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ABSTRACT 

As the technology evolves, faster and smaller devices are available for 
manufacturing circuits that, while more efficient, are more sensitive to the effects of 
radiation. The high transistor density, reducing the distance between neighbor devices, 
makes possible the occurrence of multiple upsets caused by a single particle hit. The 
achievable high speed, reducing the clock cycles of circuits, leads to transient pulses 
lasting longer than one cycle. All those facts preclude the use of several existing soft 
error mitigation techniques based on temporal redundancy, and require the development 
of innovative fault tolerant techniques to cope with this challenging new scenario. 

This thesis starts with the analysis of the transient width scaling across technologies, 
a fact that supports the prediction that long duration transients (LDTs) will affect 
systems manufactured using future technologies, and shows that several existing 
mitigation techniques based on temporal redundancy will not be able to cope with 
LDTs, due to the huge performance overhead that they would impose. At the same time, 
space redundancy based techniques, despite being able to deal with LDTs, still impose 
very high area and power penalties, making them inadequate for use in some application 
areas, such as portable and embedded systems. As an alternative to face those 
challenges imposed to designers by future technologies, the development of low 
overhead mitigation techniques, working at different abstraction levels, is proposed. 
Examples of new low cost techniques working at the circuit, algorithm, and architecture 
levels are presented and evaluated. 

Working at the algorithm level, a low cost verification algorithm for matrix 
multiplication is proposed and evaluated, showing that it provides a good solution for 
this specific problem, with dramatic reduction in the cost of recomputation when an 
error in one of the product matrix elements is detected. In order to generalize this idea, 
the use of software invariants to detect soft errors at runtime is suggested as a low cost 
technique, and shown to provide high fault detection capability, being a good candidate 
for use in a complementary fashion in the development of software tolerant to transient 
faults. As an example of architecture level technique, the improvement of the classic 
lockstep with checkpoint and rollback technique is proposed and evaluated, showing 
significant reduction in the number of write operations required for checkpoints. 
Finally, as an example of low cost space redundancy technique at circuit level, the use 
of Hamming coding to protect combinational logic, an open issue in the design of 
systems using future technologies, is proposed and evaluated through its application to a 
set of arithmetic and benchmark circuits.  

 

 

 

 

 

 

Keywords: fault tolerance, radiation effects, low cost techniques.  
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Lidando com Falhas Transitórias de Longa Duração 
Provocadas por Radiação em Tecnologias Futuras 

RESUMO 

Com a evolução da tecnologia, dispositivos menores e mais rápidos ficam 
disponíveis para a fabricação de circuitos que, embora sejam mais eficientes, são mais 
sensíveis aos efeitos da radiação. A alta densidade, ao reduzir a distância entre 
dispositivos vizinhos, torna possível a ocorrência de múltiplas perturbações como 
resultado da colisão de uma única partícula. A alta velocidade, ao reduzir os ciclos de 
relógio dos circuitos, faz com que os pulsos transientes durem mais do que um ciclo. 
Todos estes fatos impedem o uso de diversas técnicas de mitigação existentes, baseadas 
em redundância temporal, e tornam necessário o desenvolvimento de técnicas 
inovadoras para fazer frente a este novo e desafiador cenário. 

Esta tese inicia com a análise da evolução da duração de pulsos transitórios nas 
diferentes tecnologias que dá suporte à previsão de que transitórios de longa duração 
(TLDs) irão afetar sistemas fabricados usando tecnologias futuras e mostra que diversas 
técnicas de mitigação baseadas em redundância temporal existentes não serão capazes 
de lidar com os TLDs devido à enorme sobrecarga que elas imporiam ao desempenho. 
Ao mesmo tempo, as técnicas baseadas em redundância temporal, embora sejam 
capazes de lidar com TLDs, ainda impõem penalidades muito elevadas em termos de 
área e energia, o que as torna inadequadas para uso em algumas áreas de aplicação, 
como as de sistemas portáteis e embarcados. Como uma alternativa para enfrentar estes 
desafios impostos aos projetistas pelas tecnologias futuras, é proposto o 
desenvolvimento de técnicas de mitigação com baixa sobrecarga, atuando em níveis de 
abstração distintos. Exemplos de novas técnicas de baixo custo atuando nos níveis de 
circuito, algoritmo e arquitetura são apresentados e avaliados. 

Atuando em nível de algoritmo, uma alternativa de baixo custo para verificação de 
multiplicação de matrizes é proposta e avaliada, mostrando-se que ela oferece uma boa 
solução para este problema específico, com uma enorme redução no custo de 
recomputação quando um erro em um elemento da matriz produto é detectado. Para 
generalizar esta idéia, o uso de invariantes de software na detecção de erros transitórios 
durante a execução é sugerido como outra técnica de baixo custo, e é mostrado que esta 
oferece alta capacidade de detecção de falhas, sendo, portanto, uma boa candidata para 
uso de maneira complementar com outras técnicas no desenvolvimento de software 
tolerante a falhas transitórias. Como exemplo de uma técnica em nível de arquitetura, é 
proposta e avaliada uma melhoria da clássica técnica de lockstep com checkpoint e 
rollback, mostrando uma redução significativa no número de operações de escrita 
necessárias para um checkpoint. Finalmente, como um exemplo de técnica de baixo 
custo baseada em redundância espacial, é proposto e avaliado o uso de código de 
Hamming na proteção de lógica combinacional, um problema ainda em aberto no 
projeto de sistemas usando tecnologias futuras.  

Palavras-Chave: tolerância a falhas, efeitos de radiação, técnicas de baixo custo. 
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1 INTRODUCTION 

This work proposes the development of new low cost fault tolerance techniques, 
working at different abstraction levels, as the preferred alternative to deal with faults 
caused by long duration transients that will affect CMOS devices to be manufactured in 
future technologies. The analysis of the effects of such long duration transients and the 
reasons why several current mitigation techniques will fail in this new scenario are 
presented, and four techniques that deal with the problem at different abstraction levels 
are proposed, always pursuing low cost requirements. 

1.1 MOTIVATIONS 
The evolution of semiconductor technology in recent years, while continuously 

providing new devices with unmatched size, speed, and power consumption 
characteristics, has brought along increasing concerns about the reliability of systems to 
be designed using those devices. While CMOS technology keeps evolving according to 
Moore’s law, thereby approaching the physical limits imposed by the availability of 
only a few atoms to form the device’s channel (KIM et al., 2003) (HOMPSON et al., 
2005), the development of alternative technologies, able to take digital systems beyond 
those limits, became a huge challenge to be faced by scientists. 

But even the most promising alternative technologies devised so far bring along the 
same undesirable characteristic: devices manufactured using them are more prone to 
manufacturing defects and transient errors than nanoscale CMOS, making the reliability 
goal even more difficult to be reached. 

The decreasing reliability of CMOS devices in new technologies is a consequence of 
several different problems arising from the physical characteristics of those devices: 

• The lower power consumption and operating temperature limits imposed by 
embedded and portable systems requirements lead to the use of lower operating 
voltages, which in turn imply smaller critical charges, making the devices more 
susceptible to radiation induced transient pulses, since even particles with 
relatively small energy can upset those devices (VELAZCO, 2007). As a 
consequence, the occurrence of Single Event Transients (SETs) and Single Event 
Upsets (SEUs) has been increasing in recent years, and became a concern not only 
for systems targeting space or avionics applications, but also for those designed 
for critical missions meant to be used at sea level (HEIJMEN, 2002). According 
to the International Technology Roadmap for Semiconductors 2008 Update, 
“Below 65nm, single-event upsets (soft errors) impact field-level product 
reliability, not only for embedded memories, but for logic and latches as well.” 
(INTERNATIONAL..., 2008). Furthermore, while several error detection and 
correction (EDAC) techniques have been proposed and are in current use to 
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protect memory devices against those effects, thereby stabilizing the soft error rate 
(SER) across technology nodes, the protection of combinational logic against 
SETs and SEUs is still an open issue. 

• Smaller device dimensions allow the construction of circuits with higher densities, 
in which the distance between neighbor devices is reduced between consecutive 
technology nodes. Such very small distances allow that a single particle hitting the 
silicon affects two or more devices at the same time, thereby causing multiple 
simultaneous faults, a possibility that was not considered until recently, and 
therefore is not mitigated by currently existing fault tolerance techniques (ROSSI 
et al., 2005), (ANGHEL, 2007). This multiple simultaneous faults scenario, in 
turn, can lead to catastrophic consequences when well established and proven 
techniques in use under the single fault model are used with future technologies. 
Triple modular redundancy (TMR), for instance, is not able to properly select the 
correct result when two of the voter inputs are equally erroneous. Similarly, the 
duplication with comparison (DWC) approach becomes useless to detect errors in 
a scenario where both duplicated modules can generate equally erroneous outputs. 

• These faster new devices allow designing circuits with shorter cycle times, but 
unfortunately, the duration of radiation induced transient pulses does not scale at 
the same pace of the cycle times (DODD, 2004), (FERLET-CAVROIS, 2006), 
leading to a situation in which transient pulses may become longer than the cycle 
time of the circuits. Current soft error mitigation techniques either are not able to 
cope with this new scenario due the high performance overheads that they would 
impose to cope with such long duration transients, or do impose very high area 
and power consumption overheads, which will require the development of new 
low cost system level mitigation techniques (LISBOA, ETS 2007).  

• Besides all those undesirable effects over reliable system operation caused by 
CMOS technology evolution, the manufacturing of digital systems is also affected 
by increasing defect rates due to process variations, higher complexity for 
manufacturing test due to increased components density in the circuits, and other 
related problems (AGARWAL et al., 2005). 

To cope with this new scenario, the design of reliable portable and embedded 
systems will also have to evolve, through the development of innovative solutions to 
mitigate soft errors using the smallest possible overhead. Given the extreme 
unreliability of components to be manufactured not only in new CMOS technology 
nodes, but also in the alternative technologies proposed so far, dealing with this problem 
at the component level will become too expensive. The prediction of long duration 
transients, lasting more than one or even several cycles of operation of the circuits, 
makes the mitigation at low level (technology or component levels), using temporal 
redundancy techniques, also unfeasible, due to the enormous overhead in performance 
that this would mean. 

Therefore, a natural path to be followed in the search for the required new set of 
techniques is then to raise the abstraction level and work at circuit, architecture, 
algorithm and system levels, in order to develop techniques able to detect and correct 
errors with low design and fabrication costs. 

While keeping low area, power and performance overheads is a mandatory 
characteristic of candidate techniques, it is also important that their deployment be made 
without significant changes in the way system developers explore the parallelism or 
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write their code, for example. In other words, any new technique must gracefully fit into 
the current system design flow, allowing for their seamless introduction in the system 
development process, without any dramatic change to the established levels of design 
abstraction. 

1.2 BASIC CONCEPTS AND RELATED WORK 
In this section, we introduce the main technical terms used in the text, and discuss 

the reasons why radiation induced transients will become a major cause of errors during 
the operation of circuits manufactured using future technologies. 

1.2.1 Radiation induced transients, SETs, SEUs, and Soft Errors  
This work focuses on the effects of the incidence of radiation particles during the 

normal operation of digital circuits that have nor defects nor permanent errors. Such 
effects are due to the deposition of charge caused by the impact of the particle on 
silicon, which may switch the logical state of nodes. However, after the deposited 
charge dissipates, the effects of these events usually disappear. For this reason, these 
effects are called Single Event Transients (SETs), and the faults caused by SETs are 
called transient faults (HEIJMEN, 2002). 

If the particle’s linear energy transfer (LET) is high enough to generate charge 
above the critical charge of the node, the SET is able to switch the logical state of the 
node, and the erroneous value can be propagated trough the logic to the output of the 
network and eventually reach a memory element. If this happens during the latching 
window of the memory element, this incorrect information can be stored, resulting in a 
Single Event Upset (SEU), which is considered a Soft Error, because the upset memory 
element remains operational and able to eventually store new information when a write 
operation on that same element is performed.  

A SET can be masked, either logically, electrically or by the lack of a latching 
window, in which case it generates no error at all. However, in order to cope with errors 
that may occur when the SET is not masked, a proper detection and mitigation 
technique must be included during the design phase of the circuit, to ensure SET 
tolerant operation. 

The two main sources of radiation that may affect the circuits are alpha particles 
originated in the chip itself by the decay of impurities contained in materials used for 
packaging or in the manufacturing process (e.g., lead and boron), and neutrons in 
cosmic rays, which may collide with a silicon nucleus and cause ionization with high 
linear energy transfer (LET) (KARNIK, 2004).  

While the radiation effects due to processes and materials can be mitigated 
through elimination of their causes, and this is a continuous subject of research by the 
manufacturing community, those due to cosmic rays cannot be avoided without the use 
of unpractical and expensive shielding mechanisms (HEIJMEN, 2002), and therefore 
must be considered in the design of general purpose circuits. 

1.2.2 Trends for soft errors in future technologies 
The well-established SET fault model is based on a single particle hitting a 

sensitive node in silicon, and generating a transient pulse which changes the state of the 
affected node (DIEHL, 1983). According to Baumann (2001), the three primary sources 
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for the induction of soft errors in semiconductor devices are alpha particles, high-energy 
cosmic neutrons, and neutron-induced boron fission.  

The major sources of alpha particles are materials used during the manufacturing 
process and packaging materials, which allows the reduction of their influence through 
modifications in the processes and replacement of packaging materials (HEIJMEN, 
2002).  

Historically, the incidence of soft errors in combinational logic has been 
considered less problematic than that in memory elements. Therefore, several soft error 
detection and correction (EDAC) techniques have been proposed and used to detect and 
recover from SEUs in memory. More recently, Baumann (2005) has shown that, while 
the memory soft error rate was almost stable across technologies, the soft error rate for 
combinational logic has been growing from one technology node to the other. This fact 
points to the need for increased efforts towards the development of design techniques 
able to cope with soft errors in combinational logic in future technologies, as has been 
recently recognized by the industry experts, which included it as one of the crosscutting 
design challenges, under the reliability chapter (INTERNATIONAL..., 2008). 

1.2.3 Multiple simultaneous transient faults 
While the hypothesis of multiple simultaneous faults has been considered 

negligible for a long time, an industry report by Heijmen (2002) already warned that it 
should no longer be neglected for circuits manufactured using technologies of 0.13 μm 
and beyond. 

This growing concern about multiple transient faults is not due to any change in 
the nature of radiation phenomena. Rather, it naturally stems from the continuous 
evolution of the semiconductor technology, which provides ever smaller devices and 
higher densities, thereby reducing the distance between neighbor nodes in a circuit and 
increasing the possibility of more than one transient fault occurring at the same time. 

Those multiple simultaneous faults are still due to a single particle hitting the 
silicon, in which case secondary particles can be emitted in several directions, as 
illustrated in Figure 1.1 (ROSSI, 2005).  

 
Figure 1.1. One particle, multiple effects (ROSSI, 2005) 

What has changed is that, since the devices are now closer to each other, those 
secondary particles may eventually affect two different nodes of a circuit, generating 
two simultaneous effects (NEUBERGER, 2003). 

Moreover, after experimentally confirming that two simultaneous upsets affecting 
adjacent nodes can occur, Rossi (2005) has shown that the occurrence of bi-directional 
errors, i.e., two simultaneous complementary bit flips, will be possible, precluding the 
use of error detection codes designed to detect only unidirectional simultaneous errors. 

One year later, Ferlet-Cavrois (2006) presented a detailed study on the charge 
collection mechanisms in SOI and bulk devices exposed to heavy radiation, using 
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different technologies, from 0.25 μm to 70 nm. For bulk devices, that analysis shows 
that the shape and duration of transient pulses present significant variations, depending 
on the fabrication details, on the technology itself, and on the location in the device that 
was hit by the particle. Moreover, the comparison of the behavior of the same device 
exposed to different radiation sources has shown that some particles do not have enough 
LET to induce SEUs or SETs by direct ionization. However, those particles generate 
secondary ones, with much higher LETs, that can be emitted in all directions. Once 
again, the hypothesis of multiple transients generated by a single particle hit has been 
confirmed. 

This conclusion, alone, has strong negative impact on many current mitigation 
techniques based on the single fault hypothesis, such as the classic triple modular 
redundancy - TMR (JOHNSON, 1994). 

1.2.4 Transient duration scaling vs. cycle times across technologies 
Besides higher densities, the availability of faster devices is another feature of 

future technologies that brings along strong concerns to the error tolerance community, 
because it has been predicted that, for those technologies, even particles with modest 
linear energy transfer (LET) values will produce transients lasting longer than the 
predicted cycle time of circuits (DODD, 2004), (FERLET-CAVROIS, 2006). The 
negative impact of the effects of such long duration transients (LDTs) on the overhead 
imposed by currently used temporal redundancy based error mitigation techniques has 
been first presented in Lisboa (ETS 2007), and is a key concept behind our thesis work. 
For this reason, this topic is further detailed in Chapter 2. 

1.3 MAIN CONTRIBUTIONS 
The main novelty in this work is the finding that currently used temporal 

redundancy based techniques will not be able to mitigate errors caused by long duration 
transients affecting devices manufactured using future technologies at a reasonable cost. 
Besides that, this work proposes to deal with the problem working at different 
abstraction levels, with each solution complementing the protection provided at other 
levels, aiming the full protection of a given system. In order to show some alternatives 
that may be part of a complete solution to achieve that goal, four low cost techniques 
that can be implemented at algorithm, system or circuit level, are suggested and 
analysed. 

1.3.1 Radiation Induced Long Duration Transients (LDTs) Effects 

The first significant step in this research work was the analysis of the effects of what 
has been named “long duration transients” (LDTs) on soft errors mitigation techniques. 
This forecast was embedded in published works concerning the effects of radiation on 
semiconductor devices in different technology nodes (DODD, 2004), (FERLET-
CAVROIS, 2006), and has been confronted with the predicted cycle times for inverters 
chains with different lengths, obtained through simulation, in Lisboa (ETS 2007). 

When contrasting the evolution of the width of radiation induced transient pulses 
across technologies with that of the cycle times of circuits, one could see that, while the 
cycle times decrease in a quite linear form, there is no clear scaling trend for the width 
of the transient pulses. Furthermore, for technologies beyond the 130 nm node, it has 
been shown that the duration of transient pulses will exceed the predicted cycle time of 
circuits (LISBOA, ETS 2007). Table 1.1 illustrates this fact using data for a 10-inverter 
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chain. The transient width figures in Table 1.1 have been extracted from Dodd (2004) 
and Ferlet-Cavrois (2006), while those for propagation delays have been estimated 
through simulation, using parameters from the Predictive Technology Model web site 
(ARIZONA STATE UNIVERSITY, 2007). A detailed anaylsis is shown in Chapter 2. 

Table 1.1. Propagation Delay vs. Transient Widths across Technologies (ps) 

Technology (nm) 180 130 90 100 70 32 
Transient width for LET = 10 MeV-cm2/mg 140 210 n.a. 168 170 n.a. 
Transient width for LET = 20 MeV-cm2/mg 277 369 n.a. 300 240 n.a. 
10-inverter chain propagation delay 508 158 120 n.a. n.a. 80 

n. a. = not available 

The analysis of the behavior of temporal redundancy based techniques in this new 
scenario has shown that they cannot cope with LDTs, due to the unbearable 
performance overhead that they would impose. In contrast, space redundancy based 
techniques, that could cope with LDTs, impose area and power overheads that are not 
suited to the requirements of several applications areas, such as the portable and 
embedded systems arenas. From this analysis, detailed in Chapter 2, the need to work at 
higher abstraction levels to face this new scenario has been defined, and the search for 
low cost techniques to detect and correct errors caused by LDTs at circuit, algorithm 
and system levels has started. 

1.3.2 Matrix Multiplication Algorithm Hardening 
In order to show how to deal with the problem at algorithm level, the matrix 

multiplication algorithm has been chosen as a test case. While this operation is widely 
used in several application fields, the error detection and correction of erroneous 
elements of the product matrix sometimes is a bottleneck that may lead to missed 
deadlines (in real time systems, for example). Considering that the multiplication of n×n 
matrices requires O(n3) operations, including additions, multiplications and 
comparisons of scalar values, the cost of duplication with comparison or triple modular 
redundancy to detect or correct errors in the product matrix becomes very high. 

Departing from the study of a classic error detection technique proposed in the 
seventies (FREIVALDS, 1979), which is able to detect errors in one element of the 
product matrix with a probability of at least ½, a new technique that provides 
deterministic error detection has been developed and shown to be much faster than the 
recomputation of the whole product matrix and comparison of the results (LISBOA, 
ETS 2007). In cooperation with the TIMA Laboratoire, in Grenoble, France, a 
microcontroller running the hardened algorithm has been submitted to radiation 
campaigns, in order to confirm its effectiveness. Later, the technique has been also 
extended for use with non-square matrices and vectors. This contribution is detailed in 
Chapter 3. 

1.3.3 Use of Software Invariants for Runtime Detection of Transient Faults 
In the search for a deterministic approach for error detection in matrix multiplication 

algorithms, one reached the conclusion that the test of a single condition was enough to 
detect errors affecting one element of the product matrix. In other words, a relationship 
between the results generated by the algorithm, which holds whenever the execution 
ended correctly, has been found for that algorithm. 
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Such conditions have been in use for a long time in the software engineering field, 
and are known as software invariants. However, most of the works using software 
invariants are related to the software life cycle, and intended to ensure that a program 
worked properly after any modifications had been made. 

In this work, the run-time verification of software invariants is proposed as a low 
cost mechanism to detect radiation induced faults during the execution of an algorithm, 
and is shown to be an effective fault detection mechanism that should be further 
explored. Chapter 4 describes in more details the experiments performed using software 
invariants to detect soft errors and faults, as well as the achieved results. 

1.3.4 Lockstep with Checkpoint and Rollback Improvement 
The lockstep technique, combined with the use of checkpoints and rollback, is not a 

new subject. However, until recently, it was almost neglected because its application to 
commercial off-the-shelf (COTS) processors was not practical. Nowadays, the 
commercial availability of FPGAs with multiple built-in hardwired processors brings 
the lockstep technique back as a good alternative to harden FPGA based systems against 
soft errors. 

Based on this scenario, the CAD Group of Dipartimento di Automatica e 
Informatica of Politecnico di Torino, in Italy, has started a project aiming to implement 
fault tolerant FPGA based systems using lockstep combined with checkpoint and 
rollback. 

As part of its PhD studies, the author has worked in cooperation with the CAD 
Group during four months, in 2008. While in Torino, the improvement of an existing 
implementation of the technique, through the use of an additional IP inside the FPGA 
that stores the information related to a set of memory write operations for later use 
during checkpoints has been proposed and implemented. 

The proposed improvement, together with the experiments that have been conducted 
in order to evaluate the effects of its application on the system performance, is described 
in Chapter 5 as an example of architecture level technique that could cope with 
radiation effects in future technologies. 

1.3.5 Use of Hamming Coding to Protect Combinational Logic 

Introduced in the fifties, in the last century, Hamming Coding is a powerful tool 
used for error detection and correction in storage elements and data communications 
applications. In those applications, however, the number of data bits written/transmitted 
or read/received is always the same. 

In contrast, in combinational circuits the number of inputs is usually different from 
the number of outputs, a feature that, so far, has precluded the direct application of 
Hamming coding in the hardening of combinational logic. 

In this work, an innovative approach to the use of Hamming coding in the protection 
of combinational circuits against transient faults of any kind is proposed, and its cost is 
evaluated and compared to that of the classic triple modular redundancy technique, 
showing that Combinational Hamming is a good candidate technique for this role. The 
proposed technique uses space redundancy, and is an example of how to reduce the area 
and power overheads imposed by classic alternatives. 

The description of the technique and the experimental results achieved with a set of 
combinational circuits are included in Chapter 6, as an example of circuit level 
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hardening technique that can complement the existing sequential logic hardening ones, 
in order to achieve the protection of whole systems against radiation effects. 

1.4 THESIS OUTLINE 
This thesis encompasses the results of several research works developed by the 

author since 2004. Chapter 2 describes the key findings and conclusions that led to the 
development of low cost techniques described in Chapters 3 through 6. 

In Chapter 7 the conclusions of this thesis work are summarized and directions for 
future research in the topics covered by our studies are suggested. 
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2 LONG DURATION TRANSIENTS EFFECTS 

The study of published works about the evolution of radiation induced transient 
widths across technology nodes shows that there is no clear scaling trend for the 
duration of transients. When contrasting those figures with the predicted evolution of 
cycle times, it became clear that in future technologies there is a high probability of 
occurrence of transients that will last longer than the cycle time of circuits. Departing 
from that conclusion, the analysis of temporal redundancy based techniques has shown 
that they will not be able to cope with long duration transients at a reasonable cost, due 
to the high performance overhead that they would impose. Those findings have been 
presented for the first time in Lisboa (ETS 2007), and are the starting point of the search 
for new low cost techniques able to deal with long duration transients, as described in 
the remaining chapters of this text. 

2.1 RADIATION INDUCED TRANSIENTS VS. DEVICE SPEED 
SCALING 

The width of transient pulses generated by ionization may vary according to the 
process technology. In Dodd (2004), radiation test results for different bulk technologies 
have been performed and the measured transient widths caused by particles with 
different levels of energy are shown in Figure 2.1. 

 

 
Figure 2.1. Transient pulse width scaling across technologies (DODD, 2004) 

Besides the expected fact that the pulse width increases with the linear energy 
transfer (LET) of the particle, this plot unveils important information: for low energy 
particles there is a very small variation in the transient width between the four 
technology nodes included in the study (250, 180, 130 and 100 nm). In contrast, for 
particles with high LET, for instance 70 MeV-cm2/mg, the widths of transients between 
the 250 nm and 100 nm technologies decrease 27%, from 948 ps to 694 ps, while 
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between the 180 and 130 nm technology nodes, the transient widths for this level of 
energy increase from 772 ps to 900 ps, i.e., 17%. As one can see, there is no clear 
scaling trend in SET widths. 

In parallel with Dodd (2004), the work in Gadlage (2004) presented a study of the 
width of transient pulses propagating in digital circuits for the 0.25 μm and 0.18 μm 
technology nodes, dealing with the effects of heavy ions in the space environment. SET 
widths of 1.5 ns in 180 nm CMOS technology for LET of 60 MeV-cm2/mg have been 
observed. The goal of that work was to determine the approximate actual width of these 
single event transients, but in the analysis of the results of their experiments, the authors 
commented that the SET pulse widths are approximately the same at both technology 
nodes, and that when the width of a transient becomes larger than the period of the 
clock frequency that the circuit is running at, then every induced transient will be 
latched. That work did not correlate the results with the scaling of cycle times, nor 
explored the consequences of that finding or proposed any solution for this problem. 

In Ferlet-Cavrois (2006), the width of the propagating transient voltage for bulk and 
SOI devices, in different technologies, using a chain of ten inverters, was measured 
through simulation, with similar results, as shown in Figure 2.2. 

 

 
Figure 2.2. Transient pulse width scaling across technologies (FERLET-CAVROIS, 

2006) 

In Benedetto (2006), radiation test results for 60 MeV-cm2/mg have shown SET 
widths up to 1.5 ns and 2.7 ns in 180 nm and 130 nm, respectively. Larger SET widths 
were also observed when the voltage is reduced below the nominal operating voltage of 
the technology node of interest. The maximum transient pulse width measured in this 
case for the 180 nm technology node increases from 1.5 ns at nominal voltage (1.8 V) to 
almost 3 ns at a reduced Vdd of 1.1 V. 

Table 2.1. Predicted Transient Widths (ps) 

Technology (nm) 180(1) 130(1) 100(1) 70(2) 
10 MeV-cm2/mg 140 210 168 170 
20 MeV-cm2/mg 277 369 300 240 

(1) Extracted from Dodd (2004) 
(2) Extracted from Ferlet-Cavrois (2006) 

 

In order to compare the pulse widths predicted in the previously mentioned studies, 
the propagation delays of different inverter chains have been measured through 
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simulation, using the HSPICE tool and parameters from the Predictive Technology 
Model Web site (ARIZONA STATE UNIVERSITY, 2007) with default temperature of 
25 degrees Celsius, and are shown in Table 2.2. 

Table 2.2. Simulated Propagation Delay Scaling Accross Technologies (ps) 

Technology (nm) 180 130 90 32 
Vdd (V) 1.5 1.3 1.2 0.9 
4-inverter chain 202.65 63.81 48.93 33.74 
6-inverter chain 304.55 95.14 72.66 49.02 
8-inverter chain 406.45 126.45 96.39 64.30 
10-inverter chain 508.35 157.75 120.15 79.58 

 

In Figure 2.3, the simulated clock cycles for the 10-inverter chain are shown for 
different technology nodes, and compared to a transient lasting approximately 86 ps. 
From the data in Table 2.1, one can see that such a short transient can be caused by 
small energy particles for the 180 nm technology, and Figure 2.3 shows that in this case 
the transient lasts only a fraction of the clock cycle. However, for the 32 nm technology, 
the transient width would be longer than the clock cycle of the inverter chain, which 
leads to the conclusion that even transients due to higher energy particles, lasting 
several clock cycles, can be expected in future technologies. 

 

 
Figure 2.3. Transient width vs. clock cycles 

 

Data from tables 2.1 and 2.2 have been used to construct Figure 2.4. The lines in the 
figure show the simulated clock cycles for the 180, 130, 90, and 32 nm nodes, which 
decrease almost linearly between the 130 and 32 nm nodes. The first three vertical bars 
show that for the 130 nm and 100 nm technology nodes the predicted transient widths 
for particles with LET up to 20 MeV-cm2/mg, extracted from Dodd (2004), can be 
longer than the simulated cycle times for inverter chains in the same technologies. The 
fourth vertical bar shows the data for the 70 nm technology node, extracted from Ferlet-
Cavrois (2006), which confirms this trend. The lower (yellow) segment of each vertical 
bar shows the pulse width for particles with LET up to 10 MeV-cm2/mg. 
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Cycle time and transient width scaling across technologies
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Figure 2.4. SET pulse width vs. cycle time scaling 

 
By observing Figure 2.4, it is therefore straightforward to predict that in future 

technologies the transient pulses may last longer than the clock cycles of these circuits. 
If no significant improvements are developed in the CMOS technology to reduce the 
collected charge, for very high speed circuits operating at 2 GHz and beyond (clock 
periods ≤ 500 ps), SETs may even last for several clock cycles. 

As will be shown in Section 2.2, existing mitigation techniques are either unable to 
deal with this new scenario, or too expensive in terms of area, performance, and/or 
power overheads. Therefore, the use of low cost algorithm or system level techniques 
seems to be the most suitable approach to cope with LDTs, as will be further detailed in 
Chapters 3 through 6. 

2.2 CURRENT MITIGATION TECHNIQUES VS. LDTS 
Many different error detection techniques aiming at the mitigation of soft errors in 

software based systems have been proposed so far. They can be organized in three 
broad categories:  

• software implemented techniques; 

• hardware implemented techniques; 

- time redundancy, 

- space redundancy, 

- checkers or I-IPs, 

• hybrid techniques. 

Software implemented techniques exploit detection mechanisms developed purely in 
software, with only extra memory as the allowed overhead. On the other side, hardware 
based techniques exploit the introduction of hardware modifications or extra hardware 
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addition. Finally, hybrid techniques combine both software and hardware error 
detection mechanisms. 

Some of those techniques focus on checking the consistency between the expected 
and the executed program flow, recurring to the insertion of additional code lines or by 
storing flow information in suitable hardware structures, respectively. These are the 
control flow checking techniques. Another group of techniques checks the data that is 
read and written by the software, in order to detect SEUs affecting the stored data, and 
therefore are called data verification techniques. Selected proposed techniques 
belonging to those two groups are discussed in the following subsections. 

Most of the proposed techniques rely on fault models that do not include neither the 
occurrence of multiple simultaneous transient faults or the possibility of transient pulses 
during longer than the clock cycle of circuits, and therefore a careful review of such 
techniques should be made in the near future, in order to ensure their compliance with 
this new scenario. 

In the following subsections, the main techniques in each category are commented 
and their strengths and weaknesses concerning this scenario are briefly discussed. 

2.2.1 Software Based Techniques 
SIHFT (Software Implemented Hardware Fault Tolerance) techniques exploit the 

concepts of information, operation, and time redundancy to detect the occurrence of 
errors during program execution. In the past years some techniques have been 
developed that can be automatically applied to the source code of a program, thus 
simplifying the task for software developers: the software is indeed hardened by 
construction, and the development costs can be reduced significantly. Moreover, the 
most recently proposed techniques are general, and thus they can be applied to a wide 
range of applications. Unfortunately, most SIHFT techniques assume an unbounded 
memory, something that is not practical for low power or area constrained applications, 
since memories are responsible for most of the power dissipation and the area within a 
chip.  

Techniques aiming at detecting the effects of faults that modify the expected 
program’s execution flow are known as control flow checking techniques. These 
techniques are based on partitioning the program’s code into basic blocks (sequences of 
consecutive instructions in which, in the absence of faults, the control flow always 
enters at the beginning and leaves at the end). 

Among the most important solutions based on the notion of basic blocks proposed in 
the literature, there are the techniques called Enhanced Control Flow Checking using 
Assertions (ECCA) (ALKHALIFA, 1999) and Control Flow Checking by Software 
Signatures (CFCSS) (OH, 2002b). 

ECCA is able to detect all the single inter-block control flow errors, but it is neither 
able to detect intra-block control flow errors, nor faults that cause an incorrect decision 
on a conditional branch. CFCSS cannot cover control flow errors if multiple nodes 
share multiple nodes as their destination nodes. 

In Vemu (2007) a software based technique for detection and correction of control 
flow errors named ACCE (Automatic Correction of Control Flow Errors) is proposed. 
ACCE is an extension of a previous technique (VEMU, 2006) able to detect inter-node 
control flow errors. In ACCE the identification of the node from which the control flow 
error occurred is implemented, thereby allowing the correction of the error. Despite 
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being unable to mitigate all control flow errors, it provides correct results in 90% of the 
test cases using a set of benchmark applications. ACCE imposes very low latency for 
error correction, with a performance overhead of about 20%. This technique has 
brought several significant contributions, being considered by the authors as the first 
technique able to correct control flow errors at software level. One important feature of 
ACCE is the fact that it does not require any changes in the application code, since it is 
implemented through modifications introduced inside the compiler, with an extra pass 
in which the instructions required to implement ACCE are inserted at the beginning and 
at the end of each node of the control flow graph of the program. Since ACCE only 
deals with inter-node control flow errors, its error coverage can be increased by splitting 
nodes into subnodes, with increased performance and memory overheads.  

In order to achieve system level hardening against transient errors, the authors 
propose the use of ACCE combined with some algorithmic fault tolerance mechanisms 
able to cope with errors affecting data. Experiments in which ACCE has been combined 
with ABFT have shown a marginal increase in the correctablity, from 89.5% to 91.6%, 
while increasing the detectability from 92% to 97%. Finally, an enhanced version of the 
technique, named ACCED, which combines ACCE with the Selective Procedure Call 
Duplication (SPCD) has been implemented and the experiments have shown that the 
combination of both techniques increase both the correctablity and detectability of 
ACCE.  

As far as faults affecting program data are considered, several techniques have been 
proposed that exploit information and operation redundancies (CHEYNET, 2000), (OH, 
2002a). Such approaches modify the source code of the application to be hardened 
against faults by introducing information redundancy and instruction duplication. 
Moreover, consistency checks are added to the modified code to perform error 
detection. The approach proposed in Cheynet (2000) exploits several code 
transformation rules that mandate for duplicating each variable and each operation 
among variables. Furthermore, each time a variable is read, a consistency check 
between the variable and its replica should be performed. 

Conversely, the approach proposed in Oh (2002a), named Error Detection by Data 
Diversity and Duplicated Instructions (ED4I), consists in developing a modified version 
of the program, which is executed along with the unmodified program. After executing 
both the original and the modified versions, their results are compared: an error is 
detected if any mismatch is found. Both approaches introduce overheads in memory and 
execution time. 

By introducing consistency checks that are performed each time a variable is read, 
the approach proposed in Cheynet (2000) minimizes the latency of faults; however, it is 
suitable for detecting transient faults only, since the same operation is repeated twice. 
Conversely, the approach proposed in Oh (2002a) exploits diverse data and duplicated 
instructions, and thus it is suitable for both transient and permanent faults. As a 
drawback, its fault latency is generally greater than in Cheynet (2000). The ED4I 
technique requires a careful analysis of the size of used variables, in order to avoid 
overflow situations. 

SIHFT techniques are appealing, since they do not require modification of the 
hardware running the hardened application, and thus in some cases they can be 
implemented with low costs. However, although very effective in detecting faults 
affecting both program execution flow and program data, the software implemented 
approaches may introduce significant time overheads that limit their adoption only to 



 

 

29 

those applications where performance is not a critical issue. Also, in some cases they 
imply a non-negligible increase in the amount of memory needed for storing the 
duplicated information and the additional instructions. Finally, these approaches can be 
exploited only when the source code of the application is available, precluding its 
application when commercial off-the-shelf software components are used. 

In this thesis work, the focus has been on techniques for detection and correction of 
transient errors affecting the data used by the system, and not on control flow errors. 
Considering that no system can be completely hardened without control flow errors 
mitigation, this will be an important field for future research, as discussed in Chapter 7. 

2.2.2 Hardware Based Techniques 
Hardware based techniques must be implemented during the design phase of the 

system to be hardened. Therefore, they are not suited for the protection of commercial 
off-the-shelf (COTS) processors targeted at the general purpose market, and their 
implementation is restritcted to application specific integrated circuits (ASICs) or 
FPGA based designs. Those techniques can be classified as redundancy based ones, 
which can rely on time or space redundancy, and those using watchdogs, checkers or 
IPs to monitor the main processor operations watching for errors. 

2.2.2.1 Time Redundancy 

Hardware based techniques using time redundancy rely in the verification of the 
outputs generated by the circuit by comparing their values at two different moments in 
time, separated by a fixed delay. Those techniques rely on the single fault model and 
also in the concept that the duration of the transient pulse is short, and for this reason 
the introduction of the delay does not impact performance very much. Examples of such 
techniques are shown in Anghel (2000a; 2000b), and Mitra (2005). Also, in Austin 
(2004), the same concept is used to check the outputs of a circuit and tune the soft error 
rate by dynamically adjusting the voltage, aiming to reduce the power consumption. 

In Figure 2.5, extracted from Anghel (2000), one can see an example of temporal 
redundancy based technique, in which the outputs of the circuit to be protected are 
sampled twice, at different moments in time separated by a fixed delay δ, and the 
obtained values are compared. When they are different, an error is flagged. Schematics 
(a) and (b) show different alternatives for the implementation of the delayed sampling 
of outputs, and drawing (c) shows how the double sampling allows the detection of the 
transient induced fault. 

     
Figure 2.5. Temporal redundancy technique (ANGHEL, 2000) 
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Considering the durations of the transient pulse (Dtr,) and of the delay between 
outputs sampling (δ), shown in Fig. 2.5(c), the following situations may occur: 

• The transient hits the circuit and is completely dissipated either before O1 is 
sampled or after O2 is sampled. In this case, no matter the duration of the 
transient, the two sampled outputs will be equal and correct, and the transient will 
not affect the results generated by the circuit. 

• The transient hits the circuit before O1 is sampled and is completely dissipated 
before O2 is sampled, or hits the circuit after O1 is sampled and vanishes after O2 
is sampled. In this case, no matter the duration of the transient, the two sampled 
outputs will be different, and an error will be properly flagged by the technique. 

• The transient hits the circuit after O1 is sampled and is completely dissipated 
before O2 is sampled. In this case, the two sampled outputs will also be equal and 
correct, and no harm to the generated output will happen. However, to ensure that 
this situation leads to correct operation of the technique, the duration of the 
transient, Dtr, must clearly be shorter than δ. In case longer duration transients 
(larger Dtr values) are expected, the duration of δ must be increased accordingly, 
to ensure correct operation. 

• Finally, if δ is not long enough, there will be situations in which the transient hits 
the circuit before O1 is sampled and is completely dissipated only after O2 is 
sampled, i.e., the duration of the transient, Dtr, is longer than δ. In this case, the 
two outputs will be equal, however, their value will be incorrect and this will not 
be properly detected by the technique. This situation is depicted in Figure 2.6, 
adapted from Anghel (2000). 

In order to avoid the possibility of failure of the technique in the third and fourth 
situations described above, the only remedy is to increase the duration of δ. 

 
Figure 2.6. Long duration transient effect – adapted from Anghel (2000) 

Therefore, in order to keep the correctness of temporal redundancy based techniques 
in future technologies, when the duration of the transient pulses is expected to be much 
larger than the average circuit cycles, it will be necessary to increase the duration of the 
delay δ used to separate the output values to be compared. And this is a penalty imposed 
at every operation cycle, which will imply unbearable performance overheads. 

As a consequence, the application of such techniques will be negatively impacted by 
the occurrence of long duration transient pulses in the near future. 

2.2.2.2 Space Redundancy 

The group of space redundancy based techniques is more likely to provide 
protection even in the presence of long duration transient pulses, because, under the 
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single fault model, which is still the dominant one (ROSSI, 2005), only one of the 
copies of the circuit would be affected by the long duration transient, and the other(s) 
would provide correct results. 

The technique called duplication with comparison (WAKERLY, 1978) would allow 
only the detection of errors caused by long duration transients, while in the case of triple 
modular redundancy the circuit would be able to detect the error and also choose the 
correct result, discarding the wrong one caused by the long duration transient. 

Another approach in this group is proposed in Nieuwland (2006), where the critical 
path of combinational circuits is hardened through the duplication of gates and transient 
errors are mitigated (actually, masked) thanks to the extra capacitance available in the 
node. This technique also relies on the single fault model. 

However, the area and mainly power penalties imposed by solutions using space 
redundancy are a big concern, mainly for embedded systems. For this reason, the 
development of innovative techniques in this group providing lower costs has also been 
included as one of the goals this research work, leading to the technique described in 
Chapter 6. 

2.2.2.3 Mitigation Techniques Based on Watchdogs, Checkers and IPs 

The third group of hardware based techniques relies in the use of special purpose 
hardware modules, called watchdog processors (MAHMOOD, 1988), checkers 
(AUSTIN, 1999), or infrastructure IPs (LISBOA, JETTA 2007), to monitor the control 
flow of programs, as well as memory accesses. The behavior of the main processor 
running the application code is monitored using three types of operations. 

Memory access checks consist in monitoring for unexpected memory accesses 
executed by the main processor, such as in the approach proposed in Namjoo (1982), 
where the watchdog processor knows at each time during program execution which 
portion of the program’s data and code can be accessed, and activates an error signal 
whenever the main processor executes an unexpected access. 

Consistency checks of variables contents consists in controlling if the value a 
variable holds is plausible. By exploiting the knowledge about the task performed by 
the hardened program, watchdog processors can validate each value the main processor 
writes or reads through range checks, or by exploiting known relationships among 
variables (MAHMOOD, 1983). 

Control flow checks consist in controlling whether all the taken branches are 
consistent with the program graph of the software running on the main processor 
(NAMJOO, 1983), (OHLSSON, 1995), (SCHUETTE, 1987), and (WILKEN, 1990). As 
far as the control flow check is considered, two types of watchdog processors may be 
envisioned. 

An active watchdog processor executes a program concurrently with the main 
processor. The program graph of the watchdog’s program is homomorphic to the main 
processor’s one. During program execution, the watchdog continuously checks whether 
its program evolves as that executed by the main processor or not (NAMJOO, 1983). 
This solution introduces minimal overhead in the program executed by the main 
processor; however, the area overhead needed for implementing the watchdog processor 
can be non-negligible. 
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A passive watchdog processor does not execute any program; conversely, it 
computes a signature by observing the bus of the main processor. Moreover, it performs 
consistency checks each time the main program enters/leaves a basic block within the 
program graph. A cost-effective implementation is described in Wilken (1990), where a 
watchdog processor observes the instructions the main processor executes, and 
computes a runtime signature. Moreover, the code running on the main processor is 
modified in such a way that, when entering a basic block, an instruction is issued to 
the watchdog processor with a pre-calculated signature, while the main processor 
executes a NOP instruction. The watchdog processor compares the received pre-
computed signature with that computed at runtime, and it issues an error signal in case 
of mismatch. An alternative approach is proposed in Ohlsson (1995), where the 
watchdog processor computes a runtime signature on the basis of the addresses of the 
instructions the main processor fetches. Passive watchdog processors are potentially 
simpler than active ones, since they do not need to embed the program graph and they 
perform simpler operations: signature computation can be demanded to LFSRs, and 
consistency checks to comparators. However, an overhead is introduced in the 
monitored program: instructions are indeed needed for communicating with the 
watchdog. 

Dynamic verification, another hardware-based technique, is detailed in Austin 
(2000) for a pipelined core processor. It uses a functional checker to verify the 
correctness of all computation executed by the core processor. The checker only permits 
correct results to be passed to the commit stage of the processor pipeline. The so-called 
DIVA architecture relies on a functional checker that is simpler than the core processor, 
because it receives the instruction to be executed together with the values of the input 
operands and of the result produced by the core processor. This information is passed to 
the checker through the re-order buffer (ROB) of the processor’s pipeline, once the 
execution of an instruction by the core processor is completed. Therefore, the checker 
does not have to care about address calculations, jump predictions and other 
complexities that are routinely handled by the core processor. 

Once the result of the operation is obtained by the checker, it is compared with the 
result produced by the core processor. If they are equal, the result is forwarded to the 
commit stage of the processor’s pipeline, to be written to the architected storage. When 
they differ, the result calculated by the checker is forwarded, assuming that the checker 
never fails (which is a risky assumption). If a new instruction is not released for the 
checker after a given time-out period, the core processor’s pipeline is flushed, and the 
processor is restarted using its own speculation recovery mechanism, executing again 
the instruction. Originally conceived as an alternative to make a core processor fault 
tolerant, this work evolved later to use a similar checker to build self tuning SoCs 
(WILKEN, 1990). 

While being a well balanced solution, in terms of area and performance impacts, the 
DIVA approach has two main drawbacks. First, since the checker is implemented inside 
the processor’s pipeline, it cannot be implemented in SoCs based on COTS processors 
or FPGAs that have an embedded hardwired off-the-shelf processor, such as an ARM or 
Power PC core. Second, the fundamental assumption behind the proposed solution is 
that the checker never fails, due to the use of oversized transistors in its construction 
and also to extensive verification in the design phase. In case this is not feasible, the 
authors suggest the use of conventional alternatives, such as TMR and concurrent 
execution with comparison, which have been already studied in several other works. 
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The approaches discussed in this subsection usually imply in a high performance 
overhead, since the results must be computed twice, and also in an area overhead, due to 
the addition of the watchdog, checker or I-IP. Even in solutions where part of the 
verification is executed in parallel with the main one, such as Rhod (JETTA 2008), the 
performance overhead is still significant. 

2.2.3 Hybrid Techniques 
Hybrid techniques combine SIFHT and hardware based techniques. One such 

technique is described in Bernardi (2006), and it combines the adoption of some SIHFT 
techniques in a minimal version (thus reducing their implementation cost) with the 
introduction of an I-IP into the SoC. The software running on the processor core is 
modified so that it implements instruction duplication and information redundancy; 
moreover, instructions are added to communicate to the I-IP the information about basic 
block execution. The I-IP works concurrently with the main processor, it implements 
consistency checks among duplicated instructions, and it verifies whether the correct 
program’s execution flow is executed by monitoring the basic block execution. 

Hybrid techniques are effective, since they provide a high level of dependability 
while minimizing the introduced overhead, both in terms of memory occupation and 
performance degradation. However, in order to be adopted they mandate the availability 
of the source code of the application the processor core should run, and this requirement 
cannot be always fulfilled. 

The idea of introducing an I-IP between the processor and the instructions memory, 
and of charging the I-IP of substituting on-the-fly the fetched code with hardened one, 
was preliminarily introduced in Schillaci (2006). However, the I-IP proposed in 
Schillaci (2006) is very simple (it does not include either an ALU or a control unit), and 
is not supported by a suitable design flow environment. Moreover, the performance 
overhead of the method in Schillaci (2006) is significant, and the method cannot cover 
permanent faults. 

In Rhod (JETTA 2008), an approach aiming to minimize the overhead needed to 
harden a processor core has been proposed. The method is based on introducing in the 
SoC a further module (I-IP), whose architecture is general, that needs to be customized 
to the adopted processor core. The I-IP monitors the processor buses and performs two 
main functions: when the processor fetches a data processing instruction belonging to a 
design time selected set, it acts on the bus and lets the processor fetch a sequence of 
instructions generated on-the-fly, instead of the original one. This sequence of 
instructions allows the I-IP to get the operands of the original data processing 
instructions, which is then executed both by the processor and by the I-IP; the results 
obtained by the processor and the I-IP are then compared for correctness. Each time the 
processor fetches a new instruction, the I-IP also checks the correctness of the address 
used by the processor, by comparing it to the expected one, and an error is notified if a 
mismatch is found, thus allowing also the detection of control flow errors. 

The method is inspired in SIHFT and hybrid techniques, but it does not introduce 
any memory overhead in the hardened system (code redundancy is introduced on-the-
fly). Moreover, no change is required on the application code, whose source version is 
not required to be available. Finally, the method allows designers to trade-off costs and 
reliability, mainly by suitable selecting the subset of data-manipulation instructions to 
be hardened. Fault injection experiments using the proposed technique implemented in 
a MIPS processor have shown that most of the non detected errors are due to SEUs 
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affecting the register file of the processor before the operands are read and their values 
forwarded to the I-IP. In order to avoid these errors, the register file should be protected 
using EDAC techniques, what would imply in changes in the internal architecture of the 
processor. 

Another hybrid technique to mitigate SETs in combinational logic based on 
duplication and time redundancy, and code word state preserving (CWSP), is shown in 
Nicolaidis (1999). The CWSP stage replaces the last gates of the circuit by a particular 
gate topology that is able to pass the correct value in the combinational logic in the 
presence of a SET. In the case of duplication, when the two copies of the inputs are 
identical (code word), the next state is equal to the corresponding output of the function, 
but if the two copies of the inputs are not identical (non-code word), the next state 
remains equal to the present state. Using time redundancy, one of the inputs of the 
CWSP element is coming directly from the combinational circuit output, while the other 
input comes from the same output signal, but is delayed. The use of this method 
requires the modification of the CMOS logic in the next stages by the insertion of extra 
transistors and the necessity of using duplicated logic or logic to implement a delay. 
Furthermore, being also a time redundancy based technique, it will suffer from the same 
drawbacks already discussed in subsection 2.2.2.1, since it will not withstand LDTs. 

2.3 PROPOSED APPROACH TO DEAL WITH LDTS 
As shown in the previous section, most of currently known soft errors mitigation 

techniques will not be useful in the future scenario, where radiation induced transients 
will last longer than the cycle time of circuits and the probability of multiple 
simultaneous upsets will become higher due to the small distances between the devices. 
Time redundancy based techniques will become too expensive, in terms of performance 
overhead, due to the need for an increased delay between two or three inputs sampling, 
which must be longer than the expected transient width. Space redundancy based ones, 
in turn, will still impose too heavy penalties in terms of area and power overheads, 
making them useless for applications fields in which those are scarce resources, such as 
the embedded systems arena. Finally, software based techniques will continue to suffer 
from the need to modify existing software or impose high area and/or performance 
overheads. 

Given this scenario, this work proposes the development of a set of innovative low 
cost techniques, each one working at a different abstraction level in a complementary 
fashion, in order to face the challenges imposed to designers by future technologies. 
While the development of a complete set of such solutions, able to harden a whole 
system against soft errors, is out of the scope of this thesis text, this is the ultimate goal 
of our research project. 

Very recently, in Albrecht (2009), a generic approach to deal with the drawbacks 
imposed by future technologies in the design of systems-on-chip has been proposed. 
The authors propose to divide the SoC into several architectural layers, each one 
tailored to the specific SoC fault-tolerance needs, aiming to cope with the decreasing 
device reliability due to parameters variations, temperature impact, and radiation 
effects. While the ideas behind this proposal have some common points with the ones 
proposed in Lisboa (ETS 2007), in Albrecht (2009) the authors suggest that the 
detection of errors should be implemented at lower levels, while the error correction 
should be performed at system level. In order to achieve this goal, mechanisms for fault 
detection and communication with upper levels should be implemented at the lower 
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levels, while the upper levels would implement the error correction mechanisms and 
also the ability to switch on and off the error detection mechanisms in lower levels, 
according to the specific fault tolerance requirements of the application. So, that 
proposal aims to define a configurable reliable design, able to deal not only with 
runtime, but also with design and production errors. However, no new error detection or 
correction technique is proposed in that work, and the authors simply make a review of 
existing alternatives, without any comments about their suitability to cope with the new 
scenario. Furthermore, the authors state that the overall system reliability is becoming 
more important than the mips-per-watt measure, thereby suggesting that performance 
and power overheads are not as important as the reliability features in a SoC. 

In our work, in turn, the development of new low cost techniques to deal with the 
new challenges at different abstraction levels is proposed, but with reduced overheads 
In terms of area, power, and performance, as the first goal. While most of the solutions 
proposed in this thesis aim to detect errors, some of them also include error correction 
capabilities. As a general rule, our proposal is to correct errors through recomputation, 
which sometimes may seem to be a very expensive solution. However, it must be 
highlighted that when one deals with radiation induced errors, given the very low 
frequency of SETs in comparison with the operating frequencies of the circuits, the 
recomputation cost becomes almost negligible. Nevertheless, the reduction of the 
recomputation cost itself has also been a concern in our work, as is detailed in the 
description of the technique presented in Chapter 3. 

For the purpose of this work, we have considered the following abstraction levels in 
a system: 

• technology level  

• component level 

• circuit level 

• architecture level 

• algorithm or software level 

• system level 

At the technology level, the use of built-in current sensors, proposed in Neto (2006), 
is a possible approach to detect soft errors, as shown in Lisboa (ITC 2007) and Albrecht 
(2009), but the error correction capability must then be implemented at higher 
abstraction levels. 

At the component level, given the possibility of transients lasting even longer than 
the propagation times of circuits, the use of space redundancy, under the single fault 
assumption, is the most suitable alternative. However, the area and power overheads 
imposed by space redundancy preclude the use of this option when designing portable 
or embedded systems. Another approach is to oversize the most sensitive transistors 
used in the construction of the component, but then again the area overhead becomes 
too high. Due to those considerations, in our work there are no studies for error 
detection or correction at the component level. 

When working at circuit level, many alternative techniques have already been 
proposed. As previously mentioned, those based on time redundancy will be useless in 
the presence of LDTs. Space redundancy techniques, such as DWC, TMR, and the use 
of  IPs or checkers operating in parallel with the circuit to be protected, can indeed cope 
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with LDTs, but usually impose heavy penalties in terms of area and power. With this in 
mind, one of the new low overhead solutions proposed in this thesis is the use of 
Hamming codes to protect combinational logic, as described in Chapter 6. 

Considering the use of commercial off-the-shelf processors in the implementation of 
the system to be hardened, the mitigation of soft errors at the architecture level is 
usually restricted to space redundancy techniques such as TMR. However, the growing 
availability of multi-processor FPGAs, which allow the addition of custom logic around 
the COTS processors, opens new paths to be explored in the search for soft error 
mitigation alternatives. As an example of this approach, the use of the lockstep 
technique, combined with checkpoint and rollback, already proposed in the past but 
precluded due to the need to the high costs involved in the design and manufacturing of 
ASICS, is now becoming again a feasible option. Due to this fact, in this thesis this 
technique has been studied and an improvement at the architecture level that reduces the 
time required to perform checkpoints has been proposed, as described in Chapter 5. 

Despite the studies aiming to deal with the problem at lower abstraction levels, as 
proposed in Lisboa (ETS 2007) our preferred alternative to deal with the effects of 
LDTs is to work at algorithm level or system level. And with this in mind, our efforts 
have been concentrated in the search for low cost alternatives to accomplish our goal. 
Starting with the matrix multiplication algorithm, for which a verification technique 
with single element recomputation at extreme low cost has been devised, the work has 
continued with the use of software invariants in the runtime detection of soft errors. In 
both cases, the low cost goal has been achieved, and the proposed solutions seem good 
candidates to be included together with future ones in the hardening of complete 
systems against radiation induced long duration transient faults. 

In the following chapters, the main results of our research work during the thesis 
development are presented and discussed. 
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3 MATRIX MULTIPLICATION HARDENING 

This part of the thesis describes  a technique able to detect and correct errors 
affecting a single element of the product in matrix multiplication operations which 
provides a significant cost reduction when compared with classic solutions such as 
duplication with comparison (error detection only) and triple modular redundancy (error 
detection and correction). 

Once the conclusion that mitigation techniques working at low level would not be 
suitable to deal with long duration transients and multiple simultaneous faults has been 
reached, our research work has been directed to the search of low cost algorithm level 
solutions. At this level, the first task has been to harden the matrix multiplication 
algorithm, a widely used one that has applications in several fields. After studying some 
of the formerly proposed solutions to the problem, our focus has been concentrated in 
the study of a probabilistic solution proposed in Freivalds (1979). The analysis of that 
technique, which is able to detect errors affecting a single element of the product matrix 
with a probability higher than ½, has led the author to the conclusion that it could be 
improved in order to provide deterministic error detection, i.e., to detect the same type 
of errors with a probability equal to one.  

The first experimental results showing the proposed technique have been presented 
in Lisboa (LATW 2007) and Lisboa (ETS 2007), when the author received the 
suggestion to compare his proposal with the well known technique named algorithm 
based fault tolerance – ABFT (HUANG, 1984), which has been proposed for the 
hardening of large matrices multiplication performed by a network of processors. Along 
the research, the work by Prata (1999), comparing Freivalds’ technique (named there as 
result checking), the starting point of our work, to ABFT has also been used as a 
reference and is commented in Section 3.2. 

Initially targeting only the detection of the error, with recomputation of the whole 
product matrix when an error was detected, as described in section 3.3.1, along the 
research the proposed technique evolved to several alternative solutions providing 
different computational costs and correction latency features. The exploration of the 
possible alternatives has been conducted in cooperation with Costas Argyrides, a PhD 
student at University of Bristol, UK (section 3.3.2), and with Fernanda Lima 
Kastensmidt and Gilson Wirth, co-workers at the Computer Science (PPGC) PhD 
program in Instituto de Informática (UFRGS, Brazil), as described in section 3.3.3. The 
development of the technique and its improvements led to the publication of several 
papers, such as (LISBOA, ITC 2007), (LISBOA, VTS 2008), (LISBOA, WREFT 
2008), (LISBOA, DFR 2008), and (Argyrides, IOLTS 2009). 
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In addition to the development of the technique itself, radiation injection 
experiments and measurements have been conducted in cooperation with Eduardo 
Rhod, a Microelectronics (PGMicro) PhD student at Instituto de Informática (UFRGS, 
Brazil), and Paul Perronard and Raoul Velazco, working at the TIMA Laboratoire, at 
the Institut National Polytechnique, in Grenoble, France. The results obtained in those 
experiments have been presented in Lisboa (RADECS 2008) and are described in 
Section 3.3.4. 

The extension of the technique for use with non-square matrices and vectors has also 
been the subject of analysis, but not yet published. The conclusions of those studies are 
described in Section 3.3.5.  

3.1 PROBLEM DEFINITION 
For this step of the research, the matrix multiplication algorithm has been selected as 

the case study, since matrix operations are an important tool for several applications, 
such as signal and image processing, weather prediction and finite element analysis, and 
often the performance of those systems depends on the speed of these operations 
(HUANG, 1984). 

Considering that applications such as audio, video, graphics, and visualization 
processing, share the ability to tolerate certain types of errors at the system outputs, 
once those errors are within acceptable boundaries, a new application oriented paradigm 
to deal with process variations, defects, and noise, named error tolerance (ET), is 
proposed in Breuer (2004). However, even error tolerant applications have maximum 
acceptable error limits, and therefore the search for techniques that can mitigate 
radiation induced errors is an important contribution to keep the overall error rate below 
those limits. 

Aiming to provide higher overall yield rates, by enabling the use of systems that 
otherwise would be discarded, the application of system-level error tolerance techniques 
to multimedia compression algorithms has been proposed in Chong (2005), Chung 
(2005). In Chong (2005), the application of ET for a JPEG encoder has shown that more 
than 50% of single stuck-at interconnection faults in one of its 1D DCT modules 
resulted in imperceptible quality degradation in the decoded images. In Chung (2005), 
an ET based application oriented design and test scheme was applied to three different 
possible architectures of a motion estimation system, and proven to increase the yield 
rate. 

Due to those considerations, the matrix multiplication algorithm was selected with 
the initial purpose of developing an error tolerant technique for matrix multiplication, 
which further led to the deterministic solution described in Section 3.3.1.2. In order to 
further exercise the application of the proposed approach, this case study has also been 
applied at different levels of granularity, and the computational cost of the alternatives 
have been compared, as described in Section 3.3.3. 

Given two n×n matrices, the number of required arithmetic operations for matrix 
multiplication is O(n3). However, since additions and multiplications are used in the 
matrix multiplication algorithm, throughout this work we consider the cost of each type 
of operation separately, with the cost of multiplications being estimated as 4 times the 
cost of additions, as shown in Table 3.1. As to the comparison operations required for 
error detection, which are considered in the computational cost analysis and 
comparison, their cost is assumed to be equal to that of additions. 
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As one can see in Table 3.1, the computational cost of matrix multiplication grows 
very fast with the number of lines and columns, which makes the recomputation of the 
whole product matrix, when an error is detected, a very expensive solution. Alternative 
solutions, aiming to minimize the recomputation cost, and also the trade-offs between 
recomputation cost and error verification frequency have also been considered along the 
research and are discussed in Sections 3.3.2 and 3.3.3. 

Table 3.1 – Matrix multiplication computational cost scaling with n 

n Multiplications 
n3 

Additions 
n2(n-1) 

Total cost 
4n3+ n2(n-1) 

2 8 4 36 
4 64 48 304 
8 512 448 2,496 
16 4,096 3,840 20,224 
32 32,768 31,744 162,816 
64 262,144 258,048 1,306,624 

 

Another important issue is the maximum time that a given system may run after the 
occurrence of an error, before this error leads to unrecoverable damages. Therefore, the 
error detection latency has also been a matter of study and is discussed in Section 3.3.3. 

3.2 RELATED AND PREVIOUS WORK 
One classic technique used to detect errors in the execution of an algorithm, named 

duplication with comparison (DWC), is to execute it twice and compare the results 
(WAKERLY, 1978). This allows the detection of errors, but not the identification of the 
correct result. Therefore, in order to recover from an error, the duplicated operation 
must be repeated and checked again, with a total computational cost equal to four times 
the cost of a single operation plus the cost of comparisons. 

Triple modular redundancy (TMR), which executes three times the operation and 
then votes for the correct result using majority, is another alternative (JOHNSON, 
1994). For the single error hypothesis, and assuming the voter does not fail, it allows 
detecting errors and choosing the correct result without recomputation. However, its 
cost is still higher than three times the cost of a single operation, due to the additional 
cost of voting. 

The use of checksums for detection and correction of errors in matrix multiplication 
is a classic technique proposed in Huang (1984) and named algorithm based fault 
tolerance (ABFT). Proposed for use in the manipulation of large matrices, handled in 
parallel by multiple processors, this technique can also be used to multiply smaller 
matrices, using a single processor, providing reduced cost error detection and 
correction. As proposed by Huang, “ABFT is based on the encoding of the data used by 
the algorithm, the redesign of the algorithm to operate on the encoded data, and the 
distribution of the computation steps in the algorithm among computation units” 
(HUANG, 1984). This approach provided low cost fault tolerance, however it is applied 
by tailoring the fault tolerance scheme to the algorithm to be performed, which implies 
in high algorithm adaptation costs. 

Another approach, named result checking, was proposed in Rubinfeld (1990), where 
several mathematical computations, including matrix multiplication, are analyzed 
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aiming the definition of programs to check the result of the computation in a time that is 
less than that required to recompute the whole function. 

More recently, in Prata (1999), the application of ABFT and result checking 
specifically to matrix multiplication algorithms has been evaluated. In Prata (1999) the 
authors used the Freivalds’ technique, proposed in Freivalds (1979), for matrix 
multiplication result checking, which detects errors with a given probability. They 
executed twice the technique in order to obtain a higher probability of error detection 
(only 2.7% of undetected errors). Nevertheless, the error detection in their experiments 
was still probabilistic. 

According to Prata (1999), both ABFT and result checking provide a good fault 
coverage, and equivalent execution time, since they provide checkers that can be 
executed with O(n2) operations for an algorithm that requires O(n3) operations. 

However, Prata (1999) also states that ABFT is superior to result checking because 
it is able not only to detect, but also to localize and correct errors. Despite that, they 
claim that result checking has a lower calculation time overhead for equivalent fault 
coverage levels, and that it is easier to implement than ABFT, requiring less additional 
code in order to harden the algorithm. Finally, they state that result checking can be 
applied to any matrix multiplication algorithm, while ABFT depends on the particular 
algorithm that is used. 

Also starting from the Freivalds’ result checking technique (FREIVALDS, 1979), 
the author developed a new approach for algorithm level error detection in matrix 
multiplication that led to a deterministic technique, i.e., able to detect errors with 
probability equal to 1. The proposed technique has been first presented in Lisboa (ETS 
2007) and has a computational cost comparable to that of checksums used in ABFT. 

3.3 PROPOSED TECHNIQUE 
In this section, we describe the proposed technique, as presented in Lisboa (ETS 

2007), and its extension in cooperation with other research groups to include the 
localization and correction of the error, thereby overcoming the main drawback of the 
result checking approach highlighted in Prata (1999). Furthermore, the comparison of 
the computational cost of the proposed technique for different error verification 
granularities, as well as the error latency and cost vs. recomputation time tradeoffs are 
discussed here. 

3.3.1 Background and Evolution of the Proposed Technique 

3.3.1.1 The starting point: fingerprinting and Freivalds’ technique 

The concept of processing and checking in parallel the outputs of a system for only a 
subset of its possible inputs, also called fingerprinting (MOTWANI, 1995), can be 
applied to the general case of a circuit that must be hardened against soft errors, thus 
providing tolerance against transient faults caused by pulses that affect parts of the 
circuit, even when the duration of the transient pulse is longer than the delay of several 
gates. Figure 3.1 illustrates this idea. 

In contrast with other proposed solutions based on checker circuits, such as the one 
proposed by Austin (1999), when fingerprinting is applied the random checker does not 
provide full fault detection. It performs some of the functions of the main circuit only 
on a small set of possible inputs, being able to statistically detect errors at the output 
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with a given probability. The main goal of this approach is to provide an acceptable 
level of fault detection, according to the concepts of error tolerance, using a circuit that 
is significantly smaller than the main circuit under inspection, thereby providing low 
area overhead. 

 

 
Figure 3.1. Fingerprinting - generic scheme 

 
The underlying concept presented here is generic, and can be adopted for several 

different applications or circuits, with the subset of inputs, the operations performed by 
the checker, the performance, area, and power overheads varying according to the 
application. In this work, it has been applied to harden a matrix multiplier circuit, as 
shown in the following paragraphs. 

In 1977, Rúsiņš Freivalds (1977) proved that probabilistic machines are able to 
execute some specific computations faster than deterministic ones, and that they can 
compute approximations of a function in a fraction of the time required to compute the 
same function deterministically. Also credited to Freivalds, a technique for faster 
verification of the correctness of matrix multiplication algorithms has been shown in 
Motwani (1995). 

In summary, Freivalds’ technique proposes the use of multiplication of matrices by 
vectors in order to reduce the computation time when verifying the results produced by 
a given matrix multiplication algorithm, as follows: given n×n matrices A and B, and 
the matrix C, the product of A and B which was computed using the algorithm under 
test, the following computations are performed: 

1. Randomly create a vector r in which the values of the elements are only 0 or 1. 

2. Calculate Cr = C × r 

3. Calculate ABr = A × (B × r) 

Freivalds has proven that, whenever A×B ≠ C, the probability of Cr being equal to 
ABr is ≤ ½. In other words, when A×B = C the probability of the product matrix being 
correct is higher than ½. The demonstration is shown in Motwani (1995). 

Furthermore, if steps 1 to 3 above are performed k times independently (with 
different values of the vector r), the probability becomes ≤ ½k. Using this technique, the 
verification of the result can be done in less time than the original multiplication, since 
matrix multiplication requires O(n3) time to be performed, while multiplication of a 
matrix by a vector is performed in O(n2) time. However, since this is a statistical 
technique, there is no assurance that errors will always be detected.  

3.3.1.2 Improving Freivalds’ technique 

The analysis of the technique proposed by Freivalds shows that the probability of 
detecting one error in C is ≅ ½ because the randomly generated elements of the vector r 
have the same ½ probability of being 0 or 1. Assuming that the element of C which has 

main circuit 

random 
checker

inputs output 

error 
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an erroneous value is Cij, in the calculation of Cr this element is multiplied by a single 
element rk of the vector, thereby being canceled during the generation of Cr (if rk is 
equal to 0) or not (when rk is equal to 1). 

Given that the elements of the vector r can be randomly chosen, if we perform the 
computation with a second vector, rc, in which each element is the binary complement 
of the values in r, the elements of C that were cancelled in the first computation will not 
be canceled in the second one, and vice-versa. Therefore, if Cij has an erroneous value, 
we will either have A×(B×r) ≠ C×r or A×(B×rc) ≠ C×rc, and the probability of detecting 
an error in a single element of C will be equal to 1, i.e., if the erroneous value is masked 
in the calculation of ABr/Cr, it is not masked when ABrc/Crc are calculated, and vice 
versa. 

This property allows the detection of every error in which a single element of C is 
faulty, with only two executions of the Freivalds technique, as demonstrated in the 
following box. 

 

Theorem: The use of complementary r and rc vectors allows to detect all single faults 
with a double execution of Freivalds’ technique. 

 
The computation of the products A×(B×r) and C×r in the Freivalds technique generates 
two vectors that must be compared. Assuming that matrices A and B have n×n 
elements, the r and rc vectors will have n elements each and the value of an element i of 
the above products is given by: 

  ABri = Σn
i=1 ((a11b1i + a12b2i + ... + a1nbni).ri) 

  Cri = ci1r1 + ci2r2 + ... + cinrn 

As demonstrated in Motwani (1995), when no error occurs in the calculation of C, we 
have ABr = Cr, and regardless of the values of ri the comparison for equality will hold 
true. However, when ABr ≠ Cr there is a probability ≤ ½ that the comparison will also 
hold true. That happens because the values of ri are selected randomly from {0, 1} and, 
therefore, 

  Pr[ri = 0] = Pr[ri = 1] = ½. 

This way, there is a 50% chance that an erroneous value Cij will be masked during the 
calculation of Cr, and, in this case, ABr is erroneously considered to be equal to Cr. 

When the ri values are generated randomly, and then the complement of their values are 
used to set the values of the corresponding elements in vector rc, we have: 

Pr[ri=1 OR rci=1]  = Pr[ri=1] ∪ Pr[ rci=1] 

  = Pr[ri=1] + Pr[ rci=1]   

  = ½ + ½ = 1 

Further exploring the extension of Freivalds’ technique here proposed, it becomes 
clear that, since the technique is valid for any randomly selected r vector, it must also be 
valid for the specific vector r1 = {1, 1, ..., 1}. In this case, the complementary vector is 
r0 = {0, 0, ..., 0}, and we have: 

C×r1 = {Σn
j=1 C1j, ..., Σn

j=1 Cnj}    (1) 
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A×(B×r1) = {Σn
j=1 (Σn

k=1 A1k . Bkj), ... , Σn
j=1 (Σn

k=1 Ank . Bkj)} (2) 

and   

C×r0 = 0 (3) 

A×(B×r0) = 0 (4) 

From expressions (3) and (4) above, one can see that the condition C×r0 ≠ A×(B×r0) 
will always be false, and therefore the test of the compound condition A×(B×r1) ≠ C×r1 
or A×(B×r0) ≠ C×r0 can be simplified to A×(B×r1) ≠ C×r1, significantly reducing the 
cost of the verification process, because the computation of expressions (3) and (4) is no 
longer necessary. In addition, in the computation of the expressions (1) and (2) there is 
no longer need to multiply by the elements of r1, since they all are equal to one. 

From (1) and (2), we can also conclude that, since in the multiplication process Cij = 
Σn

k=1 Aik . Bkj, if one of the Cij elements has an erroneous value, the condition A×(B×r1) 
≠ C×r1 will be true, and the error will always be detected. 

 

 (Expression 5) 

 (Expression 6) 

 (Expression 7) 

Figure 3.2: Operations used in the verification of the product 

Therefore, the verification of the product matrix can be performed only by 
calculating the following: 

• Vector Cr, where Cri = Ci1 + Ci2 + ... + Cin (5) 

• Vector Br, where Bri = Bi1 + Bi2 + ... + Bin (6) 

• Vector ABr, where ABri = Σn
k=1 Aik . Brk (7) 
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Then, vectors ABr and Cr must be compared; if they are different, there was an error 
in the multiplication, and the whole matrix multiplication algorithm must be repeated. 

The above conclusions have been confirmed through exhaustive simulated fault 
injection experiments using MatLab (MATHWORKS, 2006), and this optimized 
technique provides a method that can detect all single element errors in a matrix 
multiplication operation, with very low overhead. 

In terms of computation time overhead, Table 3.2 shows the number of operations 
(considering that the cost of multiplications is 4 times the cost of additions and 
comparisons) required to multiply and check matrices with different dimensions (n), 
obtained in this experiment. 

Table 3.2. Computational cost scaling with n 

n Multiplication
4n3+ n2(n-1) 

Verification 
5n2+3n(n-1) 

% Verification 
Overhead 

2 36 26 72 
4 304 116 38 
8 2,496 488 20 
16 20,224 2,000 10 
32 162,816 8,096 5 
64 1,306,624 32,576 2 

 
The figures in Table 3.2 make clear that the verification cost in the proposed 

technique for larger matrices (n ≥ 4) is far below the 100% imposed by duplicated 
execution of the multiplication algorithm and also much less than in other more 
expensive techniques, thereby confirming the low overhead of the verification. 

3.3.2 Minimizing the Recomputation Time when an Error Occurs 
Our first goal when developing this error detection technique was to provide a faster 

solution than duplication with comparison, which requires computing the product 
matrix twice and then comparing the obtained results. In this case, when an error is 
detected by a mismatch, it is impossible to know which one is the erroneous result, and 
the process must be repeated in order to obtain a correct product. So, although the 
proposed technique already provides a significant reduction in the verification cost, it 
still requires recomputation of the whole matrix when an error occurs.  

In this section we extend our low cost verification technique to detect errors in 
matrix multiplication affecting a single element of the product matrix, aiming also to 
correct the erroneous result. Starting from recomputation only after completion of the 
whole matrix multiplication process, we proceed until the alternative with minimum 
recomputation cost, discussing the pros and cons of each alternative in terms of 
computational cost and error correction latency. 

3.3.2.1 Verification only at completion of product matrix calculation 

The number of operations required by this technique, including the recomputation of 
the whole product matrix in case of error, in terms of multiplications (MLT), additions 
(ADD), and comparisons (CMP), is shown in Table 3.3. 
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Table 3.3. Number of operations for verification after completion 
  MLT ADD CMP 

Multiplication n3 n2(n-1)  
Computation of Cr  n(n-1)  
Computation of Br  n(n-1)  
Computation of ABr n2 n(n-1)  
Comparison Cr:ABr   n2 
Total for verification n2 3n(n-1) n2 
Recomputation n3 n2(n-1)  
Total (when an error occurs) 2n3+n2 2n2(n-1)+3n(n-1) n2 

 
Table 3.4 shows the total computational cost of this technique, according to the size 

of the matrices, considering that one multiplication costs 4 times one addition or 
comparison, and that one error occurs. 

Table 3.4. Computational cost scaling with n for verification after completion 
n Multiplication 

4n3+ n2(n-1) 
Verification 
5n2+3n(n-1) 

Recomput. 
4n3+ n2(n-1) 

Total 
Cost 

2 36 26 36 98 
4 304 116 304 724 
8 2,496 488 2,496 5,480 
16 20,224 2,000 20,224 42,448 
32 162,816 8,096 162,816 333,728 
64 1,306,624 32,576 1,306,624 2,645,824 

As one can see in Table 3.4, while the verification cost in the proposed technique is 
far below the cost imposed by duplicated execution of the multiplication algorithm, the 
recomputation cost is still equal to that of multiplication, and besides that, upon 
occurrence of an error, the system runs for a long time without noticing it, until the 
verification is performed. This cost and error correction latency may be not acceptable 
for several applications, such as those where there are hard deadlines to be met. 

3.3.2.2 Verification line by line 

Aiming to reduce the time during which the system operates without noticing errors, 
as well as the cost of recomputation, an alternative approach is to check for errors more 
frequently. 

While the ideal granularity to minimize the blind run time would be to verify each 
element of the product matrix as soon as it is calculated, from expression (5) one can 
see that the proposed technique requires the availability of one complete line of the 
product matrix to compute a single element of Cr, and therefore the minimum 
verification granularity for this specific application is one line of C, with n elements. 

Furthermore, the verification of a single line of C requires the availability of the 
corresponding elements of Cr and ABr. As shown in expressions (6) and (7), the 
calculation of ABri requires the addition of the values of all elements of vector Br. Since 
we intend to verify the results as soon as one line of matrix C is calculated, this would 
require recalculating Br n times, one for each line, instead of a single time, as required 
when checking only at the end of the algorithm. 

A less expensive approach to deal with this issue would be to calculate Br only at 
the beginning of the algorithm, using the results for verification of each line of C. 
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However, this could result in a system crash if an error occurs in the calculation of Br, 
since all verifications thereafter would raise the error flag, even when no error occurs. 
To solve this problem, a technique such as duplication and comparison can be used only 
for the calculation of Br, which does not imply significant performance overhead, as 
shown in our experiments. 

Once satisfied those constraints, one can verify the results immediately after each 
line of the product matrix is calculated, and in this case, when an error is detected, only 
the last computed line must be recomputed. 

Using data from Table 3.3, one can see that the number of operations required to 
compute Br twice and compare the results is equal to 2n(n-1) additions plus n 
comparisons. Considering that this is done only once, at the beginning of the algorithm, 
this cost is divided by n to determine its impact on the verification cost of each line. 

Table 3.5 details the number of operations required for this alternative, where “Total 
per line” relates to the calculation of a single line of matrix C, also assuming that one 
error has occurred. 

Table 3.6 shows the total computational cost scaling of this technique, according to 
the size of the matrices, also considering that one multiplication costs 4 times one 
addition or comparison, and that one error occurs in the line. 

Table 3.5. Number of operations for verification line by line 
  MLT ADD CMP 

Multiplication n2 n(n-1)  
2 x computation of Br / n  2n-2  
Comparison of Br1:Br2 / n   1 
Computation of Cri  n-1  
Computation of ABri n n-1  
Comparison Cri:ABri   1 
Total for verification n 4n-4 2 
Recomputation n2 n(n-1)  
Total per line (when an error occurs) 2n2+n 2n(n-1)+4n-3 2 

 

Table 3.6. Computational cost scaling with n for verification line by line 

n Multiplication 
4n2+ n(n-1) 

Verification
8n-2 

Recomput.
4n2+ n(n-1)

Total 
Cost / Line 

2 18 14 18 50 
4 76 30 76 182 
8 312 62 312 686 
16 1,264 126 1,264 2,654 
32 5,088 254 5,088 10,430 
64 20,416 510 20,416 41,342 

 

It must be noted that the “Total Cost / Line” column in Table 3.6 is not directly 
comparable to the one in Table 3.4, because it was computed only for one line of the 
product matrix. 

However, one can see that the verification overhead for this alternative, in percent, is 
approximately the same of the alternative discussed in the previous subsection. In 
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contrast, the recomputation cost is far below the one of the previous alternative 
(reductions from 50% to 98.4% depending on the value of n). 

Finally, the use of this approach dramatically reduces (n-fold) the time during which 
the system runs without detecting an occurred error. 

3.3.2.3 Erroneous element detection and single element recomputation after 
multiplication completion 

In the previous subsection, we described one alternative to reduce the time between 
verifications, checking the product matrix line by line. This is useful for systems in 
which the blind run time must be minimized, such as those in which the results must be 
forwarded to other modules as soon as possible. 

When the major concern is the cost of recomputation, however, a third approach, in 
which the verification is done after calculation of the whole product matrix, but only the 
erroneous element must be recomputed in case of error, can be adopted. 

This approach is derived from that described in Lisboa (ETS 2007), and besides the 
calculation of vectors Cr, Br and ABr, it requires the calculation of their transposed 
versions, that are designated in the following paragraphs by CrT, BrT and ABrT, 
respectively. When an error in one element occurs, the comparison of Cr with CrT and 
Br with BrT allows the determination of the erroneous element, and therefore only this 
element must be computed again. 

In order to provide a better comprehension of this technique, a sample application of 
it for a given pair of matrices is described in the following paragraphs. In this example, 
unitary vectors r and rT are used to make the explanation clear; however, since the 
multiplications by 1 are not necessary, they are not executed in the implementation, and 
also not considered in the cost analysis that follows the example. 

Given 3×3 matrices A and B: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
−−

=
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        ⎥
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⎦

⎤
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⎢

⎣

⎡

−−
−−

−−
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778781
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B

 
the product matrix is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−−

=
256532222280
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1179335822082

C

 
The verification, according to this technique, is performed in the following steps:  

1. Calculate vector Cr by multiplying matrix C by r, where r is a column vector of 
1’s, as shown below: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
1
1

r

 ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
9637
6129

Cr

 
 

2. Calculate vector Br by multiplying matrix B by r 

BrrB =⋅  
3. Multiply A by vector Br 
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ABrBrA =⋅  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
9637
6129

ABr

 
4. Multiply vector rT  by matrix C, where rT is a line vector of 1’s, as shown below 

[ ]111=Tr  

  so we have TT CrCr =⋅  (CrT  is a vector) 

[ ]2287365282358 −=TCr  
5. Multiply matrix A by rT 

TT ArAr =⋅  (ArT is a vector) 

6. Multiply B by vector ArT 
TT ABrArB =⋅ [ ]2287365282358 −=TABr

7. Comparing Cr to ABr and CrT to ABrT, we can see that they are equal when 
there is no error. 

 

Now, let us consider that an error has occurred during the calculation of C, and one 
element of the product matrix has an erroneous value: 

⎥
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During the verification steps, we will get: 

⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
15744
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Cr

, ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2937
9637
6129

ABr

, 

[ ]228734212358 −=TCr , and 

[ ]2287365282358 −=TABr . 

Now, if we compare Cr to ABr and CrT to ABrT, we can see that the values of the 2nd 
element in the row vectors and of the 2nd element in the column vectors are different. 
This drives us to the conclusion that the element C(2, 2) of the product matrix has an 
erroneous value. 

This technique can also be used for binary matrices with correction of the erroneous 
product bit. Note that in the case of binary matrices we can just complement the 
erroneous bit using an XOR gate and have the correct result straight away. 

Considering the case of decimal values, and using the same methodology of 
previous subsections, the number of operations required by this approach for calculation 
of the whole matrix C is shown in Table 3.7. 
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Table 3.7. Number of operations for erroneous element detection 
  MLT ADD CMP 

Multiplication n3 n2(n-1)  
Computation of Cr  n(n-1)  
Computation of Br  n(n-1)  
Computation of ABr n2 n(n-1)  
Computation of CrT  n(n-1)  
Computation of BrT  n(n-1)  
Computation of ABrT n2 n(n-1)  
Comparison Cr:ABr   n2 
Comparison CrT:ABrT   n2 
Total for verification 2n2 6n(n-1) 2n2 
Recomputation n n-1  
Total (when an error occurs) n3+2n2+n (n2+6n+1)×(n-1) 2n2 

 

Table 3.8 shows the computational cost for the whole product calculation and 
verification, plus recomputation when one error occurs, also assuming that the cost of 
multiplication is 4 times that of addition and comparison. 

 

Table 3.8. Computational cost scaling with n for erroneous element correction 

n Multiplication 
4n3+ n2(n-1) 

Verification 
10n2+6n(n-1) 

Recomput. 
4n+(n-1) 

Total 
Cost 

2 36 52 9 97 
4 304 232 19 555 
8 2,496 976 39 3,511 
16 20,224 4.000 79 24,303 
32 162,816 16,192 159 179,167 
64 1,306,624 65,152 319 1,372,095 

 

3.3.2.4 Minimizing the single element recomputation cost 

As shown in the previous subsection, one could see that the values of the 2nd element 
in the row vectors and of the 2nd element in the column vectors were different by 
comparing Cr to ABr and CrT to ABrT, what brought the conclusion that the element 
C[2, 2] of the product matrix had an erroneous value. In that case, the correction of the 
erroneous element has been performed by completely recalculating the value of the 
element. 

Further analysis of this technique has shown that, assuming the single fault model 
used in its definition, one can compute the correct value of the erroneous element 
simply by using either one of the following expressions, which require only two 
additions each: 

C[2,2] - (Cr[2] - ABr[2]) = -61 - (15,744 - 9,637) = -6,168 

C[2,2] - (CrT[2] - ABrT[2]) = -61 - (-421 + 6,528) = -6,168 

Table 3.9 shows the computational cost of this technique for the whole product 
calculation and verification, plus recomputation when one error occurs. 
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Table 3.9: Minimal computational cost scaling with n for erroneous element correction 

n Multiplication 
4n3+ n2(n-1) 

Verification 
10n2+6n(n-1) 

Recomputation
2 

Total 
Cost 

2 36 52 2 90 
4 304 232 2 538 
8 2,496 976 2 3,474 
16 20,224 4.000 2 24,226 
32 162,816 16,192 2 179,010 
64 1,306,624 65,152 2 1,371,778 

 

3.3.2.5 Comparative analysis of results 

In the previous subsections, four alternative approaches for error detection and 
correction applied to an algorithm for matrix multiplication have been described, and 
the corresponding computational costs, including the multiplication, verification and 
recomputation in case of detection of one error were calculated. 

Table 3.10 compares the cost of those four approaches for different sizes of 
matrices. The subsection numbers are used to identify each approach. 

Table 3.10. Comparative analysis - total cost when one error occurs 

n Subsection 
3.3.2.1 

Subsection 
3.3.2.2 

Subsection 
3.3.2.3 

Subsection 
3.3.2.4 

2 98 82 97 90 
4 724 500 555 538 
8 5,480 3,304 3,511 3,474 
16 42,448 23,504 24,303 24,226 
32 333,728 176,302 179,167 179,010 
64 2,645,824 1,359,680 1,372,095 1,371,778 

 

It is important to recall that, in subsection 3.3.2.2, the total cost has been calculated 
for only one line plus recomputation. Therefore, in order to allow a fair comparison, in 
Table 3.10 the cost of computing all the n lines has been considered for this approach, 
with only one error in the whole multiplication. 

Table 3.11. Comparative analysis - cost of recomputation when one error occurs 

n Subsection 
3.3.2.1 

% Subsection
3.3.2.2 

% Subsection
3.3.2.3 

% Subsection 
3.3.2.4 

% 

2 36 100.0 18 50.00 9 25.00 2 5.5556
4 304 100.0 76 25.00 19 6.25 2 0.6579
8 2,496 100.0 312 12.50 39 1.56 2 0.0801
16 20,224 100.0 1,264 6.25 79 0.39 2 0.0099
32 162,816 100.0 5,088 3.13 159 0.10 2 0.0012
64 1,306,624 100.0 20,416 1.56 319 0.02 2 0.0002

 

Table 3.11 shows the recomputation cost of each approach, with percent values used 
to highlight the dramatic gains in terms of cost provided by the approaches described in 
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subsections 3.3.2.2 throug 3.3.2.4 when compared to the original approach proposed in 
Lisboa (ETS 2007), discussed in subsection 3.3.2.1. 

3.3.3 Considerations about Recomputation Granularity 
When using recomputation as the error correction mechanism, it is important to 

define the computation time of the verification mechanism and the size of the portion of 
the algorithm between two verification stages, keeping in mind that only the last 
executed portion must be recomputed when one error is detected. In order to illustrate 
this, Figure 3.3 represents the time required to detect and correct errors in the execution 
of a given hypothetical algorithm, using four different implementations of 
recomputation, with varying granularities. The solid gray rectangles represent the 
duration of the execution of the algorithm to be checked (stepi_time), the black 
rectangles represent the time spent in the execution of the verification mechanism 
(verificationi_time), and the dashed ones represent the recomputation time in case of 
error detection (recomputation stepi_time). 
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Figure 3.3 – Example of 4 different granularities of recomputation and their effects on 

the final computation time. 

In case (a) the full algorithm is completely executed before the verification stage is 
performed. Once a fault occurs and it is detected by the verification code, the algorithm 
is recomputed and the verification stage is performed again. When an error occurs, the 
entire execution of the algorithm, verification, recomputation, and verification of the 
recomputed results demand time ta. 

In case (b), the execution of the algorithm is partitioned into 3 smaller blocks of 
code (step 1, step 2, and step 3). Each step is followed by a detection stage that can have 
or not a smaller detection time when compared to the implementation in case (a). Note 
that, in this case, the fault occurs during the execution of step 2, and therefore only that 
step is recomputed, reducing the total execution time to tb. 

In case (c), each step of case (b) is split into two other steps (step 1a, step 1b, step 
2a, step 2b, and so on), and the detection algorithm is also placed at the end of each 
step. The detection time can be shorter or higher than the previous implementations, 
according to the algorithm complexity. Note that in this case, the total execution time 
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(tc) has not been reduced when compared to tb, due to the ratio between the execution 
times of the verification code and that of each algorithm step. However, the time spent 
in recomputation was shorter, since only step 2a had to be recomputed. 

Finally, case (d) shows an implementation where each step is divided into 4 stages. 
In this case, we can see the negative effect of using steps too short with a detection time 
in the same order of magnitude of the execution time of the algorithm step. In 
consequence, the total execution time has increased to td. 

As one can see from the above example, for each algorithm it is necessary to find 
the best tradeoff between the execution time of the step (detection and recomputation 
granularity), and that of the detection mechanism. The following equation calculates the 
total application execution time: 

Execution Time   =  Σn
i=1(Stepi_time + Verificationi_time) 

  + Σne
j=1(Stepj_time + Verificationj_time), 

where n is the number of steps into which the algorithm has been split (granularity) in 
each experiment and ne is the number of errors occurred during on application 
execution. 

As an example, we have considered a hypothetical algorithm with an execution time 
of 100 time units (TO). For this algorithm we considered 10 different levels of 
granularity, with the algorithm split into 1 to 10 blocks, respectively. For each block, we 
assumed that the verification process can cost from 10% to 100% of the execution time 
of the block. This ratio varies according to the algorithm. 

Figure 3.4 shows the projected execution time of the algorithm for each granularity 
level and verification overhead combination. Solutions in terms of recomputation aim to 
reduce the two up most costs: the cost of triplication of the entire algorithm (TZ) and the 
cost of using duplication of the entire algorithm for the verification step (TW).  Time TW 
occurs when the verification time is in the same order as the block execution time. So, 
the entire algorithm is duplicated to verify errors. If an error is detected, the algorithm is 
recomputed and the verification process is re-applied. This gives at least a cost of 400 
execution units. Time TZ occurs when the entire algorithm is tripled, and voted at the 
end, which takes a little more than 300 execution units. But note that if duplication is 
used as a verification method for the level of granularity 10 (cost TY), the entire 
execution cost can still be smaller than many other cases of granularity levels with 
verification overhead smaller than 100%. So, it seems that the use of small steps for 
recomputation is very profitable in terms of execution time even when dealing with not 
so optimized verification algorithms. 

However, according to the soft error effects in the architecture and the algorithm, it 
is not possible to increase too much the levels of granularity. Let one take two examples 
of a single upset provoking multiple errors in the architecture, as illustrated in Figure 
3.5. 
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Figure 3.4 – Execution time costs according to the levels of granularity (1 to 10 steps) 
and verification time (verificationi_time) varying from 10% to 100% of the stepi_time. 
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Figure 3.5 – Multiple errors and the masked effect when dealing with levels of 

granularity. 

Case (a) shows an upset A causing x errors, some of them masked by the algorithm 
and some of them not. Once the verification time arrives, at least one error was not 
masked so it can be detected by the verification mechanism. And the recomputation step 
can mitigate the upset. Case (b) shows an upset B causing multiple errors in the 
architecture but all of them were masked by the algorithm in that certain step. So, when 
the verification step begins, no error is detected and the following step of the algorithm 
can start. However, the latent error that was masked can manifest its effect in the 
following execution step (step 2). The verification process will be able to detect the 
error but the recomputation of step 2 may not be enough to mitigate the original latent 
error and the algorithm may fail. 
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So, it is important to analyze the architecture vulnerability factor of the algorithm 
and architecture to analyze the probability of latent errors overcoming the 
recomputation method. 

Now, let us return to the analysis of the specific matrix multiplication example 
discussed in this chapter, for which the effects on the execution time when using 
recomputation with different error detection granularities have been analyzed. In that 
example, the occurrence of only 1 fault during the execution of the whole application 
has been considered. This does not mean that one fault did not cause more than one 
error in the storage elements during the execution time. Instead, it means that has been 
considered that multiple errors can occur, but in this case they affect only one element 
of the matrix. In this way, levels of granularity that ensure that no latent errors can 
contribute to other steps of the algorithm, achieving 100% of upset mitigation, have 
been considered. 

As shown in the analysis of the matrix multiplication algorithm, the division of a 
given algorithm into steps to be separately checked is not a trivial task. In this example, 
due to the characteristics of the algorithm, only the verification at the end of 
multiplication of the whole matrix or at the end of each line are cost-effective. While 
different granularities, such as the verification after calculation of each product matrix 
element, are possible, they do not allow the use of the low cost verification technique 
described in this chapter, requiring the use of conventional alternatives, such as 
duplication and comparison, which imply a very high verification overhead, making 
them less attractive in terms of computational cost. 

By analyzing only the recomputation time, one might conclude that the approach 
proposed in subsection 3.3.2.3 is the best solution for the given problem. However, the 
nature of radiation induced errors, and the associated detection and correction processes, 
must also be considered before reaching a definite conclusion. 

While the effects of a particle hit on a circuit can be very harmful, and therefore 
must not be neglected, the frequency of such events is very low, and not every particle 
hit causes an error. As examples, until recently (technology nodes up to 100 nm), soft 
error rates for logic circuits used to be negligible when compared with the failure rate of 
memory devices (BAUMANN, 2005), and for a system-on-chip (SoC) using memories 
with a failure rate of 10,000 FIT/Mbit, the system error rate would be about one error 
per week (HEIJMEN, 2002). 

Nevertheless, given the importance of error detection, the verification mechanism 
must continuously check the results generated by the system to be protected. This 
implies that the detection scheme will be executed several millions of times before one 
soft error is detected, and therefore should be as light as possible, in terms of area, 
performance, and power consumption overheads. 

In contrast, the error recovery mechanism will be activated only when an error is 
detected, which happens very seldom in comparison with the clock frequency of the 
circuit, and therefore the performance and dynamic power overheads introduced by the 
recovery mechanism should not be the major concerns. However, it is still important 
that the area and static power overheads imposed by this mechanism be minimized, 
mainly when the design is targeted at embedded systems. Therefore, it is important to 
define verification mechanisms that allow checking the correctness of the results 
produced by a given system in significantly less time than that required to re-execute 
the whole operation. 
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The above considerations show that the tradeoffs between verification frequency and 
recomputation cost must be carefully evaluated in face of the requirements of the target 
application. For instance, the approach that checks the results after the calculation of 
each line of the product matrix has almost the same computational cost of the one 
described in subsection 3.3.2.3 (see Table 3.9). However, since it provides the lowest 
blind run time, it should be the preferred alternative for applications in which it is 
important to forward the results to the next stage of the system as soon as possible. 

3.3.4 Validation by Fault Injection 
In order to confirm the effectiveness of the verification technique described in this 

chapter, one application including the multiplication algorithm and the proposed 
verification scheme was implemented in a LEON3 processor, and several fault injection 
campaigns were performed. The methodology used in those experiments and the 
analysis of the results are presented in the following subsections. 

The fault model used in the experiments is that of a single fault occurring during one 
complete run of the application, which is a much more severe assumption than the 
reality, when a radiation induced fault may affect memory or combinational logic only 
once in several hours or even days of operation (HEIJMEN, 2002). 

3.3.4.1 Experimental setup 

The test platform used for both radiation ground testing and fault injection is an 
upgraded version of the one presented in Faure (2002). Fig. 3.6 shows a block diagram 
of the ASTERICS (Advanced System for the TEst under Radiation of Integrated 
Circuits and Systems) platform. 

 
Figure 3.6. Block diagram of the ASTERICS platform 

The platform is built around two FPGAs. The first one, named Control FPGA, 
manages the communication between the user’s computer and the testbed. The second 
FPGA, named Chipset FPGA, acts as a memory controller. It shares the memory 
between the DUT (Device Under Test) and the Control FPGA. A control flow checker 
is also implemented into this FPGA in order to verify the correct operation of the DUT. 
In this study, the DUT is a LEON3 processor provided by Gaisler Research. The 
LEON3 is directly implemented into the Chipset FPGA. 

The CEU (Code Emulating Upsets) approach, described in Velazco (2000) was used 
to assess the efficiency of the matrix multiplication hardening technique proposed in 
Lisboa (ETS 2007). 
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The CEU approach is based on the use of an interrupt signal to simulate (as a 
consequence of the execution of the associated interrupt routine) the occurrence of an 
upset in one of the accessible memory cells. In case of the LEON3 processor, the main 
blocks in which SEUs can be simulated by the CEU approach are: the register window, 
the stack and frame pointers. It is important to notice that the cache memory was 
disabled during these experiments. 

To simulate the random occurrence of SEUs in the final environment, the interrupt 
signal was triggered following a time uniform distribution. 

3.3.4.2 Analysis of experimental results 

The analysis of the results obtained during fault injection experiments shows that 
they can be classified into the following groups: 

A – Erroneous matrix result, not detected and not corrected 

B – Erroneous matrix result, detected and corrected 

C – False alarm, detected and corrected 

D – Loss of sequence errors, caused by faults affecting the registers used in the 
calculation of the target address in branch instructions that lead to a time-out 
interrupt 

E –  Effect less: the injected fault did not affect the results of the product matrix 
calculation, i.e., no error has been propagated to the results. 

It must be noted that in the experiments that have been  developed, whenever one 
error was detected by the verification algorithm, the matrix multiplication was executed 
and verified once again, in order to provide correct results. 

In this context, A-type errors are those in which the verification algorithm was not 
able to detect an erroneous result and deemed it correct. That behavior is due to faults 
affecting the control flow in such a way that a valid instruction is reached and the 
execution proceeds normally from that point, but the application generates an erroneous 
result, as commented in the analysis of “loss of sequence errors”, ahead. 

In contrast, B-type errors are those that have been detected by the verification 
algorithm and subsequently corrected through recomputation and checked again. For 
those errors, the resulting product matrix is always correct. 

Errors of type C are those in which the product matrix was correct but, due to a fault 
affecting the verification algorithm, it mistakenly considered that the product matrix 
was wrong (this kind of behavior is usually referred to as a false alarm) and repeated 
the calculation, producing again a correct product matrix. 

D-type errors are those in which the injection of the fault caused an irrecoverable 
control flow error. As will be further commented later, these errors may result in two 
different problems, both of which impair the ability of the application ending with 
correct results. 

Finally, errors of type E are those in which the injected fault affected neither the 
execution of the matrix multiplication nor that of the verification algorithm, thereby 
resulting in a correct result. 
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Table 3.12 provides the total number of each type of error obtained during a fault 
injection experiment in which 15,005 executions of the hardened application have been 
performed and the occurrence of one SEU per execution has been simulated. 

Table 3.12. Incidence of Each Type of Error During Fault Injection 

Type of error Number of 
occurrences 

Percent 
occurrence 

A - Erroneous result not corrected 831 5.54% 
B - Erroneous result corrected 4,040 26.92% 
C - False alarm recomputed 270 1.80% 
D - Loss of sequence errors 3,800 25.32% 
E – Effect less faults 6,064 40.42% 

 

As can also be seen in Table 3.12, the experimental results show that a significant 
number of faults (25.32% of total injected faults) caused D-type errors, which lead the 
processor into an unrecoverable state, from which it does no longer exit, thereby 
causing a time out exception during the execution of the application. 

This situation is referred to as “loss of sequence errors”, and they occur when the 
fault affects registers used for the address calculation in branch instructions. However, 
not every loss of sequence error leads to a time out. They may also cause a branch to an 
address of a valid instruction and in those cases the execution proceeds from that point, 
resulting in erroneous calculation of one or more elements of the product matrix or even 
in an error in the execution of the verification algorithm, and those cases are listed as A-
type errors in the results of the experiments. 
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Figure 3.7. Fault injection possibilities considering the single fault model. 

The obtained results show that, as expected, the proposed technique does not cope 
with loss of sequence errors. However, for all other errors due to faults affecting either 
the product matrix calculation or the verification of the results, it is very effective and 
provided a high percentage of error detection. The reasons for that are commented using 
Fig. 3.7. 

As shown in Fig. 3.7, considering the single fault model and except for the loss of 
sequence errors, there are only two cases of fault incidence, shown in pictures (a) and 
(b), respectively. 

In case (a), the fault affects the multiplication algorithm. If this fault causes one 
error in the calculation of the product, the error may affect one or more elements of the 
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resulting product matrix. However, since the verification algorithm has not been 
affected by the fault, it is able to detect the error, and the wrong results will not be used 
by the application. 

In case (b), the product matrix will be correct, but the verification algorithm, 
affected by a fault, may not be able to properly check the results. This may lead to a 
false alarm, i.e., the verification algorithm signaling one error when the product matrix 
is correct. In such cases, according to the proposed correction procedure, the product 
will be recomputed and checked again, thereby always resulting in a correct final 
product being used by the application. Once again, given the low frequency of radiation 
induced errors, the additional computation time due to such situations will be very 
small. 

The most important conclusion of the analysis is that the loss of sequence errors due 
to faults affecting program sequencing account for the majority of the runs in which a 
time out or undetected erroneous results have occurred. 
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4 USING INVARIANTS FOR RUNTIME DETECTION OF 
FAULTS 

This part of the thesis also relates to algorithm level techniques to detect radiation 
induced errors. The idea of using invariants at runtime to detect such errors has been a 
consequence of the conclusions reached during the development of the technique to 
protect the matrix multiplication algorithms described in Chapter 3. The fact that the 
condition “ABr  =  Cr”, used to check the product matrix, must be true whenever the 
algorithm succeeded, led to the conclusion that this condition is a post condition, also 
called an invariant, of the matrix multiplication algorithm. This finding led us to the 
study of software invariants as a generic tool for error detection at runtime. 

The initial experiments in the scope of this research have been presented in Lisboa 
(DFR 2009) and Lisboa (LATW 2009). Further experiments, and the most recent 
results, showing that the proposed technique provides a high fault detection capability at 
low cost will be presented in Grando (IOLTS 2009) and are consolidated in this chapter. 

4.1 PROBLEM DEFINITION 
The mitigation of soft errors at the algorithm level is one of the paths choosen in our 

research to achieve system level fault tolerance. Given the results obtained for the 
matrix multiplication algorithm, the next step has been the search for similar techniques 
that could be applied to other frequently used algorithms. Ideally, such techniques 
should be non-intrusive, allowing their implementation without or with minimum 
changes in the algorithm to be hardened. With this in mind, the use of software 
invariants as a mean to harden algorithms and detect soft errors at runtime has been 
proposed and evaluated, as described in the following sections. 

4.2 RELATED AND PREVIOUS WORK 
The many different techniques for mitigation of soft errors that have been proposed 

in recent years can be basically classified as hardware based and software based ones. 
However, most of them rely on fault models that do not include the occurrence of long 
duration transients, i.e., transient pulses that will last longer than the clock cycle of the 
circuits to be protected, as predicted in Dodd (2004) and Ferlet-Cavrois (2006). This is 
particularly true for time redundancy based techniques. Therefore, in the near future 
such techniques should undergo a careful review process, in order to ensure their 
compliance with this new scenario. 

Hardware based techniques using time redundancy, such as those proposed by 
Anghel (2000) and Austin (2004), verify the outputs generated by the circuit by 
comparing their values at two different moments in time. Those techniques rely on the 
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single fault model and also in the concept that the duration of the transient pulse is 
short. As the duration of the transient pulses increases, the duration of the delay used to 
separate the output values to be compared will imply unbearable performance 
overheads. Therefore, the application of such techniques will likely be useless in the 
presence of LDTs. 

The group of hardware based techniques that use space redundancy is more likely to 
provide protection even in the presence of long duration transient pulses, because under 
the single fault model, only one of the copies of the circuit would be affected by the 
long duration transient, and the other(s) would provide correct results. Techniques like 
duplication with comparison (WAKERLY, 1978) and duplication of critical path gates 
with output comparison (NIEUWLAND, 2006) would allow the detection of errors 
caused by long duration transients. However, the area and mainly the power penalties 
imposed by solutions using space redundancy are a big concern, mainly for embedded 
systems. 

Other hardware based techniques rely on the use of checkers or infrastructure IPs (I-
IPs) to check the results produced by the circuit to be protected, as in Austin (1999) and 
Rhod (2008). In case the results computed by the checker or I-IP differ from those 
produced by the main circuit, they either activate an error flag that starts a 
recomputation process or use the value computed by the checker, assuming that this one 
is always correct. However, even in solutions where part of the verification is executed 
in parallel with the main processing, those approaches usually imply high area 
overheads, and performance overheads equal or higher than 100%. 

Software based techniques that duplicate the code and data segments and compare 
the results in order to check for errors, such as the one in Rebaudengo (1999), are very 
expensive, both in memory usage and execution time. Techniques based on self 
checking block signatures, as the one proposed in Goloubeva (2003), require the 
modification of the software to include signature processing and verification 
instructions at every basic block, imposing coding and performance penalties. A method 
to mitigate SET in combinational logic based on duplication and time redundancy, and 
code word state preserving (CWSP), is shown in Nicolaidis (1999). The limitations of 
this method are the modification of the CMOS logic by the insertion of extra transistors 
and the necessity of using duplicated logic or extra logic to implement a delay. 

Finally, in Benso (2005) the authors implemented an object oriented library of 
templates that can be used to observe the value of selected variables during the 
execution of a program and detect if the values are legal ones or not. This technique is 
somewhat close to what is being here proposed, since it uses assertions, pre-conditions 
and post-conditions. However, it is the responsibility of the user to select which 
variables should be monitored. Moreover, in Benso (2005) the authors propose the use 
of a trade-off between coverage and overhead, since when many variables are selected, 
the overhead increases dramatically. In the approach here proposed, thanks to the 
invariant detection mechanism and the program partitioning, this is not the case. 

Given the drawbacks of the mitigation techniques discussed above, our proposal is 
to verify and recover from soft errors at the algorithmic level, in order to avoid high 
hardware costs when working at lower abstraction levels with long duration transients. 
Accordingly, in Lisboa (ETS 2007) we have proposed a low cost technique to detect 
errors in the algorithm of matrix multiplication, already described in Chapter 3. 

While looking for similar approaches to harden other algorithms, we noticed that the 
equality tested to check the results (ABr = Cr) is in fact a condition that always holds 
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after the successful execution of the multiplication algorithm, and that such conditions 
have already been studied in the software engineering field for many years, being 
named software invariants (PYTLIK, 2003). This led us to the current research project, 
which aims to explore the use of software invariants to detect errors during the 
execution of algorithms, and determine whether this approach may lead to low cost 
solutions or not. 

4.3 PROPOSED TECHNIQUE 
Invariants are program properties that must be preserved when the code is modified. 

They may be classified into preconditions, post conditions, and loop invariants. As the 
names imply, preconditions and post conditions are conditions that must be true before 
and after, respectively, the execution of the program, while loop invariants define 
conditions that must be fulfilled every time the control flow of the program enters and 
exits a loop (PYTLIK, 2003). 

Since invariants are related to the computational task performed by the program, 
they have historically been used as a means to check if a program that has been 
modified due to maintenance or improvements still performs its task as expected. 

4.3.1 Background and Description 
In Krishna (2005), loop invariants are checked to detect soft errors affecting the data 

cache during the execution of an application. However, the overhead imposed by the 
verification of invariants inside the loop is multiplied by the number of iterations during 
execution. Furthermore, the embedding of the checker code inside the loop may require 
non trivial changes to the application software. 

In contrast, the technique here proposed uses the verification of post conditions to 
detect runtime errors, which can be applied to different program structures, and is 
executed only once, at the end of the algorithm to be hardened. 

In Ernst (2001), a tool named Daikon (PROGRAM ANALYSIS GROUP, 2004), 
which automatically discovers potential invariants for a given program, is described and 
the results of experiments done with a set of programs extracted from Pytlik (2003) are 
used to show that it is able to correctly detect the invariants of the program. Also, for a 
C program for which no explicit invariants were known, the tool has provided a set of 
invariants that could help in the evolution of the program to new versions. The authors 
concluded that this tool was a feasible alternative to the automated identification of 
invariants, at least for small programs. Furthermore, they show that the invariant 
detection time increases with the number of variables. 

In this work, considering the properties above, we propose the decomposition of the 
program to be hardened against soft errors in smaller code slices, for which invariants 
are detected using the Daikon tool, and the addition of an algorithm to check those 
invariants immediately after the corresponding slice has been executed. The use of 
smaller pieces of code reduces invariant detection overhead, given that a smaller 
amount of variables and relationships among them must be analyzed at each time. As a 
result, it returns more significant invariants, since invariants between low related 
variables are usually not meaningful. 
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4.3.1.1 Fault coverage evaluation 

After invariants for each program slice have been detected using the Daikon tool, 
fault injection experiments have been conducted in order to check how effective the 
corresponding set of invariants is for the detection of errors. This has been done by slice 
specific fault injection programs, as shown in block (3) in Figure 4.1. Those programs 
are designed to inject a given number (F) of single faults during the execution of the 
program slice and verification algorithms, and are composed by the following steps (the 
step numbers are also associated with the blocks in Figure 4.1): 
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Figure 4.1. Program hardening experiments flow 

1. Generate Reference Results – executes once the algorithm to be checked, without 
fault injection, and the correct results are stored for use as the reference ones in the 
analysis step.  

2. Random Fault Setup – the exact moment, the variable, and the bit of the variable to 
be affected by the transient fault during each repetition of the fault injection, are 
randomly selected. A mask with only the previous selected bit set is created. 

3. Program Slice – the algorithm to be hardened is executed once, with one SEU 
affecting the variable selected in the previous step by XORing it with the mask. 

4. Verification – the verification algorithm, which checks all invariant post conditions 
defined by the Daikon tool for that program slice, is executed in order to check the 
results generated by the program slice. 

5. Check Detection – the results generated during the execution of the algorithm to be 
hardened are compared to the reference results generated in step 1, to determine if 
they are correct or not, and the error flag set by the invariants detection algorithm is 
checked against the real results. In order to determine the effectiveness of the 
invariants verification as an error detection approach; the number of occurrences of 
each type of fault is stored in a statistics table.  
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6. Analysis Report – the statistics table generated during the fault injection campaign 
is printed for analysis. 
Considering that a fault may affect either the main algorithm or the verification 

algorithm, there are four possible situations concerning the fault detection by the 
verification algorithm, and the comparison of the results generated by the basic 
algorithm with the reference results allows the fault injection program to distinguish 
among them. 

When the verification algorithm tells that the result is correct (based upon the 
invariants checking) and the results generated by the basic algorithm and the reference 
results are equal, the verification worked fine. The same is true when the verification 
results in an error flag and the comparison shows differences between the reference 
results and those generated by the basic algorithm. 

The other two possibilities arise when an error affects the verification algorithm 
making it flag as an error one correct result or not flagging an error when the result is 
wrong. The number of each of these alternatives for a given fault injection campaign is 
shown in the analysis report for each slice. 

4.3.1.2 Performance overhead evaluation 

The performance overhead imposed by this approach is evaluated by measuring the 
execution time of the original program with the error detection (verification) algorithms 
for each slice. 

4.3.2 Application to a Sample Program 
The proposed technique has been applied to a test program, using the methodology 

described in the previous section. The test program source code is shown in Figure 4.2, 
where is also shown how it was split into code slices for hardening. 

Each code slice identified in Figure 4.2 has been submitted to the Daikon tool to 
allow the identification of possible invariants for that piece of code. 

Figure 4.3 shows the resulting invariants for the iterative multiplication algorithm. 
The right column shows the invariants when the set of inputs used during invariant 
detection was composed only by positive non-zero values, and the left column the 
invariants when the values included zero. 

For the same algorithm the additional verification code is given in Figure 4.4, where 
kk1 and xx1 are copies of the original values of variables x1 and k1, respectively. Due 
to space limitations, the detected invariants, as well as verification code, for the 
remaining slices are not shown in this work. 
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/* baskara() */ 
x1=-1.1; 
x2=-1.1; 
if (a==0 && b!=0){ 
   x1=-c/b; 
   x2=x1; 
} 
else{ 
   delta= pow(b,2) - 4*a*c; 
   if (a!=0 && delta>=0){ 
      x1=(-b + sqrt(delta) )/(2*a); 
      x2=(-b - sqrt(delta) )/(2*a); 
   } 
} 
/* mult() */ 
while(k1>0){ 
   if ((k1%2)==0 ){ 
      k1/=2; 
      x1+=x1; 
   } 
   else{ 
      k1--; 
      m1+=x1; 
   } 
} 
/* mult() */ 
while(k2>0){ 
   if ((k2%2)==0 ){ 
      k2/=2; 
      x2+=x2; 
   } 
   else{ 
      k2--; 
      m2+=x2; 
   } 
}/* biggerminus() */ 
if(m1>m2){ 
   bg=m1-m2; 
} 
else{ 
   bg=m2-m1; 
} 
/* sum() */ 
s = a + b - c;  
/* sqrt() */ 
if(s<0){ 
   sq=sqrt(-s); 
} 
else{ 
   sq=sqrt(2*s); 
} 
/* biggerminus() */ 
if(sq>bg){ 
   r=sq-bg; 
} 
else{ 
   r=bg-sq; 
} 

Figure 4.2. Test program split into slices 

4.3.3 Experimental Results and Analysis 
Using the methodology described in Section 4.3.1 and the slices of program 

described in Section 4.3.2, fault injection campaigns and performance measurements 
have been performed. 
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inputs(x1,k1) >= 0  inputs(x1, k1) > 0  

..mult():::EXIT  
::k1 == orig(::m1)  
::k1 == 0  
::m1 >= 0  
::k1 <= ::x1  
::k1 <= ::m1 
::k1 <= orig(:k1)  
::k1 <= orig(::x1)  
::x1 >= orig(::x1) 

..mult():::EXIT  
::k1 == orig(::m1)  
::k1 == 0  
::k1 < ::x1  
::k1 < ::m1 
::k1 < orig(::k1)  
::k1 < orig(::x1)  
::x1 <= ::m1 
::x1 % orig(::x1)==0  
::x1 >= orig(::x)  
::m1 % orig(::k1)==0  
::m1 >= orig(::k1)  
::m1 % orig(::x1)==0  
::m1 >= orig(::x1)  

Figure 4.3. Detected invariants for slice mult() 

 
verification=0; 
if(k1==0 && x1>=0 && m1>=0 && k1<=kk1 && k1<=kk1 && xx1<=x1){ 
   if(xx1>0 && kk1>0){ 
      if(x1<=m1 && (x1%xx1)==0 && (m1%kk1)==0 && m1>kk1 && (m1%xx1)==0 && m1>=xx1){ 
         verification=1; 
      } 
   } 
   else if(m1==0){ 
      verification=1; 
   } 
} 

Figure 4.4. Code added for slice mult() 

During the fault injections campaigns, each hardened slice of the program has been 
run 2,000 times, and during each run one fault has been injected, causing a SEU that 
affects one variable. Table 4.1 shows the number of runs for which the verification of 
invariants detected an erroneous result, i.e., when the reference results and those 
generated by the basic algorithm are different and the verification algorithm raised an 
error flag. The last line of the table presents the results when only the invariants of the 
complete program are verified. 

Table 4.1. Erroneous result detection capability 

Algorithm Correct error detections Detection rate 

mult() 1141 57,05 % 

baskara() 394 19,70 % 

sum() 388 19,40 % 

biggerminus() 539 26,95 % 

square() 288 14,40 % 

complete program 375 18,75 % 

 

It is important to highlight that the results in Table 4.1 relate only to cases in which 
an injected fault has caused an error in the results produced by the program slice. 
However, by analyzing the other possible situations described in Subsection 4.3.1.1, one 
can see that there is another important set of cases that must be considered when dealing 
with software: those in which the results produced by the algorithm are correct, but 
where the fault affected variables used by the program slice after their contents were 
read and processed. Such cases may lead to latent errors, which can manifest itself later 
in the program. In order to show the effectiveness of the proposed technique in the 
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detection of those cases, Table 4.2 presents the number of runs where all faults have 
been detected, regardless whether they appeared at the output or not. 

Table 4.2. Fault detection capability 

Algorithm Correct fault detections Detection rate 

mult() 1693 98,15 % 

baskara() 1621 81,05 % 

sum() 1729 86,45 % 

biggerminus() 1630 81,50 % 

sqrt() 1031 51,55 % 

complete program 724 36,20 % 

 

It is interesting to notice that the algorithm partitioning allowed for a higher 
detection rate than using just the complete program. This can be explained by the fact 
that the use of a big amount of variables in a program may impair Daikon capabilities to 
recognize invariants. Thus, when the main program is split into smaller parts, invariants 
are inferred regarding only variables local to a program slice. This not only provides a 
greater number of invariants to be checked, but also allows multiple and more efficient 
checking points and an earlier fault signalization. 

The performance overhead imposed by the invariants verification algorithms has 
also been measured, and the percent overhead is shown in Table 4.3 for each slice of the 
considered program and for the complete program. One can notice that the overhead for 
most of the slices is much lower than that imposed by duplicated execution of the 
algorithm and comparison of results. 

Table 4.3. Performance overhead 

Algorithm Execution time Verification time Time increase 

mult() 190,00 ns     5,00 ns   2,63 % 

baskara() 207,33 ns 104,83 ns 50,56 % 

sum()   90,16 ns   00,67 ns   0,74 % 

biggerminus()   87,50 ns   12,66 ns 12,65 % 

Square() 169,33 ns     3,50 ns   2,02 % 

complete program 493,20 ns   68,80 ns 13,95 % 

 

As one can see in Table 4.1, the number of erroneous results (when a fault causes an 
error in the output) detected by this technique is relatively low (≤ 57 %). However, 
considering all faults detected, including the ones that did not cause a computation to be 
wrong, but may lead to latent errors, four of the five algorithms used in the experiments 
have reached from 80% to 98% of fault detection capability, as shown in Table 4.2. In 
this latter case, a significant amount of the faults detected may be used to avoid future 
errors. 

Furthermore, the analysis of the computation time overhead imposed by the 
proposed technique, presented in Table 4.3, shows that only one of the five verification 
algorithms imposes an overhead higher than 13%. This low overhead characteristic 
makes the proposed technique suitable for use in conjunction with complementary ones, 
aiming to detect the faults which have not been flagged in the experiments. 
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5 IMPROVING LOCKSTEP WITH CHECKPOINT AND 
ROLLBACK 

The part of the thesis described in this section is an example of system level 
technique to cope with radiation induced faults. It has been developed during a 
cooperation internship in which the author worked together with the CAD Group of 
Dipartimento di Automatica e Informatica, at Politecnico di Torino, in Italy. The 
internship lasted four months, from April through July 2008, and the contribution of the 
author has been included in a manuscript which has already been accepted for 
publication in the IEEE Transactions on Nuclear Sciences journal, scheduled to be 
published in August 2009 (ABATE, RADECS 2008). 

5.1 PROBLEM DEFINITION 
The increasing availability of field programmable devices that include commercial 

off-the-shelf (COTS) processor cores makes this type of device the ideal platform for 
several applications.  Their low cost and design flexibility are key factors to provide 
competitive products with shorter time to market, making them an ideal alternative for 
the consumer products industry. However, the effects of radiation on the internal 
components of such devices so far precluded their unrestricted use in most of space and 
mission critical applications. 

In this class of devices, three different types of components must be protected 
against radiation: the configuration memory, used to define the function to be 
implemented by the reconfigurable logic, the reconfigurable logic itself, and the 
hardwired processor cores. 

The protection of the configuration bits against SEUs can be achieved through the 
use of well known error detection and correction (EDAC) techniques (JOHNSON, 
1994), and other techniques (LIMA, 2004), (KASTENSMIDT, 2006). More recently, 
the use of flash memories has been proposed as an alternative. Besides providing lower 
power consumption, an important feature for space applications, flash memories are 
relatively immune to SEUs and SETs, due to the high amount of charge required 
discharging the floating gate. 

As to errors caused by SETs affecting the programmable logic components, they can 
be mitigated through the use of spatial redundancy techniques such as triple modular 
redundancy (TMR). While this approach implies a high penalty in terms of area and 
power consumption, it is so far the best available alternative for protection of the 
programmable logic inside SRAM-based FPGAs (JOHNSON, 1994), (XILINX, 2009). 

In contrast, the mitigation of errors caused by radiation induced transient faults 
affecting the internal components of the embedded processor cores is still an open issue, 
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undergoing intensive research. Despite the fact that the code and data used by the 
processors can be protected against radiation effects through the use of EDAC, after 
they are read and stored in the internal memory elements of the processor they are 
subject to corruption by radiation induced transients before they are used, leading to 
unpredictable results. Furthermore, even when fault tolerance techniques such as 
checkpoints are used to periodically save the system context for future recovery, this 
corrupted data can be inadvertently stored within the context, leading to latent errors 
that may manifest themselves later, when a recovery procedure requires the use of this 
information. Finally, when information used by the processor to manage the control 
flow is corrupted, catastrophic errors can occur, leading the system to irrecoverable 
states. 

5.2 RELATED WORK AND PREVIOUS IMPLEMENTATION 

5.2.1 Related Work 
While several hardware and/or software based techniques for protection of the 

processor have been proposed in the literature, most of them cannot be applied for 
commercial off-the-shelf processors, for which the access to internal elements of the 
architecture is limited. 

Software-based detection approaches work on faults affecting the control flow or 
data used by the program, and also provide coverage of those faults that affect the 
memory elements embedded in the processor, such as the processor’s status word, or 
temporary registers used by the arithmetic and logic units (OH, 2002b), (CHEYNET, 
2000). The main benefit stemming from software-based approaches is that fault 
detection is obtained only by modifying the software that runs on the processor, 
introducing instruction and information redundancies, and consistency checks among 
replicated computations. However, the increased dependability implies extra memory 
(for the additional data and instructions) and performance (due to the replicated 
computations and the consistency checks) overheads which may not be acceptable in 
some applications. 

Hardware-based techniques insert redundant hardware in the system to make it more 
robust against single event effects (SEEs). One proposed approach is to attach special-
purpose hardware modules known as watchdogs to the processor in order to monitor the 
control-flow execution, the data accesses patterns (DUPONT, 2002), and to perform 
consistency checks (MAHMOOD, 1988), while letting the software running on the 
processor mostly untouched. Although watchdogs have limited impact on the 
performance of the hardened system, they may require non-negligible development 
efforts also at the software level, in order to decide the right amount of processing 
between each disarming of the watchdog. For this reason, watchdogs are barely portable 
among different processors. 

To combine the benefits of software-based approaches with those of hardware-based 
ones, a hybrid fault detection solution was introduced in Bernardi (2006). This 
technique combines the adoption of software techniques in a minimal version, for 
implementing instruction and data redundancy, with the introduction of an 
Infrastructure-Intellectual Property (I-IP) attached to the processor, for running 
consistency checks. The behavior of the I-IP does not depend on the application the 
processor executes, and therefore it is widely portable among different applications. 
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Other researchers explored alternative paths to hardware redundancy, which 
consisted basically in duplicating the system’s processor and inserting special monitor 
modules that check whether the duplicated processors execute the same operations 
(PIGNOL, 2006), (NG, 2007). These approaches are particularly appealing in those 
cases where processor duplication does not impact severely the hardware cost. 
Moreover, since they do not require modifications to the software running on the 
duplicated processors, commercial off-the-shelf software components can be hardened 
seamlessly. 

In the past, the use of checkpoints combined with rollback recovery as a means to 
build systems that can tolerate transient faults has also been proposed, and several 
studies aiming the implementation of architectures with this approach have been 
published. Among the proposed solutions, some require hardware support for its 
implementation, and some depend on software support, i.e., they imply modifications 
either in the hardware or in the software of the system to achieve fault tolerance. A 
comprehensive review of such studies can be found in Pradhan (1995). 

5.2.2 Previous Implementation of Lockstep with Checkpoint and Rollback 
The implementation described here is part of an ongoing research project aiming to 

build fault tolerant systems using COTS based FPGAs without the need to modify the 
processor’s core architecture or the main application software, which is being developed 
at Politecnico di Torino, in Italy, where the author stayed during 4 months, from April 
to July 2008, working in cooperation with the CAD Group at the Dipartimento di 
Automatica e Informatica of Politecnico. 

The contribution of the author for that project was the definition and implementation 
of a new approach for the use of the lockstep mechanism (NG, 2007) combined with 
checkpoints and rollback to resume the execution of the application from a safe state, in 
which the performance overhead imposed by previous solutions is significantly reduced 
by the introduction of an IP module that speeds up checkpoints for applications with 
large data segments. The details of the proposed technique are discussed, and the 
resulting performance improvement evaluated, in Section 6.3. 

Aiming at detecting errors affecting the operation of the processor, the lockstep 
technique uses two identical processors running in parallel the same application. The 
processors are first synchronized to start from the same state and both receive the same 
inputs, and therefore the states of the two processors should be equal at every clock 
cycle, unless an abnormal condition occurs. This characteristic of lockstep allows for 
the detection of errors affecting one of the processors through the periodical comparison 
of the processors’ states. The retrieval and comparison of processor states, here named 
consistency check, is performed after the program has been executed for a predefined 
amount of time or whenever a milestone is reached during program execution (e.g., a 
value is ready for being committed to the program user or for being written in memory). 
When the states differ, the execution of the application must be interrupted, and the 
processors must restart the computation from a previous error-free state. 

To restart the application from its beginning is very expensive in terms of 
computation time, and sometimes is also not feasible. In order to avoid that, checkpoints 
are used in conjunction with lockstep to keep a copy of the last error-free state in a safe 
storage. With this purpose, whenever a consistency check shows that the states of the 
processors are equal, a copy of all information required to restore the processors to that 
state when an error is detected is saved in a storage device which is protected against 
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soft errors or that allows the detection and correction of those errors when they occur. 
This set of information is usually named context, and encompasses all information 
required to univocally define the state of the processor-based system (it can include the 
contents of the processor’s registers, the program counter, the cache, the main memory, 
etc.). 

If the consistency check fails, i.e., the states of the two processors are different, an 
operation named rollback must be performed to return both processors to a previous 
error-free state. This is done by retrieving the most recent context saved during a 
previous checkpoint and using it to restore the processors to that state, from which the 
execution of the application is resumed. 

The flowchart of the above described technique is depicted in Fig. 5.1. When a 
rollback is performed, the computation executed since the last checkpoint until the 
moment when the consistency check was executed must be repeated. 

 
Fig. 5.1. Flow chart of rollback recovery using checkpoint 

Fig. 5.2 shows an example of application execution flow using the lockstep 
technique combined with checkpoint and rollback recovery. The arrow on the left 
indicates the timeline (T). 

 
Fig. 5.2. Example of execution of rollback recovery using checkpoint 

Initially, processor 1 executes one portion of the application until it reaches a 
predefined point. The context of processor 1 at this point is A1. Then, processor 2 
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executes the same portion of the application, reaching the same point with context A2. 
When both processors reached the same predefined point, their contexts are compared 
and, if they are equal, a checkpoint is performed, saving the states of the two processors 
in a soft error tolerant memory. 

Next, the execution of the application is resumed, with processor 1 performing 
another portion of the code until it reaches a second predefined point, with context B1, 
and then processor 2 executes the same portion of the application, stopping at the same 
second predefined point, with context B2. At this point a new consistency check is done 
and, if no error occurred, a new checkpoint is performed, saving contexts B1 and B2, 
and so on, until the whole application has been successfully executed by both 
processors. 

Now, let us suppose that, as shown in Fig. 5.2, one SEU occurs and causes one error 
while processor 2 is processing the second portion of the application code. In this case, 
when it reaches the second predefined point and the consistency check is performed, the 
state of processor 2 is X2, instead of B2, which indicates that one error occurred and 
that, as a consequence, a rollback must be performed. 

The rollback operation, then, restores both processors to their last error-free states 
using the information saved during the last checkpoint performed by the system, i.e., 
contexts A1 and A2, respectively. The execution of the application is then resumed as 
previously described, with processor 1 and then processor 2 executing, one at a time, the 
same portion of the application that was affected by the error, and if no other error 
occurs the processors finally reach the correct states B1 and B2 and a new consistency 
check is performed, saving contexts B1 and B2. This way, the error caused by the SEU 
has been detected during the consistency check, and corrected by the repeated execution 
of the code segment in which the error has occurred. 

While the techniques used in this approach are apparently simple, their 
implementation is not trivial, demanding the careful consideration of several issues. 

A particularly critical aspect is the criteria to be used when defining at which points 
the application should be interrupted and a consistency check performed, since it can 
severely impact the performance of the system, the error detection latency, as well as 
the time required to recover from an erroneous state. Clearly, checking and saving the 
states of both processors at every cycle of execution provides the shortest fault detection 
and error recovery times. However, this imposes unacceptable performance penalties to 
any application. In contrast, long intervals between consecutive checkpoints may lead to 
catastrophic consequences due to the error propagation in systems where the results 
produced by one module are forwarded to other modules for further processing, as well 
as to the loss of deadlines in real-time applications when one error occurs. Therefore, a 
suitable trade-off between the frequency of checkpoints, error detection latency and 
recovery time must be established, according to the characteristics of the application, 
and taking into account the implementation cost of the consistency check as well. 

A second issue is the definition of the consistency check procedure to be adopted. 
Considering that the consistency check aims to detect the occurrence of faults affecting 
the correct operation of the system, the consistency check method plays an important 
role in the achievement of the fault tolerance capabilities of the system. The optimal 
balance between maximum fault detection capability and minimum consistency check 
implementation cost must be pursued. 
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In the definition of the context of the processors, designers must identify the 
minimum set of information that is necessary to allow the system to be restored to an 
error-free state when a fault is detected. The amount of data to be saved affects the time 
required to perform checkpoints and also to rollback when one error is detected. 
Therefore, in order to provide lower performance overhead during normal operation, as 
well as faster recovery when an error occurs, the minimum transfer time for those 
operations must be pursued, together with a low implementation cost. 

The storage device used to save the context data must be immune to the type of 
faults that the system tolerates, in order to ensure that the information used to restore the 
processors to a previous state when one error is detected has been also preserved from 
such faults between the checkpoint and rollback operations. 

Finally, the most efficient methods should be used to develop the checkpoint and 
rollback procedures, since they require access to all the memory elements containing the 
context of the processors, and have to be performed every time a checkpoint must be 
stored, after a successful consistency check, or a rollback must be performed to load an 
error-free context into the processors, when one error is detected by the consistency 
check. Depending on the definition of the context, the frequency of consistency check 
execution, as well as the error rate, checkpoint/rollback operations may be performed 
very frequently, and therefore the time spent while moving data to and from the 
processor must be minimized. 

The implementation of synchronized lockstep combined with checkpoints and 
rollback recovery presented in this work was inspired in the approaches proposed in 
Pignol (2006) and Harn Ng (2007), and it is an extension of the implementation 
presented in Abate (2008). It has been conceived to harden processor cores embedded in 
FPGA devices against soft errors affecting the internal memory elements of the 
processors, and has been initially implemented using a Xilinx Virtex II Pro FPGA, 
which embeds two 32-bit IBM Power PC 405 hard processor cores. However, the 
approach is general and it can be extended to different FPGA devices with two 
embedded processors (e.g., the Actel devices with embedded ARM processors). 

In the following subsections, we describe the adopted solutions for the 
aforementioned main issues. 

5.2.2.1 Consistency Check Implementation 

Due to the availability of two processor cores in the devices used for the 
implementation, processor duplication with output comparison was adopted to 
implement the consistency check. The developed approach uses two processors running 
the same application software. Considering that the processors are synchronized, and 
executing the very same software, they are expected to perform exactly the same 
operations. By observing the information travelling to and from the processor it is 
therefore possible to identify fault-induced misbehaviors. 

The consistency check is performed every time the two processors perform a write 
cycle, i.e., every time they send information to the memory. The control bus is 
monitored to detect when each processor is issuing a write operation. The processors 
run alternately in a hand shake fashion: one processor executes the software until a 
write instruction occurs; it then stops the execution, and waits for the second processor 
to execute exactly the same segment of the application. As soon as the second processor 
executed the write operation, it is also stopped, and the consistency check is performed 
by comparing the information sent through the data and address busses by each 
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processor in order to confirm that both wrote the same data in the same address. After a 
successful consistency check, a checkpoint is performed and the first processor resumes 
the execution of the software. 

The need to stop one processor while the other is running the application arises from 
the fact that the device used in this work has a single memory, which is shared by both 
processors through the PLB bus, as shown in Figure 5.3. Therefore, only one processor 
can access the memory at each time. To overcome this restriction, in a previous work 
targeting the same device (ABATE, 2008) both processors run in parallel, but only one 
of them writes the results of the computation into memory. In that work, however, when 
a mismatch occurs the system cannot know which of the processors failed, and therefore 
the technique proposed there has no error correction capability, being only able to detect 
errors, while the technique proposed here uses checkpoints to allow error correction. 

The frequency of checkpoints can affect both the performance and the dependability 
of the implemented solution. For the analysis of those parameters, we define the time 
spanning between two consecutive checkpoints as execution cycle, while we define 
lockstep cycle as the time spanning between the start of the execution of one application 
segment by the first processor, and the completion of the write operation by the second 
processor. 

In our approach, one execution cycle can include one or more lockstep cycles, and 
only at the end of each execution cycle a dedicated hardware module performs the 
consistency check and triggers the checkpoint operation to save the status of the 
memory elements of both processors in a dedicated memory area, thereby saving the 
context of the system. 

5.2.2.2 Context Definition and Storage 

In this work the context to be saved during the checkpoint operation includes the 
contents of the 43 user registers (32 general purpose registers and 11 special purpose 
registers, 32-bit wide), program counter, stack pointer, processor status word, and the 
data segment of each processor. It does not include the status of the processor’s cache, 
which therefore is assumed to be disabled. However, the implementation can be 
extended to deal with the cache too, by flushing the data cache contents to the main 
memory during checkpoint, before the context is saved, and by invalidating the 
data/instruction cache upon execution of a rollback operation. 

For the sake of this work we assume the memory used to store the processor’s 
context is immune to SEUs, i.e., it is hardened using suitable EDAC codes as well as 
memory scrubbing. 

5.2.2.3 Overall Architecture 

The architecture of the proposed implementation is shown in Figure 5.3, and it 
includes the following modules: 

• PPC0 and PPC1: the two Power PC 405 processors embedded in the FPGA, 
working in lockstep mode. 

• Interrupt IP0 and Interrupt IP1: two custom IP modules used to trigger the 
interrupt routines that perform the checkpoint and rollback operations for each 
processor. 
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• Opb_intC0 and Opb_intC1: interrupt controller IPs provided by Xilinx that are 
connected to PPC0 and PPC1 to manage the interrupt requests from Interrupt IPs 
0 and 1, sending the interrupts signals to the processors. 

 

 
Fig. 5.3. Architecture of the synchronized lockstep with rollback 

• DMA0 and DMA1: DMA controller IPs provided by Xilinx, used to provide 
faster transfer of context information between the application data segments and 
the context saving storage during checkpoints. 

• Lockstep Unit: a custom IP that monitors the operations of the two processors, 
using the halt0/halt1 signals to stop each processor immediately after it issues a 
write operation, and restart them to resume execution. The bus master signal is 
used to determine which processor is currently writing to memory. Whenever it 
receives the go signal from the Control Unit, the Lockstep Unit starts one 
lockstep cycle. Once both processors have performed the same write instruction, 
it performs the consistency check and uses the lockstep_done signal to inform to 
the Control Unit that a cycle has been completed, and also activates the error 
signal when a mismatch occurs. 

• Control Unit: a custom IP that interacts with the Lockstep Unit to execute the 
application in lockstep mode and receives the results of the consistency checks. 
After the predefined number of successful write operations has been performed, 
it triggers the interrupt routines on each processor to perform the checkpoints 
when no error occurred. When a mismatch has been found, the interrupt routines 
perform a rollback operation. This new approach represents a major change with 
respect to the one proposed by Abate (2008), providing improvements in terms 
of dependability and performance. 

5.2.2.4 Implementation Details 

The system includes a standard DDR RAM memory for both code and data 
segments storage, which is divided into two independent addressing spaces, each used 



 

 

75 

by only one processor, i.e., one processor cannot read from nor write into the addressing 
space of the other. The context of each processor and the copies of their data segments 
are also stored in DRAM, in areas not used by the application software. 

In order to minimize the time needed for checkpoint and rollback execution, they 
have been implemented using the interrupt mechanisms made available by the 
processors. When an interrupt request is received the processor stops executing the 
application, saves its context into the stack, and starts executing the corresponding 
interrupt handling routine. When the interrupt handling routine ends, the processor 
restores its context from the stack and resumes the execution of the application from the 
point it has been interrupted. 

During checkpoint the system performs the following steps: 

• After the interrupt routine request is raised, the processor saves its context in the 
stack. 

• The checkpoint interrupt service routine saves the contents of the stack in the 
context memory. 

• The checkpoint interrupt service routine copies the section of the main memory 
where the program’s data segment is stored to the context memory. This 
operation is performed using the DMA controller for a direct memory-to-
memory data transfer. 

Conversely, the rollback mechanism restores a previously saved context, performing 
the following operations: 

• The rollback interrupt routine copies the previously saved processor’s context 
from the context memory to the stack. 

• The rollback interrupt routine uses a DMA transfer to copy the stored data from 
the context memory to the program’s data segment. 

• When the processor returns from the rollback interrupt routine, it overwrites the 
processor’s context with the stack contents, thus resuming program execution 
from the same error-free state saved during the last checkpoint. 

The above described implementation of the rollback and checkpoint operations 
brings significant improvements with respect to the one described in Abate (2008), 
which requires tailoring the application to be run in the system. Specifically, in that 
implementation the data segment contents were not saved in the context, which required 
the application to be written in a particular way in order to preserve the integrity of the 
data between a given checkpoint and a possible rollback following it. The program 
could only write new values to variables in memory at the end of the execution, 
otherwise a rollback performed in the middle of the execution could lead the processor 
to an inconsistent state. In such cases, the context information would be reversed to a 
safe state, while memory variables would remain with their last, possibly erroneous, 
contents. That restriction imposed a strong limitation for application developers. 

Moreover, in the approach presented here consistency checks are executed every 
time a write occurs, while checkpoints are triggered only after the number of write 
operations defined at design time has been performed. This brings two new important 
improvements with respect to Abate (2008). The first one is the reduction of the 
performance overhead, since the checkpoint operation implies saving the entire register 
set and data segment contents of both processors into memory. The second advantage 
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regards the dependability of the solution. In fact, the experimental analysis described in 
Abate (2008) showed that in some cases SEEs may remain latent in a context, i.e., one 
SEE is latched by one of the processors (e.g., in a general register) during execution 
cycle n, but the affected data is used for computation only during execution cycle n+x. 
In such cases, a faulty context is saved during the checkpoint following execution cycle 
n, thus preventing the successful execution of the recovery mechanism after the error is 
detected by the consistency check during any subsequent execution cycle, and leading 
the system to an endless sequence of rollback operations. By extending the execution 
cycle to include more write operations, the probability that a latent SEE manifests itself 
within the same execution cycle during which it is latched has been increased, and so 
the probability of successful execution of the rollback, thereby providing higher 
dependability for the whole system. 

5.2.2.5 Fault Injection Experiments and Analysis 

This section describes and discusses the fault injection experiments that have been 
performed for assessing the capability of the proposed approach to cope with soft errors 
affecting the processor’s memory elements. In this phase of the research work, only 
SEEs affecting the processor’s registers have been investigated. However, the use of 
ground facilities to explore other types of radiation induced effects is planned as future 
work. 

Besides the two PowerPC processors, the proposed architecture uses only a limited 
amount of the FPGA resources: 6,991 slices and 48 16-kB blocks of RAM. Therefore, it 
is suitable for being embedded in complex designs, where larger devices are expected to 
be used. 

Concerning the FPGA’s configuration memory, the number of bits that may cause a 
system failure has been computed using the STAR tool (STERPONE, 2005). Table 5.1 
reports the obtained results, which have been classified according to the different 
modules of the architecture, plus the glue logic implementing the processor chipset, e.g., 
to interface with the DDR RAM. Since the configuration memory of the selected device 
is composed by 11,589,920 bits, one can see that only 3.6% of them are expected to be 
sensitive. 

Table 5.1. Sensitive bits for IP 

Resource Sensitive Bits 
Control Unit 41,789 
Lockstep Unit 59,173 
Interrupt IP 0 and 1 2 × 89,421 
Opb_intC 0 and 1 2 × 4,595 
DMA0 and 1 2 × 25,744 
Glue logic 75,338 
TOTAL 415,820 

 

While the present work proposes a technique to cope with errors affecting only the 
processor cores embedded in the FPGA, it is important to note that the configuration 
memory and the reconfigurable logic themselves must be hardened too, since ionizing 
radiations may also affect them. However, within the scope of this work, the proposed 
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architecture has been deemed tolerant to the SEUs affecting the configuration memory 
and the reconfigurable logic, and no faults have been injected in those elements. 

For the specific devices used to implement and test the technique proposed in this 
work, the protection of the configuration memory and the reconfigurable logic could be 
implemented through the use of the X-TMR tool from Xilinx, which uses the triple 
modular redundancy (TMR) technique to harden all the design components against 
SETs, with exception of the Power PCs (XILINX, 2009). 

However, TMR is not a bullet proof technique, since it uses a voter circuit to choose, 
among the outputs of three modules, which are the correct ones. Although the area of 
the voter circuit is usually much smaller than that of the tripled modules that it protects, 
its components are still subject to radiation effects and must also be hardened by 
suitable techniques. Among those, the use of larger transistors dimensions and the use 
of one additional TMR instance to triple the voter circuit and then use a fourth voter to 
choose the correct output are the more widely used to minimize the error rate. 
Furthermore, in the unlikely event of two simultaneous faults affecting the same output 
bit of two of the tripled modules, the voter will silently choose the wrong result as the 
one to be forwarded to the output of the circuit, with catastrophic consequences. A 
deeper discussion of TMR hardening techniques, however, is out of the scope of this 
work. 

The injection of faults in the internal registers of the PPC microprocessors has been 
performed using the method described in Sonza Reorda (2006). To simulate the 
occurrence of a Single Event Upset (SEU), during each run of the application one bit of 
one internal register of the microprocessor is complemented. The register and the bit to 
be flipped are selected randomly, using a specially developed hardware. A Fault 
Injection Hardware Unit (FIHU), placed between a host computer and the 
microprocessors, performs the fault injection process using part of the reconfigurable 
hardware and manages the injection of faults affecting the microprocessors internal 
elements. On the host computer, a Fault Injection Manager controls the fault-injection 
process through the FIHU and using the μP debugger primitives. Detailed reports 
concerning the results obtained during the fault-injection campaign are produced by a 
Result Analyzer module. The communication channel between the host computer and 
the FIHU implemented within the FPGA exploits the communication features provided 
by the JTAG interface. 

For analysis purposes, the effects of the fault injection on the outputs of the system 
have been classified as follows: 

• wrong answers, when the outputs of both processors were equal, but different 
from the expected ones; 

• corrected, when the error caused by the injected fault was detected and corrected 
by the implemented mechanism, so that the output results were the same for both 
processors, and were equal to the expected ones; 

• latent, when the injected fault caused a latent error which escaped the detection 
and correction mechanism embedded in the system, and therefore after the 
execution of rollback and repetition of the computation the outputs produced by 
the two processors were still different; and 

• silent, when the injected fault did not have any consequence on the results 
generated by the application. 
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A preliminary set of results has been collected using as benchmark application the 
multiplication of two 3x3 integer matrices. The application code has not been modified, 
except for the insertion before it of a small prologue needed to register the interrupt 
routine. The application has a code length of 100 bytes and requires 1,922,272 clock 
cycles for completion. For the selected application we analyzed the overhead introduced 
by checkpoint execution, and the sensitivity of the hardened system to SEEs. 

The application has been executed with three different versions of the system, which 
performed a checkpoint at every cycle (saving 100% of the contexts), at every 3 cycles 
(33% of contexts) and at every 6 cycles (16.7% of contexts), respectively, and the 
collected results are reported in Table 5.2. 

Table 5.2. Results of fault injection on the processors 

Context 
Savings 
[%] 

Execution time 

[Clock cycles] 

Code
size 

[bytes]

Data
size 

[bytes]

Injected
[#] 

Wrong
Answer
[#] 

Corrected 
[#] 

Latent 
[#] 

Silent
[#] 

100.0 17,219,076 100 36 1,800 0 200 116 1,484 
33.0 14,049,761 100 36 1,800 0 321 87 1,392 
16.7 11,216,452 100 36 1,800 0 440 29 1,331 
 

These figures confirm that the execution of one checkpoint after each write 
instruction imposes a too heavy penalty on the performance of the system, while 
limiting the checkpoints to one at every 6 writes leads to a much lower overhead. As far 
as SEE sensitivity is concerned, one can notice that all the injected faults have been 
appropriately handled in our experiments. The faults that had effects on the program 
execution have been corrected thanks to rollback and those that caused latent errors 
have been detected at the end of the computation, since the data segments of the two 
processors contained results that were different among them. Moreover, it is worth 
noticing that the number of latent errors decreases sharply when the frequency of 
context savings decreases, while the number of corrected errors increases. This fact 
shows that errors are less likely to remain latent at the end of the execution cycle when a 
larger number of writes per execution cycle is used. 

The preliminary experimental analysis confirmed that the proposed approach is an 
efficient and scalable method for hardening processors systems when two processors are 
available at low cost. However, it has also shown that some errors may become latent 
and not be detected by the proposed mechanism at the end of the execution cycle in 
which they have been latched. To cope with this type of errors, a scalable solution, able 
to trade-off dependability with resource occupation, is under development. 

This solution will extend the current technique by saving multiple consecutive 
contexts during the execution of the application. This way, when one error is detected 
during the consistency check performed after a given execution cycle, a rollback to the 
context saved during the last checkpoint will be performed, and the execution of the 
application resumed from that point. If the detected error was a latent one, the 
consistency check will fail again at the end of the same execution cycle, since the 
erroneous data was saved during the last checkpoint. This shows that the last saved 
context is not error-free, and so the system will perform two consecutive rollbacks, to 
bring the system to the last but one saved state, and will resume the execution from 
there. If the latent error was latched only during the last checkpoint, this will lead the 
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system back to an error-free state and the execution of the application will proceed 
normally. Otherwise, the system will then perform three consecutive rollbacks, and so 
on, until it reaches a context not affected by the latent error and recovers from it, or the 
context buffer is exhausted. 

While this extension may imply higher costs, due to the need of a larger memory to 
store contexts, its application will be scalable according to the criticality of the 
application to be protected, becoming a feasible solution to cope with latent errors in the 
proposed system. 

5.3 IMPROVING THE PERFORMANCE BY MINIMIZING 
CHECKPOINT TIME 

5.3.1 Background and Description 
The implementation described in Section 5.2.2 improved the performance and the 

dependability of the system by reducing the number of checkpoints performed during 
the execution of the application. In the experiments described in Subsection 5.2.2.5 the 
number of lockstep cycles per execution cycle has been changed from 1 to 3 and 6, 
using an application with a very small data segment, which performs the multiplication 
of 3×3 matrices. However, considering that the whole data segments of the applications 
running in both processors must be saved during checkpoints, there is still a significant 
performance penalty for applications with large data segments. Aiming to further 
improve the performance of the system for this kind of application, one additional IP, 
named Write History Table (WHT), has been included in the system, as shown in Fig. 
5.4. 

The implementation of WHT and the experiments to evaluate its effectiveness as a 
performance improvement element are the contributions of the author to the Project. 

 

 
Fig. 5.4. Architecture modified to include the WHT 
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The WHT has been inserted between the Lockstep Unit and the Control Unit, and it 
is used to temporarily store the addresses and values that have been written by the 
application during one execution cycle. Whenever the consistency check performed by 
the Lockstep Unit determines that address and value are consistent between both 
processors, they are stored in a new entry of the table inside WHT. When the table is 
full, the WHT IP sends the wht_full signal to the Control Unit, which then performs a 
checkpoint. When the Lockstep Unit detects an error, the address-value pairs already 
stored in the WHT are flushed and the error signal is passed forward to the Control 
Unit, which then requests a rollback operation. 

Considering that the consistency checks ensure that the data written by both 
processors is the same, now only one copy of the data segment is kept in the so-called 
data segment mirror area. Moreover, the checkpoint operation performed by the 
interrupt service routine has been modified in order to write into the data segment 
mirror area only those words which have been changed by the application after the last 
checkpoint, thereby avoiding transferring the whole data segment of both processors to 
memory, which can demand a long time for applications with large data segments. In 
order to accomplish this task, during checkpoints data is now copied from the WHT to 
the data segment mirror area using processor instructions, and no longer DMA transfers. 

The rollback operation, in turn, besides restoring the processor contexts to the stack 
area of each application, as before, now copies the single data segment mirror area to 
the data segments of both processors using DMA transfers. 

5.3.2 Experimental Results and Analysis 
In order to confirm that these modifications bring better performance for 

applications with large data segments, the matrix multiplication application has been 
performed several times, with matrix sizes varying from 2×2 to 20×20, and the number 
of cycles required to execute the whole application, including all checkpoints, has been 
measured for different configurations of WHT, respectively with 8, 16, and 31 entries. 
This means that the number of lockstep cycles per execution cycle has been also 
increased when compared with the previous experiments, with one checkpoint being 
performed after every 8, 16, or 31 write operations, respectively. As show in the 
previous section, this is also a dependability increasing factor. 

To allow comparing the impact on performance, the same applications have also 
been run on the previous version of the system (without WHT), using the same number 
of lockstep cycles per execution cycle (8, 16, and 31), and the average number of cycles 
per write operation has been calculated. 

The graphics in Fig. 5.5 show the comparison of the average number of cycles per 
write operation required by each implementation for each quantity of lockstep cycles 
per execution cycle. In those figures, Lockstep  Only refers to the implementation 
described in section III, while Lockstep with WHT refers to the one described in this 
section. 

By analyzing the results, the expected improvement of performance provided by the 
introduction of the WHT has been confirmed for applications with larger data segments. 
For the implementation of lockstep described in Section 5.2.2 (dotted lines), as the size 
of the data segment increases the average number of cycles per write operation grows 
almost linearly. In contrast, for the system with WHT (solid lines) the number of cycles 
remains almost constant after a certain data segment size is reached. 
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(a) Checkpoints at every 8 writes 

 

 
(b) Checkpoints at every 16 writes 

 

 
(c) Checkpoints at every 31 writes 

Fig. 5.5. Average cycles per write vs. matrix size comparison 
 

In the analysis of the graphics, it is important to highlight that for applications with 
small data segments, in this experiment represented by multiplication of small matrices, 
the use of WHT does not improve the performance. Also, the break-even point, i.e., the 
size of the data segment from which the use of WHT becomes an advantage, increases 
with the number of lockstep cycles per execution cycle (which is the same as the 
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number of entries in the WHT). This is due to the use of DMA transfers to save the data 
during checkpoints in the system without WHT, since for small data segments the DMA 
memory-to-memory transfer is faster than the execution of 8, 16, or 31 transfers from 
the WHT slave registers to memory using processor instructions. 

Table 5.3 shows the relationship between the quantity of entries in the WHT (each 
entry holds one address-value pair) and the size of the data segment of the applications 
in bytes, for the points where the use of WHT becomes advantageous. 

 

Table 5.3. Data segment size break-even point for use of WHT 

WHT size (# of entries) 8 16 31 
Matrix dimensions 5×5 7×7 11×11 
Data segment size (bytes) 100 196 484 

 

Through those experiments, it has been shown that the use of the WHT IP can 
indeed improve the performance of applications with large data segments, and that the 
number of entries in the WHT can be adjusted at design time in order to obtain the best 
results for a given data segment size. 

As to the fault tolerance capabilities of the system with WHT, they are the same 
described in section 6.2, since the same assumptions concerning the use of memory 
protected by EDAC techniques and use of TMR to protect the reconfigurable logic 
inside the FPGA have been used. The dependability of the system, however, increases 
with the higher number of lockstep cycles per execution cycle adopted in the 
implementation described in this section. 
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6 HAMMING CODING TO PROTECT 
COMBINATIONAL LOGIC 

The techniques described in chapters 3 through 5 aim to detect or detect and correct 
errors caused by radiation induced long duration transients with low cost, working at 
architecture, algorithm or system level. While they achieved the desired goal in terms of 
performance, power or area overheads, they still imply some degree of modification at 
algorithm or system level. With this in mind, the author has also worked on a low cost 
technique to be applied at circuit level, using space redundancy. Despite the need to 
change the hardware design, the application of this new technique can be implemented 
as an additional step in the synthesis of the circuit, thereby automating its use. Besides 
that, it does not require any further modification at the higher abstraction levels of the 
systems in which is applied. 

The mitigation of radiation induced errors at circuit level has been dealt with for 
many years and there are already several techniques in use that can solve the problem 
for memory elements. However, the lack of low cost solutions able to protect 
combinational logic, together with the increased sensitivity of devices to radiation in 
new technologies, points to the need of innovative research in this field. With this in 
mind, the author has worked on the definition of new parity based solutions to cope 
with this challenge. A first approach, using a standard parity scheme and low cost XOR 
gates, has been proposed in Lisboa (DFT 2008), but its application was restricted to 
single output circuits. Further experiments led to an innovative proposal, using 
Hamming Codes for the first time to protect combinational logic, which provides lower 
area and power overheads than the classic triple modular redundancy technique, with 
only a small penalty in terms of performance of the hardened circuits. The application 
of the proposed technique to several combinational circuits has been developed through 
a cooperative work between the author and Costas Argyrides, a PhD student at 
University of Bristol, UK, and the results are described in Argyrides (TVLSI 2009). 

6.1 PROBLEM DEFINITION 
Considering a digital system as being composed by a set of sequential and 

combinational logic, one can say that the overall reliability of the system depends on the 
reliability of its constituent modules. The protection of sequential logic in a system very 
early became a matter of concern among designers, when the first digital systems 
started to be used in space missions. By that time, mitigation of radiation effects on the 
memory elements was the major problem faced by the scientists, and many techniques 
able to detect and correct errors affecting data stored in memory have been proposed 
and successfully implemented. Among them, the use of so-called Hamming code Erro! 
Fonte de referência não encontrada. has been applied to protect memory and also in 
the data communications field, where fixed size code words are used. 
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However, for the relatively slow devices used until some years ago, the effects of 
radiation on combinational logic usually were limited to the occurrence of SETs that 
lasted only a small fraction of the operation cycle of the circuits, and therefore were not 
latched by memory elements and did not lead to errors affecting the systems. Only in 
recent years, when the effects of radiation became an important component of the 
increasing soft error rate (SER) of combinational logic, as reported in Baumann (2005), 
this problem also became a major design concern. 

Since the problem of protecting memory elements against SEUs has already been 
appropriately dealt with, the development of innovative low cost error detection and 
correction techniques able to mitigate soft errors affecting combinational logic becomes 
mandatory to allow the design of complete reliable systems. 

With this in mind, this part of the thesis proposes a novel approach to detect soft 
errors in combinational logic that uses Hamming coding to protect the logic. It is 
important to notice that previous to this work, Hamming could only be used in a context 
where the number of bits to protect at the source and destination were the same. In the 
case of combinational circuits this hardly happens at all, and hence the strategy 
presented in this thesis to cope with this adaptation.  

The application of the proposed technique to several arithmetic and benchmark 
circuits has shown to provide lower overhead than the classic duplication with 
comparison (DWC) (WAKERLY, 1978) and triple modular redundancy (TMR) 
(JOHNSON, 1994) approaches, while offering superior error detection capabilities, 
making it a very promising solution to be used in the design of fault tolerant 
combinational logic in future technologies. 

6.2 RELATED AND PREVIOUS WORK 
As reported in Baumann (2005), as semiconductor technology evolves the soft error 

rate of combinational logic is increasing, which makes this issue a growing concern 
among the fault tolerance community. While effective solutions to protect memory 
elements have already been devised (NEUBERGER, 2005), (ARGYRIDES, 2007), the 
low probability of soft errors affecting CMOS combinational circuits being latched at 
the output of the circuit kept this subject as a secondary research point. Therefore, not 
many techniques to cope with this problem have been proposed until now. 

When it comes to transient errors mitigation, concurrent error detection (CED) is 
one of the major approaches. In its simpler forms, CED allows only the detection of 
errors, requiring the use of additional techniques for error correction. Nevertheless, the 
implementation of CED usually requires at least the duplication of the area of circuit to 
be protected. One of the simpler examples of CED is called duplication with 
comparison (WAKERLY, 1978), which duplicates the circuit to be protected and 
compares the results generated by both copies to check for errors. This technique 
imposes an area overhead higher than 100%, and when an error is detected the outputs 
of the circuit must be recomputed, which may be a problem for some classes of 
applications, such as real-time systems. 

Aiming to reduce the area overhead imposed by DWC, other research works 
propose the use of parity checking in order to allow the detection of errors in the outputs 
of combinational circuits. One of the early works based on this approach has been 
presented in Sogomonyan (1974), where the combinational circuit to be protected is 
split into groups of smaller circuits, with independent logic cones, to generate each 
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output. In order to avoid a single error affecting more than one output bit, the sharing of 
components used to generate different output bits within the same group is not allowed. 
For each group, a parity predictor circuit is added, which calculates which should be the 
(even or odd) parity bit if the set of outputs was considered a single codeword. The 
verification is done by a parity checker that receives the generated outputs and the 
predicted parity bit, and flags an error when the calculated effective parity of the outputs 
does not match the predicted one. In the best case, concerning the area overhead, a 
separate circuit is used for each output, without sharing of components between them, 
and only one additional circuit is used to generate the predicted value of a single parity 
bit. As shown in Almukhaizim (2003), the other extreme is when a single circuit is used 
to generate all outputs, in which case the technique becomes equivalent to duplication 
and comparison, with the checker reduced to a comparator. 

Some other proposals using CED have been presented since 1974, but all of them 
have the same drawback, i.e., they allow only the detection of the transient errors, not 
the correction. 

More recently, in Lisboa (DFT 2008), the use of a standard parity based technique to 
detect errors in single output combinational circuits has been proposed. In that work a 
second circuit that generates an extra output signal, named check bit, and two circuits 
for verification of the parity of inputs and outputs based on reduced area XOR gates, 
were used to detect soft errors. While that approach has proven to impose lower 
overhead than DWC for several functions, the need to have extra circuits for check bit 
generation and output parity verification makes it not competitive, in terms of area 
overhead, for multiple-output combinational circuits, like adders and multipliers. 

The classic space redundancy based solution allowing detection and correction of a 
single transient error in combinational logic is TMR, where the circuit to be protected is 
tripled and one additional voter circuit chooses by majority which is the correct result. 
Despite imposing an area overhead higher than 200%, TMR still has two weaknesses: 
(1) like the comparators used in DWC solutions, the voter circuit used in TMR must be 
fault tolerant by design, otherwise a malfunction in the voter can generate an erroneous 
result at the output; (2) if more than one module is simultaneously affected by faults, a 
situation that may happen more frequently in future technologies (ROSSI, 2005), there 
is a finite probability that two modules generate the same erroneous result, which is then 
deemed correct, with catastrophic consequences when this technique is applied to 
mission critical systems. 

In Almukhaizim (2003), an alternative to TMR, derived from Sogomonyan (1974) is 
proposed, which mixes parity verification and DWC, being able to detect and correct 
errors affecting a single circuit used in the detection/correction scheme. As with TMR, 
which tolerates multiple faults affecting a single module, double faults affecting six out 
of ten possible subsets of circuits used in the implementation are also detected by the 
technique proposed in that work, which also has its critical component: the multiplexer 
that selects the correct output according to the analysis of the control signals generated 
by the parity checker and the comparator. Experimental results of synthesis using a set 
of combinational and sequential benchmarks circuits has shown that the area overhead 
imposed by that technique is 15% smaller than that imposed by TMR for most of the 
studied circuits. 

All the previous works had in common the fact that they use simple parity as the 
error detection mechanism. Hence, after detection, extra redundancy must be provided 
to compute the correct value. This obviously implies in extra hardware cost or extra 
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delay. In this contribution we overcome these limitations by adapting the classical 
Hamming code, used in communication channels, for use in the protection of 
combinatorial circuits. We also compare the proposed approach with other recently 
published techniques, and reach significantly lower area overhead, with minimal 
performance penalty. 

6.3 PROPOSED TECHNIQUE 
The technique proposed here adopts Hamming coding as a mean to protect 

combinational logic. The addition of a Hamming Predictor circuit that processes inputs 
in parallel with the circuit to be hardened, and of a Hamming Checker circuit that 
verifies if the outputs are a Hamming codeword require additional area, but less than the 
classic TMR technique. Furthermore, the generation of those circuits can be 
implemented automatically, as part of the traditional design flow. 

6.3.1 Background and Description 
While the Hamming code has been proposed by Hamming (1950), and its use in the 

protection of data in storage elements and communications is a well known subject, its 
use in the hardening of combinational circuits is an innovative proposal. 

In order to emphasize the uniqueness of the proposed technique, the application of 
Hamming code to storage and data communications is contrasted here with the 
proposed technique, and then its application to a sample circuit is discussed. 

6.3.1.1 The Advantages of Hamming Code 

Proposed by R. W. Hamming in his well known work of 1950 (HAMMING, 1950), 
the code known by the author’s name has been widely used to allow single error 
correction and double error detection in applications such as data storage contents and 
message transmission. In such applications, one can use Hamming codes to protect 
against the effects of transient faults able to flip one bit in a memory element, or to 
protect circuits from the effects of noise or coupling that could corrupt a transmitted 
message. 

 
Fig. 6.1. (a) Typical Hamming code application, with fixed size code Word. (b) Typical 

combinational circuit, with different number of inputs and outputs. 

To the best of our knowledge, however, so far the use of Hamming codes has been 
restricted to applications with fixed length code words, as illustrated in Fig. 6.1(a). 
Given a set of n data bits, the Hamming encoder adds k parity check bits and writes in 
the storage device (or sends through a data transmission line) a code word with n+k 
bits. The decoder, in turn, reads from the storage (or receives from the communication 

(a) 

 
(b) 



 

 

87 

line) the n+k-bit code word, checks and corrects it according to the Hamming 
principles, and forwards to the output the resulting set of n data bits. 

Besides its intrinsic functionality as an error detection and correction mechanism, a 
very important property that makes the use of Hamming code even more attractive is its 
scalability, since the number of parity check bits grows only logarithmically with the 
number of data bits to be protected. In order to provide single error correction 
capability, the quantity of bits in the code word obeys the following relationship: 

2k ≥ n + k + 1       (1) 

Hence, when only SEC is desired, for up to 4 bits of useful data one must add 3 
check bits (a minimum 75% overhead), for 5 to 11 bits of data 4 check bits must be 
added, for 12 to 26 bits of data 5 check bits are required, while for 27 to 57 bits of 
useful data only 6 check bits are required (10.5% minimum overhead only). For modern 
complex systems this logarithmic growth is very interesting.  

Despite all those advantages, the reasons why the use of Hamming codes in the 
protection of combinational logic has not been explored so far possibly are: (1) the 
number of inputs of the combinatorial circuits to be protected is not necessarily equal to 
the number of output bits and (2) as opposed to other techniques, such as the modulo-3 
protection schemes (WATTERSON, 1988), the Hamming encoding is not transparent to 
most of the functions implemented by the circuits to be protected. This means that, if a 
set of circuit inputs is encoded using Hamming, through the addition of parity check 
bits, most probably the resulting output will be a set of bits with a different quantity of 
digits, and these being not a Hamming code word, thereby precluding the possibility of 
checking it for correctness. Fig. 6.1(b) shows an example of a ripple carry adder with 
2n+1 inputs and n+1 outputs, to illustrate the contrast between the fixed length code 
word used for the protection of data stored in memory or transmitted via 
communications lines, and the different number of inputs and outputs in combinational 
logic. 

6.3.1.2  Extending the Use of Hamming Code to Combinational Logic Hardening 

In this work, an alternative way of using the Hamming code to check the results 
generated by combinational logic, with single error correction and double error 
detection (SEC/DED) capability, is proposed. The implementation of the hardened 
circuit is illustrated in Fig. 6.2 using a 3-bit ripple-carry adder as an example, where ai 
and bi are the bits of the summand and augend, Cin is the carry in bit, and si are the sum 
bits. 

Instead of coding the inputs, the proposed approach generates, in parallel with the 
processing of the inputs by the circuit to be protected, a set of predicted Hamming 
parity bits based on the assumption that the outputs of the circuit to be protected are 
correct, and that they are used to create a Hamming code word, in which the data bits 
are the outputs effectively generated by the adder, where k1, k2, k3, and P parity bits are 
the outputs of the hereinafter called Hamming Predictor circuit. In other words, if no 
error occurs, the Hamming Predictor generates the expected values of the parity bits 
corresponding to the expected output values, everything based on the given inputs, 
which are forwarded to both circuits. 
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Fig. 6.2. Hamming code application to a ripple carry adder circuit 

In addition to the circuit to be protected (hereinafter called standard circuit) and the 
Hamming Predictor circuit, the approach proposed in this work requires a third circuit  
(hereinafter called Hamming Checker) to calculate the effective Hamming parity bits 
based of the generated outputs, and then compare those with the predicted parity bits. 
Using the method defined in Hamming (1950), the checker circuit is then able to detect 
and correct a single bit flip affecting one output bit of the circuit to be protected, or to 
raise an error signal (DBLERR) when two bit flips are detected in the outputs. 

6.3.1.3 Analysis of Combinational Hamming Operation for a Sample Circuit 

In order to better illustrate the principles used in the development of the technique 
proposed in this work, the circuit shown in Fig 6.2 will be used as a reference. In its 
traditional applications, the Hamming codeword is formed by aggregating a set of 
redundant parity check bits to the set of data bits to be protected when the data is written 
into memory or otherwise transmitted. So, for the combinational circuit shown in Fig. 
6.2, the corresponding Hamming code word is composed by eight bits, numbered from 
left to right as shown in Fig. 6.3. 

 
Fig. 6.3. Hamming code word format for the ripple carry adder circuit shown in Fig. 6.2 

When the data is retrieved from memory or otherwise received, the read parity bits 
are checked and the analysis of the results allows detecting and correcting one bit flip 
that occurred during the read or write (or send/receive) operations, or while the data was 
stored in the memory element or being transmitted through the communications line. 
With the addition of one extra parity bit (P in Fig. 6.3), Hamming codes also allow 
detecting double flips, in which case no correction is possible. As the overall effect of a 
SET in combinational logic is effectively one or more bit flips in the output of the 
circuit, the idea is to try to use the much consolidated field of error detection and 
correction in memory also to protect combinational circuits. 

So, considering the adder in Fig. 6.2, let a2a1a0 = 101, b2b1b0 = 100, and Cin = 1. The 
correct sum to be generated by the adder is then s3s2s1s0 = 1010. 

The expressions that give the values of the predicted parity check bits are: 
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k1 = s3 ⊕ s2 ⊕ s0 = 1 

k2 = s3 ⊕ s1 ⊕ s0 = 0 

k3 = s2 ⊕ s1 ⊕ s0 = 1 

P = k1 ⊕ k2 ⊕ s3 ⊕ k3 ⊕ s2 ⊕ s1 ⊕ s0 = 0 

Therefore, in this case the Hamming Predictor generates k1k2k3P = 1 0 1 0, and the 
correct Hamming code word corresponding to that set of input values is: 

k1k2s3k3s2s1s0P = 1 0 1 1 0 1 0 0 

Let us now suppose that a transient fault changes the value of output s1 to 0. Since 
the input did not change, and considering the single fault model, the Hamming Predictor 
will still produce the same output, and therefore the Hamming code word that will be 
supplied to the Hamming Checker will be equal to “1 0 1 1 0 0 0 0” (the underlined bit 
is erroneous). 

Given this code word, the Hamming Checker circuit will detect the single bit flip 
and will complement the sixth bit of the codeword to correct the error, thereby 
providing the correct output “1 0 1 1 0 1 0 0”. 

If a second erroneous bit is produced, either in the outputs of the adder or of the 
Hamming predictor, the Hamming Checker will activate the double error output bit 
(DBLERR), to signal that higher levels of the system must take additional actions to cope 
with this type of error, and the output bits will be forwarded unchanged. 

6.3.2 Comparing Combinational Hamming to TMR 
Figure 6.4 shows the schematic diagram of a TMR implementation for a generic 

circuit with m inputs and n outputs. 

 

Fig. 6.4. m-input, n-output TMR implementation 

The voter required for such implementation is composed by a sum of products 
network for each output bit, which chooses among the outputs generated by the three 
modules the value which appears in the majority of them. For each output bit oi, being 
o1i, o2i, and o3i the copies generated by the tripled modules, the boolean expression for 
the voter circuit is: 

oi = (o1i . o2i) + (o1i . o3i) + (o2i . o3i) 

The percent area overhead imposed by the TMR technique, therefore, is given by: 

OverheadTMR = 100 × ((3 × Ackt + n × Avoter) / Ackt) – 100 
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where Ackt is the area of the unhardened version of the standard circuit, Avoter is the area 
of the voter circuit for one output bit, and n is the number of output bits of the standard 
circuit. 

Therefore, the proposed technique is tolerant to the following combinations of 
errors: 

• single error in one output of the standard circuit 

• single error in one output of the Hamming Predictor 

• one error in one output of the standard circuit and another error in one output of 
the Hamming Predictor 

• two errors in the outputs of the standard circuit 

• two errors in the outputs of the Hamming Predictor 

It is important to notice that the probability of occurrence of two errors in the 
outputs of the same circuit can be significantly reduced by designing the circuits with 
one independent logic cone for each output, which usually implies in circuits with larger 
areas (SOGOMONYAN, 1974). However, as it will be seen in Section 5, the area 
overhead imposed by the technique proposed here is much lower than the one imposed 
by TMR, and therefore the use of separate logic cones for each output of the standard 
circuit and of the Hamming Predictor will not be a problem for most applications, and 
so this additional approach could be applied together with the technique proposed here 
when designing fault tolerant combinational logic for systems targeting mission critical 
applications. 

6.3.3 Application of Combinational Hamming to Arithmetic Circuits 
In order to confirm the advantages of the proposed technique when compared to 

TMR, both techniques have been applied to different arithmetic circuits and the 
corresponding area, power and delay overheads calculated and compared. Synopsys 
(SYNOPSIS, 2006) tools have been used to evaluate the area, power and delay of each 
circuit, which have been synthesized using the parameters for the 180 nm technology. 
The identification, number of inputs and outputs, and the synthesis values obtained for 
the standard version of each circuit are shown in Table 6.1. 

Each circuit described in Table 6.1 has been implemented using the technique 
proposed in this work. The schematic diagram of one implementation, using a 2×2 
multiplier as an example, is shown in Fig. 6.5, in which the generation of the Hamming 
codeword to be checked is explicitly indicated. For the circuits in Table 6.1 the 
implementations are similar to the one presented in Fig. 6.5, with the number of parity 
bits equal to 5 for those circuits with 5 to 11 outputs, and 6 for circuits with 12 or more 
outputs. 
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Table 6.1. Circuits used in the experiments 

ID I O Area 
(μm2) 

Power 
(mW) 

Delay 
(ns) 

4+4 8 5 263.758 0.334 0.780 
5+5 10 6 445.549 1.165 1.320 
6+6 12 7 493.513 3.572 1.670 
7+7 14 8 575.765 4.168 1.482 
4+4+cin 9 5 296.758 0.394 0.830 
5+5+cin 11 6 487.286 1.579 1.520 
6+6+Cin 13 7 590.279 3.712 1.130 
4×4 8 8 2,993.088 8.357 2.940 
5×5 10 10 6,993.088 8.357 2.940 
6×6 12 12 27,865.910 29.278 5.600 
7×7 14 14 121,649.969 112.609 13.250 

 

 

 
Fig. 6.5. Multiplier implementation using combinational Hamming 

 

6.3.3.1 Experimental Results 

Two different versions of the circuits described in Table 6.1, one hardened using 
TMR and other using the technique proposed here, have been described using VHDL 
and synthesized using Synopsys tools for the 180nm technology. 

Tables 6.2 through 6.4 show the synthesis results for the combinational Hamming 
technique, in terms of area, power, and delay, respectively. For each metric, the second 
column shows the values for the standard circuit, the third column shows the values for 
the same circuit hardened by the proposed technique (which includes the standard 
circuit plus the Hamming Predictor and the Hamming Checker circuits), and the percent 
overhead imposed by the hardening technique, given by the following expression: 

Overhead (%) = 100 × (Hamming / Standard -1) 
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Table 6.2. Areas of the circuits hardened by the proposed technique (μm2) 

ID Standard Hamming Hamming overhead 
4+4 263.758 498.449 88.980% 
5+5 445.549 924.943 107.596% 
6+6 493.513 1,207.267 144.627% 
7+7 575.765 1,408.478 144.627% 
4+4+cin 296.758 516.449 74.030% 
5+5+cin 487.286 938.179 92.532% 
6+6+Cin 590.279 1,417.765 140.186% 
4×4 2,993.088 3,796.460 26.841% 
5×5 6,993.088 11,810.657 68.890% 
6×6 27,865.910 48,609.331 74.440% 
7×7 121,649.969 176,320.018 44.940% 
Mean 14,786.815 22,495.272 91.608% 

 

Table 6.3. Power of the circuits hardened by the proposed technique (mW) 

ID Standard Hamming Hamming overhead 
4+4 0.334 0.697 108.692% 
5+5 1.165 1.598 37.246% 
6+6 3.572 6.990 95.658% 
7+7 4.168 8.155 95.658% 
4+4+cin 0.394 0.807 104.831% 
5+5+cin 1.579 1.911 21.006% 
6+6+Cin 3.712 7.812 110.427% 
4×4 8.357 11.989 43.472% 
5×5 8.357 11.989 43.472% 
6×6 29.278 41.365 41.285% 
7×7 112.609 97.835 87.120% 
Mean 15.775 17.377 71.715% 

 

Table 6.4. Delays of the circuits hardened by the proposed technique (ns) 

ID Standard Hamming Hamming overhead 
4+4 0.780 1.120 43.590% 
5+5 1.320 1.760 33.333% 
6+6 1.670 2.170 29.940% 
7+7 1.482 2.170 46.457% 
4+4+cin 0.830 1.200 44.578% 
5+5+cin 1.520 1.870 23.026% 
6+6+Cin 1.130 1.700 50.442% 
4×4 2.940 3.690 25.510% 
5×5 2.940 3.690 25.510% 
6×6 5.600 6.900 23.214% 
7×7 13.250 14.180 7.019% 
Mean 3.042 3.677 32.056% 
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6.3.3.2 Analysis 

As one can see from the data in Tables 6.5 and 6.6, the area and power overheads 
imposed by the proposed technique are quite low, when compared with those of TMR. 
However, the delay overhead of the proposed technique is larger than that of TMR, 
because in the proposed technique the correction must be performed before the 
forwarding of the output data, and the Hamming Checker is slower than the voter used 
in TMR. 

In Table 6.7 we compare delay overheads imposed by the proposed technique with 
that imposed by the TMR technique, and show that although the Hamming coding 
technique provides an overhead into the overall delay, the mean delay overhead of the 
technique is less than 10%. 

These are very promising results, and have pushed the research team to develop 
further studies, as it is commented in Chapter 7. Furthermore, in order to confirm the 
benefits offered by the proposed technique, the same has been applied to a well known 
set of benchmarks circuits, and again compared to TMR, as described in the following 
section. 

Table 6.5. Proposed technique vs. TMR: areas comparison (μm2) 

ID Standard Hamming Reduction over 
TMR 

4+4 952.474 498.449 47.668% 
5+5 1,530.087 924.943 39.550% 
6+6 1,706.219 1,207.267 29.243% 
7+7 1,985.216 1,408.478 29.052% 
4+4+cin 1,051.474 516.449 50.883% 
5+5+cin 1,655.298 938.179 43.323% 
6+6+Cin 1,996.517 1,417.765 28.988% 
4×4 9,237.184 3,796.460 58.900% 
5×5 21,301.664 11,810.657 44.555% 
6×6 83,984.610 48,609.331 42.121% 
7×7 365,401.266 176,320.018 51.746% 
Mean 44,618.364 22,495.272 42.366% 

 
Table 6.6. Proposed technique vs. TMR: power comparison (mW) 

ID Standard Hamming Reduction over TMR 
4+4 1.103 0.697 36.788% 
5+5 3.615 1.598 55.781% 
6+6 10.858 6.990 35.628% 
7+7 12.665 8.155 35.611% 
4+4+cin 1.283 0.807 37.083% 
5+5+cin 4.858 1.911 60.668% 
6+6+Cin 11.278 7.812 30.735% 
4×4 25.231 11.989 52.482% 
5×5 25.271 11.989 52.557% 
6×6 88.075 41.365 53.034% 
7×7 338.110 97.835 71.064% 
Mean 47.486 17.377 47.403% 
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Table 6.7. Proposed technique vs. TMR: delay comparison (ns) 

ID Standard Hamming Overhead over TMR 
4+4 1.090 1.120 2.752% 
5+5 1.630 1.760 7.975% 
6+6 1.980 2.170 9.596% 
7+7 1.792 2.170 21.116% 
4+4+cin 1.140 1.200 5.263% 
5+5+cin 1.830 1.870 2.186% 
6+6+Cin 1.440 1.700 18.056% 
4×4 3.250 3.690 13.538% 
5×5 3.250 3.690 13.538% 
6×6 5.910 6.900 16.751% 
7×7 13.560 14.180 4.572% 
Mean 3.352 3.677 9.705% 

    

6.3.4 Application of Combinational Hamming to a Set of Combinational Circuits 
of the MCNC Benchmark 

6.3.4.1 Experimental Results 

The same experiments described in Section 5.3.3 have been performed with another 
set of 18 different combinational circuits, extracted from the MCNC combinational 
benchmark set (BRGLEZ, 1993), and the corresponding results are shown in Tables 6.8 
through 6.11. 

Table 6.8. Circuits from the MCNC benchmark used in the experiments 

# Circuit Area Power Delay 
1  5xp1  27,711.068 28.885 5.850 
2  apex1  27,740.102 29.027 5.630 
3  apex2  27,646.578 28.549 5.840 
4  apex3  27,698.166 28.719 5.720 
5  apex4  27,698.168 27.458 5.640 
6  b12  27,682.049 28.883 5.970 
7  bw  27,723.977 28.708 5.660 
8  duke2  27,707.846 28.752 6.320 
9  ex1010  27,672.379 27.512 6.200 
10  inc  27,682.037 27.416 6.010 
11  misex1  7,057.605 8.314 2.780 
12  misex2  7,018.891 8.602 2.870 
13  misex3c  7,054.377 8.182 2.560 
14  rd84  7,057.607 8.069 2.530 
15  sao2  7,073.725 8.394 2.970 
16  squar5  7,067.286 7.933 2.730 
17  table3  7,025.337 7.891 2.620 
18  table5  7,025.337 7.890 2.620 
 Mean 18,519.030 19.399 4.473 
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Table 6.9. Areas of the circuits protected using the proposed technique (μm2) 

Circuit Standard Hamming Hamming overhead 
 5xp1  27,711.068 28,949.690 4.47% 
 apex1  27,740.102 69,860.367 151.84% 
 apex2  27,646.578 28,205.779 2.02% 
 apex3  27,698.166 33,317.074 20.29% 
 apex4  27,698.168 29,862.554 7.81% 
 b12  27,682.049 29,040.371 4.91% 
 bw  27,723.977 30,401.229 9.66% 

 duke2  27,707.846 30,685.088 10.75% 
 ex1010  27,672.379 28,945.947 4.60% 

 inc  27,682.037 29,040.370 4.91% 
 misex1  7,057.605 8,707.635 23.38% 
 misex2  7,018.891 9,147.789 30.33% 
 misex3c  7,054.377 8,696.205 23.27% 

 rd84  7,057.607 7,651.103 8.41% 
 sao2  7,073.725 7,638.208 7.98% 

 squar5  7,067.286 8,721.476 23.41% 
 table3  7,025.337 8,657.493 23.23% 
 table5  7,025.337 8,891.845 26.57% 
Mean 18,519.030 22,578.901 21.92% 

 

Table 6.10. Power of the circuits protected using the proposed technique (mW) 

Circuit Standard Hamming Hamming overhead 
 5xp1  28.885 30.250 4.73% 
 apex1  29.027 33.788 16.40% 
 apex2  28.549 29.147 2.09% 
 apex3  28.719 33.365 16.18% 
 apex4  27.458 30.068 9.51% 
 b12  28.883 29.767 3.06% 
 bw  28.708 30.670 6.84% 

 duke2  28.752 32.117 11.71% 
 ex1010  27.512 30.479 10.78% 

 inc  27.416 29.903 9.07% 
 misex1  8.314 9.322 12.12% 
 misex2  8.602 11.065 28.64% 
 misex3c  8.182 9.933 21.41% 

 rd84  8.069 8.670 7.44% 
 sao2  8.394 8.599 2.44% 

 squar5  7.933 9.137 15.18% 
 table3  7.891 9.799 24.18% 
 table5  7.890 9.586 21.50% 
Mean 19.399 21.426 10.45% 
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Table 6.11. Delay of the circuits protected using the proposed technique (ns) 

Circuit Standard Hamming Hamming overhead 
 5xp1  5.85 7.22 23.419% 
 apex1  5.63 7.83 39.076% 
 apex2  5.84 6.72 15.068% 
 apex3  5.72 8.3 45.105% 
 apex4  5.64 7.94 40.780% 
 b12  5.97 6.91 15.745% 
 bw  5.66 7.72 36.396% 

 duke2  6.32 8.24 30.380% 
 ex1010  6.2 7.68 23.871% 

 inc  6.01 7.21 19.967% 
 misex1  2.78 4.72 69.784% 
 misex2  2.87 4.82 67.944% 
 misex3c  2.56 4.67 82.422% 

 rd84  2.53 3.57 41.107% 
 sao2  2.97 4.01 35.017% 

 squar5  2.73 4.56 67.033% 
 table3  2.62 4.73 80.534% 
 table5  2.62 4.55 73.664% 
Mean 4.473 6.189 44.851% 

 

Next, the use of Combinational Hamming to harden those circuits has been directly 
compared to hardening by TMR, and the results are shown in Tables 6.12 through 6.14. 

Table 6.12. Proposed technique vs. TMR: areas comparison (μm2) 

Circuit TMR Hamming Reduction over TMR 
 5xp1  55,744.537 28,949.690 48.07% 
 apex1  61,431.003 39,860.367 55.29% 
 apex2  55,689.876 28,205.779 49.35% 
 apex3  62,008.332 33,317.074 46.27% 
 apex4  57,908.896 29,862.554 48.43% 
 b12  56,554.258 29,040.371 48.65% 
 bw  59,150.673 30,401.229 48.60% 

 duke2  59,250.651 30,685.088 48.21% 
 ex1010  56,667.158 28,945.947 48.92% 

 inc  56,554.234 29,040.370 48.65% 
 misex1  15,040.890 8,707.635 42.11% 
 misex2  16,418.102 9,147.789 44.28% 
 misex3c  15,960.114 8,696.205 45.51% 

 rd84  14,644.174 7,651.103 47.75% 
 sao2  14,676.410 7,638.208 47.96% 

 squar5  15,192.492 8,721.476 42.59% 
 table3  15,902.034 8,657.493 45.56% 
 table5  16,034.274 8,891.845 44.54% 
Mean 39,157.117 22,578.901 43.43% 
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Table 6.13. Proposed technique vs. TMR: power comparison (mW) 

Circuit TMR Hamming Reduction over TMR 
 5xp1  57.970427 30.250 47.82% 
 apex1  58.961222 33.788 42.69% 
 apex2  57.158428 29.147 49.01% 
 apex3  58.444136 33.365 42.91% 
 apex4  55.298512 30.068 45.63% 
 b12  57.947684 29.767 48.63% 
 bw  57.979996 30.670 47.10% 

 duke2  58.087739 32.117 44.71% 
 ex1010  55.224627 30.479 44.81% 

 inc  55.013484 29.903 45.64% 
 misex1  16.769799 9.322 44.41% 
 misex2  17.565969 11.065 37.01% 
 misex3c  16.644998 9.933 40.32% 

 rd84  16.219171 8.670 46.54% 
 sao2  16.867571 8.599 49.02% 

 squar5  16.027542 9.137 42.99% 
 table3  16.063998 9.799 39.00% 
 table5  16.081741 9.586 40.39% 
Mean 39.12928 21.426 45.24% 

 

Table 6.14. Proposed technique vs. TMR: delays comparison (ns) 

Circuit TMR Hamming Overhead over TMR 
 5xp1  6.160 7.220 17.208% 
 apex1  5.940 7.830 31.818% 
 apex2  6.150 6.720 9.268% 
 apex3  6.030 8.300 37.645% 
 apex4  5.950 7.940 33.445% 
 b12  6.280 6.910 10.032% 
 bw  5.970 7.720 29.313% 

 duke2  6.630 8.240 24.284% 
 ex1010  6.510 7.680 17.972% 

 inc  6.320 7.210 14.082% 
 misex1  3.090 4.720 52.751% 
 misex2  3.180 4.820 51.572% 
 misex3c  2.87 4.67 62.718% 

 rd84  2.84 3.57 25.704% 
 sao2  3.28 4.01 22.256% 

 squar5  3.04 4.56 50.000% 
 table3  2.93 4.73 61.433% 
 table5  2.93 4.55 55.290% 
Mean 4.783 6.189 33.711% 
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6.3.4.2 Analysis 

As one can see in Tables 6.12 through 6.14, the application of the proposed 
technique to the MCNC benchmark subset led to conclusions that are similar to those 
already presented for the arithmetic circuits, i.e., the Combinational Hamming 
technique provides significant area and power reductions when compared to TMR, 
while imposing some delay overhead. 

For the subset of MCNC circuits, the results have shown an average overhead 
reduction of 43% in area and 45% in power, while the average increase in delay has 
been 33%. 

One of the more recent works proposing a fault tolerance technique to harden 
combinational circuits, also using a subset of the MCNC benchmark circuits, has been 
published by Almukhaizim et al., in Almukhaizim (2003). The subset of the MCNC 
benchmark circuits used in our experiments is not exactly the same used in the 
experiments conducted in Almukhaizim (2003), due to the limited availability of the 
descriptions of the circuits in the format required for our experiments. However, among 
the circuits used in both works there is a common subset of five, which allowed us to 
make a further comparative analysis between the combinational Hamming approach and 
the one proposed in Almukhaizim (2003). 

While the area calculations in Almukhaizim (2003) were made based on the number 
of literals of the simplified boolean expressions of each circuit, in the present work the 
areas have been calculated in μm2 using Synopsys tools, which precludes the direct 
comparison between area overheads imposed by both techniques as reported in the 
original paper. However, in both works one can find the percent area overhead related 
to the TMR implementation of each circuit, and this information has been used to build 
Table 6.15. 

Table 6.15. Comparison between Combinational Hamming and the technique proposed 
in Almukhaizim (2003) 

 
Circuit 

% area reduction over TMR  
Improvement Technique proposed in

Almukhaizim (2003) 
Combinational 

Hamming 
5xp1 12.69% 48.07% 35.38% 
b12 9.2% 48.65% 39.45% 
bw 10.11% 48.60% 38.49% 
misex1 7.41% 42.11% 34.70% 
misex2 1.92% 44.28% 42.36% 

 

As one can see in Table 6.15, the combinational Hamming technique has provided 
higher overhead reduction than that provided by the technique proposed in 
Almukhaizim (2003) for all the five circuits used in both experiments. Besides that, the 
average area reduction provided by the technique proposed in Almukhaizim (2003) is 
15.895%, while the technique proposed here provides more than 43% area reduction 
and 45% power reduction. Note that in Almukhaizim (2003) no result concerning power 
dissipation is presented. However, as the technique proposed there uses two copies of 
the same circuit, plus the parity prediction circuits, one can assume that it will impose a 
power overhead higher than 100%. 
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7 CONCLUSIONS AND FUTURE WORKS 

In this thesis, the fact that temporal redundancy based techniques will no longer be 
able to cope with radiation induced transient faults in future technologies, due to the 
possibility of occurrence of long duration transients (LDTs) has been exposed. 
Considering that redundancy based techniques impose too high penalties in terms of 
resources such as area, power and performance, which may be unbearable for several 
application fields, such as that of embedded systems, the development of new low cost 
techniques, working at algorithm or system level, has been proposed as a path to the 
mitigation of faults in this new scenario. 

7.1 MAIN CONCLUSIONS 
This thesis encompasses several results of our research work started in 2004. While 

some of the alternative paths adopted during its developments did not lead to successful 
results (see Appendix I), the major conclusions that we have reached in this work are: 

• Temporal redundancy based techniques, working at circuit level, will not be able 
to cope with LDTs affecting circuits to be manufactured using future technologies. 

• Due to the high penalties, in terms of area and power overheads, imposed by space 
redundancy techniques such as DWC and TMR, new low cost techniques must be 
developed for application fields such as that of portable and embedded systems. 

• Given this scenario, the best alternative is to work at higher abstraction levels, 
mainly at algorithm or system level, to deal with the effects of LDTs. 

• The development of low cost mitigation techniques, providing not only error 
detection, but also error correction capabilities is possible, and an example is the 
proposed technique to deal with errors in matrix multiplication algorithms. 

• The use of software invariants to detect soft errors at runtime is a possible 
alternative to develop an automated and generic low cost solution that can be 
applied to several frequently used algorithms. While this technique alone is not 
enough to provide full error coverage, its low cost in terms of performance 
overhead makes it a good candidate for use in combination with other existing or 
to be developed techniques. 

• At the circuit level there is still a design space to be explored, in the search for low 
overhead error detection and correction techniques, such as the use of 
combinational Hamming proposed in Chapter 6. 

• The techniques explored in this thesis aim at the detection and correction of errors 
affecting data being used by the systems to be hardened. However, as shown by 
the experiments with radiation performed for the matrix multiplication hardening 
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technique, described in Chapter 3, the full protection of a given system requires 
also the hardening against control flow errors, which may be even more dangerous 
to the system reliability than those affecting data.  

7.2 SUMMARY OF CONTRIBUTIONS 
In this subsection the different contributions resulting from the research work related 

to the PhD thesis are summarized. 

7.2.1 Long Duration Transients Effects 
The scaling of radiation induced transients widths across technology nodes has been 

analyzed and has shown that the propagation times of circuits decrease faster than the 
transient pulse widths. 

Based on that fact, it has been demonstrated that existing temporal redundancy 
based techniques will no longer be effective in the mitigation of radiation induced errors 
in this new scenario. This is due to the need for longer intervals between output 
samplings that will impose very high performance penalties to the hardened circuits. 

In consequence, the development of new low cost techniques, working at different 
abstraction levels, has been proposed as an alternative for digital systems designers to 
face this new scenario. 

7.2.2 Matrix Multiplication Hardening 
The evolution of a verification technique for the matrix multiplication algorithm has 

been presented and described in its several stages, with the improvements in terms of 
computational cost demonstrated for each stage. An extension of the technique which 
provides error correction with minimal cost, developed in cooperation with Costas 
Argyrides, from the University of Bristol has also been demonstrated. 

The technique originally proposed in Lisboa (ETS 2007) has been compared to 
ABFT and result checking, and shown to have advantages over the former ones. This 
technique has been used to harden a matrix multiplication algorithm, and the tradeoffs 
between verification frequency and recomputation time have been discussed. 

The comparative analysis between three different approaches has shown that the 
target application requirements must be considered before choosing one of the 
alternatives. For systems in which it is important to forward the results to other stages as 
fast as possible, the alternative with minimum recomputation time should be the 
preferred one. In contrast, when this is not important, the cost of recomputation is not a 
major concern, since the frequency of recomputation due to soft errors is very low. 

The good results obtained in this work lead to the idea of generalizing the approach 
to other algorithms, through the verification of software invariants. 

7.2.3 Using Invariants for Runtime Detection of Faults 

In this contribution, the use of software invariants to detect soft errors during the 
execution of a program has been proposed. The detection of invariants is automated by 
using the Daikon tool, and the results of fault injection campaigns using the hardened 
program slices, as well as the performance overhead imposed by the invariants 
verification algorithms, have been shown. 
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The results obtained in the fault injection experiments have shown that a high error 
detection rate can be obtained with the use of invariants. Although this technique alone 
may not be enough to detect all soft errors affecting a program, the low performance 
overhead imposed by the technique leaves an open path for additional verification 
schemes to be implemented, able to improve the fault coverage provided by the method.  

7.2.4 Improving Lockstep with Checkpoint and Rollback 
The use of SRAM-based FPGAs with embedded processors for the implementation 

of safety- or mission-critical systems has been precluded so far by the lack of 
appropriate techniques to cope with radiation induced errors affecting the internal 
elements of the processors. The increasing availability of FPGAs with multiple 
embedded COTS processors makes feasible the development of new low cost 
techniques to implement fault tolerance without modification of the processors’ 
hardware and/or of the software running on the processors. 

In this contribution, a new incremental approach for the implementation of systems 
tolerant to radiation induced faults, using the lockstep technique combined with 
checkpoints and rollback recovery, has been proposed. 

This approach introduced an additional IP module, named Write History Table, 
aiming to reduce the time required to perform checkpoints. This was accomplished by 
writing to the data segment mirror area only those memory words which have been 
modified since the last checkpoint. 

By reducing the amount of data to be stored during each checkpoint, the proposed 
improvement allowed to decrease the time dedicated to checkpoints, thereby imposing 
less performance overhead to the application, when compared to previously proposed 
approaches. At the same time, the reduction of latent faults obtained by increasing the 
number of write operations per execution cycle, lead to improved system dependability 
provided by the reduction of latent errors. All those benefits are provided without 
requiring any modification in the architecture of the embedded processors or in the main 
application software running on them. 

7.2.5 Hamming Coding to Protect Combinational Logic 
This approach is a nice complement to existing techniques able to cope with soft 

errors in sequential logic, and therefore is a contribution to the design of complete 
reliable systems. Moreover, since the cost of the protection is lower than that of TMR, 
one can use the same principle to avoid disrupt the design flow and abstraction stack 
that have been used by system designers until this day, even in the presence of newer 
technologies with higher sensitivity to soft errors. 

The proposed technique has been compared to classic space redundancy techniques 
which impose heavy penalties in terms of area and power overheads, and the 
experimental results have shown that it provides improved reliability with smaller area 
and power overheads. A set of arithmetic circuits and a subset of a widely used 
benchmark combinational circuits set have been used in the experiments. 

7.3 PROPOSED RESEARCH TOPICS FOR FUTURE WORKS 
One of the main issues to be addressed in the next steps of our research is the 

adoption of low cost and efficient control flow error techniques that can be combined 
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with the data protection techniques proposed in this work, in order to provide full 
system protection. 

Besides that, for each proposed technique we have additional topics to be explored, 
as described in the next subsection.    

7.3.1 Use of Software Invariants for Runtime Error Detection 
The program slices were so far manually selected. A possible way to automate this 

task is through the employment of techniques for variables dependency detection. 

Another important aspect is the fact that, for some functions, the invariant mechanism 
works much better than for others. This can give us clues to improve the method in 
future works.  

Finally, the capability to detect faults that did not affect the results at the verification 
point, but changed data, which may lead to errors during the execution of other parts of 
the program, is an important tool for the mitigation of latent errors too. 

7.3.2 Lockstep with Checkpoint and Rollback 
Further investigations are under development, namely: analysis of performance 

degradation due to rollback execution and the use of a context addressable table to 
implement WHT, in order to keep in the table only the last value written into a given 
address. In parallel, further validations of the architecture are being planned, including 
accelerated radiation ground testing for investigating the effects of faults that hit the 
processors in locations not reachable through simulated fault injection, such as the 
processors’ pipeline registers, as well as the use of additional fault models in the 
experiments, such as multiple bits upsets. It is expected that the radiation experiments 
results will report other types of errors due to the propagation of SEE in the logic, such 
as Single Event Transients (SETs) and Multiple Bit Upsets (MBUs). 

7.3.3 Combinational Hamming 
Given the excellent results obtained so far, with average overheads of 43% in area 

and 45% in power for the set of MCNC benchmark circuits, the next steps in our 
research project will include the extension of the proposed technique to allow its 
application to pipelined architectures, where the extra delay of the Hamming Checker 
will have a much smaller impact. 

The resulting system will then be submitted to fault injection campaigns in a 
radiation facility, in order to confirm the advantages of the technique. 
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