
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GABRIEL MARANGONI MOITA

Combining Performance and Diversity
Measures for Optimizing Classification

Ensembles via a Genetic Algorithm in the
miRNA-Target Prediction Problem

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Profa. Dra. Mariana R. Mendoza

Porto Alegre
December 2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pro-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Sérgio Luis Cechin
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The Answer to the Great Question... Of Life, the Universe and Everything... Is...

Forty-two.”

— DEEP THOUGHT, WITH INFINITE MAJESTY AND CALM.

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Dr. Mariana Recamonde Mendoza, for

her unstoppable (and needed) feedbacks and contributions during this year of research,

pursuing always the best for our work, even with all difficulties. I wish the best for you

and your son in the years to come. I’m also grateful for all classes that I received during

the course, with a special mention to Prof. Dr. Bruno Castro da Silva and again Prof.

Dr. Mariana Recamonde Mendoza for the deep knowledge in Artificial Intelligence that

I’ve acquired during their classes. Thanks to all professors that I’ve interacted during my

journey through this course; the complete professional I’m today is due to the things I’ve

learned with their help.

I would also want to thank the support of my family since I was born. If I’m

writing this monography today, is due to their perseverance in always seeking for the best

education for me, and also supporting me in all moments. Thanks father, Erico Manoel

Alves Moita, and mother, Alessandra Jardim Marangoni Moita, for everything. Also

thanks to my younger brother Nícolas Marangoni Moita for all the expended hours in

our shared computer that prevented him from playing as much as he would like, and my

younger sisters Nina Luísa Marangoni Moita and Marianna Vitória Marangoni Moita for

(almost) always respecting my requests for silence when I needed, and to all my siblings

for bringing a smile to my face when I needed one. And a final thanks to Mikaela Silva

de Oliveira, for warming my heart and for all the help through all the turbulence we’ve

been facing together.

ABSTRACT

MicroRNAs, also called miRNAs, are a large family of non-coding RNAs of approxi-

mately 22 nucleotides (nt) in length, which act as post-transcriptional gene silencers via

translational repression or degradation of targets mRNAs, and have an important role in

metabolism and genesis of different genetic diseases, such as cancers. The miRNA tar-

get prediction problem is considered a difficult challenge in the molecular biology area.

There are millions of possible miRNA-mRNA possible combinations, and to experimen-

tally find the functional combinations takes a large quantity of effort, therefore time and

investment.

The scientific community is actively researching computational approaches to overcome

this cost with Machine Learning and their predictive models to better understand the inter-

actions between miRNA-mRNA, and how they influence metabolic and disease processes.

The purpose of this work is to study the effect of combining performance and diversity

measures in a Genetic Algorithm’s (GA) fitness function that learns the best combination

of classifiers in an heterogeneous ensemble classifier in the miRNA-Target prediction

problem.

Through experimentation, we’ve concluded that the challenge presented by the unbal-

anced and relatively small available datasets overshadows the possible benefits that the

diversity measure could bring to the GA fitness function. Although the ensemble op-

timization combining performance and diversity measures has achieved better solutions

than performance-based optimization in some cases, on average, the former solution did

not surpass the latter. This doesn’t allow us to conclude if the combination of performance

and diversity measures results in better ensembles or not in our problem.

Keywords: MicroRNA Target Prediction. Ensemble Learning. Genetic Algorithms. Di-

versity Measures.

Combinando Medidas de Performance e Diversidade para Otimizar Classificadores

Ensemble através de Algoritmo Genético no Problema de Predição de Alvos de

miRNAs

RESUMO

MicroRNAs, também chamados de miRNAs, são uma grande família de RNAs não-

codificantes de aproximadamente 22 nucleotídeos (nt) de tamanho, que atuam como si-

lenciadores pós-transcricionais de genes através da repressão da tradução ou degradação

dos mRNAs alvos, e tem um papel importante no metabolismo e na criação de diferen-

tes doenças genéticas, como cânceres. O problema da predição de alvos de miRNAs é

considerado um difícil desafio na área de biologia molecular. Há milhões de possíveis

combinações entre miRNAs e mRNAs, e encontrar experimentalmente as combinações

funcionais demanda um grande esforço, ou seja, tempo e investimento.

A comunidade científica está ativamente pesquisando abordagens computacionais para

superar esses custos com Machine Learning e seus modelos preditivos para melhor en-

tender a interação entre miRNAs e mRNAs, e como eles influenciam nos processos me-

tabólicos e de doenças. O propósito deste trabalho é estudar o efeito da combinação de

medidas de performance e diversidade na função de fitness de um Algoritmo Genético

(AG) que aprende a melhor combinação de classificadores em um classificador conjunto

heterogêneo no problema da predição de alvos de miRNAs.

Através de experimentação, nós concluímos que o desafio apresentado pelos datsets des-

balanceados e relativamente pequenos obscurece os possíveis benefícios que a medida de

diversidade pode trazer para a função de fitness do AG. Embora a otimização do ensemble

combinando medidas de performance e diversidade tenha alcançado soluções melhores

do que optimização baseada em performance em alguns casos, na média ela não supera.

Isso não nos permite concluir se a combinação das medidas de performance e diversidade

resulta ou não em conjuntos melhores no nosso problema.

Palavras-chave: Predição de Alvos de microRNAs, Aprendizado Ensemble, Algoritmos

Genéticos, Métricas de diversidade.

LIST OF FIGURES

Figure 2.1 Molecular biology information flow. Solid arrows show general trans-
fers; dotted arrows show special transfers. The absent arrows are the unde-
tected transfers specified by the central dogma. ...15

Figure 2.2 Genetic expression process..16
Figure 2.3 Example of miRNA-target alignment. Nucleotides matches are shown

by colons and G:U wobble pairs are represented by dots. There can be gaps........17
Figure 2.4 Genetic Algorithm Loop..19
Figure 2.5 Roulette-Wheel Selection example..21
Figure 2.6 Tournament Selection example, with size = 3 and p = 1.21
Figure 2.7 Single-point Crossover example. ...22
Figure 2.8 k-point Crossover example, with k = 2. ...22
Figure 2.9 Uniform Crossover example. ...22
Figure 2.10 Flip Bit example. ...23
Figure 2.11 General Supervised Learning. ...25
Figure 2.12 Iris Dataset Decision Tree..26
Figure 2.13 Schematic of the Bagging method in an Homogeneous Ensemble.29
Figure 2.14 Schematic of the Voting Classifier method..30
Figure 2.15 Entropy H in the case of two possibilities with probabilities p and (1− p).31
Figure 2.16 Diagram of a k-fold Cross Validation, with k = 4.32
Figure 2.17 2x2 Confusion Matrix..33
Figure 2.18 Area Under ROC Curve for a Model. A real model curve won’t be

curved, it will look like a ladder..35

Figure 3.1 Mendoza et al. (2013) proposed framework, RFMirTarget...........................38
Figure 3.2 Yan et al. (2007) proposed workflow...39
Figure 3.3 Comparison of Yu et al. (2014) proposed ensemble method against the

tools used in the ensemble. It outperforms them by 52.5% in terms of AUC
Score. ..39

Figure 3.4 Le et al. (2015) ranking of different ensemble compositions against the
individual methods..40

Figure 3.5 Haque et al. (2016) genotype ensemble representation example.41
Figure 3.6 Haque et al. (2016)’s GA-EoC comparison against the individual algo-

rithms. ...41
Figure 3.7 Haque et al. (2016)’s GA-EoC comparison against other ensemble methods.42
Figure 3.8 Mousavi, Eftekhari and Haghighi (2015) genotype ensemble represen-

tation example. Each chromosome encodes a subset of classifiers and one
value of M42

Figure 3.9 Mousavi, Eftekhari and Haghighi (2015)’s EP-RTF comparison against
the individual algorithms. ...43

Figure 3.10 Mousavi, Eftekhari and Haghighi (2015)’s EP-RTF comparison against
other ensemble methods..44

Figure 4.1 Genetic Algorithm high level execution pipeline. ...49
Figure 4.2 Example chromosome representing an ensemble that uses classifiers

#2, #5, #7, and #10 from Table 4.4. ...50
Figure 4.3 Ensemble construction and evaluation. ...50
Figure 4.4 Stratified K-Fold Cross Validation ensemble evaluation.51

Figure 4.5 Heatmap of classifiers predicted probabilities for the positive class for
instances in a test dataset. Probabilities closer to 0.0 are shown in red, whereas
probabilities closer to 1.0 are represented in light yellow. The column "EX-
PECTED" provides the true label, in which red means negative examples and
light yellow denotes positive examples...55

Figure 5.1 Learning curves for fitness curves using pure AUC and AUC combined
with 50% of diversity. Performed is compared by means of AUC Score...............58

Figure 5.2 Boxplots comparing the performance in terms of AUC Score (Y axis)
for every combination of performance measure with different proportions of
the diversity measure (X axis) in the GA’s fitness functions specified in the
plots’ titles. Results are extracted from 10 repetitions of the proposed solution....59

LIST OF TABLES

Table 4.1 Positive and negative examples in miRTarBase v6.1 and DIANA-TarBase
v7.0, the latter being used in the current work..45

Table 4.2 Features used in this work, based on Mendoza et al. (2013)’s features for
RFMirTarget..47

Table 4.3 Progression of positive and negative examples. ..47
Table 4.4 Classifiers used in the ensemble..48
Table 4.5 Adopted GA’s hyperparameters configuration. ...49

Table 5.1 Average AUC Score for each approach...60

LIST OF ABBREVIATIONS AND ACRONYMS

RNA Ribonucleic acid

mRNA Messenger RNA

miRNA Micro RNA

AI Artificial Intelligence

ML Machine Learning

GA Genetic Algorithm

CONTENTS

1 INTRODUCTION...13
2 THEORETICAL BACKGROUND...15
2.1 Biological Background..15
2.1.1 Central Dogma of Molecular Biology ...15
2.1.2 MicroRNA and their interaction with mRNA..16
2.2 Computational Background...18
2.2.1 Genetic Algorithms..18
2.2.1.1 Individual Chromosome Representation...18
2.2.1.2 Initial Population Generation..19
2.2.1.3 Fitness Functions ..20
2.2.1.4 Selection Methods...20
2.2.1.5 Crossover Methods ...21
2.2.1.6 Mutation Methods...23
2.2.1.7 Other Heuristics ..23
2.2.1.8 Termination Criteria..24
2.2.2 Supervised Learning ..24
2.2.2.1 Gaussian Naïve Bayes...25
2.2.2.2 Decision Tree ..26
2.2.2.3 Random Forest ..26
2.2.2.4 Quadratic Discriminant Analysis..27
2.2.2.5 Support Vector Machine ...27
2.2.2.6 K-Nearest Neighbors ..27
2.2.2.7 Logistic Regression...27
2.2.3 Ensemble Learning ..27
2.2.3.1 Voting Classifier..29
2.2.3.2 Diversity Measures ...30
2.2.4 Model Evaluation...31
2.2.4.1 Cross Validation ..31
2.2.4.2 Confusion Matrix ..32
2.2.4.3 Accuracy ...33
2.2.4.4 F1 Score ..33
2.2.4.5 Matthews Correlation Coefficient ...34
2.2.4.6 Area Under Curve ...34
2.2.5 Unbalanced Datasets..35
3 RELATED WORK ...37
3.1 Homogeneous Ensemble...37
3.2 Heterogeneous Ensemble..38
3.3 Genetic Algorithm with Heterogeneous Ensemble ..40
4 PROPOSED SOLUTION...45
4.1 Data Sources ..45
4.1.1 miRNA-Targets Dataset ...45
4.1.2 miRNA and mRNA Sequences..46
4.2 Dataset Generation ...46
4.3 Ensemble’s Base Classifiers and Aggregation Function......................................48
4.4 Genetic Algorithm for Ensemble Optimization ...48
4.4.1 Chromosome - Ensemble Representation..49
4.4.2 Fitness ..50
4.4.3 Population Size ..51

4.4.4 Offspring Generation ...52
4.4.5 Implementation and Optimizations..52
4.5 Discarded Variations...53
4.5.1 Rotation Forest and Bagging ...53
4.5.2 Downsampling and Oversampling...54
4.5.3 Discarded Classifiers..54
5 EXPERIMENTAL RESULTS ...56
5.1 Computational Resources ..56
5.2 Experiment Methodology...56
5.3 Genetic Algorithm Learning Curves...57
5.4 Comparison between Different Diversity Proportions ..58
5.5 Comparison against Individual Classifiers and Full Ensemble..........................60
6 CONCLUSION ...61
REFERENCES...62
APPENDIX A — COMPLETE TABLES WITH ALL EXPERIMENTAL EX-

ECUTIONS OF THE PROPOSED SOLUTION...65

13

1 INTRODUCTION

MicroRNAs, also called miRNAs, are a large family of non-coding RNAs of ap-

proximately 22 nucleotides (nt) in length, which act as post-transcriptional gene silencers

via translational repression or degradation of targets mRNAs (FILIPOWICZ; BHAT-

TACHARYYA; SONENBERG, 2008; YUE; LIU; HUANG, 2009; BARTEL, 2004).

The microRNA (also called miRNA) target prediction problem is considered a

difficult challenge in the molecular biology area. There are millions of possible miRNA-

mRNA combinations, the majority of them being non-functional. These interactions are

important due to its regulatory role in genetic expression, influencing metabolic processes

that imply many diseases, such as tumor genesis and several types of cancer (HE; HAN-

NON, 2004; YANAIHARA et al., 2006; KLUIVER et al., 2005), and therefore need to

be studied.

Currently, the available datasets have thousands of experimentally verified exam-

ples and very few non-functional ones (YU et al., 2014), thus generating a great unbalance

towards the functional samples. The scientific community is actively researching compu-

tational approaches to overcome the cost of manual experiments to determine whether

a given miRNA-mRNA pair is functional. Following this direction, Machine Learning

(ML) algorithms were proven promising to train predictive models and better understand

the miRNA-mRNA interactions and its influence in the metabolism. Among these com-

putation approaches, ensemble learning variations are commonly used due to its ability to

have a good performance even with challenges such as small and unbalanced datasets, as

observed in the current domain.

Our proposal is to use an heterogeneous ensemble learning to aggregate different

classifiers into one single, global decision, as already seen in related work. To choose

which combination of classifiers is the best, we use a Genetic Algorithm where the usage

or not of each classifier is encoded in the individuals’ genotypes, and optimized according

to different criteria. In particular, in the scope of this work, our goal is to investigate if

the inclusion of a diversity measure together with a performance measure in the Genetic

Algorithm fitness function, combined with different proportions, will improve the overall

performance of the algorithm, i.e., will make it build better ensembles, when compared to

solutions using only the performance measure in the fitness function.

This work is organized as follows: Chapter 2 presents the required theoretical

background to understand our proposed technique; Chapter 3 presents related work; Chap-

14

ter 4 presents our proposal for this problem; Chapter 5 presents the experimental results,

with comparisons between different diversity proportions and against the individual clas-

sifiers and the possible full ensemble; and Chapter 6 presents the conclusion.

15

2 THEORETICAL BACKGROUND

2.1 Biological Background

2.1.1 Central Dogma of Molecular Biology

In Biology, the field of Molecular Biology is responsible for studying cellular

molecules, such as nucleic acids and proteins, including their composition, structure and

interactions. These elements are relevant to the cell’s functionality and maintenance, as

they are the essential biological processes inside them. The next paragraphs are based on

Zaha, Ferreira and Passaglia (2014).

The DNA (Deoxyribonucleic Acid) is composed of two chains of nucleotides in

a double helix pattern. The nucleotides encode all genetic instructions used in many

functions of any living being, such as reproduction, growth and development. To convert

all these genetic instructions in actions, they need to be translated into proteins that will

influence the cells behavior, in a process called genetic expression.

Crick (1970) determines the famous Central Dogma of Molecular Biology, ex-

plaining the information flow from DNA to RNA and proteins. A classification is shown

in Figure 2.1 below.

Figure 2.1: Molecular biology information flow. Solid arrows show general transfers; dot-
ted arrows show special transfers. The absent arrows are the undetected transfers specified
by the central dogma.

Source: (CRICK, 1970).

The process of converting an DNA gene into a RNA (Ribonucleic Acid) is called

16

transcription. In this process, the DNA double helix is used as an template by an en-

zyme called RNA polymerase to synthesise a single chain of nucleotides, called mRNA

(Messenger RNA). This mRNA is then carried to the ribosome, where it is translated

into a amino acid chain (or polypeptide), which is later folded into an active protein.

This whole process is exhibited in Figure 2.2.

Figure 2.2: Genetic expression process.

Source: (CLANCY; BROWN, 2008).

2.1.2 MicroRNA and their interaction with mRNA

MicroRNAs, also called miRNAs, are a large family of non-coding RNAs of ap-

proximately 22 nucleotides (nt) in length, which act as post-transcriptional gene silencers

via translational repression or degradation of targets mRNAs (FILIPOWICZ; BHAT-

TACHARYYA; SONENBERG, 2008; YUE; LIU; HUANG, 2009; BARTEL, 2004). In

other words, the miRNAs silences target mRNAs repressing their translation into polypep-

tides, interrupting the genetic expression process. One example of miRNA-mRNA align-

ment is given in Figure 2.3.

17

Figure 2.3: Example of miRNA-target alignment. Nucleotides matches are shown by
colons and G:U wobble pairs are represented by dots. There can be gaps.

Source: (MENDOZA et al., 2013).

The study of microRNA-mRNA interactions is important due to its role in regu-

lating genetic expression in metabolic processes, such as developmental timing, growth,

cell proliferation and defense against viruses (LU et al., 2008). This way, miRNAs play

a regulatory role in many biological processes and diseases, including tumor genesis of

several types of cancer (HE; HANNON, 2004; YANAIHARA et al., 2006; KLUIVER et

al., 2005).

There are millions of possible miRNA-mRNA combinations, as one miRNA can

be regulate many targets, and one mRNA can be targeted and regulated by many miRNA.

There isn’t a deep knowledge of the basic mechanisms related with target recognition

yet (STURM et al., 2010). Identification of miRNAs’ targets is really important to bet-

ter understand the biological mechanism and find new ways to combat cancer and other

genetic-related diseases.

There are many databases containing miRNA-gene information, but they provide

manually curated experimentally validated interactions (VLACHOS et al., 2015), lead-

ing to a low number of human entries compared with the exponentially high number of

possible combinations of nucleotides. Experimentally determine the miRNA-RNA inter-

actions is expensive, however, Machine Learning can help with its predictive models to

gather more knowledge in a cheaper and faster way.

18

2.2 Computational Background

2.2.1 Genetic Algorithms

Genetic Algorithms (GAs) are a family of meta-heuristics that emulate the natural

selection process described by Darwin (1859), using concepts such as fitness selection,

genetic mutation and crossover. It’s a subclass of Evolutionary Algorithms.

The conception of this type of algorithm trace back to Alan Turing in 1950, when

he proposes in Turing (1950) a learning machine which would parallelize the principles

of evolution. Afterwards, beginning in 1957, a series of publications by Alex Fraser re-

port the simulation of artificial selection of individuals, including all modern algorithms’

essential concepts, making usage of the Monte Carlo method (FRASER, 1957). More

recently, NASA used a GA to fully develop antennas with complex shapes for difficult

objectives, for example, the one used in the Space Technology 5 mission (HORNBY et

al., 2006).

A Genetic Algorithm comprises a loop of different phases of execution, until the

solution is considered to have been found. The different phases are:

• Initial Population Generation

• Fitness Evaluation

• Selection

• Recombination (or Crossover)

• Mutation

• Termination Criteria Evaluation

The loop itself and how the forementioned phases follow each other are illustrated

in the following figure:

In the next sections, each phase will be explained in detail, demonstrating different

algorithms that can be used in each one.

2.2.1.1 Individual Chromosome Representation

Individuals in a GA are represented by their chromosomes. The semantic of a

chromosome reflects the nature of the problem, two different chromosomes needs to refer

to two different solutions that will be evaluated through the GA process. A binary rep-

19

Figure 2.4: Genetic Algorithm Loop.

Source: Elaborated by the Author.

resentation might represent some kind of Boolean logic, with 0 = false and 1 = true

in each position of the chromosome meaning, for example, if the item i is used or not in

the solution. A non-binary representation might represent labels, e.g. nodes in a graph

and the order meaning the order they’re visited, or quantities, e.g. how much of the item

i used in the solution.

In this work, we’ll be using a binary representation. It will be further explained in

the Proposal (Chapter 4).

2.2.1.2 Initial Population Generation

To start the learning process in a Genetic Algorithm, we need an initial population

to work with. It has a large impact in the performance of the algorithm, as it defines which

areas of the search space will be first explored.

It can be created due to some specific heuristic related to the problem domain

with previous knowledge, or with a random process. In a binary representation, the most

common way to generate the first individuals is with the latter, generating each position

of the chromosome with equal chances of being 0 and 1, i.e., an uniform distribution).

This is the method used in this work.

20

2.2.1.3 Fitness Functions

The fitness function defines how good an individual is, i.e., how close to the opti-

mal solution the solution is. It needs to represent it quantitatively, in a way that a worse

solution has a worse score value than a good one. Also, it needs to be easy to calculate, as

it will be evaluated for every individual in every generation, being a common bottleneck

in GAs.

In this work, the fitness will be a performance measure, combined (or not) with a

diversity measure. Further explanation will be given in the Proposal (Chapter 4).

2.2.1.4 Selection Methods

The selection method defines how individuals from the population will be chosen

to compose the new generation. It should follow the evolution theory, where the fittest

individuals shall have more chances of reproducing. The methods are executed k times to

select the k individuals required by the Crossover Method.

Below are two examples of selection methods:

• Roulette-Wheel Selection

Also called fitness proportionate selection, this method gives every individual a

chance of being selected proportionally to its fitness. A possible visualization is

a roulette-wheel in a casino, where the size of each individual is equivalent to its

score value, and the selection is equivalent to spinning the wheel to see which one

the pointer will land on.

Mathematically, if fi is the fitness of the individual i and N is the number of indi-

viduals in the current population, the probability pi of the individual i being chosen

is defined as:

pi =
fi

ΣN
j=1fj

(2.1)

• Tournament Selection

This method consists into randomly choosing a pre-set number of individuals in

the population, and then select the fittest of them with probability p, the second

fittest with probability p · (1 − p), the third fittest with probability p · ((1 − p)2),

and so on. When p = 1, it is called a deterministic tournament selection. It is

most commonly used in practice, as it suffers less from stochastic noise, and has an

21

Figure 2.5: Roulette-Wheel Selection example.

Source: Elaborated by the Author.

adjustable selection pressure. This is the method used in this work.

Figure 2.6: Tournament Selection example, with size = 3 and p = 1.

Source: Elaborated by the Author.

2.2.1.5 Crossover Methods

Also called recombination methods, the crossover methods defines how the se-

lected individuals are combined. In other words, they are different genetic operators used

to combine the genetic information from the two individuals to generate their offspring.

It is equivalent to the genetic crossover that happens in biological sexual reproduction.

Crossover methods are commonly activated considering a crossover rate. A num-

ber between 0 and 1 is chosen for each group of selected parents. If it is lower or equal

to the crossover rate, the method is applied, otherwise the parents doesn’t breed and go to

the next generation. The crossover rate value should be above 0.5 to make sure enough

combinations of solutions are performed in order to the GA to work, as a value equal

to zero would lead to no genetic recombination at all, causing a poor exploration of the

solution space.

22

Some methods are:

• Single-point Crossover

In this method, a crossover point in the parents is randomly chosen. The bits to the

right of the point are swapped to generate the offspring. This is directly related with

human chromosomes crossover.

Figure 2.7: Single-point Crossover example.

Source: Elaborated by the Author.

• k-point Crossover

The k-point method is an extension of the single-point one. Basically, k crossover

points are randomly chosen, sorted and then the crossovers are performed. Thus,

segments of the parents are swapped. k should be smaller than the size of the

chromosomes.

Figure 2.8: k-point Crossover example, with k = 2.

Source: Elaborated by the Author.

• Uniform Crossover

In this method, all offsprings’ bits are randomly chosen from the parents’. An

equal probability for each parent can be used, or other mixed formulas to reduce

the randomness of this method. This should be used if there is no reason to inherit

subsequent bits, i.e., there is no logical relation between consecutive bits. This is

the method used in this work.

Figure 2.9: Uniform Crossover example.

Source: Elaborated by the Author.

23

2.2.1.6 Mutation Methods

These methods introduce genetic diversity into the newly generated population.

Mutation randomly changes one or more genes from the offsprings’ chromosomes. It is

equivalent to the genetic crossover that happens in biological sexual reproduction, which

is proved as important for diversity in populations.

The chance of a bit being transformed is equal to the mutation rate. A number

between 0 and 1 is chosen for each bit of each individual of the new population. If it is

lower or equal to the mutation rate, the method is applied to the bit, otherwise the bit is

left untouched. The mutation rate value should be really low, as a high value would turn

the search into a primitive random search, which is not desired.

The method choice depends heavily on the application and the chromosome se-

mantic. A common method is the Flit Bit Mutation for binary chromosomes, where

the bit suffers a logical NOT, which is used in this work. For non-binary chromosomes,

a common method is the Gaussian Mutation, where the bit has a new value randomly

chosen considering a Gaussian distribution centered in the old value.

Figure 2.10: Flip Bit example.

Source: Elaborated by the Author.

2.2.1.7 Other Heuristics

GAs are highly customizable to the application it is being used to. Therefore, a

wide range of different custom heuristics and methods can be applied in all steps of the

algorithm.

One common example is Elitism, where a small subset of best individuals are car-

ried from one generation to the next without any alteration. This guarantees the solution

quality to not deteriorate and gives more chances to the other individuals to breed with

the best one. The downside is that this can lead to local maxima, as this elite may repre-

sent this subset of solutions. It is used in this work, as further explained in the Proposal

(Chapter 4).

24

Another common example is Speciation, where the crossover is changed to reduce

crossover between two similar individuals, encouraging population diversity and avoiding

local maxima by preventing early convergence. Nonetheless, this adds the need to define

the individuals’ similarity measure and demands more processing time.

2.2.1.8 Termination Criteria

There are many different criteria to define when to terminate the GA execution

loop, and they can be combined. The most common are:

• A solution reaches a minimum fitness threshold (or the highest possible fitness);

• The highest fitness among individuals reached a long plateau, i.e., is the same for n

generations;

• A fixed number of generations was reached;

• Some kind of manual inspection of the individuals;

• Allocated limits are reached (space/time/computation cost).

When choosing what combination of criteria to use and their values, the quality

of the final answer should be considered: the less the algorithm runs, more areas of the

search space will be left unexplored. Nonetheless, as any other AI method, the algorithm

will converge and it doesn’t make sense to search for solutions indefinitely. In this work,

as it will be further explained in the Proposal (Chapter 4), we use a number of generations

limit.

2.2.2 Supervised Learning

Supervised Learning is a type of Machine Learning problem where there is a

dataset of observed input instances, i.e., the features, which are labeled with the ex-

pected outputs, i.e., the classes or labels, defined by an "oracle". For each input instance

it receives, the model learns to generate the correct output.

There is a large number of algorithms designed to this kind of problems. Below,

there are brief resumes of the ones used in this work. Their descriptions are based on

knowledge acquired in AI classes during the course, which have Faceli et al. (2011) as

main bibliography. They are all classifiers, which means that they predict a label for each

input.

25

Figure 2.11: General Supervised Learning.

Source: Elaborated by the Author.

2.2.2.1 Gaussian Naïve Bayes

Naïve Bayes methods are a class of supervised learning algorithms that apply the

Bayes Theorem:

P (A | B) = P (B|A)P (A)
P (B)

(2.2)

In the context of ML, A is the instance label y, and B is the feature vector

x1, . . . , xn, the formula can be rewritten as follows:

P (y | x1, . . . , xn) =
P (y)P (x1,...xn|y)
P (x1,...,xn)

(2.3)

The Naïve in the name means that these algorithms consider the naive assumption

that all pairs of features are independent between themselves. This, with the math steps

described in Pedregosa et al. (2018a), leads us to the final classification rule:

P (y | x1, . . . , xn) ∝ P (y)
n∏
i=1

P (xi | y)

⇓

ŷ = argmax
y
P (y)

n∏
i=1

P (xi | y),

(2.4)

In the Gaussian Naïve Bayes, we assume that the likelihood of the features is

Gaussian, i.e., if µy the mean of the values in the dataset associated with the class y, and

σy is the variance of these same values, the following formula defines the likelihood of a

26

feature xi:

P (xi | y) = 1√
2πσ2

y

exp
(
− (xi−µy)2

2σ2
y

)
(2.5)

2.2.2.2 Decision Tree

A Decision Tree is a model that defines how to classify the input given a set of sim-

ple if-then-else rules inferred from the data features. The decision tree building process

is based on an entropy measurement process, where the impurity of the data is measured

with the Gini index or the information gain measure and, if it passes a threshold, the data

is separated in order to maximize the impurity reduction/information gain.

This is an example decision tree learned with this process to the Iris dataset:

Figure 2.12: Iris Dataset Decision Tree.

Source: (PEDREGOSA et al., 2018b)

2.2.2.3 Random Forest

The Random Forest algorithm consists in learning a combination (ensemble) of

Decision Trees, trained with some level of randomness in the dataset, giving different

samples of the data for each Decision Tree. They are then combined with an average

voting method. This method is specially strong against the Decision Trees tendency to

overfit the data.

27

2.2.2.4 Quadratic Discriminant Analysis

The Quadratic Discriminant Analysis classifier tries to separate the instances of

each class with a quadratic surface (the quadratic decision boundary), created with con-

ditional densities of each class, using the Bayes’ Rule, and the method assumes such

densities are Gaussian. Unlike the Linear Discriminant Analysis method, not used in this

work, this method doesn’t assume that the covariance of the classes are identical.

2.2.2.5 Support Vector Machine

A Support Vector Machine creates a set of hyper-planes that divide the data by

their classes, trying to achieve for each hyper-plane the highest distance to the nearest

training data instances of any class. Thus, it creates a large functional margin, reducing

the chance of error in the classifier when it is used with unknown data. In this work, the

Radial Basis Function (RBF) kernel is used.

2.2.2.6 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) Classifier is an algorithm that classifies a new

instance based on the most common label of the K nearest already known instances. It

doesn’t build any type of model, using the training data itself to classify any new one.

The value ofK is the key of this method. A lowK means that only a few neighbors

will be considered in the majority voting, making the algorithm more susceptible to noise,

but with better classification boundaries. K should be an odd number, to avoid ties in the

votings.

2.2.2.7 Logistic Regression

Despite its name, the Logistic Regression model tries to describe the probabilities

of the possible outcomes with a logistic function. It can use a wide variety of algorithms

to model the function, the one used in this work is a Coordinate Descendent algorithm.

2.2.3 Ensemble Learning

Ensemble Learning is the technique of combining classifiers to form a stronger

one, i.e., with a better predictive performance than any of the classifiers individually. The

28

classifiers are trained separately, an their outputs are combined through some pre-defined

strategy to generate the ensemble output. The two major types of ensembles are:

• Homogeneous Ensemble Learning: In this type of ensemble, all constituent clas-

sifiers have the same algorithm in their cores. The key here is how the information

is distributed in the training phase between the different classifiers, so they learn

different things and, together, they can choose the right answer in the testing phase,

even though some of them fail due to the lack of complete information.

The most common example of this type of Ensemble Learning is the Random For-

est algorithm, that uses Random Trees as classifiers and combines their outputs

with a mode operator (or an average operator for regression). Random Trees have

high variance due to its randomness, and this is taken as advantage by the Random

Forest, that train each tree with different partitions of the dataset. Also, as the clas-

sifiers doesn’t have access to all information, it corrects the Random Trees tendency

of overfitting.

A common technique used here is Bagging. It is used to improve diversity in the

ensemble by sampling the dataset for each basic classifier, doing a simple uniform

sample with replacement, generating another one with the same size, with the in-

tention of every classifier having a different view of the dataset. The voting is per-

formed as a simple mode, or a confidence average of all basic algorithms to achieve

better performances, to combine the different views of the data to avoid overfit-

ting. This method is good with unstable high-variance algorithms, and is used in

the Random Forest algorithm described above, but can degrade more stable ones,

as it is depriving the algorithms of having access to all data, and they already have

mechanisms to avoid overfitting.

• Heterogeneous Ensemble Learning: This type of ensemble is the opposite of the

last one, as the constituent classifiers have different algorithms in their cores. Here,

the most important thing is to explore the advantages and disadvantages of the dif-

ferent algorithms, combining them in a way that the strengths of some complement

the weaknesses of the others, and vice versa. Concepts from homogeneous ensem-

bles, such as dataset partitioning, can be used in the heterogeneous ensembles too,

but that is not the main focus. This is the type used in our work.

One example of this type of Ensemble Learning is the Voting Classifier, explained

below.

29

Figure 2.13: Schematic of the Bagging method in an Homogeneous Ensemble.

Source: Elaborated by the Author.

Ensemble Learning is a wide study area by itself, with a lot of variances. We will

explain a small subset of possibilities that are relevant to this work.

2.2.3.1 Voting Classifier

The Voting Classifier is the most simple way to unite different classifiers. It is

commonly used for heterogeneous groups of algorithms, as this doesn’t include any type

of dataset partitioning in the training phase, focusing on the differences between the con-

stituent algorithms. In the most simple version of this method, all classifiers receive the

full training dataset, training separately, and all their answers are taken in consideration in

the voting without weighting, in a simple voting system, where the most common answer

wins and is the output of the ensemble. A confidence average also can be used.

In this type of ensemble method, it is important to choose algorithms with com-

plementary advantages and disadvantages, as the voting will consider all algorithms and

therefore the downsides should be nullified. It is easy to customize due to its simplicity.

For example, it is easy to add weights to the different classifiers in the voting, or to add

some kind of dataset partitioning if wanted. The diversity is focused in the algorithms

themselves, the method does nothing regarding it.

30

Figure 2.14: Schematic of the Voting Classifier method.

Source: Author

2.2.3.2 Diversity Measures

When building a ensemble, i.e., a combination of classifiers, we rely on the voting

between them to in fact classify the data. The classifiers themselves are weak, because of

data sampling or their own weaknesses. In order to balance the weaknesses and strengths

of the classifiers, so they are strong together, we need disagreement between them. Di-

versity between classifiers is recognized in the literature (CUNNINGHAM; CARNEY,

2000) as having an important role in the successful ensembles. Therefore, we should

monitor how different are the algorithms classifying the instances and, if they are agree-

ing to much, our ensemble might not be performing as well as it could be.

Nonetheless, there are many ways to measure diversity, considering the number

of classifiers that are being used. Kuncheva (2003) presents a collection of ten different

measures. For ensembles with more than two classifiers, therefore non-pairwise, the most

simple diversity measure is the Entropy, which is used in this work.

The Entropy comes from the Thermodynamics field (FRIGG; WERNDL, 2010),

as many other ML concepts. It measures the randomness of a system, i.e., how disordered

it is. In Information Theory, as defined by Shannon (1948), the more two messages differ

(i.e., more entropy) the more information we gain.

In ensembles, considering only two possible labels (0 and 1), an ensemble of L

31

classifiers has a maximum entropy if bL/2c classifiers agrees with one label and bL −

L/2c with the other for a particular instance zj ∈ Z. Denoting as l(zj) the number of

classifiers from D that correctly classifies the instance zj , a possible measure considering

the Entropy concept is:

E = 1
N

∑N
j=1

1
(L−dL/2e) min{l(zj), L− l(zj)} (2.6)

The entropy value E varies between 0, that means complete agreement, and 1,

that means maximum disagreement, i.e., maximum diversity. The variation follows this

parable, defined by Shannon:

Figure 2.15: Entropy H in the case of two possibilities with probabilities p and (1− p).

Source: (SHANNON, 1948).

2.2.4 Model Evaluation

In this subsection, we’ll define the concept of Cross Validation and a set of met-

rics used in this work to measure the performance of the ensembles, therefore evaluating

the models.

2.2.4.1 Cross Validation

When training an ML model, we don’t want it to memorize each instance of the

dataset, and many algorithms can do it. When calculating performance measures in order

32

to evaluate the generated models, if we use the same data we used to train the ML model,

we’ll be rewarding those which overfit the data.

As we want models with a good generalization level so it performs well when

exposed to an independent dataset, this cannot happen. To consider it in the model eval-

uation, there is a class of methods called Cross Validation. They split the data in order

to evaluate the model with data it hadn’t access to when it was being trained. Of course,

these methods always costs instances: we won’t have all data to generate our AI model,

which will make the learning process harder, especially if we don’t have a large number

of instances.

The most common is the Holdout method, where the dataset is divided into train

dataset and test dataset. We use the former to train the AI, and the latter to test its

performance. A common proportion is 80% of the data for training and 20% for testing,

but this can be changed according to how large the original dataset is, considering that

many algorithms does sampling by themselves.

Another method is the K-fold Cross-Validation, where we divide the data in K

groups and train the modelK times, with one of the groups not used in the training dataset

in each training, being only used to test this iteration.

Figure 2.16: Diagram of a k-fold Cross Validation, with k = 4.

Source: (WIKIPEDIA, 2018).

The Stratified K-fold Cross-Validation, used in this work, selects the K groups

preserving the percentage of samples for each class, so the original proportion of the

classes is maintained. This is important for methods like Naïve Bayes, in which the a

priori probabilities are a central part of the model design.

2.2.4.2 Confusion Matrix

The Confusion Matrix is a visualization of the ML model’s predictions. The rows

of the matrix are the predicted classes, and the columns are the expected classes, from the

33

oracle. In each position of the matrix is the number of test instances classified according

to the expected and the predicted class. The word confusion comes from the fact that, with

this matricial visualization, it is easy to identify if the model is confusing the classes. We

can also see if the model is classifying all instances to only one class, which is a common

symptom of unbalanced datasets.

Figure 2.17: 2x2 Confusion Matrix

Source: Elaborated by the Author.

We can extract some performance measures from the Confusion Matrix. Below,

are described the ones used in this work.

2.2.4.3 Accuracy

The most standard way to measure a model performance is by counting how many

test instances were correctly classified in the entire test dataset, i.e., the Accuracy. This

measure is the most intuitive, but it rewards one-class classification. In terms of the Con-

fusion Matrix, the formula to calculate the accuracy is the following:

Accuracy = TP+TN
TP+FP+FN+TN

(2.7)

2.2.4.4 F1 Score

The F1 Score, or F-Measure, is the harmonic mean of the Precision and the

Sensitivity (or Recall) performance measures. They are defined as follows:

Precision = TP
TP+FP

(2.8)

34

Recall = TP
TP+FN

(2.9)

F1Score = Precision×Recall
Precision+Recall

= 2TP
2TP+FP+FN

(2.10)

It is important to notice from the F1 Score formula that it doesn’t consider the True

Negatives (TN). It also rewards one-class classification.

2.2.4.5 Matthews Correlation Coefficient

The Matthews Correlation Coefficient, or MCC, is a measure first mentioned in

Matthews (1975) that has the purpose of not rewarding models that classifies all instances

as the majority class due to unbalancing. Unlike the other measures, it returns a value be-

tween −1 and 1, where −1 means complete failure, 0 means a performance equivalent to

a random classifier (considering the proportion of the classes), and 1 the perfect classifier.

It is the described by the following formula:

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(2.11)

If any of the four sums equals zero, we define the denominator as 1 and, therefore,

MCC = 0. It is claimed in the literature (CHICCO, 2017) as being the most informative

measure for binary classifiers, specially in the case of unbalanced datasets.

2.2.4.6 Area Under Curve

The Area Under Curve, or AUC, is a performance measure that uses the area

under the Receiver Operating Characteristic Curve, or ROC Curve. The ROC Curve

is the plot of the Recall, or True Positive Rate (TPR) against the False Positive Rate (FPR),

that is equal to 1− Specificity, at various thresholds.

TPR = Recall = TP
TP+FN

(2.12)

FPR = FP
FP+TN

= 1− Specificity (2.13)

The higher the curve compared to the diagonal (that represents a random classi-

fier), the better. The AUC value varies between 0 and 1, 0 being the complete failure,

35

Figure 2.18: Area Under ROC Curve for a Model. A real model curve won’t be curved,
it will look like a ladder.

Source: Elaborated by the Author.

0.5 being the random classifier and 1 the perfect classifier. It is, assuming that positive

instances are ranked higher than negative instances, "equivalent to the probability that the

classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative instance." (FAWCETT, 2006, p. 868).

2.2.5 Unbalanced Datasets

A common problem in AI in general is class unbalancing in the data. It is natural

that in the nature data isn’t uniformly distributed, and datasets generated from real data

will mirror this mismatch: a class may have more instances than others, because it occurs

more in the observed ambient from which the dataset was generated. This can also hap-

pen due to the difficulty or ease in classifying instances from a given class, causing an

unbalance.

The problem is: ML algorithms tend to classify all instances to the majority class

if the unbalance is high. It is easier to do so and get, for example, 65% accuracy, then

to try to learn something and lose accuracy in the process before achieving a higher one.

Some algorithms tend to be lazy and conservative about changes, especially those which

doesn’t reinforce curiosity.

Regarding the dataset, there are two common methods to eliminate the unbalance

for those algorithms which we can’t simply generate a new balanced dataset from the

source ambient: downsampling and oversampling.

• Downsampling: means sampling the majority class instances without reposition

by the number of instances of the minority class. For example, if the majority class

36

has 100 instances and the minority has 20, 20 instances from the majority class will

be chosen and we’ll have 40 instances in the final dataset, with 20 instances from

each class.

The obvious problem with this method is that we’re discarding data that should be

useful for the learning process. Nonetheless, we are doing so to give all classes the

same importance.

• Oversampling: does the opposite of downsampling. We sample the majority class

with reposition until we have the same number of instances as the majority class.

For example, if the majority class has 100 instances and the minority has 20, 100

instances from the minority class will be chosen with reposition (meaning we’ll

have repeated instances) and we’ll have 200 instances in the final dataset, with 100

instances from each class.

The problem here is that we’re repeating some instances, what may introduce a

false bias in the AI algorithm. Nevertheless, we are not discarding any data.

37

3 RELATED WORK

The scientific community is actively researching computational approaches to bet-

ter understand miRNA mechanisms and how it participates in the metabolism and genetic

diseases. Among these, ML algorithms have been incresingly used and are important to

push the knowledge further based on manually curated datasets, providing useful infor-

mation from which we can extract valuable insights and hypothesis regarding miRNA’s

action. Despite the significant advances, there is still a long way to go, with room for a

lot of improvement in the prediction accuracy.

A common problem faced in the literature is the unbalance between the positive

and the negative classes. Databases with experimentally validated miRNA-target interac-

tions provide much more function pairs than non functional. This is partially due to the

fact that the provided data is curated from the related literature and it is usually harder

to publish negative results; therefore, these pairs are commonly discarded. In real life,

indeed, non-target pairs are majority, leading to a big problem to ML model training.

Ensemble learning variations are common among ML-based solutions for the

miRNA-target prediction task due to their ability to tackle challenges such as small and

unbalanced datasets, as well as harder classifications tasks. The idea of putting classifiers

together to achieve better performances is explored by some articles.

3.1 Homogeneous Ensemble

Homogeneous ensemble has been explored in the work by Mendoza et al. (2013)

and Yan et al. (2007). In the first publication, a Random Forest classifier was used, as their

random feature selection and random instances sample could be used in order to circum-

vent the challenges of the miRNA target prediction task. A framework called RFMirTar-

get (Figure 3.1) was created, including the miRanda software for feature extraction from

the miRNA and mRNA sequences, then using the Random Forest as ML model to gener-

ate the predictions, followed by a features importance analysis. The framework achieved

an AUC score of 0.96, surpassing other approaches by the time of their publication.

Yan et al. (2007) also use an ensemble in their proposed algorithm. They gen-

erated a set of features with data from TarBase (VLACHOS et al., 2015) and trained

the ensemble with AdaBoost sampling and ten Support Vector Machine classifiers with a

layer of feature selection to trim redundant and irrelevant generated features, using only

38

Figure 3.1: Mendoza et al. (2013) proposed framework, RFMirTarget.

Source: (MENDOZA et al., 2013).

the eight most relevant. The generated ensemble is then used with miRanda to create the

predictions. The workflow is shown in Figure 3.2. According to the authors, the ensemble

approach was used to avoid the unbalanced classes problem, without generating random

instances, and achieved an accuracy of 82.95%.

3.2 Heterogeneous Ensemble

Yu et al. (2014) states that different prediction tools often present divergent sets

of targets, conflicting in their predicted outputs. Therefore, if we combine those tools to-

gether in ensembles, their divergences converge into better results (Figure 3.3). They also

state that "curating more instances of negative samples is also critical to further enhance

the performance of the proposed approach" (YU et al., 2014, p. 228), as "experimen-

talists are typically uninterested in collecting invalid miRNA–mRNA pairs and discard

them" (YU et al., 2014, p. 224), which causes the unbalancing in the datasets, creating a

challenge to ML model training. Their proposed method consists in getting the classifica-

tions of six heterogeneous existing miRNA target prediction tools (TargetScan, miRanda,

DIANA-microT, PITA, miRTarget2, and PicTar), processing the outcomes to generate

39

Figure 3.2: Yan et al. (2007) proposed workflow.

Source: (YAN et al., 2007).

positive and negative training samples to a binary classifier. It’s important to mention that

they statistically generate negative samples to achieve a balanced dataset.

Figure 3.3: Comparison of Yu et al. (2014) proposed ensemble method against the tools
used in the ensemble. It outperforms them by 52.5% in terms of AUC Score.

Source: (YU et al., 2014).

Le et al. (2015) also demonstrate that an ensemble of different methods performs

better than the methods alone in miRNA target prediction using expression data. In their

publication, they combine several methods used for this task, e.g. Pearson’s Correlation

Coefficient (PCC) and Z-score (PRILL et al., 2010), using a Borda count election (MAR-

BACH et al., 2012) to make the predictions. As illustrated in Figure 3.4, the combination

of three methods (Pearson, IDA and Lasso) achieved the best result.

40

Figure 3.4: Le et al. (2015) ranking of different ensemble compositions against the indi-
vidual methods.

Source: (LE et al., 2015).

3.3 Genetic Algorithm with Heterogeneous Ensemble

The idea of searching for the best heterogeneous ensemble using a GA in the bi-

ology area has been previously explored by some publications. Haque et al. (2016) apply

this concept in their GA-EoC (Genetic Algorithm - Ensemble of Classifiers) algorithm,

as "the performance of an ensemble is dependent on the choice of constituent base clas-

sifiers" (HAQUE et al., 2016, p. 1), using the GA to search for the best combination of

classifiers would avoid an exhaustive search, which would have an exponential complex-

ity.

GA-EoC uses in each ensemble a maximum of 20 base classifiers combined with

a simple majority voting approach, with a random sub-sampling being used to balance

the classes. An average of scores from 10-fold cross validation to evaluate the ensemble

in terms of Matthews Correlation Coefficient (MCC) was used as fitness value in the GA.

The Genetic Algorithm searches through the different combinations using Tournament

Selection with 10 random individuals, Uniform Crossover with 60% crossover rate, and

Flip-Bit Mutation with 0.01 mutation rate for each bit, plus one individual passed directly

to the next population with Elitism. The population size was 100 and the representation of

the ensemble in the genotype uses 0 or 1 for each algorithm: 0 meaning that the algorithm

isn’t used and 1 that it is used (Figure 3.5).

The approach was tested against seven datasets, from which three are from the

UCI-ML repository, including the Wisconsin Breast Cancer (WBC) dataset, and one re-

41

lated with the Alzheimer Disease. Figure 3.6 shows that the GA-EoC algorithm had a

superior performance against the individual algorithms, and Figure 3.7 shows that it had

superior performance against other ensemble methods that include all individual algo-

rithms.

Figure 3.5: Haque et al. (2016) genotype ensemble representation example.

Source: (HAQUE et al., 2016).

Figure 3.6: Haque et al. (2016)’s GA-EoC comparison against the individual algorithms.

Source: (HAQUE et al., 2016).

In the miRNA target prediction problem, Mousavi, Eftekhari and Haghighi (2015)

used, in their proposed EP-RTF algorithm, a GA to perform an ensemble pruning to

choose the classifiers to be trained using the Rotation Forest algorithm, being its parame-

ter K also optimized by the GA (named M in the article, being the number of subsets of

features in the Rotation Forest algorithm). The classifiers’ predictions are combined with

42

Figure 3.7: Haque et al. (2016)’s GA-EoC comparison against other ensemble methods.

Source: (HAQUE et al., 2016).

weighted majority voting. The individual representation can be seen in Figure 3.8.

Figure 3.8: Mousavi, Eftekhari and Haghighi (2015) genotype ensemble representation
example. Each chromosome encodes a subset of classifiers and one value of M .

Source: (MOUSAVI; EFTEKHARI; HAGHIGHI, 2015).

The Rotation Forest (RODRÍGUEZ; KUNCHEVA; ALONSO, 2006) is a state-of-

art ensemble method that focuses in feature extraction to encourage accuracy and diversity

in the ensemble. The algorithm divides the features randomly in K subsets (K is a pa-

rameter, mentioned above) and applies Principal Component Analysis on each of them to

maintain the main components. After this, K axis rotations are performed to generate the

training dataset to the basic classifier. This method is good when losing features is not a

problem, and the parameter K needs to be manually defined. As this is a newer and more

complex method than the others, it is harder to customize it to specific necessities.

A list of 13 basic classifiers (including Naïve Bayes, Feed-Forward Back Prop-

agation Neural Network, Support Vector Machine and K-Nearest Neighbors) were used

in the GA proposed by Mousavi, Eftekhari and Haghighi (2015), and according to their

43

observations, "it is clear that structurally different base classifiers (i.e. heterogeneous en-

semble) are employed for creating diversity in the ensemble" (MOUSAVI; EFTEKHARI;

HAGHIGHI, 2015, p. 10). Figure 3.9 shows that the EP-RTF algorithm had a superior

performance against the individual algorithms, and Figure 3.10 shows that it had superior

performance against other ensemble methods that include all individual algorithms (i.e.,

without optimization of ensembles composition).

Figure 3.9: Mousavi, Eftekhari and Haghighi (2015)’s EP-RTF comparison against the
individual algorithms.

Source: (MOUSAVI; EFTEKHARI; HAGHIGHI, 2015).

44

Figure 3.10: Mousavi, Eftekhari and Haghighi (2015)’s EP-RTF comparison against other
ensemble methods.

Source: (MOUSAVI; EFTEKHARI; HAGHIGHI, 2015).

45

4 PROPOSED SOLUTION

The purpose of this work is to evaluate the influence of using explicit measures

of diversity in the fitness value along with performance metrics in the overall quality of

the ensembles. In the next sections, each component of the adopted methodology will be

explained in detail.

4.1 Data Sources

4.1.1 miRNA-Targets Dataset

To create the dataset to be used by the ensembles, a large data source is needed

with positive and negative examples of miRNA-mRNA pairs, ideally with similar quanti-

ties for both classes. Sadly, as already stated in the Related Work section (Section 3), there

isn’t a very large dataset. They are only limited to thousands of examples for each class,

where in reality there are more than millions of possible combinations. Furthermore, the

datasets are largely unbalanced, having much more positive examples than negative ones.

Considering this, a dataset that minimizes these problems shall be chosen.

The two most used miRNA-targets datasets are miRTarBase (CHOU et al., 2018)

and DIANA-TarBase (VLACHOS et al., 2015; KARAGKOUNI et al., 2018). These

databases use different methods to curate the literature, but are both composed by experi-

mentally validated miRNA-mRNA pairs for a variety of species, including humans. Both

are works in progress, and released new versions this year. Nonetheless, previous stable

versions were considered for this work (i.e., miRTarBase v6.1 and DIANA-TarBase v7.0).

As presented in Table 4.1, DIANA-TarBase v7.0 has a larger total number of sam-

ples, and considerably less unbalancing between the classes, still being high nonetheless.

Therefore, this dataset was chosen for the development of the current work.

Table 4.1: Positive and negative examples in miRTarBase v6.1 and DIANA-TarBase v7.0,
the latter being used in the current work.

Positive/Functional Negative/Non-Functional Total
miRTarBase v6.1 6958 (96.1%) 283 (3.9%) 7241

DIANA-TarBase v7.0 5619 (74.3%) 1944 (25.7%) 7563
Source: Elaborated by the Author.

46

4.1.2 miRNA and mRNA Sequences

DIANA-TarBase provides the list of miRNAs and their respective targets repre-

sented by their official identifiers. However, to extract features for the miRNA target

prediction, nucleotide sequences are needed. Therefore, miRNA and mRNA (i.e., target

gene) sequences must be collected from other sources.

For miRNA sequences, were gathered from miRBase (GRIFFITHS-JONES, 2006;

KOZOMARA; GRIFFITHS-JONES, 2014) a database with more than 30,000 miRNA

sequences from more than 200 species. It was also used in Mendoza et al. (2013) and

other related works.

For mRNA sequences, we have chosen the BioMart portal Smedley et al. (2015), a

unified interface to access to more than 800 different databases. It is important to mention

that in this source, the same mRNA can have different versions (for example, the POU2F2

mRNA), which means different sequences. This is due to bilogical aspects related to the

DNA transcription and transcript post-processing, whose details are out of the scope of

this work. We have considered all the different transcripts related to a given gene.

4.2 Dataset Generation

First, we combined the different raw sequences retrieved for DIANA-TarBase en-

tries to generate miRNA-target positive and negative examples for further processing. A

simple script was developed using R to perform this task, generating a total of 23,019 pos-

itive examples and 7,855 negative examples. These negative examples comprise 25.44%

of non-functional samples collected from DIANA TarBase. The growth in the examples

happened due to the multiple versions of the sequences in the BioMart mRNA sequences

dataset. We removed examples that appeared in both positive and negative classes, to

avoid conflicts.

Next, we used the 2010 version of the miRanda software (ENRIGHT et al., 2003)

to perform sequence alighment between miRNA and target gene. The default configu-

rations were used when running the software. In this phase, a lot of the extra examples

from the previous phase were removed, as they were invalid. Specifically, 72.46% of

the miRNA-mRNA combinations (71.72% positive and 74.67% negative) were lost, in-

cluding, 57.22% of the miRNAs represented in the original dataset (56.01% positive and

60.76% negative). Thus, from this phase we have obtained 7,100 positive and 2,131

47

negative dataset examples (i.e., 23.08% examples are in the negative class), being 2,441

different miRNAs in the positive examples and 746 different miRNA in the negative ones

(i.e., 23.08% of the miRNAs are in the negative class), having 2.85 valid miRNA-gene

examples per miRNA in the positive class, and 2.91 in the negative class.

With these examples in hands, we extracted the features of each combination with

a Perl script to parse the output from miRanda software. The features set used in this

work was previously proposed by Mendoza et al. (2013) (Table 4.2). Below, there is a

table resuming the numbers detailed above (Table 4.3).

Table 4.2: Features used in this work, based on Mendoza et al. (2013)’s features for
RFMirTarget.

Feature Name # Feature Name
1 Alignment Score (by miRanda) 18 Position 10
2 Alighment Length 19 Position 11
3 Minimum free energy of the alignment 20 Position 12
4 G:C’s absolute frequency in the alignment 21 Position 13
5 A:U’s absolute frequency in the alignment 22 Position 14
6 G:U’s absolute frequency in the alignment 23 Position 15
7 Number of gaps in the alignment 24 Position 16
8 Number of mismatches in the alignment 25 Position 17
9 Position 1 26 Position 18

10 Position 2 27 Position 19
11 Position 3 28 Position 20
12 Position 4 29 Minimum free energy of the seed
13 Position 5 30 G:C’s absolute frequency in the seed
14 Position 6 31 A:U’s absolute frequency in the seed
15 Position 7 32 G:U’s absolute frequency in the seed
16 Position 8 33 Number of gaps in the seed
17 Position 9 34 Number of mismatches in the seed

Source: Elaborated by the Author.

Table 4.3: Progression of positive and negative examples.
miRTarBase Combinations Valid Combinations Different miRNA

Positive/Functional 5,619 (74.3%) 23,019 (74,6%) 7,100 (76.9%) 2441
Negative/Non-Functional 1,944 (25.7%) 7,855 (25.4%) 2,131 (23.1%) 746

Total 7,563 30,874 9,231 -1

Source: Elaborated by the Author.

1 - There is an intersection between miRNA in Positive and Negative classes.

48

4.3 Ensemble’s Base Classifiers and Aggregation Function

Eleven different classifiers were chosen from the scikit-learn Python package (PE-

DREGOSA et al., 2011) to compose the ensemble, whose calls are displayed in Table 4.4.

The methods were chosen based on the works by Mousavi, Eftekhari and Haghighi (2015,

p. 10) and Haque et al. (2016, p. 5), both containing high-variance classifiers.

Table 4.4: Classifiers used in the ensemble.
Classifier Name Classifier scikit-learn Call
1 Gaussian Naïve Bayes GaussianNB()
2 Decision Tree (Gini index, max_depth = 5) DecisionTreeClassifier(max_depth=5, criterion=’gini’)
3 Decision Tree (Entropy, max_depth = 5) DecisionTreeClassifier(max_depth=5, criterion=’entropy’)
4 Random Forest (Gini index, max_depth = 5) RandomForestClassifier(max_depth=5, criterion=’gini’)
5 Random Forest (Gini index, max_depth = 5) RandomForestClassifier(max_depth=5, criterion=’entropy’)
6 Quadratic Discriminant Analysis QuadraticDiscriminantAnalysis()
7 Support Vector Machine SVC(kernel=’rbf’, probability=True)
8 K-Nearest Neighbors (K = 3) KNeighborsClassifier(n_neighbors=3)
9 K-Nearest Neighbors (K = 5) KNeighborsClassifier(n_neighbors=5)

10 K-Nearest Neighbors (K = 7) KNeighborsClassifier(n_neighbors=7)
11 Logistic Regression LogisticRegression()

Source: Elaborated by the Author.

The methods were combined using a Voting Classifier (implemented by the au-

thor, described at Section 2.2.3.1), meaning that all classifiers were trained using the full

training dataset, without any sampling technique. The outputs were generated with pre-

dict_proba(), which return probability estimates to the given inputs, and combined with

a simple average. If the output is lower than 0.5, the instance is classified as Negative;

otherwise, it is classified as Positive.

Discarded classifiers and other techniques (e.g., downsampling), and why they

weren’t used in the final version of this work, are mentioned in the Discarded Variations

section (Section 4.5).

4.4 Genetic Algorithm for Ensemble Optimization

The adopted Genetic Algorithm follows a basic high level execution, illustrated in

Figure 4.1 below. Each phase details will be explained in the following subsections, such

as hyperparameters configuration, also listed in Table 4.5, and algorithms used.

49

Figure 4.1: Genetic Algorithm high level execution pipeline.

Source: Elaborated by the Author.

Table 4.5: Adopted GA’s hyperparameters configuration.
Hyperparameter Name Hyperparameter Value

Population Size 55
Crossover Rate 60%
Mutation Rate 1%

Elitism Size 1
Tournament Size Population Size/10 = 5

Generations Limit 10

Source: Elaborated by the Author.

4.4.1 Chromosome - Ensemble Representation

Every individual in the GA represents a different combination of classifiers in the

ensemble. The chromosome defines for each base classifier if it is used or not in the

ensemble, with the number 1 meaning true (i.e., it is used), and the number 0 meaning

false (i.e., it is not used). If any chromosome is fully composed of zeroes, which has a

probability of only 1/211 to happen in the initial generation, and even lower during the

GA execution (as a ensemble with a low number of classifiers won’t have good fitness), a

50

random new chromosome is generated.

Considering the numeration in the first column of Table 4.4, Figure 4.2 shows a

possible chromosome, i.e., a classifiers combination in an ensemble, and Figure 4.3 illus-

trates the ensemble construction and evaluation process based on the chromosome/genotype.

Figure 4.2: Example chromosome representing an ensemble that uses classifiers #2, #5,
#7, and #10 from Table 4.4.

Source: Elaborated by the Author.

Figure 4.3: Ensemble construction and evaluation.

Source: Elaborated by the Author.

4.4.2 Fitness

Each individual is evaluated taking the average of a Stratified K-Fold Cross Vali-

dation (Section 2.2.4.1, Figure 4.4) of the ensemble, with K = 5, using one of the perfor-

51

mance measures (Accuracy, Matthews Correlation Coefficient, F1 Score, Area Under the

Curve) explained in Section 2.2.4. These measures are combined or not with the Entropy

diversity measure explained in Section 2.2.3.2, with weights (β and (1 − β)) depending

on the experiment being executed, with the following formula:

fitness(x) = β × Performance(x) + (1− β)×Diversity(x) (4.1)

Figure 4.4: Stratified K-Fold Cross Validation ensemble evaluation.

Source: Elaborated by the Author.

4.4.3 Population Size

The population size was chosen according to a formula used in Haque et al. (2016),

described by Cox (2005), being k the size of the chromosome, and 2k the number of

possible ensemble combinations:

population_size = min
(
(5× k) ,

(
2k

2

))
(4.2)

As we have k = 11, the result of the above formula is population_size = 55.

52

4.4.4 Offspring Generation

The offspring, or new population, is generated from a combination of chromo-

somes from individuals in the previous generation (i.e., parents). As explained in Section

2.2.1, this phase has three steps: Selection, Recombination (Crossover), and Mutation.

The Selection method used in this work is the Tournament Selection, explained

in Section 2.2.1.4. The size of the tournament, i.e., the number of individuals randomly

chosen for the selection, is population_size/10, and p = 1 is used to enforce maximum

selection pressure. This means that the best individual has a high chance of being cho-

sen, and this probability decays for each subsequent individual in the ranking. This also

causes the 10% worst individuals to be mathematically discarded because they won’t be

the top individual of the tournament they enter, as we use the deterministic variation of

the method, forcing at least a 10% refresh of the population.

We also apply the Elitism strategy, explained in Section 2.2.1.7, with n = 1. The

best individual is always added to the next population without any change.

The method used in this work for Recombination is the Uniform Crossover, ex-

plained in Section 2.2.1.5. We have chosen this method as there isn’t any meaning in the

order of the classifiers in the chromosome, and we want to maximize the combination of

solutions that work. Given two individuals selected by Tournament Selection, they have

a chance of 60% of being recombined via Uniform Crossover to generate their offspring.

If they are not recombined, they move on to the mutation step as they are.

For mutation, we applied the Flip-Bit Mutation method, explained in Section

2.2.1.6, with a mutation chance of 1% per bit in the chromosome, leading to a 1−0.9911 =

10.47% probability of a chromosome of size 11 to be mutated at least one time.

4.4.5 Implementation and Optimizations

The implementation was made in Python 3.6, using the packages numpy for float

number operations, pandas for dataset management, scipy for scientific operations, and

sklearn (or scikit-learn) for Machine Learning methods, e.g. the classifiers used in the

ensemble.

There were two major practical optimizations in the implementation of this Ge-

netic Algorithm. As we don’t have a low chance of individuals to be maintained from a

generation to another (i.e., 40%× (100%− 10.47%) = 35, 81%), and the ensemble eval-

53

uation process takes a considerable amount of time, a cache was implemented to prevent

us of executing the same ensemble combination more than once.

The other optimization made consists of saving the full individual object, contain-

ing the trained ensemble inside of it, of the best individual of each generation, thinking

of a possible future use of encountered ensembles. Saving is made using a Python library

called Pickle, that serializes the object into a binary file that can be recovered again in a

future moment using the same library.

The full implementation is provided at <https://github.com/skakim/miRNA_predict>.

4.5 Discarded Variations

During the implementation, we’ve had some discarded variations that are worth

mentioning in this section. The reasons why each one of them were abandoned are de-

scribed in the next subsections.

4.5.1 Rotation Forest and Bagging

A implementation of the Rotation Forest technique described in the related work

by Mousavi, Eftekhari and Haghighi (2015) (Section 3.3) was the first ensemble approach

we have tried, together with Bagging. Both methods’ purpose is to present different

data to the different classifiers that compose the ensemble. Rotation Forest does this by

sampling the features, and Bagging by sampling the instances.

Both approaches were outperformed by the Voting Classifier. The hypothesis for

the Bagging to be worst is that, as mentioned in the Biological Background (Section 2.1)

and in the miRNA-targets Dataset (Section 4.1.1), the number of miRNA-mRNA pairs

available in the dataset is incredibly low compared to the number of possible combina-

tions. Therefore, any instances sample will deprive the classification of examples even

more, degrading their effectiveness.

The hypothesis for the poor performance of the Random Forest algorithm is sim-

ilar, and also has a basis in the Biological Background (Section 2.1): we don’t know

exactly which features are relevant to classify a miRNA-mRNA pair as functional. Fea-

ture sampling conducted by the algorithm may forbid the classifiers to discover it by

themselves, not letting them have access to all the relevant information and therefore also

https://github.com/skakim/miRNA_predict

54

degrading their performance.

4.5.2 Downsampling and Oversampling

Thinking about the unbalancing of the classes in the dataset described in the

Dataset Generation (Section 4.2), the most common techniques to mitigate its effect is

downsampling and oversampling, explained in Section 2.2.5. It is important to mention

that, in this context, as we don’t understand the mechanisms behind miRNA-mRNA inter-

actions, we can’t generate artificial instances to the minority class, therefore we are tied

to the oversampling and downsampling techniques.

Similar to the ensemble methods described in the previous section, the techniques

didn’t perform well. The hypothesis for the poor performance of downsampling is the

same as Bagging: sampling the already low number of instances will cause the classifiers

to have even less information, degrading their capacity of learning.

On the other hand, our hypothesis for the weak performance of oversampling is

based on the way the DIANA-TarBase database (and others) is generated. The exam-

ples are taken from published articles, which have a tendency to publish only positive

examples, as noticed in Section 4.1.1. The few articles that publish negative examples are

usually restricted to a few miRNAs or diseases of higher scientific interest, thus generating

a sample that is not fully representative of the universe of non-functional miRNA-target

genes. If we oversample this class, any existing bias will be replicated, causing even more

problems to the classifiers, and a worse performance compared to not using any sampling

technique.

With those results, we’ve decided to rely on the heterogeneity of the classifiers in

the ensemble to create the variety of models and the desired diversity that is the core of

the ensemble methods.

4.5.3 Discarded Classifiers

During the process of selecting the base classifiers, there were some methods that

performed badly with any combination of parameters tried, and therefore were removed

from the list. They are:

55

• Neural Networks, adopting the following topologies of hidden layers: 1-10, 1-5-5,

1-3-3-3, 10, 15 and 20, always with a maximum number of iterations equal to 50;

• Support Vector Machine with Sigmoid Kernel;

• Stochastic Gradient Descent.

The hypothesis for the bad performance is that these algorithms suffer too much

with class unbalancing, achieving a poor generalization power. In Figure 4.5, generated

during the evaluation of the methods to be used in the final version, it is clear that those

algorithms weren’t learning, since they were always classifying instances as belonging to

one specific class or always generating the same output.

Figure 4.5: Heatmap of classifiers predicted probabilities for the positive class for in-
stances in a test dataset. Probabilities closer to 0.0 are shown in red, whereas probabilities
closer to 1.0 are represented in light yellow. The column "EXPECTED" provides the true
label, in which red means negative examples and light yellow denotes positive examples.

Source: Elaborated by the Author.

56

5 EXPERIMENTAL RESULTS

The proposed solution was extensively tested with different combinations of per-

formance measures and with different proportions of the diversity measure (entropy).

We’ve also compared the performance of the ensemble optimized with a GA against the

individual classifiers and the full ensemble (composed of a majority voting among all

classifiers). The results are explained and analyzed in the following sections.

5.1 Computational Resources

Some dataset generation code and all the GA code was made with Python 3.6.3.

The exact versions of the external Python libraries used are as follows:

• numpy - 1.13.3

• pandas - 0.20.3

• pickleshare - 0.7.4

• scikit-learn - 0.19.1

Another part of the dataset generation code was made with R 3.5.0 and Perl 5.26.1,

and was executed in an Ubuntu 18.04.1 Virtual Machine.

The GA execution was made in a Windows 10 computer with an Intel Core i5-7400

@ 3.00GHz CPU and 8GB RAM. A GA execution uses, on average, 300KB of RAM, only

one CPU core, as the implemented Voting Classifier doesn’t use parallelism, and finishes

the processing of the 10th generation in approximately 45 minutes. The majority of this

time is used in the first GA generations.

5.2 Experiment Methodology

For experimentation, we’ve used the parameters explained in the Proposed Solu-

tion (Chapter 4), summarized in Table 4.5.

Although we collect all performance measures for each ensemble, in the follow-

ing sections we compare the different combinations using the AUC measure, given its

sensitivity to overfitting, easy interpretation, and variability observed in the tests. The

complete table of performance measures is available in Appendix A.

57

As explained in the Proposal (Subsection 4.4.2), the measures of an ensemble

are obtained through an average of the 5-Fold Stratified Cross-Validation. As the whole

process involves a lot of random events, to evaluate the performance-diversity proportions

in the GA’s fitness, each combination was executed 10 times to extract the following

results. The fitness’ function combinations are:

• Pure Accuracy

• 75% Accuracy + 25% Diversity

• 50% Accuracy + 50% Diversity

• 25% Accuracy + 75% Diversity

• Pure AUC Score

• 75% AUC Score + 25% Diversity

• 50% AUC Score + 50% Diversity

• 25% AUC Score + 75% Diversity

• Pure F1 Measure

• 75% F1 Measure + 25% Diversity

• 50% F1 Measure + 50% Diversity

• 25% F1 Measure + 75% Diversity

• Pure MCC

• 75% MCC + 25% Diversity

• 50% MCC + 50% Diversity

• 25% MCC + 75% Diversity

5.3 Genetic Algorithm Learning Curves

A common visualization to evaluate the learning process of an AI model is the

learning curve. It shows, for each learning step, what is the achieved performance. Good

learning curves normally have logarithmic forms, i.e., the model learns fast in the begin-

ning and progresses slowly towards the optimal solution until it stabilizes.

Figure 5.1 presents the learning curve for a particular execution of the proposed

method with two different combinations of performance and diversity in the fitness func-

tion: pure AUC versus AUC combined with Diversity with similar weight (50% each).

It is possible to notice that the fitness function based on the combination of AUC

and Diversity leads to a slight drop in the performance in the second generation, as it

isn’t using the pure performance measure as fitness function, but it recovers in the fourth

generation and stabilizes.

All combinations stabilize in the first generations, with rare exceptions. This may

be caused by a variety of factors: the amount of selection pressure caused by the Tour-

nament Selection, Elitism and, most importantly, the unbalancing of the dataset. There

is a limit where the classifiers stop trying to learn how to properly classify the minority

class, leading to an early stabilization as the ceiling is reached. What the GA is finding

here is the best way to combine different classifiers in order to have a better performance

58

Figure 5.1: Learning curves for fitness curves using pure AUC and AUC combined with
50% of diversity. Performed is compared by means of AUC Score.

Source: Elaborated by the Author.

by averaging the outputs of the saturated classifiers, i.e., learning how they complement

each other better.

5.4 Comparison between Different Diversity Proportions

The comparison of different proportions of performance and diversity measures is

visualized as boxplots in Figure 5.2. As mentioned before, each boxplot is the result of ten

executions of the GA learning pipeline. The dotted diamonds overlapping the boxplots

show the standard deviation, whereas its center line represents the average value. The

different GA’s fitness functions are compared in terms of AUC Score. Other performance

comparisons lead to similar conclusions. We’ve chosen this one as it has produced a good

visualization. To read the other measured performances, please refer to Appendix A.

It is noticeable, given the visualization, that the more we increase the proportion of

diversity in the fitness, the higher is the standard deviation observed and the more outliers

we have. Nonetheless, it is also possible to perceive that a dose of diversity can also

produce good outliers, i.e., better solutions than a pure performance fitness.

Considering the challenge presented by the unbalanced dataset and the produced

plots, we believe that the balancing difficulty can be overshadowing the benefits of using

diversity in the fitness, as it saturates rapidly. With a larger and balanced dataset, diversity

59

Figure 5.2: Boxplots comparing the performance in terms of AUC Score (Y axis) for every
combination of performance measure with different proportions of the diversity measure
(X axis) in the GA’s fitness functions specified in the plots’ titles. Results are extracted
from 10 repetitions of the proposed solution.

(a) Accuracy (b) AUC

(c) F1 Measure (d) MCC

Source: Elaborated by the Author.

may positively affect the performance of the Genetic Algorithm, but this can’t be con-

cluded from the tests executed in this work. Additionally, we can’t conclude that diversity

measure isn’t useful in the miRNA-target prediction problem, as in some scenarios a GA

fitness function explicitly optimizing diversity achieves better solutions.

60

5.5 Comparison against Individual Classifiers and Full Ensemble

In this section, we provide experimental results that compare the proposed GA ap-

proach against the individual classifiers used in the ensembles, and the ensemble using all

possible classifiers. Table 5.1 shows the average AUC scores for each approach, being the

5-Fold Stratified Cross-Validation average for individual classifiers and the full ensemble,

and the average of 10 executions for the GA executions.

Table 5.1: Average AUC Score for each approach.
Approach AUC Score

Gaussian Naïve Bayes 0.5943 ± 0.0106
Decision Tree (Gini index, max_depth = 5) 0.6182 ± 0.0111

Decision Tree (Entropy, max_depth = 5) 0.6220 ± 0.0075
Random Forest (Gini index, max_depth = 5) 0.6110 ± 0.0096

Random Forest (Entropy, max_depth = 5) 0.6108 ± 0.0082
Quadratic Discriminant Analysis 0.5868 ± 0.0382

Support Vector Machine 0.6054 ± 0.0135
K-Nearest Neighbors (K = 3) 0.6084 ± 0.0195
K-Nearest Neighbors (K = 5) 0.6058 ± 0.0198
K-Nearest Neighbors (K = 7) 0.5961 ± 0.0165

Logistic Regression 0.5365 ± 0.0062
Full Ensemble 0.6107 ± 0.0110

Genetic Algorithm (AUC w/o Diversity) 0.6418 ± 0.0094
Genetic Algorithm (AUC w/ 25% Diversity) 0.6204 ± 0.0105
Genetic Algorithm (AUC w/ 50% Diversity) 0.6186 ± 0.0153
Genetic Algorithm (AUC w/ 75% Diversity) 0.6131 ± 0.0188

Source: Elaborated by the Author.

The Genetic Algorithm outvalues the individual classifiers and the full ensemble.

When using combinations of diversity in the GA’s fitness function, the average AUC

Scores are lower than the one from the best individual algorithm (Decision Tree with

Entropy), but it is important to notice that the standard deviation is larger. Combinations

of just a few classifiers tend to have better fitness values than those with a lot of classifiers,

and this tendency can be justified by this table: the full ensemble is one of the worst

approaches.

It is interesting to mention that, even though some algorithms are perceptibly

worse in terms of AUC Score performance, they are eventually chosen by the Genetic

Algorithm to compose a solution, as the most important in a heterogeneous ensemble is

to have complementarity between its base classifiers.

61

6 CONCLUSION

From the results shown in the previous chapter, we can conclude that using an

Genetic Algorithm to build an heterogeneous ensemble for the miRNA-target prediction

problem produces better ensembles than simply using all possible classifiers, or using

them alone. This is true even when comparing against the Random Forest technique, that

is a homogeneous ensemble technique.

Even though the implementation was a success, we can’t conclude from the results

obtained if adding a diversity measure to the GA fitness function increases its performance

of not. The class unbalancing in the dataset, along with the relatively small sample size,

presented a big challenge to the proposed technique, and may have overshadowed the

benefits of the diversity measure. The higher variance when using the entropy in the GA

fitness function leaded to some ensembles that are better than those generated with a pure

performance fitness, but also generated worse ones.

Further work on this topic is needed to have more concrete conclusions. A larger

and more balanced miRNA-mRNA dataset is strongly required for a new execution of the

proposed solution. Other possible line of work, while we don’t have the desired dataset,

would be to explore newer state-of-art multi-objective GA approaches, such as NSGA-

II (DEB et al., 2000), to automatically balance the performance with the diversity, by

considering the Pareto-optimal front, in order to find better solutions that achieve both

objectives. Summing up, further study is needed, extending our experimental approach

with a larger and more balanced dataset to be able to effectively evaluate the proposed

method.

62

REFERENCES

MENDOZA, M. R. et al. RFMirTarget: Predicting Human MicroRNA Target Genes with
a Random Forest Classifier. PLoS ONE, v. 8, n. 7, 2013. ISSN 19326203.

YAN, X. et al. Improving the prediction of human microRNA target genes by using
ensemble algorithm. FEBS Letters, 2007. ISSN 00145793.

YU, S. et al. Ensemble learning can significantly improve human microRNA target
prediction. Methods, 2014. ISSN 10959130.

LE, T. D. et al. Ensemble methods for miRNA target prediction from expression data.
PLoS ONE, 2015. ISSN 19326203.

HAQUE, M. N. et al. Heterogeneous ensemble combination search using genetic
algorithm for class imbalanced data classification. PLoS ONE, 2016. ISSN 19326203.

MOUSAVI, R.; EFTEKHARI, M.; HAGHIGHI, M. G. A new approach to human
MicroRNA target prediction using ensemble pruning and rotation forest. Journal of
bioinformatics and computational biology, v. 13, n. 6, p. 1550017, 2015. ISSN
1757-6334. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/26017463>.

FILIPOWICZ, W.; BHATTACHARYYA, S. N.; SONENBERG, N. Mechanisms of
post-transcriptional regulation by microRNAs: Are the answers in sight? 2008.

YUE, D.; LIU, H.; HUANG, Y. Survey of Computational Algorithms for MicroRNA
Target Prediction. Current Genomics, 2009. ISSN 13892029.

BARTEL, D. P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.
2004.

HE, L.; HANNON, G. J. MicroRNAs: Small RNAs with a big role in gene regulation.
2004.

YANAIHARA, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis
and prognosis. Cancer Cell, 2006. ISSN 15356108.

KLUIVER, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary
mediastinal and diffuse large B cell lymphomas. The Journal of Pathology, 2005. ISSN
00223417.

ZAHA, A.; FERREIRA, H. B.; PASSAGLIA, L. M. P. Biologia Molecular Básica. 5.
ed. Porto Alegre: ArtMed, 2014. 416 p.

CRICK, F. Central dogma of molecular biology. Nature, 1970. ISSN 00280836.

CLANCY, S.; BROWN, W. Translation: DNA to mRNA to Protein. Nature
Education, 2008. Available at: <https://www.nature.com/scitable/topicpage/
translation-dna-to-mrna-to-protein-393>.

LU, M. et al. An analysis of human microRNA and disease associations. PLoS ONE,
2008. ISSN 19326203.

http://www.ncbi.nlm.nih.gov/pubmed/26017463
https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393
https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393

63

STURM, M. et al. TargetSpy: A supervised machine learning approach for microRNA
target prediction. BMC Bioinformatics, 2010. ISSN 14712105.

VLACHOS, I. S. et al. DIANA-TarBase v7.0: Indexing more than half a million
experimentally supported miRNA:mRNA interactions. Nucleic Acids Research, v. 43,
n. D1, p. D153–D159, 2015. ISSN 13624962.

DARWIN, C. On the Origin of Species. London: John Murray, 1859.

TURING, A. M. Computing machinery and intelligence. n. 236, 1950. Available at:
<http://mind.oxfordjournals.org/>.

FRASER, A. S. Simulation of Genetic Systems by Automatic Digital Computers.
Australian Journal of Biological Sciences, 1957.

HORNBY, G. et al. Automated Antenna Design with Evolutionary Algorithms. In:
Space 2006. [S.l.: s.n.], 2006. ISBN 978-1-62410-049-9. ISSN 1063-6560.

FACELI, K. et al. Inteligência artificial: uma abordagem de aprendizado de
máquina. 1. ed. [S.l.: s.n.], 2011. 394 p.

PEDREGOSA, F. et al. Naive Bayes. 2018. Accessed in 14/10/2018. Available at:
<http://scikit-learn.org/stable/modules/naive_bayes.html#naive-bayes>.

PEDREGOSA, F. et al. Decision Trees. 2018. Accessed in 14/10/2018. Available at:
<http://scikit-learn.org/stable/modules/tree.html>.

CUNNINGHAM, P.; CARNEY, J. Diversity versus Quality in Classification
Ensembles based on Feature Selection. [S.l.], 2000.

KUNCHEVA, L. I. Measures of Diversity in Classifier Ensembles and Their
Relationship with the Ensemble Accuracy. [S.l.], 2003. v. 51, 181–207 p.

FRIGG, R.; WERNDL, C. Entropy-A Guide for the Perplexed. [S.l.], 2010.

SHANNON, C. E. A Mathematical Theory of Communication. [S.l.], 1948. v. 27,
623–656 p.

WIKIPEDIA. Cross-validation (statistics). 2018. Accessed in 15/10/2018. Available at:
<https://en.wikipedia.org/wiki/Cross-validation_(statistics)>.

MATTHEWS, B. W. Comparison of the predicted and observed secondary structure of
T4 phage lysozyme. BBA - Protein Structure, p. 442–451, 1975.

CHICCO, D. Ten quick tips for machine learning in computational biology. 2017.
1–17 p.

FAWCETT, T. An introduction to ROC analysis. Pattern Recognition Letters, p.
861–874, 2006.

PRILL, R. J. et al. Towards a rigorous assessment of systems biology models: The
DREAM3 challenges. PLoS ONE, 2010. ISSN 19326203.

MARBACH, D. et al. Wisdom of crowds for robust gene network inference. Nature
Methods, 2012. ISSN 15487091.

http://mind.oxfordjournals.org/
http://scikit-learn.org/stable/modules/naive_bayes.html#naive-bayes
http://scikit-learn.org/stable/modules/tree.html
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

64

RODRÍGUEZ, J. J.; KUNCHEVA, L. I.; ALONSO, C. J. Rotation forest: A New
classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, v. 28, n. 10, p. 1619–1630, 2006. ISSN 01628828.

CHOU, C. H. et al. MiRTarBase update 2018: A resource for experimentally validated
microRNA-target interactions. Nucleic Acids Research, Oxford University Press, v. 46,
n. D1, p. D296–D302, 2018. ISSN 13624962.

KARAGKOUNI, D. et al. DIANA-TarBase v8: A decade-long collection of
experimentally supported miRNA-gene interactions. Nucleic Acids Research, Oxford
University Press, v. 46, n. D1, p. D239–D245, 2018. ISSN 13624962.

GRIFFITHS-JONES, S. miRBase: microRNA sequences, targets and gene nomenclature.
Nucleic Acids Research, 2006. ISSN 0305-1048.

KOZOMARA, A.; GRIFFITHS-JONES, S. MiRBase: Annotating high confidence
microRNAs using deep sequencing data. Nucleic Acids Research, 2014. ISSN
03051048.

SMEDLEY, D. et al. The BioMart community portal: An innovative alternative to large,
centralized data repositories. Nucleic Acids Research, 2015. ISSN 13624962.

ENRIGHT, A. J. et al. MicroRNA targets in Drosophila. [S.l.], 2003. v. 5, n. 1, 1 p.
Available at: <http://genomebiology.com/2003/5/1/R1>.

PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. [S.l.], 2011. v. 12,
2825–2830 p. Available at: <http://scikit-learn.sourceforge.net.>

COX, E. Fuzzy Modeling and Genetic Algorithms for Data Mining and
Exploration. 1. ed. San Francisco, CA: Elsevier/Morgan Kaufmann, 2005. 540 p. ISBN
9780121942755.

DEB, K. et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-
Objective Optimization. Proceedings of the Parallel Problem Solving from Nature VI
Conference, Paris, France, p. 849–858, 2000.

http://genomebiology.com/2003/5/1/R1
http://scikit-learn.sourceforge.net.

65

APPENDIX A — COMPLETE TABLES WITH ALL EXPERIMENTAL

EXECUTIONS OF THE PROPOSED SOLUTION

66

AU
C

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
80

81
0,

80
11

0,
80

40
0,

81
78

0,
81

96
0,

79
93

0,
81

60
0,

80
30

0,
80

24
0,

81
54

0,
80

87
0,

00
77

0,
79

93
0,

81
96

A
U

C
0,

63
95

0,
64

22
0,

63
75

0,
64

39
0,

62
84

0,
65

14
0,

62
86

0,
65

60
0,

65
19

0,
63

86
0,

64
18

0,
00

94
0,

62
84

0,
65

60
F1

0,
88

40
0,

87
85

0,
88

07
0,

89
08

0,
89

34
0,

87
57

0,
89

09
0,

87
78

0,
87

86
0,

88
86

0,
88

39
0,

00
65

0,
87

57
0,

89
34

M
C

C
0,

36
90

0,
35

52
0,

36
37

0,
39

56
0,

38
83

0,
36

83
0,

37
45

0,
38

70
0,

36
91

0,
38

00
0,

37
51

0,
01

25
0,

35
52

0,
39

56
AU

C
+

D
iv

er
si

ty
(2

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
80

34
0,

74
20

0,
82

09
0,

82
01

0,
82

29
0,

82
49

0,
82

03
0,

75
95

0,
82

00
0,

81
68

0,
80

51
0,

02
95

0,
74

20
0,

82
49

A
U

C
0,

63
30

0,
61

64
0,

61
98

0,
62

47
0,

62
67

0,
61

30
0,

62
70

0,
59

51
0,

62
42

0,
62

38
0,

62
04

0,
01

05
0,

59
51

0,
63

30
F1

0,
88

13
0,

83
52

0,
89

51
0,

89
41

0,
89

59
0,

89
83

0,
89

41
0,

85
22

0,
89

40
0,

89
18

0,
88

32
0,

02
17

0,
83

52
0,

89
83

M
C

C
0,

34
81

0,
23

93
0,

39
16

0,
39

23
0,

40
11

0,
41

39
0,

39
03

0,
22

17
0,

39
09

0,
37

82
0,

35
67

0,
06

88
0,

22
17

0,
41

39
AU

C
+

D
iv

er
si

ty
(5

0%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
80

13
0,

78
35

0,
79

10
0,

68
20

0,
82

27
0,

82
09

0,
77

41
0,

82
02

0,
73

36
0,

81
68

0,
78

46
0,

04
55

0,
68

20
0,

82
27

A
U

C
0,

62
82

0,
62

15
0,

61
19

0,
60

89
0,

63
07

0,
62

99
0,

61
60

0,
62

78
0,

58
15

0,
62

97
0,

61
86

0,
01

53
0,

58
15

0,
63

07
F1

0,
88

01
0,

86
78

0,
87

41
0,

77
98

0,
89

55
0,

89
43

0,
86

11
0,

89
39

0,
83

18
0,

89
14

0,
86

70
0,

03
65

0,
77

98
0,

89
55

M
C

C
0,

34
07

0,
29

18
0,

30
01

0,
20

47
0,

40
15

0,
39

39
0,

27
10

0,
39

01
0,

17
74

0,
37

82
0,

31
49

0,
08

01
0,

17
74

0,
40

15
AU

C
+

D
iv

er
si

ty
(7

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
81

86
0,

66
81

0,
82

19
0,

77
74

0,
74

10
0,

82
21

0,
77

35
0,

82
17

0,
81

98
0,

82
01

0,
78

84
0,

05
09

0,
66

81
0,

82
21

A
U

C
0,

62
46

0,
56

63
0,

62
36

0,
61

47
0,

59
51

0,
62

53
0,

61
32

0,
62

35
0,

62
28

0,
62

18
0,

61
31

0,
01

88
0,

56
63

0,
62

53
F1

0,
89

30
0,

74
33

0,
89

54
0,

86
38

0,
83

71
0,

89
55

0,
86

10
0,

89
84

0,
89

40
0,

89
44

0,
86

76
0,

04
83

0,
74

33
0,

89
84

M
C

C
0,

39
20

0,
15

22
0,

40
01

0,
27

30
0,

20
24

0,
39

71
0,

26
58

0,
39

21
0,

39
75

0,
38

88
0,

32
61

0,
09

44
0,

15
22

0,
40

01

67

A
cc

ur
ac

y
1

2
3

4
5

6
7

8
9

10
A

vg
St

dD
ev

M
in

M
ax

A
cc

ur
ac

y
0,

82
74

0,
82

64
0,

82
60

0,
82

61
0,

82
78

0,
82

78
0,

82
78

0,
82

62
0,

82
53

0,
82

66
0,

82
68

0,
00

09
0,

82
53

0,
82

78
A

U
C

0,
62

43
0,

62
31

0,
62

16
0,

61
89

0,
62

55
0,

62
40

0,
62

08
0,

61
48

0,
61

57
0,

62
07

0,
62

09
0,

00
36

0,
61

48
0,

62
55

F1
0,

89
93

0,
89

86
0,

89
85

0,
89

90
0,

89
94

0,
89

95
0,

89
98

0,
89

91
0,

89
84

0,
89

90
0,

89
91

0,
00

05
0,

89
84

0,
89

98
M

C
C

0,
42

17
0,

41
88

0,
41

50
0,

41
83

0,
42

57
0,

42
52

0,
42

64
0,

42
12

0,
41

62
0,

41
93

0,
42

08
0,

00
40

0,
41

50
0,

42
64

A
cc

ur
ac

y
+

D
iv

er
si

ty
(2

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
82

35
0,

81
82

0,
79

59
0,

77
33

0,
75

38
0,

81
86

0,
79

54
0,

81
82

0,
78

73
0,

77
80

0,
79

62
0,

02
34

0,
75

38
0,

82
35

A
U

C
0,

61
02

0,
61

99
0,

63
20

0,
61

24
0,

56
69

0,
62

21
0,

63
73

0,
62

81
0,

60
29

0,
61

70
0,

61
49

0,
01

98
0,

56
69

0,
63

73
F1

0,
89

76
0,

89
31

0,
87

55
0,

86
09

0,
85

04
0,

89
32

0,
87

39
0,

89
25

0,
87

23
0,

86
40

0,
87

73
0,

01
62

0,
85

04
0,

89
76

M
C

C
0,

40
73

0,
38

04
0,

33
65

0,
26

36
0,

17
02

0,
38

05
0,

34
87

0,
38

66
0,

27
70

0,
27

77
0,

32
29

0,
07

43
0,

17
02

0,
40

73
A

cc
ur

ac
y

+
D

iv
er

si
ty

(5
0%

)
1

2
3

4
5

6
7

8
9

10
A

vg
St

dD
ev

M
in

M
ax

A
cc

ur
ac

y
0,

79
48

0,
79

58
0,

72
67

0,
68

20
0,

80
78

0,
82

33
0,

81
94

0,
82

41
0,

82
09

0,
82

55
0,

79
20

0,
04

87
0,

68
20

0,
82

55
A

U
C

0,
61

49
0,

62
97

0,
57

36
0,

60
89

0,
60

76
0,

61
16

0,
63

04
0,

61
12

0,
61

73
0,

61
27

0,
61

18
0,

01
56

0,
57

36
0,

63
04

F1
0,

87
64

0,
87

58
0,

82
82

0,
77

95
0,

88
68

0,
89

73
0,

89
31

0,
89

79
0,

89
52

0,
89

87
0,

87
29

0,
03

91
0,

77
95

0,
89

87
M

C
C

0,
31

53
0,

33
03

0,
15

42
0,

20
47

0,
33

45
0,

40
48

0,
38

72
0,

41
04

0,
39

44
0,

41
84

0,
33

54
0,

09
06

0,
15

42
0,

41
84

A
cc

ur
ac

y
+

D
iv

er
si

ty
(7

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
68

27
0,

82
33

0,
82

47
0,

82
43

0,
75

88
0,

72
00

0,
72

00
0,

82
49

0,
78

45
0,

77
61

0,
77

39
0,

05
23

0,
68

27
0,

82
49

A
U

C
0,

55
69

0,
61

32
0,

61
22

0,
61

10
0,

59
36

0,
59

16
0,

59
09

0,
61

11
0,

53
65

0,
61

32
0,

59
30

0,
02

66
0,

53
65

0,
61

32
F1

0,
76

19
0,

89
72

0,
89

82
0,

89
81

0,
85

16
0,

81
72

0,
82

01
0,

89
85

0,
87

65
0,

86
29

0,
85

82
0,

04
61

0,
76

19
0,

89
85

M
C

C
0,

14
00

0,
40

36
0,

41
37

0,
41

21
0,

22
00

0,
19

16
0,

18
35

0,
41

48
0,

17
48

0,
26

94
0,

28
23

0,
11

56
0,

14
00

0,
41

48

68

F
1

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
82

78
0,

82
62

0,
82

64
0,

82
55

0,
82

64
0,

82
47

0,
82

72
0,

82
72

0,
82

57
0,

82
62

0,
82

63
0,

00
09

0,
82

47
0,

82
78

A
U

C
0,

62
43

0,
61

35
0,

61
55

0,
61

21
0,

61
33

0,
61

25
0,

61
79

0,
61

95
0,

61
41

0,
61

82
0,

61
61

0,
00

39
0,

61
21

0,
62

43
F1

0,
89

95
0,

89
92

0,
89

92
0,

89
88

0,
89

94
0,

89
82

0,
89

96
0,

89
95

0,
89

88
0,

89
89

0,
89

91
0,

00
04

0,
89

82
0,

89
96

M
C

C
0,

42
52

0,
42

31
0,

42
22

0,
41

85
0,

42
43

0,
41

38
0,

42
57

0,
42

40
0,

41
94

0,
41

87
0,

42
15

0,
00

38
0,

41
38

0,
42

57
F

1
+

D
iv

er
si

ty
(2

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
82

09
0,

82
27

0,
82

41
0,

82
31

0,
77

78
0,

82
39

0,
82

37
0,

76
98

0,
82

37
0,

82
31

0,
81

33
0,

02
09

0,
76

98
0,

82
41

A
U

C
0,

62
86

0,
61

00
0,

61
09

0,
60

96
0,

61
85

0,
61

17
0,

61
06

0,
59

94
0,

61
16

0,
60

90
0,

61
20

0,
00

74
0,

59
94

0,
62

86
F1

0,
89

44
0,

89
70

0,
89

79
0,

89
73

0,
86

37
0,

89
77

0,
89

77
0,

85
91

0,
89

76
0,

89
74

0,
89

00
0,

01
51

0,
85

91
0,

89
79

M
C

C
0,

39
33

0,
40

35
0,

40
97

0,
40

52
0,

27
94

0,
40

91
0,

40
83

0,
24

83
0,

40
78

0,
40

61
0,

37
71

0,
06

03
0,

24
83

0,
40

97
F

1
+

D
iv

er
si

ty
(5

0%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
82

11
0,

82
49

0,
77

71
0,

70
09

0,
82

30
0,

82
39

0,
78

45
0,

82
51

0,
82

35
0,

82
19

0,
80

26
0,

03
99

0,
70

09
0,

82
51

A
U

C
0,

62
40

0,
61

04
0,

61
39

0,
57

77
0,

62
20

0,
61

14
0,

53
52

0,
61

21
0,

63
06

0,
60

73
0,

60
45

0,
02

81
0,

53
52

0,
63

06
F1

0,
89

49
0,

89
85

0,
86

36
0,

80
10

0,
89

45
0,

89
78

0,
87

66
0,

89
85

0,
89

60
0,

89
67

0,
88

18
0,

03
07

0,
80

10
0,

89
85

M
C

C
0,

39
28

0,
41

62
0,

27
14

0,
16

43
0,

39
15

0,
40

85
0,

17
40

0,
41

62
0,

40
59

0,
40

01
0,

34
41

0,
10

15
0,

16
43

0,
41

62
F

1
+

D
iv

er
si

ty
(7

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
71

82
0,

75
70

0,
75

70
0,

82
61

0,
82

09
0,

75
56

0,
82

13
0,

73
06

0,
81

98
0,

82
31

0,
78

30
0,

04
32

0,
71

82
0,

82
61

A
U

C
0,

59
23

0,
59

28
0,

59
34

0,
61

53
0,

62
17

0,
59

00
0,

62
35

0,
57

49
0,

63
01

0,
61

06
0,

60
45

0,
01

81
0,

57
49

0,
63

01
F1

0,
81

64
0,

85
03

0,
85

03
0,

89
90

0,
89

49
0,

84
96

0,
89

51
0,

82
98

0,
89

34
0,

89
73

0,
86

76
0,

03
16

0,
81

64
0,

89
90

M
C

C
0,

18
88

0,
21

56
0,

21
70

0,
42

06
0,

39
28

0,
21

01
0,

39
45

0,
15

98
0,

38
91

0,
40

42
0,

29
93

0,
10

80
0,

15
98

0,
42

06

69

M
C

C
1

2
3

4
5

6
7

8
9

10
A

vg
St

dD
ev

M
in

M
ax

A
cc

ur
ac

y
0,

82
78

0,
82

63
0,

82
69

0,
82

55
0,

82
74

0,
82

57
0,

82
76

0,
82

43
0,

82
74

0,
82

68
0,

82
66

0,
00

11
0,

82
43

0,
82

78
A

U
C

0,
62

08
0,

61
32

0,
61

52
0,

61
18

0,
64

00
0,

61
85

0,
62

19
0,

61
01

0,
62

34
0,

61
42

0,
61

89
0,

00
87

0,
61

01
0,

64
00

F1
0,

89
98

0,
89

92
0,

89
95

0,
89

88
0,

89
80

0,
89

84
0,

89
95

0,
89

81
0,

89
93

0,
89

96
0,

89
90

0,
00

06
0,

89
80

0,
89

98
M

C
C

0,
42

58
0,

42
31

0,
42

54
0,

41
93

0,
42

22
0,

41
53

0,
42

48
0,

41
25

0,
42

31
0,

42
64

0,
42

18
0,

00
47

0,
41

25
0,

42
64

M
C

C
+

D
iv

er
si

ty
(2

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
82

57
0,

82
39

0,
82

47
0,

82
03

0,
80

09
0,

80
78

0,
82

43
0,

82
27

0,
82

70
0,

82
51

0,
82

02
0,

00
87

0,
80

09
0,

82
70

A
U

C
0,

61
53

0,
61

98
0,

62
41

0,
62

73
0,

64
83

0,
63

90
0,

62
23

0,
61

06
0,

61
87

0,
61

46
0,

62
40

0,
01

16
0,

61
06

0,
64

83
F1

0,
89

87
0,

89
71

0,
89

73
0,

89
40

0,
87

76
0,

88
28

0,
89

72
0,

89
70

0,
89

94
0,

89
83

0,
89

39
0,

00
75

0,
87

76
0,

89
94

M
C

C
0,

41
84

0,
40

78
0,

40
90

0,
39

19
0,

36
73

0,
38

89
0,

40
78

0,
40

27
0,

42
35

0,
41

37
0,

40
31

0,
01

65
0,

36
73

0,
42

35
M

C
C

+
D

iv
er

si
ty

(5
0%

)
1

2
3

4
5

6
7

8
9

10
A

vg
St

dD
ev

M
in

M
ax

A
cc

ur
ac

y
0,

82
35

0,
81

99
0,

74
52

0,
82

03
0,

82
02

0,
79

89
0,

82
37

0,
82

35
0,

82
43

0,
82

51
0,

81
25

0,
02

48
0,

74
52

0,
82

51
A

U
C

0,
61

87
0,

62
42

0,
57

42
0,

62
73

0,
62

78
0,

61
29

0,
61

03
0,

61
14

0,
61

19
0,

61
21

0,
61

31
0,

01
53

0,
57

42
0,

62
78

F1
0,

89
69

0,
89

40
0,

84
05

0,
89

40
0,

89
39

0,
84

98
0,

89
77

0,
89

75
0,

89
80

0,
89

86
0,

88
61

0,
02

17
0,

84
05

0,
89

86
M

C
C

0,
40

39
0,

39
19

0,
17

61
0,

39
19

0,
39

15
0,

31
81

0,
40

81
0,

40
67

0,
41

07
0,

41
28

0,
37

12
0,

07
39

0,
17

61
0,

41
28

M
C

C
+

D
iv

er
si

ty
(7

5%
)

1
2

3
4

5
6

7
8

9
10

A
vg

St
dD

ev
M

in
M

ax
A

cc
ur

ac
y

0,
82

07
0,

82
43

0,
79

12
0,

67
61

0,
74

42
0,

82
55

0,
81

96
0,

71
65

0,
82

29
0,

82
35

0,
78

64
0,

05
46

0,
67

61
0,

82
55

A
U

C
0,

62
69

0,
61

23
0,

60
79

0,
58

05
0,

58
36

0,
61

46
0,

60
29

0,
58

58
0,

61
04

0,
60

92
0,

60
34

0,
01

52
0,

58
05

0,
62

69
F1

0,
89

43
0,

89
80

0,
87

47
0,

76
57

0,
84

12
0,

89
86

0,
89

54
0,

81
72

0,
89

71
0,

89
76

0,
86

80
0,

04
57

0,
76

57
0,

89
86

M
C

C
0,

39
42

0,
42

09
0,

29
23

0,
17

16
0,

18
71

0,
41

66
0,

38
75

0,
17

19
0,

40
49

0,
40

84
0,

32
55

0,
10

89
0,

17
16

0,
42

09

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Theoretical Background
	2.1 Biological Background
	2.1.1 Central Dogma of Molecular Biology
	2.1.2 MicroRNA and their interaction with mRNA

	2.2 Computational Background
	2.2.1 Genetic Algorithms
	2.2.1.1 Individual Chromosome Representation
	2.2.1.2 Initial Population Generation
	2.2.1.3 Fitness Functions
	2.2.1.4 Selection Methods
	2.2.1.5 Crossover Methods
	2.2.1.6 Mutation Methods
	2.2.1.7 Other Heuristics
	2.2.1.8 Termination Criteria

	2.2.2 Supervised Learning
	2.2.2.1 Gaussian Naïve Bayes
	2.2.2.2 Decision Tree
	2.2.2.3 Random Forest
	2.2.2.4 Quadratic Discriminant Analysis
	2.2.2.5 Support Vector Machine
	2.2.2.6 K-Nearest Neighbors
	2.2.2.7 Logistic Regression

	2.2.3 Ensemble Learning
	2.2.3.1 Voting Classifier
	2.2.3.2 Diversity Measures

	2.2.4 Model Evaluation
	2.2.4.1 Cross Validation
	2.2.4.2 Confusion Matrix
	2.2.4.3 Accuracy
	2.2.4.4 F1 Score
	2.2.4.5 Matthews Correlation Coefficient
	2.2.4.6 Area Under Curve

	2.2.5 Unbalanced Datasets

	3 Related Work
	3.1 Homogeneous Ensemble
	3.2 Heterogeneous Ensemble
	3.3 Genetic Algorithm with Heterogeneous Ensemble

	4 Proposed Solution
	4.1 Data Sources
	4.1.1 miRNA-Targets Dataset
	4.1.2 miRNA and mRNA Sequences

	4.2 Dataset Generation
	4.3 Ensemble's Base Classifiers and Aggregation Function
	4.4 Genetic Algorithm for Ensemble Optimization
	4.4.1 Chromosome - Ensemble Representation
	4.4.2 Fitness
	4.4.3 Population Size
	4.4.4 Offspring Generation
	4.4.5 Implementation and Optimizations

	4.5 Discarded Variations
	4.5.1 Rotation Forest and Bagging
	4.5.2 Downsampling and Oversampling
	4.5.3 Discarded Classifiers

	5 Experimental Results
	5.1 Computational Resources
	5.2 Experiment Methodology
	5.3 Genetic Algorithm Learning Curves
	5.4 Comparison between Different Diversity Proportions
	5.5 Comparison against Individual Classifiers and Full Ensemble

	6 Conclusion
	References
	Appendix A — Complete tables with all experimental executions of the proposed solution

