UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA _
CURSO DE ENGENHARIA DE COMPUTACAO

IGOR LADEIRA PEREIRA

Decentralized Broker for Context
Management and Distribution using
Unstructured P2P Networks in a
Service-Oriented Architecture

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Alberto Egon Schaeffer Filho
Coadvisor: M. Sc. Marcos Rates Crippa

Porto Alegre
January 2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Prof®. Jane Fraga Tutikian

Pré-Reitor de Graduagdo: Prof. Vladimir Pinheiro do Nascimento

Diretora do Instituto de Informatica: Prof®. Carla Maria Dal Sasso Freitas

Coordenador do Curso de Engenharia de Computacdo: Prof. Renato Ventura Bayan Hen-
riques

Bibliotecaria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“It always seems impossible until it is done.”

— NELSON MANDELA

ACKNOWLEDGEMENTS

Many people took part in the tough journey of completing this course, particularly
when writing this thesis. Therefore, I would like to express my gratitude and appreciation
for them. Firstly, I would like to thank my family, specially my parents, for providing me
education and endless support in all possible aspects and for understanding my absence
in many moments during these years. Without you, none of my accomplishments would
have been possible.

Secondly, I would like to thank UFRGS and the Informatics Institute, including all
staff and professors. The experiences which I lived there made me grow and taught me a
lot not only about academic knowledge, but life in a general way. Special considerations
to my advisor Prof. Dr. Alberto Egon Schaeffer Filho for all the help and guidance
provided and for extensively reviewing this work.

Next, I would like to thank TU Kaiserslautern for the unique exchange experience
in which I had the pleasure to participate. Thanks to the International School for Grad-
uate Studies (ISGS) for providing support to international students. A special acknowl-
edgement to Prof. Dr. Hans Schotten and the Wireless Communication and Navigation
(WICON) group, particularly to my co-advisor M.Sc. Marcos Rates Crippa, who gave
me the inspiration and basis to write this work. Thank you for the opportunity to work in
such an interesting project and for the help provided during its development.

Last but definitely not least, thanks to my friends and colleagues, the old and new.
All of you had a special participation in my accomplishments and it would have been

impossible to cope with the difficulties along the way without your help.

ABSTRACT

Context information is present in many application types nowadays. For instance, it may
consist of the information or activity related to a user who is registered in a shopping web-
site. With this, the website is able to suggest items based on previous purchases or even on
the user country. Another example may correspond to data gathered by humidity sensors
in a crop, providing an insight into irrigation problems. Context information is the basis
for the interaction between users and computing systems and may comprise a significant
amount of data. Thus, this demands the proposal of efficient mechanisms for distribution
and management of information. This work proposes a decentralized platform for con-
text management and distribution called Context Broker using unstructured peer-to-peer
networks. The platform consists in a set of Brokers that act as context servers, providing
storage and retrieval of data to consumers and providers. The design and implementation
decisions were taken considering simplicity and performance goals. First, the theoreti-
cal foundation that substantiates the development of the platform will be presented. The
main concepts related to context-aware systems will be indicated, as well as examples of
related work. Next, a description and justification of the design decisions will be given,
covering aspects such as the system architecture and the message protocol. Following
that, implementation details will be presented and the experimental evaluation will be de-

scribed. Finally, the results will be presented and discussed.

Keywords: Context. context-aware systems. context awareness. context management.

unstructured P2P networks. context broker.

Broker Descentralizado para Gerenciamento e Distribuiciao de Contexto utilizando

Redes P2P Nao-Estruturadas em uma Arquitetura Orientada a Servicos

RESUMO

Informacgdes de contexto estido presentes em muitos tipos de aplicacdo atualmente. Como
exemplo, estas podem consistir nas informagdes ou na atividade relacionada a um usudrio
que estd registado em um website de compras. Com isso, o website é capaz de sugerir
items baseado em compras prévias ou at€ mesmo no pais do usudrio. Outro exemplo
pode corresponder aos dados obtidos por sensores de umidade em uma plantagdo, forne-
cendo uma visdo sobre possiveis problemas de irrigacdo. Informag¢des de contexto sdo a
base para a interacdo entre usudrios e sistemas de computacdo e podem compreender um
grande volume de dados. Dessa forma, isso demanda a proposta de mecanismos eficientes
para a distribui¢do e gerenciamento dessas informagdes. Este trabalho propde uma plata-
forma descentralizada para gerenciamento e distribui¢do de contexto denominada Context
Broker utilizando redes peer-to-peer ndo-estruturadas. A plataforma consiste em um con-
junto de Brokers que agem como servidores de contexto, fornecendo armazenamento e
obten¢do de dados para consumidores e provedores. As decisdes de projeto e implemen-
tacdo foram tomadas considerando objetivos de performance e simplicidade. Primeira-
mente, a base tedrica que fundamenta o desenvolvimento da plataforma serd apresentada.
Os principais conceitos relacionados a sistemas cientes de contexto serdo indicados, bem
como exemplos de trabalhos relacionados. Posteriormente, uma descricao e justificati-
vas das decisdes de projeto serdo dadas, abrangendo aspectos tais como a arquitetura
do sistema e o protocolo de mensagens. Seguindo, os detalhes da implementagdo serdao
apresentados e a avaliacdo experimental serd descrita. Finalmente, os resultados serdo

apresentados e discutidos.

Palavras-chave: Contexto, sistemas conscientes de contexto, consciéncia de contexto,

gerenciamento de contexto, redes P2P ndo-estruturadas, agente de contexto.

LIST OF ABBREVIATIONS AND ACRONYMS

GPS Global Positioning System
IoT Internet of Things

RDF Resource Description Framework
OWL Web Ontology Language
HTTP Hypertext Transfer Protocol
XML eXtensible Markup Language
DHT Distributed Hash Table

CB Context Broker

CC Context Consumer

Cp Context Provider

CA Controller Application

TTL Time To Live

ACK Acknowledgement

NACK Not-Acknowledgement

NTP Network Time Protocol

pP2pP Peer-to-Peer

UDP User Datagram Protocol

API Application Programming Interface
CPU Central Processing Unit

JVM Java Virtual Machine

JIT Just In Time

UML Unified Modeling Language

DB Distributed Broker

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.6
Figure 3.5
Figure 3.7
Figure 3.8
Figure 3.9

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

LIST OF FIGURES

The Context Life CyYCle. ..ooouniiiiiiiiiiieiieeeee et 18
COBrA architecture deSi@n.coccueeeiiieeiiiiiiieeniee et 27
Example configuration of the Context Toolkit framework.cccccoeneee. 27
(Gl ATCHILECTUTE.eeitieiieiieeite ettt st 28
Hermes’ layered architeCture.ocuveerieeeiiieniieeiee et 28
Entity-Scope relationship.ccccceveeriiriiiniinieieececceceeeee e 31
Centralized Broker archit€Cture.coceevieriiniiieiienicnieeeeeceeeeeeeeene 32
Distributed Broker architeCture.coveeveerieriieeiienienieeieenee e 34
Context Update/Advertisement OPErationccceeeeveeerveeesreeenveessneeennnens 36
PINg OPerationccc.ceiiiiiiiiiiiiieeiiceee ettt 37
Context Request Operation............cooveeeeriieeniierieniieeiienee e 38
Broker Joining OPErationcceeevueerriieeniiieniieeeieeeieeeeiee et sveesiee e 39
Broker Leaving OpPerationccueevueeerieeniiieeiiieeeiee e esieeeieeesvee e 40
Start Neighbors Monitoring Operation............cc.eeecveeerveerieeeneeesieeeneeesveeens 41
Context Broker Component StruCture.coccueeevieeriieeenieensiieenieesieeeneee 45
Topologies chosen fOr tESHNG.eevveeerieeriieeieeeiee e 50
V3 and V4 - #CCs x Average Response Time.........cccccccveeviieeiieencieeeneeenen. 52
V3 and V4: #CPs x Average Response Time.cccoeeeenieiiiieiniicennicennnen. 54
V3 and V4 - #CCs x Average Memory Usage..........ccoceeeveeeveeneencenneeneennne. 55
V3 and V4 - #CPs x Average Memory Usage.cccoevveevieennieeniieennieennen. 55

V1, V2 and V4: #CCs x Average Response Time........ccccoecveerrveenieennneennnen. 57

LIST OF TABLES

Table 4.1 Broker Message APLc..ooiiiiiiieiie et 43
Table 4.2 Description of the requestServicelnfo Structure.ccooceeevieeniieenneeennueenne 44
Table 4.3 Class used to represent context information.............ceceeveeneercierieeneeneennennn. 47
Table 4.4 Evaluation parameters and corresponding values.cccccceeeveeeniieerieeenneenn. 51

Table B.1 RESUILS TaADIE. ... e e e e e e e ns 71

CONTENTS

1 INTRODUCTION.....
1.1 Motivation...

1.2 Objectives....
1.3 Contributions

1.4 Structure of the Text

2 THEORETICAL FOUNDATION.

2.1 Context in Context-Aware Systems....

2.2 Context-Awareness in Context-Aware Systems

2.3 Context Management in Context-Aware Systems...

2.3.1 Context Life CycCle.....c.ooiiiiiiiiiiiiiiitceeeeeeeceeeee e
2.3.1.1 Context ACQUISTLION ...cevuvieriieeriieeriieeeieeeniieesiteeseeesieeesreesaee e
2.3.1.2 Context MOdelingc.cooviiiiiiiiiiiiiiiieieeeeceeeceee e
2.3.1.3 Context REaSONINGcc..eeeviiiiriiieriieeniieeiiee st esiee et siee e
2.3.1.4 Context DiSSEMINAION.....ccc.eeeriiiarireeniieeiieeniee et

2.4 Peer-to-Peer Networks.....

2.4.1 Structure of Peer-to-Peer NetWOrKsSccooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennn.
2.4.2 Search MECHANISINIS . .c.uuneeeeeeee et eeeee e e eeeeeeeeaaaneaes
2.4.2.1 Search Mechanisms in Structured P2P Networks.......ccccvvvvvuuenenn...

2.4.2.2 Search Mechanisms in Unstructured P2P Networks

P G T 20S] o) V167 1 5 o) 1 BN STS

2.5 Related Work in Context-Aware Systems.....

.26

3 DISTRIBUTED BROKER DESIGN AND ARCHITECTURE

3.1 Usage Scenario

.29

3.2 Requirements Analysis

3.3 The Centralized Broker...

3.3.1 Context Entity and Context SCOPEcceerverrrieeriieernieeriieenieenieenn
3.3.2 Centralized Broker ArChit€CtUIE ... oveeeemeeeeeeeeee e

3.4 Overview of the Distributed Broker Design .

3.4.1 Context Management in the Distributed Broker Platform
3.4.2 ATCHITECTUTE. ..uuviiieiiieiieiieeteette ettt e
3.4.3 Node Membership........ccccuviieriiiieiriiiieeeiiee et
3.4.4 Neighborhood Search...........cccooviiiiiiiiiiiiiiiie e
3.4.5 Search For Data and Data Replication...........ccccceeviiieeeniiieiiniieennn.

3.5 Broker Message Protocol.

3.5.1 Context Update/AdVertiSemMent.........ceeeruveeeeriueeieeniiieeeniiieeeriieeeeane
3.5.2 Context REQUESE.....cccuuiiiiiiiiiiieiieeie e
TR TG T o5 1 1 1 TSRS
3.5.4 BrOKEr JOINING....cuviiiiiiiiiieeiieeieeeeeese ettt
3.5.5 BroKer Leavingcccceeviieeiiieiiieeiiee ettt
3.5.6 Start Neighbors Monitoringcceecvevveevieenueeneeniieeneeneeneeeeeeneen

4 SYSTEM IMPLEMENTATION AND EVALUATION
4.1 Broker Platform Prototype

4.1.1 Development ENVIronmentcccceeveeeenieeenieeniieeenieenieeeneeenenes
4.1.2 Broker Platform Interfaces............ccoeeueeiiiiiniiiniieiniiiciiecneeeeeee
4.1.3 Message Parsing........cccceeeeveiniieiiiieniie et
4.1.4 Data Storage and Searchccocceeviiiriiiiniiiiiieeiecieeeeeeeee

4.2 Experimental Evaluation.

4.2.1 Testing ENVITONMENTccocuiiiiiiiiiiiiniiiiieenieceeesee e

w12
A2
..13
13
.14
A5

15

.16

16
18
18
19
20
21
21
22
23
23
24
25

29

.30
.30

31
31
32
32
33
33
34
35
35
36
37
37
39
39
40

.42
42

43
43
46
47
48

4.2.2 Evaluation Metrics and Testing Parameters...........cccceeeviieriieeniiennieeniee e 49

4.3 Results S1
4.3.1 Average Response Time Analysis - V3 and V4.........ccoocviveiiiiiiiieeniieciieeieeeene 53
4.3.2 Average Memory Usage Analysis - V3 and V4 ..o, 54
4.3.3 Average Response Time Analysis - VI, V2and V4 ... 56
5 CONCLUSION 58
5.1 Overview and Contributions 58
5.2 Future Work . .59
REFERENCES..61
APPENDIX A — BROKER MESSAGE PROTOCOL SPECIFICATION 65
A.0.1 StartNeighborsMonitoring MESSAZEcccvveruveeuirneenienieiieenieenee e e 66
ALD.2 PING MESSAZE ...veeenitieeiieeeiiieeitee ettt ettt et e et esbe e e sate e e b e e s nbeeebteesaneeea 66
A.0.3 Context Update/Advertisement MESSAZEccoueerureerrieriieeenieeeiieeesieessireesneeens 67
A.0.4 Context REQUESE MESSAZE ..cuvvveeeruiiieeieiiieeeeiiteeeeiteeeeeitee e ettt e e et eessibeeeseniaeeeenns 67
A.0.5 Context ReSponse MESSAZE.......cccuueeruiiiriieiniiiiiieeniteetee ettt 67
A.0.6 Acknowledgement Message (ACK)......ccoovieriiriiinienienieieceeeee e 68
A.0.7 Not-Acknowledgement Message (NACK)ccovieriiiiiiiiniiieiniieeieceiee e 68
A.0.8 BrokerLeaving MESSAZe.......cccveeruiieriieeiiieeniieeiieeeiteesiteeeiteesiteesiaeesteessaeesaneeens 69
A.0.9 BrokerJoining MeESSAZE........cccueerureeriieeiiieeniieerieeeieeesreeeniaeessseessneesseesnsneesseesns 69
A.0.10 Ping Response MESSAZEceruiirruiiiriieiniiieeiieenite ettt ettt 69
APPENDIX B — RESULTS TABLE 71

APPENDIX C — GRADUATION WORK 1 75

12

1 INTRODUCTION

This chapter introduces this thesis. A decentralized system for context manage-
ment and distribution which operates in a service-oriented architecture is proposed. Sec-
tion 1.1 presents the motivation for this work. Section 1.2 describes the objectives that
are expected to be reached. Next, the contributions of this work are indicated in Section

1.3. Lastly, Section 1.4 details how this work is organized.

1.1 Motivation

Technology progress along with the Internet has been changing the way people
interact with each other and with computing systems. Low hardware cost, high com-
putational power and increased sensing capability are some of the factors that explain
the popularity that computing systems have reached (BROWN; BOVEY; CHEN, 1997).
The presence of sensors in devices is an interesting feature, because it provides context-
awareness capability and allows the implementation of applications for a great variety
of purposes, improving the interaction with these devices (SCHILIT; ADAMS; WANT,
1994).

Let us consider a smartphone. With a GPS, which provides user location, one
is able to develop an application that shows weather forecast or displays nearby places
which the user might want to visit. The camera allows the user to take pictures, store
and share them in social networks, for which an account with an e-mail address and a
password is typically required. The user may also listen to music on the smartphone,
thus making it possible for an application to send notifications about upcoming concerts
based on the most played artists. All this information (location, photos, e-mail address
and musical taste) compose a context related to the user.

Internet of Things (IoT) is a recent phenomenon which motivates the study of con-
text awareness. The goal of 10T is to connect objects and enable communication between
them by using the Internet and other mechanisms, thus providing the concept of ubig-
uitous computing and achieving context awareness (PATEL; CHAMPANERIA, 2016).
For instance, in a Smart Home scenario, a smartphone may connect to the heating or
air conditioning system, so that the working temperature is set according to the outside
temperature. Another case would be a smartphone connected to a coffee machine, pro-

gramming it to start a couple of minutes before the time which the user set his alarm clock

13

to.

This work was developed considering a project called HiFlecs (BOCKELMANN
etal., 2017), (RADIO, 2015) as the background. Previous versions of the Broker platform
for this project were developed in (CRIPPA, 2010) and (CRIPPA, 2013), but a decentral-
ized version which had performance as a concern was needed. The platform proposed in

this work addresses this issue.

1.2 Objectives

In order to develop context-aware applications, it is necessary to handle context
information appropriately, in a way that it is reachable, up-to-date and can be obtained
in a reasonable amount of time. The approach should also provide scalability, flexibility
and fault tolerance. This thesis proposes the development of a decentralized platform
called Context Broker to address this challenge, following the structure and results of
(CRIPPA, 2010) and (CRIPPA, 2013). The objectives are to review previous research on
context awareness and peer-to-peer networks, indicate the main design decisions and the
architecture for the platform based on its requirements, describe the message protocol for
interaction between the system components and the implementation of the prototype and
present the results of the experimental evaluation along with analyses that validate (or

invalidate) the proposed hypotheses.

1.3 Contributions

The work in (CRIPPA, 2010) proposes a centralized Context Broker platform,
while (CRIPPA, 2013) presents a decentralized version using structured peer-to-peer net-
works. Together, these works address key issues related to context management and dis-
tribution, considering aspects such as scalability and fault tolerance. However, analyzing
the design decisions and used technologies, it is reasonable to affirm that neither had a
concern about performance.

The main contributions of this work are summarized below:

e An investigation and study on the state of the art in the corresponding area;

e The proposal of a service-oriented architecture that uses peer-to-peer networks for

context management and distribution;

14

e An experimental analysis comparing different versions of the Context Broker plat-

form.

1.4 Structure of the Text

This work is structured as follows: Chapter 2 presents the research on context-
aware systems and peer-to-peer networks, fundamental concepts, key aspects and state of
the art in the area. Chapter 3 presents the design and architecture of the Broker platform,
including an usage scenario and the message protocol. Chapter 4 details the prototype
implementation, describing aspects such as the development and testing environment,
as well as system interfaces. This chapter also presents the performed tests and corre-
sponding results, providing the information needed for the analyses. Finally, Chapter 5
concludes this thesis by recapitulating the main concepts from the theoretical foundation,
giving an overview of the proposed Context Broker, highlighting the main achievements

and indicating future work that can be done to extend and/or improve the platform.

15

2 THEORETICAL FOUNDATION

This work describes a platform for context management and distribution which
uses unstructured peer-to-peer networks in a service-oriented architecture. Therefore, it
is important to define and clarify fundamental concepts regarding context-aware systems
and peer-to-peer networks, along with details of aspects related to these concepts, in order
to provide a correct understanding of the work as a whole. This chapter aims to present
these concepts and review related state of the art research on the area. The first three
sections (2.1, 2.2 and 2.3) address the basic concepts of context, context-awareness and
context management, respectively. Section 2.3 also introduces the Context Life Cycle, an
important definition related to context management. Section 2.4 presents previous works
in context-aware systems, providing insights into their architecture and operation. Finally,
Section 2.5 focuses on peer-to-peer networks and describes three key aspects related to

them: structure, search mechanisms and replication.

2.1 Context in Context-Aware Systems

Many definitions for context have already been proposed in the literature. The
first work to address context and context awareness was (SCHILIT; THEIMER, 1994),
stating that context corresponds to the user location, nearby people and objects, as well
as changes to these over time. A similar definition was provided by (BROWN; BOVEY;
CHEN, 1997): context corresponds to location, identities of the people around the user,
the time of day, season, temperature, etc. Two other more general approaches were given
by (DEY; ABOWD; WOOD, 1998) and (PASCOE, 1998). The former defines context as
the user’s physical, social, emotional or informational state, while the latter considers that
context is the subset of physical and conceptual states of interest to a particular entity.

All the presented definitions give us a too specific idea about context. Depending
on the scenario, concepts such as location, time of day or emotional state may not be
sufficient to properly define context, because other types of information might be used.
Therefore, a more general approach is needed in order to substantiate the relevance of this
work. The definition which will be used was given by (ABOWD et al., 1999): “Context
is any information that can be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to the interaction between a user and

an application, including the user and application themselves”.

16

2.2 Context-Awareness in Context-Aware Systems

A definition for context awareness is also provided by (ABOWD et al., 1999) and
will be adopted in this work: “A system is context-aware if it uses context to provide
relevant information and/or services to the user, where relevancy depends on the user’s
task”. This definition is appropriate because it gives a broad and flexible idea, just like
the definition for context. Furthermore, the authors of (ABOWD et al., 1999) presented
a categorization of features for context-aware applications, combining the ideas of the
taxonomies from (PASCOE, 1998) and (SCHILIT; ADAMS; WANT, 1994). There are

three categories:

e Presentation of information and services to a user: corresponds to the capability
of obtaining information and executing commands for the user manually, based on
available context;

e Automatic execution of a service: relates to the ability of providing or changing

the behavior of a service automatically, based on available context;

e Tagging of context to information for later retrieval: corresponds to the ability
of relating context and data, in the sense that certain data is available for a user

when he is in the associated context.

The definition of context awareness provides a way to determine whether an appli-
cation is context-aware or not and this is useful when specifying the types of applications
that need to be supported. The categorization of context-aware features brings us two
main benefits. The first is the specification of types of applications that need support from
the system. The second is that it shows the types of features that should be thought when
building the context-aware applications (ABOWD et al., 1999).

2.3 Context Management in Context-Aware Systems

Although the definition of context-aware systems has already been given, it is
important to indicate the purpose of this type of system in a more practical way. Con-
text management is related to the tasks for which a context-aware system is responsible
in order to handle context information (CRIPPA, 2010). A more formal definition was
provided by (ZIMMERMANN; LORENZ; SPECHT, 2005) based on the authors’ work

experience in many application domains: context management corresponds to the creation

17

and administration of context-aware applications, considering related parameters and in-
formation sources with the goal of implementing certain behavior. Therefore, context
management is the foundation for the development of context-aware applications.

One question that remains is what a context-aware system should be able to do
or, in other words, what functionalities should be available. According to (KIANI et al.,
2010), a context-aware communication system encompasses several context management
functionalities, being two the most important ones: acquisition and provision of contex-
tual information related to an entity. This description already gives us a brief idea about
what an architecture of a context-aware system should be like. The authors go further
by saying that it is possible to divide the system components involved in context man-
agement into either Context Consumers or Context Providers or a combination of these.
Other functionalities of context-aware systems are merging correlated context data and
locating and accessing context sources (CRIPPA, 2010). The platform considered in this
work is based on the provider/consumer architecture outlined above.

In order to manage context, three models were proposed by (WINOGRAD, 2001).
These models are related to the system architecture and aim to coordinate multiple pro-

cesses and components, a concept that is necessary to implement context-aware systems:

e Widgets: Context widgets work as an interface between the application and its op-
erating environment. They hide the complexity of context acquisition and abstract
context information to suit application needs (DEY; ABOWD; SALBER, 2001).
They provide good efficiency but have the problem of not being robust to compo-

nent failures;

e Networked Services: This model corresponds to a client-server architecture, in
which clients look for services and need to establish a connection with them in
order to use it (e.g., accessing a database). It is more flexible and robust than the
previous due to the independence of the components, but it is also less efficient

because a service discovery function is required;

e Blackboards: In this approach, applications post data to a shared message board
and receive data through subscriptions, according to a specified pattern. In spite
of providing loose coupling and robustness, communication efficiency is decreased
because every message goes through a centralized server before reaching its final

destination.

18

2.3.1 Context Life Cycle

The tasks related to context management give rise to the Context Life Cycle. Ac-
cording to (PERERA et al., 2014), this cycle shows how data moves from phase to phase
in software systems, explaining where the data is generated and where it is consumed. The
authors propose a simple Context Life Cycle (depicted in Figure 2.1) after the analysis of

ten popular data life cycles.

Figure 2.1: The Context Life Cycle.

Context
Acquisition

Context
Dissemination Context
‘ | Modelling
Context d
Reasoning

Source: (PERERA et al., 2014)

The proposed life cycle is composed by four phases. The first corresponds to the
acquisition of context information through sensors. The second relates to the modeling of
this information, which needs to be represented appropriately. The next phase is Context
Reasoning, in which high-level context information is obtained from low-level sensor
data. Lastly, the information is distributed to the consumers in the Context Dissemination
phase (PERERA et al., 2014).

The three following subsections present details of important aspects related to

context management.

2.3.1.1 Context Acquisition

The chosen method for context acquisition has an impact on the design of context-
aware systems, therefore it is relevant to indicate some of the possible options. Three

approaches were presented by (CHEN, 2010):

19

e Direct access to hardware sensors: Context data is obtained by directly accessing
the physical sensors, providing a good knowledge about the data for the collecting
applications. The problem comes when the number of context sources rises, re-
quiring these applications to have the ability to communicate with many different

sensors (CHEN, 2010);

e Facilitated by a middleware infrastructure: A middleware infrastructure is re-
sponsible for managing the low-level sensor data, thus allowing the applications to
concern on how context will be used. This approach provides great extensibility

and reusability of sensors (CRIPPA, 2010);

e Acquire context from a context server: Context data is gathered in a server which
runs on a resourceful device and the context-aware applications make requests to
this server. As in the middleware approach, great reusability is provided (CRIPPA,
2010).

2.3.1.2 Context Modeling

Context information is acquired by the use of sensors, which provide raw data. In
order for a context-aware application to benefit from it, this information must be properly
structured according to the application goals. This process is called context modeling (or
context representation) and needs to support easy manipulation and extensibility, efficient
search and scalability (CRIPPA, 2010).

When modeling context, there are requirements that need to be fulfilled so that the
obtained representation can be meaningful for the context-aware system. A set of these
requirements was presented in (PERERA et al., 2014) as heterogeneity and mobility, re-
lationships and dependencies, timeliness, imperfection, reasoning, usability of modeling
formalisms and efficient context provisioning. The six most popular context modeling
techniques were indicated in (STRANG; LINNHOFF-POPIEN, 2004) and are described

below:

e Key-Value Models: They are the simplest form of context representation. Context
information is associated with a unique key and a matching algorithm is used for
lookup. In spite of providing easy management, this approach is not scalable and
lacks of structure for modeling complex information, thus jeopardizing efficiency

of context retrieval;

20

e Markup Scheme Models: Context is modeled using a hierarchical structure of
tags. This approach allows efficient data retrieval and provides support for val-
idation, but has limited expressiveness. A popular example of markup language
1s XML, which is used in the Composite Capabilities/Preference Profile (DEY;
ABOWD; SALBER, 2001) and User Agent Profile standards (WAP, 2001);

e Graphical Models: Provide more expressiveness in the final result because context
is modeled with relationships. One example of this technique is the Unified Model-

ing Language (UML), which has a generic structure and enables good readability;

e Object Oriented Models: Provide encapsulation and reusability by modeling con-
text with hierarchies and relationships (PERERA et al., 2014). Contextual infor-
mation is accessed through specified interfaces and scalability can be achieved, but

validation is difficult to be done;

e Logic Based Models: Context is represented as facts, expressions and rules and its
management is realized based on these. This technique provides a high degree of

formality and more expressiveness than the previous ones;

e Ontology Based Models: It is considered the most appropriate way of modeling
and managing context. An ontology is an abstract model of a certain phenomenon
and offers great flexibility and expressiveness, but it can also decrease the perfor-
mance in context retrieval (PERERA et al., 2014). Resource Description Frame-
work (RDF) and Web Ontology Language (OWL) are examples of languages used

to describe ontologies.

2.3.1.3 Context Reasoning

Context Reasoning corresponds to the process of obtaining high-level context in-
formation from low-level raw sensor data, allowing the deduction of knowledge (PER-

ERA et al., 2014). Some of the approaches for this task are described below:

e Supervised Learning: in this approach, training examples are collected and then
labeled according to the expected results. After that, a function that can generate
these results using the training data is derived. The advantages of this approach are
accuracy and the existence of mathematical foundation. On the other hand, they
require a significant amount of data and are usually more resource intensive (e.g.
processing, storage). Examples of techniques in this category include Decision

Trees, Bayesian Networks and Artificial Neural Networks (PERERA et al., 2014);

21

e Rules: it is the most popular method of context reasoning (PERERA et al., 2014).
It consists in a set of rules in an if-then-else format which are used to generate high-
level context information. This approach provides easy extensibility and is less
resource intensive. However, it must be defined manually, raising the probability of

error occurrence due to manual work (PERERA et al., 2014);

e Probabilistic Logic: in this approach, decisions are made according to probabili-
ties attached to the facts in the situation which is being considered. It is commonly
used to resolve conflicts in context information, allowing the understanding of oc-
currence of events. The advantages include handling uncertainty and the combina-
tion of evidence. On the other hand, it is only possible to reason numerical values
and one should know the probabilities of the facts. Examples of techniques are

Dempster-Shafer and Hidden Markov Models (PERERA et al., 2014).

2.3.1.4 Context Dissemination

Context Dissemination relates to how context is distributed in a context-aware sys-
tem and is one of the most important functionalities in context management. The mech-
anism used to execute this distribution is influenced by the proposed system architecture
and has an impact on the overall performance of the system. According to (PERERA et
al., 2014), there are two methods for this task: the first one is the guery method, in which
the context-aware system receives a query from consumer applications and resolves this
query to produce a result; the second one is the subscription or publish/subscribe method,
in which consumers subscribe to a certain type of context information and then the system

sends updates regarding this information periodically or when an event occurs.

2.4 Peer-to-Peer Networks

Distributed systems have many advantages over centralized systems, including
scalability, fault tolerance and performance improvement. The most used architecture for
distributed systems nowadays is called peer-to-peer (P2P) and provides a resilient solu-
tion for many applications. According to (ANDROUTSELLIS-THEOTOKIS; SPINEL-
LIS, 2004), there are two main characteristics of this type of system. The first one is the
sharing of computer resources by direct exchange, which reflects the nodes’ capacity to

independently execute tasks such as message routing and content location. The second

22

one regards the resilience aspect provided by the fault-tolerance and self-organization
mechanisms implemented in these systems.

The definition of peer-to-peer systems adopted in this work is the one proposed
by the authors of (ANDROUTSELLIS-THEOTOKIS; SPINELLIS, 2004): a peer-to-peer
system is a distributed set of interconnected nodes which have capabilities such as self-
organization and failure adaptation while still providing connectivity, with the goal of
resource sharing. Content distribution is one of the categories of applications for which
peer-to-peer architectures are used the most, thus making a perfect match with the Context
Broker platform considered in this work. Peer-to-peer networks are usually called over-
lay networks because they are implemented on top of the underlying physical computer
network (which is typically IP) (ANDROUTSELLIS-THEOTOKIS; SPINELLIS, 2004).

Peer-to-peer overlay network schemes can be categorized into two groups in terms
of their structure: unstructured peer-to-peer networks and structured peer-to-peer net-
works. In this section, three main aspects will be considered: the structure of these net-

works, search mechanisms and replication.

2.4.1 Structure of Peer-to-Peer Networks

In structured peer-to-peer networks, nodes connect to each other according to
a specific set of rules. Efficient routing of queries is achieved by using Distributed Hash
Tables (DHTs), which are responsible for mapping the data objects to the peer nodes. In
spite of providing scalability and efficient location of rare items (LUA et al., 2005), only
exact-match queries are supported and a significant overhead is inserted due to the neces-
sity of maintaining the network structure when nodes leave or join (ANDROUTSELLIS-
THEOTOKIS; SPINELLIS, 2004), thus making this approach inappropriate if that hap-
pens very often. Examples of structured systems are Chord (STOICA et al., 2001) and
Tapestry (ZHAO et al., 2006).

In an unstructured peer-to-peer network, the connections between nodes are
made in a random way, implying that no specific structure is formed. This type of network
is usually utilized when the nodes join and leave the network frequently (ANDROUTSELLIS-
THEOTOKIS; SPINELLIS, 2004), since no information about the network is maintained
and no restructuring is done. The disadvantage concerns the search for data. The location
of content is completely independent of the content itself, therefore “brute-force” methods

such as flooding the network with queries or more resource-preserving approaches such

23

as random walks must be used (ANDROUTSELLIS-THEOTOKIS; SPINELLIS, 2004).
Examples of unstructured systems are Gnutella (GNU, 2017) and BitTorrent (BITTOR-
RENT, 2017).

2.4.2 Search mechanisms

The mechanism used to find requested data and solve received queries has a huge
impact on the performance of a context distribution system. Many techniques have al-
ready been proposed in the literature, but there is no perfect solution, since each one has
its strengths and weaknesses. Therefore, a brief description of the main proposed ap-
proaches is given below, with the goal of selecting the one that best suits the needs of the

Context Broker which this work refers to.

2.4.2.1 Search Mechanisms in Structured P2P Networks

Let us first consider the case of structured peer-to-peer networks. The systems in
this category are also called DHT-based because query routing is executed through the use
of Distributed Hash Tables, in which information about data is stored. Keys are generated
for the objects and IDs are assigned to the peer nodes. Keys and IDs are both from a same
identifier space, implying on a relationship between them. When an application wants to
retrieve a data object with a corresponding {key, value} pair, the request is routed across
the peers until the one that is responsible for storing that key is reached. Each peer has
its own routing table containing a set of neighbor peers’ IDs and addresses, so that it is
able to know the node with the closest ID which the requests should be forwarded to,
according to the key (LUA et al., 2005). On average, the most famous systems of this
type behave similarly in terms of performance, which is O(log N) (ANDROUTSELLIS-
THEOTOKIS; SPINELLIS, 2004).

This main idea is shared among the different existing DHT-based systems. How-
ever, each one has its own particularities regarding routing strategies and network archi-
tecture. For instance, Chord is organized in a uni-directional and circular NodelD space
and uses matching of key and NodelD in the lookup protocol, while Pastry is structured in
a mesh network (PLAXTON; RAJARAMAN; RICHA, 1997) (similar to a graph and can
assume any network topology) and uses matching of key and a prefix in NodelD to search

for data (LUA et al., 2005). On average, the most famous systems of this type behave sim-

24

ilarly in terms of performance, which is O(log N) (ANDROUTSELLIS-THEOTOKIS;
SPINELLIS, 2004).

2.4.2.2 Search Mechanisms in Unstructured P2P Networks

Since there is no relationship between the location of files and the network topol-
ogy in this category, a node that wants to find a file must query its neighbors. The most
used technique for searching in unstructured peer-to-peer networks is flooding (GKANT-
SIDIS; MIHAIL; SABERI, 2005), which provides a good solution for a topology with
few nodes. The problem of this technique is scalability. As the number of node increases,
the time-to-leave (TTL) needed to reach data also increases, thus generating large loads
on the nodes and jeopardizing performance (LV et al., 2002). Selecting the appropriate
TTL is also a hard task. Besides, flooding implies on the creation of duplicate messages
due to the fact that a node may receive the same query from more than one of its neigh-
bors. Therefore, duplication detection mechanisms are required when using flooding (LV
et al., 2002).

Gkantsidis et al. (GKANTSIDIS; MIHAIL; SABERI, 2005) propose normalized
flooding as an alternative. In this technique, instead of forwarding a query to all neighbors,
a node only forwards it to d,,;, neighbors, being d,,,;,, the minimum degree of the network
(the minimum number of connections that a participating node has). It was observed that
scalability is improved when using normalized flooding in topologies with high degree
nodes. Another approach called expanding ring was proposed by (LV et al., 2002). It
consists in the execution of successive floods with increasing TTLs. The first flood is done
with a certain TTL and, if the search was not successful, the TTL is increased and another
flood 1s executed. This approach showed good results in terms of message overhead and
TTL when objects are replicated, if compared to regular flooding.

In an attempt to mitigate the problem of message duplication, a technique called
random walk has been already proposed and tested in previous works, e.g., (GKANT-
SIDIS; MIHAIL; SABERI, 2005), (LV et al., 2002), (GKANTSIDIS; MIHAIL; SABERI,
2004). The technique consists in nodes forwarding the queries to a randomly chosen
neighbor until the desired data is found. In (LV et al., 2002) the authors showed that
the message overhead is decreased using random walks compared to expanding ring, but
there is an increase in the delay perceived by the user. In order to reduce this delay, they
propose the execution with k walkers, i.e., more than one copy of the query message is

sent and each one does its own random walk. This change in the traditional approach

25

reduces the time needed to find objects, but also generates higher load in the network.

A modification of the random walk technique, called random walk with lookahead,
was proposed by (GKANTSIDIS; MIHAIL; SABERI, 2005), in which a node executes
short random walks with shallow floodings with a small TTL (typically 2). The results
presented by the authors show that the number of unique nodes discovered when using
random walk with lookahead is similar to the one obtained when using the traditional

random walk. However, the response time is significantly smaller in the first method.

2.4.3 Replication

All the search mechanisms presented previously assume that some form of repli-
cation is implemented in the network. Content replication is of ultimate importance in
peer-to-peer systems, because it increases content availability and provides better per-
formance (ANDROUTSELLIS-THEOTOKIS; SPINELLIS, 2004). Three categories of
replication approaches were proposed in (ANDROUTSELLIS-THEOTOKIS; SPINEL-

LIS, 2004) and relate to both structured and unstructured peer-to-peer networks:

e Passive Replication: corresponds to the case in which a node requests an object

and makes a copy of it when the request is attended;

e Cache-Based Replication: In this category, copies of the requested object are
made by every node through which the query message passes;

e Active Replication: also called proactive replication. Nodes replicate or migrate
content to others according to a certain policy, even if no request involving that

content has been made;

Considering the subject of this work, this subsection will focus on replication in
unstructured peer-to-peer networks. (LV et al., 2002) stated that, based on the research
in (COHEN; SHENKER, 2002), the optimal method for replication is to replicate objects
in a way such that p a /g, (p is proportional to ,/q,), being p the number of replicas of
an object and ¢, the query rate of this object. This scheme is called square-root replica-
tion and provides minimization of the overall search traffic (LV et al., 2002). In order to
achieve this scheme, the authors have proposed two proactive replication strategies: path
replication and random replication. The first one consists in storing a copy of the object
in every node through which the query message passes after a successful query. In the

second strategy, also considering a successful query, the number of nodes (p) between

26

the requester and the provider is counted and p nodes that were visited by the k walkers
(copies of the query message) are selected to replicate the object (LV et al., 2002). Simu-
lations show that path and random replication achieve results which are very close to the
condition of square-root replication. Besides, it has been found that random replication
performs better than path replication in terms of average number of messages per node
(LV et al., 2002). Therefore, the random approach should be chosen, if the implementa-

tion is not excessively complex (LV et al., 2002).

2.5 Related Work in Context-Aware Systems

The Context Broker platform proposed in this work is based on (CRIPPA, 2010)
and (CRIPPA, 2013). In (CRIPPA, 2010), a centralized Broker was implemented, in
which both methods mentioned in the last section (query and subscription) were used to
distribute context in a straightforward way. In (CRIPPA, 2013), a distributed version of
the Broker using structured P2P networks was proposed and this has imposed a bigger
challenge regarding the context dissemination aspect. Many other approaches for imple-
menting context-aware systems have already been proposed, each one with its advantages
and disadvantages, so it becomes relevant to indicate some of the most significant ones.

CoBrA (CHEN; FININ; JOSHI, 2004) is an architecture for implementing smart
spaces using context-aware systems. The architecture design is shown in Figure 2.2. The
main component is a broker agent which consists of the following components: con-
text knowledge base, context-reasoning engine, context-acquisition module and policy-
management module. Context is modeled using Semantic Web languages such as RDF
and OWL, providing a suitable representation for reasoning and knowledge sharing. The
proposed architecture is centralized, but a group of brokers can work together through a
broker federation (PERERA et al., 2014).

Another platform called Context Toolkit was proposed in (DEY; ABOWD; SAL-
BER, 2001). It consists in a conceptual framework for the design of context-aware ap-
plications which is composed by three main entities: context widgets (provide access to
context information), interpreters (produce high-level context information from low-level
sensor data using reasoning techniques) and aggregators (responsible for gathering related
context information in a common repository). To obtain context from the system, applica-
tions invoke services and use discoverers to find the components that are able to provide

the desired data. The communication between all these components is implemented using

27

Figure 2.2: CoBrA architecture design.

Semantic Web &
Web Services Database
(RDF, DAML+OIL & OWL) (MySQL)

Contexts in External Sources
Context-Aware Devices Context-Aware Agents

Information Servers
(Exchange Server, iCal,
YahooGroups, etc.)

) Bluetooth Context

. knowledge base
"." SOAP + RDF{OWL Context
P Engine
-
i

Ethernet

Context
il M| Acquisiton Module

- ‘; Privacy
"‘ i Y Management Module

Contexts in the Intelligent Spaces

Brég B9l » @

Smart Tag Sensors Environment Sensors Device & Gadget Sensors
(Radio Frequency Identification) (Xanboo & X10 technology) (Java Ring, SmartCard etc.)

Source: (CHEN; FININ; JOSHI, 2004)

a protocol based on HTTP and XML. Figure 2.3 shows one possible configuration for this

system.

Figure 2.3: Example configuration of the Context Toolkit framework.

Application (_ Application)
Aggregator

Widget Widget
@ Architecture

Source: (DEY; ABOWD; SALBER, 2001)

The Context Toolkit was an inspiration to another system called Gaia (ROMAN et
al., 2002), whose architecture is shown in Figure 2.4. Gaia is a framework for the develop-
ment of applications for active spaces, making an abstraction of them and their resources
and also storing relevant information. It provides a set of services which support the
management of these spaces and access to the resources: event manager, context service,
presence service, space repository and context file system. These services enable the exe-
cution of functions such as events distribution (state change of applications, for instance),
provision of context information, storage of information about the entities in the active
space and building a virtual directory structure for the organization and management of
data, thus facilitating developers’ work.

Hermes (PIETZUCH; BACON, 2002) is an event-based middleware architecture

for the development of large-scale distributed applications. It is composed by a layered ar-

28

Figure 2.4: Gaia architecture.

Active space applications

Application framework

Spa_m s Context Presence Context]
repns!tnry mam!gur file system service service &
service service =
s

s

Component management core

Source: (ROMAN et al., 2002)

Figure 2.5: Hermes’ layered architecture.
Event-Based Middleware Layer

Type- and Attribute-Based Pub/Sub Layer

Type-Based Pub/Sub Layer

Overlay Routing Network Layer

Network Layer (IP Unicast)

Source: (ROWSTRON; DRUSCHEL, 2001)

chitecture (shown in Figure 2.5) and utilizes a variation of the publish/subscribe model for
the communication between its components, which is based on XML-defined messages.
The system consists of two entities, event clients (can publish information or subscribe
to receive information) and event brokers (responsible for serving the clients’ requests
and distributing information). The set of brokers form an overlay routing network (very
similar to Pastry (ROWSTRON; DRUSCHEL, 2001)) in which peer-to-peer techniques
are used to maintain the network’s structure and message routing. Besides scalability,
robustness is also reached through the fault tolerance mechanisms that are provided by

this network.

29

3 DISTRIBUTED BROKER DESIGN AND ARCHITECTURE

This work is based on (CRIPPA, 2010) and (CRIPPA, 2013), therefore it inherits
the basic characteristics and uses the concepts presented in these previous works. This
chapter starts with the presentation of a usage scenario for the distributed Broker plat-
form (Section 3.1), providing a basis for the requirements analysis in Section 3.2, which
describes the functional and non-functional requirements. Then, the architecture of a cen-
tralized Broker platform is presented, along with key concepts that are also related to this
distributed version (Section 3.3). Section 3.4 gives an overview of the distributed Broker
design based on Chapter 2 and the requirements analysis. Finally, the Broker message

protocol is described in terms of the operations supported by the platform (Section 3.5).

3.1 Usage Scenario

The design presented in this chapter was proposed considering a practical situa-
tion, in which a network would be composed by a significant amount of Brokers, probably
100 or more. We may consider the following scenario: the government of the state of Rio
Grande do Sul wishes to prevent and monitor the occurrence of fire in vegetation areas.
Temperature and humidity sensors would be spread and these would send their raw data
to Context Providers, to be installed in measurement stations in these areas. The fire de-
partment of each city wishes to have an hourly report of these measures in the nearby
vegetation areas, while the government wishes to have daily reports by city. The reports
would be stored in a data center in Porto Alegre (the state capital). Let us assume that the
appropriate structure for this system to work would be provided by the government.

Rio Grande do Sul has 500 cities and an area of 280.000 km?, being approximately
40% covered just by native vegetation. One could think of a solution that consists of a
single Broker, installed in Porto Alegre, receiving data and attending context requests
(considering that every CP and CC is able to reach this Broker). We have a scenario
in which a huge amount of sensors (thus, CPs) is sending data and many consumers are
interested in receiving this data, even though the request rate is low. Hence, no centralized
solution would be able to handle this situation. A more appropriate solution is to divide
the load between a set of Brokers, allowing them to communicate and work together.
Areas with more CPs/CCs could be served by two or more Brokers (one in each city, for

instance), implying on lower response times and avoiding the overload of a single Broker.

30

3.2 Requirements Analysis

The requirements presented in this section are proposed based on (but not re-
stricted to) the usage scenario of a large and spread sensor network in which context
information (temperature, pressure, etc.) is gathered and a set of consumers are interested
in receiving this data (as presented in the previous section). The payload in this case is
simple and small and consists of measurements made by the sensors, but the number of
exchanged messages may be high. Consumers nodes contact a network of Brokers, which

may be around a small geographic area, in order to obtain data.
e Functional Requirements

e Discoverability: there must be a way through which providers and consumers
are able to find at least one Context Broker;
o Communicability: Context Brokers should be able to communicate with each

other in order to attend requests from consumers and providers (CRIPPA,

2013);
e Non-Functional Requirements

e Validity: the content provided by the Brokers should be always up-to-date
(CRIPPA, 2010);

e Availability: the platform must implement some form of replication in order
to provide appropriate availability of content;

e Consistency: all the components of the architecture must represent context
using the same model (CRIPPA, 2010);

e Neighborhood Awareness: Brokers should be aware of nodes leaving and join-
ing the network, avoiding the forwarding of requests to the ones which are not

running anymore.

3.3 The Centralized Broker

The work in (CRIPPA, 2010) proposes a centralized Broker and introduces some
concepts used for this distributed version. This section reviews these concepts in order to

provide a better understanding of the Context Broker platform.

31
3.3.1 Context Entity and Context Scope

A Context Entity (or simply entity) is a subject which context data corresponds
to (CRIPPA, 2013). Entities are composed of a type and an identifier. This identifier
is the information used to distinguish a set of entities of the same type. One example
of entity is a student enrolled in a university. Every student has a unique registration
number among all the other students. In this case, registration number is the type and, for
instance, 0/4632 is the identifier.

A Context Scope (or simply scope) is a group of related parameters which belong
to a certain context (CRIPPA, 2013). Let us consider the example of a user who wants to
log in to his e-mail account. The user needs both his username and password in order to
execute this operation. Therefore, these two parameters belong to the same scope and are
always manipulated together. Another observation is that scopes have a validity period
with start and end. After the validity expires, data related to that scope is considered in-
valid (CRIPPA, 2013). Each entity may be related to one or more scopes. The relationship

between entity and scope is shown in Figure 3.1.

Figure 3.1: Entity-Scope relationship.

Scope T
- Parameter A7
- Parameter A2
/ = Parameter B

7
Scope 2

Entity -._____.---- - Parameter C
- Type il - Parameter D
- Identifier
~
AN
!

Validity X

Scope N
- Parameter E7
- Parameter E2

Walidity ¥

Source: (CRIPPA, 2013)

3.3.2 Centralized Broker Architecture

The Context Broker architecture consists of three components: Context Providers
(CPs), Context Consumers (CCs) and the Context Broker (CB) itself. This division im-
plements the idea behind a Service-Oriented Architecture (CRIPPA, 2013).

A Context Provider (or simply provider) is the component responsible for gath-
ering data from sources (e.g., sensors) and sending it to the Broker, at a certain frequency,

through a context update message (CRIPPA, 2010). Every provider must advertise its

32

presence to the Broker before sending any data. A Context Consumer (or simply con-
sumer) is the component which retrieves context data. In this version of the platform, the
only way for a consumer to obtain data is by making a context request to the Broker.

The Context Broker is the main component of the architecture. It is responsible
for storing and retrieving context information based on the requests of providers and con-
sumers, acting as the communication manager in the system (CRIPPA, 2013). Figure 3.2
shows the architecture of a centralized Broker with simplifications when compared to
(CRIPPA, 2010). Acknowledgements (ACKs) and not-acknowledgements (NACKs) have

been omitted.

Figure 3.2: Centralized Broker architecture.

Source: The authors

3.4 Overview of the Distributed Broker Design

This section indicates the decisions related to the main aspects of the distributed
Broker design. These decisions were made based on the research presented in Chapter 2
and on the requirements analysis, considering that an unstructured P2P architecture was

chosen.

3.4.1 Context Management in the Distributed Broker Platform

As presented in Chapter 2, context management is the basis of a context-aware
system and gives rise to the four phases of the Context Life Cycle: context acquisition,
context modeling, context reasoning and context dissemination/distribution. Each phase

may be performed through a variety of methods and the choice of these has an impact on

33

the system design. A summary of the decisions for this work regarding these aspects is
given below. The context reasoning phase was not addressed, considering the overhead

and complexity that the addition of this mechanism would impose on the system.

e Context Management (Section 2.1.3): the chosen model for context management is
Networked Services, considering that a Service-Oriented Architecture is followed,
in which clients (consumers and providers) connect to Brokers in order to make
requests;

e Context Acquisition (Section 2.1.3.2): context data is acquired from a context
server. Brokers act as servers which store data and consumers obtain context data
from them.

e Context Modeling (Section 2.1.3.3): the context modeling technique used in this
work is the key-value approach, based on the desired performance and simplicity
for this implementation of the Context Broker. The platform design was thought
in the scenario of applications that deal with small and non-complex payloads,
with information such as temperature and humidity being gathered from sensors.
Therefore, the other approaches would provide too cumbersome solutions with an
unnecessary overhead, compromising performance goals.

e Context Distribution (Section 2.1.3.4): context distribution is done through queries:

consumers must query Brokers in order to obtain data.

3.4.2 Architecture

The distributed Broker has the same components of the centralized Broker, with a
change in how the architecture is structured. Considering a distributed architecture (such
as the one proposed in this work), a set of Brokers works cooperatively in order to store
and retrieve information. The architecture for the distributed Broker platform is shown in
Figure 3.3. Acknowledgements (ACKs) and not-acknowledgements (NACKs) have been

omitted.

3.4.3 Node Membership

A joining node receives a list of Broker addresses to connect. These Brokers are

assumed to be the most stable and the list is updated when necessary (e.g., a Broker went

34

Figure 3.3: Distributed Broker architecture.

Source: The authors

offline). If a node is not able to connect to any Broker from this list, this node does not join
the network and waits for a new list of addresses. The maximum number of established
connections should be relatively small in an attempt to limit the overhead of messages
due to nodes leaving the network.

In the case of a node leaving the network, two possibilities are considered:

e Abrupt exit: detected when there is no answer from a node when a ping message
is sent. The node that detected the exit floods an advertisement message to its

neighbors with a small TTL;

e Normal exit: a node sends a message stating that it will leave the network. This

message 1s spread using flooding with a small TTL.

The flooding technique was chosen for simplicity reasons and because it shows
good performance when the amount of nodes to be covered is small (GKANTSIDIS;
MIHAIL; SABERI, 2005). In the situation of a node joining/leaving, only the nodes that
are topologically close to the one that left need to know about the exit, in a way that future
requests forwarded to nodes which are not online anymore can be appropriately detected.
For the considered application scenarios, it is expected that not many nodes will join and

leave the network often, so the message overhead is negligible.

3.4.4 Neighborhood Search

A node searches for neighbors based on a greedy protocol (WANG; VANNINEN,
2006). Joining nodes receive a list of Brokers and must ping these nodes to discover la-
tencies. Three pings for each node are performed and a connection is established with the
nodes that have the lowest average latencies. This greedy approach was chosen taking into

consideration the good results it has shown in terms of performance and generated net-

35

work traffic, while avoiding a too cumbersome implementation in order to obtain network

information (WANG; VANNINEN, 2006).

3.4.5 Search For Data and Data Replication

The search mechanism consists in random walks with lookahead (performing
shallow floodings on each step of the walk). This decision was made considering that
the traditional flooding approach would generate too much load in the network due to the
amount of propagated messages. By choosing the random walk with lookahead method
(Section 2.4.2.2), it is possible to minimize message duplication and the granularity of
the coverage, properties that are important according to (LV et al., 2002). When a Broker
receives a context request and does not have the desired data, it forwards the request to
another Broker, performing a random walk with lookahead through the network.

According to the research presented in Chapter 2, the random replication mech-
anism performs better than path replication while achieving the square-root condition.
Therefore, this approach will be used: for each successful search, the number of nodes
p on the path between the CC and the Broker that has the requested data is counted and
then m (m < p) nodes that were visited are randomly selected to replicate the object. The
decision on whether certain data should be replicated or not is determined by a small time
threshold: if the duration (validity period) of the data is lower than the threshold, no repli-
cation is performed (even if the Broker was selected to replicate). Replicas are stored in
memory as long as a Broker is running and any update made to this replicated data will
only be executed by a Broker if it is selected for replication once again, considering a
successful query for the corresponding data.

One issue related to data validity and the system functionality in a general way is
time synchronization in unstructured P2P networks. This issue is out of the scope of this
work. It is assumed that the Brokers are connected to a reliable source of time information

(synchronization by third-party), such as through the use of NTP.

3.5 Broker Message Protocol

In order for the platform design to satisfy the requirements presented at the begin-

ning of this chapter, a message protocol that provides the expected functionalities to the

36

corresponding system components must be implemented. For this distributed version of
the Context Broker platform, a protocol composed of ten types of messages is proposed.
These messages are used by the system components to perform operations. Aside from
the three components mentioned previously (Context Broker (CB), Context Provider (CP)
and Context Consumer (CC)), this protocol also considers a fourth component, the Con-
troller Application (CA), which is used solely for managing the structure of the Brokers
network (node membership). This section lists and describes the operations supported by
the platform, allowing for the acquisition and provision of contextual information, the two
key functionalities of a context-aware system (Section 2.1.3). A detailed specification of

the protocol can be found in the Appendix, at the end of this document.

3.5.1 Context Update/Advertisement

The Context Update/Advertisement operation is performed by Context Providers
(CP). A CP uses an Advertisement message to announce its presence and send its data to
a Context Broker for the first time. The following messages sent by the CP will be Update
Messages and it should keep sending these at a certain rate. The Broker which receives an
Update message will either update existing data or add new data, depending on the fields
specified in the message. Figure 3.4 shows the steps of the interaction between the system

components when this operation is executed.

Figure 3.4: Context Update/Advertisement Operation

Context Provider MessageAP! Context Broker Contextinfo

| |
getContextUpdateAdvMessage(flag, provideriD,entity Type, entityID,scope, validBegin, validEnd, payload) _ |

|
|
|
contextAdvMessage
€ -mmmmmmm e e oo oo oo SODEXTACVIESS S 4

sendMsg(contextAdvMessage) N

getACKMessage(REQ_RECEIVED)

ACKMessage

sendMsg(ACKMessage)

new ctxinfo(contextAdvMessage)

parseMsg(contextAdvMessage)

It__J |[valldMessage]

insertinDataTable(ctxinfo)

| getACKMessage(REQ_PROCESSED)

ACKMessage

sendMsg(ACKMessage)

getNACKMessage(BAD_REQUEST)

NACKMessage

sendMsg(NACKMessage)

Source: The authors

37

3.5.2 Context Request

The Context Request operation is performed by Context Consumers (CCs). A CC
uses a Context Request message to request data to a Broker. If this Broker has the desired
data, it will directly send it to the CC. If not, the request will be forwarded to other
Brokers in the network until it is found or until the nodes determine that the data does
not exist. When a Broker receives a Context Response from another Broker, the former
checks whether it should replicate the data (details on this verification can be found in the
Appendix). Figure 3.5 shows the steps of the interaction between the system components

when this operation is executed.

3.5.3 Ping

The Ping operation can be performed by any system component: Context Provider,
Context Consumer, Context Broker and Controller Application. A Ping is executed to
determine if a Broker is alive and able to receive requests. If no response is received within
a timeout interval, the Broker is considered to be inactive by the entity who executed the
Ping. Figure 3.6 shows the steps of the interaction between the system components when

this operation is executed.

Figure 3.6: Ping Operation

Context Consumer MessageAPI| Context Broker

- I I
|
getPingMessage() _ |

»

|
|
|
¢ . PingMessage __ | H

sendMsg(pingMessage)

Y

w
=3
el
=
3
]
-]
c
-

[[[itimeout]

getPingResponseMessage()

pingResponseMessage

sendMsg(pingResponseMessage)

A

T T L

Source: The authors

38

Context Consumer

Figure 3.5: Context Request Op

MessageAP| Context Broker 1

eration

Context Broker 2 Contextinfo
1 |
getC ID,scope) | | |
| |
| |
R L B | |
| |
sendMsg(contextRequestMessage) N | |
> | |
o getACKMessage(REQ_RECEIVED) _ W
b | I
ACKMessage | |
\\ > | |
| |
sendMsg(ACKMessage) | |
| |
parseMsg(contextRequestMessage) _ W
Pa— | |
' I
art IVplliMessage] 1 |
| |
searchDataTable(entityType,entityID,scope) | |
H_ | |
| |
alt | |
| |
|, getContextResponseMessage(providerlD,entityType,entityID,scope,validBegin,validEnd, payload) | |
« | |
1 |
contextResponseMessage »l | |
1 |
1 |
| |
sendMsg(contextRequestMessage)
! searchDataTable(entityType,entitylD,scope)
alt [dataFound]

getContextResponseMessage(providerlD,entityType,entitylD,scope,validE

egin,validEnd,payload)

contextResponseMessage

L, sendMsg(contextResponseMessage)

Ireplicatel

insertinDataTable(ctxInfo)

pa—

sendMsg(contextResponseMessage)

getNACKMessage(DATA_NOT_FOUND)

|
1
|
T
|
|
new ctxInfo(contextResponseMessage)
|
|
1
|
'
|
1
1

NACKMessage

sendMsg(NACKMessage)

sendMsg(NACKMessage)

getNACKMessage(BAD_REQUEST)

NACKMessage

sendMsg(NACKMessage)

Source: The authors

39
3.5.4 Broker Joining

The Broker Joining operation is executed by a Controller Application (CA). A CA
uses a BrokerJoining message to command a Broker to connect to one or more Brokers.
With this, the new Broker joins the network, becoming a new neighbor of the specified
nodes that are alive. Figure 3.7 shows the steps of the interaction between the system

components when this operation is executed.

Figure 3.7: Broker Joining Operation

Controller Application MessageAPI Context Broker 1 Context Broker 2

|
getBrokerjoiningMessage(brokersAddresses) _ |

| 1

| 1

| 1

. | I
brokerjoiningMessage

g - - - - - - Droker JoiningMessage _______ | L L

sendMsg(broker]oi)

getACKMessage(REQ_RECEIVED)

ACKMessage

sendMsg(ACKMessage)

parseMsg(brokerjoiningMessage)

Toop [everyBrokerAddressinMessage]

sendMsg(brokerjoiningMessage)

alt__J [[timeout]

addNewNeighbor(brokerjoiningAddress)

sendMsg(ACKMessage)

addNewNeighbor(brokerAddress)

|, 9etACKMessage(REQ_PROCESSED)

ACKMessage(REQ PROCESSED)

sendMsg(ACKMessage)

T T T

Source: The authors

3.5.5 Broker Leaving

The Broker Leaving operation is executed by a Controller Application (CA). A
CA uses a BrokerLeaving Message to command a Broker to leave the network. This
Broker sends a leaving advertisement to its neighbors, which remove its address from
their neighbors list. Figure 3.8 shows the steps of the interaction between the system

components when this operation is executed.

40

Figure 3.8: Broker Leaving Operation

Controller Application MessageAP| Context Broker 1 Context Broker 2

getBrokerLeavingMessage() _ |

| .

|

|

|

: |

_ brokerLeavingMessage | L

sendMsg(brokerLeavingMessage)

getACKMessage(REQ_RECEIVED)

ACKMessage

sendMsg(ACKMessage)

Toop Tever Broker]

sendMsg(brokerLeavingMessage)
»

removeNeighbor(brokerLeavingAddress)

|, getACKMessage(REQ_PROCESSED)

ACKMessage(REQ_PROCESSED)

sendMsg(ACKMessage)

Source: The authors

3.5.6 Start Neighbors Monitoring

The Start Neighbors Monitoring operation is executed by a Controller Application
(CA). A CA uses a StartNeighborsMonitoring message to indicate to a Broker that its
neighbors are already set up and listening, implying that the monitoring to check their
status should be started. Figure 3.9 shows the steps of the interaction between the system

components when this operation is executed.

Figure 3.9: Start Neighbors Monitoring Operation

Controller Application

T

getStartNeighborsMonitoringMessage() _ |
P

Context Broker 1

41

Context Broker 2

| |
| |
| |
. - | |
_ _startNeighborsMonitoringMessage _ _ | L A
sendMsg(startNeighborsMonitoringMessage) >
|, getACKMessage(REQ_RECEIVED)
ACKMessage
| _ACKMessage »
sendMsg(ACKMessage)
loop [neighborsList.size() > 0]
. getPingMessage()
<
pingMessage
,,,,,,,,,,,,,,,,,,,,,, ’
sendMsg(pingMessage) =
>
alt [timeout]
removeNeighbor(neighborAddress)
""" [itimeout] ™ =~ T T
- getPingResponseMessage()
pingResponseMessage >
sendMsg(pingResponseMessage)
<

Source: The authors

42

4 SYSTEM IMPLEMENTATION AND EVALUATION

This chapter discusses the implementation of the Broker platform, the evaluation
process and corresponding results. Section 4.1 describes the main aspects of the imple-
mented prototype: the development environment, interfaces and main modules, as well
as message parsing and data storage. Section 4.2 addresses the experimental evaluation,
presenting the testing environment and configurations, analyzed metrics and chosen pa-

rameters. Finally, the results are presented in Section 4.3.

4.1 Broker Platform Prototype

This section describes the main aspects of the Broker platform implementation.
Due to resource limitations for testing and the desired analyses, the implementation differs

from the design presented previously in two aspects:

e Neighborhood search: the neighborhoods are determined manually. Each Bro-
ker will connect to the Brokers specified in the BrokerJoining Messages sent by
the Controller Application. This approach was chosen because different network
topologies were used for testing (more details in Section 4.2.3). Hence, a control
over the topology was necessary and the neighborhood search based on latencies

would hinder this task;

e Search for data: shallow floodings during the random walks were not implemented.
These floodings would require that the Brokers kept a history of the received mes-
sages and a logic to avoid duplicates, implying on extra and unnecessary complexity
in the system. Since the network used for testing was small, executing a flooding
in each node would generate a significant amount of messages and most of them
would be duplicates, which would be discarded. Thus, this process would imply on

a waste of processing time in this simplified scenario.

These small changes have not invalidated the overall functionalities nor changed

the main structure of the proposed system.

43

4.1.1 Development Environment

This platform was developed using the C++ programming language, Standard
C++11. This choice was made considering that performance was a concern for this ver-
sion. The communication between the platform components is done via UDP sockets and,
for this, the sockets library Practical C++ Sockets (DONAHOO, 2017) was used. UDP
was also used for performance reasons, but, in a real scenario, a software layer to handle
packet losses would most likely be necessary. The timestamp in all messages is gener-
ated through the use of the <chrono> library and corresponds to the Unix (epoch) time
in milliseconds. The random walk mechanism was implemented by randomly choosing
a neighbor from the Broker’s neighbors list and the generation of random indexes was
done using the <random> C++ library'. For threads, the <pthread> library was used.
For code editing, Sublime Text (SUBLIME, 2017) was used and GDB (GDB, 2017) for
debugging. The development was done in Ubuntu LTS 14.04. Local tests were performed
in an Intel® Core™ i5-2310 CPU @ 2.90GHz machine with 8 GB RAM.

Table 4.1: Broker Message API.

Function Parameters Description
Provides the header for every message supported by
getHeader msgType, payloadSize, payloadExists the platform. This function is called by every other

function of the API.

getStartNeighborsMonitoringMessage

Provides the message that commands a Broker
to start checking if its neighbors are alive.

getPingMessage

Provides a ping message to check if a Broker is alive.

getContextUpdateAdvMessage

flag, providerID, entityType, entityID,
scope, validBegin, validEnd, payload

Provides a Context Update/Advertisement message
based on the fields passed as arguments.

getContextRequestMessage

entityType, entityID, scope

Provides a Context Request message based on the
fields passed as arguments.

getContextResponseMessage

providerID, entityType, entityID,
scope, validBegin, validEnd, payload

Provides a Context Response message based on the
fields passed as arguments.

getACKMessage

operationName, requesterAddress, operationStatus

Provides an ACK message based on the fields
passed as arguments.

getNACKMessage

operationName, requesterAddress, operationStatus

Provides a NACK message based on the fields
passed as arguments.

getBrokerLeavingMessage

Provides the message that commands a Broker to
leave a network.

getBrokerJoiningMessage

Provides the message that commands a Broker to
join a network.

getPingResponseMessage

Provides the response to a ping message.

Source: The authors

4.1.2 Broker Platform Interfaces

In this implementation of the Broker platform, four components are considered:

Context Broker (CB), Context Provider (CP), Context Consumer (CC) and Controller

'The chosen engine for the generation of pseudo-random numbers implements the Mersenne Twister
algorithm, proposed in (MATSUMOTO; NISHIMURA, 1998). The chosen distribution for this process was
the uniform distribution, so that every generated index has equal probability of occurrence.

44

Application (CA). The first three are the key system components, while the last one simply
has the role of performing the exit and joining of Brokers in the network, since these are
always in a passive state waiting for requests. Figure 4.1 shows the structure of the system
in a component level. Every operation allowed by the platform is accessed through a
message API, which generates the messages in their appropriate formats, according to the
parameters (when required) provided by the requester application. The API is shown in
Table 4.1. The interface IBrokerResponse is provided by the components in order for the
Broker to deliver the response of the operations (namely, ACKs, NACKSs or context data).

The main communication between Brokers in a network is done by the modules
ServeCtxRequest and CtxForwarding through the IForwarding interface, which is pro-
vided by every Broker. The ServeCtxRequest module is responsible for handling a Con-
text Request. It accesses the Broker data table, forwards the request to another node if the
data was not found, determines in which Brokers the data replication will happen and also
starts the forwarding of data when it is found. The CtxForwarding module is responsible
for handling a Context Response message which is being forwarded through the network.
It performs the data replication (if the current Broker is supposed to) and sends the mes-
sage to the next Broker, according to the addresses and ports that have been appended
along the request path. The modules ServeBrokerLeaving and ServeBrokerJoining are
also used for communication between Brokers, but they only concern the advertisement

of nodes leaving or joining the network.

Table 4.2: Description of the requestServicelnfo structure.

Structure field Description
dTable Object that represents the structure in which a Broker stores data (details in Section 4.1.6).
receivedMsg Message containing the request received by a Broker.

semDataTableMutex | Mutex structure to avoid race conditions between modules when accessing the data table.

semLoggerMutex Mutex structure to avoid race conditions between modules when accessing the log file.

semNeighborsMutex | Mutex structure to avoid race conditions between modules when accessing the neighbors list.

Iger Object that represents the log file used by the Broker.
srcAddr Address of the entity which sent the message.
srcPort Port of the entity which sent the message.

neighbors List of neighbors addresses.

Source: The authors

The Context Broker is composed of a main module WaitForRequest (which waits
for request messages) and the modules that attend the supported requests. The interac-
tion between this main module and the others is done by using a data structure called

requestServicelnfo that contains all the information and variables required for processing

45

sI0YINE AYJ, :90IN0S

BulpJem.1od|

o

(&

¢ Je3xjo.g wa1uo)

Buipaemiod|

-—Or—1

- @ Buuio[1sx0.ig3nias

[B BuuojuopsioqybiaNILISBAIES

‘=

BUINESTI3I0IFBAIRS

158nbayXIDaNIES

[® Bup.iemiodx

[bBugsniss

[® 1ssnbayiodyem

[B Apvelepdnxineniss

13004g HBWED

|dvabessa

asuodsay.iajoid|

(@)

@ uoped|ddy is||043uod

o8

asuodsay.aiio.g|

\\I}l/fﬁo

—F— O}

[B sepnoig %eauo0d

asuodsayJarioagd|

©

E

J3LNSU0T 1¢33UcD

2InonNg juduodwo)) 1a01g 1XAU0)) [} NS

46

the request, such as the message received, mutexes, requester address, etc. This structure

is shown in Table 4.2.

4.1.3 Message Parsing

One of the main activities performed by the Broker is message parsing. It is fun-
damental for the realization of the platform’s core functionalities: storing and retrieving
context data. The parsing function (shown below along with the parameters description)
transforms the input string into a tokens vector, so that each field of the message can be
analyzed and/or stored in appropriate structures for processing. The character used as the

CGI”

field delimiter in all messages is the vertical bar

Listing 4.1: Message Parsing Function.

void Tokenize(const string& str,vector<string>& tokens, int& <«

nTokens, const string& delimiters) {

/! Skip delimiters at beginning.
string::size_type lastPos = str.find_first_not_of(delimiters, 0);
// Find first "non—delimiter ".

string::size_type pos = str.find_first_of(delimiters, lastPos);

nTokens = 0;

while (string::npos != pos ||l string::npos != lastPos) {
// Found a token, add it to the vector.
tokens.push_back(str.substr(lastPos, pos — lastPos));
// Skip delimiters. Note the "not_of"
lastPos = str.find_first_not_of(delimiters, pos);
// Find next "non—delimiter"

pos = str.find_first_of(delimiters, lastPos);

nTokens++;

Parameters:

e str (input): string with the message to be parsed

47

e fokens (output): vector in which the message each message field will be stored
e nlokens (output): number of tokens (fields) in the message

e delimiters (input): characters in the message to be considered as field delimiters

4.1.4 Data Storage and Search

A Context Broker stores data in its data table, implemented by the dataTable class.
The key element of this class is the dataMap, consisting of a C++ map structure composed
of <key,value> pairs. For the considered platform, the keys are strings generated using
a hash function and the values correspond to contextlnfo objects, whose class is shown
in Table 4.3 (methods have been omitted for clarity). When a Context Provider sends
an Advertisement message to a Broker, the data storage process (implemented by the
insert method of the dataTable class) works as follows: the fields providerlD, entityType,
entitylD and scope are concatenated. The resulting string is then passed to a function that
generates a hash key using the DJB hashing algorithm. After that, the Broker inserts the
pair <hashKey, contextInfo> in its dataMap.

The context retrieval process is performed by the search method. It gets the fields
entityType, entityID and scope from the Context Request message and searches linearly

the Broker’s dataMap for the contextinfo entry which has the matching fields.

Table 4.3: Class used to represent context information.

Class attribute Type

ctxMsgType char

providerID string
entityType string
entityID string
scope string
validBegin string
validEnd string
payload string
msgWellFormed | bool

entryID string

Source: The authors

48

4.2 Experimental Evaluation

The main goal of this work with respect to evaluation is to show the advantages
of a distributed implementation over a centralized version of the platform. Besides avoid-
ing the single point of failure problem in the latter, a distributed version should provide
advantage regarding at least two aspects: response time and memory usage. As the
number of Context Consumers rises, a single Broker is expected to take longer to answer
requests, because it is the only source of data available and needs to serve one request at a
time. As the number of Context Providers is increased, a single Broker is also expected to
consume more memory, since more data is being stored and more advertisements and up-
dates must be served. Hence, by distributing the load between more Brokers, on average,
lower response times and memory usage should be observed. This section presents the
description of the experimental evaluation, including the testing environment, parameters

and metrics evaluated.

4.2.1 Testing Environment

Gathering all the resources needed to represent the scenario described in Chapter
3 would be a cumbersome task, mainly due to the amount of machines required to setup
a network with a significant amount of Brokers. In an attempt to overcome this problem
and use an environment closer to a real scenario, Amazon cloud services were used for
testing. Amazon EC2 (AMAZON, 2017) is a web service that provides compute capacity
in the cloud, allowing the creation of remote instances (machines) with a wide range of
configurations regarding memory, CPU and operating system. For this work, 20 instances

were used, all of them with the following configuration:

e Physical Processor: Intel Xeon Family (exact model is not specified), 64-bit or 32-
bit architecture (not specified), 2.5 GHz;

e Memory: 1 GB RAM,;

e Operating System: Ubuntu Server 16.04 LTS;

e Instances location: US-East;

From the 20% machines used, 10° were chosen to run Brokers, 5 to run Context

220 machines is the limit allowed by Amazon in the Free Tier.
3Since in (CRIPPA, 2013) 4 machines were used to run Brokers, it was expected that, by using more

49

Providers and 5 to run Context Consumers. The reason for dividing CPs and CCs into
multiple machines is to implement a more realistic scenario (such as the one described
in Chapter 3), in which there will be more than a single source of context data and more
than a single source of context requests. It is important to mention that the machines
which run CPs (or CCs) may run more than one CP (or CC), but the machines running
Brokers execute only one instance of the Broker application. In the considered setup, all
CPs send the same data (context advertisement followed by context updates) and all CCs
ask for the same data. Each machine running CPs and each machine running CCs was
randomly assigned to a Broker, so that the load is distributed among the network. This
assignment was done manually in order to have a better control of the resulting testing
setup: at most two Brokers serve CCs and CPs simultaneously and no Broker serves more
than one machine running CCs (or CPs). Each test was performed with a duration of 15
minutes and a delay of 200 milliseconds was introduced between the start of every CP
and CC, so that CPs and CCs are not started all at the same time (as in a more realistic

scenario).

4.2.2 Evaluation Metrics and Testing Parameters

This work focuses on evaluating the Broker platform with respect to two metrics:
average response time and average memory usage. As mentioned at the beginning of
this chapter, it is expected that these metrics reflect the impact when a transition from
a centralized Broker to a distributed Broker is done. Aside from defining the evaluation
metrics, it is also important to define which parameters have an influence on these metrics,
so that the test configurations can be established. The first two parameters that might be
considered are the number of CCs and CPs. Since the Broker serves both of these entities,
it is reasonable to expect that these parameters will have an impact on the chosen metrics.
Related to CCs and CPs, two other parameters which might have an influence are the
context update interval and the context request interval. The former corresponds to the
frequency at which CPs send Context Update messages to the Broker, while the latter
corresponds to the frequency at which CCs send Context Request messages to the Broker.

This work considers a distributed version of the Broker platform, in which a set of
Brokers work together to store and provide context information. Although no connection

is actually established (since UDP is used), the communication between Brokers forms a

machines, the advantages of a distributed version would be better observed.

50

network (practically, a graph), which may have many different topologies depending on
how the neighborhood of each Broker is set. In order to analyze the impact of the topology
on the previously mentioned metrics, three simple topologies* (shown in Figure 4.2) were

chosen for testing:

e Ring topology: Each node connects to two other nodes in a ring fashion;
e Full mesh topology: Each node connects to every other node;

e Moderate connectivity topology: A random topology was generated using the Wax-

man algorithm (WAXMAN, 1988). The topology’s average connectivity is 2.

Figure 4.2: Topologies chosen for testing.

(c) Moderate Connectivity Topology

Source: The authors

Since many test configurations are already possible, three other relevant parame-
ters were fixed: payload size (fixed at 1 kB), number of Brokers (fixed at 10) and replica-
tion index (fixed at 1). The payload size corresponds to the amount of actual context data
contained in a Context Request, Update/Advertisement or Context Response message.

The replication index determines in how many Brokers context data should be replicated

“These topologies were chosen based on the idea of testing an “extreme” case (full mesh), an “aver-
age” case (moderate connectivity) and a topology that is often discussed and used in the field of computer
networks (ring).

51

in case of a successful query (when the requested data was found). Considering that half
of the used Brokers will serve CPs and that stressing the system capacity of finding rare
data was not the goal of this work, this parameter was fixed at 1. Table 4.4 summarizes
the parameters chosen to be part of the evaluation process and the values considered for

each one of them.

Table 4.4: Evaluation parameters and corresponding values.

Parameter Value

Number of Brokers (fixed) 10

Payload size (fixed) 1 kB

Replication index (fixed) 1

Network topology ring, full mesh, moderate connectivity

Number of Context Providers 50, 500, 1000°
Number of Context Consumers | 50, 500, 1000°

Context update interval 1, 30, 60 seconds®

Context request interval 1, 30, 60 seconds®

Source: The authors

4.3 Results

This section presents the results of the experimental evaluation done on the pro-
posed distributed Broker platform, along with comparison analyses. Before presenting
the results, some considerations should be made. Due to the significant amount of testing
configurations executed, the results presented in this section are a subset of the total (the
complete table with the results of all configurations can be found in the appendix). The
idea was to select the parameters to be fixed, vary the others and use the remaining con-

figurations to make comparisons between four different versions of the Broker platform:

e Version V1: centralized Broker, implemented in Java, proposed in (CRIPPA, 2010);

SThese values were chosen based on previous studies in (CRIPPA, 2013). Since more resources were
available for this work, the idea was to explore them and increase the amount of CPs, CCs and Brokers, in

order to check the possible effects on the results.
These values were chosen based on previous studies in (CRIPPA, 2013). The idea was to pick a range

of values that would encompass small and big intervals considering application scenarios such as the one

presented in Chapter 3.

52

e Version V2: distributed Broker based on structured P2P networks, implemented in

Java, proposed in (CRIPPA, 2013);

e Version V3: centralized Broker, implemented in C++. This version corresponds to
the same as proposed in this work, but using only one Broker;

e Version V4: distributed Broker based on unstructured P2P networks, implemented

in C++, proposed in this work;

According to the results table presented in the appendix, the performed tests showed
no major difference in the metrics when the update interval was varied, so the average of
the response times and memory usage for 1, 30 and 60 seconds was taken. A significant
impact on the results was observed when the request interval was varied from 1 to 30
seconds or from 1 to 60 seconds, but not from 30 to 60 seconds. Hence, the values of
response times and memory usage for a request interval of 30 seconds were chosen. Con-
sidering the scenario presented in Section 3.1 and most of the applications in which the
Broker platform would be utilized, a valid assumption is that the number of Context Con-
sumers will be always greater than (or at least equal to) the number of Context Providers.
Thus, when varying the amount of CCs, the CPs are fixed at 50 and, when varying the
amount of CPs, the CCs are fixed at 1000.

Figure 4.3: V3 and V4 - #CCs x Average Response Time.

1750 1646 1650 B Ring (V4)
B High Connectivity (V4)
Moderate Connectivity (W4)

‘F:,'; 1500 1422 B Centralized Broker (V3)
@
E
=
g;
= 1250
&
&
@
[=]
m
2 1000 931926 :
= 874881 8g1 891

o N o

50 500 1000

Number of Cantext Consumers

Source: The authors

53

4.3.1 Average Response Time Analysis - V3 and V4

Figure 4.3 shows the comparison between the centralized Broker (V3) and the dis-
tributed (V4), regarding the influence of the number of CCs on the average response time.
The behavior of the centralized version confirms the hypothesis stated at the beginning
of Section 4.2: the average response time grows as the number of CCs is increased. The
distributed Broker showed a decrease in the response time from 50 to 500 Consumers
for all 3 topologies. One hypothesis which might explain this is the following: since the
delay between the start of each CC is very small (200 ms), the Brokers get overwhelmed
with requests for an interval when the CCs are being started, leading to higher response
times. Threads along with the structures needed for processing the requests are being
created, accesses to the data table are being made and requests are also being forwarded
to and received from other Brokers. All this is happening in a very short interval and
for the first time, when there is no data in the machines’ cache. Moreover, if a Broker
is also attending CPs, it has to deal with requests from both entities as soon as the CCs
are launched. For small amounts of CCs, it is valid to affirm that the delay in this initial
period will dominate the average response time, since less values are being considered in
the analysis. However, as the number of CCs grows, this effect should be amortized. Fig-
ure 4.3 confirms this hypothesis. The ring and full mesh topologies present lower average
response time for 500 CCs and, following the expected behavior, higher response times
for 1000 CCs. The moderate connectivity topology still presented lower response time in
this last case, but the decrease was smaller than before, indicating that the amortization
effect is happening and higher response times should be observed if greater amounts of
CCs were considered. Regardless, the difference between the average response time for

versions V3 and V4 is evident and reaffirms the benefits of using a decentralized version.

54

Figure 4.4: V3 and V4: #CPs x Average Response Time.

8000 B Ring (v4)
7030
B High Connectivity (V4)
IModerate Connectivity (V4)

— 6
g 0000 B Centralized Broker (V3)
g 4491
E
aQ
£ 4000
2
|;l'J:J
g‘
[1] F ~
g 2000 1630
= 881891 971982 925921

a0 500 1000

Number of Context Providers

Source: The authors

Figure 4.4 shows the results of V3 and V4 considering the influence of the num-
ber of CPs on the average response time. The same behavior present in Figure 4.3 was
observed here, but in a more representative way. The average response time reaches
higher values as the number of Providers grows in both versions. However, the central-
ized Broker is much more affected by greater amounts of CPs, while all 3 topologies of
the distributed Broker have a more stable behavior with a lower growth rate of response
time. This indicates the scalability capacity of the distributed version, already mentioned
throughout this work. The full mesh and moderate connectivity topologies present a de-
crease in the response time when 1000 CPs are considered. Although this goes against
the expected behavior, this decrease is negligible and should not represent a meaningful
trend in the testing setup. For greater amounts of CPs, the average response time is still

expected to grow.

4.3.2 Average Memory Usage Analysis - V3 and V4

Figure 4.5 shows the comparison between V3 and V4 with respect to the impact
of the number of CCs on the average memory usage. The first behavior that draws at-
tention is the centralized version presenting better results than the distributed when 50
CCs are considered, for all 3 topologies. This fact makes sense and indicates that, for
a small number of CCs, V4 has a higher cost in terms of memory consumption due to

the number of Brokers running, giving advantage to V3 and making it the most suitable

2400

2300

2200

2100

Average Memory Usage (kB)

2000

55

Figure 4.5: V3 and V4 - #CCs x Average Memory Usage.

B Ring (V4)
B High Connectivity (V4)

2302 Moderate Connectivity (V4)
2267

2188
2162
2136
21m
2099 20972
II - I
50

500 1000

B Centralized Broker (V3)

Number of Context Consumers

Source: The authors

option in these cases. For the remaining configurations, however, the distributed version

performed better than the centralized, even though the memory usage rises as the number

of CCs is increased. The full mesh topology presented slightly higher values than the

other topologies, which can be probably explained by the fact that each Broker must keep

a larger neighbors list. A small decrease in the average memory usage can be observed

in the full mesh topology when 1000 CCs are running, countering previous hypotheses.

One possibility is that the tests duration was not long enough to capture the impact of

this amount of CCs, since it will take more time for these entities to be initialized and the

whole system to be stable, which relates to the startup overloading mentioned in Section

4.3.1, when Figure 4.3 was analyzed.

6000

4000

2000

Average Memory Usage (kB)

Figure 4.6: V3 and V4 - #CPs x Average Memory Usage.

5716 B Ring (v4)
B High Connectivity (V4)
Moderate Connectivity (V4)

B Centralized Broker (V3)

2801 2826
2577

24172473

21622126 2302

a0 500 1000

Number of Context Providers

Source: The authors

The effect of the number of CPs on the average memory usage for versions V3 and

V4 is presented in Figure 4.6. It is interesting to notice that the centralized Broker shows

56

results very close to the ones of the distributed Broker when 50 CPs are considered. How-
ever, after that number, the average memory usage starts to rise quickly for the centralized
version, while all 3 topologies show a similar behavior as the number of CPs is increased.
Tests with smaller amounts of CPs would have to be done in order to check whether the
centralized Broker presents less memory usage than every topology proposed. The ring
topology showed a slightly higher memory usage with 1000 CPs. One possibility is that,
in this case, the assignment of CCs and CPs to Brokers was done in such a way that the
Brokers serving CCs are distant (in the topology) from the ones serving CPs, implying
that requests must pass through more Brokers and be processed by them, which would
lead to more memory consumption on average. Although the difference between V3 and
V4 in terms of memory usage is not as high as in the average response times, V3 can

consume 122% more memory than V4 when 1000 CPs are used.

4.3.3 Average Response Time Analysis - V1, V2 and V4

Versions V1, V2 and V4 are analyzed in Figure 4.7. The presented data was taken
from (CRIPPA, 2013). For this analysis, the configuration used in (CRIPPA, 2013) was
replicated for V4: 4 Brokers organized in a ring topology, one machine running 1 CP,
one machine running all the CCs, request interval of 10 seconds and update interval of
30 seconds. The sharp difference between the average response times of V2 and V4 can
be explained by two facts. The first is that, as mentioned in Chapter 2, structured P2P
networks have the disadvantage of the cost incurred to keep the network structure, which
might imply on delays when serving context requests. The second regards the program-
ming language used to implement V2 (Java) and V4 (C++). Java was designed to provide
portability and speed up development process, while C++ extends the C language, which
was designed for efficient execution. Programs written in C++ are directly compiled to
native executable machine code and are ready to run on the target machine. Programs
written in Java, however, are compiled to byte-code and then are either interpreted by a
Java Virtual Machine (JVM) or compiled to machine code by a JIT (just-in-time) com-
piler to only then run on the actual target machine. Although many improvements have
already been made to JIT compilers, the optimizations performed by them are usually not
the deepest or most sophisticated ones, since it would imply on an even higher delay in
the compiling process. Hence, the resulting machine code might not be fully optimized.

Besides, benchmarks (e.g., (BRUCKSCHLEGEL, 2005)) show, for instance, that array

57

operations have better performance in C++. Other particularities in Java such as the im-
plementation of the libraries and execution of bounds checking for every array access
operation may also contribute to the higher response times observed. A complete justi-
fication on why the C++ version showed much better performance would require further
analysis, which is out of the scope of this work. Nonetheless, the results presented in

Figure 4.7 are reasonable.

Figure 4.7: V1, V2 and V4: #CCs x Average Response Time.
4000 . DB - Unstructured
Metwaork (WV4)
B 0B - Structured Network

(V2)

& 3000
E Centralized Broker (V1)
@
E
=
]
c 2000
o
&
&
@
[=]
o
% 1000

147 256

08 ng 0
; = |
a0 150 300

Mumber of Context Consumers

Source: The authors

58

5 CONCLUSION

This chapter concludes this thesis by reviewing the concepts from the theoretical
foundation and the decisions regarding the design of the proposed platform, as well as
the main results achieved in the experimental evaluation. This is presented in Section
5.1. Moreover, future work is indicated in Section 5.2, showing how the platform can be

extended or improved with respect to its operation and how it could be better evaluated.

5.1 Overview and Contributions

This work presented a decentralized version of a context management and distri-
bution platform called Context Broker using unstructured peer-to-peer networks and has
the works in (CRIPPA, 2010) and (CRIPPA, 2013) as the baseline. Research was done and
related work in context-aware systems and peer-to-peer networks was reviewed in order to
indicate and explain fundamental concepts such as context, context-awareness and con-
text management. Three key aspects regarding peer-to-peer networks were considered:
network structure, search mechanism and replication, which have a profound impact on
the operation and overall performance of a distributed system. The design decisions were
proposed based on the theoretical foundation and a usage scenario, which was also used
for the requirements extraction. The Broker Message Protocol was described in terms of
the operations supported by the platform, allowing the Brokers to work cooperatively to
store and retrieve context information. UML diagrams were used in order to provide a
better understanding on how the operations work. Next, a description of the prototype
implementation was given, presenting a structural diagram of the system and key aspects
such as its interfaces and the message parsing mechanism. Finally, the testing method-
ology was explained and results were presented comparing four different versions of the
Context Broker, along with analyses highlighting the main differences in the behavior of
these versions with respect to two metrics: average response time and average memory
usage.

The Context Broker platform proposed in this work is a distributed system in
which nodes (Brokers) are organized in an unstructured peer-to-peer (P2P) network and a
Service-Oriented Architecture is used for the storage and retrieval of context information.
The platform is composed by three main components: Context Providers, Context Con-

sumers and Context Brokers. CPs and CCs contact CBs to make requests. The search for

59

data in the Broker network is done through random walks: context requests are forwarded
to other Brokers until the desired data is found. Every Broker is always aware of its neigh-
borhood, so no requests are sent to Brokers which are not alive. The implementation was
done in C++ for performance reasons and, although it differs slightly from the proposed
design, all the implemented functionalities worked as expected and proved to be enough
for the validation of the benefits of this version.

The experimental evaluation showed that the distributed Broker platform proposed
in this work performs better in terms of both average response time and memory usage
than the centralized version which uses the same implementation, with the exception of
one testing configuration. Moreover, it presented significantly lower response times when
compared to the distributed version in (CRIPPA, 2013) and the centralized version in
(CRIPPA, 2010), also exposing the impact of the chosen programming language in the
final system. No relevant difference between the behavior of the 3 considered topologies

with respect to the analyzed metrics was observed.

5.2 Future Work

Although this work is based on and extends the works in (CRIPPA, 2010) and
(CRIPPA, 2013), it does not cover all the possible improvements that could be made to
provide a solid context management and distribution platform nor extensively tests the
capacity of the implemented system. Hence, it is relevant to indicate how related future
work can extend this thesis in terms of operation and experimental evaluation.

The first improvement relates to security and privacy. No concern was considered
when it comes to these aspects, which means that every CP and CC can send requests to
any Broker in the network and there is no restriction in the communication between Bro-
kers. This issue is important in cases where sensitive data (e.g. personal address, phone
number, etc.) is being considered or the system is dealing with specific information be-
longing to different groups and access to this information should be kept restricted to each
group. One way to address the problem is through the implementation of authentication
mechanisms between CPs/CCs and Brokers or even between Brokers themselves. As a
complement, a logging tool that registers every operation performed in the system with
a high detail level could be created, so that any unexpected or forbidden action could be
easily identified.

When it comes to the experimental evaluation, the first enhancement which could

60

be considered is the number of Brokers used to execute the tests. For usage scenarios
that have a great amount of CPs and CCs, the benefits of using a decentralized system
should be better observed if a network with more CBs is used, since the load can be better
distributed. The assignment of CPs and CCs to Brokers is another aspect that potentially
has an influence on metrics such as response time and memory consumption. In this work,
this assignment was done randomly and manually, but it would be more appropriate if it
was automated and performed considering, for instance, the current load in the Brokers.
Finally, the platform’s capacity of finding data was not stressed in the proposed testing
setup. Since 5 out of 10 Brokers were serving CPs and every CC is requesting the same
data, it is very unlikely that the desired data will not be found, regardless of the network
topology. Therefore, it would be interesting to verify how do random walks perform in

this platform when only a small amount of Brokers are storing context information.

61

REFERENCES

ABOWD, G. D. et al. Towards a better understanding of context and context-
awareness. In: Proceedings of the 1st International Symposium on Handheld
and Ubiquitous Computing. Karlsruhe, Germany: Springer-Verlag, 1999.
(HUC ’99), p. 304-307. ISBN 3-540-66550-1. Available from Internet: <http:
//dl.acm.org/citation.cfm?id=647985.743843>.

AMAZON. Amazon EC2. 2017. <https://aws.amazon.com/ec2/>. Accessed in Dec 6,
2017.

ANDROUTSELLIS-THEOTOKIS, S.; SPINELLIS, D. A survey of peer-to-peer
content distribution technologies. ACM Comput. Surv., ACM, New York, NY,
USA, v. 36, n. 4, p. 335-371, dec. 2004. ISSN 0360-0300. Available from Internet:
<http://doi.acm.org/10.1145/1041680.1041681>.

BITTORRENT. BitTorrent. 2017. <http://www.bittorrent.com>. Accessed in June 04,
2017.

BOCKELMANN, C. et al. Hiflecs: Innovative technologies for low-latency
wireless closed-loop industrial automation systems. In: 22. VDE-ITG-Fachtagung
Mobilkommunikation. Osnabriick, Germany: [s.n.], 2017. Available from Internet:
<https://www.vde.com/mobilkommunikation_01>.

BROWN, P. J.; BOVEY, J. D.; CHEN, X. Context-aware applications: from the
laboratory to the marketplace. IEEE Personal Communications, v. 4, n. 5, p. 58-64,
Oct 1997. ISSN 1070-9916.

BRUCKSCHLEGEL, T. Microbenchmarking C++, C# and Java | Dr Dobb’s. 2005.
<http://www.drdobbs.com/cpp/microbenchmarking-c-c-and-java/184401976?pgno=1>.
Accessed in Dec 21, 2017.

CHEN, H.; FININ, T.; JOSHI, A. Semantic web in the context broker architecture. In:
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications. Piscataway, NJ, USA: IEEE, 2004. p. 277-286.

CHEN, H. L. An Intelligent Broker Architecture for Pervasive Context-Aware
Systems. Thesis (PhD) — University of Maryland, 2010.

COHEN, E.; SHENKER, S. Replication strategies in unstructured peer-to-peer
networks. In: Proceedings of the 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. New York, NY, USA:
ACM, 2002. (SIGCOMM °02), p. 177-190. ISBN 1-58113-570-X. Available from
Internet: <http://doi.acm.org/10.1145/633025.633043>.

CRIPPA, M. R. Design and implementation of a broker for a service-oriented
context management and distribution architecture. Dissertation (Bachelor’s Thesis)
— Federal University of Rio Grande do Sul (UFRGS), 2010. Available from Internet:
<http://hdl.handle.net/10183/26352>.

CRIPPA, M. R. Federation of Brokers for a Context Distribution and Management
Architecture. Dissertation (Master) — Technische Universitiat Kaiserslautern, 2013.

http://dl.acm.org/citation.cfm?id=647985.743843
http://dl.acm.org/citation.cfm?id=647985.743843
https://aws.amazon.com/ec2/
http://doi.acm.org/10.1145/1041680.1041681
http://www.bittorrent.com
https://www.vde.com/mobilkommunikation_01
http://www.drdobbs.com/cpp/microbenchmarking-c-c-and-java/184401976?pgno=1
http://doi.acm.org/10.1145/633025.633043
http://hdl.handle.net/10183/26352

62

DEY, A. K.; ABOWD, G. D.; SALBER, D. A conceptual framework and

a toolkit for supporting the rapid prototyping of context-aware applications.
Human-Computer Interaction, L. Erlbaum Associates Inc., Hillsdale, NJ, USA,
v. 16, n. 2, p. 97-166, dec. 2001. ISSN 0737-0024. Available from Internet:
<http://dx.doi.org/10.1207/S15327051HCI16234_02>.

DEY, A. K.; ABOWD, G. D.; WOOD, A. Cyberdesk: A framework for providing
self-integrating context-aware services. In: Proceedings of the 3rd International
Conference on Intelligent User Interfaces. San Francisco, California, USA:
ACM, 1998. (IUI ’98), p. 47-54. ISBN 0-89791-955-6. Available from Internet:
<http://doi.acm.org/10.1145/268389.268398>.

DONAHOO, M. J. Practical C++ Sockets. 2017. <http://cs.ecs.baylor.edu/~donahoo/
practical/CSockets/practical/>. Accessed in Nov 23, 2017.

GDB. GDB: The GNU Project Debugger. 2017. <https://www.gnu.org/software/gdb/>.
Accessed in Dec 3, 2017.

GKANTSIDIS, C.; MIHAIL, M.; SABERI, A. Random walks in peer-to-peer networks.
In: IEEE INFOCOM. Hong Kong, China: IEEE, 2004. v. 1, p. 130. ISSN 0743-166X.

GKANTSIDIS, C.; MIHAIL, M.; SABERI, A. Hybrid search schemes for unstructured
peer-to-peer networks. In: IEEE INFOCOM. Piscataway, NJ, USA: IEEE, 2005.

GNU. Gnutella. 2017. <https://www.gnu.org/philosophy/gnutella.html>. Accessed in
June 02, 2017.

KIANI, S. L. et al. A federated broker architecture for large scale context dissemination.
In: 10th IEEE International Conference on Computer and Information Technology.
[S.1.: s.n.], 2010. p. 2964-29609.

LUA, E. K. et al. A survey and comparison of peer-to-peer overlay network
schemes. Communnication Surveys and Tutorials, IEEE Press, Piscataway, NJ,
USA, v. 7, n. 2, p. 72-93, abr. 2005. ISSN 1553-877X. Available from Internet:
<http://dx.doi.org/10.1109/COMST.2005.1610546>.

LV, Q. et al. Search and replication in unstructured peer-to-peer networks. In:
Proceedings of the 16th International Conference on Supercomputing. New York,
NY, USA: ACM, 2002. (ICS ’02), p. 84-95. ISBN 1-58113-483-5. Available from
Internet: <http://doi.acm.org/10.1145/514191.514206>.

MATSUMOTO, M.; NISHIMURA, T. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul., ACM, New York, NY, USA, v. 8, n. 1, p. 3-30, jan. 1998. ISSN
1049-3301. Available from Internet: <http://doi.acm.org/10.1145/272991.272995>.

PASCOE, J. Adding generic contextual capabilities to wearable computers. In:
Proceedings of the 2nd IEEE International Symposium on Wearable Computers.
Washington, DC, USA: IEEE Computer Society, 1998. p. 92-99.

PATEL, A.; CHAMPANERIA, T. A. Fuzzy logic based algorithm for context awareness
in iot for smart home environment. In: IEEE Region 10 Conference (TENCON).
Singapore, Singapore: IEEE, 2016. p. 1057-1060.

http://dx.doi.org/10.1207/S15327051HCI16234_02
http://doi.acm.org/10.1145/268389.268398
http://cs.ecs.baylor.edu/~donahoo/practical/CSockets/practical/
http://cs.ecs.baylor.edu/~donahoo/practical/CSockets/practical/
https://www.gnu.org/software/gdb/
https://www.gnu.org/philosophy/gnutella.html
http://dx.doi.org/10.1109/COMST.2005.1610546
http://doi.acm.org/10.1145/514191.514206
http://doi.acm.org/10.1145/272991.272995

63

PERERA, C. et al. Context aware computing for the internet of things: A survey. IEEE
Communications Surveys & Tutorials, v. 16, n. 1, p. 414-454, First 2014. ISSN
1553-877X.

PIETZUCH, P. R.; BACON, J. M. Hermes: a distributed event-based middleware
architecture. In: Proceedings of the 22nd International Conference on Distributed
Computing Systems. Vienna, Austria: IEEE, 2002. p. 611-618.

PLAXTON, C. G.; RAJARAMAN, R.; RICHA, A. W. Accessing nearby copies of
replicated objects in a distributed environment. In: Proceedings of the Ninth Annual
ACM Symposium on Parallel Algorithms and Architectures. Newport, Rhode Island,
USA: ACM, 1997. (SPAA ’97), p. 311-320. ISBN 0-89791-890-8. Available from
Internet: <http://doi.acm.org/10.1145/258492.258523>.

RADIO, I. HiFlecs. 2015. <http://www.industrialradio.de/Projects/Home/HiFlecs>.
Accessed in Jan 16, 2018.

ROMAN, M. et al. A middleware infrastructure for active spaces. IEEE Pervasive
Computing, IEEE Educational Activities Department, Piscataway, NJ, USA, v. 1, n. 4,
p. 74-83, Oct 2002. ISSN 1536-1268.

ROWSTRON, A.; DRUSCHEL, P. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: GUERRAOUI, R. (Ed.). Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms.
Heidelberg, Germany: Springer, 2001. p. 329-350. ISBN 978-3-540-45518-9. Available
from Internet: <http://dx.doi.org/10.1007/3-540-45518-3_18>.

SCHILIT, B.; ADAMS, N.; WANT, R. Context-aware computing applications.
In: Proceedings of the 1994 First Workshop on Mobile Computing Systems
and Applications. Washington, DC, USA: IEEE Computer Society, 1994.
(WMCSA °94), p. 85-90. ISBN 978-0-7695-3451-0. Available from Internet:
<http://dx.doi.org/10.1109/WMCSA.1994.16>.

SCHILIT, B. N.; THEIMER, M. M. Disseminating active map information to mobile
hosts. IEEE Network, IEEE Press, Piscataway, NJ, USA, v. 8, n. 5, p. 22-32, September
1994. ISSN 0890-8044.

STOICA, 1. et al. Chord: A scalable peer-to-peer lookup service for internet
applications. In: Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. New York, NY, USA:
ACM, 2001. (SIGCOMM °01), p. 149-160. ISBN 1-58113-411-8. Available from
Internet: <http://doi.acm.org/10.1145/383059.383071>.

STRANG, T.; LINNHOFF-POPIEN, C. A context modeling survey. In: First
International Workshop on Advanced Context Modelling, Reasoning And
Management at UbiComp. Nottingham, England: University of Southampton, 2004.
Available from Internet: <http://elib.dlr.de/7444/>.

SUBLIME. Sublime Text - A sophisticated text editor for code, markup and prose.
2017. <https://www.sublimetext.com/>. Accessed in Dec 3, 2017.

http://doi.acm.org/10.1145/258492.258523
http://www.industrialradio.de/Projects/Home/HiFlecs
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1109/WMCSA.1994.16
http://doi.acm.org/10.1145/383059.383071
http://elib.dlr.de/7444/
https://www.sublimetext.com/

64

WANG, J.; VANNINEN, M. Self-configuration protocols for P2P networks. Web
Intelligence and Agent Systems: An international journal, v. 4, p. 61-76, 2006.

WAP. WAP. User Agent Profile (UAProf). 2001. <http://www.openmobilealliance.org/
tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf>. Accessed in June 20, 2017.

WAXMAN, B. M. Routing of multipoint connections. IEEE Journal on Selected Areas
in Communications, v. 6, n. 9, p. 1617-1622, Dec 1988. ISSN 0733-8716.

WINOGRAD, T. Architectures for context. Human-Computer Interaction, L. Erlbaum
Associates Inc., Hillsdale, NJ, USA, v. 16, n. 2, p. 401419, dec. 2001. ISSN 0737-0024.
Available from Internet: <http://dx.doi.org/10.1207/S15327051HCI16234_18>.

ZHAO, B. Y. et al. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communication, IEEE Press, Piscataway, NJ,
USA, v. 22, n. 1, p. 41-53, sep. 2006. ISSN 0733-8716. Available from Internet:
<http://dx.doi.org/10.1109/JSAC.2003.818784>.

ZIMMERMANN, A.; LORENZ, A.; SPECHT, M. Applications of a context-
management system. In: DEY, A. et al. (Ed.). Proceedings of the Sth International and
Interdisciplinary Conference CONTEXT on Modeling and Using Context. Paris,
France: Springer, 2005. p. 556-569. ISBN 978-3-540-31890-3. Available from Internet:
<http://dx.doi.org/10.1007/11508373_42>.

http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://dx.doi.org/10.1207/S15327051HCI16234_18
http://dx.doi.org/10.1109/JSAC.2003.818784
http://dx.doi.org/10.1007/11508373_42

65

APPENDIX A — BROKER MESSAGE PROTOCOL SPECIFICATION

Every message has a header in the following format:
MessageType | Timestamp

MessageType is an integer and Timestamp is the time in which the message was
sent (in milliseconds). For the Context Update/Advertisement and Response messages,

the header also includes the size of the payload (in bytes):
MessageType | Timestamp | PayloadSize

The messages supported by the platform, along with their description, are listed
below:

Message types:

e StartNeighborsMonitoring - Code 0

e Ping - Code 1

e Context Update/Advertisement - Code 2
e Context Request - Code 3

e Context Response - Code 4

e ACK - Code 5

e NACK - Code 6

e BrokerLeaving - Code 7

e BrokerJoining - Code 8

¢ Ping Response - Code 9

Messages fields:

e Flag: flag to indicate if it is an Update or Advertisement message;
e PayloadSize: size of the actual message payload;

e ProviderID: ID of the provider sending the message;

e EntityType: type of the entity which the data refers to;

e EntityID: ID of the entity which the data refers to;

e Scope: scope which the data refers to;

e ValidBegin: time from which context data will be considered valid;

e ValidEnd: time from which context data will be considered invalid;

66

e Payload: data to be stored. The format used for the payload is (key, value) ->
K=V;K=V;...;
e StatusCode: code used in the ACK and NACK messages to inform a requester

application about the status of its request. The platform provides five codes:

e REQ_RECEIVED (101): used in ACK messages. Indicates that the request

has been received, but not yet processed;

e REQ_PROCESSED (102): used in ACK messages. Indicates that the request

has been processed with no errors;

e [_ERROR (201): used in NACK messages. Indicates that an error internal to
the platform has occurred, such as a failure in the creation of a thread or the

throw of an exception;

e DATA_NOT_FOUND (202): used in NACK messages. Indicates that no valid

data has been found for a Context Request;

e BAD_REQUEST (301): used in NACK messages. Indicates that the requester
application has sent a message in a format that is not recognized by the plat-

form.

A.0.1 StartNeighborsMonitoring Message

The StartNeighborsMonitoring message is sent from a Controller Application (CA)
to a Broker. It indicates to the Broker that its neighbors are already set up and listening
and that the monitoring (to check if they are alive) can start. After sending the message,
the Controller Application receives an ACK, indicating that the monitoring has started,
or a NACK, indicating that there was an error and the operation was not started. The

message format is “O | Timestamp”.

A.0.2 Ping Message

The Ping message is sent from a Context Provider or Consumer to a Broker, or
from a Broker to another Broker. It is used to check if the destination node is alive and
able to receive requests. A Broker uses its neighborsAlive module to send ping messages

periodically to all neighbors, keeping its neighbors list always updated. The message

67

format is “1 | Timestamp”.

A.0.3 Context Update/Advertisement Message

The Context Update/Advertisement message is sent from a Context Provider to a
Broker. In order to store new context data in a Broker, a CP must send an Advertisement
message and later, if desired, an Update message to change the stored information. The
message format is “2 | Timestamp | PayloadSize | Flag | ProviderID | Entity Type | EntityID
| Scope | ValidBegin | ValidEnd | Payload”.

A.0.4 Context Request Message

The Context Request message is sent from a Context Consumer to a Broker, or
from a Broker to another one. The first case corresponds to when the CC requests data
from a Broker, while the latter corresponds to when the Broker does not have the desired
data and forwards the request to a neighbor, using the random walk mechanism (explained
previously in this chapter). In this last scenario, each Broker appends to the Request
message the address and port of the last Broker through which the query has passed, until
the data is found. The message format is “3 | Timestamp | EntityType | EntityID | Scope
| <BrokerAddress1> | <BrokerPort1> | <BrokerAddress2>...”, where the fields in angle

brackets may appear or not.

A.0.5 Context Response Message

The Context Response message is sent from a Broker to a Context Consumer, or to
another Broker. The first case corresponds to when the Broker which finds the requested
data is the one that received the request, so that it is able to send this data directly to the
CC. The second case is when a Broker finds the data, but needs to forward it to one or more
Brokers until the Broker which received the request from the CC is reached. Considering
this last scenario, when the desired data is found, the list of addresses and ports from the
Context Request is appended to the Context Response message, so that each Broker will
know the path back to the CC. The determination of the Brokers in which the data will

be replicated also happens in this moment. Asterisks are appended randomly between

68

the (BrokerAddress, BrokerPort) pairs during the transfer from the Context Request to the
Response. Hence, when a Broker receives a Response, it checks if there is an asterisk
at the end of the message. If so, it replicates the data in its data table (either adding or
updating it), removes the asterisk and then checks the last address and port, also removing
them from the message and forwarding it to the corresponding Broker.

The message format is “4 | Timestamp | PayloadSize | ProviderID | EntityType |
EntityID | Scope | ValidBegin | ValidEnd | Payload | <BrokerAddress1> | <BrokerPort1>

| <*> | <BrokerAddress2>...”, where the fields in angle brackets may appear or not.

A.0.6 Acknowledgement Message (ACK)

The ACK message is sent from a Broker to a Context Consumer, Context Provider
or Controller Application. It is used to inform a positive status of a request made by one
of these entities. The following operations supported by the broker generate two ACK
messages, one indicating that the request was received and another indicating that the

request was processed:

e Context Update/Advertisement

e Context Request

e BrokerJoining
Except for the Ping message (which has its own response), the remaining operations gen-
erate only one ACK, indicating that the request was received:

e BrokerLeaving

e StartNeighborsAlive

The ACK message format is “5 | Timestamp | ‘ACK” | ‘Status:’<StatusCode> | ‘Operation’

<OperationName> | ‘Requested by’ <RequesterAddres>".

A.0.7 Not-Acknowledgement Message (NACK)

The NACK message can be sent from a Broker to a Context Consumer, Context
Provider, Controller Application or even to another Broker. It is used to inform a negative
status of a request made by one of these entities. The case in which a Broker sends

a NACK to another Broker corresponds to when the requested data is not found in the

69

network, arising the necessity to forward this NACK through the nodes until it reaches the
corresponding CC. Every operation supported by the Broker generates at most one NACK
message. The format is “6 | Timestamp | ‘NACK’ | ‘Status:’<StatusCode> | ‘Operation’

<OperationName> | ‘Requested by’ <RequesterAddress>".

A.0.8 BrokerLeaving Message

The BrokerLeaving message is sent from a Controller Application to a Broker, or
from a Broker to a neighbor node. It is used to command the Broker to exit the network,
making it send a leaving advertisement to its neighbors. When a Broker receives a Bro-
kerLeaving message from a Controller Application, it appends an asterisk to the message
(indicating to the other Brokers that they should not further forward it) and sends it to the
neighbor nodes. The message format is “7 | Timestamp | <*>”, where the field in angle

brackets may appear or not.

A.0.9 BrokerJoining Message

The BrokerJoining message is sent from a Controller Application to a Broker, or
from a Broker to a neighbor node. It is used to command the Broker to connect to a set of
neighbors, which are parameters of the Controller Application. When a Broker receives
a BrokerJoining message from this application, it appends an asterisk to the message
(indicating to the other Brokers that they should not execute the same actions) and sends
it to the neighbors indicated in the message. The Broker, then, waits for an ACK from each
of the nodes with which the communication was attempted. If the response was received
within the established timeout interval, the addresses of those that answered are added
to its neighbors list, while they add the address of the new Broker. The message format
is “8 | Timestamp | NeighborAddress1 | <NeighborAddress2> | <NeighborAddress3>...”,

where the fields in angle brackets may appear or not.

A.0.10 Ping Response Message

The Ping Response message is sent from a Broker to a Context Provider or Con-

sumer. It indicates that the Broker is alive and able to receive requests. The message

70

format is “9 | Timestamp | Ctx_Broker | BrokerAddress”.

71

APPENDIX B — RESULTS TABLE

This chapter presents the complete table with the results regarding average re-

sponse time and average memory usage for all performed tests.

Table B.1: Results Table.

Test Config. | Network Topology | Num. of CPs | Num. of CCs | Upd. Interval (s) | Req. Interval (s) | Avg. Resp. Time (us) | Avg. Mem. Usage (kB)
1 Ring 50 50 1 1 465.09 2129.35
2 Ring 50 50 1 30 917.66 2386.54
3 Ring 50 50 1 60 982.59 2567.52
4 Ring 50 50 30 1 453.29 1984.64
5 Ring 50 50 30 30 922.05 1903.77
6 Ring 50 50 30 60 950.05 1885.23
7 Ring 50 50 60 1 501.03 2263.46
8 Ring 50 50 60 30 953.79 2006.28
9 Ring 50 50 60 60 997.23 2235.41
10 Ring 50 500 1 1 264.73 2634.34
11 Ring 50 500 1 30 892.08 2003.37
12 Ring 50 500 1 60 953.72 2499.84
13 Ring 50 500 30 1 237.16 2511.45
14 Ring 50 500 30 30 820.26 2122.70
15 Ring 50 500 30 60 987.75 2015.65
16 Ring 50 500 60 1 281.66 2441.47
17 Ring 50 500 60 30 908.69 2281.99
18 Ring 50 500 60 60 996.47 2061.32
19 Ring 50 1000 1 1 269.42 3057.06
20 Ring 50 1000 1 30 885.09 2246.53
21 Ring 50 1000 1 60 976.07 2050.46
22 Ring 50 1000 30 1 233.83 2657.40
23 Ring 50 1000 30 30 855.12 2036.59
24 Ring 50 1000 30 60 903.05 2047.07
25 Ring 50 1000 60 1 229.28 2664.20
26 Ring 50 1000 60 30 903.61 2202.01
27 Ring 50 1000 60 60 91491 1906.94
28 Ring 500 50 1 1 359.99 2796.91
29 Ring 500 50 1 30 1004.99 2645.34
30 Ring 500 50 1 60 1177.72 2258.36
31 Ring 500 50 30 1 424.73 2360.34
32 Ring 500 50 30 30 1148.45 2073.60
33 Ring 500 50 30 60 1093.46 2230.21
34 Ring 500 50 60 1 481.24 2430.94
35 Ring 500 50 60 30 1147.32 2044.85
36 Ring 500 50 60 60 1198.47 1999.78
37 Ring 500 500 1 1 241.46 2609.66
38 Ring 500 500 1 30 1015.91 2519.95
39 Ring 500 500 1 60 1002.61 2270.96
40 Ring 500 500 30 1 269.80 2525.25
41 Ring 500 500 30 30 1090.30 2052.55
42 Ring 500 500 30 60 1126.23 2028.21
43 Ring 500 500 60 1 237.98 2799.76
44 Ring 500 500 60 30 1053.33 2278.52
45 Ring 500 500 60 60 1047.64 2054.70
46 Ring 500 1000 1 1 199.74 3155.66
47 Ring 500 1000 1 30 929.18 2590.58
48 Ring 500 1000 1 60 1033.76 2760.31
49 Ring 500 1000 30 1 208.02 2972.77
50 Ring 500 1000 30 30 925.79 2197.78
51 Ring 500 1000 30 60 1095.70 2075.90
52 Ring 500 1000 60 1 213.42 3429.51
53 Ring 500 1000 60 30 909.1 2461.46
54 Ring 500 1000 60 60 1084.42 2056.00
55 Ring 1000 50 1 1 394.14 2725.13
56 Ring 1000 50 1 30 1049.53 2942.78
57 Ring 1000 50 1 60 1038.36 2980.25
58 Ring 1000 50 30 1 427.13 2574.78
59 Ring 1000 50 30 30 1169.16 2319.61
60 Ring 1000 50 30 60 925.59 2265.57
61 Ring 1000 50 60 1 411.82 2305.50
62 Ring 1000 50 60 30 1067.51 2101.66

72

Test Config. | Network Topology | Num. of CPs | Num. of CCs | Upd. Interval (s) | Req. Interval (s) | Avg. Resp. Time (us) | Avg. Mem. Usage (kB)
63 Ring 1000 50 60 60 1149.36 2165.39
64 Ring 1000 500 1 1 228.31 2915.51
65 Ring 1000 500 1 30 897.35 2848.27
66 Ring 1000 500 1 60 995.05 2520.51
67 Ring 1000 500 30 1 253.29 2914.22
68 Ring 1000 500 30 30 1128.41 212597
69 Ring 1000 500 30 60 1152.61 2096.64
70 Ring 1000 500 60 1 256.86 2749.07
71 Ring 1000 500 60 30 1127.74 2471.10
72 Ring 1000 500 60 60 896.23 2297.03
73 Ring 1000 1000 1 1 215.27 3070.49
74 Ring 1000 1000 1 30 944.7 3555.47
75 Ring 1000 1000 1 60 901.75 2617.22
76 Ring 1000 1000 30 1 231.26 2706.91
77 Ring 1000 1000 30 30 919.6 2356.81
78 Ring 1000 1000 30 60 899.24 2112.82
79 Ring 1000 1000 60 1 221.39 2549.70
80 Ring 1000 1000 60 30 909.47 2565.06
81 Ring 1000 1000 60 60 888.19 2116.00
82 High Connectivity | 50 50 1 1 428.62 2913.33
83 High Connectivity | 50 50 1 30 889.94 2320.19
84 High Connectivity | 50 50 1 60 938.22 2611.96
85 High Connectivity | 50 50 30 1 424.55 2702.08
86 High Connectivity | 50 50 30 30 931.12 2073.28
87 High Connectivity | 50 50 30 60 934.05 2067.35
88 High Connectivity | 50 50 60 1 392.63 2264.75
89 High Connectivity | 50 50 60 30 957.11 1939.14
90 High Connectivity | 50 50 60 60 925.64 2023.97
91 High Connectivity | 50 500 1 1 266.24 2611.17
92 High Connectivity | 50 500 1 30 890.28 2139.71
93 High Connectivity | 50 500 1 60 920.21 2251.20
94 High Connectivity | 50 500 30 1 255.79 2233.99
95 High Connectivity | 50 500 30 30 866.31 2062.87
96 High Connectivity | 50 500 30 60 909.46 2218.66
97 High Connectivity | 50 500 60 1 266.92 2926.04
98 High Connectivity | 50 500 60 30 887.47 2362.42
99 High Connectivity | 50 500 60 60 898.87 2241.88
100 High Connectivity | 50 1000 1 1 220.68 2903.41
101 High Connectivity | 50 1000 1 30 926.39 2062.87
102 High Connectivity | 50 1000 1 60 893.70 2140.05
103 High Connectivity | 50 1000 30 1 314.31 3283.10
104 High Connectivity | 50 1000 30 30 855.39 2104.02
105 High Connectivity | 50 1000 30 60 879.65 2043.61
106 High Connectivity | 50 1000 60 1 290.08 2888.44
107 High Connectivity | 50 1000 60 30 889.89 2210,45
108 High Connectivity | 50 1000 60 60 922.70 2089.23
109 High Connectivity | 500 50 1 1 631.42 2910.70
110 High Connectivity | 500 50 1 30 1027.39 2621.23
111 High Connectivity | 500 50 1 60 1019.70 2469.04
112 High Connectivity | 500 50 30 1 812.33 2086.48
113 High Connectivity | 500 50 30 30 1135.74 2232.87
114 High Connectivity | 500 50 30 60 1207.14 2015.54
115 High Connectivity | 500 50 60 1 863.59 2536.12
116 High Connectivity | 500 50 60 30 1194.86 1974.99
117 High Connectivity | 500 50 60 60 1166.81 1991.07
118 High Connectivity | 500 500 1 1 275.87 2723.82
119 High Connectivity | 500 500 1 30 906.50 2165.71
120 High Connectivity | 500 500 1 60 920.15 2484.72
121 High Connectivity | 500 500 30 1 279.31 2699.26
122 High Connectivity | 500 500 30 30 972.71 2056.42
123 High Connectivity | 500 500 30 60 987.57 2298.26
124 High Connectivity | 500 500 60 1 302.81 251222
125 High Connectivity | 500 500 60 30 987.71 1986.52
126 High Connectivity | 500 500 60 60 1004.84 2290.40
127 High Connectivity | 500 1000 1 1 281.13 3268.75
128 High Connectivity | 500 1000 1 30 1126.34 2869.44
129 High Connectivity | 500 1000 1 60 92522 2946.19
130 High Connectivity | 500 1000 30 1 346.66 334291
131 High Connectivity | 500 1000 30 30 915.28 2505.64
132 High Connectivity | 500 1000 30 60 981.59 2288.80
133 High Connectivity | 500 1000 60 1 305.45 3075.39
134 High Connectivity | 500 1000 60 30 904.22 2042.92
135 High Connectivity | 500 1000 60 60 976.91 1995.84
136 High Connectivity | 1000 50 1 1 661.84 2759.52
137 High Connectivity | 1000 50 1 30 967.24 2852.67
138 High Connectivity | 1000 50 1 60 979.42 2525.30
139 High Connectivity | 1000 50 30 1 720.19 2621.79
140 High Connectivity | 1000 50 30 30 1152.13 2099.18

73

Test Config. | Network Topology Num. of CPs | Num. of CCs | Upd. Interval (s) | Req. Interval (s) | Avg. Resp. Time (us) | Avg. Mem. Usage (kB)
141 High Connectivity 1000 50 30 60 1082.89 2203.97
142 High Connectivity 1000 50 60 1 720.90 2104.20
143 High Connectivity 1000 50 60 30 1241.90 2159.41
144 High Connectivity 1000 50 60 60 1289.41 2329.03
145 High Connectivity 1000 500 1 1 852.55 3561.00
146 High Connectivity 1000 500 1 30 931.83 2997.86
147 High Connectivity 1000 500 1 60 1009.59 3377.55
148 High Connectivity 1000 500 30 1 281.66 3026.01
149 High Connectivity 1000 500 30 30 1271.23 2591.24
150 High Connectivity 1000 500 30 60 1270.38 2560.50
151 High Connectivity 1000 500 60 1 297.46 2808.73
152 High Connectivity 1000 500 60 30 1164.46 2531.53
153 High Connectivity 1000 500 60 60 1280.61 2521.03
154 High Connectivity 1000 1000 1 1 268.01 3734.13
155 High Connectivity 1000 1000 1 30 928.77 3208.97
156 High Connectivity 1000 1000 1 60 1055.51 2827.62
157 High Connectivity 1000 1000 30 1 293.39 2969.01
158 High Connectivity 1000 1000 30 30 916.24 2371.43
159 High Connectivity 1000 1000 30 60 1206.15 2350.38
160 High Connectivity 1000 1000 60 1 294.79 3093.19
161 High Connectivity 1000 1000 60 30 917.49 2151.18
162 High Connectivity 1000 1000 60 60 1271.65 2563.68
163 Moderate Connectivity | 50 50 1 1 776.70 2474.47
164 Moderate Connectivity | 50 50 1 30 933.99 2214.86
165 Moderate Connectivity | 50 50 1 60 924.40 2411.47
166 Moderate Connectivity | 50 50 30 1 784.32 2291.95
167 Moderate Connectivity | 50 50 30 30 945.93 2025.37
168 Moderate Connectivity | 50 50 30 60 895.12 1983.77
169 Moderate Connectivity | 50 50 60 1 753.73 2169.06
170 Moderate Connectivity | 50 50 60 30 949.58 2036.57
171 Moderate Connectivity | 50 50 60 60 844.97 2264.92
172 Moderate Connectivity | 50 500 1 1 274.32 3496.09
173 Moderate Connectivity | 50 500 1 30 892.86 2147.36
174 Moderate Connectivity | 50 500 1 60 877.50 2249.22
175 Moderate Connectivity | 50 500 30 1 451.08 2385.24
176 Moderate Connectivity | 50 500 30 30 885.27 1984.32
177 Moderate Connectivity | 50 500 30 60 854.56 2283.39
178 Moderate Connectivity | 50 500 60 1 302.61 2735.29
179 Moderate Connectivity | 50 500 60 30 914.09 2331.22
180 Moderate Connectivity | 50 500 60 60 852.53 2257.93
181 Moderate Connectivity | 50 1000 1 1 305.93 2967.91
182 Moderate Connectivity | 50 1000 1 30 860,1 2152.77
183 Moderate Connectivity | 50 1000 1 60 849.66 2625.55
184 Moderate Connectivity | 50 1000 30 1 300.39 3321.64
185 Moderate Connectivity | 50 1000 30 30 848.99 2032.19
186 Moderate Connectivity | 50 1000 30 60 858.10 2530.70
187 Moderate Connectivity | 50 1000 60 1 27745 2940.82
188 Moderate Connectivity | 50 1000 60 30 907.81 2105.74
189 Moderate Connectivity | 50 1000 60 60 851.15 234791
190 Moderate Connectivity | 500 50 1 1 737.95 3028.89
191 Moderate Connectivity | 500 50 1 30 927.82 3068.86
192 Moderate Connectivity | 500 50 1 60 894.82 3040.51
193 Moderate Connectivity | 500 50 30 1 746.80 2918.59
194 Moderate Connectivity | 500 50 30 30 918.79 2956.59
195 Moderate Connectivity | 500 50 30 60 884.98 2419.56
196 Moderate Connectivity | 500 50 60 1 760.36 2670.63
197 Moderate Connectivity | 500 50 60 30 949.04 2406.40
198 Moderate Connectivity | 500 50 60 60 890.93 2397.63
199 Moderate Connectivity | 500 500 1 1 247.05 3073.50
200 Moderate Connectivity | 500 500 1 30 856.09 2935.93
201 Moderate Connectivity | 500 500 1 60 852.86 3319.14
202 Moderate Connectivity | 500 500 30 1 284.82 272433
203 Moderate Connectivity | 500 500 30 30 859.22 251391
204 Moderate Connectivity | 500 500 30 60 827.94 2602.87
205 Moderate Connectivity | 500 500 60 1 292.04 3173.76
206 Moderate Connectivity | 500 500 60 30 897.21 2520.39
207 Moderate Connectivity | 500 500 60 60 910.02 2304.25
208 Moderate Connectivity | 500 1000 1 1 295.64 3626.72
209 Moderate Connectivity | 500 1000 1 30 975.7 2761.29
210 Moderate Connectivity | 500 1000 1 60 893.89 3041.64
211 Moderate Connectivity | 500 1000 30 1 329.49 3219.83
212 Moderate Connectivity | 500 1000 30 30 984.04 2386.06
213 Moderate Connectivity | 500 1000 30 60 901.56 2452.82
214 Moderate Connectivity | 500 1000 60 1 387.53 3028.09
215 Moderate Connectivity | 500 1000 60 30 902.84 2088.01
216 Moderate Connectivity | 500 1000 60 60 898.28 2419.48
217 Moderate Connectivity | 1000 50 1 1 783.88 3105.93
218 Moderate Connectivity | 1000 50 1 30 953.26 3251.37
219 Moderate Connectivity | 1000 50 1 60 951.25 3122.86
220 Moderate Connectivity | 1000 50 30 1 760.30 2607.27
221 Moderate Connectivity | 1000 50 30 30 938.16 2522.17
222 Moderate Connectivity | 1000 50 30 60 942.37 2826.38

74

Test Config. | Network Topology Num. of CPs | Num. of CCs | Upd. Interval (s) | Req. Interval (s) | Avg. Resp. Time (us) | Avg. Mem. Usage (kB)
223 Moderate Connectivity | 1000 50 60 1 769.20 2751.31

224 Moderate Connectivity | 1000 50 60 30 959.44 2539.52

225 Moderate Connectivity | 1000 50 60 60 925.31 2654.96

226 Moderate Connectivity | 1000 500 1 1 277.40 3813.56

227 Moderate Connectivity | 1000 500 1 30 908.90 2869.80

228 Moderate Connectivity | 1000 500 1 60 839.68 3443.54

229 Moderate Connectivity | 1000 500 30 1 299.94 2746.38

230 Moderate Connectivity | 1000 500 30 30 836.02 2334.70

231 Moderate Connectivity | 1000 500 30 60 842.03 2288.66

232 Moderate Connectivity | 1000 500 60 1 285.39 2785.67

233 Moderate Connectivity | 1000 500 60 30 856.20 2430.09

234 Moderate Connectivity | 1000 500 60 60 848.33 2587.51

235 Moderate Connectivity | 1000 1000 1 1 313.73 3552.94

236 Moderate Connectivity | 1000 1000 1 30 911.02 3302.01

237 Moderate Connectivity | 1000 1000 1 60 859.98 3093.53

238 Moderate Connectivity | 1000 1000 30 1 293.11 3355.19

239 Moderate Connectivity | 1000 1000 30 30 931.49 2417.76

240 Moderate Connectivity | 1000 1000 30 60 854.06 2591.60

241 Moderate Connectivity | 1000 1000 60 1 294.82 3360.80

242 Moderate Connectivity | 1000 1000 60 30 910.95 21775

243 Moderate Connectivity | 1000 1000 60 60 851.06 2791.13

244 Ring 1 50 30 10 840 Not analyzed
245 Ring 1 150 30 10 880 Not analyzed
246 Ring 1 300 30 10 830 Not analyzed
247 Centralized Broker 50 50 30 30 1421.74 2046.89

248 Centralized Broker 50 500 30 30 1646.08 2267.06

249 Centralized Broker 50 1000 30 30 1650.22 2302,39

250 Centralized Broker 500 1000 30 30 4491.3 2800.9

250 Centralized Broker 1000 1000 30 30 7029.55 5715.83

Source: The authors

APPENDIX C — GRADUATION WORK 1

75

76

Decentralized Broker for Context Management and
Distribution using Unstructured P2P Networks in a
Service-Oriented Architecture

Igor L. Pereira', Alberto Egon S. Filho!, Marcos R. Crippa®

"nformatics Institute — Federal University of Rio Grande do Sul (UFRGS)
Mailbox 15.064 — 91.501-970 — Porto Alegre — RS — Brazil

?Department of Electrical and Computer Engineering
Technische Universitit Kaiserslautern (TUKL) — Kaiserslautern, Germany

{ilpereira,alberto}@inf.ufrgs.br, crippa@eit.uni-kl.de

Abstract. Context information is present in many application types nowadays.
This information is the basis for the interaction between users and computing
systems and may consist in a great data volume. Thus, this demands the pro-
posal of efficient mechanisms for distribution and management of the informa-
tion. This work proposes a decentralized platform for context management and
distribution called Context Broker using unstructured peer-to-peer networks.
The theoretical foundation that substantiates the development of the platform
and a description and justification of the design decisions and used technolo-
gies will be presented, along with a task schedule regarding the implementation
and evaluation processes.

1. Introduction

Technology progress along with the Internet has been changing the way people interact
with each other and with computing systems. Low hardware cost, high computational
power and increased sensing capability are some of the factors that explain the popularity
that computing systems have reached [Brown et al. 1997]. The presence of sensors in
devices is an interesting feature, because it provides context-awareness capability and
allows the implementation of applications for a great variety of purposes, improving the
interaction with these devices [Schilit et al. 1994].

Let us consider a smartphone. With a GPS, which provides user location, one
is able to develop an application that shows weather forecast or displays nearby places
which the user might want to visit. The camera allows the user to take pictures, store
and share them in social networks, for which an account with an e-mail address and a
password is typically required. The user may also listen to music on the smartphone,
thus making it possible for an application to send notifications about upcoming concerts
based on the most played artists. All this information (location, photos, e-mail address
and musical taste) compose a context related to the user.

In order to develop context-aware applications, it is necessary to handle context
information appropriately, in a way that it is reachable, up-to-date and can be obtained in
a reasonable amount of time. The approach should also provide scalability, flexibility and
fault tolerance. This paper (Graduation Work I) proposes the development of a decen-
tralized platform called Context Broker to address this challenge, following the structure

77

and results of [Crippa 2010] and [Crippa 2013]. The objectives of this work are to review
previous research on context awareness and peer-to-peer networks and indicate the main
design decisions for the platform based on its requirements. Implementation and testing
will be presented in Graduation Work II.

This work is structured as follows: section 2 presents the research on context-
aware systems, the fundamental concepts and state of the art in the area. Section 3 ad-
dresses peer-to-peer networks, presenting basic definitions and two key aspects related to
them. Section 4 describes the proposed platform’s components along with a requirements
analysis and the main design decisions. Section 5 shows the task schedule for the next
phase of the work (Graduation Work II). Section 6 concludes the paper and indicates the
next steps.

2. Context-Aware Systems

This work describes a platform for context management and distribution. Therefore, it
is important to define and clarify some fundamental concepts such as context, context
awareness and context management (along with a detailing of important related aspects),
in order to provide a correct understanding of the work as a whole. This section aims to
present these concepts and review related research on the area.

2.1. Context in Context-Aware Systems

Many definitions for context have already been proposed in the literature. The first work
to address context and context awareness was [Schilit and Theimer 1994], stating that
context corresponds to the user location, nearby people and objects, as well as changes
to these over time. A similar definition was provided by [Brown et al. 1997]: context
corresponds to location, identities of the people around the user, the time of day, season,
temperature, etc. Two other more general approaches were given by [Dey et al. 1998]
and [Pascoe 1998]. The former defines context as the user’s physical, social, emotional
or informational state, while the latter considers that context is the subset of physical and
conceptual states of interest to a particular entity.

All the presented definitions give us a too specific idea about context. Depending
on the scenario, concepts such as location, time of day or emotional state may not be
sufficient to properly define context, because other types of information might be used.
Therefore, a more general approach is needed in order to substantiate the relevance of this
work. The definition which will be used was given by [Abowd et al. 1999]: “Context is
any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and
an application, including the user and application themselves”.

2.2. Context-Awareness in Context-Aware Systems

A definition for context awareness is also provided by [Abowd et al. 1999] and will be
adopted in this work: “A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task™. This
definition is appropriate because it gives a broad and flexible idea, just like the definition
for context. Furthermore, the authors of [Abowd et al. 1999] presented a categorization
of features for context-aware applications, combining the ideas of the taxonomies from
[Pascoe 1998] and [Schilit et al. 1994]. There are three categories:

78

1. Presentation of information and services to a user: corresponds to the capability
of obtaining information and executing commands for the user manually, based
on available context;

2. Automatic execution of a service: relates to the ability of providing or changing
the behavior of a service automatically, based on available context;

3. Tagging of context to information for later retrieval: corresponds to the ability of
relating context and data, in the sense that certain data is available for a user when
he is in the associated context.

The definition of context awareness provides a way to determine whether an appli-
cation is context-aware or not and this is useful when specifying the types of applications
that need to be supported. The categorization of context-aware features brings us two
main benefits. The first is the specification of types of applications that need support from
the system. The second is that it shows the types of features that should be thought when
building the context-aware applications [Abowd et al. 1999].

2.3. Context Management in Context-Aware Systems

Although the definition of context-aware systems has already been given, it is important
to indicate the purpose of this type of system in a more practical way. Context man-
agement is related to the tasks for which a context-aware system is responsible in order
to handle context information [Crippa 2010]. A more formal definition was provided by
[Zimmermann et al. 2005] based on the authors’ work experience in many application
domains: context management corresponds to the creation and administration of context-
aware applications, considering related parameters and information sources with the goal
of implementing certain behavior. Therefore, context management is the foundation for
the development of context-aware applications.

One question that remains is what should a context-aware system be able to do or,
in other words, what functionalities should be available. According to [Kiani et al. 2010],
a context-aware communication system encompasses several context management func-
tionalities, being two the most important ones: acquisition and provision of contextual
information related to an entity. This description already gives us a brief idea about what
an architecture of a context-aware system should be like. The authors go further by say-
ing that it is possible to divide the system components involved in context management
into either context consumers or context providers or a combination of these. Other func-
tionalities of context-aware systems are merging correlated context data and locating and
accessing context sources [Crippa 2010]. The platform considered in this work is based
on the provider/consumer architecture outlined above.

In order to manage context, three models were proposed by [Winograd 2001].
These models are related to the system architecture and aim to coordinate multiple pro-
cesses and components, a concept that is necessary to implement context-aware systems:

e Widgets: Context widgets work as an interface between the application and its
operating environment. They hide the complexity of context acquisition and ab-
stract context information to suit application needs [Dey et al. 2001]. They pro-
vide good efficiency but have the problem of not being robust to component fail-
ures;

79

e Networked Services: This model corresponds to a client-server architecture, in
which clients look for services and need to establish a connection with them in
order to use it (e.g., accessing a database). It is more flexible and robust than the
previous due to the independence of the components, but it is also less efficient
because a service discovery function is required;

e Blackboards: In this approach, applications post data to a shared message board
and receive data through subscriptions, according to a specified pattern. In spite of
providing loose coupling and robustness, communication efficiency is decreased
because every message goes through a centralized server before reaching its final
destination.

2.3.1. Context Acquisition

The chosen method for context acquisition has an impact on the design of context-aware
systems, therefore it is relevant to indicate some of the possible options. Three approaches
were presented by [Chen 2010]:

e Direct access to hardware sensors: Context data is obtained by directly access-
ing the physical sensors, providing a good knowledge about the data for the col-
lecting applications. The problem comes when the number of context sources
rises, requiring these applications to have the ability to communicate with many
different sensors [Chen 2010];

e Facilitated by a middleware infrastructure: A middleware infrastructure is re-
sponsible for managing the low-level sensor data, thus allowing the applications
to concern on how context will be used. This approach provides great extensibility
and reusability of sensors [Crippa 2010];

e Acquire context from a context server: Context data is gathered in a server
which runs on a resourceful device and the context-aware applications make
requests to this server. As in the middleware approach, great reusability is
provided [Crippa 2010].

2.3.2. Context Modeling

Context information is acquired by the use of sensors, which provide raw data. In order for
a context-aware application to benefit from it, this information must be properly structured
according to the application goals. This process is called context modeling (or context
representation) and needs to support easy manipulation and extensibility, efficient search
and scalability [Crippa 2010].

When modeling context, there are requirements that need to be fulfilled so that the
obtained representation can be meaningful for the context-aware system. A set of these
requirements was presented in [Perera et al. 2014] as heterogeneity and mobility, rela-
tionships and dependencies, timeliness, imperfection, reasoning, usability of modeling
formalisms and efficient context provisioning. The six most popular context modeling
techniques were indicated in [Strang and Linnhoff-Popien 2004]. Due to space limita-
tions, three of them are described below:

80

e Key-Value Models: They are the simplest form of context representation. Con-
text information is associated with a unique key and a matching algorithm is used
for lookup. In spite of providing easy management, this approach is not scal-
able and lacks of structure for modeling complex information, thus jeopardizing
efficiency of context retrieval;

e Graphical Models: Provide more expressiveness in the final result because con-
text is modeled with relationships. One example of this technique is the Unified
Modeling Language (UML), which has a generic structure and enables good read-
ability;

e Ontology Based Models: It is considered the most appropriate way of modeling
and managing context. An ontology is an abstract model of a certain phenomenon
and offers great flexibility and expressiveness, but it can also decrease the perfor-
mance in context retrieval [Perera et al. 2014]. Resource Description Framework
(RFD) and Web Ontology Language (OWL) are examples of languages used to
describe ontologies.

2.3.3. Context Dissemination

Context Dissemination relates to how context is distributed in a context-aware system and
is one of the most important functionalities in context management. The mechanism used
to execute this distribution is influenced by the proposed system architecture and has an
impact on the overall performance of the system. According to [Perera et al. 2014], there
are two methods for this task: the first one is the query method, in which the context-
aware system receives a query from consumer applications and resolves this query to
produce a result; the second one is the subscription or publish/subscribe method, in which
consumers subscribe to a certain type of context information and then the system sends
updates regarding this information periodically or when an event occurs.

2.4. Related Work in Context-Aware Systems

The Context Broker platform proposed in this work is based on [Crippa 2010] and
[Crippa 2013]. In [Crippa 2010], a centralized Broker was implemented, in which both
methods were used to distribute context in a straightforward way. In [Crippa 2013], a
distributed version of the Broker using structured P2P networks was proposed and this
has imposed a bigger challenge regarding the context dissemination aspect. Many other
approaches for implementing context-aware systems have already been proposed, each
one with its advantages and disadvantages, so it becomes relevant to indicate some of the
most significant ones.

CoBrA [Chen et al. 2004] is an architecture for implementing smart spaces us-
ing context-aware systems. The architecture design is shown in Figure 1. The main
component is a broker agent which consists of the following components: context knowl-
edge base, context-reasoning engine, context-acquisition module and policy-management
module. Context is modeled using Semantic Web languages such as RDF and OWL,
providing a suitable representation for reasoning and knowledge sharing. The proposed
architecture is centralized, but a group of brokers can work together through a broker
federation [Perera et al. 2014].

81

Semantic Web &

Web Services Database
(RDF, DAML+OIL & OWL) (MySQL)

Information Servers
(Exchange Server, iCal,
YahooGroups, etc.)

Contexts in External Sources

Context-Aware Devices
=
Tn ~ 3
o, & o,
B =N
X SDAP + RDF/OWL
o E

Ethernet
@

Contexts in the Intelligent Spaces

Brédg

Smart Tag Sensors
(Radio Frequency Identification)

J8-hp

Enviranment Sensors
(Xanboo & X10 technology)

> B
Device & Gadget Sensors
(Java Ring, SmartCard etc.)

Figure 1. CoBrA architecture design [Chen et al. 2004]

Another platform, called Context Toolkit, was proposed in [Dey et al. 2001]. It
consists in a conceptual framework for the design of context-aware applications which is
composed by three main entities: context widgets (provide access to context information),
interpreters (produce high-level context information from low-level sensor data using rea-
soning techniques) and aggregators (responsible for gathering related context information
in a common repository). To obtain context from the system, applications invoke services
and use discoverers to find the components that are able to provide the desired data. The
communication between all these components is implemented using a protocol based on
HTTP and XML. Figure 2 shows one possible configuration for this system.

Application (Application)
Aggregator

i Widget
@ Architecture

Figure 2. Example configuration of the Context Toolkit framework
[Dey et al. 2001]

3. Peer-to-Peer Networks

As mentioned in Section 1, distributed systems have many advantages over cen-
tralized systems, including scalability, fault tolerance and performance. The
most used architecture for distributed systems nowadays is called peer-to-peer
(P2P) and provides a resilient solution for many applications. According to
[Androutsellis-Theotokis and Spinellis 2004], there are two main characteristics of this
type of system. The first one is the sharing of computer resources by direct exchange,
which reflects the nodes capacity to independently execute tasks such as message rout-
ing and content location. The second one regards the resilience aspect provided by the
fault-tolerance and self-organization mechanisms implemented in these systems.

82

The definition of peer-to-peer systems adopted in this work is the one proposed
by the authors of [Androutsellis-Theotokis and Spinellis 2004]: a peer-to-peer system is
a distributed set of interconnected nodes which have capabilities such as self-organization
and failure adaptation while still providing connectivity, with the goal of resource sharing.
Content distribution is one of the categories of applications for which peer-to-peer archi-
tectures are used the most, thus making a perfect match with the Context Broker platform
considered in this work. Peer-to-peer networks are usually called overlay networks be-
cause they are implemented on top of the underlying physical computer network (which
is typically IP) [Androutsellis-Theotokis and Spinellis 2004].

Peer-to-peer overlay network schemes can be categorized into two groups in terms
of their structure: unstructured peer-to-peer networks and structured peer-to-peer net-
works. In this section, three main aspects will be considered: the structure of these net-
works, search mechanisms and replication.

3.1. Structure of Peer-to-Peer Networks

In structured peer-to-peer networks, nodes connect to each other according to a spe-
cific set of rules. Efficient routing of queries is achieved by using Distributed Hash
Tables (DHTs), which are responsible for mapping the data objects to the peer nodes.
In spite of providing scalability and efficient location of rare items [Lua et al. 2005],
only exact-match queries are supported and a significant overhead is inserted due
to the necessity of maintaining the network’s structure when nodes leave or join
[Androutsellis-Theotokis and Spinellis 2004], thus making this approach inappropriate if
that happens very often. Examples of structured systems are Chord [Stoica et al. 2001]
and Tapestry [Zhao et al. 2006].

In an unstructured peer-to-peer network, the connections between nodes are
made in a random way, implying that no specific structure is formed. This type
of network is usually utilized when the nodes join and leave the network fre-
quently [Androutsellis-Theotokis and Spinellis 2004], since no information about the
network is maintained and no restructuring is done. The disadvantage concerns
the search for data. The location of content is completely independent of the
content itself, therefore “brute-force” methods such as flooding the network with
queries or more resource-preserving approaches such as random walks must be used
[Androutsellis-Theotokis and Spinellis 2004]. Examples of unstructured systems are
Gnutella [Gnutella 2017] and BitTorrent [BitTorrent 2017].

3.2. Search mechanisms

The mechanism used to find requested data and solve received queries has a huge impact
on the performance of a context distribution system. Many techniques have already been
proposed in the literature, but there is no perfect solution, since each one has its strengths
and weaknesses. Therefore, a brief description of the main proposed approaches is given
below, with the goal of selecting the one that best suits the needs of the Context Broker
which this work refers to.

Let us first consider the case of structured peer-to-peer networks. The systems
in this category are also called DHT-based because query routing is executed through
the use of Distributed Hash Tables, in which information about data is stored. Keys

83

are generated for the objects and IDs are assigned to the peer nodes. Keys and IDs are
both from a same identifier space, implying on a relationship between them. When an
application wants to retrieve a data object with a corresponding {key, value} pair, the
request is routed across the peers until the one that is responsible for storing that key
is reached. Each peer has its own routing table containing a set of neighbor peers’ IDs
and addresses, so that it is able to know the node with the closest ID which the requests
should be forwarded to, according to the key [Lua et al. 2005]. On average, the most
famous systems of this type behave similarly in terms of performance, which is O(log N)
[Androutsellis-Theotokis and Spinellis 2004].

Now let us focus on unstructured peer-to-peer networks. Since there is no rela-
tionship between the location of files and the network topology, a node that wants to find
a file must query its neighbors. The most used technique for searching in unstructured
peer-to-peer networks is flooding [Gkantsidis et al. 2005], which provides a good solu-
tion for a topology with few nodes. The problem of this technique is scalability. As the
number of node increases, the time-to-live (TTL) needed to reach data also increases, thus
generating large loads on the nodes and jeopardizing performance [Lv et al. 2002]. Se-
lecting the appropriate TTL is also a hard task. Besides, flooding implies on the creation
of duplicate messages due to the fact that a node may receive the same query from more
than one of its neighbors. Therefore, duplication detection mechanisms are required when
using flooding [Lv et al. 2002].

In an attempt to mitigate the problem of message duplication, a technique
called random walk has been already proposed and tested in previous works, e.g.,
[Gkantsidis et al. 2005], [Lv et al. 2002], [Gkantsidis et al. 2004]. The technique con-
sists in nodes forwarding the queries to a randomly chosen neighbor until the desired data
is found. A modification of the random walk technique, called random walk with looka-
head, was proposed by [Gkantsidis et al. 2005], in which a node executes short random
walks with shallow floodings with a small TTL (typically 2). The results presented by
the authors show that the number of unique nodes discovered when using random walk
with lookahead is similar to the one obtained when using the traditional random walk.
However, the response time is significantly smaller in the first method.

3.3. Replication

All the search mechanisms presented previously assume that some form of replication is
implemented in the network. Content replication is of ultimate importance in peer-to-
peer systems, because it increases content availability and provides better performance
[Androutsellis-Theotokis and Spinellis 2004]. Three categories of replication approaches
were proposed in [Androutsellis-Theotokis and Spinellis 2004] and relate to both struc-
tured and unstructured peer-to-peer networks:

e Passive Replication: corresponds to the case in which a node requests an object
and makes a copy of it when the request is attended;

e Cache-Based Replication: In this category, copies of the requested object are
made by every node through which the query message passes;

e Active Replication: also called proactive replication. Nodes replicate or migrate
content to others according to a certain policy, even if no request involving that
content has been made;

84

Due to space limitations, this subsection will focus on replication in unstruc-
tured peer-to-peer networks. [Lv etal. 2002] stated that, based on the research in
[Cohen and Shenker 2002], the optimal method for replication is to replicate objects in
a way such that p o /g, (p is proportional to ,/g,), being p the number of replicas of
an object and ¢, the query rate of this object. This scheme is called square-root repli-
cation and provides minimization of the overall search traffic [Lv et al. 2002]. In order
to achieve this scheme, the authors have proposed random replication, a proactive repli-
cation strategy. Considering a successful query, the number of nodes (p) between the
requester and the provider is counted and (p) nodes that were visited in the random walk
are selected to replicate the object [Lv et al. 2002]. Simulations show that random repli-
cation achieves results which are very close to the condition of square-root replication.
Besides, it has been found that random replication performs better than path replication
(another approach proposed by the authors) in terms of average number of messages per
node [Lv et al. 2002].

4. Distributed Broker Design and Architecture

This work is based on [Crippa 2010] and [Crippa 2013], therefore it inherits the basic
characteristics and uses the basic concepts presented in these previous works. This section
briefly describes these definitions, analyzes the requirements that the platform must attend
and also gives a first overview of the distributed Broker design, based on the theoretical
foundation presented in the last two sections.

4.1. Context Entity and Context Scope

A Context Entity (or simply entity) is a subject which context data corresponds to
[Crippa 2013]. Entities are composed by a type and an identifier. This identifier is the in-
formation used to distinguish a set of entities of the same type. One example of entity is a
student enrolled in a university. Every student has a unique registration number among all
the other students. In this case, registration number is the type and, for instance, 014632
is the identifier.

A Context Scope (or simply scope) is a group of related parameters which belong
to a certain context [Crippa 2013]. Let us consider the example of a user who wants to
log in to his e-mail account. The user needs both his username and password in order to
execute this operation. Therefore, these two parameters belong to the same scope and are
always manipulated together. Another observation is that scopes have a validity period
with start and end. After the validity expires, data related to that scope is considered
invalid [Crippa 2013]. Each entity may be related to one or more scopes.

4.2. Requirements Analysis

The requirements presented in this subsection are proposed based on (but not restricted
to) the usage scenario of a large and spread sensor network in which context information
(temperature, pressure, etc.) is gathered and a set of consumers are interested in receiving
this data. The payload in this case is simple and small, but the number of exchanged
messages may be high. The consumers contact a network of Brokers, which may be
spread around different rooms, in order to obtain data. The goal is to establish a good
compromise between performance, flexibility, ease of maintenance and resource usage.

85

e Discoverability: there must be a way through which providers and consumers are
able to find at least one Context Broker;

e Validity: the content provided by the Brokers should be always up-to-date
[Crippa 2010];

e Availability: the platform must implement some form of replication in order to
provide appropriate availability of content;

e Consistency: all the components of the architecture must represent context using
the same model [Crippa 2010];

e Communicability: Context Brokers should be able to communicate with each
other in order to attend requests from consumers and providers [Crippa 2013];

e Resilience: the set of Brokers should be resilient with respect to nodes leaving
and joining the network, in the sense of being aware of these situations and able
to deal with them.

4.3. Broker Components

The Context Broker platform consists of three components: Context Providers (CPs),
Context Consumers (CCs) and the Context Broker (CB) itself. This division implements
the idea behind a Service-Oriented Architecture [Crippa 2013].

A Context Provider (or simply provider) is the component responsible for gather-
ing data from sources (e.g., sensors) and sending it to the Broker, with a certain frequency,
through a context update message [Crippa 2010]. Every provider must advertise its pres-
ence to the Broker before sending any data. A Context Consumer (or simply consumer)
is the component which retrieves context data. In this version of the platform, the only
way for a consumer to obtain data is by making a context request to the Broker.

The Context Broker is the main component of the architecture. It is responsi-
ble for storing and retrieving context information based on the requests of providers and
consumers, acting as the communication manager in the system [Crippa 2013]. The Bro-
ker keeps a list of providers that are registered to it and is capable of sending data to a
database for further uses. Considering a distributed architecture (such as the one proposed
in this paper), a set of Brokers works cooperatively in order to store and retrieve informa-
tion. Figure 3 shows the architecture of a centralized Broker with simplifications when
compared to [Crippa 2010]. Acknowledgements (ACKs) and non-acknowledgements
(NACKSs) have been omitted.

The chosen model for context management is Networked Services, consider-
ing that a Service-Oriented Architecture is followed, in which clients (consumers and
providers) connect to Brokers in order to make requests. Context data is acquired from
a context server. Brokers act as servers which store data and consumers obtain context
data from them. The context modeling technique used in this work is the key-value ap-
proach, based on the desired performance and simplicity for this implementation of the
Context Broker. The platform design was thought in the scenario of applications that
deal with small and non-complex payloads, with information such as temperature and hu-
midity being gathered from sensors. Therefore, the other approaches would provide too
cumbersome solutions with an unnecessary overhead, compromising performance goals.
Context distribution is done through queries: consumers must query Brokers in order to
obtain data.

86

Figure 3. Centralized Broker Architecture

4.4. Overview of the Distributed Broker Design

This subsection indicates the decisions related to the main aspects of the distributed Bro-
ker design. These decisions were made based on the research presented in sections 2 and
3 and on the requirements analysis.

4.4.1. Node Joining/Leaving The Network and Search For Neighbors

A joining node receives a list of Broker addresses to connect. These Brokers are assumed
to be more stable and the list is updated when necessary (e.g., a Broker went offline).
After establishing this connection, the new node must connect to more brokers (e.g., 2).
If it is not possible, the node does not join the network and keeps searching for other
neighbors. The maximum number of connections should be relatively small (e.g., 20) in
an attempt to limit the overhead of messages due to nodes leaving the network.

In the case of a node leaving the network, two possibilities are considered:

e Abrupt exit: detected when there is no answer from a node when data is requested.
The node that detected the exit floods an advertisement message to the others with
a small TTL (e.g., 5 hops).

e Normal exit: a node sends a message stating that it will leave the network. This
message 1s spread using flooding with a small TTL;

The flooding technique was chosen for simplicity reasons and because it
shows good performance when the amount of nodes to be covered is small
[Gkantsidis et al. 2005]. In the situation of a node joining/leaving, only the nodes that
are topologically close to the one that left need to know about the exit, in a way that
future requests forwarded to nodes which are not online anymore can be appropriately
detected. For the considered application scenarios, it is expected that not many nodes will
keep joining and leaving the network, so the message overhead is not meaningful.

A node searches for neighbors based on a greedy protocol
[Wang and Vanninen 2006]. Joining nodes must ping other nodes to discover la-
tencies and a connection is established with nodes that have the lowest latencies.
This approach was chosen taking into consideration the good results it has shown in
terms of performance and generated network traffic, while avoiding a too cumbersome
implementation in order to obtain network information [Wang and Vanninen 2006].

87

4.4.2. Search For Data and Data Replication

The search mechanism consists of random walks with lookahead (performing shallow
floodings on each step of the walk). This decision was made considering that the tradi-
tional flooding approach would generate too much load in the network due to the amount
of propagated messages. By choosing the random walks with lookahead method, it is
possible to minimize message duplication and the granularity of the coverage, properties
that are important according to [Lv et al. 2002].

According to the research presented in Section 3, the random replication mech-
anism performs better than path replication while achieving the square-root condition.
Therefore, this approach will be used: for each successful search, the number of nodes p
on the path between the requester and the provider is counted and then p nodes that were
visited are randomly selected to replicate the object. The decision on whether certain data
should be replicated or not is determined by a a small time threshold (e.g., 1 minute): if
the duration of the data is lower than the threshold, no replication is performed.

One issue related to data validity and the system functionality in a general way is
time synchronization in unstructured P2P networks. This issue is out of the scope of this
work. It is assumed that the Brokers are connected to a reliable source of time information
(synchronization by third-party), such as through the use of NTP.

5. Task Schedule

The tasks to be done in the second phase of the work (Graduation Work II) are listed
below. Table 1 presents the task schedule for this next phase.

1. Research on related work for improvement of the theoretical foundation and de-
tailing the design decisions of the platform;

2. Implementation of the platform prototype;

3. Experimental evaluation of the platform through simulations. Metrics such as
memory usage, number of nodes visited and average response time will be con-
sidered.

4. Writing of Graduation Work II;

. Presentation of Graduation Work II.

9,1

Table 1. Task schedule for Graduation Work Il

Task 2017
Jul | Aug | Sept | Oct | Nov | Dez
1 X
2 X | X X X
3 X
4 X X X X
5 X

6. Conclusion

This work presented a decentralized version of a context management and distribution
platform called Context Broker using unstructured peer-to-peer networks. Related work

88

in the area has been reviewed and the design decisions have been proposed based on
this theoretical foundation. Two key aspects regarding peer-to-peer networks have been
considered: search mechanism and replication, which have a profound impact on the
operation and overall performance of a distributed system. The next steps of this work are
to provide a more detailed insight about the design decisions, implement a prototype and
evaluate the platform through simulations, after defining the appropriate metrics. Small
changes in the platform design might be considered. The final results will be presented in
Graduation Work II.

References

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and Steggles, P. (1999).
Towards a Better Understanding of Context and Context-Awareness, pages 304-307.
Springer, Berlin, Heidelberg.

Androutsellis-Theotokis, S. and Spinellis, D. (2004). A survey of peer-to-peer content
distribution technologies. ACM Comput. Surv., 36(4):335-371.

BitTorrent 2017. Bittorrent. http://www.bittorrent.com. Accessed in June 04,
2017.

Brown, P. J., Bovey, J. D., and Chen, X. (1997). Context-aware applications: from the
laboratory to the marketplace. IEEE Personal Communications, 4(5):58-64.

Chen, H., Finin, T., and Joshi, A. (2004). Semantic web in the context broker architecture.

In Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications, pages 277-286, Piscataway, NJ, USA. IEEE.

Chen, H. L. (2010). An Intelligent Broker Architecture for Pervasive Context-Aware Sys-
tems. PhD thesis, University of Maryland.

Cohen, E. and Shenker, S. (2002). Replication strategies in unstructured peer-to-peer net-
works. In Proceedings of the 2002 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, SIGCOMM 02, pages 177-
190, New York, NY, USA. ACM.

Crippa, M. R. (2010). Design and implementation of a broker for a service-oriented con-
text management and distribution architecture. Bachelor’s thesis, Federal University
of Rio Grande do Sul (UFRGS).

Crippa, M. R. (2013). Federation of brokers for a context distribution and management
architecture. Master’s thesis, Technische Universitit Kaiserslautern.

Dey, A. K., Abowd, G. D., and Salber, D. (2001). A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 16(2):97-166.

Dey, A. K., Abowd, G. D., and Wood, A. (1998). Cyberdesk: A framework for providing
self-integrating context-aware services. In Proceedings of the 3rd International Con-
ference on Intelligent User Interfaces, IUI *98, pages 47-54, New York, NY, USA.
ACM.

Gkantsidis, C., Mihail, M., and Saberi, A. (2004). Random walks in peer-to-peer net-
works. In IEEE INFOCOM, volume 1, page 130.

89

Gkantsidis, C., Mihail, M., and Saberi, A. (2005). Hybrid search schemes for unstructured
peer-to-peer networks. In /EEE INFOCOM, Piscataway, NJ, USA. IEEE.

Gnutella 2017. Gnutella. https://www.gnu.org/philosophy/gnutella.
html. Accessed in June 02, 2017.

Kiani, S. L., Knappmeyery, M., Baker, N., and Moltchanov, B. (2010). A federated
broker architecture for large scale context dissemination. In /0th IEEE International
Conference on Computer and Information Technology, pages 2964-2969.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. (2005). A survey and compar-
ison of peer-to-peer overlay network schemes. Communnication Surveys and Tutorials,
7(2):72-93.

Lv, Q., Cao, P, Cohen, E., Li, K., and Shenker, S. (2002). Search and replication in un-
structured peer-to-peer networks. In Proceedings of the 16th International Conference
on Supercomputing, ICS ’02, pages 84-95, New York, NY, USA. ACM.

Pascoe, J. (1998). Adding generic contextual capabilities to wearable computers. In
Proceedings of the 2nd IEEE International Symposium on Wearable Computers, pages
92-99, Washington, DC, USA. IEEE Computer Society.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014). Context aware
computing for the internet of things: A survey. IEEE Communications Surveys &
Tutorials, 16(1):414-454.

Schilit, B., Adams, N., and Want, R. (1994). Context-aware computing applications. In
Proceedings of the 1994 First Workshop on Mobile Computing Systems and Applica-
tions, WMCSA 94, pages 85-90, Washington, DC, USA. IEEE Computer Society.

Schilit, B. N. and Theimer, M. M. (1994). Disseminating active map information to
mobile hosts. IEEE Network, 8(5):22-32.

Stoica, 1., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM 01, pages 149-160, New York, NY, USA.
ACM.

Strang, T. and Linnhoff-Popien, C. (2004). A context modeling survey. In First Inter-
national Workshop on Advanced Context Modelling, Reasoning And Management at
UbiComp 2004, Nottingham, England, September 7, 2004.

Wang, J. and Vanninen, M. (2006). Self-configuration protocols for p2p networks. 4:61—
76.

Winograd, T. (2001). Architectures for context. Human-Computer Interaction,
16(2):401-419.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Kubiatowicz, J. D.
(2006). Tapestry: A resilient global-scale overlay for service deployment. IEEE Jour-
nal on Selected Areas in Communication, 22(1):41-53.

Zimmermann, A., Lorenz, A., and Specht, M. (2005). Applications of a Context-
Management System, pages 556-569. Springer, Berlin, Heidelberg.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Structure of the Text

	2 Theoretical Foundation
	2.1 Context in Context-Aware Systems
	2.2 Context-Awareness in Context-Aware Systems
	2.3 Context Management in Context-Aware Systems
	2.3.1 Context Life Cycle
	2.3.1.1 Context Acquisition
	2.3.1.2 Context Modeling
	2.3.1.3 Context Reasoning
	2.3.1.4 Context Dissemination

	2.4 Peer-to-Peer Networks
	2.4.1 Structure of Peer-to-Peer Networks
	2.4.2 Search mechanisms
	2.4.2.1 Search Mechanisms in Structured P2P Networks
	2.4.2.2 Search Mechanisms in Unstructured P2P Networks

	2.4.3 Replication

	2.5 Related Work in Context-Aware Systems

	3 Distributed Broker Design and Architecture
	3.1 Usage Scenario
	3.2 Requirements Analysis
	3.3 The Centralized Broker
	3.3.1 Context Entity and Context Scope
	3.3.2 Centralized Broker Architecture

	3.4 Overview of the Distributed Broker Design
	3.4.1 Context Management in the Distributed Broker Platform
	3.4.2 Architecture
	3.4.3 Node Membership
	3.4.4 Neighborhood Search
	3.4.5 Search For Data and Data Replication

	3.5 Broker Message Protocol
	3.5.1 Context Update/Advertisement
	3.5.2 Context Request
	3.5.3 Ping
	3.5.4 Broker Joining
	3.5.5 Broker Leaving
	3.5.6 Start Neighbors Monitoring

	4 System Implementation and Evaluation
	4.1 Broker Platform Prototype
	4.1.1 Development Environment
	4.1.2 Broker Platform Interfaces
	4.1.3 Message Parsing
	4.1.4 Data Storage and Search

	4.2 Experimental Evaluation
	4.2.1 Testing Environment
	4.2.2 Evaluation Metrics and Testing Parameters

	4.3 Results
	4.3.1 Average Response Time Analysis - V3 and V4
	4.3.2 Average Memory Usage Analysis - V3 and V4
	4.3.3 Average Response Time Analysis - V1, V2 and V4

	5 Conclusion
	5.1 Overview and Contributions
	5.2 Future Work

	References
	Appendix A — Broker Message Protocol Specification
	A.0.1 StartNeighborsMonitoring Message
	A.0.2 Ping Message
	A.0.3 Context Update/Advertisement Message
	A.0.4 Context Request Message
	A.0.5 Context Response Message
	A.0.6 Acknowledgement Message (ACK)
	A.0.7 Not-Acknowledgement Message (NACK)
	A.0.8 BrokerLeaving Message
	A.0.9 BrokerJoining Message
	A.0.10 Ping Response Message

	Appendix B — Results Table
	Appendix C — Graduation Work 1

