in a given sequence increases insofar as D.:.;.:. → 1. Therefore, we search for
loop closures only in sequences with disorder measurements bigger than a given
threshold ߤD defined a priori. If this D ≥ D, then we search for loops in the similarityߤ
matrix using a tracking algorithm.

In real situations, a loop will not correspond exactly to a line pattern in the similarity
matrix. However, this pattern will be the first guess to our tracking algorithm in a similar
way as SeqSLAM does. Thus, a preliminary estimation of the sequence match inside
the squared window is an array of similarity matrix points P = ൣ ଵܲ, ଶܲ, … , ୼ܲೞ൧ aligned in
at an orientation of గ

ସ. Each point ௜ܲ = (݉, ݊) corresponds to a match pair (ܫ௠௔ , ௡௕). Forܫ
all points ௜ܲ ∈ P a refined position is reached displacing the respective match pair to a
local mode present in the matrix ܵ. The use of a MSA technique aids S4FE to converge
the estimated path followed by the robot to a local consensus observed at matrix ܵ.
Given a window centered at a point ௜ܲ, a displacement ߜ௜ can be computed by:

௜ߜ = ෍ ෍ ௠ା௫,௡ା௬ܵݔ
௬∈W௫∈W

ቌ ෍ ෍ ܵ௠ା௫,௡ା௬
௬∈W௫∈W

ቍ
ିଵ

 ∀ ௜ܲ ∈ P

where W = {−Δ௠௦, … , 0, … , Δ௠௦}. The respective match pair is updated, until ߜ௜ = 0, by

௜ܲ ← (݉, |݊ + (|௜ߜ

When P converges, it will represent a most likely alignment of the two sequences.

Then the pair indicated by the middle point of P is chosen as a loop closure match.
Different alignments of P over the matrix ܵ will represent different loop closure points.
In some of them we are more confident that the middle point in fact represents a loop
closure than in others, due the respective similarities encoded in ܵ. Therefore, we
express a matching confidence level ߟ as

ߟ = Δ௦ି ଵ ෍ ܵ௉೔

௉೔∈P

This value represents a loop closure insofar as ߟ.:.;.:. → 1. Thus, only pairs with a ߟ

above a threshold ߤఎ are then returned as a valid matching by S4FE.

47

4 TEST ENVIRONMENTS

This section presents the challenges introduced by each one of our test

environments with all video properties of the gathered data. After, we discuss the
results highlighting the main differences between FAB-MAP, SeqSLAM and S4FE. At
the end, we compare the methods showing the benefits introduced by our proposal.
Two datasets will be presented. The first one was gathered using a handheld camera
and the second one, using a Parrot ArDrone 2.0 robot. Both were obtained in the same
outdoor environment at our university in Brazil. This environment is GPS-denied,
therefore, we can count only on images to detect loop closure. The ground truth of the
experiments was produced by frame-to-frame visual correspondence. Figure 4.1
shows an aerial image of the testing area along with the paths followed by the handheld
camera (a) and the ArDrone (b).

Using a handheld camera, we recorded a video at resolution of 1920 × 1080 with
24 FPS. To improve the algorithm performance and get more distinguishable points of
view, we first resampled the frames of this video producing a new one with 10 FPS.
Each frame was converted to grayscale and reduced to 960 × 540 using a 3 × 3
gaussian kernel to prevent alias. Finally, the histogram of all frames were equalized to
minimize the influence of lighting effects along the path. Some samples of the resulting
images can be seen in Figure 4.2. As this dataset was recorded without any abrupt
camera rotation or displacement, the resulted trajectory is smooth along the path,
which does not offer additional challenges to the image matching process.

(a)

(b)

Figure 4.1 Trajectories of handheld camera (a) and Parrot ArDrone 2.0 (b) datasets.
The green mark represents the start of the trajectory, while the red mark represents
the end. The samples from Figure 4.2 and Figure 4.3 are labelled in (a) and (b),
respectively. Image generated by the author.

49

Figure 4.2 Samples of the images registered by the handheld camera. Image
generated by the author.

Using the Parrot ArDrone 2.0, we recorded a video at resolution of 1280 × 720 with
30 FPS. Again, we first resampled the video to produce a new one with 10 FPS. Then,
each frame was converted to grayscale and reduced to 640 × 320 using a 3 ×
3 gaussian kernel to prevent alias. Lastly, the histogram of all frames were equalized.
Some samples of the processed images and the challenges offered by the aerial robot
can be seen in Figure 4.3. As a flying robot is more susceptible to wind bursts than a
ground robot, more drifts and brusque 3D rotations happened in this experiment, as
demonstrated in Figure 4.3 (b), Figure 4.3.(c) and Figure 4.3.(d). These disturbances
interfered on the visual information capture, resulting in a more challenging visual
recognition scenario. For instance, as can be seen in Figure 4.3 (i) and Figure 4.3 (j),
these abrupt rotations resulted in blurred images and, also due to the low quality of the
Parrot ArDrone 2.0 camera, in an illumination problem.

51

Figure 4.3 Samples of images registered by the Parrot ArDrone 2.0. Image generated
by the author.

4.1 Similarity Matrix vs Difference Matrix

As explained at Section 2.3.2 and Section 3.3, the similarity matrix and the

difference matrix are representations built to encode the distance between all images
from pair-to-pair visits. In S4FE’s similarity matrix, all values are normalized in the
range from zero to one. The closer to one, the higher similarity identified to that pair.
On the other hand, the closer to zero, the lesser similar is the pair. In the contrary, the
difference matrix of SeqSLAM have a distinct behavior, once it uses SAD comparison.
A high similar pair of images results in an entry close to zero and strictly large in other
way. On this section, we will compare the results obtained from both matrices in order
to exhibit the advantages and the precision of methods.

The difference matrix of SeqSLAM and the similarity matrix of S4FE were obtained
from two different sets of images called test and query sets. In the first experiment, the
test set corresponds to the images collected by the handheld camera from the subpath
illustrated in Figure 4.4 (a), while the query set was collected from the subpath in Figure
4.4 (b). The matrices generated by SeqSLAM and S4FE are shown in Figure 4.6 (b)
and (c).

(a) (b)

Figure 4.4 Subpaths followed by handheld camera, according to Figure 4.1. Image
generated by the author.

53

 (a) (b)
Figure 4.5 Subpaths followed by Parrot ArDrone 2.0, according to Figure 4.1. Image
generated by the author.

SeqSLAM exhibits a difference matrix with several values near 0 (i.e., .ܵ;. → 0)
indicating there is a high similarity among the images of test and query sets. However,
according to Figure 4.4 (a) and (b), we expect only inputs, associated to the overlap of
both paths, to have high similarity values. This happens because many parts of
environments can seem symmetric according to SAD. To circumvent this situation,
SeqSLAM searches for long sequences preventing small ones which can be false
positives produced by SAD. This avoids small sequences that may lead to false
positives, but also disregards true positives. On the other hand, S4FE produces a
similarity matrix that highlights loop closures, as we can see in Figure 4.6 (c). Besides,

 (a) (b) (c)
Figure 4.6 Matrices generated by SeqSLAM (b) and S4FE (c) for the handheld dataset.
The ground-truth (a) shows where the loop closure should have been matched. Image
generated by the author.

S4FE is able to create a cleaner matrix than SeqSLAM, where short sequences with
high similarity are more likely to be a true positive, this allows the identification of small
loops.

In the second experiment, the test set corresponds to the images collected by the
Parrot ArDrone 2.0 from the subpath illustrated in Figure 4.5 (a), while the query set
was collected from the subpath in Figure 4.5 (b). The matrices generated by SeqSLAM
and S4FE are shown in Figure 4.7 (b) and (c).

Again, the matrix obtained by SeqSLAM shows several high similarity values.
However, this time, the identification of loop closure is harder than the previous
experiment. At the first experiment, the trajectory had a constant speed, a stable
movement along the path and almost the same point of view on both visits. All these
factors make the image matching process easier to SeqSLAM. However, in the second
experiment the robot’s flight was very susceptible to wind bursts and many drifts and
brusque 3D rotations happened. Once that SeqSLAM expects images gathered by the
same point of view, these disturbances interfere on its final result. In spite of the

 (a) (b) (c)
Figure 4.7 Matrices generated by SeqSLAM (b) and S4FE (c) for the Parrot ArDrone
2.0 dataset. The ground-truth (a) shows where the loop closure should have been
matched. Image generated by the author.

55

turbulent flight, S4FE similarity matrix still shows a line, though a bit diffused, that
indicates the presence of loop closure.

4.2 Precision-Recall

We evaluated the performance of the loop closure methods using a precision-recall

analysis. The precision is defined as the percentage of true positives of all returns
generated by a front-end method, and the recall is the percentage of ground truth
matches returned by the method. A precision-recall curve is computed varying a
threshold that indicates the acceptable matching confidence level. These parameters
are represented by ߤmin, to SeqSLAM, and ߤఎ, to S4FE. FAB-MAP does not foresee a
threshold for its returns. Instead, it always chooses the most probable match. As a
method is not limited to the known world, if a scene was not seen previously, the most
probable match will be in the unmapped set ܯ. However, in the sense of building a
comparison between all methods, we filtered the accepted returns of FAB-MAP by the
associated probability of the returned images.

Table 4.1 Parameters

Method Parameter Value
FAB-MAP

௜ݖ)݌ = 0|݁௜ = 1) 0.39
௜ݖ)݌ = 1|݁௜ = 0) 0.00

Number of random places 3000

SeqSLAM

Sequence Length (Δ௦) 5 – 20
Thumbnail Image Size (ܴ௫ × ܴ௬) 64 × 32

Patch of size ൫ܴ௣൯ 8
mܸin 0.8
mܸax 1.2
sܸtep 0.1

ܴwindow 20
S4FE

Sequence Length (Δ௦) 5 – 20
Mean shift window size (Δ௠௦) 5 - 20

Disorder threshold (μD) 0.70

In Table 4.1, all parameters used in each method are presented. To evaluate FAB-
MAP algorithm, we used the same BoW approach applied to S4FE. The feature
detector and the feature descriptor algorithms used were STAR and SIFT, respectively.

We model the false negative ݖ)݌௜ = 0|݁௜ = 1) of the feature detector algorithm to 0.39
and the false negative ݖ)݌௜ = 1|݁௜ = 0) to 0.00, as suggest by FAB-MAP (Cummins;
Newman, 2007). Thereby, our feature detector model has a high probability for not
detecting an existing feature in the scene, but does not indicate any feature that does
not exist. We also created 3000 random places samples, based on the Chow-Liu tree,
to model the unmapped set. For SeqSLAM, the only varying parameter used in the
experiments was the sequence length ઢ࢙ to be searched. We evaluate the sequences
with length in the range from 5 to 20, in steps of 5. We decided to use the same
parameters of thumbnail size ܴ௫ × ܴ௬ of 64 × 32 and patch size ܴ௣ of 8 as suggested
by SeqSLAM (Milford; Wyeth, 2012). The tested velocities are in range from 0.8 to 1.2,
in steps of 0.1, and the ܴwindow parameter was also fixed in 20 to guarantee that the
second smallest S was not an overlap of the smallest one. Finally, S4FE has the same
variety of sequence lengths ઢ࢙ of SeqSLAM, the Mean Shift window size ઢ࢙࢓ was set
to this same range and the disorder threshold ૄD was fixed in 0.70, after a range of
experiments.

 As any false positive in the loop closure could lead a graph-based SLAM to an
irreversible wrong environment representation, the best method is the one with the
highest recall at 100% of precision. However, the sequence length is also important.
The smaller the matching sequence length is, the less resources of memory are
required and the less likely the method is to miss small loops closures.

Following this metric, we can see at Table 4.2 that in the first experiment the highest
recall with 100% of precision and the smallest sequence length was obtained by S4FE
with a recall of 55.26%, sequence length of ten, and MSA window size of five. The
smallest recall of 15.79% was obtained by FAB-MAP. As we can see in Figure 4.9,
S4FE has shown a better precision-recall curve than SeqSLAM and FAB-MAP.
Although FAB-MAP has not returned any false positive on this experiment, its recall
was easily overcome by any configuration of the other methods. Moreover, with
sequence length of ten, our method has surpassed the recall obtained by SeqSLAM
with sequence length of twenty. Also, we can observe that the recall of S4FE tends to
reduce insofar the sequence length Δ௦ and the MSA window size increase. This can
be explained by the presence of the loop closure next to the border of the similarity
matrix, see Figure 4.6. As the parameters values of S4FE increase, the entries of the
matrix necessary to evaluate a matching, also increase. Thereby, it is impossible for

57

S4FE evaluating sequences centered in entries close to the border, which in this
experiment are the one that represent a loop closure.

Figure 4.8 Sample of true positive returned by FAB-MAP, SeqSLAM and S4FE for the
handheld camera dataset with their coefficients ݌൫ܮ௜หZ௞൯, ߤ and ߟ, respectively. Image
generated by the author.

However, the decay of precision of SeqSLAM has another explanation. As can be

seen in Figure 4.10, the false positives obtained by the SeqSLAM has a coefficient ߤ
close to its true positives, seen in Figure 4.8, demonstrating how difficult is to determine
a value for this threshold. Also can be seeing that a difference of 0.03 in the threshold
 ௠௜௡ makes the robot belief that it is in a localization distant from its actually pose. Thisߤ
behavior can be explained by the noisy matrix seen in Figure 4.6 (b). On the other
hand, S4FE demonstrate that even a false positive close in the space, which was
expected to have a closer confidence level ߟ according to Figure 4.6 (c), has a bigger
difference in terms of confidence level than SeqSLAM.

Figure 4.9 Precision-Recall obtained by FAB-MAP, SeqSLAM and S4FE in the
challenging handheld outdoor dataset. Image generated by the author.

Table 4.2 Maximum Recall with 100% of precision from Handheld Camera dataset.

 Sequence Length Mean Shift Window Size Max. Recall with 100% of precision
FAB-MAP - - 15.79%

SeqSLAM
5 - 18.42%

10 - 39.47%
15 - 39.47%
20 - 39.47%

S4FE

5 10 34.21%
15 39.47%

10 5 55.26%
10 55.26%

15 5 57.89%
10 39.47%

20 5 55.26%
10 26.32%

59

Figure 4.10 Samples of false positive obtained by SeqSLAM and S4FE in the handheld
camera dataset with their coefficients ߤ and ߟ, respectively. FAB-MAP did not return
any false positive. Image generated by the author.

As discussed before, in the first experiment, the images were obtained in good

conditions making easier to perform the correct sequence matching. However, in the
second experiment, the turbulent flight of the robot adds a new challenge. The results
obtained from the ArDrone 2.0 dataset can be seen below. As Table 4.3 demonstrates,
the highest recall of 56.52%, with 100% of precision, was also obtained by S4FE with
sequence length of fifteen and MSA window size of fifteen. FAB-MAP and SeqSLAM
did not obtained any result with 100% of precision. Figure 4.12 shows the robustness
of S4FE to deal with this difficult traversing scenario. With all tested sequence length,
our approach obtained a higher precision-recall curve than SeqSLAM and FAB-MAP.
As the images were not aligned, the low performance of SeqSLAM was expected. FAB-
MAP, however, has returned several false positives with a probability ݌൫ܮ௜หZ௞൯ close
to its true positive returns, as can be seen in Figure 4.11 and Figure 4.13. This small
difference between true e false positives can also be noticed by the low precision-recall
observed in Figure 4.12. Once FAB-MAP is based on features and BoW as S4FE, the
behavior of these two methods was expected to be closer. Nevertheless, the
environment that the robot was traversing was contaminated by repetitive appearances
related to the grass and trees that do not well distinguish a location. This high
probability can be related by the fact that FAB-MAP only consider the presence or the
absence of a word to determine the probability of a pose, but not the number of
occurrences of this repetitive words. Moreover, the weighting procedure of S4FE
performed by the TF-IDF algorithm helps our method to filter which words we should
rely on to determine a location.

Figure 4.11 Sample of true positive returned by FAB-MAP, SeqSLAM and S4FE for
the Parrot ArDrone 2.0 dataset with their coefficients ݌൫ܮ௜หZ௞൯, ߤ and ߟ, respectively.
Image generated by the author.

61

Figure 4.12 Precision-Recall obtained by FAB-MAP, SeqSLAM and S4FE in the
challenging Parrot ArDrone 2.0 outdoor dataset. Image generated by the author.

Table 4.3 Maximum Recall with 100% of precision from ArDrone 2.0 dataset.

 Sequence Length Mean Shift Window Size Max. Recall with 100% of precision
FAB-MAP - - 0.00%

SeqSLAM
5 - 0.00%

10 - 0.00%
15 - 0.00%
20 - 0.00%

S4FE

5
10 7.60%
15 13.04%
20 26.00%

10
10 27.17%
15 30.43%
20 34.78%

15
10 25.00%
15 56.52%
20 22.83%

20
5 34.78%

10 22.82%
15 51.08%
20 50.00%

Figure 4.13 Samples of false positive obtained by FAB-MAP, SeqSLAM and S4FE in
the Parrot ArDrone 2.0 dataset with their coefficients ݌൫ܮ௜หZ௞൯, ߤ and ߟ, respectively.
Image generated by the author.

63

5 FINAL REMARKS AND FUTURE WORK.

In this work we demonstrated how the combination of BoW approach and a feature

frequency filter, such as TF-IDF, can highlight the revisited loops in the similarity matrix.
This combination together with MSA allowed to transform the process of path tracking
into a search for a match sequence under a local consensus over the similarity matrix.
We also showed that S4FE improves the loop closure recall up to 16% , with 100% of
precision, using a sequence with half of the entries needed by the SeqSLAM.
Comparing to FAB-MAP, our method can overcome the state-of-the-art recall up to
40%. Moreover, our method reached 56.52% of recall, with 100% of precision, in a
scenario where FAB-MAP and SeqSLAM failed to guarantee true positives.

In spite of good results, there are some points that could be further explored. For
instance, the convergence of MSA could be improved by using multiresolution image
pyramids. Since the loop closure based on sequences searches for several high similar
entries, tracking a concentration these entries in multiresolution approach would help
our method to avoid the convergence to a noisy data at the similarity matrix. Also, as
the experiments demonstrate, the MSA window size Δ௠௦ and the sequence length Δ௦
are determinant to the precision of our method. The choice of these parameters is
crucial to a good performance and this choice is highly dependent of the environment.
In this sense, our method could be further improved by an adaptive bandwidth selection
as presented by Gallant et. al. (Gallant et al., 2011). This would lead not only to a
precision improvement, but also to a reduction in terms of computational cost of our
method. We also noticed that the use of the same fixed threshold ߤ஽ is not ideal for
every scenario. This gives rise to further investigations towards a dynamic threshold
technique, such as the one proposed by Hui-Fung Ng (Hui-Fuang Ng, 2004).

REFERENCES

Agrawal, M., Konolige, K., & Blas, M. R. CenSurE: Center Surround Extremas for
Realtime Feature Detection and Matching. Springer. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), ECCV. (Vol. 5305, pp. 102–115). 2008. Available at
http://doi.org/10.1007/978-3-540-88693-8_8.
Bay, H., Ess, A., Tuytelaars, T., & Gool, L. Van. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding. , 110(3), 346–359. 2008. Available at
http://doi.org/http://dx.doi.org/10.1016/j.cviu.2007.09.014.
Bay, H., Tuytelaars, T., & Van Gool, L. SURF: Speeded Up Robust Features. Berlin,
Heidelberg: Springer Berlin / Heidelberg. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), ECCV. (Vol. 3951, pp. 404–417). 2006.
Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., & Teller, S. An Atlas framework for scalable mapping. Piscataway, NJ, USA: IEEE Press. In Proceedings
of the 2003 IEEE International Conference on Robotics and Automation (ICRA).
(Vol. 2, pp. 1899–1906). 2003. Available at
http://doi.org/10.1109/ROBOT.2003.1241872.
Chow, C., & Liu, C. Approximating Discrete Probability Distributions with Dependence Trees. IEEE Transations of Information Theory. , 14(3), 462–467. 1968. Available
at http://doi.org/10.1109/TIT.1968.1054142.
Cummins, M., & Newman, P. Probabilistic Appearance Based Navigation and Loop Closing. Rome. In International Conference on Robotics and Automation (ICRA).
2007.
Cummins, M., & Newman, P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. The International Journal of Robotics Research. , 27(6),
647–665. 2008. Available at http://doi.org/10.1177/0278364908090961.
Cummins, M., & Newman, P. Highly scalable appearance-only SLAM - FAB-MAP 2.0.
Seattle, USA. In Proceedings of Robotics: Science and Systems. 2009.
Cummins, M., & Newman, P. Appearance-only SLAM at large scale with FAB-MAP 2.0. The International Journal of Robotics Research. 2010. Available at
http://doi.org/10.1177/0278364910385483.
Davison, A. J., & Kita, N. 3D simultaneous localisation and map-building using active vision for a robot moving on undulating terrain. In Computer Vision and Pattern
Recognition. (Vol. 1, pp. I–384–I–391 vol.1). 2001. Available at
http://doi.org/10.1109/CVPR.2001.990501.
Dellaert, F., & Kaess, M. Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing. Journal of Robotics Research. , 25(12),
1181–1204. 2006. Available at http://doi.org/10.1177/0278364906072768.
Fukunaga, K., & Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. Information Theory, IEEE Transactions on. ,
21(1), 32–40. 1975. Available at http://doi.org/10.1109/TIT.1975.1055330.
Gallant, a. J., Kaliteevski, M. a., Brand, S., Wood, D., Petty, M., Abram, R. a., &
Chamberlain, J. M. Bandwidth Selection for Mean-shift based Unsupervised Learning

65

Techniques: a Unified Approach via Self-coverage. Journal of Applied Physics. ,
102(October), 0–103. 2011. Available at http://doi.org/10.1063/1.2756072.
Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intelligent Transportation Systems Magazine. , 2(4), 31–43. 2010.
Available at http://doi.org/10.1109/MITS.2010.939925.
Grisetti, G., Stachniss, C., & Burgard, W. Improving Grid-based SLAM with Rao-
Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling. Piscataway, NJ, USA: IEEE Press. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). (pp. 2443–2448). 2005.
Grisetti, G., Stachniss, C., & Burgard, W. Nonlinear constraint network optimization for efficient map learning. IEEE Transactions on Intelligent Transportation Systems. ,
10(3), 428–439. 2009. Available at http://doi.org/10.1109/TITS.2009.2026444.
Hansen, P., & Browning, B. Visual place recognition using HMM sequence matching. In Intelligent Robots and Systems (IROS). (pp. 4549–4555). 2014. Available at
http://doi.org/10.1109/IROS.2014.6943207.
Ho, K. L., & Newman, P. Detecting loop closure with scene sequences. International
Journal of Computer Vision. , 74(3), 261–286. 2007.
Hui-Fuang Ng. Automatic Thresholding for Defect Detection. Hong Kong, China: IEEE. In Third International Conference on Image and Graphics (ICIG). (pp. 532–535).
2004. Available at http://doi.org/10.1109/ICIG.2004.43.
Kaess, M., Ranganathan, A., & Dellaert, F. iSAM: Fast Incremental Smoothing and Mapping with Efficient Data Association. In IEEE International Conference on
Robotics and Automation. (pp. 1670–1677). 2007. Available at
http://doi.org/10.1109/ROBOT.2007.363563.
Lee, S.-J., & Song, J.-B. A new sonar salient feature structure for EKF-based SLAM. Piscataway, NJ, USA: IEEE Press. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). (pp. 5966–5971). 2010.
Available at http://doi.org/10.1109/IROS.2010.5650169.
Lowe, D. G. Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision. , 60(2), 91–110. 2004.
Lu, F., & Milios, E. Globally Consistent Range Scan Alignment for Environment Mapping. Autonomous Robots. , 4(4), 333–349. 1997. Available at
http://doi.org/10.1023/A:1008854305733.
Maffei, R., Jorge, V. A. M., Prestes, E., & Kolberg, M. Integrated Exploration using
Time-based Potential Rails. In Proc. of IEEE ICRA. 2014.
Makarenko, A. A., Williams, S. B., Bourgault, F., & Durrant-Whyte, H. F. An experiment in integrated exploration. In Proc. of IEEE/RSJ IROS. (pp. 534–539). 2002. Available
at http://doi.org/10.1109/IRDS.2002.1041445.
Meilă, M. An Accelerated Chow and Liu Algorithm: Fitting Tree Distributions to High-Dimensional Sparse Data. Proceedings of the 16th International Conference on
Machine Learning. , (C), 249–257. 1999. Available at
http://dl.acm.org/citation.cfm?id=645528.657640.
Milford, M., Schill, F., Corke, P., Mahony, R., & Wyeth, G. Aerial SLAM with a single

camera using visual expectation. In IEEE International Conference on Robotics and
Automation (ICRA). (pp. 2506–2512). 2011. Available at
http://doi.org/10.1109/ICRA.2011.5980329.
Milford, M., Turner, I., & Corke, P. Long exposure localization in darkness using consumer cameras. In IEEE International Conference on Robotics and
Automation (ICRA). (pp. 3755–3761). 2013. Available at
http://doi.org/10.1109/ICRA.2013.6631105.
Milford, M., & Wyeth, G. SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. In IEEE International Conference on Robotics and
Automation (ICRA). (pp. 1643–1649). 2012. Available at
http://doi.org/10.1109/ICRA.2012.6224623.
Milford, M. Vision-based place recognition: how low can you go? The International
Journal of Robotics Research. , 32(7), 766–789. 2013. Available at
http://doi.org/10.1177/0278364913490323.
Nakashima, T., & Nakamura, R. Daily Clustering for the Electronic Newspaper based
on the Analysis of Trend. , (3).n.d.
Naseer, T., Ruhnke, M., Stachniss, C., Spinello, L., & Burgard, W. Robust Visual SLAM Across Seasons. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). (pp. 2529–2535). 2015.
Naseer, T., Spinello, L., Burgard, W., & Stachniss, C. Robust Visual Robot Localization Across Seasons using Network Flows. In AAAI. 2014. Available at
http://www.informatik.uni-freiburg.de/~naseer/publications/naseer14aaai.pdf.
Neubert, P., Sunderhauf, N., & Protzel, P. Appearance change prediction for long-term navigation across seasons. European Conference on Mobile Robots (ECMR). ,
198–203. 2013. Available at http://doi.org/10.1109/ECMR.2013.6698842.
Neuland, R., Nicola, J., Maffei, R., Jaulin, L., Prestes, E., & Kolberg, M. Hybridization
of Monte Carlo and set-membership methods for the global localization of underwater robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems.
(pp. 199–204). 2014. Available at http://doi.org/10.1109/IROS.2014.6942561.
Olson, E., Leonard, J., & Teller, S. Fast iterative alignment of pose graphs with poor initial estimates. Proceedings - IEEE International Conference on Robotics and
Automation. , 2006(May), 2262–2269. 2006. Available at
http://doi.org/10.1109/ROBOT.2006.1642040.
Pepperell, E., Corke, P., & Milford, M. All-environment visual place recognition with SMART. In Robotics and Automation (ICRA), 2014 IEEE International Conference
on. (pp. 1612–1618). 2014. Available at http://doi.org/10.1109/ICRA.2014.6907067.
Pepperell, E., Corke, P., & Milford, M. Automatic Image Scaling for Place Recognition in Changing Environments. In International Conference on Robotics and
Automation. 2015.
Prestes, E., & Idiart, M. Sculpting potential fields in the BVP Path Planner. In Robotics
and Biomimetics (ROBIO), 2009 IEEE International Conference on. (pp. 183–188).
2009. Available at http://doi.org/10.1109/ROBIO.2009.5420620.
Prestes, E., Trevisan, M., Idiart, M. A. P., & Engel, P. M. BVP-exploration: further improvements. In Proc. of IEEE/RSJ IROS. (pp. 3239–3244). 2003. Available at

67

http://doi.org/10.1109/IROS.2003.1249655.
Siegwart, R., & Nourbakhsh, I. R. Introduction to Autonomous Mobile Robots.
Scituate, MA, USA: Bradford Company. 2004.
Sivic, J., & Zisserman, A. {Video Google}: {A} Text Retrieval Approach to Object Matching in Videos. In Proceedings of the International Conference on Computer
Vision. (Vol. 2, pp. 1470–1477). 2003. Available at http://www.robots.ox.ac.uk/~vgg.
Smith, R., Self, M., & Cheeseman, P. A stochastic map for uncertain spatial relationships. Proceedings of the 4th International Symposium on Robotics
Research. , (0262022729), 467–474. 1988. Available at
http://portal.acm.org/citation.cfm?id=57472.
Sparck Jones, K. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation. , 28(1), 11–21. 1972.
Teynor, A., & Burkhardt, H. Fast Codebook Generation by Sequential Data Analysis
for Object Classification. Springer Berlin Heidelberg. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, N. Paragios, S.-M. Tanveer, … T. Malzbender (Eds.), Advances in Visual
Computing. (Vol. 4841, pp. 610–620). 2007. Available at http://doi.org/10.1007/978-
3-540-76858-6_59.
Thrun, S., Burgard, W., & Fox, D. Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents series). Cambridge, MA. 2005.
Thrun, S., & Montemerlo, M. The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures. The International Journal of Robotics
Research. , 25(5-6), 403–429. 2006. Available at
http://doi.org/10.1177/0278364906065387.
Viola, P., & Wells, W.M., I. Alignment by maximization of mutual information. Proceedings of IEEE International Conference on Computer Vision. , 24(2), 16–
23. 1995. Available at http://doi.org/10.1109/ICCV.1995.466930.
Yol, A., Delabarre, B., Dame, A., Dartois, J.-É., & Marchand, E. Vision-based Absolute Localization for Unmanned Aerial Vehicles. IEEE/RSJ Int. Conf. on …. , 14(IROS),
3429–3434. 2014. Available at http://doi.org/10.1109/IROS.2014.6943040.

