
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CARLOS ARTHUR LANG LISBÔA

Dealing with Radiation Induced
Long Duration Transient Faults

in Future Technologies

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Philosophy (PhD) in Computer Science

Prof. Dr. Luigi Carro
Advisor

Porto Alegre, June 2009.

2

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Lisbôa, Carlos Arthur Lang

Dealing with Radiation Induced Long Duration Transient Faults
in Future Technologies / Carlos Arthur Lang Lisbôa – Porto
Alegre: Programa de Pós-Graduação em Computação, 2009.

<113> p.:il.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação. Porto Alegre, BR –
RS, 2009. Supervisor: Luigi Carro.

1. Fault tolerance. 2. Radiation effects. 3. Low cost techniques.
I. Carro, Luigi. II. Dealing with Radiation Induced Long
Duration Transient Faults in Future Technologies.

3

ACKNOWLEDGMENTS

To my Father,

Arthur da Silva Lisbôa,
for his many life-long examples in character: righteousness, goodness, endurance,
and his dedication to and care of the family.
Thank you, DAD!

To my Wife, Partner, and Colleague since March 1973,

Maria Lúcia Blanck Lisbôa,
for her love, care, partnership and support along the way.

To my Supervisor,

Prof. Dr. Luigi Carro,
for the many examples of creativity, scientific curiosity, and enthusiasm with
research. And, last but not least, for accepting being my Supervisor and not having
given up, in spite of all difficulties that I have imposed on him.

To my

Friends and Colleagues
at Instituto de Informática and Programa de Pós-Graduação em Ciência da
Computação, for the incentive and effective support in every moment, and specially
to my colleagues in courses of the Computer Architecture and Organization field,
for allowing me to spend the required time in research, while they worked as my
substitutes in lectures whenever I needed.

To my

Co-Authors,
for giving me the opportunity to work with them and for the many important
contributions to our joint works.

4

AGRADECIMENTOS

A meu Pai,

Arthur da Silva Lisbôa,
pelos exemplos de vida: retidão de caráter, bondade, cuidados com a família e
perseverança.
Obrigado, PAI!

À minha Esposa, Companheira e Colega desde março de 1973,

Maria Lúcia Blanck Lisbôa,
pelo amor, carinho, companhia e apoio ao longo deste caminho.

A meu Orientador,

Prof. Dr. Luigi Carro,
pelos exemplos de criatividade, curiosidade investigativa, e entusiasmo com a
pesquisa. E, não menos importante, por haver aceito a pesada tarefa de me orientar e
não haver desistido, apesar das dificuldades que impus a ele.

A meus

Amigos e Colegas
no Instituto de Informática e no Programa de Pós-Graduação em Ciência da
Computação, pelo incentivo e apoio efetivo em todos os momentos, e em especial
aos meus colegas das disciplinas da área de Arquitetura e Organização de
Computadores, por terem me permitido dedicar o tempo necessário à pesquisa, me
substituindo nos encargos docentes sempre que precisei.

A meus

Co-Autores,
pela oportunidade que me deram de trabalhar com eles e pelas importantes
contribuições para nossos trabalhos conjuntos.

5

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS .. 8

LIST OF FIGURES .. 11

LIST OF TABLES .. 12

ABSTRACT ... 13

RESUMO ... 14

1 INTRODUCTION ... 15

1.1 MOTIVATIONS.. 15

1.2 BASIC CONCEPTS AND RELATED WORK .. 17
1.2.1 Radiation induced transients, SETs, SEUs, and Soft Errors ... 17
1.2.2 Trends for soft errors in future technologies ... 17
1.2.3 Multiple simultaneous transient faults ... 18
1.2.4 Transient duration scaling vs. cycle times across technologies .. 19

1.3 MAIN CONTRIBUTIONS .. 19
1.3.1 Radiation Induced Long Duration Transients (LDTs) Effects .. 19
1.3.2 Matrix Multiplication Algorithm Hardening .. 20
1.3.3 Use of Software Invariants for Runtime Detection of Transient Faults 20
1.3.4 Lockstep with Checkpoint and Rollback Improvement ... 21
1.3.5 Use of Hamming Coding to Protect Combinational Logic ... 21

1.4 THESIS OUTLINE ... 22

2 LONG DURATION TRANSIENTS EFFECTS ... 23

2.1 RADIATION INDUCED TRANSIENTS VS. DEVICE SPEED SCALING 23

2.2 CURRENT MITIGATION TECHNIQUES VS. LDTS .. 26
2.2.1 Software Based Techniques ... 27
2.2.2 Hardware Based Techniques .. 29

2.2.2.1 Time Redundancy .. 29
2.2.2.2 Space Redundancy ... 30
2.2.2.3 Mitigation Techniques Based on Watchdogs, Checkers and IPs.................................... 31

2.2.3 Hybrid Techniques ... 33

6

2.3 PROPOSED APPROACH TO DEAL WITH LDTS ... 34

3 MATRIX MULTIPLICATION HARDENING .. 37

3.1 PROBLEM DEFINITION ... 38

3.2 RELATED AND PREVIOUS WORK .. 39

3.3 PROPOSED TECHNIQUE ... 40
3.3.1 Background and Evolution of the Proposed Technique ... 40

3.3.1.1 The starting point: fingerprinting and Freivalds’ technique ... 40
3.3.1.2 Improving Freivalds’ technique ... 41

3.3.2 Minimizing the Recomputation Time when an Error Occurs ... 44
3.3.2.1 Verification only at completion of product matrix calculation....................................... 44
3.3.2.2 Verification line by line .. 45
3.3.2.3 Erroneous element detection and single element recomputation after multiplication

completion .. 47
3.3.2.4 Minimizing the single element recomputation cost .. 49
3.3.2.5 Comparative analysis of results .. 50

3.3.3 Considerations about Recomputation Granularity ... 51
3.3.4 Validation by Fault Injection .. 55

3.3.4.1 Experimental setup ... 55
3.3.4.2 Analysis of experimental results .. 56

4 USING INVARIANTS FOR RUNTIME DETECTION OF FAULTS 59

4.1 PROBLEM DEFINITION ... 59

4.2 RELATED AND PREVIOUS WORK .. 59

4.3 PROPOSED TECHNIQUE ... 61
4.3.1 Background and Description .. 61

4.3.1.1 Fault coverage evaluation ... 62
4.3.1.2 Performance overhead evaluation .. 63

4.3.2 Application to a Sample Program .. 63
4.3.3 Experimental Results and Analysis .. 64

5 IMPROVING LOCKSTEP WITH CHECKPOINT AND ROLLBACK 67

5.1 PROBLEM DEFINITION ... 67

5.2 RELATED WORK AND PREVIOUS IMPLEMENTATION ... 68
5.2.1 Related Work ... 68
5.2.2 Previous Implementation of Lockstep with Checkpoint and Rollback 69

5.2.2.1 Consistency Check Implementation ... 72
5.2.2.2 Context Definition and Storage .. 73
5.2.2.3 Overall Architecture ... 73
5.2.2.4 Implementation Details .. 74
5.2.2.5 Fault Injection Experiments and Analysis .. 76

5.3 IMPROVING THE PERFORMANCE BY MINIMIZING CHECKPOINT TIME 79
5.3.1 Background and Description .. 79
5.3.2 Experimental Results and Analysis .. 80

6 HAMMING CODING TO PROTECT COMBINATIONAL LOGIC 83

6.1 PROBLEM DEFINITION ... 83

7

6.2 RELATED AND PREVIOUS WORK .. 84

6.3 PROPOSED TECHNIQUE ... 86
6.3.1 Background and Description .. 86

6.3.1.1 The Advantages of Hamming Code ... 86
6.3.1.2 Extending the Use of Hamming Code to Combinational Logic Hardening 87
6.3.1.3 Analysis of Combinational Hamming Operation for a Sample Circuit 88

6.3.2 Comparing Combinational Hamming to TMR ... 89
6.3.3 Application of Combinational Hamming to Arithmetic Circuits 90

6.3.3.1 Experimental Results .. 91
6.3.3.2 Analysis .. 93

6.3.4 Application of Combinational Hamming to a Set of Combinational Circuits of the
MCNC Benchmark .. 94

6.3.4.1 Experimental Results .. 94
6.3.4.2 Analysis .. 98

7 CONCLUSIONS AND FUTURE WORKS ... 99

7.1 MAIN CONCLUSIONS .. 99

7.2 SUMMARY OF CONTRIBUTIONS.. 100
7.2.1 Long Duration Transients Effects .. 100
7.2.2 Matrix Multiplication Hardening ... 100
7.2.3 Using Invariants for Runtime Detection of Faults .. 100
7.2.4 Improving Lockstep with Checkpoint and Rollback .. 101
7.2.5 Hamming Coding to Protect Combinational Logic ... 101

7.3 PROPOSED RESEARCH TOPICS FOR FUTURE WORKS .. 101
7.3.1 Use of Software Invariants for Runtime Error Detection .. 102
7.3.2 Lockstep with Checkpoint and Rollback ... 102
7.3.3 Combinational Hamming .. 102

REFERENCES .. 103

8

LIST OF ABBREVIATIONS AND ACRONYMS

ABFT Algorithm Based Fault Tolerance

ACCE Automatic Correction of Control Flow Errors

ALU Arithmetic and Logic Unit

ARM Advanced RISC Machine

ASER Accelerated Soft Error Rate

ASIC Application Specific Integrated Circuit

CED Concurrent Error Detection

CASES International Conference on Compilers, Architectures and Synthesis for
Embedded Systems

CFCSS Control Flow Checking by Software Signatures

CISC Complex Instruction Set Computer

CMOS Complementary Metal Oxide Semiconductor

COTS Commercial, Off-The-Shelf

CWSP Code Word State Preserving

DATE Design Automation and Test in Europe

DFT Defect and Fault Tolerance in VLSI Systems (International Symposium
on)

DIVA Dynamic Implementation Verification Architecture

DWC Duplication With Comparison

ECC Error Correction Code

ECCA Enhanced Control Flow Checking using Assertions

ED4I Error Detection by Data Diversity and Duplicated Instructions

EDAC Error Detection and Correction

ET Error Tolerance

ETS European Test Symposium

FIT Failures In Time

FPGA Field Programmable Gate Array

FRAM Ferroelectric RAM

9

IOLTS International On-Line Test Symposium

IP Intellectual Property

I-IP Infrastructure IP

IOLTS International On_Line Testing Symposium

ITC International Test Conference

ITRS International Technology Roadmap for Semiconductors

JETTA Journal of Electronic Testing: Theory and Applications

JPEG Joint Photographic Experts Group

LATW Latin-American Test Workshop

LDT Long Duration Transient

LET Linear Energy Transfer

MeV Mega-electron Volts (106 electron Volts)

MRAM Magnetic RAM

MBU Multiple Bit Upset

MIPS1 Microprocessor without Interlocked Pipeline Stages

MIPS2 Mega (106) Instructions Per Second

nMOS n-type Metal-Oxide-Semiconductor

pMOS p-type Metal-Oxide- Semiconductor

PTM Predictive Technology Model

RAM Random Access Memory

RISC Reduction Instruction Set Computer

SBCCI Symposium on Integrated Circuits and Systems Design (Simpósio
Brasileiro de Concepção de Circuitos Integrados)

SBU Single Bit Upset

SE Soft Error

SEE Single Event Effect

SEMISH Seminário Integrado de Software e Hardware (Integrated Hardware and
Software Seminar)

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SIHFT Software Implemented Hardware Fault Tolerance

SiP System-in-Package

SoC System-on-Chip

SOI Silicon On Insulator

SRC Semiconductor Research Corporation

10

SSER System Soft Error Rate

TF Transient Fault

TMR Triple Modular Redundancy

URL Uniform Resource Locator

WDES Workshop on Dependable Embedded Systems

11

LIST OF FIGURES

Figure 1.1: One particle, multiple effects .. 18
Figure 2.1: Transient pulse width scaling across technologies 23
Figure 2.2: Transient pulse width scaling across technologies 24
Figure 2.3: Transient width vs. clock cycles ... 25
Figure 2.4: SET pulse width vs. cycle time scaling .. 26
Figure 2.5: Temporal redundancy technique ... 30
Figure 2.6: Long duration transient effect ... 31
Figure 3.1: Fingerprinting - generic scheme ... 41
Figure 3.2: Operations used in the verification of the product 43
Figure 3.3: Example of 4 different granularities of recomputation and their
 effects on the final computation time ... 51
Figure 3.4: Execution time costs according to the levels of granularity (1 to 10 steps)

and verification time (verificationi_time) varying from 10% to
 100% of the stepi_time ... 53
Figure 3.5: Multiple errors and the masked effect when dealing with levels of

granularity ... 53
Figure 3.6: Block diagram of the ASTERICS platform .. 55
Figure 3.7: Fault injection possibilities considering the single fault model 57
Figure 4.1: Program hardening experiments flow ... 62
Figure 4.2: Test program split into slices .. 64
Figure 4.3: Detected invariants for slice mult() ... 65
Figure 4.4: Code added for slice mult() ... 65
Figure 5.1: Flow chart of rollback recovery using checkpoint 70
Figure 5.2: Example of execution of rollback recovery using checkpoint 70
Figure 5.3: Architecture of the synchronized lockstep with rollback 74
Figure 5.4: Architecture modified to include the WHT .. 80
Figure 5.5: Average cycles per write vs. matrix size comparison 81
Figure 6.1: (a) Typical Hamming code application, with fixed size code Word. (b) Ty-

pical combinational circuit, with different number of inputs and outputs .. 86
Figure 6.2: Hamming code application to a ripple carry adder circuit 88
Figure 6.3: Hamming code word format for the ripple carry adder circuit
 shown in Fig. 6.2 .. 88
Figure 6.4: m-input, n-output TMR implementation ... 89
Figure 6.5: Multiplier implementation using combinational Hamming 91

12

LIST OF TABLES

Table 1.1: Propagation Delay vs. Transient Widths across Technologies (ps) 20
Table 2.1: Predicted Transient Widths (ps) .. 24
Table 2.2: Simulated Propagation Delay Scaling Accross Technologies (ps) 25
Table 3.1: Matrix multiplication computational cost scaling with n 39
Table 3.2: Computational cost scaling with n ... 44
Table 3.3: Number of operations for verification after completion 45
Table 3.4: Computational cost scaling with n for verification after completion 45
Table 3.5: Number of operations for verification line by line .. 46
Table 3.6: Computational cost scaling with n for verification line by line 46
Table 3.7: Number of operations for erroneous element detection 49
Table 3.8: Computational cost scaling with n for erroneous element correction 49
Table 3.9: Minimal computational cost scaling with n

for erroneous element correction ... 50
Table 3.10: Comparative analysis - total cost when one error occurs 50
Table 3.11: Comparative analysis - cost of recomputation when one error occurs 50
Table 3.12: Incidence of Each Type of Error During Fault Injection 57
Table 4.1: Erroneous result detection capability .. 65
Table 4.2: Fault detection capability .. 66
Table 4.3: Performance overhead ... 66
Table 5.1: Sensitive bits for IP ... 76
Table 5.2: Results of fault injection on the processors ... 78
Table 5.3: Data segment size break-even point for use of WHT 82
Table 6.1: Circuits used in the experiments ... 91
Table 6.2: Areas of the circuits hardened by the proposed technique (μm2) 92
Table 6.3: Power of the circuits hardened by the proposed technique (mW) 92
Table 6.4: Delays of the circuits hardened by the proposed technique (ns) 92
Table 6.5: Proposed technique vs. TMR: areas comparison (μm2) 93
Table 6.6: Proposed technique vs. TMR: power comparison (mW) 93
Table 6.7: Proposed technique vs. TMR: delay comparison (ns) 95
Table 6.8: Circuits from the MCNC benchmark used in the experiments 95
Table 6.9: Areas of the circuits protected using the proposed technique (μm2) 96
Table 6.10: Power of the circuits protected using the proposed technique (mW).......... 96
Table 6.11: Delay of the circuits protected using the proposed technique (ns) 97
Table 6.12: Proposed technique vs. TMR: areas comparison (μm2) 97
Table 6.13: Proposed technique vs. TMR: power comparison (mW) 98
Table 6.14: Proposed technique vs. TMR: delays comparison (ns) 98
Table 6.15: Comparison between Combinational Hamming and

the technique proposed in (Almukhaizim, 2003) .. 99

13

ABSTRACT

As the technology evolves, faster and smaller devices are available for
manufacturing circuits that, while more efficient, are more sensitive to the effects of
radiation. The high transistor density, reducing the distance between neighbor devices,
makes possible the occurrence of multiple upsets caused by a single particle hit. The
achievable high speed, reducing the clock cycles of circuits, leads to transient pulses
lasting longer than one cycle. All those facts preclude the use of several existing soft
error mitigation techniques based on temporal redundancy, and require the development
of innovative fault tolerant techniques to cope with this challenging new scenario.

This thesis starts with the analysis of the transient width scaling across technologies,
a fact that supports the prediction that long duration transients (LDTs) will affect
systems manufactured using future technologies, and shows that several existing
mitigation techniques based on temporal redundancy will not be able to cope with
LDTs, due to the huge performance overhead that they would impose. At the same time,
space redundancy based techniques, despite being able to deal with LDTs, still impose
very high area and power penalties, making them inadequate for use in some application
areas, such as portable and embedded systems. As an alternative to face those
challenges imposed to designers by future technologies, the development of low
overhead mitigation techniques, working at different abstraction levels, is proposed.
Examples of new low cost techniques working at the circuit, algorithm, and architecture
levels are presented and evaluated.

Working at the algorithm level, a low cost verification algorithm for matrix
multiplication is proposed and evaluated, showing that it provides a good solution for
this specific problem, with dramatic reduction in the cost of recomputation when an
error in one of the product matrix elements is detected. In order to generalize this idea,
the use of software invariants to detect soft errors at runtime is suggested as a low cost
technique, and shown to provide high fault detection capability, being a good candidate
for use in a complementary fashion in the development of software tolerant to transient
faults. As an example of architecture level technique, the improvement of the classic
lockstep with checkpoint and rollback technique is proposed and evaluated, showing
significant reduction in the number of write operations required for checkpoints.
Finally, as an example of low cost space redundancy technique at circuit level, the use
of Hamming coding to protect combinational logic, an open issue in the design of
systems using future technologies, is proposed and evaluated through its application to a
set of arithmetic and benchmark circuits.

Keywords: fault tolerance, radiation effects, low cost techniques.

14

Lidando com Falhas Transitórias de Longa Duração
Provocadas por Radiação em Tecnologias Futuras

RESUMO

Com a evolução da tecnologia, dispositivos menores e mais rápidos ficam
disponíveis para a fabricação de circuitos que, embora sejam mais eficientes, são mais
sensíveis aos efeitos da radiação. A alta densidade, ao reduzir a distância entre
dispositivos vizinhos, torna possível a ocorrência de múltiplas perturbações como
resultado da colisão de uma única partícula. A alta velocidade, ao reduzir os ciclos de
relógio dos circuitos, faz com que os pulsos transientes durem mais do que um ciclo.
Todos estes fatos impedem o uso de diversas técnicas de mitigação existentes, baseadas
em redundância temporal, e tornam necessário o desenvolvimento de técnicas
inovadoras para fazer frente a este novo e desafiador cenário.

Esta tese inicia com a análise da evolução da duração de pulsos transitórios nas
diferentes tecnologias que dá suporte à previsão de que transitórios de longa duração
(TLDs) irão afetar sistemas fabricados usando tecnologias futuras e mostra que diversas
técnicas de mitigação baseadas em redundância temporal existentes não serão capazes
de lidar com os TLDs devido à enorme sobrecarga que elas imporiam ao desempenho.
Ao mesmo tempo, as técnicas baseadas em redundância temporal, embora sejam
capazes de lidar com TLDs, ainda impõem penalidades muito elevadas em termos de
área e energia, o que as torna inadequadas para uso em algumas áreas de aplicação,
como as de sistemas portáteis e embarcados. Como uma alternativa para enfrentar estes
desafios impostos aos projetistas pelas tecnologias futuras, é proposto o
desenvolvimento de técnicas de mitigação com baixa sobrecarga, atuando em níveis de
abstração distintos. Exemplos de novas técnicas de baixo custo atuando nos níveis de
circuito, algoritmo e arquitetura são apresentados e avaliados.

Atuando em nível de algoritmo, uma alternativa de baixo custo para verificação de
multiplicação de matrizes é proposta e avaliada, mostrando-se que ela oferece uma boa
solução para este problema específico, com uma enorme redução no custo de
recomputação quando um erro em um elemento da matriz produto é detectado. Para
generalizar esta idéia, o uso de invariantes de software na detecção de erros transitórios
durante a execução é sugerido como outra técnica de baixo custo, e é mostrado que esta
oferece alta capacidade de detecção de falhas, sendo, portanto, uma boa candidata para
uso de maneira complementar com outras técnicas no desenvolvimento de software
tolerante a falhas transitórias. Como exemplo de uma técnica em nível de arquitetura, é
proposta e avaliada uma melhoria da clássica técnica de lockstep com checkpoint e
rollback, mostrando uma redução significativa no número de operações de escrita
necessárias para um checkpoint. Finalmente, como um exemplo de técnica de baixo
custo baseada em redundância espacial, é proposto e avaliado o uso de código de
Hamming na proteção de lógica combinacional, um problema ainda em aberto no
projeto de sistemas usando tecnologias futuras.

Palavras-Chave: tolerância a falhas, efeitos de radiação, técnicas de baixo custo.

15

1 INTRODUCTION

This work proposes the development of new low cost fault tolerance techniques,
working at different abstraction levels, as the preferred alternative to deal with faults
caused by long duration transients that will affect CMOS devices to be manufactured in
future technologies. The analysis of the effects of such long duration transients and the
reasons why several current mitigation techniques will fail in this new scenario are
presented, and four techniques that deal with the problem at different abstraction levels
are proposed, always pursuing low cost requirements.

1.1 MOTIVATIONS
The evolution of semiconductor technology in recent years, while continuously

providing new devices with unmatched size, speed, and power consumption
characteristics, has brought along increasing concerns about the reliability of systems to
be designed using those devices. While CMOS technology keeps evolving according to
Moore’s law, thereby approaching the physical limits imposed by the availability of
only a few atoms to form the device’s channel (KIM et al., 2003) (HOMPSON et al.,
2005), the development of alternative technologies, able to take digital systems beyond
those limits, became a huge challenge to be faced by scientists.

But even the most promising alternative technologies devised so far bring along the
same undesirable characteristic: devices manufactured using them are more prone to
manufacturing defects and transient errors than nanoscale CMOS, making the reliability
goal even more difficult to be reached.

The decreasing reliability of CMOS devices in new technologies is a consequence of
several different problems arising from the physical characteristics of those devices:

• The lower power consumption and operating temperature limits imposed by
embedded and portable systems requirements lead to the use of lower operating
voltages, which in turn imply smaller critical charges, making the devices more
susceptible to radiation induced transient pulses, since even particles with
relatively small energy can upset those devices (VELAZCO, 2007). As a
consequence, the occurrence of Single Event Transients (SETs) and Single Event
Upsets (SEUs) has been increasing in recent years, and became a concern not only
for systems targeting space or avionics applications, but also for those designed
for critical missions meant to be used at sea level (HEIJMEN, 2002). According
to the International Technology Roadmap for Semiconductors 2008 Update,
“Below 65nm, single-event upsets (soft errors) impact field-level product
reliability, not only for embedded memories, but for logic and latches as well.”
(INTERNATIONAL..., 2008). Furthermore, while several error detection and
correction (EDAC) techniques have been proposed and are in current use to

16

protect memory devices against those effects, thereby stabilizing the soft error rate
(SER) across technology nodes, the protection of combinational logic against
SETs and SEUs is still an open issue.

• Smaller device dimensions allow the construction of circuits with higher densities,
in which the distance between neighbor devices is reduced between consecutive
technology nodes. Such very small distances allow that a single particle hitting the
silicon affects two or more devices at the same time, thereby causing multiple
simultaneous faults, a possibility that was not considered until recently, and
therefore is not mitigated by currently existing fault tolerance techniques (ROSSI
et al., 2005), (ANGHEL, 2007). This multiple simultaneous faults scenario, in
turn, can lead to catastrophic consequences when well established and proven
techniques in use under the single fault model are used with future technologies.
Triple modular redundancy (TMR), for instance, is not able to properly select the
correct result when two of the voter inputs are equally erroneous. Similarly, the
duplication with comparison (DWC) approach becomes useless to detect errors in
a scenario where both duplicated modules can generate equally erroneous outputs.

• These faster new devices allow designing circuits with shorter cycle times, but
unfortunately, the duration of radiation induced transient pulses does not scale at
the same pace of the cycle times (DODD, 2004), (FERLET-CAVROIS, 2006),
leading to a situation in which transient pulses may become longer than the cycle
time of the circuits. Current soft error mitigation techniques either are not able to
cope with this new scenario due the high performance overheads that they would
impose to cope with such long duration transients, or do impose very high area
and power consumption overheads, which will require the development of new
low cost system level mitigation techniques (LISBOA, ETS 2007).

• Besides all those undesirable effects over reliable system operation caused by
CMOS technology evolution, the manufacturing of digital systems is also affected
by increasing defect rates due to process variations, higher complexity for
manufacturing test due to increased components density in the circuits, and other
related problems (AGARWAL et al., 2005).

To cope with this new scenario, the design of reliable portable and embedded
systems will also have to evolve, through the development of innovative solutions to
mitigate soft errors using the smallest possible overhead. Given the extreme
unreliability of components to be manufactured not only in new CMOS technology
nodes, but also in the alternative technologies proposed so far, dealing with this problem
at the component level will become too expensive. The prediction of long duration
transients, lasting more than one or even several cycles of operation of the circuits,
makes the mitigation at low level (technology or component levels), using temporal
redundancy techniques, also unfeasible, due to the enormous overhead in performance
that this would mean.

Therefore, a natural path to be followed in the search for the required new set of
techniques is then to raise the abstraction level and work at circuit, architecture,
algorithm and system levels, in order to develop techniques able to detect and correct
errors with low design and fabrication costs.

While keeping low area, power and performance overheads is a mandatory
characteristic of candidate techniques, it is also important that their deployment be made
without significant changes in the way system developers explore the parallelism or

17

write their code, for example. In other words, any new technique must gracefully fit into
the current system design flow, allowing for their seamless introduction in the system
development process, without any dramatic change to the established levels of design
abstraction.

1.2 BASIC CONCEPTS AND RELATED WORK
In this section, we introduce the main technical terms used in the text, and discuss

the reasons why radiation induced transients will become a major cause of errors during
the operation of circuits manufactured using future technologies.

1.2.1 Radiation induced transients, SETs, SEUs, and Soft Errors
This work focuses on the effects of the incidence of radiation particles during the

normal operation of digital circuits that have nor defects nor permanent errors. Such
effects are due to the deposition of charge caused by the impact of the particle on
silicon, which may switch the logical state of nodes. However, after the deposited
charge dissipates, the effects of these events usually disappear. For this reason, these
effects are called Single Event Transients (SETs), and the faults caused by SETs are
called transient faults (HEIJMEN, 2002).

If the particle’s linear energy transfer (LET) is high enough to generate charge
above the critical charge of the node, the SET is able to switch the logical state of the
node, and the erroneous value can be propagated trough the logic to the output of the
network and eventually reach a memory element. If this happens during the latching
window of the memory element, this incorrect information can be stored, resulting in a
Single Event Upset (SEU), which is considered a Soft Error, because the upset memory
element remains operational and able to eventually store new information when a write
operation on that same element is performed.

A SET can be masked, either logically, electrically or by the lack of a latching
window, in which case it generates no error at all. However, in order to cope with errors
that may occur when the SET is not masked, a proper detection and mitigation
technique must be included during the design phase of the circuit, to ensure SET
tolerant operation.

The two main sources of radiation that may affect the circuits are alpha particles
originated in the chip itself by the decay of impurities contained in materials used for
packaging or in the manufacturing process (e.g., lead and boron), and neutrons in
cosmic rays, which may collide with a silicon nucleus and cause ionization with high
linear energy transfer (LET) (KARNIK, 2004).

While the radiation effects due to processes and materials can be mitigated
through elimination of their causes, and this is a continuous subject of research by the
manufacturing community, those due to cosmic rays cannot be avoided without the use
of unpractical and expensive shielding mechanisms (HEIJMEN, 2002), and therefore
must be considered in the design of general purpose circuits.

1.2.2 Trends for soft errors in future technologies
The well-established SET fault model is based on a single particle hitting a

sensitive node in silicon, and generating a transient pulse which changes the state of the
affected node (DIEHL, 1983). According to Baumann (2001), the three primary sources

18

for the induction of soft errors in semiconductor devices are alpha particles, high-energy
cosmic neutrons, and neutron-induced boron fission.

The major sources of alpha particles are materials used during the manufacturing
process and packaging materials, which allows the reduction of their influence through
modifications in the processes and replacement of packaging materials (HEIJMEN,
2002).

Historically, the incidence of soft errors in combinational logic has been
considered less problematic than that in memory elements. Therefore, several soft error
detection and correction (EDAC) techniques have been proposed and used to detect and
recover from SEUs in memory. More recently, Baumann (2005) has shown that, while
the memory soft error rate was almost stable across technologies, the soft error rate for
combinational logic has been growing from one technology node to the other. This fact
points to the need for increased efforts towards the development of design techniques
able to cope with soft errors in combinational logic in future technologies, as has been
recently recognized by the industry experts, which included it as one of the crosscutting
design challenges, under the reliability chapter (INTERNATIONAL..., 2008).

1.2.3 Multiple simultaneous transient faults
While the hypothesis of multiple simultaneous faults has been considered

negligible for a long time, an industry report by Heijmen (2002) already warned that it
should no longer be neglected for circuits manufactured using technologies of 0.13 μm
and beyond.

This growing concern about multiple transient faults is not due to any change in
the nature of radiation phenomena. Rather, it naturally stems from the continuous
evolution of the semiconductor technology, which provides ever smaller devices and
higher densities, thereby reducing the distance between neighbor nodes in a circuit and
increasing the possibility of more than one transient fault occurring at the same time.

Those multiple simultaneous faults are still due to a single particle hitting the
silicon, in which case secondary particles can be emitted in several directions, as
illustrated in Figure 1.1 (ROSSI, 2005).

Figure 1.1. One particle, multiple effects (ROSSI, 2005)

What has changed is that, since the devices are now closer to each other, those
secondary particles may eventually affect two different nodes of a circuit, generating
two simultaneous effects (NEUBERGER, 2003).

Moreover, after experimentally confirming that two simultaneous upsets affecting
adjacent nodes can occur, Rossi (2005) has shown that the occurrence of bi-directional
errors, i.e., two simultaneous complementary bit flips, will be possible, precluding the
use of error detection codes designed to detect only unidirectional simultaneous errors.

One year later, Ferlet-Cavrois (2006) presented a detailed study on the charge
collection mechanisms in SOI and bulk devices exposed to heavy radiation, using

19

different technologies, from 0.25 μm to 70 nm. For bulk devices, that analysis shows
that the shape and duration of transient pulses present significant variations, depending
on the fabrication details, on the technology itself, and on the location in the device that
was hit by the particle. Moreover, the comparison of the behavior of the same device
exposed to different radiation sources has shown that some particles do not have enough
LET to induce SEUs or SETs by direct ionization. However, those particles generate
secondary ones, with much higher LETs, that can be emitted in all directions. Once
again, the hypothesis of multiple transients generated by a single particle hit has been
confirmed.

This conclusion, alone, has strong negative impact on many current mitigation
techniques based on the single fault hypothesis, such as the classic triple modular
redundancy - TMR (JOHNSON, 1994).

1.2.4 Transient duration scaling vs. cycle times across technologies
Besides higher densities, the availability of faster devices is another feature of

future technologies that brings along strong concerns to the error tolerance community,
because it has been predicted that, for those technologies, even particles with modest
linear energy transfer (LET) values will produce transients lasting longer than the
predicted cycle time of circuits (DODD, 2004), (FERLET-CAVROIS, 2006). The
negative impact of the effects of such long duration transients (LDTs) on the overhead
imposed by currently used temporal redundancy based error mitigation techniques has
been first presented in Lisboa (ETS 2007), and is a key concept behind our thesis work.
For this reason, this topic is further detailed in Chapter 2.

1.3 MAIN CONTRIBUTIONS
The main novelty in this work is the finding that currently used temporal

redundancy based techniques will not be able to mitigate errors caused by long duration
transients affecting devices manufactured using future technologies at a reasonable cost.
Besides that, this work proposes to deal with the problem working at different
abstraction levels, with each solution complementing the protection provided at other
levels, aiming the full protection of a given system. In order to show some alternatives
that may be part of a complete solution to achieve that goal, four low cost techniques
that can be implemented at algorithm, system or circuit level, are suggested and
analysed.

1.3.1 Radiation Induced Long Duration Transients (LDTs) Effects

The first significant step in this research work was the analysis of the effects of what
has been named “long duration transients” (LDTs) on soft errors mitigation techniques.
This forecast was embedded in published works concerning the effects of radiation on
semiconductor devices in different technology nodes (DODD, 2004), (FERLET-
CAVROIS, 2006), and has been confronted with the predicted cycle times for inverters
chains with different lengths, obtained through simulation, in Lisboa (ETS 2007).

When contrasting the evolution of the width of radiation induced transient pulses
across technologies with that of the cycle times of circuits, one could see that, while the
cycle times decrease in a quite linear form, there is no clear scaling trend for the width
of the transient pulses. Furthermore, for technologies beyond the 130 nm node, it has
been shown that the duration of transient pulses will exceed the predicted cycle time of
circuits (LISBOA, ETS 2007). Table 1.1 illustrates this fact using data for a 10-inverter

20

chain. The transient width figures in Table 1.1 have been extracted from Dodd (2004)
and Ferlet-Cavrois (2006), while those for propagation delays have been estimated
through simulation, using parameters from the Predictive Technology Model web site
(ARIZONA STATE UNIVERSITY, 2007). A detailed anaylsis is shown in Chapter 2.

Table 1.1. Propagation Delay vs. Transient Widths across Technologies (ps)

Technology (nm) 180 130 90 100 70 32
Transient width for LET = 10 MeV-cm2/mg 140 210 n.a. 168 170 n.a.
Transient width for LET = 20 MeV-cm2/mg 277 369 n.a. 300 240 n.a.
10-inverter chain propagation delay 508 158 120 n.a. n.a. 80

n. a. = not available

The analysis of the behavior of temporal redundancy based techniques in this new
scenario has shown that they cannot cope with LDTs, due to the unbearable
performance overhead that they would impose. In contrast, space redundancy based
techniques, that could cope with LDTs, impose area and power overheads that are not
suited to the requirements of several applications areas, such as the portable and
embedded systems arenas. From this analysis, detailed in Chapter 2, the need to work at
higher abstraction levels to face this new scenario has been defined, and the search for
low cost techniques to detect and correct errors caused by LDTs at circuit, algorithm
and system levels has started.

1.3.2 Matrix Multiplication Algorithm Hardening
In order to show how to deal with the problem at algorithm level, the matrix

multiplication algorithm has been chosen as a test case. While this operation is widely
used in several application fields, the error detection and correction of erroneous
elements of the product matrix sometimes is a bottleneck that may lead to missed
deadlines (in real time systems, for example). Considering that the multiplication of n×n
matrices requires O(n3) operations, including additions, multiplications and
comparisons of scalar values, the cost of duplication with comparison or triple modular
redundancy to detect or correct errors in the product matrix becomes very high.

Departing from the study of a classic error detection technique proposed in the
seventies (FREIVALDS, 1979), which is able to detect errors in one element of the
product matrix with a probability of at least ½, a new technique that provides
deterministic error detection has been developed and shown to be much faster than the
recomputation of the whole product matrix and comparison of the results (LISBOA,
ETS 2007). In cooperation with the TIMA Laboratoire, in Grenoble, France, a
microcontroller running the hardened algorithm has been submitted to radiation
campaigns, in order to confirm its effectiveness. Later, the technique has been also
extended for use with non-square matrices and vectors. This contribution is detailed in
Chapter 3.

1.3.3 Use of Software Invariants for Runtime Detection of Transient Faults
In the search for a deterministic approach for error detection in matrix multiplication

algorithms, one reached the conclusion that the test of a single condition was enough to
detect errors affecting one element of the product matrix. In other words, a relationship
between the results generated by the algorithm, which holds whenever the execution
ended correctly, has been found for that algorithm.

21

Such conditions have been in use for a long time in the software engineering field,
and are known as software invariants. However, most of the works using software
invariants are related to the software life cycle, and intended to ensure that a program
worked properly after any modifications had been made.

In this work, the run-time verification of software invariants is proposed as a low
cost mechanism to detect radiation induced faults during the execution of an algorithm,
and is shown to be an effective fault detection mechanism that should be further
explored. Chapter 4 describes in more details the experiments performed using software
invariants to detect soft errors and faults, as well as the achieved results.

1.3.4 Lockstep with Checkpoint and Rollback Improvement
The lockstep technique, combined with the use of checkpoints and rollback, is not a

new subject. However, until recently, it was almost neglected because its application to
commercial off-the-shelf (COTS) processors was not practical. Nowadays, the
commercial availability of FPGAs with multiple built-in hardwired processors brings
the lockstep technique back as a good alternative to harden FPGA based systems against
soft errors.

Based on this scenario, the CAD Group of Dipartimento di Automatica e
Informatica of Politecnico di Torino, in Italy, has started a project aiming to implement
fault tolerant FPGA based systems using lockstep combined with checkpoint and
rollback.

As part of its PhD studies, the author has worked in cooperation with the CAD
Group during four months, in 2008. While in Torino, the improvement of an existing
implementation of the technique, through the use of an additional IP inside the FPGA
that stores the information related to a set of memory write operations for later use
during checkpoints has been proposed and implemented.

The proposed improvement, together with the experiments that have been conducted
in order to evaluate the effects of its application on the system performance, is described
in Chapter 5 as an example of architecture level technique that could cope with
radiation effects in future technologies.

1.3.5 Use of Hamming Coding to Protect Combinational Logic

Introduced in the fifties, in the last century, Hamming Coding is a powerful tool
used for error detection and correction in storage elements and data communications
applications. In those applications, however, the number of data bits written/transmitted
or read/received is always the same.

In contrast, in combinational circuits the number of inputs is usually different from
the number of outputs, a feature that, so far, has precluded the direct application of
Hamming coding in the hardening of combinational logic.

In this work, an innovative approach to the use of Hamming coding in the protection
of combinational circuits against transient faults of any kind is proposed, and its cost is
evaluated and compared to that of the classic triple modular redundancy technique,
showing that Combinational Hamming is a good candidate technique for this role. The
proposed technique uses space redundancy, and is an example of how to reduce the area
and power overheads imposed by classic alternatives.

The description of the technique and the experimental results achieved with a set of
combinational circuits are included in Chapter 6, as an example of circuit level

22

hardening technique that can complement the existing sequential logic hardening ones,
in order to achieve the protection of whole systems against radiation effects.

1.4 THESIS OUTLINE
This thesis encompasses the results of several research works developed by the

author since 2004. Chapter 2 describes the key findings and conclusions that led to the
development of low cost techniques described in Chapters 3 through 6.

In Chapter 7 the conclusions of this thesis work are summarized and directions for
future research in the topics covered by our studies are suggested.

23

2 LONG DURATION TRANSIENTS EFFECTS

The study of published works about the evolution of radiation induced transient
widths across technology nodes shows that there is no clear scaling trend for the
duration of transients. When contrasting those figures with the predicted evolution of
cycle times, it became clear that in future technologies there is a high probability of
occurrence of transients that will last longer than the cycle time of circuits. Departing
from that conclusion, the analysis of temporal redundancy based techniques has shown
that they will not be able to cope with long duration transients at a reasonable cost, due
to the high performance overhead that they would impose. Those findings have been
presented for the first time in Lisboa (ETS 2007), and are the starting point of the search
for new low cost techniques able to deal with long duration transients, as described in
the remaining chapters of this text.

2.1 RADIATION INDUCED TRANSIENTS VS. DEVICE SPEED
SCALING

The width of transient pulses generated by ionization may vary according to the
process technology. In Dodd (2004), radiation test results for different bulk technologies
have been performed and the measured transient widths caused by particles with
different levels of energy are shown in Figure 2.1.

Figure 2.1. Transient pulse width scaling across technologies (DODD, 2004)

Besides the expected fact that the pulse width increases with the linear energy
transfer (LET) of the particle, this plot unveils important information: for low energy
particles there is a very small variation in the transient width between the four
technology nodes included in the study (250, 180, 130 and 100 nm). In contrast, for
particles with high LET, for instance 70 MeV-cm2/mg, the widths of transients between
the 250 nm and 100 nm technologies decrease 27%, from 948 ps to 694 ps, while

24

between the 180 and 130 nm technology nodes, the transient widths for this level of
energy increase from 772 ps to 900 ps, i.e., 17%. As one can see, there is no clear
scaling trend in SET widths.

In parallel with Dodd (2004), the work in Gadlage (2004) presented a study of the
width of transient pulses propagating in digital circuits for the 0.25 μm and 0.18 μm
technology nodes, dealing with the effects of heavy ions in the space environment. SET
widths of 1.5 ns in 180 nm CMOS technology for LET of 60 MeV-cm2/mg have been
observed. The goal of that work was to determine the approximate actual width of these
single event transients, but in the analysis of the results of their experiments, the authors
commented that the SET pulse widths are approximately the same at both technology
nodes, and that when the width of a transient becomes larger than the period of the
clock frequency that the circuit is running at, then every induced transient will be
latched. That work did not correlate the results with the scaling of cycle times, nor
explored the consequences of that finding or proposed any solution for this problem.

In Ferlet-Cavrois (2006), the width of the propagating transient voltage for bulk and
SOI devices, in different technologies, using a chain of ten inverters, was measured
through simulation, with similar results, as shown in Figure 2.2.

Figure 2.2. Transient pulse width scaling across technologies (FERLET-CAVROIS,

2006)

In Benedetto (2006), radiation test results for 60 MeV-cm2/mg have shown SET
widths up to 1.5 ns and 2.7 ns in 180 nm and 130 nm, respectively. Larger SET widths
were also observed when the voltage is reduced below the nominal operating voltage of
the technology node of interest. The maximum transient pulse width measured in this
case for the 180 nm technology node increases from 1.5 ns at nominal voltage (1.8 V) to
almost 3 ns at a reduced Vdd of 1.1 V.

Table 2.1. Predicted Transient Widths (ps)

Technology (nm) 180(1) 130(1) 100(1) 70(2)
10 MeV-cm2/mg 140 210 168 170
20 MeV-cm2/mg 277 369 300 240

(1) Extracted from Dodd (2004)
(2) Extracted from Ferlet-Cavrois (2006)

In order to compare the pulse widths predicted in the previously mentioned studies,
the propagation delays of different inverter chains have been measured through

25

simulation, using the HSPICE tool and parameters from the Predictive Technology
Model Web site (ARIZONA STATE UNIVERSITY, 2007) with default temperature of
25 degrees Celsius, and are shown in Table 2.2.

Table 2.2. Simulated Propagation Delay Scaling Accross Technologies (ps)

Technology (nm) 180 130 90 32
Vdd (V) 1.5 1.3 1.2 0.9
4-inverter chain 202.65 63.81 48.93 33.74
6-inverter chain 304.55 95.14 72.66 49.02
8-inverter chain 406.45 126.45 96.39 64.30
10-inverter chain 508.35 157.75 120.15 79.58

In Figure 2.3, the simulated clock cycles for the 10-inverter chain are shown for
different technology nodes, and compared to a transient lasting approximately 86 ps.
From the data in Table 2.1, one can see that such a short transient can be caused by
small energy particles for the 180 nm technology, and Figure 2.3 shows that in this case
the transient lasts only a fraction of the clock cycle. However, for the 32 nm technology,
the transient width would be longer than the clock cycle of the inverter chain, which
leads to the conclusion that even transients due to higher energy particles, lasting
several clock cycles, can be expected in future technologies.

Figure 2.3. Transient width vs. clock cycles

Data from tables 2.1 and 2.2 have been used to construct Figure 2.4. The lines in the
figure show the simulated clock cycles for the 180, 130, 90, and 32 nm nodes, which
decrease almost linearly between the 130 and 32 nm nodes. The first three vertical bars
show that for the 130 nm and 100 nm technology nodes the predicted transient widths
for particles with LET up to 20 MeV-cm2/mg, extracted from Dodd (2004), can be
longer than the simulated cycle times for inverter chains in the same technologies. The
fourth vertical bar shows the data for the 70 nm technology node, extracted from Ferlet-
Cavrois (2006), which confirms this trend. The lower (yellow) segment of each vertical
bar shows the pulse width for particles with LET up to 10 MeV-cm2/mg.

26

Cycle time and transient width scaling across technologies

0

100

200

300

400

500

600

180nm 130nm 100nm 90nm 70nm 32nm

Technology

C
yc

le
 ti

m
e

(p
s) Width 20MeV

Width 10MeV
Cycle 10 Inv
Cycle 8 Inv
Cycle 6 Inv
Cycle 4 Inv

Figure 2.4. SET pulse width vs. cycle time scaling

By observing Figure 2.4, it is therefore straightforward to predict that in future

technologies the transient pulses may last longer than the clock cycles of these circuits.
If no significant improvements are developed in the CMOS technology to reduce the
collected charge, for very high speed circuits operating at 2 GHz and beyond (clock
periods ≤ 500 ps), SETs may even last for several clock cycles.

As will be shown in Section 2.2, existing mitigation techniques are either unable to
deal with this new scenario, or too expensive in terms of area, performance, and/or
power overheads. Therefore, the use of low cost algorithm or system level techniques
seems to be the most suitable approach to cope with LDTs, as will be further detailed in
Chapters 3 through 6.

2.2 CURRENT MITIGATION TECHNIQUES VS. LDTS
Many different error detection techniques aiming at the mitigation of soft errors in

software based systems have been proposed so far. They can be organized in three
broad categories:

• software implemented techniques;

• hardware implemented techniques;

- time redundancy,

- space redundancy,

- checkers or I-IPs,

• hybrid techniques.

Software implemented techniques exploit detection mechanisms developed purely in
software, with only extra memory as the allowed overhead. On the other side, hardware
based techniques exploit the introduction of hardware modifications or extra hardware

27

addition. Finally, hybrid techniques combine both software and hardware error
detection mechanisms.

Some of those techniques focus on checking the consistency between the expected
and the executed program flow, recurring to the insertion of additional code lines or by
storing flow information in suitable hardware structures, respectively. These are the
control flow checking techniques. Another group of techniques checks the data that is
read and written by the software, in order to detect SEUs affecting the stored data, and
therefore are called data verification techniques. Selected proposed techniques
belonging to those two groups are discussed in the following subsections.

Most of the proposed techniques rely on fault models that do not include neither the
occurrence of multiple simultaneous transient faults or the possibility of transient pulses
during longer than the clock cycle of circuits, and therefore a careful review of such
techniques should be made in the near future, in order to ensure their compliance with
this new scenario.

In the following subsections, the main techniques in each category are commented
and their strengths and weaknesses concerning this scenario are briefly discussed.

2.2.1 Software Based Techniques
SIHFT (Software Implemented Hardware Fault Tolerance) techniques exploit the

concepts of information, operation, and time redundancy to detect the occurrence of
errors during program execution. In the past years some techniques have been
developed that can be automatically applied to the source code of a program, thus
simplifying the task for software developers: the software is indeed hardened by
construction, and the development costs can be reduced significantly. Moreover, the
most recently proposed techniques are general, and thus they can be applied to a wide
range of applications. Unfortunately, most SIHFT techniques assume an unbounded
memory, something that is not practical for low power or area constrained applications,
since memories are responsible for most of the power dissipation and the area within a
chip.

Techniques aiming at detecting the effects of faults that modify the expected
program’s execution flow are known as control flow checking techniques. These
techniques are based on partitioning the program’s code into basic blocks (sequences of
consecutive instructions in which, in the absence of faults, the control flow always
enters at the beginning and leaves at the end).

Among the most important solutions based on the notion of basic blocks proposed in
the literature, there are the techniques called Enhanced Control Flow Checking using
Assertions (ECCA) (ALKHALIFA, 1999) and Control Flow Checking by Software
Signatures (CFCSS) (OH, 2002b).

ECCA is able to detect all the single inter-block control flow errors, but it is neither
able to detect intra-block control flow errors, nor faults that cause an incorrect decision
on a conditional branch. CFCSS cannot cover control flow errors if multiple nodes
share multiple nodes as their destination nodes.

In Vemu (2007) a software based technique for detection and correction of control
flow errors named ACCE (Automatic Correction of Control Flow Errors) is proposed.
ACCE is an extension of a previous technique (VEMU, 2006) able to detect inter-node
control flow errors. In ACCE the identification of the node from which the control flow
error occurred is implemented, thereby allowing the correction of the error. Despite

28

being unable to mitigate all control flow errors, it provides correct results in 90% of the
test cases using a set of benchmark applications. ACCE imposes very low latency for
error correction, with a performance overhead of about 20%. This technique has
brought several significant contributions, being considered by the authors as the first
technique able to correct control flow errors at software level. One important feature of
ACCE is the fact that it does not require any changes in the application code, since it is
implemented through modifications introduced inside the compiler, with an extra pass
in which the instructions required to implement ACCE are inserted at the beginning and
at the end of each node of the control flow graph of the program. Since ACCE only
deals with inter-node control flow errors, its error coverage can be increased by splitting
nodes into subnodes, with increased performance and memory overheads.

In order to achieve system level hardening against transient errors, the authors
propose the use of ACCE combined with some algorithmic fault tolerance mechanisms
able to cope with errors affecting data. Experiments in which ACCE has been combined
with ABFT have shown a marginal increase in the correctablity, from 89.5% to 91.6%,
while increasing the detectability from 92% to 97%. Finally, an enhanced version of the
technique, named ACCED, which combines ACCE with the Selective Procedure Call
Duplication (SPCD) has been implemented and the experiments have shown that the
combination of both techniques increase both the correctablity and detectability of
ACCE.

As far as faults affecting program data are considered, several techniques have been
proposed that exploit information and operation redundancies (CHEYNET, 2000), (OH,
2002a). Such approaches modify the source code of the application to be hardened
against faults by introducing information redundancy and instruction duplication.
Moreover, consistency checks are added to the modified code to perform error
detection. The approach proposed in Cheynet (2000) exploits several code
transformation rules that mandate for duplicating each variable and each operation
among variables. Furthermore, each time a variable is read, a consistency check
between the variable and its replica should be performed.

Conversely, the approach proposed in Oh (2002a), named Error Detection by Data
Diversity and Duplicated Instructions (ED4I), consists in developing a modified version
of the program, which is executed along with the unmodified program. After executing
both the original and the modified versions, their results are compared: an error is
detected if any mismatch is found. Both approaches introduce overheads in memory and
execution time.

By introducing consistency checks that are performed each time a variable is read,
the approach proposed in Cheynet (2000) minimizes the latency of faults; however, it is
suitable for detecting transient faults only, since the same operation is repeated twice.
Conversely, the approach proposed in Oh (2002a) exploits diverse data and duplicated
instructions, and thus it is suitable for both transient and permanent faults. As a
drawback, its fault latency is generally greater than in Cheynet (2000). The ED4I
technique requires a careful analysis of the size of used variables, in order to avoid
overflow situations.

SIHFT techniques are appealing, since they do not require modification of the
hardware running the hardened application, and thus in some cases they can be
implemented with low costs. However, although very effective in detecting faults
affecting both program execution flow and program data, the software implemented
approaches may introduce significant time overheads that limit their adoption only to

29

those applications where performance is not a critical issue. Also, in some cases they
imply a non-negligible increase in the amount of memory needed for storing the
duplicated information and the additional instructions. Finally, these approaches can be
exploited only when the source code of the application is available, precluding its
application when commercial off-the-shelf software components are used.

In this thesis work, the focus has been on techniques for detection and correction of
transient errors affecting the data used by the system, and not on control flow errors.
Considering that no system can be completely hardened without control flow errors
mitigation, this will be an important field for future research, as discussed in Chapter 7.

2.2.2 Hardware Based Techniques
Hardware based techniques must be implemented during the design phase of the

system to be hardened. Therefore, they are not suited for the protection of commercial
off-the-shelf (COTS) processors targeted at the general purpose market, and their
implementation is restritcted to application specific integrated circuits (ASICs) or
FPGA based designs. Those techniques can be classified as redundancy based ones,
which can rely on time or space redundancy, and those using watchdogs, checkers or
IPs to monitor the main processor operations watching for errors.

2.2.2.1 Time Redundancy

Hardware based techniques using time redundancy rely in the verification of the
outputs generated by the circuit by comparing their values at two different moments in
time, separated by a fixed delay. Those techniques rely on the single fault model and
also in the concept that the duration of the transient pulse is short, and for this reason
the introduction of the delay does not impact performance very much. Examples of such
techniques are shown in Anghel (2000a; 2000b), and Mitra (2005). Also, in Austin
(2004), the same concept is used to check the outputs of a circuit and tune the soft error
rate by dynamically adjusting the voltage, aiming to reduce the power consumption.

In Figure 2.5, extracted from Anghel (2000), one can see an example of temporal
redundancy based technique, in which the outputs of the circuit to be protected are
sampled twice, at different moments in time separated by a fixed delay δ, and the
obtained values are compared. When they are different, an error is flagged. Schematics
(a) and (b) show different alternatives for the implementation of the delayed sampling
of outputs, and drawing (c) shows how the double sampling allows the detection of the
transient induced fault.

Figure 2.5. Temporal redundancy technique (ANGHEL, 2000)

30

Considering the durations of the transient pulse (Dtr,) and of the delay between
outputs sampling (δ), shown in Fig. 2.5(c), the following situations may occur:

• The transient hits the circuit and is completely dissipated either before O1 is
sampled or after O2 is sampled. In this case, no matter the duration of the
transient, the two sampled outputs will be equal and correct, and the transient will
not affect the results generated by the circuit.

• The transient hits the circuit before O1 is sampled and is completely dissipated
before O2 is sampled, or hits the circuit after O1 is sampled and vanishes after O2
is sampled. In this case, no matter the duration of the transient, the two sampled
outputs will be different, and an error will be properly flagged by the technique.

• The transient hits the circuit after O1 is sampled and is completely dissipated
before O2 is sampled. In this case, the two sampled outputs will also be equal and
correct, and no harm to the generated output will happen. However, to ensure that
this situation leads to correct operation of the technique, the duration of the
transient, Dtr, must clearly be shorter than δ. In case longer duration transients
(larger Dtr values) are expected, the duration of δ must be increased accordingly,
to ensure correct operation.

• Finally, if δ is not long enough, there will be situations in which the transient hits
the circuit before O1 is sampled and is completely dissipated only after O2 is
sampled, i.e., the duration of the transient, Dtr, is longer than δ. In this case, the
two outputs will be equal, however, their value will be incorrect and this will not
be properly detected by the technique. This situation is depicted in Figure 2.6,
adapted from Anghel (2000).

In order to avoid the possibility of failure of the technique in the third and fourth
situations described above, the only remedy is to increase the duration of δ.

Figure 2.6. Long duration transient effect – adapted from Anghel (2000)

Therefore, in order to keep the correctness of temporal redundancy based techniques
in future technologies, when the duration of the transient pulses is expected to be much
larger than the average circuit cycles, it will be necessary to increase the duration of the
delay δ used to separate the output values to be compared. And this is a penalty imposed
at every operation cycle, which will imply unbearable performance overheads.

As a consequence, the application of such techniques will be negatively impacted by
the occurrence of long duration transient pulses in the near future.

2.2.2.2 Space Redundancy

The group of space redundancy based techniques is more likely to provide
protection even in the presence of long duration transient pulses, because, under the

31

single fault model, which is still the dominant one (ROSSI, 2005), only one of the
copies of the circuit would be affected by the long duration transient, and the other(s)
would provide correct results.

The technique called duplication with comparison (WAKERLY, 1978) would allow
only the detection of errors caused by long duration transients, while in the case of triple
modular redundancy the circuit would be able to detect the error and also choose the
correct result, discarding the wrong one caused by the long duration transient.

Another approach in this group is proposed in Nieuwland (2006), where the critical
path of combinational circuits is hardened through the duplication of gates and transient
errors are mitigated (actually, masked) thanks to the extra capacitance available in the
node. This technique also relies on the single fault model.

However, the area and mainly power penalties imposed by solutions using space
redundancy are a big concern, mainly for embedded systems. For this reason, the
development of innovative techniques in this group providing lower costs has also been
included as one of the goals this research work, leading to the technique described in
Chapter 6.

2.2.2.3 Mitigation Techniques Based on Watchdogs, Checkers and IPs

The third group of hardware based techniques relies in the use of special purpose
hardware modules, called watchdog processors (MAHMOOD, 1988), checkers
(AUSTIN, 1999), or infrastructure IPs (LISBOA, JETTA 2007), to monitor the control
flow of programs, as well as memory accesses. The behavior of the main processor
running the application code is monitored using three types of operations.

Memory access checks consist in monitoring for unexpected memory accesses
executed by the main processor, such as in the approach proposed in Namjoo (1982),
where the watchdog processor knows at each time during program execution which
portion of the program’s data and code can be accessed, and activates an error signal
whenever the main processor executes an unexpected access.

Consistency checks of variables contents consists in controlling if the value a
variable holds is plausible. By exploiting the knowledge about the task performed by
the hardened program, watchdog processors can validate each value the main processor
writes or reads through range checks, or by exploiting known relationships among
variables (MAHMOOD, 1983).

Control flow checks consist in controlling whether all the taken branches are
consistent with the program graph of the software running on the main processor
(NAMJOO, 1983), (OHLSSON, 1995), (SCHUETTE, 1987), and (WILKEN, 1990). As
far as the control flow check is considered, two types of watchdog processors may be
envisioned.

An active watchdog processor executes a program concurrently with the main
processor. The program graph of the watchdog’s program is homomorphic to the main
processor’s one. During program execution, the watchdog continuously checks whether
its program evolves as that executed by the main processor or not (NAMJOO, 1983).
This solution introduces minimal overhead in the program executed by the main
processor; however, the area overhead needed for implementing the watchdog processor
can be non-negligible.

32

A passive watchdog processor does not execute any program; conversely, it
computes a signature by observing the bus of the main processor. Moreover, it performs
consistency checks each time the main program enters/leaves a basic block within the
program graph. A cost-effective implementation is described in Wilken (1990), where a
watchdog processor observes the instructions the main processor executes, and
computes a runtime signature. Moreover, the code running on the main processor is
modified in such a way that, when entering a basic block, an instruction is issued to
the watchdog processor with a pre-calculated signature, while the main processor
executes a NOP instruction. The watchdog processor compares the received pre-
computed signature with that computed at runtime, and it issues an error signal in case
of mismatch. An alternative approach is proposed in Ohlsson (1995), where the
watchdog processor computes a runtime signature on the basis of the addresses of the
instructions the main processor fetches. Passive watchdog processors are potentially
simpler than active ones, since they do not need to embed the program graph and they
perform simpler operations: signature computation can be demanded to LFSRs, and
consistency checks to comparators. However, an overhead is introduced in the
monitored program: instructions are indeed needed for communicating with the
watchdog.

Dynamic verification, another hardware-based technique, is detailed in Austin
(2000) for a pipelined core processor. It uses a functional checker to verify the
correctness of all computation executed by the core processor. The checker only permits
correct results to be passed to the commit stage of the processor pipeline. The so-called
DIVA architecture relies on a functional checker that is simpler than the core processor,
because it receives the instruction to be executed together with the values of the input
operands and of the result produced by the core processor. This information is passed to
the checker through the re-order buffer (ROB) of the processor’s pipeline, once the
execution of an instruction by the core processor is completed. Therefore, the checker
does not have to care about address calculations, jump predictions and other
complexities that are routinely handled by the core processor.

Once the result of the operation is obtained by the checker, it is compared with the
result produced by the core processor. If they are equal, the result is forwarded to the
commit stage of the processor’s pipeline, to be written to the architected storage. When
they differ, the result calculated by the checker is forwarded, assuming that the checker
never fails (which is a risky assumption). If a new instruction is not released for the
checker after a given time-out period, the core processor’s pipeline is flushed, and the
processor is restarted using its own speculation recovery mechanism, executing again
the instruction. Originally conceived as an alternative to make a core processor fault
tolerant, this work evolved later to use a similar checker to build self tuning SoCs
(WILKEN, 1990).

While being a well balanced solution, in terms of area and performance impacts, the
DIVA approach has two main drawbacks. First, since the checker is implemented inside
the processor’s pipeline, it cannot be implemented in SoCs based on COTS processors
or FPGAs that have an embedded hardwired off-the-shelf processor, such as an ARM or
Power PC core. Second, the fundamental assumption behind the proposed solution is
that the checker never fails, due to the use of oversized transistors in its construction
and also to extensive verification in the design phase. In case this is not feasible, the
authors suggest the use of conventional alternatives, such as TMR and concurrent
execution with comparison, which have been already studied in several other works.

33

The approaches discussed in this subsection usually imply in a high performance
overhead, since the results must be computed twice, and also in an area overhead, due to
the addition of the watchdog, checker or I-IP. Even in solutions where part of the
verification is executed in parallel with the main one, such as Rhod (JETTA 2008), the
performance overhead is still significant.

2.2.3 Hybrid Techniques
Hybrid techniques combine SIFHT and hardware based techniques. One such

technique is described in Bernardi (2006), and it combines the adoption of some SIHFT
techniques in a minimal version (thus reducing their implementation cost) with the
introduction of an I-IP into the SoC. The software running on the processor core is
modified so that it implements instruction duplication and information redundancy;
moreover, instructions are added to communicate to the I-IP the information about basic
block execution. The I-IP works concurrently with the main processor, it implements
consistency checks among duplicated instructions, and it verifies whether the correct
program’s execution flow is executed by monitoring the basic block execution.

Hybrid techniques are effective, since they provide a high level of dependability
while minimizing the introduced overhead, both in terms of memory occupation and
performance degradation. However, in order to be adopted they mandate the availability
of the source code of the application the processor core should run, and this requirement
cannot be always fulfilled.

The idea of introducing an I-IP between the processor and the instructions memory,
and of charging the I-IP of substituting on-the-fly the fetched code with hardened one,
was preliminarily introduced in Schillaci (2006). However, the I-IP proposed in
Schillaci (2006) is very simple (it does not include either an ALU or a control unit), and
is not supported by a suitable design flow environment. Moreover, the performance
overhead of the method in Schillaci (2006) is significant, and the method cannot cover
permanent faults.

In Rhod (JETTA 2008), an approach aiming to minimize the overhead needed to
harden a processor core has been proposed. The method is based on introducing in the
SoC a further module (I-IP), whose architecture is general, that needs to be customized
to the adopted processor core. The I-IP monitors the processor buses and performs two
main functions: when the processor fetches a data processing instruction belonging to a
design time selected set, it acts on the bus and lets the processor fetch a sequence of
instructions generated on-the-fly, instead of the original one. This sequence of
instructions allows the I-IP to get the operands of the original data processing
instructions, which is then executed both by the processor and by the I-IP; the results
obtained by the processor and the I-IP are then compared for correctness. Each time the
processor fetches a new instruction, the I-IP also checks the correctness of the address
used by the processor, by comparing it to the expected one, and an error is notified if a
mismatch is found, thus allowing also the detection of control flow errors.

The method is inspired in SIHFT and hybrid techniques, but it does not introduce
any memory overhead in the hardened system (code redundancy is introduced on-the-
fly). Moreover, no change is required on the application code, whose source version is
not required to be available. Finally, the method allows designers to trade-off costs and
reliability, mainly by suitable selecting the subset of data-manipulation instructions to
be hardened. Fault injection experiments using the proposed technique implemented in
a MIPS processor have shown that most of the non detected errors are due to SEUs

34

affecting the register file of the processor before the operands are read and their values
forwarded to the I-IP. In order to avoid these errors, the register file should be protected
using EDAC techniques, what would imply in changes in the internal architecture of the
processor.

Another hybrid technique to mitigate SETs in combinational logic based on
duplication and time redundancy, and code word state preserving (CWSP), is shown in
Nicolaidis (1999). The CWSP stage replaces the last gates of the circuit by a particular
gate topology that is able to pass the correct value in the combinational logic in the
presence of a SET. In the case of duplication, when the two copies of the inputs are
identical (code word), the next state is equal to the corresponding output of the function,
but if the two copies of the inputs are not identical (non-code word), the next state
remains equal to the present state. Using time redundancy, one of the inputs of the
CWSP element is coming directly from the combinational circuit output, while the other
input comes from the same output signal, but is delayed. The use of this method
requires the modification of the CMOS logic in the next stages by the insertion of extra
transistors and the necessity of using duplicated logic or logic to implement a delay.
Furthermore, being also a time redundancy based technique, it will suffer from the same
drawbacks already discussed in subsection 2.2.2.1, since it will not withstand LDTs.

2.3 PROPOSED APPROACH TO DEAL WITH LDTS
As shown in the previous section, most of currently known soft errors mitigation

techniques will not be useful in the future scenario, where radiation induced transients
will last longer than the cycle time of circuits and the probability of multiple
simultaneous upsets will become higher due to the small distances between the devices.
Time redundancy based techniques will become too expensive, in terms of performance
overhead, due to the need for an increased delay between two or three inputs sampling,
which must be longer than the expected transient width. Space redundancy based ones,
in turn, will still impose too heavy penalties in terms of area and power overheads,
making them useless for applications fields in which those are scarce resources, such as
the embedded systems arena. Finally, software based techniques will continue to suffer
from the need to modify existing software or impose high area and/or performance
overheads.

Given this scenario, this work proposes the development of a set of innovative low
cost techniques, each one working at a different abstraction level in a complementary
fashion, in order to face the challenges imposed to designers by future technologies.
While the development of a complete set of such solutions, able to harden a whole
system against soft errors, is out of the scope of this thesis text, this is the ultimate goal
of our research project.

Very recently, in Albrecht (2009), a generic approach to deal with the drawbacks
imposed by future technologies in the design of systems-on-chip has been proposed.
The authors propose to divide the SoC into several architectural layers, each one
tailored to the specific SoC fault-tolerance needs, aiming to cope with the decreasing
device reliability due to parameters variations, temperature impact, and radiation
effects. While the ideas behind this proposal have some common points with the ones
proposed in Lisboa (ETS 2007), in Albrecht (2009) the authors suggest that the
detection of errors should be implemented at lower levels, while the error correction
should be performed at system level. In order to achieve this goal, mechanisms for fault
detection and communication with upper levels should be implemented at the lower

35

levels, while the upper levels would implement the error correction mechanisms and
also the ability to switch on and off the error detection mechanisms in lower levels,
according to the specific fault tolerance requirements of the application. So, that
proposal aims to define a configurable reliable design, able to deal not only with
runtime, but also with design and production errors. However, no new error detection or
correction technique is proposed in that work, and the authors simply make a review of
existing alternatives, without any comments about their suitability to cope with the new
scenario. Furthermore, the authors state that the overall system reliability is becoming
more important than the mips-per-watt measure, thereby suggesting that performance
and power overheads are not as important as the reliability features in a SoC.

In our work, in turn, the development of new low cost techniques to deal with the
new challenges at different abstraction levels is proposed, but with reduced overheads
In terms of area, power, and performance, as the first goal. While most of the solutions
proposed in this thesis aim to detect errors, some of them also include error correction
capabilities. As a general rule, our proposal is to correct errors through recomputation,
which sometimes may seem to be a very expensive solution. However, it must be
highlighted that when one deals with radiation induced errors, given the very low
frequency of SETs in comparison with the operating frequencies of the circuits, the
recomputation cost becomes almost negligible. Nevertheless, the reduction of the
recomputation cost itself has also been a concern in our work, as is detailed in the
description of the technique presented in Chapter 3.

For the purpose of this work, we have considered the following abstraction levels in
a system:

• technology level

• component level

• circuit level

• architecture level

• algorithm or software level

• system level

At the technology level, the use of built-in current sensors, proposed in Neto (2006),
is a possible approach to detect soft errors, as shown in Lisboa (ITC 2007) and Albrecht
(2009), but the error correction capability must then be implemented at higher
abstraction levels.

At the component level, given the possibility of transients lasting even longer than
the propagation times of circuits, the use of space redundancy, under the single fault
assumption, is the most suitable alternative. However, the area and power overheads
imposed by space redundancy preclude the use of this option when designing portable
or embedded systems. Another approach is to oversize the most sensitive transistors
used in the construction of the component, but then again the area overhead becomes
too high. Due to those considerations, in our work there are no studies for error
detection or correction at the component level.

When working at circuit level, many alternative techniques have already been
proposed. As previously mentioned, those based on time redundancy will be useless in
the presence of LDTs. Space redundancy techniques, such as DWC, TMR, and the use
of IPs or checkers operating in parallel with the circuit to be protected, can indeed cope

36

with LDTs, but usually impose heavy penalties in terms of area and power. With this in
mind, one of the new low overhead solutions proposed in this thesis is the use of
Hamming codes to protect combinational logic, as described in Chapter 6.

Considering the use of commercial off-the-shelf processors in the implementation of
the system to be hardened, the mitigation of soft errors at the architecture level is
usually restricted to space redundancy techniques such as TMR. However, the growing
availability of multi-processor FPGAs, which allow the addition of custom logic around
the COTS processors, opens new paths to be explored in the search for soft error
mitigation alternatives. As an example of this approach, the use of the lockstep
technique, combined with checkpoint and rollback, already proposed in the past but
precluded due to the need to the high costs involved in the design and manufacturing of
ASICS, is now becoming again a feasible option. Due to this fact, in this thesis this
technique has been studied and an improvement at the architecture level that reduces the
time required to perform checkpoints has been proposed, as described in Chapter 5.

Despite the studies aiming to deal with the problem at lower abstraction levels, as
proposed in Lisboa (ETS 2007) our preferred alternative to deal with the effects of
LDTs is to work at algorithm level or system level. And with this in mind, our efforts
have been concentrated in the search for low cost alternatives to accomplish our goal.
Starting with the matrix multiplication algorithm, for which a verification technique
with single element recomputation at extreme low cost has been devised, the work has
continued with the use of software invariants in the runtime detection of soft errors. In
both cases, the low cost goal has been achieved, and the proposed solutions seem good
candidates to be included together with future ones in the hardening of complete
systems against radiation induced long duration transient faults.

In the following chapters, the main results of our research work during the thesis
development are presented and discussed.

37

3 MATRIX MULTIPLICATION HARDENING

This part of the thesis describes a technique able to detect and correct errors
affecting a single element of the product in matrix multiplication operations which
provides a significant cost reduction when compared with classic solutions such as
duplication with comparison (error detection only) and triple modular redundancy (error
detection and correction).

Once the conclusion that mitigation techniques working at low level would not be
suitable to deal with long duration transients and multiple simultaneous faults has been
reached, our research work has been directed to the search of low cost algorithm level
solutions. At this level, the first task has been to harden the matrix multiplication
algorithm, a widely used one that has applications in several fields. After studying some
of the formerly proposed solutions to the problem, our focus has been concentrated in
the study of a probabilistic solution proposed in Freivalds (1979). The analysis of that
technique, which is able to detect errors affecting a single element of the product matrix
with a probability higher than ½, has led the author to the conclusion that it could be
improved in order to provide deterministic error detection, i.e., to detect the same type
of errors with a probability equal to one.

The first experimental results showing the proposed technique have been presented
in Lisboa (LATW 2007) and Lisboa (ETS 2007), when the author received the
suggestion to compare his proposal with the well known technique named algorithm
based fault tolerance – ABFT (HUANG, 1984), which has been proposed for the
hardening of large matrices multiplication performed by a network of processors. Along
the research, the work by Prata (1999), comparing Freivalds’ technique (named there as
result checking), the starting point of our work, to ABFT has also been used as a
reference and is commented in Section 3.2.

Initially targeting only the detection of the error, with recomputation of the whole
product matrix when an error was detected, as described in section 3.3.1, along the
research the proposed technique evolved to several alternative solutions providing
different computational costs and correction latency features. The exploration of the
possible alternatives has been conducted in cooperation with Costas Argyrides, a PhD
student at University of Bristol, UK (section 3.3.2), and with Fernanda Lima
Kastensmidt and Gilson Wirth, co-workers at the Computer Science (PPGC) PhD
program in Instituto de Informática (UFRGS, Brazil), as described in section 3.3.3. The
development of the technique and its improvements led to the publication of several
papers, such as (LISBOA, ITC 2007), (LISBOA, VTS 2008), (LISBOA, WREFT
2008), (LISBOA, DFR 2008), and (Argyrides, IOLTS 2009).

38

In addition to the development of the technique itself, radiation injection
experiments and measurements have been conducted in cooperation with Eduardo
Rhod, a Microelectronics (PGMicro) PhD student at Instituto de Informática (UFRGS,
Brazil), and Paul Perronard and Raoul Velazco, working at the TIMA Laboratoire, at
the Institut National Polytechnique, in Grenoble, France. The results obtained in those
experiments have been presented in Lisboa (RADECS 2008) and are described in
Section 3.3.4.

The extension of the technique for use with non-square matrices and vectors has also
been the subject of analysis, but not yet published. The conclusions of those studies are
described in Section 3.3.5.

3.1 PROBLEM DEFINITION
For this step of the research, the matrix multiplication algorithm has been selected as

the case study, since matrix operations are an important tool for several applications,
such as signal and image processing, weather prediction and finite element analysis, and
often the performance of those systems depends on the speed of these operations
(HUANG, 1984).

Considering that applications such as audio, video, graphics, and visualization
processing, share the ability to tolerate certain types of errors at the system outputs,
once those errors are within acceptable boundaries, a new application oriented paradigm
to deal with process variations, defects, and noise, named error tolerance (ET), is
proposed in Breuer (2004). However, even error tolerant applications have maximum
acceptable error limits, and therefore the search for techniques that can mitigate
radiation induced errors is an important contribution to keep the overall error rate below
those limits.

Aiming to provide higher overall yield rates, by enabling the use of systems that
otherwise would be discarded, the application of system-level error tolerance techniques
to multimedia compression algorithms has been proposed in Chong (2005), Chung
(2005). In Chong (2005), the application of ET for a JPEG encoder has shown that more
than 50% of single stuck-at interconnection faults in one of its 1D DCT modules
resulted in imperceptible quality degradation in the decoded images. In Chung (2005),
an ET based application oriented design and test scheme was applied to three different
possible architectures of a motion estimation system, and proven to increase the yield
rate.

Due to those considerations, the matrix multiplication algorithm was selected with
the initial purpose of developing an error tolerant technique for matrix multiplication,
which further led to the deterministic solution described in Section 3.3.1.2. In order to
further exercise the application of the proposed approach, this case study has also been
applied at different levels of granularity, and the computational cost of the alternatives
have been compared, as described in Section 3.3.3.

Given two n×n matrices, the number of required arithmetic operations for matrix
multiplication is O(n3). However, since additions and multiplications are used in the
matrix multiplication algorithm, throughout this work we consider the cost of each type
of operation separately, with the cost of multiplications being estimated as 4 times the
cost of additions, as shown in Table 3.1. As to the comparison operations required for
error detection, which are considered in the computational cost analysis and
comparison, their cost is assumed to be equal to that of additions.

39

As one can see in Table 3.1, the computational cost of matrix multiplication grows
very fast with the number of lines and columns, which makes the recomputation of the
whole product matrix, when an error is detected, a very expensive solution. Alternative
solutions, aiming to minimize the recomputation cost, and also the trade-offs between
recomputation cost and error verification frequency have also been considered along the
research and are discussed in Sections 3.3.2 and 3.3.3.

Table 3.1 – Matrix multiplication computational cost scaling with n

n Multiplications
n3

Additions
n2(n-1)

Total cost
4n3+ n2(n-1)

2 8 4 36
4 64 48 304
8 512 448 2,496
16 4,096 3,840 20,224
32 32,768 31,744 162,816
64 262,144 258,048 1,306,624

Another important issue is the maximum time that a given system may run after the
occurrence of an error, before this error leads to unrecoverable damages. Therefore, the
error detection latency has also been a matter of study and is discussed in Section 3.3.3.

3.2 RELATED AND PREVIOUS WORK
One classic technique used to detect errors in the execution of an algorithm, named

duplication with comparison (DWC), is to execute it twice and compare the results
(WAKERLY, 1978). This allows the detection of errors, but not the identification of the
correct result. Therefore, in order to recover from an error, the duplicated operation
must be repeated and checked again, with a total computational cost equal to four times
the cost of a single operation plus the cost of comparisons.

Triple modular redundancy (TMR), which executes three times the operation and
then votes for the correct result using majority, is another alternative (JOHNSON,
1994). For the single error hypothesis, and assuming the voter does not fail, it allows
detecting errors and choosing the correct result without recomputation. However, its
cost is still higher than three times the cost of a single operation, due to the additional
cost of voting.

The use of checksums for detection and correction of errors in matrix multiplication
is a classic technique proposed in Huang (1984) and named algorithm based fault
tolerance (ABFT). Proposed for use in the manipulation of large matrices, handled in
parallel by multiple processors, this technique can also be used to multiply smaller
matrices, using a single processor, providing reduced cost error detection and
correction. As proposed by Huang, “ABFT is based on the encoding of the data used by
the algorithm, the redesign of the algorithm to operate on the encoded data, and the
distribution of the computation steps in the algorithm among computation units”
(HUANG, 1984). This approach provided low cost fault tolerance, however it is applied
by tailoring the fault tolerance scheme to the algorithm to be performed, which implies
in high algorithm adaptation costs.

Another approach, named result checking, was proposed in Rubinfeld (1990), where
several mathematical computations, including matrix multiplication, are analyzed

40

aiming the definition of programs to check the result of the computation in a time that is
less than that required to recompute the whole function.

More recently, in Prata (1999), the application of ABFT and result checking
specifically to matrix multiplication algorithms has been evaluated. In Prata (1999) the
authors used the Freivalds’ technique, proposed in Freivalds (1979), for matrix
multiplication result checking, which detects errors with a given probability. They
executed twice the technique in order to obtain a higher probability of error detection
(only 2.7% of undetected errors). Nevertheless, the error detection in their experiments
was still probabilistic.

According to Prata (1999), both ABFT and result checking provide a good fault
coverage, and equivalent execution time, since they provide checkers that can be
executed with O(n2) operations for an algorithm that requires O(n3) operations.

However, Prata (1999) also states that ABFT is superior to result checking because
it is able not only to detect, but also to localize and correct errors. Despite that, they
claim that result checking has a lower calculation time overhead for equivalent fault
coverage levels, and that it is easier to implement than ABFT, requiring less additional
code in order to harden the algorithm. Finally, they state that result checking can be
applied to any matrix multiplication algorithm, while ABFT depends on the particular
algorithm that is used.

Also starting from the Freivalds’ result checking technique (FREIVALDS, 1979),
the author developed a new approach for algorithm level error detection in matrix
multiplication that led to a deterministic technique, i.e., able to detect errors with
probability equal to 1. The proposed technique has been first presented in Lisboa (ETS
2007) and has a computational cost comparable to that of checksums used in ABFT.

3.3 PROPOSED TECHNIQUE
In this section, we describe the proposed technique, as presented in Lisboa (ETS

2007), and its extension in cooperation with other research groups to include the
localization and correction of the error, thereby overcoming the main drawback of the
result checking approach highlighted in Prata (1999). Furthermore, the comparison of
the computational cost of the proposed technique for different error verification
granularities, as well as the error latency and cost vs. recomputation time tradeoffs are
discussed here.

3.3.1 Background and Evolution of the Proposed Technique

3.3.1.1 The starting point: fingerprinting and Freivalds’ technique

The concept of processing and checking in parallel the outputs of a system for only a
subset of its possible inputs, also called fingerprinting (MOTWANI, 1995), can be
applied to the general case of a circuit that must be hardened against soft errors, thus
providing tolerance against transient faults caused by pulses that affect parts of the
circuit, even when the duration of the transient pulse is longer than the delay of several
gates. Figure 3.1 illustrates this idea.

In contrast with other proposed solutions based on checker circuits, such as the one
proposed by Austin (1999), when fingerprinting is applied the random checker does not
provide full fault detection. It performs some of the functions of the main circuit only
on a small set of possible inputs, being able to statistically detect errors at the output

41

with a given probability. The main goal of this approach is to provide an acceptable
level of fault detection, according to the concepts of error tolerance, using a circuit that
is significantly smaller than the main circuit under inspection, thereby providing low
area overhead.

Figure 3.1. Fingerprinting - generic scheme

The underlying concept presented here is generic, and can be adopted for several

different applications or circuits, with the subset of inputs, the operations performed by
the checker, the performance, area, and power overheads varying according to the
application. In this work, it has been applied to harden a matrix multiplier circuit, as
shown in the following paragraphs.

In 1977, Rúsiņš Freivalds (1977) proved that probabilistic machines are able to
execute some specific computations faster than deterministic ones, and that they can
compute approximations of a function in a fraction of the time required to compute the
same function deterministically. Also credited to Freivalds, a technique for faster
verification of the correctness of matrix multiplication algorithms has been shown in
Motwani (1995).

In summary, Freivalds’ technique proposes the use of multiplication of matrices by
vectors in order to reduce the computation time when verifying the results produced by
a given matrix multiplication algorithm, as follows: given n×n matrices A and B, and
the matrix C, the product of A and B which was computed using the algorithm under
test, the following computations are performed:

1. Randomly create a vector r in which the values of the elements are only 0 or 1.

2. Calculate Cr = C × r

3. Calculate ABr = A × (B × r)

Freivalds has proven that, whenever A×B ≠ C, the probability of Cr being equal to
ABr is ≤ ½. In other words, when A×B = C the probability of the product matrix being
correct is higher than ½. The demonstration is shown in Motwani (1995).

Furthermore, if steps 1 to 3 above are performed k times independently (with
different values of the vector r), the probability becomes ≤ ½k. Using this technique, the
verification of the result can be done in less time than the original multiplication, since
matrix multiplication requires O(n3) time to be performed, while multiplication of a
matrix by a vector is performed in O(n2) time. However, since this is a statistical
technique, there is no assurance that errors will always be detected.

3.3.1.2 Improving Freivalds’ technique

The analysis of the technique proposed by Freivalds shows that the probability of
detecting one error in C is ≅ ½ because the randomly generated elements of the vector r
have the same ½ probability of being 0 or 1. Assuming that the element of C which has

main circuit

random
checker

inputs output

error

42

an erroneous value is Cij, in the calculation of Cr this element is multiplied by a single
element rk of the vector, thereby being canceled during the generation of Cr (if rk is
equal to 0) or not (when rk is equal to 1).

Given that the elements of the vector r can be randomly chosen, if we perform the
computation with a second vector, rc, in which each element is the binary complement
of the values in r, the elements of C that were cancelled in the first computation will not
be canceled in the second one, and vice-versa. Therefore, if Cij has an erroneous value,
we will either have A×(B×r) ≠ C×r or A×(B×rc) ≠ C×rc, and the probability of detecting
an error in a single element of C will be equal to 1, i.e., if the erroneous value is masked
in the calculation of ABr/Cr, it is not masked when ABrc/Crc are calculated, and vice
versa.

This property allows the detection of every error in which a single element of C is
faulty, with only two executions of the Freivalds technique, as demonstrated in the
following box.

Theorem: The use of complementary r and rc vectors allows to detect all single faults
with a double execution of Freivalds’ technique.

The computation of the products A×(B×r) and C×r in the Freivalds technique generates
two vectors that must be compared. Assuming that matrices A and B have n×n
elements, the r and rc vectors will have n elements each and the value of an element i of
the above products is given by:

 ABri = Σn
i=1 ((a11b1i + a12b2i + ... + a1nbni).ri)

 Cri = ci1r1 + ci2r2 + ... + cinrn

As demonstrated in Motwani (1995), when no error occurs in the calculation of C, we
have ABr = Cr, and regardless of the values of ri the comparison for equality will hold
true. However, when ABr ≠ Cr there is a probability ≤ ½ that the comparison will also
hold true. That happens because the values of ri are selected randomly from {0, 1} and,
therefore,

 Pr[ri = 0] = Pr[ri = 1] = ½.

This way, there is a 50% chance that an erroneous value Cij will be masked during the
calculation of Cr, and, in this case, ABr is erroneously considered to be equal to Cr.

When the ri values are generated randomly, and then the complement of their values are
used to set the values of the corresponding elements in vector rc, we have:

Pr[ri=1 OR rci=1] = Pr[ri=1] ∪ Pr[rci=1]

 = Pr[ri=1] + Pr[rci=1]

 = ½ + ½ = 1

Further exploring the extension of Freivalds’ technique here proposed, it becomes
clear that, since the technique is valid for any randomly selected r vector, it must also be
valid for the specific vector r1 = {1, 1, ..., 1}. In this case, the complementary vector is
r0 = {0, 0, ..., 0}, and we have:

C×r1 = {Σn
j=1 C1j, ..., Σn

j=1 Cnj} (1)

43

A×(B×r1) = {Σn
j=1 (Σn

k=1 A1k . Bkj), ... , Σn
j=1 (Σn

k=1 Ank . Bkj)} (2)

and

C×r0 = 0 (3)

A×(B×r0) = 0 (4)

From expressions (3) and (4) above, one can see that the condition C×r0 ≠ A×(B×r0)
will always be false, and therefore the test of the compound condition A×(B×r1) ≠ C×r1
or A×(B×r0) ≠ C×r0 can be simplified to A×(B×r1) ≠ C×r1, significantly reducing the
cost of the verification process, because the computation of expressions (3) and (4) is no
longer necessary. In addition, in the computation of the expressions (1) and (2) there is
no longer need to multiply by the elements of r1, since they all are equal to one.

From (1) and (2), we can also conclude that, since in the multiplication process Cij =
Σn

k=1 Aik . Bkj, if one of the Cij elements has an erroneous value, the condition A×(B×r1)
≠ C×r1 will be true, and the error will always be detected.

 (Expression 5)

 (Expression 6)

 (Expression 7)

Figure 3.2: Operations used in the verification of the product

Therefore, the verification of the product matrix can be performed only by
calculating the following:

• Vector Cr, where Cri = Ci1 + Ci2 + ... + Cin (5)

• Vector Br, where Bri = Bi1 + Bi2 + ... + Bin (6)

• Vector ABr, where ABri = Σn
k=1 Aik . Brk (7)

44

Then, vectors ABr and Cr must be compared; if they are different, there was an error
in the multiplication, and the whole matrix multiplication algorithm must be repeated.

The above conclusions have been confirmed through exhaustive simulated fault
injection experiments using MatLab (MATHWORKS, 2006), and this optimized
technique provides a method that can detect all single element errors in a matrix
multiplication operation, with very low overhead.

In terms of computation time overhead, Table 3.2 shows the number of operations
(considering that the cost of multiplications is 4 times the cost of additions and
comparisons) required to multiply and check matrices with different dimensions (n),
obtained in this experiment.

Table 3.2. Computational cost scaling with n

n Multiplication
4n3+ n2(n-1)

Verification
5n2+3n(n-1)

% Verification
Overhead

2 36 26 72
4 304 116 38
8 2,496 488 20
16 20,224 2,000 10
32 162,816 8,096 5
64 1,306,624 32,576 2

The figures in Table 3.2 make clear that the verification cost in the proposed

technique for larger matrices (n ≥ 4) is far below the 100% imposed by duplicated
execution of the multiplication algorithm and also much less than in other more
expensive techniques, thereby confirming the low overhead of the verification.

3.3.2 Minimizing the Recomputation Time when an Error Occurs
Our first goal when developing this error detection technique was to provide a faster

solution than duplication with comparison, which requires computing the product
matrix twice and then comparing the obtained results. In this case, when an error is
detected by a mismatch, it is impossible to know which one is the erroneous result, and
the process must be repeated in order to obtain a correct product. So, although the
proposed technique already provides a significant reduction in the verification cost, it
still requires recomputation of the whole matrix when an error occurs.

In this section we extend our low cost verification technique to detect errors in
matrix multiplication affecting a single element of the product matrix, aiming also to
correct the erroneous result. Starting from recomputation only after completion of the
whole matrix multiplication process, we proceed until the alternative with minimum
recomputation cost, discussing the pros and cons of each alternative in terms of
computational cost and error correction latency.

3.3.2.1 Verification only at completion of product matrix calculation

The number of operations required by this technique, including the recomputation of
the whole product matrix in case of error, in terms of multiplications (MLT), additions
(ADD), and comparisons (CMP), is shown in Table 3.3.

45

Table 3.3. Number of operations for verification after completion
 MLT ADD CMP

Multiplication n3 n2(n-1)
Computation of Cr n(n-1)
Computation of Br n(n-1)
Computation of ABr n2 n(n-1)
Comparison Cr:ABr n2
Total for verification n2 3n(n-1) n2
Recomputation n3 n2(n-1)
Total (when an error occurs) 2n3+n2 2n2(n-1)+3n(n-1) n2

Table 3.4 shows the total computational cost of this technique, according to the size

of the matrices, considering that one multiplication costs 4 times one addition or
comparison, and that one error occurs.

Table 3.4. Computational cost scaling with n for verification after completion
n Multiplication

4n3+ n2(n-1)
Verification
5n2+3n(n-1)

Recomput.
4n3+ n2(n-1)

Total
Cost

2 36 26 36 98
4 304 116 304 724
8 2,496 488 2,496 5,480
16 20,224 2,000 20,224 42,448
32 162,816 8,096 162,816 333,728
64 1,306,624 32,576 1,306,624 2,645,824

As one can see in Table 3.4, while the verification cost in the proposed technique is
far below the cost imposed by duplicated execution of the multiplication algorithm, the
recomputation cost is still equal to that of multiplication, and besides that, upon
occurrence of an error, the system runs for a long time without noticing it, until the
verification is performed. This cost and error correction latency may be not acceptable
for several applications, such as those where there are hard deadlines to be met.

3.3.2.2 Verification line by line

Aiming to reduce the time during which the system operates without noticing errors,
as well as the cost of recomputation, an alternative approach is to check for errors more
frequently.

While the ideal granularity to minimize the blind run time would be to verify each
element of the product matrix as soon as it is calculated, from expression (5) one can
see that the proposed technique requires the availability of one complete line of the
product matrix to compute a single element of Cr, and therefore the minimum
verification granularity for this specific application is one line of C, with n elements.

Furthermore, the verification of a single line of C requires the availability of the
corresponding elements of Cr and ABr. As shown in expressions (6) and (7), the
calculation of ABri requires the addition of the values of all elements of vector Br. Since
we intend to verify the results as soon as one line of matrix C is calculated, this would
require recalculating Br n times, one for each line, instead of a single time, as required
when checking only at the end of the algorithm.

A less expensive approach to deal with this issue would be to calculate Br only at
the beginning of the algorithm, using the results for verification of each line of C.

46

However, this could result in a system crash if an error occurs in the calculation of Br,
since all verifications thereafter would raise the error flag, even when no error occurs.
To solve this problem, a technique such as duplication and comparison can be used only
for the calculation of Br, which does not imply significant performance overhead, as
shown in our experiments.

Once satisfied those constraints, one can verify the results immediately after each
line of the product matrix is calculated, and in this case, when an error is detected, only
the last computed line must be recomputed.

Using data from Table 3.3, one can see that the number of operations required to
compute Br twice and compare the results is equal to 2n(n-1) additions plus n
comparisons. Considering that this is done only once, at the beginning of the algorithm,
this cost is divided by n to determine its impact on the verification cost of each line.

Table 3.5 details the number of operations required for this alternative, where “Total
per line” relates to the calculation of a single line of matrix C, also assuming that one
error has occurred.

Table 3.6 shows the total computational cost scaling of this technique, according to
the size of the matrices, also considering that one multiplication costs 4 times one
addition or comparison, and that one error occurs in the line.

Table 3.5. Number of operations for verification line by line
 MLT ADD CMP

Multiplication n2 n(n-1)
2 x computation of Br / n 2n-2
Comparison of Br1:Br2 / n 1
Computation of Cri n-1
Computation of ABri n n-1
Comparison Cri:ABri 1
Total for verification n 4n-4 2
Recomputation n2 n(n-1)
Total per line (when an error occurs) 2n2+n 2n(n-1)+4n-3 2

Table 3.6. Computational cost scaling with n for verification line by line

n Multiplication
4n2+ n(n-1)

Verification
8n-2

Recomput.
4n2+ n(n-1)

Total
Cost / Line

2 18 14 18 50
4 76 30 76 182
8 312 62 312 686
16 1,264 126 1,264 2,654
32 5,088 254 5,088 10,430
64 20,416 510 20,416 41,342

It must be noted that the “Total Cost / Line” column in Table 3.6 is not directly
comparable to the one in Table 3.4, because it was computed only for one line of the
product matrix.

However, one can see that the verification overhead for this alternative, in percent, is
approximately the same of the alternative discussed in the previous subsection. In

47

contrast, the recomputation cost is far below the one of the previous alternative
(reductions from 50% to 98.4% depending on the value of n).

Finally, the use of this approach dramatically reduces (n-fold) the time during which
the system runs without detecting an occurred error.

3.3.2.3 Erroneous element detection and single element recomputation after
multiplication completion

In the previous subsection, we described one alternative to reduce the time between
verifications, checking the product matrix line by line. This is useful for systems in
which the blind run time must be minimized, such as those in which the results must be
forwarded to other modules as soon as possible.

When the major concern is the cost of recomputation, however, a third approach, in
which the verification is done after calculation of the whole product matrix, but only the
erroneous element must be recomputed in case of error, can be adopted.

This approach is derived from that described in Lisboa (ETS 2007), and besides the
calculation of vectors Cr, Br and ABr, it requires the calculation of their transposed
versions, that are designated in the following paragraphs by CrT, BrT and ABrT,
respectively. When an error in one element occurs, the comparison of Cr with CrT and
Br with BrT allows the determination of the erroneous element, and therefore only this
element must be computed again.

In order to provide a better comprehension of this technique, a sample application of
it for a given pair of matrices is described in the following paragraphs. In this example,
unitary vectors r and rT are used to make the explanation clear; however, since the
multiplications by 1 are not necessary, they are not executed in the implementation, and
also not considered in the cost analysis that follows the example.

Given 3×3 matrices A and B:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
−−

=
4293

747227
327657

A

 ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

778781
981845

333822
B

the product matrix is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−−

=
256532222280

1364561682160
1179335822082

C

The verification, according to this technique, is performed in the following steps:

1. Calculate vector Cr by multiplying matrix C by r, where r is a column vector of
1’s, as shown below:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
1
1

r

 ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
9637
6129

Cr

2. Calculate vector Br by multiplying matrix B by r

BrrB =⋅
3. Multiply A by vector Br

48

ABrBrA =⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
9637
6129

ABr

4. Multiply vector rT by matrix C, where rT is a line vector of 1’s, as shown below

[]111=Tr

 so we have TT CrCr =⋅ (CrT is a vector)

[]2287365282358 −=TCr
5. Multiply matrix A by rT

TT ArAr =⋅ (ArT is a vector)

6. Multiply B by vector ArT
TT ABrArB =⋅ []2287365282358 −=TABr

7. Comparing Cr to ABr and CrT to ABrT, we can see that they are equal when
there is no error.

Now, let us consider that an error has occurred during the calculation of C, and one
element of the product matrix has an erroneous value:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−−

=
256532222280

13645612160
1179335822082

C

During the verification steps, we will get:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
15744
6129

Cr

, ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
9637
6129

ABr

,

[]228734212358 −=TCr , and

[]2287365282358 −=TABr .

Now, if we compare Cr to ABr and CrT to ABrT, we can see that the values of the 2nd
element in the row vectors and of the 2nd element in the column vectors are different.
This drives us to the conclusion that the element C(2, 2) of the product matrix has an
erroneous value.

This technique can also be used for binary matrices with correction of the erroneous
product bit. Note that in the case of binary matrices we can just complement the
erroneous bit using an XOR gate and have the correct result straight away.

Considering the case of decimal values, and using the same methodology of
previous subsections, the number of operations required by this approach for calculation
of the whole matrix C is shown in Table 3.7.

49

Table 3.7. Number of operations for erroneous element detection
 MLT ADD CMP

Multiplication n3 n2(n-1)
Computation of Cr n(n-1)
Computation of Br n(n-1)
Computation of ABr n2 n(n-1)
Computation of CrT n(n-1)
Computation of BrT n(n-1)
Computation of ABrT n2 n(n-1)
Comparison Cr:ABr n2
Comparison CrT:ABrT n2
Total for verification 2n2 6n(n-1) 2n2
Recomputation n n-1
Total (when an error occurs) n3+2n2+n (n2+6n+1)×(n-1) 2n2

Table 3.8 shows the computational cost for the whole product calculation and
verification, plus recomputation when one error occurs, also assuming that the cost of
multiplication is 4 times that of addition and comparison.

Table 3.8. Computational cost scaling with n for erroneous element correction

n Multiplication
4n3+ n2(n-1)

Verification
10n2+6n(n-1)

Recomput.
4n+(n-1)

Total
Cost

2 36 52 9 97
4 304 232 19 555
8 2,496 976 39 3,511
16 20,224 4.000 79 24,303
32 162,816 16,192 159 179,167
64 1,306,624 65,152 319 1,372,095

3.3.2.4 Minimizing the single element recomputation cost

As shown in the previous subsection, one could see that the values of the 2nd element
in the row vectors and of the 2nd element in the column vectors were different by
comparing Cr to ABr and CrT to ABrT, what brought the conclusion that the element
C[2, 2] of the product matrix had an erroneous value. In that case, the correction of the
erroneous element has been performed by completely recalculating the value of the
element.

Further analysis of this technique has shown that, assuming the single fault model
used in its definition, one can compute the correct value of the erroneous element
simply by using either one of the following expressions, which require only two
additions each:

C[2,2] - (Cr[2] - ABr[2]) = -61 - (15,744 - 9,637) = -6,168

C[2,2] - (CrT[2] - ABrT[2]) = -61 - (-421 + 6,528) = -6,168

Table 3.9 shows the computational cost of this technique for the whole product
calculation and verification, plus recomputation when one error occurs.

50

Table 3.9: Minimal computational cost scaling with n for erroneous element correction

n Multiplication
4n3+ n2(n-1)

Verification
10n2+6n(n-1)

Recomputation
2

Total
Cost

2 36 52 2 90
4 304 232 2 538
8 2,496 976 2 3,474
16 20,224 4.000 2 24,226
32 162,816 16,192 2 179,010
64 1,306,624 65,152 2 1,371,778

3.3.2.5 Comparative analysis of results

In the previous subsections, four alternative approaches for error detection and
correction applied to an algorithm for matrix multiplication have been described, and
the corresponding computational costs, including the multiplication, verification and
recomputation in case of detection of one error were calculated.

Table 3.10 compares the cost of those four approaches for different sizes of
matrices. The subsection numbers are used to identify each approach.

Table 3.10. Comparative analysis - total cost when one error occurs

n Subsection
3.3.2.1

Subsection
3.3.2.2

Subsection
3.3.2.3

Subsection
3.3.2.4

2 98 82 97 90
4 724 500 555 538
8 5,480 3,304 3,511 3,474
16 42,448 23,504 24,303 24,226
32 333,728 176,302 179,167 179,010
64 2,645,824 1,359,680 1,372,095 1,371,778

It is important to recall that, in subsection 3.3.2.2, the total cost has been calculated
for only one line plus recomputation. Therefore, in order to allow a fair comparison, in
Table 3.10 the cost of computing all the n lines has been considered for this approach,
with only one error in the whole multiplication.

Table 3.11. Comparative analysis - cost of recomputation when one error occurs

n Subsection
3.3.2.1

% Subsection
3.3.2.2

% Subsection
3.3.2.3

% Subsection
3.3.2.4

%

2 36 100.0 18 50.00 9 25.00 2 5.5556
4 304 100.0 76 25.00 19 6.25 2 0.6579
8 2,496 100.0 312 12.50 39 1.56 2 0.0801
16 20,224 100.0 1,264 6.25 79 0.39 2 0.0099
32 162,816 100.0 5,088 3.13 159 0.10 2 0.0012
64 1,306,624 100.0 20,416 1.56 319 0.02 2 0.0002

Table 3.11 shows the recomputation cost of each approach, with percent values used
to highlight the dramatic gains in terms of cost provided by the approaches described in

51

subsections 3.3.2.2 throug 3.3.2.4 when compared to the original approach proposed in
Lisboa (ETS 2007), discussed in subsection 3.3.2.1.

3.3.3 Considerations about Recomputation Granularity
When using recomputation as the error correction mechanism, it is important to

define the computation time of the verification mechanism and the size of the portion of
the algorithm between two verification stages, keeping in mind that only the last
executed portion must be recomputed when one error is detected. In order to illustrate
this, Figure 3.3 represents the time required to detect and correct errors in the execution
of a given hypothetical algorithm, using four different implementations of
recomputation, with varying granularities. The solid gray rectangles represent the
duration of the execution of the algorithm to be checked (stepi_time), the black
rectangles represent the time spent in the execution of the verification mechanism
(verificationi_time), and the dashed ones represent the recomputation time in case of
error detection (recomputation stepi_time).

s te p 1 s te p 2 s te p 3s t e p 2

t b

st
ep

 1
a

t c

st
ep

 1
b

st
ep

 2
a

st
ep

 2
b

st
ep

 3
a

st
ep

 2
a

st
ep

 3
b

st
ep

 1
a

t d

st
ep

 1
b

st
ep

 1
c

st
ep

 1
d

st
ep

 1
d

st
ep

 2
a

st
ep

 2
b

st
ep

 2
c

st
ep

 2
d

st
ep

 3
a

st
ep

 3
b

st
ep

 3
c

st
ep

 3
d

t a

(a)

(b)

(c)

(d)

V e r i f ic a t io n i_ t im e
R e c o m p u ta t io n

S te p i_ t im e

S te p i_ t im e

V e r i f ic a t io n i_ t im e

Figure 3.3 – Example of 4 different granularities of recomputation and their effects on

the final computation time.

In case (a) the full algorithm is completely executed before the verification stage is
performed. Once a fault occurs and it is detected by the verification code, the algorithm
is recomputed and the verification stage is performed again. When an error occurs, the
entire execution of the algorithm, verification, recomputation, and verification of the
recomputed results demand time ta.

In case (b), the execution of the algorithm is partitioned into 3 smaller blocks of
code (step 1, step 2, and step 3). Each step is followed by a detection stage that can have
or not a smaller detection time when compared to the implementation in case (a). Note
that, in this case, the fault occurs during the execution of step 2, and therefore only that
step is recomputed, reducing the total execution time to tb.

In case (c), each step of case (b) is split into two other steps (step 1a, step 1b, step
2a, step 2b, and so on), and the detection algorithm is also placed at the end of each
step. The detection time can be shorter or higher than the previous implementations,
according to the algorithm complexity. Note that in this case, the total execution time

52

(tc) has not been reduced when compared to tb, due to the ratio between the execution
times of the verification code and that of each algorithm step. However, the time spent
in recomputation was shorter, since only step 2a had to be recomputed.

Finally, case (d) shows an implementation where each step is divided into 4 stages.
In this case, we can see the negative effect of using steps too short with a detection time
in the same order of magnitude of the execution time of the algorithm step. In
consequence, the total execution time has increased to td.

As one can see from the above example, for each algorithm it is necessary to find
the best tradeoff between the execution time of the step (detection and recomputation
granularity), and that of the detection mechanism. The following equation calculates the
total application execution time:

Execution Time = Σn
i=1(Stepi_time + Verificationi_time)

 + Σne
j=1(Stepj_time + Verificationj_time),

where n is the number of steps into which the algorithm has been split (granularity) in
each experiment and ne is the number of errors occurred during on application
execution.

As an example, we have considered a hypothetical algorithm with an execution time
of 100 time units (TO). For this algorithm we considered 10 different levels of
granularity, with the algorithm split into 1 to 10 blocks, respectively. For each block, we
assumed that the verification process can cost from 10% to 100% of the execution time
of the block. This ratio varies according to the algorithm.

Figure 3.4 shows the projected execution time of the algorithm for each granularity
level and verification overhead combination. Solutions in terms of recomputation aim to
reduce the two up most costs: the cost of triplication of the entire algorithm (TZ) and the
cost of using duplication of the entire algorithm for the verification step (TW). Time TW
occurs when the verification time is in the same order as the block execution time. So,
the entire algorithm is duplicated to verify errors. If an error is detected, the algorithm is
recomputed and the verification process is re-applied. This gives at least a cost of 400
execution units. Time TZ occurs when the entire algorithm is tripled, and voted at the
end, which takes a little more than 300 execution units. But note that if duplication is
used as a verification method for the level of granularity 10 (cost TY), the entire
execution cost can still be smaller than many other cases of granularity levels with
verification overhead smaller than 100%. So, it seems that the use of small steps for
recomputation is very profitable in terms of execution time even when dealing with not
so optimized verification algorithms.

However, according to the soft error effects in the architecture and the algorithm, it
is not possible to increase too much the levels of granularity. Let one take two examples
of a single upset provoking multiple errors in the architecture, as illustrated in Figure
3.5.

53

Execution

0 50 100 150 200 250 300 350 400 450

1

6

11

16

21

26

31

36

41

46

51

56

61

66

71

76

81

86

91

96

Application execution time (time unit)
Le

ve
ls

 o
f G

ra
nu

la
rit

y

1

2

3

4

5

6

7

8

9

10

10%
100%

Original TO

TZ TWTY

Figure 3.4 – Execution time costs according to the levels of granularity (1 to 10 steps)
and verification time (verificationi_time) varying from 10% to 100% of the stepi_time.

0

Upset A

t1
error 1 error 2

t2
error x

tx

masked maskedNot masked

… time

Verification1_time Step1_time

0

Upset B

t1
error 1 error 2

t2
error x

tx

masked maskedmasked

… time

Verification1_time Step1_time Verification2_time Step2_time

tx+1

Not masked
error x+1

Recomputation
Step1_time

(a)

(b)

Recomputation
Step2_time

Figure 3.5 – Multiple errors and the masked effect when dealing with levels of

granularity.

Case (a) shows an upset A causing x errors, some of them masked by the algorithm
and some of them not. Once the verification time arrives, at least one error was not
masked so it can be detected by the verification mechanism. And the recomputation step
can mitigate the upset. Case (b) shows an upset B causing multiple errors in the
architecture but all of them were masked by the algorithm in that certain step. So, when
the verification step begins, no error is detected and the following step of the algorithm
can start. However, the latent error that was masked can manifest its effect in the
following execution step (step 2). The verification process will be able to detect the
error but the recomputation of step 2 may not be enough to mitigate the original latent
error and the algorithm may fail.

54

So, it is important to analyze the architecture vulnerability factor of the algorithm
and architecture to analyze the probability of latent errors overcoming the
recomputation method.

Now, let us return to the analysis of the specific matrix multiplication example
discussed in this chapter, for which the effects on the execution time when using
recomputation with different error detection granularities have been analyzed. In that
example, the occurrence of only 1 fault during the execution of the whole application
has been considered. This does not mean that one fault did not cause more than one
error in the storage elements during the execution time. Instead, it means that has been
considered that multiple errors can occur, but in this case they affect only one element
of the matrix. In this way, levels of granularity that ensure that no latent errors can
contribute to other steps of the algorithm, achieving 100% of upset mitigation, have
been considered.

As shown in the analysis of the matrix multiplication algorithm, the division of a
given algorithm into steps to be separately checked is not a trivial task. In this example,
due to the characteristics of the algorithm, only the verification at the end of
multiplication of the whole matrix or at the end of each line are cost-effective. While
different granularities, such as the verification after calculation of each product matrix
element, are possible, they do not allow the use of the low cost verification technique
described in this chapter, requiring the use of conventional alternatives, such as
duplication and comparison, which imply a very high verification overhead, making
them less attractive in terms of computational cost.

By analyzing only the recomputation time, one might conclude that the approach
proposed in subsection 3.3.2.3 is the best solution for the given problem. However, the
nature of radiation induced errors, and the associated detection and correction processes,
must also be considered before reaching a definite conclusion.

While the effects of a particle hit on a circuit can be very harmful, and therefore
must not be neglected, the frequency of such events is very low, and not every particle
hit causes an error. As examples, until recently (technology nodes up to 100 nm), soft
error rates for logic circuits used to be negligible when compared with the failure rate of
memory devices (BAUMANN, 2005), and for a system-on-chip (SoC) using memories
with a failure rate of 10,000 FIT/Mbit, the system error rate would be about one error
per week (HEIJMEN, 2002).

Nevertheless, given the importance of error detection, the verification mechanism
must continuously check the results generated by the system to be protected. This
implies that the detection scheme will be executed several millions of times before one
soft error is detected, and therefore should be as light as possible, in terms of area,
performance, and power consumption overheads.

In contrast, the error recovery mechanism will be activated only when an error is
detected, which happens very seldom in comparison with the clock frequency of the
circuit, and therefore the performance and dynamic power overheads introduced by the
recovery mechanism should not be the major concerns. However, it is still important
that the area and static power overheads imposed by this mechanism be minimized,
mainly when the design is targeted at embedded systems. Therefore, it is important to
define verification mechanisms that allow checking the correctness of the results
produced by a given system in significantly less time than that required to re-execute
the whole operation.

55

The above considerations show that the tradeoffs between verification frequency and
recomputation cost must be carefully evaluated in face of the requirements of the target
application. For instance, the approach that checks the results after the calculation of
each line of the product matrix has almost the same computational cost of the one
described in subsection 3.3.2.3 (see Table 3.9). However, since it provides the lowest
blind run time, it should be the preferred alternative for applications in which it is
important to forward the results to the next stage of the system as soon as possible.

3.3.4 Validation by Fault Injection
In order to confirm the effectiveness of the verification technique described in this

chapter, one application including the multiplication algorithm and the proposed
verification scheme was implemented in a LEON3 processor, and several fault injection
campaigns were performed. The methodology used in those experiments and the
analysis of the results are presented in the following subsections.

The fault model used in the experiments is that of a single fault occurring during one
complete run of the application, which is a much more severe assumption than the
reality, when a radiation induced fault may affect memory or combinational logic only
once in several hours or even days of operation (HEIJMEN, 2002).

3.3.4.1 Experimental setup

The test platform used for both radiation ground testing and fault injection is an
upgraded version of the one presented in Faure (2002). Fig. 3.6 shows a block diagram
of the ASTERICS (Advanced System for the TEst under Radiation of Integrated
Circuits and Systems) platform.

Figure 3.6. Block diagram of the ASTERICS platform

The platform is built around two FPGAs. The first one, named Control FPGA,
manages the communication between the user’s computer and the testbed. The second
FPGA, named Chipset FPGA, acts as a memory controller. It shares the memory
between the DUT (Device Under Test) and the Control FPGA. A control flow checker
is also implemented into this FPGA in order to verify the correct operation of the DUT.
In this study, the DUT is a LEON3 processor provided by Gaisler Research. The
LEON3 is directly implemented into the Chipset FPGA.

The CEU (Code Emulating Upsets) approach, described in Velazco (2000) was used
to assess the efficiency of the matrix multiplication hardening technique proposed in
Lisboa (ETS 2007).

56

The CEU approach is based on the use of an interrupt signal to simulate (as a
consequence of the execution of the associated interrupt routine) the occurrence of an
upset in one of the accessible memory cells. In case of the LEON3 processor, the main
blocks in which SEUs can be simulated by the CEU approach are: the register window,
the stack and frame pointers. It is important to notice that the cache memory was
disabled during these experiments.

To simulate the random occurrence of SEUs in the final environment, the interrupt
signal was triggered following a time uniform distribution.

3.3.4.2 Analysis of experimental results

The analysis of the results obtained during fault injection experiments shows that
they can be classified into the following groups:

A – Erroneous matrix result, not detected and not corrected

B – Erroneous matrix result, detected and corrected

C – False alarm, detected and corrected

D – Loss of sequence errors, caused by faults affecting the registers used in the
calculation of the target address in branch instructions that lead to a time-out
interrupt

E – Effect less: the injected fault did not affect the results of the product matrix
calculation, i.e., no error has been propagated to the results.

It must be noted that in the experiments that have been developed, whenever one
error was detected by the verification algorithm, the matrix multiplication was executed
and verified once again, in order to provide correct results.

In this context, A-type errors are those in which the verification algorithm was not
able to detect an erroneous result and deemed it correct. That behavior is due to faults
affecting the control flow in such a way that a valid instruction is reached and the
execution proceeds normally from that point, but the application generates an erroneous
result, as commented in the analysis of “loss of sequence errors”, ahead.

In contrast, B-type errors are those that have been detected by the verification
algorithm and subsequently corrected through recomputation and checked again. For
those errors, the resulting product matrix is always correct.

Errors of type C are those in which the product matrix was correct but, due to a fault
affecting the verification algorithm, it mistakenly considered that the product matrix
was wrong (this kind of behavior is usually referred to as a false alarm) and repeated
the calculation, producing again a correct product matrix.

D-type errors are those in which the injection of the fault caused an irrecoverable
control flow error. As will be further commented later, these errors may result in two
different problems, both of which impair the ability of the application ending with
correct results.

Finally, errors of type E are those in which the injected fault affected neither the
execution of the matrix multiplication nor that of the verification algorithm, thereby
resulting in a correct result.

57

Table 3.12 provides the total number of each type of error obtained during a fault
injection experiment in which 15,005 executions of the hardened application have been
performed and the occurrence of one SEU per execution has been simulated.

Table 3.12. Incidence of Each Type of Error During Fault Injection

Type of error Number of
occurrences

Percent
occurrence

A - Erroneous result not corrected 831 5.54%
B - Erroneous result corrected 4,040 26.92%
C - False alarm recomputed 270 1.80%
D - Loss of sequence errors 3,800 25.32%
E – Effect less faults 6,064 40.42%

As can also be seen in Table 3.12, the experimental results show that a significant
number of faults (25.32% of total injected faults) caused D-type errors, which lead the
processor into an unrecoverable state, from which it does no longer exit, thereby
causing a time out exception during the execution of the application.

This situation is referred to as “loss of sequence errors”, and they occur when the
fault affects registers used for the address calculation in branch instructions. However,
not every loss of sequence error leads to a time out. They may also cause a branch to an
address of a valid instruction and in those cases the execution proceeds from that point,
resulting in erroneous calculation of one or more elements of the product matrix or even
in an error in the execution of the verification algorithm, and those cases are listed as A-
type errors in the results of the experiments.

Multiplication

Algorithm

Multiplication

Algorithm

Verification

Algorithm

Verification

Algorithm

(a) (b)

Figure 3.7. Fault injection possibilities considering the single fault model.

The obtained results show that, as expected, the proposed technique does not cope
with loss of sequence errors. However, for all other errors due to faults affecting either
the product matrix calculation or the verification of the results, it is very effective and
provided a high percentage of error detection. The reasons for that are commented using
Fig. 3.7.

As shown in Fig. 3.7, considering the single fault model and except for the loss of
sequence errors, there are only two cases of fault incidence, shown in pictures (a) and
(b), respectively.

In case (a), the fault affects the multiplication algorithm. If this fault causes one
error in the calculation of the product, the error may affect one or more elements of the

58

resulting product matrix. However, since the verification algorithm has not been
affected by the fault, it is able to detect the error, and the wrong results will not be used
by the application.

In case (b), the product matrix will be correct, but the verification algorithm,
affected by a fault, may not be able to properly check the results. This may lead to a
false alarm, i.e., the verification algorithm signaling one error when the product matrix
is correct. In such cases, according to the proposed correction procedure, the product
will be recomputed and checked again, thereby always resulting in a correct final
product being used by the application. Once again, given the low frequency of radiation
induced errors, the additional computation time due to such situations will be very
small.

The most important conclusion of the analysis is that the loss of sequence errors due
to faults affecting program sequencing account for the majority of the runs in which a
time out or undetected erroneous results have occurred.

59

4 USING INVARIANTS FOR RUNTIME DETECTION OF
FAULTS

This part of the thesis also relates to algorithm level techniques to detect radiation
induced errors. The idea of using invariants at runtime to detect such errors has been a
consequence of the conclusions reached during the development of the technique to
protect the matrix multiplication algorithms described in Chapter 3. The fact that the
condition “ABr = Cr”, used to check the product matrix, must be true whenever the
algorithm succeeded, led to the conclusion that this condition is a post condition, also
called an invariant, of the matrix multiplication algorithm. This finding led us to the
study of software invariants as a generic tool for error detection at runtime.

The initial experiments in the scope of this research have been presented in Lisboa
(DFR 2009) and Lisboa (LATW 2009). Further experiments, and the most recent
results, showing that the proposed technique provides a high fault detection capability at
low cost will be presented in Grando (IOLTS 2009) and are consolidated in this chapter.

4.1 PROBLEM DEFINITION
The mitigation of soft errors at the algorithm level is one of the paths choosen in our

research to achieve system level fault tolerance. Given the results obtained for the
matrix multiplication algorithm, the next step has been the search for similar techniques
that could be applied to other frequently used algorithms. Ideally, such techniques
should be non-intrusive, allowing their implementation without or with minimum
changes in the algorithm to be hardened. With this in mind, the use of software
invariants as a mean to harden algorithms and detect soft errors at runtime has been
proposed and evaluated, as described in the following sections.

4.2 RELATED AND PREVIOUS WORK
The many different techniques for mitigation of soft errors that have been proposed

in recent years can be basically classified as hardware based and software based ones.
However, most of them rely on fault models that do not include the occurrence of long
duration transients, i.e., transient pulses that will last longer than the clock cycle of the
circuits to be protected, as predicted in Dodd (2004) and Ferlet-Cavrois (2006). This is
particularly true for time redundancy based techniques. Therefore, in the near future
such techniques should undergo a careful review process, in order to ensure their
compliance with this new scenario.

Hardware based techniques using time redundancy, such as those proposed by
Anghel (2000) and Austin (2004), verify the outputs generated by the circuit by
comparing their values at two different moments in time. Those techniques rely on the

60

single fault model and also in the concept that the duration of the transient pulse is
short. As the duration of the transient pulses increases, the duration of the delay used to
separate the output values to be compared will imply unbearable performance
overheads. Therefore, the application of such techniques will likely be useless in the
presence of LDTs.

The group of hardware based techniques that use space redundancy is more likely to
provide protection even in the presence of long duration transient pulses, because under
the single fault model, only one of the copies of the circuit would be affected by the
long duration transient, and the other(s) would provide correct results. Techniques like
duplication with comparison (WAKERLY, 1978) and duplication of critical path gates
with output comparison (NIEUWLAND, 2006) would allow the detection of errors
caused by long duration transients. However, the area and mainly the power penalties
imposed by solutions using space redundancy are a big concern, mainly for embedded
systems.

Other hardware based techniques rely on the use of checkers or infrastructure IPs (I-
IPs) to check the results produced by the circuit to be protected, as in Austin (1999) and
Rhod (2008). In case the results computed by the checker or I-IP differ from those
produced by the main circuit, they either activate an error flag that starts a
recomputation process or use the value computed by the checker, assuming that this one
is always correct. However, even in solutions where part of the verification is executed
in parallel with the main processing, those approaches usually imply high area
overheads, and performance overheads equal or higher than 100%.

Software based techniques that duplicate the code and data segments and compare
the results in order to check for errors, such as the one in Rebaudengo (1999), are very
expensive, both in memory usage and execution time. Techniques based on self
checking block signatures, as the one proposed in Goloubeva (2003), require the
modification of the software to include signature processing and verification
instructions at every basic block, imposing coding and performance penalties. A method
to mitigate SET in combinational logic based on duplication and time redundancy, and
code word state preserving (CWSP), is shown in Nicolaidis (1999). The limitations of
this method are the modification of the CMOS logic by the insertion of extra transistors
and the necessity of using duplicated logic or extra logic to implement a delay.

Finally, in Benso (2005) the authors implemented an object oriented library of
templates that can be used to observe the value of selected variables during the
execution of a program and detect if the values are legal ones or not. This technique is
somewhat close to what is being here proposed, since it uses assertions, pre-conditions
and post-conditions. However, it is the responsibility of the user to select which
variables should be monitored. Moreover, in Benso (2005) the authors propose the use
of a trade-off between coverage and overhead, since when many variables are selected,
the overhead increases dramatically. In the approach here proposed, thanks to the
invariant detection mechanism and the program partitioning, this is not the case.

Given the drawbacks of the mitigation techniques discussed above, our proposal is
to verify and recover from soft errors at the algorithmic level, in order to avoid high
hardware costs when working at lower abstraction levels with long duration transients.
Accordingly, in Lisboa (ETS 2007) we have proposed a low cost technique to detect
errors in the algorithm of matrix multiplication, already described in Chapter 3.

While looking for similar approaches to harden other algorithms, we noticed that the
equality tested to check the results (ABr = Cr) is in fact a condition that always holds

61

after the successful execution of the multiplication algorithm, and that such conditions
have already been studied in the software engineering field for many years, being
named software invariants (PYTLIK, 2003). This led us to the current research project,
which aims to explore the use of software invariants to detect errors during the
execution of algorithms, and determine whether this approach may lead to low cost
solutions or not.

4.3 PROPOSED TECHNIQUE
Invariants are program properties that must be preserved when the code is modified.

They may be classified into preconditions, post conditions, and loop invariants. As the
names imply, preconditions and post conditions are conditions that must be true before
and after, respectively, the execution of the program, while loop invariants define
conditions that must be fulfilled every time the control flow of the program enters and
exits a loop (PYTLIK, 2003).

Since invariants are related to the computational task performed by the program,
they have historically been used as a means to check if a program that has been
modified due to maintenance or improvements still performs its task as expected.

4.3.1 Background and Description
In Krishna (2005), loop invariants are checked to detect soft errors affecting the data

cache during the execution of an application. However, the overhead imposed by the
verification of invariants inside the loop is multiplied by the number of iterations during
execution. Furthermore, the embedding of the checker code inside the loop may require
non trivial changes to the application software.

In contrast, the technique here proposed uses the verification of post conditions to
detect runtime errors, which can be applied to different program structures, and is
executed only once, at the end of the algorithm to be hardened.

In Ernst (2001), a tool named Daikon (PROGRAM ANALYSIS GROUP, 2004),
which automatically discovers potential invariants for a given program, is described and
the results of experiments done with a set of programs extracted from Pytlik (2003) are
used to show that it is able to correctly detect the invariants of the program. Also, for a
C program for which no explicit invariants were known, the tool has provided a set of
invariants that could help in the evolution of the program to new versions. The authors
concluded that this tool was a feasible alternative to the automated identification of
invariants, at least for small programs. Furthermore, they show that the invariant
detection time increases with the number of variables.

In this work, considering the properties above, we propose the decomposition of the
program to be hardened against soft errors in smaller code slices, for which invariants
are detected using the Daikon tool, and the addition of an algorithm to check those
invariants immediately after the corresponding slice has been executed. The use of
smaller pieces of code reduces invariant detection overhead, given that a smaller
amount of variables and relationships among them must be analyzed at each time. As a
result, it returns more significant invariants, since invariants between low related
variables are usually not meaningful.

62

4.3.1.1 Fault coverage evaluation

After invariants for each program slice have been detected using the Daikon tool,
fault injection experiments have been conducted in order to check how effective the
corresponding set of invariants is for the detection of errors. This has been done by slice
specific fault injection programs, as shown in block (3) in Figure 4.1. Those programs
are designed to inject a given number (F) of single faults during the execution of the
program slice and verification algorithms, and are composed by the following steps (the
step numbers are also associated with the blocks in Figure 4.1):

main(){

}

Program
Body

main(){

}

Program Slice

Program Slice

Program Slice

Yes

No

Generate
Reference

Random Fault
Setup

Check
Detection

Performance
Evaluation

Fault Coverage
Evaluation

main(){

}

Program Slice

Verification

Program Slice

Verification

Program Slice

Verification

Fault
Injection

6
Analysis
Report

Timing
Report

Modify
Code

Invariant
Detector

Invariants

5

3 4

2

1

F times?

Program Slice

Verification

main(){

}

Program
Body

main(){

}

Program Slice

Program Slice

Program Slice

Yes

No

Generate
Reference

Random Fault
Setup

Check
Detection

Performance
Evaluation

Fault Coverage
Evaluation

main(){

}

Program Slice

Verification

Program Slice

Verification

Program Slice

Verification

Fault
Injection

66
Analysis
Report

Timing
Report

Modify
Code

Invariant
Detector

Invariants

55

33 44

22

11

F times?

Program Slice

Verification

Figure 4.1. Program hardening experiments flow

1. Generate Reference Results – executes once the algorithm to be checked, without
fault injection, and the correct results are stored for use as the reference ones in the
analysis step.

2. Random Fault Setup – the exact moment, the variable, and the bit of the variable to
be affected by the transient fault during each repetition of the fault injection, are
randomly selected. A mask with only the previous selected bit set is created.

3. Program Slice – the algorithm to be hardened is executed once, with one SEU
affecting the variable selected in the previous step by XORing it with the mask.

4. Verification – the verification algorithm, which checks all invariant post conditions
defined by the Daikon tool for that program slice, is executed in order to check the
results generated by the program slice.

5. Check Detection – the results generated during the execution of the algorithm to be
hardened are compared to the reference results generated in step 1, to determine if
they are correct or not, and the error flag set by the invariants detection algorithm is
checked against the real results. In order to determine the effectiveness of the
invariants verification as an error detection approach; the number of occurrences of
each type of fault is stored in a statistics table.

63

6. Analysis Report – the statistics table generated during the fault injection campaign
is printed for analysis.
Considering that a fault may affect either the main algorithm or the verification

algorithm, there are four possible situations concerning the fault detection by the
verification algorithm, and the comparison of the results generated by the basic
algorithm with the reference results allows the fault injection program to distinguish
among them.

When the verification algorithm tells that the result is correct (based upon the
invariants checking) and the results generated by the basic algorithm and the reference
results are equal, the verification worked fine. The same is true when the verification
results in an error flag and the comparison shows differences between the reference
results and those generated by the basic algorithm.

The other two possibilities arise when an error affects the verification algorithm
making it flag as an error one correct result or not flagging an error when the result is
wrong. The number of each of these alternatives for a given fault injection campaign is
shown in the analysis report for each slice.

4.3.1.2 Performance overhead evaluation

The performance overhead imposed by this approach is evaluated by measuring the
execution time of the original program with the error detection (verification) algorithms
for each slice.

4.3.2 Application to a Sample Program
The proposed technique has been applied to a test program, using the methodology

described in the previous section. The test program source code is shown in Figure 4.2,
where is also shown how it was split into code slices for hardening.

Each code slice identified in Figure 4.2 has been submitted to the Daikon tool to
allow the identification of possible invariants for that piece of code.

Figure 4.3 shows the resulting invariants for the iterative multiplication algorithm.
The right column shows the invariants when the set of inputs used during invariant
detection was composed only by positive non-zero values, and the left column the
invariants when the values included zero.

For the same algorithm the additional verification code is given in Figure 4.4, where
kk1 and xx1 are copies of the original values of variables x1 and k1, respectively. Due
to space limitations, the detected invariants, as well as verification code, for the
remaining slices are not shown in this work.

64

/* baskara() */
x1=-1.1;
x2=-1.1;
if (a==0 && b!=0){
 x1=-c/b;
 x2=x1;
}
else{
 delta= pow(b,2) - 4*a*c;
 if (a!=0 && delta>=0){
 x1=(-b + sqrt(delta))/(2*a);
 x2=(-b - sqrt(delta))/(2*a);
 }
}
/* mult() */
while(k1>0){
 if ((k1%2)==0){
 k1/=2;
 x1+=x1;
 }
 else{
 k1--;
 m1+=x1;
 }
}
/* mult() */
while(k2>0){
 if ((k2%2)==0){
 k2/=2;
 x2+=x2;
 }
 else{
 k2--;
 m2+=x2;
 }
}/* biggerminus() */
if(m1>m2){
 bg=m1-m2;
}
else{
 bg=m2-m1;
}
/* sum() */
s = a + b - c;
/* sqrt() */
if(s<0){
 sq=sqrt(-s);
}
else{
 sq=sqrt(2*s);
}
/* biggerminus() */
if(sq>bg){
 r=sq-bg;
}
else{
 r=bg-sq;
}

Figure 4.2. Test program split into slices

4.3.3 Experimental Results and Analysis
Using the methodology described in Section 4.3.1 and the slices of program

described in Section 4.3.2, fault injection campaigns and performance measurements
have been performed.

65

inputs(x1,k1) >= 0 inputs(x1, k1) > 0

..mult():::EXIT
::k1 == orig(::m1)
::k1 == 0
::m1 >= 0
::k1 <= ::x1
::k1 <= ::m1
::k1 <= orig(:k1)
::k1 <= orig(::x1)
::x1 >= orig(::x1)

..mult():::EXIT
::k1 == orig(::m1)
::k1 == 0
::k1 < ::x1
::k1 < ::m1
::k1 < orig(::k1)
::k1 < orig(::x1)
::x1 <= ::m1
::x1 % orig(::x1)==0
::x1 >= orig(::x)
::m1 % orig(::k1)==0
::m1 >= orig(::k1)
::m1 % orig(::x1)==0
::m1 >= orig(::x1)

Figure 4.3. Detected invariants for slice mult()

verification=0;
if(k1==0 && x1>=0 && m1>=0 && k1<=kk1 && k1<=kk1 && xx1<=x1){
 if(xx1>0 && kk1>0){
 if(x1<=m1 && (x1%xx1)==0 && (m1%kk1)==0 && m1>kk1 && (m1%xx1)==0 && m1>=xx1){
 verification=1;
 }
 }
 else if(m1==0){
 verification=1;
 }
}

Figure 4.4. Code added for slice mult()

During the fault injections campaigns, each hardened slice of the program has been
run 2,000 times, and during each run one fault has been injected, causing a SEU that
affects one variable. Table 4.1 shows the number of runs for which the verification of
invariants detected an erroneous result, i.e., when the reference results and those
generated by the basic algorithm are different and the verification algorithm raised an
error flag. The last line of the table presents the results when only the invariants of the
complete program are verified.

Table 4.1. Erroneous result detection capability

Algorithm Correct error detections Detection rate

mult() 1141 57,05 %

baskara() 394 19,70 %

sum() 388 19,40 %

biggerminus() 539 26,95 %

square() 288 14,40 %

complete program 375 18,75 %

It is important to highlight that the results in Table 4.1 relate only to cases in which
an injected fault has caused an error in the results produced by the program slice.
However, by analyzing the other possible situations described in Subsection 4.3.1.1, one
can see that there is another important set of cases that must be considered when dealing
with software: those in which the results produced by the algorithm are correct, but
where the fault affected variables used by the program slice after their contents were
read and processed. Such cases may lead to latent errors, which can manifest itself later
in the program. In order to show the effectiveness of the proposed technique in the

66

detection of those cases, Table 4.2 presents the number of runs where all faults have
been detected, regardless whether they appeared at the output or not.

Table 4.2. Fault detection capability

Algorithm Correct fault detections Detection rate

mult() 1693 98,15 %

baskara() 1621 81,05 %

sum() 1729 86,45 %

biggerminus() 1630 81,50 %

sqrt() 1031 51,55 %

complete program 724 36,20 %

It is interesting to notice that the algorithm partitioning allowed for a higher
detection rate than using just the complete program. This can be explained by the fact
that the use of a big amount of variables in a program may impair Daikon capabilities to
recognize invariants. Thus, when the main program is split into smaller parts, invariants
are inferred regarding only variables local to a program slice. This not only provides a
greater number of invariants to be checked, but also allows multiple and more efficient
checking points and an earlier fault signalization.

The performance overhead imposed by the invariants verification algorithms has
also been measured, and the percent overhead is shown in Table 4.3 for each slice of the
considered program and for the complete program. One can notice that the overhead for
most of the slices is much lower than that imposed by duplicated execution of the
algorithm and comparison of results.

Table 4.3. Performance overhead

Algorithm Execution time Verification time Time increase

mult() 190,00 ns 5,00 ns 2,63 %

baskara() 207,33 ns 104,83 ns 50,56 %

sum() 90,16 ns 00,67 ns 0,74 %

biggerminus() 87,50 ns 12,66 ns 12,65 %

Square() 169,33 ns 3,50 ns 2,02 %

complete program 493,20 ns 68,80 ns 13,95 %

As one can see in Table 4.1, the number of erroneous results (when a fault causes an
error in the output) detected by this technique is relatively low (≤ 57 %). However,
considering all faults detected, including the ones that did not cause a computation to be
wrong, but may lead to latent errors, four of the five algorithms used in the experiments
have reached from 80% to 98% of fault detection capability, as shown in Table 4.2. In
this latter case, a significant amount of the faults detected may be used to avoid future
errors.

Furthermore, the analysis of the computation time overhead imposed by the
proposed technique, presented in Table 4.3, shows that only one of the five verification
algorithms imposes an overhead higher than 13%. This low overhead characteristic
makes the proposed technique suitable for use in conjunction with complementary ones,
aiming to detect the faults which have not been flagged in the experiments.

67

5 IMPROVING LOCKSTEP WITH CHECKPOINT AND
ROLLBACK

The part of the thesis described in this section is an example of system level
technique to cope with radiation induced faults. It has been developed during a
cooperation internship in which the author worked together with the CAD Group of
Dipartimento di Automatica e Informatica, at Politecnico di Torino, in Italy. The
internship lasted four months, from April through July 2008, and the contribution of the
author has been included in a manuscript which has already been accepted for
publication in the IEEE Transactions on Nuclear Sciences journal, scheduled to be
published in August 2009 (ABATE, RADECS 2008).

5.1 PROBLEM DEFINITION
The increasing availability of field programmable devices that include commercial

off-the-shelf (COTS) processor cores makes this type of device the ideal platform for
several applications. Their low cost and design flexibility are key factors to provide
competitive products with shorter time to market, making them an ideal alternative for
the consumer products industry. However, the effects of radiation on the internal
components of such devices so far precluded their unrestricted use in most of space and
mission critical applications.

In this class of devices, three different types of components must be protected
against radiation: the configuration memory, used to define the function to be
implemented by the reconfigurable logic, the reconfigurable logic itself, and the
hardwired processor cores.

The protection of the configuration bits against SEUs can be achieved through the
use of well known error detection and correction (EDAC) techniques (JOHNSON,
1994), and other techniques (LIMA, 2004), (KASTENSMIDT, 2006). More recently,
the use of flash memories has been proposed as an alternative. Besides providing lower
power consumption, an important feature for space applications, flash memories are
relatively immune to SEUs and SETs, due to the high amount of charge required
discharging the floating gate.

As to errors caused by SETs affecting the programmable logic components, they can
be mitigated through the use of spatial redundancy techniques such as triple modular
redundancy (TMR). While this approach implies a high penalty in terms of area and
power consumption, it is so far the best available alternative for protection of the
programmable logic inside SRAM-based FPGAs (JOHNSON, 1994), (XILINX, 2009).

In contrast, the mitigation of errors caused by radiation induced transient faults
affecting the internal components of the embedded processor cores is still an open issue,

68

undergoing intensive research. Despite the fact that the code and data used by the
processors can be protected against radiation effects through the use of EDAC, after
they are read and stored in the internal memory elements of the processor they are
subject to corruption by radiation induced transients before they are used, leading to
unpredictable results. Furthermore, even when fault tolerance techniques such as
checkpoints are used to periodically save the system context for future recovery, this
corrupted data can be inadvertently stored within the context, leading to latent errors
that may manifest themselves later, when a recovery procedure requires the use of this
information. Finally, when information used by the processor to manage the control
flow is corrupted, catastrophic errors can occur, leading the system to irrecoverable
states.

5.2 RELATED WORK AND PREVIOUS IMPLEMENTATION

5.2.1 Related Work
While several hardware and/or software based techniques for protection of the

processor have been proposed in the literature, most of them cannot be applied for
commercial off-the-shelf processors, for which the access to internal elements of the
architecture is limited.

Software-based detection approaches work on faults affecting the control flow or
data used by the program, and also provide coverage of those faults that affect the
memory elements embedded in the processor, such as the processor’s status word, or
temporary registers used by the arithmetic and logic units (OH, 2002b), (CHEYNET,
2000). The main benefit stemming from software-based approaches is that fault
detection is obtained only by modifying the software that runs on the processor,
introducing instruction and information redundancies, and consistency checks among
replicated computations. However, the increased dependability implies extra memory
(for the additional data and instructions) and performance (due to the replicated
computations and the consistency checks) overheads which may not be acceptable in
some applications.

Hardware-based techniques insert redundant hardware in the system to make it more
robust against single event effects (SEEs). One proposed approach is to attach special-
purpose hardware modules known as watchdogs to the processor in order to monitor the
control-flow execution, the data accesses patterns (DUPONT, 2002), and to perform
consistency checks (MAHMOOD, 1988), while letting the software running on the
processor mostly untouched. Although watchdogs have limited impact on the
performance of the hardened system, they may require non-negligible development
efforts also at the software level, in order to decide the right amount of processing
between each disarming of the watchdog. For this reason, watchdogs are barely portable
among different processors.

To combine the benefits of software-based approaches with those of hardware-based
ones, a hybrid fault detection solution was introduced in Bernardi (2006). This
technique combines the adoption of software techniques in a minimal version, for
implementing instruction and data redundancy, with the introduction of an
Infrastructure-Intellectual Property (I-IP) attached to the processor, for running
consistency checks. The behavior of the I-IP does not depend on the application the
processor executes, and therefore it is widely portable among different applications.

69

Other researchers explored alternative paths to hardware redundancy, which
consisted basically in duplicating the system’s processor and inserting special monitor
modules that check whether the duplicated processors execute the same operations
(PIGNOL, 2006), (NG, 2007). These approaches are particularly appealing in those
cases where processor duplication does not impact severely the hardware cost.
Moreover, since they do not require modifications to the software running on the
duplicated processors, commercial off-the-shelf software components can be hardened
seamlessly.

In the past, the use of checkpoints combined with rollback recovery as a means to
build systems that can tolerate transient faults has also been proposed, and several
studies aiming the implementation of architectures with this approach have been
published. Among the proposed solutions, some require hardware support for its
implementation, and some depend on software support, i.e., they imply modifications
either in the hardware or in the software of the system to achieve fault tolerance. A
comprehensive review of such studies can be found in Pradhan (1995).

5.2.2 Previous Implementation of Lockstep with Checkpoint and Rollback
The implementation described here is part of an ongoing research project aiming to

build fault tolerant systems using COTS based FPGAs without the need to modify the
processor’s core architecture or the main application software, which is being developed
at Politecnico di Torino, in Italy, where the author stayed during 4 months, from April
to July 2008, working in cooperation with the CAD Group at the Dipartimento di
Automatica e Informatica of Politecnico.

The contribution of the author for that project was the definition and implementation
of a new approach for the use of the lockstep mechanism (NG, 2007) combined with
checkpoints and rollback to resume the execution of the application from a safe state, in
which the performance overhead imposed by previous solutions is significantly reduced
by the introduction of an IP module that speeds up checkpoints for applications with
large data segments. The details of the proposed technique are discussed, and the
resulting performance improvement evaluated, in Section 6.3.

Aiming at detecting errors affecting the operation of the processor, the lockstep
technique uses two identical processors running in parallel the same application. The
processors are first synchronized to start from the same state and both receive the same
inputs, and therefore the states of the two processors should be equal at every clock
cycle, unless an abnormal condition occurs. This characteristic of lockstep allows for
the detection of errors affecting one of the processors through the periodical comparison
of the processors’ states. The retrieval and comparison of processor states, here named
consistency check, is performed after the program has been executed for a predefined
amount of time or whenever a milestone is reached during program execution (e.g., a
value is ready for being committed to the program user or for being written in memory).
When the states differ, the execution of the application must be interrupted, and the
processors must restart the computation from a previous error-free state.

To restart the application from its beginning is very expensive in terms of
computation time, and sometimes is also not feasible. In order to avoid that, checkpoints
are used in conjunction with lockstep to keep a copy of the last error-free state in a safe
storage. With this purpose, whenever a consistency check shows that the states of the
processors are equal, a copy of all information required to restore the processors to that
state when an error is detected is saved in a storage device which is protected against

70

soft errors or that allows the detection and correction of those errors when they occur.
This set of information is usually named context, and encompasses all information
required to univocally define the state of the processor-based system (it can include the
contents of the processor’s registers, the program counter, the cache, the main memory,
etc.).

If the consistency check fails, i.e., the states of the two processors are different, an
operation named rollback must be performed to return both processors to a previous
error-free state. This is done by retrieving the most recent context saved during a
previous checkpoint and using it to restore the processors to that state, from which the
execution of the application is resumed.

The flowchart of the above described technique is depicted in Fig. 5.1. When a
rollback is performed, the computation executed since the last checkpoint until the
moment when the consistency check was executed must be repeated.

Fig. 5.1. Flow chart of rollback recovery using checkpoint

Fig. 5.2 shows an example of application execution flow using the lockstep
technique combined with checkpoint and rollback recovery. The arrow on the left
indicates the timeline (T).

Fig. 5.2. Example of execution of rollback recovery using checkpoint

Initially, processor 1 executes one portion of the application until it reaches a
predefined point. The context of processor 1 at this point is A1. Then, processor 2

71

executes the same portion of the application, reaching the same point with context A2.
When both processors reached the same predefined point, their contexts are compared
and, if they are equal, a checkpoint is performed, saving the states of the two processors
in a soft error tolerant memory.

Next, the execution of the application is resumed, with processor 1 performing
another portion of the code until it reaches a second predefined point, with context B1,
and then processor 2 executes the same portion of the application, stopping at the same
second predefined point, with context B2. At this point a new consistency check is done
and, if no error occurred, a new checkpoint is performed, saving contexts B1 and B2,
and so on, until the whole application has been successfully executed by both
processors.

Now, let us suppose that, as shown in Fig. 5.2, one SEU occurs and causes one error
while processor 2 is processing the second portion of the application code. In this case,
when it reaches the second predefined point and the consistency check is performed, the
state of processor 2 is X2, instead of B2, which indicates that one error occurred and
that, as a consequence, a rollback must be performed.

The rollback operation, then, restores both processors to their last error-free states
using the information saved during the last checkpoint performed by the system, i.e.,
contexts A1 and A2, respectively. The execution of the application is then resumed as
previously described, with processor 1 and then processor 2 executing, one at a time, the
same portion of the application that was affected by the error, and if no other error
occurs the processors finally reach the correct states B1 and B2 and a new consistency
check is performed, saving contexts B1 and B2. This way, the error caused by the SEU
has been detected during the consistency check, and corrected by the repeated execution
of the code segment in which the error has occurred.

While the techniques used in this approach are apparently simple, their
implementation is not trivial, demanding the careful consideration of several issues.

A particularly critical aspect is the criteria to be used when defining at which points
the application should be interrupted and a consistency check performed, since it can
severely impact the performance of the system, the error detection latency, as well as
the time required to recover from an erroneous state. Clearly, checking and saving the
states of both processors at every cycle of execution provides the shortest fault detection
and error recovery times. However, this imposes unacceptable performance penalties to
any application. In contrast, long intervals between consecutive checkpoints may lead to
catastrophic consequences due to the error propagation in systems where the results
produced by one module are forwarded to other modules for further processing, as well
as to the loss of deadlines in real-time applications when one error occurs. Therefore, a
suitable trade-off between the frequency of checkpoints, error detection latency and
recovery time must be established, according to the characteristics of the application,
and taking into account the implementation cost of the consistency check as well.

A second issue is the definition of the consistency check procedure to be adopted.
Considering that the consistency check aims to detect the occurrence of faults affecting
the correct operation of the system, the consistency check method plays an important
role in the achievement of the fault tolerance capabilities of the system. The optimal
balance between maximum fault detection capability and minimum consistency check
implementation cost must be pursued.

72

In the definition of the context of the processors, designers must identify the
minimum set of information that is necessary to allow the system to be restored to an
error-free state when a fault is detected. The amount of data to be saved affects the time
required to perform checkpoints and also to rollback when one error is detected.
Therefore, in order to provide lower performance overhead during normal operation, as
well as faster recovery when an error occurs, the minimum transfer time for those
operations must be pursued, together with a low implementation cost.

The storage device used to save the context data must be immune to the type of
faults that the system tolerates, in order to ensure that the information used to restore the
processors to a previous state when one error is detected has been also preserved from
such faults between the checkpoint and rollback operations.

Finally, the most efficient methods should be used to develop the checkpoint and
rollback procedures, since they require access to all the memory elements containing the
context of the processors, and have to be performed every time a checkpoint must be
stored, after a successful consistency check, or a rollback must be performed to load an
error-free context into the processors, when one error is detected by the consistency
check. Depending on the definition of the context, the frequency of consistency check
execution, as well as the error rate, checkpoint/rollback operations may be performed
very frequently, and therefore the time spent while moving data to and from the
processor must be minimized.

The implementation of synchronized lockstep combined with checkpoints and
rollback recovery presented in this work was inspired in the approaches proposed in
Pignol (2006) and Harn Ng (2007), and it is an extension of the implementation
presented in Abate (2008). It has been conceived to harden processor cores embedded in
FPGA devices against soft errors affecting the internal memory elements of the
processors, and has been initially implemented using a Xilinx Virtex II Pro FPGA,
which embeds two 32-bit IBM Power PC 405 hard processor cores. However, the
approach is general and it can be extended to different FPGA devices with two
embedded processors (e.g., the Actel devices with embedded ARM processors).

In the following subsections, we describe the adopted solutions for the
aforementioned main issues.

5.2.2.1 Consistency Check Implementation

Due to the availability of two processor cores in the devices used for the
implementation, processor duplication with output comparison was adopted to
implement the consistency check. The developed approach uses two processors running
the same application software. Considering that the processors are synchronized, and
executing the very same software, they are expected to perform exactly the same
operations. By observing the information travelling to and from the processor it is
therefore possible to identify fault-induced misbehaviors.

The consistency check is performed every time the two processors perform a write
cycle, i.e., every time they send information to the memory. The control bus is
monitored to detect when each processor is issuing a write operation. The processors
run alternately in a hand shake fashion: one processor executes the software until a
write instruction occurs; it then stops the execution, and waits for the second processor
to execute exactly the same segment of the application. As soon as the second processor
executed the write operation, it is also stopped, and the consistency check is performed
by comparing the information sent through the data and address busses by each

73

processor in order to confirm that both wrote the same data in the same address. After a
successful consistency check, a checkpoint is performed and the first processor resumes
the execution of the software.

The need to stop one processor while the other is running the application arises from
the fact that the device used in this work has a single memory, which is shared by both
processors through the PLB bus, as shown in Figure 5.3. Therefore, only one processor
can access the memory at each time. To overcome this restriction, in a previous work
targeting the same device (ABATE, 2008) both processors run in parallel, but only one
of them writes the results of the computation into memory. In that work, however, when
a mismatch occurs the system cannot know which of the processors failed, and therefore
the technique proposed there has no error correction capability, being only able to detect
errors, while the technique proposed here uses checkpoints to allow error correction.

The frequency of checkpoints can affect both the performance and the dependability
of the implemented solution. For the analysis of those parameters, we define the time
spanning between two consecutive checkpoints as execution cycle, while we define
lockstep cycle as the time spanning between the start of the execution of one application
segment by the first processor, and the completion of the write operation by the second
processor.

In our approach, one execution cycle can include one or more lockstep cycles, and
only at the end of each execution cycle a dedicated hardware module performs the
consistency check and triggers the checkpoint operation to save the status of the
memory elements of both processors in a dedicated memory area, thereby saving the
context of the system.

5.2.2.2 Context Definition and Storage

In this work the context to be saved during the checkpoint operation includes the
contents of the 43 user registers (32 general purpose registers and 11 special purpose
registers, 32-bit wide), program counter, stack pointer, processor status word, and the
data segment of each processor. It does not include the status of the processor’s cache,
which therefore is assumed to be disabled. However, the implementation can be
extended to deal with the cache too, by flushing the data cache contents to the main
memory during checkpoint, before the context is saved, and by invalidating the
data/instruction cache upon execution of a rollback operation.

For the sake of this work we assume the memory used to store the processor’s
context is immune to SEUs, i.e., it is hardened using suitable EDAC codes as well as
memory scrubbing.

5.2.2.3 Overall Architecture

The architecture of the proposed implementation is shown in Figure 5.3, and it
includes the following modules:

• PPC0 and PPC1: the two Power PC 405 processors embedded in the FPGA,
working in lockstep mode.

• Interrupt IP0 and Interrupt IP1: two custom IP modules used to trigger the
interrupt routines that perform the checkpoint and rollback operations for each
processor.

74

• Opb_intC0 and Opb_intC1: interrupt controller IPs provided by Xilinx that are
connected to PPC0 and PPC1 to manage the interrupt requests from Interrupt IPs
0 and 1, sending the interrupts signals to the processors.

Fig. 5.3. Architecture of the synchronized lockstep with rollback

• DMA0 and DMA1: DMA controller IPs provided by Xilinx, used to provide
faster transfer of context information between the application data segments and
the context saving storage during checkpoints.

• Lockstep Unit: a custom IP that monitors the operations of the two processors,
using the halt0/halt1 signals to stop each processor immediately after it issues a
write operation, and restart them to resume execution. The bus master signal is
used to determine which processor is currently writing to memory. Whenever it
receives the go signal from the Control Unit, the Lockstep Unit starts one
lockstep cycle. Once both processors have performed the same write instruction,
it performs the consistency check and uses the lockstep_done signal to inform to
the Control Unit that a cycle has been completed, and also activates the error
signal when a mismatch occurs.

• Control Unit: a custom IP that interacts with the Lockstep Unit to execute the
application in lockstep mode and receives the results of the consistency checks.
After the predefined number of successful write operations has been performed,
it triggers the interrupt routines on each processor to perform the checkpoints
when no error occurred. When a mismatch has been found, the interrupt routines
perform a rollback operation. This new approach represents a major change with
respect to the one proposed by Abate (2008), providing improvements in terms
of dependability and performance.

5.2.2.4 Implementation Details

The system includes a standard DDR RAM memory for both code and data
segments storage, which is divided into two independent addressing spaces, each used

75

by only one processor, i.e., one processor cannot read from nor write into the addressing
space of the other. The context of each processor and the copies of their data segments
are also stored in DRAM, in areas not used by the application software.

In order to minimize the time needed for checkpoint and rollback execution, they
have been implemented using the interrupt mechanisms made available by the
processors. When an interrupt request is received the processor stops executing the
application, saves its context into the stack, and starts executing the corresponding
interrupt handling routine. When the interrupt handling routine ends, the processor
restores its context from the stack and resumes the execution of the application from the
point it has been interrupted.

During checkpoint the system performs the following steps:

• After the interrupt routine request is raised, the processor saves its context in the
stack.

• The checkpoint interrupt service routine saves the contents of the stack in the
context memory.

• The checkpoint interrupt service routine copies the section of the main memory
where the program’s data segment is stored to the context memory. This
operation is performed using the DMA controller for a direct memory-to-
memory data transfer.

Conversely, the rollback mechanism restores a previously saved context, performing
the following operations:

• The rollback interrupt routine copies the previously saved processor’s context
from the context memory to the stack.

• The rollback interrupt routine uses a DMA transfer to copy the stored data from
the context memory to the program’s data segment.

• When the processor returns from the rollback interrupt routine, it overwrites the
processor’s context with the stack contents, thus resuming program execution
from the same error-free state saved during the last checkpoint.

The above described implementation of the rollback and checkpoint operations
brings significant improvements with respect to the one described in Abate (2008),
which requires tailoring the application to be run in the system. Specifically, in that
implementation the data segment contents were not saved in the context, which required
the application to be written in a particular way in order to preserve the integrity of the
data between a given checkpoint and a possible rollback following it. The program
could only write new values to variables in memory at the end of the execution,
otherwise a rollback performed in the middle of the execution could lead the processor
to an inconsistent state. In such cases, the context information would be reversed to a
safe state, while memory variables would remain with their last, possibly erroneous,
contents. That restriction imposed a strong limitation for application developers.

Moreover, in the approach presented here consistency checks are executed every
time a write occurs, while checkpoints are triggered only after the number of write
operations defined at design time has been performed. This brings two new important
improvements with respect to Abate (2008). The first one is the reduction of the
performance overhead, since the checkpoint operation implies saving the entire register
set and data segment contents of both processors into memory. The second advantage

76

regards the dependability of the solution. In fact, the experimental analysis described in
Abate (2008) showed that in some cases SEEs may remain latent in a context, i.e., one
SEE is latched by one of the processors (e.g., in a general register) during execution
cycle n, but the affected data is used for computation only during execution cycle n+x.
In such cases, a faulty context is saved during the checkpoint following execution cycle
n, thus preventing the successful execution of the recovery mechanism after the error is
detected by the consistency check during any subsequent execution cycle, and leading
the system to an endless sequence of rollback operations. By extending the execution
cycle to include more write operations, the probability that a latent SEE manifests itself
within the same execution cycle during which it is latched has been increased, and so
the probability of successful execution of the rollback, thereby providing higher
dependability for the whole system.

5.2.2.5 Fault Injection Experiments and Analysis

This section describes and discusses the fault injection experiments that have been
performed for assessing the capability of the proposed approach to cope with soft errors
affecting the processor’s memory elements. In this phase of the research work, only
SEEs affecting the processor’s registers have been investigated. However, the use of
ground facilities to explore other types of radiation induced effects is planned as future
work.

Besides the two PowerPC processors, the proposed architecture uses only a limited
amount of the FPGA resources: 6,991 slices and 48 16-kB blocks of RAM. Therefore, it
is suitable for being embedded in complex designs, where larger devices are expected to
be used.

Concerning the FPGA’s configuration memory, the number of bits that may cause a
system failure has been computed using the STAR tool (STERPONE, 2005). Table 5.1
reports the obtained results, which have been classified according to the different
modules of the architecture, plus the glue logic implementing the processor chipset, e.g.,
to interface with the DDR RAM. Since the configuration memory of the selected device
is composed by 11,589,920 bits, one can see that only 3.6% of them are expected to be
sensitive.

Table 5.1. Sensitive bits for IP

Resource Sensitive Bits
Control Unit 41,789
Lockstep Unit 59,173
Interrupt IP 0 and 1 2 × 89,421
Opb_intC 0 and 1 2 × 4,595
DMA0 and 1 2 × 25,744
Glue logic 75,338
TOTAL 415,820

While the present work proposes a technique to cope with errors affecting only the
processor cores embedded in the FPGA, it is important to note that the configuration
memory and the reconfigurable logic themselves must be hardened too, since ionizing
radiations may also affect them. However, within the scope of this work, the proposed

77

architecture has been deemed tolerant to the SEUs affecting the configuration memory
and the reconfigurable logic, and no faults have been injected in those elements.

For the specific devices used to implement and test the technique proposed in this
work, the protection of the configuration memory and the reconfigurable logic could be
implemented through the use of the X-TMR tool from Xilinx, which uses the triple
modular redundancy (TMR) technique to harden all the design components against
SETs, with exception of the Power PCs (XILINX, 2009).

However, TMR is not a bullet proof technique, since it uses a voter circuit to choose,
among the outputs of three modules, which are the correct ones. Although the area of
the voter circuit is usually much smaller than that of the tripled modules that it protects,
its components are still subject to radiation effects and must also be hardened by
suitable techniques. Among those, the use of larger transistors dimensions and the use
of one additional TMR instance to triple the voter circuit and then use a fourth voter to
choose the correct output are the more widely used to minimize the error rate.
Furthermore, in the unlikely event of two simultaneous faults affecting the same output
bit of two of the tripled modules, the voter will silently choose the wrong result as the
one to be forwarded to the output of the circuit, with catastrophic consequences. A
deeper discussion of TMR hardening techniques, however, is out of the scope of this
work.

The injection of faults in the internal registers of the PPC microprocessors has been
performed using the method described in Sonza Reorda (2006). To simulate the
occurrence of a Single Event Upset (SEU), during each run of the application one bit of
one internal register of the microprocessor is complemented. The register and the bit to
be flipped are selected randomly, using a specially developed hardware. A Fault
Injection Hardware Unit (FIHU), placed between a host computer and the
microprocessors, performs the fault injection process using part of the reconfigurable
hardware and manages the injection of faults affecting the microprocessors internal
elements. On the host computer, a Fault Injection Manager controls the fault-injection
process through the FIHU and using the μP debugger primitives. Detailed reports
concerning the results obtained during the fault-injection campaign are produced by a
Result Analyzer module. The communication channel between the host computer and
the FIHU implemented within the FPGA exploits the communication features provided
by the JTAG interface.

For analysis purposes, the effects of the fault injection on the outputs of the system
have been classified as follows:

• wrong answers, when the outputs of both processors were equal, but different
from the expected ones;

• corrected, when the error caused by the injected fault was detected and corrected
by the implemented mechanism, so that the output results were the same for both
processors, and were equal to the expected ones;

• latent, when the injected fault caused a latent error which escaped the detection
and correction mechanism embedded in the system, and therefore after the
execution of rollback and repetition of the computation the outputs produced by
the two processors were still different; and

• silent, when the injected fault did not have any consequence on the results
generated by the application.

78

A preliminary set of results has been collected using as benchmark application the
multiplication of two 3x3 integer matrices. The application code has not been modified,
except for the insertion before it of a small prologue needed to register the interrupt
routine. The application has a code length of 100 bytes and requires 1,922,272 clock
cycles for completion. For the selected application we analyzed the overhead introduced
by checkpoint execution, and the sensitivity of the hardened system to SEEs.

The application has been executed with three different versions of the system, which
performed a checkpoint at every cycle (saving 100% of the contexts), at every 3 cycles
(33% of contexts) and at every 6 cycles (16.7% of contexts), respectively, and the
collected results are reported in Table 5.2.

Table 5.2. Results of fault injection on the processors

Context
Savings
[%]

Execution time

[Clock cycles]

Code
size

[bytes]

Data
size

[bytes]

Injected
[#]

Wrong
Answer
[#]

Corrected
[#]

Latent
[#]

Silent
[#]

100.0 17,219,076 100 36 1,800 0 200 116 1,484
33.0 14,049,761 100 36 1,800 0 321 87 1,392
16.7 11,216,452 100 36 1,800 0 440 29 1,331

These figures confirm that the execution of one checkpoint after each write
instruction imposes a too heavy penalty on the performance of the system, while
limiting the checkpoints to one at every 6 writes leads to a much lower overhead. As far
as SEE sensitivity is concerned, one can notice that all the injected faults have been
appropriately handled in our experiments. The faults that had effects on the program
execution have been corrected thanks to rollback and those that caused latent errors
have been detected at the end of the computation, since the data segments of the two
processors contained results that were different among them. Moreover, it is worth
noticing that the number of latent errors decreases sharply when the frequency of
context savings decreases, while the number of corrected errors increases. This fact
shows that errors are less likely to remain latent at the end of the execution cycle when a
larger number of writes per execution cycle is used.

The preliminary experimental analysis confirmed that the proposed approach is an
efficient and scalable method for hardening processors systems when two processors are
available at low cost. However, it has also shown that some errors may become latent
and not be detected by the proposed mechanism at the end of the execution cycle in
which they have been latched. To cope with this type of errors, a scalable solution, able
to trade-off dependability with resource occupation, is under development.

This solution will extend the current technique by saving multiple consecutive
contexts during the execution of the application. This way, when one error is detected
during the consistency check performed after a given execution cycle, a rollback to the
context saved during the last checkpoint will be performed, and the execution of the
application resumed from that point. If the detected error was a latent one, the
consistency check will fail again at the end of the same execution cycle, since the
erroneous data was saved during the last checkpoint. This shows that the last saved
context is not error-free, and so the system will perform two consecutive rollbacks, to
bring the system to the last but one saved state, and will resume the execution from
there. If the latent error was latched only during the last checkpoint, this will lead the

79

system back to an error-free state and the execution of the application will proceed
normally. Otherwise, the system will then perform three consecutive rollbacks, and so
on, until it reaches a context not affected by the latent error and recovers from it, or the
context buffer is exhausted.

While this extension may imply higher costs, due to the need of a larger memory to
store contexts, its application will be scalable according to the criticality of the
application to be protected, becoming a feasible solution to cope with latent errors in the
proposed system.

5.3 IMPROVING THE PERFORMANCE BY MINIMIZING
CHECKPOINT TIME

5.3.1 Background and Description
The implementation described in Section 5.2.2 improved the performance and the

dependability of the system by reducing the number of checkpoints performed during
the execution of the application. In the experiments described in Subsection 5.2.2.5 the
number of lockstep cycles per execution cycle has been changed from 1 to 3 and 6,
using an application with a very small data segment, which performs the multiplication
of 3×3 matrices. However, considering that the whole data segments of the applications
running in both processors must be saved during checkpoints, there is still a significant
performance penalty for applications with large data segments. Aiming to further
improve the performance of the system for this kind of application, one additional IP,
named Write History Table (WHT), has been included in the system, as shown in Fig.
5.4.

The implementation of WHT and the experiments to evaluate its effectiveness as a
performance improvement element are the contributions of the author to the Project.

Fig. 5.4. Architecture modified to include the WHT

80

The WHT has been inserted between the Lockstep Unit and the Control Unit, and it
is used to temporarily store the addresses and values that have been written by the
application during one execution cycle. Whenever the consistency check performed by
the Lockstep Unit determines that address and value are consistent between both
processors, they are stored in a new entry of the table inside WHT. When the table is
full, the WHT IP sends the wht_full signal to the Control Unit, which then performs a
checkpoint. When the Lockstep Unit detects an error, the address-value pairs already
stored in the WHT are flushed and the error signal is passed forward to the Control
Unit, which then requests a rollback operation.

Considering that the consistency checks ensure that the data written by both
processors is the same, now only one copy of the data segment is kept in the so-called
data segment mirror area. Moreover, the checkpoint operation performed by the
interrupt service routine has been modified in order to write into the data segment
mirror area only those words which have been changed by the application after the last
checkpoint, thereby avoiding transferring the whole data segment of both processors to
memory, which can demand a long time for applications with large data segments. In
order to accomplish this task, during checkpoints data is now copied from the WHT to
the data segment mirror area using processor instructions, and no longer DMA transfers.

The rollback operation, in turn, besides restoring the processor contexts to the stack
area of each application, as before, now copies the single data segment mirror area to
the data segments of both processors using DMA transfers.

5.3.2 Experimental Results and Analysis
In order to confirm that these modifications bring better performance for

applications with large data segments, the matrix multiplication application has been
performed several times, with matrix sizes varying from 2×2 to 20×20, and the number
of cycles required to execute the whole application, including all checkpoints, has been
measured for different configurations of WHT, respectively with 8, 16, and 31 entries.
This means that the number of lockstep cycles per execution cycle has been also
increased when compared with the previous experiments, with one checkpoint being
performed after every 8, 16, or 31 write operations, respectively. As show in the
previous section, this is also a dependability increasing factor.

To allow comparing the impact on performance, the same applications have also
been run on the previous version of the system (without WHT), using the same number
of lockstep cycles per execution cycle (8, 16, and 31), and the average number of cycles
per write operation has been calculated.

The graphics in Fig. 5.5 show the comparison of the average number of cycles per
write operation required by each implementation for each quantity of lockstep cycles
per execution cycle. In those figures, Lockstep Only refers to the implementation
described in section III, while Lockstep with WHT refers to the one described in this
section.

By analyzing the results, the expected improvement of performance provided by the
introduction of the WHT has been confirmed for applications with larger data segments.
For the implementation of lockstep described in Section 5.2.2 (dotted lines), as the size
of the data segment increases the average number of cycles per write operation grows
almost linearly. In contrast, for the system with WHT (solid lines) the number of cycles
remains almost constant after a certain data segment size is reached.

81

(a) Checkpoints at every 8 writes

(b) Checkpoints at every 16 writes

(c) Checkpoints at every 31 writes

Fig. 5.5. Average cycles per write vs. matrix size comparison

In the analysis of the graphics, it is important to highlight that for applications with
small data segments, in this experiment represented by multiplication of small matrices,
the use of WHT does not improve the performance. Also, the break-even point, i.e., the
size of the data segment from which the use of WHT becomes an advantage, increases
with the number of lockstep cycles per execution cycle (which is the same as the

82

number of entries in the WHT). This is due to the use of DMA transfers to save the data
during checkpoints in the system without WHT, since for small data segments the DMA
memory-to-memory transfer is faster than the execution of 8, 16, or 31 transfers from
the WHT slave registers to memory using processor instructions.

Table 5.3 shows the relationship between the quantity of entries in the WHT (each
entry holds one address-value pair) and the size of the data segment of the applications
in bytes, for the points where the use of WHT becomes advantageous.

Table 5.3. Data segment size break-even point for use of WHT

WHT size (# of entries) 8 16 31
Matrix dimensions 5×5 7×7 11×11
Data segment size (bytes) 100 196 484

Through those experiments, it has been shown that the use of the WHT IP can
indeed improve the performance of applications with large data segments, and that the
number of entries in the WHT can be adjusted at design time in order to obtain the best
results for a given data segment size.

As to the fault tolerance capabilities of the system with WHT, they are the same
described in section 6.2, since the same assumptions concerning the use of memory
protected by EDAC techniques and use of TMR to protect the reconfigurable logic
inside the FPGA have been used. The dependability of the system, however, increases
with the higher number of lockstep cycles per execution cycle adopted in the
implementation described in this section.

83

6 HAMMING CODING TO PROTECT
COMBINATIONAL LOGIC

The techniques described in chapters 3 through 5 aim to detect or detect and correct
errors caused by radiation induced long duration transients with low cost, working at
architecture, algorithm or system level. While they achieved the desired goal in terms of
performance, power or area overheads, they still imply some degree of modification at
algorithm or system level. With this in mind, the author has also worked on a low cost
technique to be applied at circuit level, using space redundancy. Despite the need to
change the hardware design, the application of this new technique can be implemented
as an additional step in the synthesis of the circuit, thereby automating its use. Besides
that, it does not require any further modification at the higher abstraction levels of the
systems in which is applied.

The mitigation of radiation induced errors at circuit level has been dealt with for
many years and there are already several techniques in use that can solve the problem
for memory elements. However, the lack of low cost solutions able to protect
combinational logic, together with the increased sensitivity of devices to radiation in
new technologies, points to the need of innovative research in this field. With this in
mind, the author has worked on the definition of new parity based solutions to cope
with this challenge. A first approach, using a standard parity scheme and low cost XOR
gates, has been proposed in Lisboa (DFT 2008), but its application was restricted to
single output circuits. Further experiments led to an innovative proposal, using
Hamming Codes for the first time to protect combinational logic, which provides lower
area and power overheads than the classic triple modular redundancy technique, with
only a small penalty in terms of performance of the hardened circuits. The application
of the proposed technique to several combinational circuits has been developed through
a cooperative work between the author and Costas Argyrides, a PhD student at
University of Bristol, UK, and the results are described in Argyrides (TVLSI 2009).

6.1 PROBLEM DEFINITION
Considering a digital system as being composed by a set of sequential and

combinational logic, one can say that the overall reliability of the system depends on the
reliability of its constituent modules. The protection of sequential logic in a system very
early became a matter of concern among designers, when the first digital systems
started to be used in space missions. By that time, mitigation of radiation effects on the
memory elements was the major problem faced by the scientists, and many techniques
able to detect and correct errors affecting data stored in memory have been proposed
and successfully implemented. Among them, the use of so-called Hamming code Erro!
Fonte de referência não encontrada. has been applied to protect memory and also in
the data communications field, where fixed size code words are used.

84

However, for the relatively slow devices used until some years ago, the effects of
radiation on combinational logic usually were limited to the occurrence of SETs that
lasted only a small fraction of the operation cycle of the circuits, and therefore were not
latched by memory elements and did not lead to errors affecting the systems. Only in
recent years, when the effects of radiation became an important component of the
increasing soft error rate (SER) of combinational logic, as reported in Baumann (2005),
this problem also became a major design concern.

Since the problem of protecting memory elements against SEUs has already been
appropriately dealt with, the development of innovative low cost error detection and
correction techniques able to mitigate soft errors affecting combinational logic becomes
mandatory to allow the design of complete reliable systems.

With this in mind, this part of the thesis proposes a novel approach to detect soft
errors in combinational logic that uses Hamming coding to protect the logic. It is
important to notice that previous to this work, Hamming could only be used in a context
where the number of bits to protect at the source and destination were the same. In the
case of combinational circuits this hardly happens at all, and hence the strategy
presented in this thesis to cope with this adaptation.

The application of the proposed technique to several arithmetic and benchmark
circuits has shown to provide lower overhead than the classic duplication with
comparison (DWC) (WAKERLY, 1978) and triple modular redundancy (TMR)
(JOHNSON, 1994) approaches, while offering superior error detection capabilities,
making it a very promising solution to be used in the design of fault tolerant
combinational logic in future technologies.

6.2 RELATED AND PREVIOUS WORK
As reported in Baumann (2005), as semiconductor technology evolves the soft error

rate of combinational logic is increasing, which makes this issue a growing concern
among the fault tolerance community. While effective solutions to protect memory
elements have already been devised (NEUBERGER, 2005), (ARGYRIDES, 2007), the
low probability of soft errors affecting CMOS combinational circuits being latched at
the output of the circuit kept this subject as a secondary research point. Therefore, not
many techniques to cope with this problem have been proposed until now.

When it comes to transient errors mitigation, concurrent error detection (CED) is
one of the major approaches. In its simpler forms, CED allows only the detection of
errors, requiring the use of additional techniques for error correction. Nevertheless, the
implementation of CED usually requires at least the duplication of the area of circuit to
be protected. One of the simpler examples of CED is called duplication with
comparison (WAKERLY, 1978), which duplicates the circuit to be protected and
compares the results generated by both copies to check for errors. This technique
imposes an area overhead higher than 100%, and when an error is detected the outputs
of the circuit must be recomputed, which may be a problem for some classes of
applications, such as real-time systems.

Aiming to reduce the area overhead imposed by DWC, other research works
propose the use of parity checking in order to allow the detection of errors in the outputs
of combinational circuits. One of the early works based on this approach has been
presented in Sogomonyan (1974), where the combinational circuit to be protected is
split into groups of smaller circuits, with independent logic cones, to generate each

85

output. In order to avoid a single error affecting more than one output bit, the sharing of
components used to generate different output bits within the same group is not allowed.
For each group, a parity predictor circuit is added, which calculates which should be the
(even or odd) parity bit if the set of outputs was considered a single codeword. The
verification is done by a parity checker that receives the generated outputs and the
predicted parity bit, and flags an error when the calculated effective parity of the outputs
does not match the predicted one. In the best case, concerning the area overhead, a
separate circuit is used for each output, without sharing of components between them,
and only one additional circuit is used to generate the predicted value of a single parity
bit. As shown in Almukhaizim (2003), the other extreme is when a single circuit is used
to generate all outputs, in which case the technique becomes equivalent to duplication
and comparison, with the checker reduced to a comparator.

Some other proposals using CED have been presented since 1974, but all of them
have the same drawback, i.e., they allow only the detection of the transient errors, not
the correction.

More recently, in Lisboa (DFT 2008), the use of a standard parity based technique to
detect errors in single output combinational circuits has been proposed. In that work a
second circuit that generates an extra output signal, named check bit, and two circuits
for verification of the parity of inputs and outputs based on reduced area XOR gates,
were used to detect soft errors. While that approach has proven to impose lower
overhead than DWC for several functions, the need to have extra circuits for check bit
generation and output parity verification makes it not competitive, in terms of area
overhead, for multiple-output combinational circuits, like adders and multipliers.

The classic space redundancy based solution allowing detection and correction of a
single transient error in combinational logic is TMR, where the circuit to be protected is
tripled and one additional voter circuit chooses by majority which is the correct result.
Despite imposing an area overhead higher than 200%, TMR still has two weaknesses:
(1) like the comparators used in DWC solutions, the voter circuit used in TMR must be
fault tolerant by design, otherwise a malfunction in the voter can generate an erroneous
result at the output; (2) if more than one module is simultaneously affected by faults, a
situation that may happen more frequently in future technologies (ROSSI, 2005), there
is a finite probability that two modules generate the same erroneous result, which is then
deemed correct, with catastrophic consequences when this technique is applied to
mission critical systems.

In Almukhaizim (2003), an alternative to TMR, derived from Sogomonyan (1974) is
proposed, which mixes parity verification and DWC, being able to detect and correct
errors affecting a single circuit used in the detection/correction scheme. As with TMR,
which tolerates multiple faults affecting a single module, double faults affecting six out
of ten possible subsets of circuits used in the implementation are also detected by the
technique proposed in that work, which also has its critical component: the multiplexer
that selects the correct output according to the analysis of the control signals generated
by the parity checker and the comparator. Experimental results of synthesis using a set
of combinational and sequential benchmarks circuits has shown that the area overhead
imposed by that technique is 15% smaller than that imposed by TMR for most of the
studied circuits.

All the previous works had in common the fact that they use simple parity as the
error detection mechanism. Hence, after detection, extra redundancy must be provided
to compute the correct value. This obviously implies in extra hardware cost or extra

86

delay. In this contribution we overcome these limitations by adapting the classical
Hamming code, used in communication channels, for use in the protection of
combinatorial circuits. We also compare the proposed approach with other recently
published techniques, and reach significantly lower area overhead, with minimal
performance penalty.

6.3 PROPOSED TECHNIQUE
The technique proposed here adopts Hamming coding as a mean to protect

combinational logic. The addition of a Hamming Predictor circuit that processes inputs
in parallel with the circuit to be hardened, and of a Hamming Checker circuit that
verifies if the outputs are a Hamming codeword require additional area, but less than the
classic TMR technique. Furthermore, the generation of those circuits can be
implemented automatically, as part of the traditional design flow.

6.3.1 Background and Description
While the Hamming code has been proposed by Hamming (1950), and its use in the

protection of data in storage elements and communications is a well known subject, its
use in the hardening of combinational circuits is an innovative proposal.

In order to emphasize the uniqueness of the proposed technique, the application of
Hamming code to storage and data communications is contrasted here with the
proposed technique, and then its application to a sample circuit is discussed.

6.3.1.1 The Advantages of Hamming Code

Proposed by R. W. Hamming in his well known work of 1950 (HAMMING, 1950),
the code known by the author’s name has been widely used to allow single error
correction and double error detection in applications such as data storage contents and
message transmission. In such applications, one can use Hamming codes to protect
against the effects of transient faults able to flip one bit in a memory element, or to
protect circuits from the effects of noise or coupling that could corrupt a transmitted
message.

Fig. 6.1. (a) Typical Hamming code application, with fixed size code Word. (b) Typical

combinational circuit, with different number of inputs and outputs.

To the best of our knowledge, however, so far the use of Hamming codes has been
restricted to applications with fixed length code words, as illustrated in Fig. 6.1(a).
Given a set of n data bits, the Hamming encoder adds k parity check bits and writes in
the storage device (or sends through a data transmission line) a code word with n+k
bits. The decoder, in turn, reads from the storage (or receives from the communication

(a)

(b)

87

line) the n+k-bit code word, checks and corrects it according to the Hamming
principles, and forwards to the output the resulting set of n data bits.

Besides its intrinsic functionality as an error detection and correction mechanism, a
very important property that makes the use of Hamming code even more attractive is its
scalability, since the number of parity check bits grows only logarithmically with the
number of data bits to be protected. In order to provide single error correction
capability, the quantity of bits in the code word obeys the following relationship:

2k ≥ n + k + 1 (1)

Hence, when only SEC is desired, for up to 4 bits of useful data one must add 3
check bits (a minimum 75% overhead), for 5 to 11 bits of data 4 check bits must be
added, for 12 to 26 bits of data 5 check bits are required, while for 27 to 57 bits of
useful data only 6 check bits are required (10.5% minimum overhead only). For modern
complex systems this logarithmic growth is very interesting.

Despite all those advantages, the reasons why the use of Hamming codes in the
protection of combinational logic has not been explored so far possibly are: (1) the
number of inputs of the combinatorial circuits to be protected is not necessarily equal to
the number of output bits and (2) as opposed to other techniques, such as the modulo-3
protection schemes (WATTERSON, 1988), the Hamming encoding is not transparent to
most of the functions implemented by the circuits to be protected. This means that, if a
set of circuit inputs is encoded using Hamming, through the addition of parity check
bits, most probably the resulting output will be a set of bits with a different quantity of
digits, and these being not a Hamming code word, thereby precluding the possibility of
checking it for correctness. Fig. 6.1(b) shows an example of a ripple carry adder with
2n+1 inputs and n+1 outputs, to illustrate the contrast between the fixed length code
word used for the protection of data stored in memory or transmitted via
communications lines, and the different number of inputs and outputs in combinational
logic.

6.3.1.2 Extending the Use of Hamming Code to Combinational Logic Hardening

In this work, an alternative way of using the Hamming code to check the results
generated by combinational logic, with single error correction and double error
detection (SEC/DED) capability, is proposed. The implementation of the hardened
circuit is illustrated in Fig. 6.2 using a 3-bit ripple-carry adder as an example, where ai
and bi are the bits of the summand and augend, Cin is the carry in bit, and si are the sum
bits.

Instead of coding the inputs, the proposed approach generates, in parallel with the
processing of the inputs by the circuit to be protected, a set of predicted Hamming
parity bits based on the assumption that the outputs of the circuit to be protected are
correct, and that they are used to create a Hamming code word, in which the data bits
are the outputs effectively generated by the adder, where k1, k2, k3, and P parity bits are
the outputs of the hereinafter called Hamming Predictor circuit. In other words, if no
error occurs, the Hamming Predictor generates the expected values of the parity bits
corresponding to the expected output values, everything based on the given inputs,
which are forwarded to both circuits.

88

Fig. 6.2. Hamming code application to a ripple carry adder circuit

In addition to the circuit to be protected (hereinafter called standard circuit) and the
Hamming Predictor circuit, the approach proposed in this work requires a third circuit
(hereinafter called Hamming Checker) to calculate the effective Hamming parity bits
based of the generated outputs, and then compare those with the predicted parity bits.
Using the method defined in Hamming (1950), the checker circuit is then able to detect
and correct a single bit flip affecting one output bit of the circuit to be protected, or to
raise an error signal (DBLERR) when two bit flips are detected in the outputs.

6.3.1.3 Analysis of Combinational Hamming Operation for a Sample Circuit

In order to better illustrate the principles used in the development of the technique
proposed in this work, the circuit shown in Fig 6.2 will be used as a reference. In its
traditional applications, the Hamming codeword is formed by aggregating a set of
redundant parity check bits to the set of data bits to be protected when the data is written
into memory or otherwise transmitted. So, for the combinational circuit shown in Fig.
6.2, the corresponding Hamming code word is composed by eight bits, numbered from
left to right as shown in Fig. 6.3.

Fig. 6.3. Hamming code word format for the ripple carry adder circuit shown in Fig. 6.2

When the data is retrieved from memory or otherwise received, the read parity bits
are checked and the analysis of the results allows detecting and correcting one bit flip
that occurred during the read or write (or send/receive) operations, or while the data was
stored in the memory element or being transmitted through the communications line.
With the addition of one extra parity bit (P in Fig. 6.3), Hamming codes also allow
detecting double flips, in which case no correction is possible. As the overall effect of a
SET in combinational logic is effectively one or more bit flips in the output of the
circuit, the idea is to try to use the much consolidated field of error detection and
correction in memory also to protect combinational circuits.

So, considering the adder in Fig. 6.2, let a2a1a0 = 101, b2b1b0 = 100, and Cin = 1. The
correct sum to be generated by the adder is then s3s2s1s0 = 1010.

The expressions that give the values of the predicted parity check bits are:

89

k1 = s3 ⊕ s2 ⊕ s0 = 1

k2 = s3 ⊕ s1 ⊕ s0 = 0

k3 = s2 ⊕ s1 ⊕ s0 = 1

P = k1 ⊕ k2 ⊕ s3 ⊕ k3 ⊕ s2 ⊕ s1 ⊕ s0 = 0

Therefore, in this case the Hamming Predictor generates k1k2k3P = 1 0 1 0, and the
correct Hamming code word corresponding to that set of input values is:

k1k2s3k3s2s1s0P = 1 0 1 1 0 1 0 0

Let us now suppose that a transient fault changes the value of output s1 to 0. Since
the input did not change, and considering the single fault model, the Hamming Predictor
will still produce the same output, and therefore the Hamming code word that will be
supplied to the Hamming Checker will be equal to “1 0 1 1 0 0 0 0” (the underlined bit
is erroneous).

Given this code word, the Hamming Checker circuit will detect the single bit flip
and will complement the sixth bit of the codeword to correct the error, thereby
providing the correct output “1 0 1 1 0 1 0 0”.

If a second erroneous bit is produced, either in the outputs of the adder or of the
Hamming predictor, the Hamming Checker will activate the double error output bit
(DBLERR), to signal that higher levels of the system must take additional actions to cope
with this type of error, and the output bits will be forwarded unchanged.

6.3.2 Comparing Combinational Hamming to TMR
Figure 6.4 shows the schematic diagram of a TMR implementation for a generic

circuit with m inputs and n outputs.

Fig. 6.4. m-input, n-output TMR implementation

The voter required for such implementation is composed by a sum of products
network for each output bit, which chooses among the outputs generated by the three
modules the value which appears in the majority of them. For each output bit oi, being
o1i, o2i, and o3i the copies generated by the tripled modules, the boolean expression for
the voter circuit is:

oi = (o1i . o2i) + (o1i . o3i) + (o2i . o3i)

The percent area overhead imposed by the TMR technique, therefore, is given by:

OverheadTMR = 100 × ((3 × Ackt + n × Avoter) / Ackt) – 100

90

where Ackt is the area of the unhardened version of the standard circuit, Avoter is the area
of the voter circuit for one output bit, and n is the number of output bits of the standard
circuit.

Therefore, the proposed technique is tolerant to the following combinations of
errors:

• single error in one output of the standard circuit

• single error in one output of the Hamming Predictor

• one error in one output of the standard circuit and another error in one output of
the Hamming Predictor

• two errors in the outputs of the standard circuit

• two errors in the outputs of the Hamming Predictor

It is important to notice that the probability of occurrence of two errors in the
outputs of the same circuit can be significantly reduced by designing the circuits with
one independent logic cone for each output, which usually implies in circuits with larger
areas (SOGOMONYAN, 1974). However, as it will be seen in Section 5, the area
overhead imposed by the technique proposed here is much lower than the one imposed
by TMR, and therefore the use of separate logic cones for each output of the standard
circuit and of the Hamming Predictor will not be a problem for most applications, and
so this additional approach could be applied together with the technique proposed here
when designing fault tolerant combinational logic for systems targeting mission critical
applications.

6.3.3 Application of Combinational Hamming to Arithmetic Circuits
In order to confirm the advantages of the proposed technique when compared to

TMR, both techniques have been applied to different arithmetic circuits and the
corresponding area, power and delay overheads calculated and compared. Synopsys
(SYNOPSIS, 2006) tools have been used to evaluate the area, power and delay of each
circuit, which have been synthesized using the parameters for the 180 nm technology.
The identification, number of inputs and outputs, and the synthesis values obtained for
the standard version of each circuit are shown in Table 6.1.

Each circuit described in Table 6.1 has been implemented using the technique
proposed in this work. The schematic diagram of one implementation, using a 2×2
multiplier as an example, is shown in Fig. 6.5, in which the generation of the Hamming
codeword to be checked is explicitly indicated. For the circuits in Table 6.1 the
implementations are similar to the one presented in Fig. 6.5, with the number of parity
bits equal to 5 for those circuits with 5 to 11 outputs, and 6 for circuits with 12 or more
outputs.

91

Table 6.1. Circuits used in the experiments

ID I O Area
(μm2)

Power
(mW)

Delay
(ns)

4+4 8 5 263.758 0.334 0.780
5+5 10 6 445.549 1.165 1.320
6+6 12 7 493.513 3.572 1.670
7+7 14 8 575.765 4.168 1.482
4+4+cin 9 5 296.758 0.394 0.830
5+5+cin 11 6 487.286 1.579 1.520
6+6+Cin 13 7 590.279 3.712 1.130
4×4 8 8 2,993.088 8.357 2.940
5×5 10 10 6,993.088 8.357 2.940
6×6 12 12 27,865.910 29.278 5.600
7×7 14 14 121,649.969 112.609 13.250

Fig. 6.5. Multiplier implementation using combinational Hamming

6.3.3.1 Experimental Results

Two different versions of the circuits described in Table 6.1, one hardened using
TMR and other using the technique proposed here, have been described using VHDL
and synthesized using Synopsys tools for the 180nm technology.

Tables 6.2 through 6.4 show the synthesis results for the combinational Hamming
technique, in terms of area, power, and delay, respectively. For each metric, the second
column shows the values for the standard circuit, the third column shows the values for
the same circuit hardened by the proposed technique (which includes the standard
circuit plus the Hamming Predictor and the Hamming Checker circuits), and the percent
overhead imposed by the hardening technique, given by the following expression:

Overhead (%) = 100 × (Hamming / Standard -1)

92

Table 6.2. Areas of the circuits hardened by the proposed technique (μm2)

ID Standard Hamming Hamming overhead
4+4 263.758 498.449 88.980%
5+5 445.549 924.943 107.596%
6+6 493.513 1,207.267 144.627%
7+7 575.765 1,408.478 144.627%
4+4+cin 296.758 516.449 74.030%
5+5+cin 487.286 938.179 92.532%
6+6+Cin 590.279 1,417.765 140.186%
4×4 2,993.088 3,796.460 26.841%
5×5 6,993.088 11,810.657 68.890%
6×6 27,865.910 48,609.331 74.440%
7×7 121,649.969 176,320.018 44.940%
Mean 14,786.815 22,495.272 91.608%

Table 6.3. Power of the circuits hardened by the proposed technique (mW)

ID Standard Hamming Hamming overhead
4+4 0.334 0.697 108.692%
5+5 1.165 1.598 37.246%
6+6 3.572 6.990 95.658%
7+7 4.168 8.155 95.658%
4+4+cin 0.394 0.807 104.831%
5+5+cin 1.579 1.911 21.006%
6+6+Cin 3.712 7.812 110.427%
4×4 8.357 11.989 43.472%
5×5 8.357 11.989 43.472%
6×6 29.278 41.365 41.285%
7×7 112.609 97.835 87.120%
Mean 15.775 17.377 71.715%

Table 6.4. Delays of the circuits hardened by the proposed technique (ns)

ID Standard Hamming Hamming overhead
4+4 0.780 1.120 43.590%
5+5 1.320 1.760 33.333%
6+6 1.670 2.170 29.940%
7+7 1.482 2.170 46.457%
4+4+cin 0.830 1.200 44.578%
5+5+cin 1.520 1.870 23.026%
6+6+Cin 1.130 1.700 50.442%
4×4 2.940 3.690 25.510%
5×5 2.940 3.690 25.510%
6×6 5.600 6.900 23.214%
7×7 13.250 14.180 7.019%
Mean 3.042 3.677 32.056%

93

6.3.3.2 Analysis

As one can see from the data in Tables 6.5 and 6.6, the area and power overheads
imposed by the proposed technique are quite low, when compared with those of TMR.
However, the delay overhead of the proposed technique is larger than that of TMR,
because in the proposed technique the correction must be performed before the
forwarding of the output data, and the Hamming Checker is slower than the voter used
in TMR.

In Table 6.7 we compare delay overheads imposed by the proposed technique with
that imposed by the TMR technique, and show that although the Hamming coding
technique provides an overhead into the overall delay, the mean delay overhead of the
technique is less than 10%.

These are very promising results, and have pushed the research team to develop
further studies, as it is commented in Chapter 7. Furthermore, in order to confirm the
benefits offered by the proposed technique, the same has been applied to a well known
set of benchmarks circuits, and again compared to TMR, as described in the following
section.

Table 6.5. Proposed technique vs. TMR: areas comparison (μm2)

ID Standard Hamming Reduction over
TMR

4+4 952.474 498.449 47.668%
5+5 1,530.087 924.943 39.550%
6+6 1,706.219 1,207.267 29.243%
7+7 1,985.216 1,408.478 29.052%
4+4+cin 1,051.474 516.449 50.883%
5+5+cin 1,655.298 938.179 43.323%
6+6+Cin 1,996.517 1,417.765 28.988%
4×4 9,237.184 3,796.460 58.900%
5×5 21,301.664 11,810.657 44.555%
6×6 83,984.610 48,609.331 42.121%
7×7 365,401.266 176,320.018 51.746%
Mean 44,618.364 22,495.272 42.366%

Table 6.6. Proposed technique vs. TMR: power comparison (mW)

ID Standard Hamming Reduction over TMR
4+4 1.103 0.697 36.788%
5+5 3.615 1.598 55.781%
6+6 10.858 6.990 35.628%
7+7 12.665 8.155 35.611%
4+4+cin 1.283 0.807 37.083%
5+5+cin 4.858 1.911 60.668%
6+6+Cin 11.278 7.812 30.735%
4×4 25.231 11.989 52.482%
5×5 25.271 11.989 52.557%
6×6 88.075 41.365 53.034%
7×7 338.110 97.835 71.064%
Mean 47.486 17.377 47.403%

94

Table 6.7. Proposed technique vs. TMR: delay comparison (ns)

ID Standard Hamming Overhead over TMR
4+4 1.090 1.120 2.752%
5+5 1.630 1.760 7.975%
6+6 1.980 2.170 9.596%
7+7 1.792 2.170 21.116%
4+4+cin 1.140 1.200 5.263%
5+5+cin 1.830 1.870 2.186%
6+6+Cin 1.440 1.700 18.056%
4×4 3.250 3.690 13.538%
5×5 3.250 3.690 13.538%
6×6 5.910 6.900 16.751%
7×7 13.560 14.180 4.572%
Mean 3.352 3.677 9.705%

6.3.4 Application of Combinational Hamming to a Set of Combinational Circuits
of the MCNC Benchmark

6.3.4.1 Experimental Results

The same experiments described in Section 5.3.3 have been performed with another
set of 18 different combinational circuits, extracted from the MCNC combinational
benchmark set (BRGLEZ, 1993), and the corresponding results are shown in Tables 6.8
through 6.11.

Table 6.8. Circuits from the MCNC benchmark used in the experiments

Circuit Area Power Delay
1 5xp1 27,711.068 28.885 5.850
2 apex1 27,740.102 29.027 5.630
3 apex2 27,646.578 28.549 5.840
4 apex3 27,698.166 28.719 5.720
5 apex4 27,698.168 27.458 5.640
6 b12 27,682.049 28.883 5.970
7 bw 27,723.977 28.708 5.660
8 duke2 27,707.846 28.752 6.320
9 ex1010 27,672.379 27.512 6.200
10 inc 27,682.037 27.416 6.010
11 misex1 7,057.605 8.314 2.780
12 misex2 7,018.891 8.602 2.870
13 misex3c 7,054.377 8.182 2.560
14 rd84 7,057.607 8.069 2.530
15 sao2 7,073.725 8.394 2.970
16 squar5 7,067.286 7.933 2.730
17 table3 7,025.337 7.891 2.620
18 table5 7,025.337 7.890 2.620
 Mean 18,519.030 19.399 4.473

95

Table 6.9. Areas of the circuits protected using the proposed technique (μm2)

Circuit Standard Hamming Hamming overhead
 5xp1 27,711.068 28,949.690 4.47%
 apex1 27,740.102 69,860.367 151.84%
 apex2 27,646.578 28,205.779 2.02%
 apex3 27,698.166 33,317.074 20.29%
 apex4 27,698.168 29,862.554 7.81%
 b12 27,682.049 29,040.371 4.91%
 bw 27,723.977 30,401.229 9.66%

 duke2 27,707.846 30,685.088 10.75%
 ex1010 27,672.379 28,945.947 4.60%

 inc 27,682.037 29,040.370 4.91%
 misex1 7,057.605 8,707.635 23.38%
 misex2 7,018.891 9,147.789 30.33%
 misex3c 7,054.377 8,696.205 23.27%

 rd84 7,057.607 7,651.103 8.41%
 sao2 7,073.725 7,638.208 7.98%

 squar5 7,067.286 8,721.476 23.41%
 table3 7,025.337 8,657.493 23.23%
 table5 7,025.337 8,891.845 26.57%
Mean 18,519.030 22,578.901 21.92%

Table 6.10. Power of the circuits protected using the proposed technique (mW)

Circuit Standard Hamming Hamming overhead
 5xp1 28.885 30.250 4.73%
 apex1 29.027 33.788 16.40%
 apex2 28.549 29.147 2.09%
 apex3 28.719 33.365 16.18%
 apex4 27.458 30.068 9.51%
 b12 28.883 29.767 3.06%
 bw 28.708 30.670 6.84%

 duke2 28.752 32.117 11.71%
 ex1010 27.512 30.479 10.78%

 inc 27.416 29.903 9.07%
 misex1 8.314 9.322 12.12%
 misex2 8.602 11.065 28.64%
 misex3c 8.182 9.933 21.41%

 rd84 8.069 8.670 7.44%
 sao2 8.394 8.599 2.44%

 squar5 7.933 9.137 15.18%
 table3 7.891 9.799 24.18%
 table5 7.890 9.586 21.50%
Mean 19.399 21.426 10.45%

96

Table 6.11. Delay of the circuits protected using the proposed technique (ns)

Circuit Standard Hamming Hamming overhead
 5xp1 5.85 7.22 23.419%
 apex1 5.63 7.83 39.076%
 apex2 5.84 6.72 15.068%
 apex3 5.72 8.3 45.105%
 apex4 5.64 7.94 40.780%
 b12 5.97 6.91 15.745%
 bw 5.66 7.72 36.396%

 duke2 6.32 8.24 30.380%
 ex1010 6.2 7.68 23.871%

 inc 6.01 7.21 19.967%
 misex1 2.78 4.72 69.784%
 misex2 2.87 4.82 67.944%
 misex3c 2.56 4.67 82.422%

 rd84 2.53 3.57 41.107%
 sao2 2.97 4.01 35.017%

 squar5 2.73 4.56 67.033%
 table3 2.62 4.73 80.534%
 table5 2.62 4.55 73.664%
Mean 4.473 6.189 44.851%

Next, the use of Combinational Hamming to harden those circuits has been directly
compared to hardening by TMR, and the results are shown in Tables 6.12 through 6.14.

Table 6.12. Proposed technique vs. TMR: areas comparison (μm2)

Circuit TMR Hamming Reduction over TMR
 5xp1 55,744.537 28,949.690 48.07%
 apex1 61,431.003 39,860.367 55.29%
 apex2 55,689.876 28,205.779 49.35%
 apex3 62,008.332 33,317.074 46.27%
 apex4 57,908.896 29,862.554 48.43%
 b12 56,554.258 29,040.371 48.65%
 bw 59,150.673 30,401.229 48.60%

 duke2 59,250.651 30,685.088 48.21%
 ex1010 56,667.158 28,945.947 48.92%

 inc 56,554.234 29,040.370 48.65%
 misex1 15,040.890 8,707.635 42.11%
 misex2 16,418.102 9,147.789 44.28%
 misex3c 15,960.114 8,696.205 45.51%

 rd84 14,644.174 7,651.103 47.75%
 sao2 14,676.410 7,638.208 47.96%

 squar5 15,192.492 8,721.476 42.59%
 table3 15,902.034 8,657.493 45.56%
 table5 16,034.274 8,891.845 44.54%
Mean 39,157.117 22,578.901 43.43%

97

Table 6.13. Proposed technique vs. TMR: power comparison (mW)

Circuit TMR Hamming Reduction over TMR
 5xp1 57.970427 30.250 47.82%
 apex1 58.961222 33.788 42.69%
 apex2 57.158428 29.147 49.01%
 apex3 58.444136 33.365 42.91%
 apex4 55.298512 30.068 45.63%
 b12 57.947684 29.767 48.63%
 bw 57.979996 30.670 47.10%

 duke2 58.087739 32.117 44.71%
 ex1010 55.224627 30.479 44.81%

 inc 55.013484 29.903 45.64%
 misex1 16.769799 9.322 44.41%
 misex2 17.565969 11.065 37.01%
 misex3c 16.644998 9.933 40.32%

 rd84 16.219171 8.670 46.54%
 sao2 16.867571 8.599 49.02%

 squar5 16.027542 9.137 42.99%
 table3 16.063998 9.799 39.00%
 table5 16.081741 9.586 40.39%
Mean 39.12928 21.426 45.24%

Table 6.14. Proposed technique vs. TMR: delays comparison (ns)

Circuit TMR Hamming Overhead over TMR
 5xp1 6.160 7.220 17.208%
 apex1 5.940 7.830 31.818%
 apex2 6.150 6.720 9.268%
 apex3 6.030 8.300 37.645%
 apex4 5.950 7.940 33.445%
 b12 6.280 6.910 10.032%
 bw 5.970 7.720 29.313%

 duke2 6.630 8.240 24.284%
 ex1010 6.510 7.680 17.972%

 inc 6.320 7.210 14.082%
 misex1 3.090 4.720 52.751%
 misex2 3.180 4.820 51.572%
 misex3c 2.87 4.67 62.718%

 rd84 2.84 3.57 25.704%
 sao2 3.28 4.01 22.256%

 squar5 3.04 4.56 50.000%
 table3 2.93 4.73 61.433%
 table5 2.93 4.55 55.290%
Mean 4.783 6.189 33.711%

98

6.3.4.2 Analysis

As one can see in Tables 6.12 through 6.14, the application of the proposed
technique to the MCNC benchmark subset led to conclusions that are similar to those
already presented for the arithmetic circuits, i.e., the Combinational Hamming
technique provides significant area and power reductions when compared to TMR,
while imposing some delay overhead.

For the subset of MCNC circuits, the results have shown an average overhead
reduction of 43% in area and 45% in power, while the average increase in delay has
been 33%.

One of the more recent works proposing a fault tolerance technique to harden
combinational circuits, also using a subset of the MCNC benchmark circuits, has been
published by Almukhaizim et al., in Almukhaizim (2003). The subset of the MCNC
benchmark circuits used in our experiments is not exactly the same used in the
experiments conducted in Almukhaizim (2003), due to the limited availability of the
descriptions of the circuits in the format required for our experiments. However, among
the circuits used in both works there is a common subset of five, which allowed us to
make a further comparative analysis between the combinational Hamming approach and
the one proposed in Almukhaizim (2003).

While the area calculations in Almukhaizim (2003) were made based on the number
of literals of the simplified boolean expressions of each circuit, in the present work the
areas have been calculated in μm2 using Synopsys tools, which precludes the direct
comparison between area overheads imposed by both techniques as reported in the
original paper. However, in both works one can find the percent area overhead related
to the TMR implementation of each circuit, and this information has been used to build
Table 6.15.

Table 6.15. Comparison between Combinational Hamming and the technique proposed
in Almukhaizim (2003)

Circuit

% area reduction over TMR
Improvement Technique proposed in

Almukhaizim (2003)
Combinational

Hamming
5xp1 12.69% 48.07% 35.38%
b12 9.2% 48.65% 39.45%
bw 10.11% 48.60% 38.49%
misex1 7.41% 42.11% 34.70%
misex2 1.92% 44.28% 42.36%

As one can see in Table 6.15, the combinational Hamming technique has provided
higher overhead reduction than that provided by the technique proposed in
Almukhaizim (2003) for all the five circuits used in both experiments. Besides that, the
average area reduction provided by the technique proposed in Almukhaizim (2003) is
15.895%, while the technique proposed here provides more than 43% area reduction
and 45% power reduction. Note that in Almukhaizim (2003) no result concerning power
dissipation is presented. However, as the technique proposed there uses two copies of
the same circuit, plus the parity prediction circuits, one can assume that it will impose a
power overhead higher than 100%.

99

7 CONCLUSIONS AND FUTURE WORKS

In this thesis, the fact that temporal redundancy based techniques will no longer be
able to cope with radiation induced transient faults in future technologies, due to the
possibility of occurrence of long duration transients (LDTs) has been exposed.
Considering that redundancy based techniques impose too high penalties in terms of
resources such as area, power and performance, which may be unbearable for several
application fields, such as that of embedded systems, the development of new low cost
techniques, working at algorithm or system level, has been proposed as a path to the
mitigation of faults in this new scenario.

7.1 MAIN CONCLUSIONS
This thesis encompasses several results of our research work started in 2004. While

some of the alternative paths adopted during its developments did not lead to successful
results (see Appendix I), the major conclusions that we have reached in this work are:

• Temporal redundancy based techniques, working at circuit level, will not be able
to cope with LDTs affecting circuits to be manufactured using future technologies.

• Due to the high penalties, in terms of area and power overheads, imposed by space
redundancy techniques such as DWC and TMR, new low cost techniques must be
developed for application fields such as that of portable and embedded systems.

• Given this scenario, the best alternative is to work at higher abstraction levels,
mainly at algorithm or system level, to deal with the effects of LDTs.

• The development of low cost mitigation techniques, providing not only error
detection, but also error correction capabilities is possible, and an example is the
proposed technique to deal with errors in matrix multiplication algorithms.

• The use of software invariants to detect soft errors at runtime is a possible
alternative to develop an automated and generic low cost solution that can be
applied to several frequently used algorithms. While this technique alone is not
enough to provide full error coverage, its low cost in terms of performance
overhead makes it a good candidate for use in combination with other existing or
to be developed techniques.

• At the circuit level there is still a design space to be explored, in the search for low
overhead error detection and correction techniques, such as the use of
combinational Hamming proposed in Chapter 6.

• The techniques explored in this thesis aim at the detection and correction of errors
affecting data being used by the systems to be hardened. However, as shown by
the experiments with radiation performed for the matrix multiplication hardening

100

technique, described in Chapter 3, the full protection of a given system requires
also the hardening against control flow errors, which may be even more dangerous
to the system reliability than those affecting data.

7.2 SUMMARY OF CONTRIBUTIONS
In this subsection the different contributions resulting from the research work related

to the PhD thesis are summarized.

7.2.1 Long Duration Transients Effects
The scaling of radiation induced transients widths across technology nodes has been

analyzed and has shown that the propagation times of circuits decrease faster than the
transient pulse widths.

Based on that fact, it has been demonstrated that existing temporal redundancy
based techniques will no longer be effective in the mitigation of radiation induced errors
in this new scenario. This is due to the need for longer intervals between output
samplings that will impose very high performance penalties to the hardened circuits.

In consequence, the development of new low cost techniques, working at different
abstraction levels, has been proposed as an alternative for digital systems designers to
face this new scenario.

7.2.2 Matrix Multiplication Hardening
The evolution of a verification technique for the matrix multiplication algorithm has

been presented and described in its several stages, with the improvements in terms of
computational cost demonstrated for each stage. An extension of the technique which
provides error correction with minimal cost, developed in cooperation with Costas
Argyrides, from the University of Bristol has also been demonstrated.

The technique originally proposed in Lisboa (ETS 2007) has been compared to
ABFT and result checking, and shown to have advantages over the former ones. This
technique has been used to harden a matrix multiplication algorithm, and the tradeoffs
between verification frequency and recomputation time have been discussed.

The comparative analysis between three different approaches has shown that the
target application requirements must be considered before choosing one of the
alternatives. For systems in which it is important to forward the results to other stages as
fast as possible, the alternative with minimum recomputation time should be the
preferred one. In contrast, when this is not important, the cost of recomputation is not a
major concern, since the frequency of recomputation due to soft errors is very low.

The good results obtained in this work lead to the idea of generalizing the approach
to other algorithms, through the verification of software invariants.

7.2.3 Using Invariants for Runtime Detection of Faults

In this contribution, the use of software invariants to detect soft errors during the
execution of a program has been proposed. The detection of invariants is automated by
using the Daikon tool, and the results of fault injection campaigns using the hardened
program slices, as well as the performance overhead imposed by the invariants
verification algorithms, have been shown.

101

The results obtained in the fault injection experiments have shown that a high error
detection rate can be obtained with the use of invariants. Although this technique alone
may not be enough to detect all soft errors affecting a program, the low performance
overhead imposed by the technique leaves an open path for additional verification
schemes to be implemented, able to improve the fault coverage provided by the method.

7.2.4 Improving Lockstep with Checkpoint and Rollback
The use of SRAM-based FPGAs with embedded processors for the implementation

of safety- or mission-critical systems has been precluded so far by the lack of
appropriate techniques to cope with radiation induced errors affecting the internal
elements of the processors. The increasing availability of FPGAs with multiple
embedded COTS processors makes feasible the development of new low cost
techniques to implement fault tolerance without modification of the processors’
hardware and/or of the software running on the processors.

In this contribution, a new incremental approach for the implementation of systems
tolerant to radiation induced faults, using the lockstep technique combined with
checkpoints and rollback recovery, has been proposed.

This approach introduced an additional IP module, named Write History Table,
aiming to reduce the time required to perform checkpoints. This was accomplished by
writing to the data segment mirror area only those memory words which have been
modified since the last checkpoint.

By reducing the amount of data to be stored during each checkpoint, the proposed
improvement allowed to decrease the time dedicated to checkpoints, thereby imposing
less performance overhead to the application, when compared to previously proposed
approaches. At the same time, the reduction of latent faults obtained by increasing the
number of write operations per execution cycle, lead to improved system dependability
provided by the reduction of latent errors. All those benefits are provided without
requiring any modification in the architecture of the embedded processors or in the main
application software running on them.

7.2.5 Hamming Coding to Protect Combinational Logic
This approach is a nice complement to existing techniques able to cope with soft

errors in sequential logic, and therefore is a contribution to the design of complete
reliable systems. Moreover, since the cost of the protection is lower than that of TMR,
one can use the same principle to avoid disrupt the design flow and abstraction stack
that have been used by system designers until this day, even in the presence of newer
technologies with higher sensitivity to soft errors.

The proposed technique has been compared to classic space redundancy techniques
which impose heavy penalties in terms of area and power overheads, and the
experimental results have shown that it provides improved reliability with smaller area
and power overheads. A set of arithmetic circuits and a subset of a widely used
benchmark combinational circuits set have been used in the experiments.

7.3 PROPOSED RESEARCH TOPICS FOR FUTURE WORKS
One of the main issues to be addressed in the next steps of our research is the

adoption of low cost and efficient control flow error techniques that can be combined

102

with the data protection techniques proposed in this work, in order to provide full
system protection.

Besides that, for each proposed technique we have additional topics to be explored,
as described in the next subsection.

7.3.1 Use of Software Invariants for Runtime Error Detection
The program slices were so far manually selected. A possible way to automate this

task is through the employment of techniques for variables dependency detection.

Another important aspect is the fact that, for some functions, the invariant mechanism
works much better than for others. This can give us clues to improve the method in
future works.

Finally, the capability to detect faults that did not affect the results at the verification
point, but changed data, which may lead to errors during the execution of other parts of
the program, is an important tool for the mitigation of latent errors too.

7.3.2 Lockstep with Checkpoint and Rollback
Further investigations are under development, namely: analysis of performance

degradation due to rollback execution and the use of a context addressable table to
implement WHT, in order to keep in the table only the last value written into a given
address. In parallel, further validations of the architecture are being planned, including
accelerated radiation ground testing for investigating the effects of faults that hit the
processors in locations not reachable through simulated fault injection, such as the
processors’ pipeline registers, as well as the use of additional fault models in the
experiments, such as multiple bits upsets. It is expected that the radiation experiments
results will report other types of errors due to the propagation of SEE in the logic, such
as Single Event Transients (SETs) and Multiple Bit Upsets (MBUs).

7.3.3 Combinational Hamming
Given the excellent results obtained so far, with average overheads of 43% in area

and 45% in power for the set of MCNC benchmark circuits, the next steps in our
research project will include the extension of the proposed technique to allow its
application to pipelined architectures, where the extra delay of the Hamming Checker
will have a much smaller impact.

The resulting system will then be submitted to fault injection campaigns in a
radiation facility, in order to confirm the advantages of the technique.

103

REFERENCES

ABATE, F.; STERPONE, L.; VIOLANTE, M. A new mitigation approach for soft
errors in embedded processors. IEEE Transactions on Nuclear Science, Albuquerque,
USA: IEEE Nuclear and Plasma Sciences Society, 2008, v. 55, n. 4, p. 2063-2069.

AGARWAL, A. et al. A process-tolerant cache architecture for improved yield in
nanoscale technologies. IEEE Transactions on Very Large Scale Integration
Systems, Princeton, USA: IEEE Circuits and Systems Society, 2005, v. 13, n. 1, p. 27-
38.

AHO, A.; SETHI, R.; ULLMAN, J. Compilers: principles, techniques and tools. [S.l.]:
Addison-Wesley, 1986.

ALBRECHT, C. et al. Towards a Flexible Fault-Tolerant System-on-Chip. In:
INTERNATIONAL CONFERENCE ON ARCHITECTURE OF COMPUTING
SYSTEMS, 22., 2009, ARC 2009, Karlsruhe, GER. Proceedings… Berlin, GER: VDE
Verlag GMBH, 2009, p. 83-90.

ALKHALIFA, Z. et al. Design and evaluation of system-level checks for on-line control
flow error detection. IEEE Transactions on Parallel and Distributed Systems, New
York, USA: IEEE Computer Society, 1999, v. 10, n. 6, p. 627-641.

ALKHALIFA, Z.; MAKRIS, Y. Fault tolerant design of combinational and sequential
logic based on a parity check code. In: INTERNATIONAL SYMPOSIUM ON
DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, 18., 2003, DFT 2003,
Boston, USA. Proceedings... Los Alamitos, USA: IEEE Computer Society, 2003, p.
344-351.

ANGHEL, L.; NICOLAIDIS, M. Cost reduction and evaluation of a temporary faults
detection technique. In.: DESIGN, AUTOMATION AND TEST IN EUROPE
CONFERENCE, 2000, DATE 2000, Paris, FRA. Proceedings… New York, USA:
ACM Press, 2000, p. 591-598.

ANGHEL, L.; NICOLAIDIS, M. Cost reduction and evaluation of a temporary faults
detection technique. In.: DESIGN, AUTOMATION AND TEST IN EUROPE
CONFERENCE, 2000, DATE 2000, Paris, FRA. Proceedings… New York, USA:
ACM Press, 2000, p. 591-598.

ANGHEL, L.; LAZZARI, C.; NICOLAIDIS, M. Multiple defects tolerant devices for
unreliable future technologies. In: IEEE LATIN-AMERICAN TEST WORKSHOP, 7.,
2006, LATW 2006, Buenos Aires, Argentina. Proceedings… Washington, USA: IEEE
Computer Society, 2006, p.186-191.

ANGHEL, L. et al. Multiple Event Transient Induced by Nuclear Reactions in CMOS
Logic Cells. In: IEEE INTERNATIONAL ONLINE TEST SYMPOSIUM, 13., 2007,

104

IOLTS 2007, Heraklion, GRC. Proceedings… Washington, USA : IEEE Computer
Society, 2007, p. 137-145.

ARGYRIDES, C.; ZARANDI, H. R.; PRADHAN, D. K. Matrix codes: multiple bit
upsets tolerant method for SRAM memories. In: IEEE INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT-TOLERANCE IN VLSI SYSTEMS, 22.,
2007, DFT 2007, Rome, ITA. Proceedings… Washington, USA: IEEE Computer
Society, 2007, p. 340-348.

ARIZONA STATE UNIVERSITY. Predictive technology model web site. Available
at: < http://www.eas.asu.edu/~ptm>. Acessed: 5 Nov. 2007.

AUSTIN, T. DIVA: a reliable substrate for deep submicron microarchitecture design.
In: ACM/IEEE INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE,
32., 1999, MICRO32, Haifa, ISR. Proceedings… Los Alamitos, USA: IEEE Computer
Society, 1999, p. 196-207.

AUSTIN, T. DIVA: a dynamic approach to microprocessor verification. The Journal
of Instruction-Level Parallelism, Raleigh, USA: NC State University, 2000, v. 2.
Available at: <http://www.jilp.org/vol2>. Acessed: 27 July 2009.

AUSTIN, T. et al. Making typical silicon matter with razor. IEEE Computer, Los
Alamitos, USA: IEEE Computer Society, 2004, v. 37, n. 3, p. 57-65.

BAUMANN, R. C. Soft Errors in Advanced Semiconductor Devices – Part I: the three
radiation sources. IEEE Transactions on Devices, Materials and Reliability, New
York, USA: IEEE Computer Society, 2001, v. 1, n. 1, p. 17-22.

BAUMANN, R. Soft errors in advanced computer systems. IEEE Design and Test of
Computers, New York, USA: IEEE Computer Society, 2005, v. 22, n. 3, p. 258-266.

BENEDETTO, J. M. et al. Digital single event transient trends with technology node
scaling. IEEE Transactions On Nuclear Science, [S.l.] : IEEE Nuclear and Plasma
Sciences Society, 2006, v. 53, n. 6, p. 3462-3465.

BENSO, A. et al. PROMON: a profile monitor of software applications. In: IEEE
WORKSHOP ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS
AND SYSTEMS, 8., DDECS05, Sopron, HUN. Proceedings… New York, USA: IEEE
Computer Society, 2005, p. 81-86.

BERNARDI, L. et al. A new hybrid fault detection technique for systems-on-a-chip.
IEEE Transactions on Computers, New York, USA : IEEE Computer Society, 2006,
v. 55, n. 2, p. 185-198.

BOLCHINI, C. et al. Reliable system specification for self-checking datapaths. In:
CONFERENCE ON DESIGN, AUTOMATION AND TEST IN EUROPE, DATE
2005, Munich, GER. Proceedings… Washington, USA: IEEE Computer Society, 2005,
p. 334-342.

BREUER, M.; GUPTA, S.; MAK, T. Defect and error tolerance in the presence of
massive numbers of defects. IEEE Design and Test of Computers, New York, USA:
IEEE Computer Society, 2004, v. 21, n. 3, p. 216-227.

BRGLEZ, F. ACM/SIGDA benchmarks electronic newsletter DAC'93 edition. June
1993. Available at:
<http://serv1.ist.psu.edu:8080/showciting;jsessionid=54D0AF1A5B8236934BB7D3DF
5BE0D182?cid=1977147>. Acessed: June 4th, 2009.

105

CHEYNET, P. et al. Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors. IEEE Transactions On
Nuclear Science, [S.l.]: IEEE Nuclear and Plasma Sciences Society, 2000, v. 47, n. 6
(part 3), p. 2231-2236.

DIEHL, S. et al. Considerations for single event immune VLSI logic. IEEE
Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer Society,
1983, v. 30, n. 6, p. 4501–4507.

DODD, P. et al. Production and propagation of single-event transients in high-speed
digital logic ics. IEEE Transactions On Nuclear Science, Los Alamitos, USA: IEEE
Computer Society, 2004, v. 51, n. 6 (part 2), p.3278–3284.

DUPONT, E.; NICOLAIDIS, M.; ROHR, P. Embedded robustness IPs for transient-
error-free ics. IEEE Design and Test of Computers. Los Alamitos, USA : IEEE
Computer Society, 2002, v. 19, n. 3, p.56–70.

ERNST, M.; COCKRELL, J.; GRISWOLD, W. Dynamically discovering likely
program invariants to support program evolution. IEEE Transactions on Software
Engineering. New York, USA: IEEE Computer Society, 2001, v. 27, n. 2, p.99–123.

FAURE, F.; PERONNARD, P.; VELAZCO, R. Thesic+: A flexible system for SEE
testing. In: EUROPEAN CONFERENCE RADIATION AND ITS EFFECTS ON
COMPONENTS AND SYSTEMS, 6., RADECS 2002, Padova, ITA. Proceedings…
Washington, USA : IEEE Computer Society, 2002, p. 231-234.

FERLET-CAVROIS. V. et al. Direct measurement of transient pulses induced by laser
irradiation in deca-nanometer SOI devices. IEEE Transactions On Nuclear Science,
Los Alamitos, USA : IEEE Computer Society, 2005, v. 52.

FERLET-CAVROIS. V. et al. Statistical analysis of the charge collected in SOI and
bulk devices under heavy ion and proton irradiation—implications for digital SETs.
IEEE Transactions On Nuclear Science, Los Alamitos, USA : IEEE Computer
Society, 2006, v. 53, n. 6 (part 1), p. 3242-3252.

FREIVALDS, R. Probabilistic machines can use less running time. In:
INFORMATION PROCESSING CONGRESS 77, 1977, Toronto: CAN.
Proceedings… Amsterdam, NLD: North Holland Publishing, 1977, P. 839-842.

FREIVALDS, R. Fast probabilistic algorithms. In: FREIVALDS, R. Mathematical
Formulations of CS. New York, USA: Springer-Verlag, 1979. p. 57-69. (Lecture Notes
in Computer Science).

GADLAGE, M. et al. Single event transient pulsewidths in digital microcircuits. IEEE
Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer Society,
2004, v. 51, n. 6 (part 2), p. 3285-3290.

GOLOUBEVA, O. et al. Soft error detection using control flow assertions.
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE, 18.,
2003, Boston, USA. Proceedings… Los Alamitos, USA: IEEE Computer Society,
2003, p. 581-588.

GRIES, D. The science of programming. New York, USA: Springer-Verlag, 1981.

HAMMING, R. Error Detecting and Error Correcting Codes. The bell system
technical journal, 2005, v. 26, n. 2, p. 147-160.

106

HARI KRISHNA, S. et al. Using loop invariants to fight soft errors in data caches. In:
ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC
2005, Shanghai, CHI. Proceedings… [S.l. : s.n.], 2005, v.2, p. 1317-1320.

HEIJMEN, T. Radiation induced soft errors in digital circuits: a literature survey,
Eindhoven, NDL: Philips Electronics National Laboratory, 2002.

HOMPSON, S. et al. In search of forever: continued transistor scaling one new material
at a time. IEEE Transactions on Semiconductor Manufacturing, New York, USA:
IEEE Computer Society, 2005, v. 18, n.1, p. 26-36.

HUANG, K.; ABRAHAM, J. Algorithm-based fault tolerance for matrix operations.
IEEE Transactions on Computers. New York, USA : IEEE Computer Society, 1984,
v. C-33, n. 6, p. 518-528.

HUTH. M.; RYAN, M. Logic in computer science: modelling and reasoning about
systems. Cambridge, UK: Cambridge University Press, 2001.

INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS, 2008
UPDATE, ITRS 2008, 2008, [S.l.]. Semiconductor industry association. Available at:
<http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf>. Acessed: April 21st,
2007.

JOHNSON, B. Design and analysis of fault tolerant digitals systems: solutions
manual. [S.l.]: Addison – Wesley publishing Company, 1994.

KARNIK, T.; HAZUCHA, P.; PATEL, J. Characterization of soft errors caused by
single event upsets in CMOS processes. IEEE Transactions on Dependable and
Secure Computing. New York, USA: IEEE Computer Society, 2004, v. 1, n. 2, p. 128-
143.

KASTENSMIDT, F.; CARRO, L.; REIS, R. Fault-Tolerance Techniques for SRAM-
Based FPGA. New York, USA: Springer. 2006, 183 p.
KIM, N. S. et al. Leakage current: moore's law meets static power. Computer, Los
Alamitos, USA : IEEE Computer Society, 2003, v. 36, p. 68-75.

KNUTH, D. The art of computer programming: volume 3 – sorting and searching.
Reading, USA: Addison-Wesley Publishing Company, 1973.

LIMA F.; NEUBERGER, G.; HENTSCHKE, R.; CARRO L., REIS R., Designing
Fault-Tolerant Techniques for SRAM-based FPGAs. IEEE Design&Test, Nov. 2004.
p. 552-562. DOI 10.1109/MDT. 2004.85
LISBOA, C. et al. Online hardening of programs against SEUs and SETs. In: IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS, 21., 2006, DFT 2006, Arlington, USA. Proceedings… Los Alamitos,
USA: IEEE Computer Society, 2006, p. 280-288.

LISBOA, C.; ERIGSON, M.; CARRO, L. System level approaches for mitigation of
long duration transient faults in future technologies. In: IEEE EUROPEAN TEST
SYMPOSIUM, 12., ETS 2007, Freiburg, DEU. Proceedings… Los Alamitos, USA:
IEEE Computer Society, 2007, p. 165-170.

LISBOA, C. A. L.; KASTENSMIDT, F. L.; HENES NETO, E.; WIRTH, G.; CARRO,
L. Using Built-in Sensors to Cope with Long Duration Transient Faults in Future
Technologies. In: INTERNATIONAL TEST CONFERENCE, 2007, ITC 2007, Otawa,
CAN. Proceedings… New York, USA: IEEE Computer Society, 2007, paper 24.3.

107

LISBOA, C. et al. XOR-based low cost checkers for combinational logic. In: IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS, 23., 2008, DFT 2008, Cambridge, USA. Proceedings… Boston,
USA: IEEE Computer Society, 2008, p. 363-370.

LU, D. Watchdog Processor and Structural Integrity Checking. IEEE Transactions on
Computers. [S.l.] : IEEE Computer Society, 1982, v. C-31, n. 7, p. 681-685.

MAHMOOD, A.; LU, D.; McCLUSKEY, E. Concurrent fault detection using a
watchdog processor and assertions. In: IEEE INTERNATIONAL TEST
CONFERENCE, ITC’83, 1983, [S.l.]. Proceedings… [S.l.: s.n.], [1983?], p. 622-628.

MAHMOOD, A.; McCLUCKEY, E. Concurrent error detection using watchdog
processors-a survey. IEEE Transactions on Computers. [S.l.]: [IEEE Computer
Society?], 1988, v. 37, n. 2, p. 160-174.

MATHWORKS. Matlab. Available at: <http://www.mathworks.com/products/matlab>.
Acessed: October 15, 2006.

MITRA, S. et al. Robust system design with built-in soft-error resilience. Computer,
Los Alamitos, USA: [IEEE Computer Society], 2005, v. 38, n. 2, p. 43-52.

MOTWANI, R.; RAGHAVAN, P. Randomized algorithms. New York, USA:
Cambridge University Press, 1995.

NAMJOO, M.; McCLUSKEY, E. Watchdog processors and capability checking. In:
INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT COMPUTING, 12.,
1982, FTCS-12, Santa Monica, USA. Proceedings… [S.l.: s.n.], 1982, p. 245-248.

NAMJOO, M. CERBERUS-16: An architecture for a general purpose watchdog
processor. In: INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT
COMPUTING, 13., 1983, FTCS-13, Milan, ITA. Proceedings… [S.l.: s.n.], 1983, p.
216-219.

NETO, E.; RIBEIRO, I.; VIEIRA, M.; WIRTH, G.; KASTENSMIDT, F. Unsing Built-
in current sensors to detect soft errors. IEEE Micro, [S.l.: s.n.], 2006, n. 5, p. 10-18.

NEUBERGER, G.; LIMA, F.; CARRO, L.; REIS, R. A multiple bit upset tolerant
SRAM memory. ACM Transaction on Design Automation of Electronic Systems,
[S.l.: ACM?], 2003, v. 8, n. 4, p. 577-590. DOI 10.1145/944027.944038.
NEUBERGER, G.; LIMA, F.; REIS, R. Designing an automatic technique for
optimization of reed-solomon codes to improve fault-tolerance in memories. IEEE
Design & Test, [S.l.: IEEE Computer Society, 2005, p. 50-58. DOI
10.1109/MDT.2005.2.

NEUMANN, J. Probabilistic logic and the synthesis of reliable organisms from
unreliable components. In: SHANNON, C.; McCARTHY, J. Automata studies.
Princeton, USA: Princeton University Press, 1956. p. 43-98.

NG, H. PPC405 lockstep system on ML310. XAPP564, [S.l.]: Xilinx, 2007, v. 1.0.2, p.
1-13. Available at:
<http://www.xilinx.com/support/documentation/application_notes/xapp564.pdf>.
Acessed: June 10, 2009.

NICOLAIDIS, M. Time redundancy based soft-error tolerance to rescue nanometer
technologies. In: IEEE VLSI TEST SUMPOSIUM, 17., VTS 1999, Dana Point, USA.
Proceedings… Washington, DC, USA: IEEE Computer Society, 1999. p. 86-94.

108

NIEUWLAND, A.; JASAREVIC, S.; JERIN, G. Combinational logic soft error analysis
and protection. In: IEEE INTERNATIONAL ON-LINE TEST SYMPOSIUM, 12.,
IOLTS 2006, Lake of Como, ITA. Proceedings… Los Alamitos, USA: IEEE Computer
Society, 2006. p. 99-104.

OH, N.; MITRA, S.; McCLUSKEY. ED4I: error detection by diverse data and
duplicated instructions. IEEE Transactions on Computers, 2002, v. 51, n. 2, p. 180-
199.

OH, N.; SHIRVANI, E.; McCLUSKEY, E. Control-flow checking by software
signatures. IEEE Transactions on Reliability. [S.l.]: IEEE Computer Society?], 2002,
v. 51, n. 2, p. 111-122.

OHLSSON, J.; RIMEN, M. Implicit signature checking. In: INTERNATIONAL
SYMPOSIUM ON FAULT-TOLERANT COMPUTING, 25., 1995, FTCS-25,
Pasadena, USA. Digest of papers… [S.l.: s.n.], 1995, p. 218-227.

PIGNOL, M. DMT and DT2: two fault-tolerant architectures developed by CNES for
COTS-based spacecraft supercomputers. In: INTERNATIONAL ON-LINE TESTING
SYMPOSIUM, 12., IOLTS 2006, 2006, Lake of Como, ITA. Proceedings… [S.l.] :
IEEE Computer Society, 2006, p. 10-12.

PRADHAN, D. Fault-tolerant computer system design. Upper Saddle River, USA :
Prentice-Hall, 1995.

PRATA, P.; SILVA, J. Algorithm based fault tolerance versus result-checking for
matrix computations. In: INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT
COMPUTING, 29., FTCS-29, 1999, Madison, USA. Proceedings... [S.l.]: IEEE
Computer Society, 1999.

PROGRAM ANALYSIS GROUP. Daikon: invariant detector tool. 2004. Available at:
<http://pag.csail.mit.edu/daikon>. Acessed: June 4th, 2009.

PYTLIK, B. et al. Automated fault localization using potential invariants. In:
INTERNATIONAL WORKSHOP ON AUTOMATED AND ALGORITHMIC
DEBUGGING, 5., AADEBUG 2003, 2003, Ghent, BEL. Proceedings… [S.l. : s.n.],
2003.

REBAUNDENGO, M. et al. Soft-error detection through software fault-tolerance
techniques. In: IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT
TOLERANCE IN VLSI SYSTEMS, 14., DFT1999, 1999, Albuquerque, USA.
Proceedings… New York, USA: IEEE Computer Society, 1999, p. 210-218.

RHOD, E. et al. Hardware and software transparency in the protection of programs
against SEUs and SETs. Journal of Electronic Testing: theory and applications.
Norwell, USA: Kluwer Academic Publishers, 2008, v. 24, n. 1-3, p. 45-56.

ROSSI, D. et al. Multiple transient faults in logic: an issue for next generation ICs? In:
IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE
IN VLSI SYSTEMS, 20., DFT 2005, 2005, Monterey, USA. Proceedings… Los
Alamitos, USA: IEEE Computer Society, 2005, p. 352-360.

RUBINFELD, R. A mathematical theory of self-checking, self-testing and self-
correcting programs. Thesis (PhD). University of California at Berkeley, USA. 1990.
103p.

SANKARANARAYANAN, S.; SIPMA, H.; MANNA, Z. Non-linear loop invariant
generation using gröbner bases. ACM SYMPOSIUM ON PRINCIPLES OF

109

PROGRAMMING LANGUAGES, 31., SIGPLAN-SIGACT, 2004, Venice, ITA.
Proceedings… New York, USA: ACM Press, 2004, p. 318-329.

SCHILLACI, M.; REORDA, M.; VIOLANTE, M. A new approach to cope with single
event upsets in processor-based systems. In: IEEE LATIN-AMERICAN TEST
WORKSHOP, 7., 2006, LATW 2006, Buenos Aires, ARG. Proceedings… [S.l.: s.n.],
2006, p. 145-150.

SCHUETTE, M.; SHEN, J. Processor control flow monitoring using signatured
instruction streams. IEEE Transactions on Computer, [S.l.: s.n.], 1987, v. 36, n. 3, p.
264-276.

SOGOMONYAN, E. Design of built-in self-checking monitoring circuits for
combinational devices. Automation and Remote Control. North Stetson, GER :
Springer Science, 1974, v. 35, n. 2, p. 280-289.

SONZA REORDA, M. et al. Fault injection-based reliability evaluation of SoPCs. In:
IEEE EUROPEAN TEST SYMPOSIUM, ETS’06, 2006, Southampton, GBR.
Proceedings... [S.l.: s.n.], 2006, p. 75-82.

STERPONE, L.; VIOLANTE, M. A new analytical approach to estimate the effects of
SEUs in TMR architectures Implemented through SRAM-based FPGAs. IEEE
Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer Society,
2005, v. 52, n. 6, p. 2217-2223.

SYNOPSIS. Synopsis web site. Available at:
<http://www.synopsys.com/products/mixedsignal/hspice/hspice.html>. Acessed: Nov.
2006.

TOUBA, N.; McCLUSKEY, E. Logic synthesis of multilevel circuits with concurrent
error detection. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Los Alamitos, USA : IEEE Computer Society, 1997, v. 16, p.
783-789.

VELAZCO, R.; REZGUI, S.; ECOFFET, R. Predicting error rates for microprocessor-
based digital architectures through CEU (Code Emulating Upset) injection. IEEE
Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer Society,
2000, v. 47, p. 2405-2411.

VELAZCO, R.; FOUILLAT, P.; REIS, R. Radiation effects on embedded systems.
[S.l.: Springer], June 2007.

VEMU, R.; ABRAHAM, J. CEDA: control-flow error detection through assertions. In:
INTERNATIONAL ON-LINE TEST SYMPOSIUM, 12., 2006, IOLTS 06, Lake of
Como, ITA. Proceedings… Washington, USA: IEEE Computer Society, 2006, p. 151-
158.

VEMU, R.; GURUMURTHY, S.; ABRAHAM, J. ACCE: automatic correction of
control-flow errors. In: INTERNATIONAL TEST CONFERENCE, 2007, ITC 2007,
[Otawa, CAN?]. Proceedings… New York, USA: IEEE Computer Society, Oct. 2007,
paper 227.2, p. 1-10.

WAKERLY, J. Error detecting codes, self-checking circuits and applications. New
York, USA: North-Holland, 1978.

WATTERSON, J.; HALLENBECK, J. Modulo 3 residue checker: new results on
performance and cost. IEEE Transactions on Computers, New York, USA : IEEE
Computer Society, 1988, v. 37, n. 5, p. 608-612.

110

WILKEN, K.; SHEN, J. Continuous Signature Monitoring: low-cost concurrent
detection of processor control errors. IEEE Transactions on Computers Aided
Design of Integrated Circuits and Systems, New York, USA : IEEE Computer
Society, 1990, v. 9, n. 6, p. 629-641.

XILINX. Xilinx TMRTool: the first triple module redundancy development tool for re-
configurable FPGAs. Available at:
<www.xilinx.com/esp/mil_aero/collateral/tmrtool_sellsheet_wr.pdf>. Acessed: June 10,
2009.

Scientific Production of the Author

Papers accepted until May 30th, 2009, in order of publication.

Journals
PETROLI, L. et al. Majority logic mapping for soft error dependability. Journal of
Electronic Testing: theory and applications. Norwell, USA: Kluwer Academic
Publishers, 2008, v. 24, n. 1-3, p. 83-92.

RHOD, E. et al. Hardware and software transparency in the protection of programs
against SEUs and SETs. Journal of Electronic Testing: theory and applications.
Norwell, USA: Kluwer Academic Publishers, 2008, v. 24, n. 1-3, p. 45-56.

ABATE, F. et al. New techniques for improving the performance of the lockstep
architecture for SEUs mitigation in FPGA embedded processors. IEEE Transactions
On Nuclear Science, Los Alamitos, USA: IEEE Computer Society, 2009, special issue
for RADECS 2009, scheduled for publication in August 2009.

Conferences, Symposia, and Workshops
LISBOA, C.; CARRO, L. An Intrinsically Robust Technique for Fault Tolerance Under
Multiple Upsets. IEEE INTERNATIONAL ONLINE TEST SYMPOSIUM,
IOLTS2004, 2004, Funchal, Madeira Island, POR. Proceedings… New York, USA :
IEEE Computer Society, 2004.

LISBOA, C.; CARRO, L. Highly reliable arithmetic multipliers for future technologies.
In: INTERNATIONAL WORKSHOP ON DEPENDABLE EMBEDDED SYSTEMS
AND INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS,
WDES – SRDS 2004, Florianópolis, BRA. Proceedings… [S.l.: s.n.], 2004, p. 13-18.

LISBOA, C.; CARRO, L. Arithmetic operators robust to multiple simultaneous upsets.
In: IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT
TOLERANCE IN VLSI SYSTEMS, 19., DFT 2004, Cannes, FRA. Proceedings…
New York, USA: IEEE Computer Society, 2004, p. 289-297.

LISBOA, C.; CARRO, L.; COTA, L. RobOps - arithmetic operators for future
technologies. In: EUROPEAN TEST SYMPOSIUM, 10., ETS2005, Tallin, EST.
Proceedings… [S.l.: s.n.], 2005.

LISBOA, C.; SCHÜLER, E.; CARRO, L. Going beyond TMR for protection against
multiple faults. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS

111

DESIGN, 18., SBCCI 2005, Florianópolis, BRA. Proceedings… Florianópolis, BRA:
[s.n.], 2005.

RHO, E.; LISBOA, C.; CARRO, L. Using memory to cope with simultaneous transient
faults. In: LATIN-AMERICAN TEST WORKSHOP, 7., LATW 2006, Buenos Aires,
ARG. Proceedings… New York, USA: IEEE Computer Society, 2006, p. 151-156.

RHOD, E.; MICHELS, C.; CARRO, L. Fault tolerance against multiple SEUs using
memory-based circuits to improve the architectural vulnerability factor. In: IEEE
EUROPEAN TEST SYMPOSIUM, 11., ETS 2006, Southampton, GBR. Informal
Digest of Papers… New York, USA: IEEE Computer Society, 2006, p. 229-234.

MICHELS, Á. et al. SET fault tolerant combinational circuits based on majority logic.
In: IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT
TOLERANCE IN VLSI SYSTEMS, 21., DFT 2006, Arlington, USA. Proceedings…
Los Alamitos, USA, IEEE Computer Society, 2006, p. 345-352.

LISBOA, C. et al. Online hardening of programs against SEUs and SETs. In: IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS, 21., DFT 2006, Arlington, USA. Proceedings… Los Alamitos, USA,
IEEE Computer Society, 2006, p. 280-288.

LISBOA, C.; ERIGSON, M.; CARRO, L. A low cost checker for matrix multiplicatio.
In: IEEE LATIN-AMERICAN TEST WORKSHOP, LATW 2007, 8., LATW 2007,
Session 10, Cuzco, PER. Proceedings… [S.l.]: IEEE Computer Society Test
Technology Technical Council, 2007.

RHOD, E. et al. A non-intrusive on-line control flow error detection technique for
SoCs. In: IEEE LATIN-AMERICAN TEST WORKSHOP, LATW 2007, 8., LATW
2007, Session 10, Cuzco, PER. Informal Proceedings… [S.l.]: IEEE Computer Society
Test Technology Technical Council, 2007.

RHOD, E.; LISBOA, C.; CARRO, L. A low-SER efficient processor architecture for
future technologies. In: DESIGN, AUTOMATION AND TEST IN EUROPE 2007
CONFERENCE AND EXPOSITION, DATE 2007, Nice, FRA. Proceedings… Los
Alamitos, USA: IEEE Computer Society, 2007, p. 1448-1453.

LISBOA, C.; CARRO, L. System level approaches for mitigation of long duration
transient faults in future technologies. In: IEEE EUROPEAN TEST SYMPOSIUM, 12.,
ETS 2007, Freiburg, DEU. Proceedings… Los Alamitos, USA: IEEE Computer
Society, 2007, p. 165-170.

LISBOA, C.; CARRO, L. Em busca de soluções em nível de sistema para tecnologias
não confiáveis. In: CONGRESSO DA SOCIEDADE BRASILEIRA DE
COMPUTAÇÃO, 27., SBC2007, Rio de Janeiro, BRA. Anais... [S.l.: s.n.], 2007, p.
2173-2187.

PETROLI, L. et al. Using majority logic to cope with long duration transient faults. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, 20., SBCCI
2007, Rio de Janeiro, BRA. Proceedings… New York, USA: Association for
Computing Machinery, 2007, p. 354-359.

ARGYRIDES, C. et al. A soft error robust and power aware memory design. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, 20., SBCCI
2007, Rio de Janeiro, BRA. Proceedings… New York, USA: Association for
Computing Machinery, 2007, p. 300-305.

112

LISBOA, C. et al. Using built-in sensors to cope with long duration transient faults in
future technologies. In: INTERNATIONAL TEST CONFERENCE, ITC 2007, Santa
Clara, USA. Proceedings… New York, USA: IEEE Computer Society, 2007.

LISBOA, C. et al. Working at algorithm level to minimize recomputation time when
coping with long duration transients. In: INTERNATIONAL WORKSHOP ON
DEPENDABLE CIRCUIT DESIGN, 5., DECIDE 2007, Buenos Aires, ARG.
Proceedings… [S.l.: s.n.], 2007, p. 19-24.

LISBOA, C. et al. Algorithm level fault tolerance: a technique to cope with long
duration transient faults in matrix multiplication algorithms. In: IEEE VLSI TEST
SYMPOSIUM, 26., VTS 2008, San Diego, USA. Proceedings… [S.l.: s.n.], 2008.

LISBOA, C.; KASTENSMIDT, F.; CARRO, L. Analyzing the effects of the granularity
of recomputation based techniques to cope with radiation induced transient faults. In:
WORKSHOP ON RADIATION EFFECTS AND FAULT TOLERANCE IN
NANOMETER TECHNOLOGIES, WREFT 2008, Ischia, ITA. Proceedings… [S.l.:
s.n.], 2008, p. 329-338.

LISBOA, C. et al. Validation by fault injection of a hardening technique for matrix
multiplication algorithms. In: EUROPEAN WORKSHOP ON RADIATION EFFECTS
ON COMPONENTS, 8., RADECS 2008, Jyväskylä, FIN. Proceedings… [New York,
USA: IEEE Computer Society?], 2008, p. xx-yy.

LISBOA, C.; CARRO, L. XOR-based low cost checkers for combinational logic. In:
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE OF
VLSI SYSTEMS, DFT 2008, [Boston, USA]. Proceedings… Washington, USA: IEEE
Computer Society, 2008, p. 281-289.

ARGYRIDES, C. et al. Minimizing the recomputation time in soft error tolerant matrix
multiplication algorithms. HIPEAC WORKSHOP ON DESIGN FOR RELIABILITY,
DFR’ 09, PAPHOS, CHL. Informal Proceedings… [S.l.: s.n.], 2009, p. 11-17.

LISBOA, C. et al. Building robust software using invariant checkers to detect run-time
transient errors. HIPEAC WORKSHOP ON DESIGN FOR RELIABILITY, DFR’ 09,
PAPHOS, CHL. Informal Proceedings… [S.l.: s.n.], 2009, p. 48-54.

LISBOA, C. et al. Using software invariants for dynamic detection of transient errors.
In: IEEE LATIN-AMERICAN TEST WORKSHOP, 10., LATW 2009, Buzios, BRA.
Proceedings… [S.l.: s.n.], 2009.

ARGYRIDES, C. et al. Single element correction in sorting algorithms with minimum
delay overhead. In: IEEE LATIN-AMERICAN TEST WORKSHOP, 10., LATW 2009,
Buzios, BRA. Proceedings… [S.l.: s.n.], 2009.

ARGYRIDES, C. et al. Increasing memory yield in future technologies through
innovative design. In: INTERNATIONAL SYMPOSIUM ON QUALITY
ELECTRONIC DESIGN, 10., ISQED 2009, San Jose, USA. Proceedings… [S.l.: s.n.],
2009.

LISBOA, C. et al. Invariant checkers: an efficient low cost technique for run-time
transient errors detection. In: IEEE INTERNATIONAL ON-LINE TESTING
SYMPOSIUM, 15., IOLTS 2009, Sesimbra, POR. Proceedings… [S.l.: s.n.], 2009.

LISBOA, C. et al. A fast error correction technique for matrix multiplication
algorithms. In: IEEE INTERNATIONAL ON-LINE TESTING SYMPOSIUM, 15.,
IOLTS 2009, Sesimbra, POR. Proceedings… [S.l.: s.n.], 2009.

113

ARGYRIDES, C. et al. Reliability aware yield improvement technique for
nanotechnology based circuits. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN, 22., SBCCI 2009, Natal, BRA. Proceedings… [S.l.: s.n.], 2009.

