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ABSTRACT. In this paper we consider an asymptotic problem for the propagation of wave
front for the reaction-diffusion equation

Su(t,z,y) _ 1 8%u‘(,z,y) i+ ea(z,y) 8%u¢(t, z,y)
8 T 2 9y? 2 8z2

+ lf(yr, u®),
£

where z,y € R and € > 0 is a small parameter.

We analyze the asymptotic behavior as € | 0 of the solution u®(¢,z,y) of the initial-
boundary value problem with initial condition u?(0,2,y) = g(z) and boundary condition
%ﬁf—'ﬂb:ib = 0 in the band {(z,y) € R?: |y| < b}.

Tﬁe Feynman-Kac formula provides an equation for the solution of the above problem in
terms of a functional integral in the space of trajectories of the corresponding Markov process.
To analyze the behavior of the solution u®(¢,z,y) as € | 0 we use a Large Deviation Principle
for certain family of random processes. This Large Deviation Principle is expressed through
action functionals in space of continuous functions.

1. Introduction

Consider the following initial-boundary value problem

(Ou(t,z,y) _ 10%u(t,z,y) 4 alez,y) Fult,2,y)
ot 2 9y? 2 dz?

forz eR,|y|<b,t>0

u(0,z,y) = g(ez)

Ou(t,z,y)
ol . R |
\ ay |y &

+ f(y,u),

(1.1)

where € > 0 is a parameter.
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The differential equation in (1.1) describes the evolution of the concentration u(t, z,y)
of particles as a result of diffusion of particles governed by the operator

_ 10 ; a(ez,y) 02

(1.2) i 2 Oy?2 2 Oz2 -

and multiplication (killing) of particles governed by the nonlinear term.

We assume that for each y € [-b,b], f is differentiable in u, f(y,0) = f(y,1) = 0,
f(y,u) > 0 for u € (0,1), f(y,u) < 0 for u ¢ [0,1], QI—%’::’—“)-h:g = SUP,>g ﬂi’—"). Put
c(y,u) = @ for u > 0 and ¢(y,0) = limy o L’:;“l . Assume that ¢(y,u) is continuous
in y for y € [-b,b] and Lipschitz continuous in u for u > 0. Let c(y) = <(y,0), i.e.,
c(y) = sup,>q c(y,u). We also assume that for some constants ¢, ¢, 0 < ¢ < ¢(y) £ € for
every y with |y| < b.

The initial function g(z) is supposed to be bounded, nonnegative, continuous in the
interior of its support Go = {z : g(z) > 0} # R, and [Go] = [(Go)]. Here [A4] denotes the
closure of a set A and (A) its interior.

The existence and uniqueness of solution of problem (1.1) is ensured if there exist
constants @ , @ so that 0 < a < a(z,y) < @ for every z € R, |y| < b and if a(z,v)
is Lipschitz continuous in both variables. We assume that a(z,y) satisfies the above
conditions.

The diffusion coefficient in z-direction and the initial function in (1.1) are nonhomoge-
neous in z changing slowly with the small parameter € > 0. To analyze the behavior of the
solution of (1.1) in large time intervals (of order 1), a rescaling of the time and the space in
z-direction is useful (see discussion in [2] and [4]). For & > 0 define u®(t,z,y) = u(%,2,9)
where u(t,z,y) is the solution of problem (1.1). So after going over to the new time and
space scale the function u* is the solution of the following mixed problem:

((OQus(t,z,y) 1 0%u®(t,z,y) | ea(z,y) O%us(t,z,y) 1 .
& 2% o T 2 sz T el W)

forz e R, |yl < b,t>0

1.3

0 w1058 = ()
Bus(t,z, '
\L@yxﬂbzib:o_

Notice that now the diffusion coefficient of the variable y is of order % . Then the y is

called fast variable. The variable z is the slow variable.
It is known (see [7],[13]) that with the differential operator

g b 0%  ea(z,y) 6

2e Oy? 2 Ox2
acting on the space of bounded functions h, twice continuously differentiable with respect
to z and y with bounded second derivatives, and satisfying %’;‘y)b:ib = 0 is associated
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a random process (X§, Yo ﬁ,fy) which, together with some process £ = (£;°¢,¢2%), is the
solution of the stochastic differential equation

dX; = \Jea(Xs,YE) dWS
(1.4) dYe = %dez) eV — e

X=2,Y =y, =6"=0

where W; = (Wt(l),Wt(z)) is a Wiener process in R? starting at zero, adapted to an
increasing family of o-fields NV and, with probability one, £;*° and £7*° are nondecreasing
processes respectively increasing only for t €'y = {t: ¥* = —b} and t € [y = {t: Y =
b}; further, I'; and I'; have Lebesgue measure zero a.s. As the solution of (1.4) the
process (X , Yy, €f) has continuous components a.s. and is adapted to the underlying
family of o-fields V. Furthermore, (ff, YE: ﬁ;y) is a strong Markov process.

Sometimes we should refer to the Markov process (Y:; Py) as being the Wiener process
in [—b,b] starting at y governed by the operator 3 aa; in the interior of [—b,b] with
instantaneous reflection at the end points —b and b. One can deduce from (1.4) that
YE=Y .

The Feynman-Kac formula (see [2]) provides an equation for the solution of (1.3) in
terms of a functional integral of the trajectories of the process (Xg,Y,; ﬁ;y):

t
(1.5) u(t,z,y) = Egyg(Xf)exp {-z—/; c(Yy,us(t — 3,)?§,l’;‘))ds}.

Taking into account that c¢(y) = supc(y,u) we have
u>0

bes ¥ i N i
(1.6) u®(t,z,y) < EZ, g(Xf)exp {E./u c(l’;‘)ds}.

Problem (1.3) is a generalization of a problem considered by Freidlin in [4] in which the
small diffusion coefficient does not depend on the slow variable, i.e., a(z,y) = a(y). In
this case the asymptotics of the solution as € | 0 is described by the action functional for
the two-dimensional process ( J Ot c(Ye)ds, [, Ot a(Y:)ds). This action functional is expressed
in terms of the first eigenvalue of the problem

(1.7) { %‘ﬁ’“(y) +[B1a(y) + Bac(y)] ¢(y) = M(B1,B2) $(y),  for |y| < b
$(b)=¢(-b)=0

with B;, B2 € R (for details see Chapter 7 in [3] or Example 3.1 in this paper). The
asymptotic velocity of the wave front is obtained by using this action functional.
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When the small diffusion coefficient depends on the slow variable = the situation be-
comes more complicated. In this case to analyze the asymptotic behavior of u®(¢,z,y) as
e | 0 we shall use a Large Deviation Principle for the family of processes (X¢, fot c(YE)ds)
which will be established by means of an action functional (see definition of action func-
tional in [3]). To determine this action functional we shall use basically: the Large Devia-
tion Principle connected with the averaging principle formulated by Freidlin (see Chapter
7 in [3]) , the fact that the process X¢ satisfies the equation

Xi=z+ \/Eﬁ;fg a(X,,Ys)ds

where W, is a Wiener process in R starting at zero and independent of Y;¢ (for the
existence of such Wiener process see McKean [11]), and Theorem 3.3.1 in [3] which pro-
vides the relation between action functionals of two families of processes connected by a
continuous operator. In Part 2 of this paper we deal with this problem.

In Part 3 we describe the limit behavior of the solution of (1.3) as ¢ | 0. Here we
follow the ideas of Freidlin in [2] (chapter VI) and in [5] where he analyzes the wave front
propagation for the generalized KPP (Kolmogorov-Petrovskii-Piskunov) equation. Under
~ a suitable assumption (called Condition (N) by Freidlin [2]), we will be able to define a
family of increasing sets G; C R such that lim.jou®(t,z,y) = 1 for =z € Gy, |y| < b,
and lim.jo u®(¢,z,y) = 0 for z € R\ Gy, |y| < b. These sets are described by means of
the action functional for the family of processes (X¢, j;; c(Y$)ds) and they determine the
position of the wave front at time t.

The assumption that Condition (N) is fulfilled is a restriction. We also study the wave
front of u*(¢,z,y) as € | 0 in a more general situation, without Condition (N). We use
the same approach as in Freidlin [5]. In the case of the generalized KPP equation there is
no fast motion as in problem (1.3). But as we will see later, this difference between the
two problems is managed by taking into account that the fast motion in (1.3) has a unique
invariant probability measure. Again we use the action functional for (X, f; c(Y£)ds) to
define the sets Gy.

Problem (1.3) can be generalized in different ways. The fast and slow motions can be
described by more general Markov processes. In Part 4 of this paper we just point out
some ideas in this direction. More details will be published in a second paper.

Acknowledgement: The autor wishes to thank M.I. Freidlin for the formulation of
the problem and his attention to this work. Most of the ideas here arised from several
stimulating discussions with him.

2. Large Deviations

Our goal here is to establish a Large Deviation Principle for the family of random pro-
cesses (ff,fot c(YE) ds) with (X¢,Y¢; ﬁ;y) satisfying equation (1.4) and ¢(y) the function
considered in the introduction of this paper. We shall describe this Large Deviation Prin-
ciple by means of an action functional on the space (Co,71(R?), por) where Cjo 1j(R™) is
the space of continuous functions on [0,T] into R™; the metric por is defined by
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por((p1s 0% s ™)y (P, 9%, o B7)) = Z”‘Pi — ¥,
i=1

with |- || denoting the supremum norm in Cjo,7j(R). Sometimes, to avoid ambiguities,
we shall use || - [|[o,7] instead of || - ||. Observe that we are using the same notation por
for any n.

We have seen in the introduction of this paper that

t
Xi=z +f \ea(Xe,Ye)dwd),
0

Besides, there exists a Wiener process W, in R starting at zero and independent of Y;®

so that .
/ V a(ﬁfa}?) dW.sl) = qu‘ a(Xe,Ye)ds
0 & L)
Therefore,
(2.1) X = x°

f; a(f:  YE)ds

where X{ is defined by

(2.2) Xf=a+ W

To simplify notation set

t
(2.3) Zf:/ c(YE)ds
0
and
o~ t o~
(2.4) Tf:/ a(XE:,YF)ds.
0

Observe that (X¢,Z¢) = G(X¢,Y¢,2¢) where G is the operator on (Co,71(R?); por)
into (Clo,77(R2); por) defined by G(i,%,n) = (¢,7). Clearly G is a continuous operator.
We shall use Theorem 3.3.1 in [3] to get the action functional for (X¢,Z¢); this can be
done if we know the action functional for (Xg,T$,2Z¢). Let us now obtain the action
functional for (X¢,Y¢, Z¢).

It is not difficult to show that the action functional for a n-dimensional family of ran-
dom processes with independent components is the sum of the action functionals for each
component. In the case of the three-dimensional family of processes (X§, T$, Zf) the com-
ponents are not independent. We shall use the technique of freezing variables to be able
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to work with independent processes. Basically, we shall use two new families of processes
which are obtained from X§ and T§ by freezing variables.
First let us introduce for each ¢ € Cjo,71(R) the family of processes

t
(2.5) Tl f a(ps, V) ds.
0

Note that the process (2.5) arises from (2.4) by freezing the slow variable. Secondly, let us
consider for each 3 € Fy the family of processes X % Where X7 is defined in (2.2) and
F; is a set of the type

(2.6) Fr={y € Co,ry(R) : o = 0,3y ae., 0 <k < 4y < F, t € [0, T]};

it is easily seen that F} is a compact set. Observe that Xy, arises from ff by freezing

the process T¢. Clearly the families of processes X3, and (Y9%, Z7) are independent. It
is known (see [3]) that these families obey a Large Deviation Principle. Let us recall the
main steps.

The action functional for the family of processes (Y{'%, Z§) is defined with the help of
the eigenvalue problem

(2.7) { %‘f)”(y) + [Bra(z,y) + B2c(y)] 4(y) = Az, b1, B2) é(y), for |y| < b
4 (0)=¢'(-b) =0

with z € R, f1,8; € R. This problem has a discrete spectrum, the eigenvalue A(z, 81, 82)
with the maximal real part is real, has multiplicity one, the corresponding eigenfunction
is positive. Besides, A(z,f1,02) is differentiable in 8,8, (see Kato [10]).

One can prove (see [3]) that

T
(2.8) Az, p1,62) = T-l—irr-f-loo -—;;ln Eyexp {/0 [Bra(z,Ys) + B2¢(Ys)] ds}

uniformly in y. From relation (2.8) one can show that A(z, 1, 82) is jointly continuous in
its variables and convex in (f1,82). Let L(z,a',a?) be its Legendre transform:

L(x,al,o:2) = sup {((al:az)a(ﬁlaﬂﬂ) - A(waﬁlaﬂZ)} ) al:az €ER
(B1,82)ER?

where (-,-) denotes the inner product in R2. This function is also convex in (a?,a?) and
jointly lower semicontinuous in all variables; it assumes nonnegative values including +oo.
From the boundedness of the functions a(z,y) and ¢(y) it follows that L(z,a!,a?) = +c0
outside some bounded set in the space of the variables (a!,a?).
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Taking into account the properties of the functions a(z,y) one can see that with proba-
bility one the trajectories of the processes (2.4) and (2.5) belong to Fy ; also, by considering
the properties of the function c(y) the trajectories of the process (2.3) belong to Fy a.s.
Using the same proof of Theorem 7.4.1 in [3], one can show that for each ¢ € Cjo,1)(R),
the normalized action functional on (Cio,11(R?); por) for the family of random processes
(Te%, 2¢) is

.’.{)T L(QO,, 'j’asﬁs) dS, if 'w € Fa,?} € Fc

2.9 Sor(¥,n) =
(2.9) or(¥,1) {-i—oo, . in the rest of Co,77(R?)

with normalizing coefficient %
On the other hand, it is known (see [3]) that the normalized action functional for X§
on (Cpo,1(R); por) is given by

P, g
Bl = 3 [y lsl? ds, if  is a.c.
00, for the rest of Cjo 77(R)

with normalizing coefficient 1. Let us consider for each ¢ € Fy the operator Gy on
(Clo,pr)(R); poyr) into (Clo,11(R); por) defined by Gy(p) = ¢y . Clearly Gy is a con-
tinuous operator. It follows from Theorem 3.3.1 in [3] that the action functional for the
family of processes Xj, is %SGPT(@) with

« |2
%fOT J%‘-‘L ds, if ¢ is a.c.

(2.10) Stile) = {
+00, for the rest of Co,17(R).

So far we have constructed for each ¢ € Fp and ¢ € Co,7j(R) two independent
families of processes X and (Y%, Zf) each of them obeying a Large Deviation Principle.
It turns out that the normalized action functional for the family of random processes
(X§, Y5, Zf) is given by

%foT LE"-'E ds + _’;]T L(gos,zj;s,ﬁs)ds, if ¢ is a.c.
(2.11) Sor(p,¥,n) = . Y € Fa,n € Fs
+00, in the rest of Cio,77(R?)

with normalizing coefficient 2. To prove this fact it suffices to verify the validity of the
following conditions (see definition of action functional in [3]):

(A.0) Compactness of the level sets: The level sets of Sor

(ﬁI;(S) = {(tpa 11% ﬂ) € O[U,T](Ra) : §0T((|0s ¢$ ??) <8, o= 3’.‘}
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are compact sets for each s > 0.

(A.I) Lower bound: V§>0, Vy>0, and V(p,%,n) € Cjo,rj(R?), Jeo > 0 such that

P {po:r ((f.’ff‘.’, Z°), (¢, %n)) < 5} > exp {—% [§or(sa,¢,n) + ')'] }, 0<e < eo.

(A.II) Upper bound: V6> 0, Vy>0, Vs>0, Jeo > 0 such that

P {por ((%2,7,29,8) 26} cem{ -2 -}, 0<esan

Condition (A.0) can be split into two: joint lower semicontinuity of Sor(p,%,7) in
all variables (which is equivalent to closedness of &(s) for every s > 0) and relative
compactness of ®(s). We shall use such a splitting to prove condition (A.O).

A family F of functions is called absolutely equicontinuous if for any § > 0, there
exists € > 0 such that

Z|¢ti_¢sgl<6 for any ¢ € F

whenever the sum of lenghts of a finite number of nonoverlapping intervals [s;,t;] is less
than €. It is easily seen that for absolute equicontinuity of some family of functions it
is necessary and sufficient that these functions be absolutely continuous and that their
derivatives be uniformly integrable.

Lemma 2.1. For each s > 0 define
F(s) = {p € Cio,n(R) : o =z, S¢r(p) < s for some p € Fy}

where S(',"’T((p) is defined in (2.10). The family of functions F(s) is absolutely equicontin-
uous.

Proof. Fix s > 0 and ¢ € F(s). Then there exists ¥ € Fy such that S¥n(p) < s.
2

Hence ¢ is absolutely continuous and J;)T |$¢|?dt < s . Now, use the fact that fag — 00

as |u| — oo to conclude that ¢ is uniformly integrable. Therefore, F(s) is absolutely

equicontinuous.
O

The main arguments in the proof of the following lemma were taken from Wentzell [17].
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Lemma 2.2. The functional S, T(‘P) in (2.10) is jointly lower semicontinuous with respect
to the uniform convergence.

Proof. Let (¢",%™) be any sequence in Cpo T](R) X Fy with o™ — ¢ and %™ — ¢ as
n — oo uniformly in [0,7]. We want to show that

S¢r(e) < lim S¥r(e™).

n—oo

It suffices to consider the case when lim S T(qa ) = 30 < 00. If 356 = o0, there is
n—oo

nothing to prove.

By assuming that 5., < co we may suppose that S&p; (¢™) < 800 + 1 for all n. This
mmplies that ¢ is absolutely continuous. To see this note that ¢™ € F(54 + 1) for all n.
By Lemma 2.1 the sequence {¢"} is absolutely equicontinuous. Thus for every § > 0,
there exists € > 0 such that ) |p} — 7| < § for all n whenever the sum of the lenghts

1

of a finite number of nonoverlapping intervals [s;,%;] is less than ¢. Passing to the limit,

Jlim let. — il = E Lim |of — o3| = ZI%. Psi] <6,

which means that ¢ is absolutely continuous. The function % is also absolutely continuous
because the sequence {¢"} isin Fy; since F, is compact, 1) € Fy . Besides, the functions
in F, are absolutely continuous.

Let us introduce the function L(a,a) = %"’T for « € R,a € [g;a]. This func-
tion is jointly continuous and downward convex in both variables. Note that S¥p(y) =
5 fo d)s,gos )ds. Now, using Jensen’s inequality, the joint continuity of L, and Fatou’s
Lemma one can show similarly to the proof of Theorem 3.1.(b) in [17] that foT L(vy, 1) dt <
Soo -

a

Lemma 2.3. The functional Sor(,%,n) in (2.11) is jointly lower semicontinuous in all
variables with respect to the uniform convergence.

Proof. Let (¢",%",n") be any sequence in Clo,11(R) X Fp X Fr with o™ — ¢, " = ¢,
and 7™ — 1 as n — oo uniformly in [0,T]. We want to prove that

gﬂT(‘P:’nbsT?) < lim §0T('~Pna TP",T?“)-
n—oco
As in the proof of Lemma 2.2, it suffices to consider the case when

lim §0T(‘P", P, n") = 80 < 0.

n—oo

Assuming that s, < co we can consider that §0T(tp“,¢“,n“) < Seo+1 for all n. Then
(™, %", ™) € B(seo+1) where &(s) was introduced in (A.0). Hence, S‘;pT (™) < So+1
for all n. By Lemma 2.2 we conclude that S¥n(¢) < Seo + 1 and ¢ is absolutely
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continuous. Besides, the first derivative of ¢™ and ¢ are integrable: this fact follows
from the proof of Lemma 2.1 taking into account that fo |22 ds < 2a(se0 + 1) and
fo |¢s|2 ds < 2a(se0 +1).

We know that the functions in Fj are absolutely continuous with bounded first deriva-
tives. Also the compactness of these sets implies that ¥ € Fy and 5 € F,. Hence,
Y™, n", ¥, and 7 are absolutely continuous with integrable first derivatives. We conclude
that (go,gb,r;) and (¢",%",q"), for all n, belong to W3,[0,T], where Wy%[0,T] is the
(Banach) space of absolutely continuous functmns on [0, T] into R™ with mtegrable first
derivatives.

We have seen that it suffices to prove joint lower semicontinuity of §0T(tp, ¥,n) only in

W2,[0,T). From the definition of the functional Sy in (2.11) and Lemma 2.2 one can
see that all we have to show is that

T T
f Hieadsm)diz lim / L(op; 7,0 dt.
0

n—oo Jo

Let us recall some properties of the function L(z,a!,a?). This function is the Legendre
transform of A(z,fy,B:) in (2.8), it is nonnegative for all z € R and (a?,a?) € R?, con-
vex in (a',a?) for each z, and jointly lower semicontinuous in all variables. It is easily
seen that A(z,B1,B82) < @py + B2 = A(B1,B2) for all z € R. Notice that (B, ) is
convex in its arguments and finite for all (B1,B2) € R?. Let L(a',a?) be the Legendre
transform of A(B;,B2). Then L(z,a!,a?) > L(a!,a?) for all £ € R. The reader can
verify that the above properties are sufficient to use Theorem 3- 9.1.4 in [8] to conclude

that fo L(¢; e, 7¢) dt is jointly lower semicontinuous in (p,%,m) € Wi,[0,T].
O

We shall now prove conditions (A.0)-(A.II).
Proposition 2.1. Condition (A.0) holds, i.e, for any so > 0, the set

B(s0) = {(#,%,1) € Clor1(R?) : Sox(p,9h,1) < 50, 0 =}
is a compact set.

Proof. The closedness of (sq) follows from Lemma 2.3. Hence it remains to prove that
5(50) is relatively compact.

Let F(so0) = {v € Co,n(R) : (p,%,n) € &(so) for some (¥,n) € Fy x Fa}. We shall
use the following fact (see [12] or Lemma 3.2.1in [3]): a function ¢ is absolutely continuous
and its derivative is square integrable if and only if

E lpe; — 99:._1|

0<t0<t;< <t ST i—1i-1
-

and in this case the supremum is equal to foT |p¢|?dt. In particular, |p: < |po| +

ﬂTfoThbsP ds for any t € (0,T].
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Let ¢ € .7-'(30) Then g = z and there exist 1 € Fy, n € Fy such that Sop(y,%,7) <

So ; hence, fo 95| ds < 2asy and |p¢| < & + +/2T@s, ; we conclude that the functions
in F(so) are uniformly bounded. Similarly, for every t,t+ h € [0,T], |@ern — @] <

\/ h fo l¢s|2 ds < \/2@sgvh. This estimation implies the equicontinuity of the functions

¢ € F(so). By Ascoli-Arzela’s Theorem each sequence {¢"} in F(sq) has a subsequence
converging uniformly in [0,T] to a continuous function ¢.

Let (¢",%™,n™) be any sequence in ®(so). Then {¢"} is a sequence in F(sp). Let
{¢"*} be a subsequence of {(p"} that converges uniformly in [0, 7] to some continuous
function . Since {¥"*} and {n™*} are sequences from compact sets, there exist further
subsequences {p"* } and {n™*i} that converge uniformly in [0,7] respectively to func-

tions ¢ € F and n € Fs . Hence ;f(so) is relatively compact.
O

The following lemma can be proved using the properties of the Wiener process and we
omit its proof.

Lemma 2.4. Forany § >0 and A >0,

— i 48T v A §2
P — > <.__
(Ve -2 o} < 7T o {3z
where T'*—-&T-l—A and Aa={(f1,t2)20<t1 <f2<T’,0<f2—t1 <A}.

Proposition 2.2. Condition (A.I) holds, i.e, V6 >0, ¥y > 0, and Y(p,%,7) €
Clo,71(R?), 3eo > 0 such that

P {PoT ((f.‘,i".‘,z.‘),(wb,n)) < 6} > exp {—% [gw(so,w,n) + ’r]}

for any 0 < ¢ < gg.

Proof. Let 6 >0, v>0, and (p,%,7) € Cjp,77(R?) with Sor(p,%,n) < +0o be given.
Then ¢ is a.c., ¥ € Fy, n € Fz. To simplify notation set

P = P{por ((X¢, ¢, 2, (0, ) < 6.
Choose 6§ >0 and A >0 sufficiently small such that

P2 P{I%: - ¢l <26, IT: -yl <A, 25—l <5 }.
Then,

P2P{IX - X5 | <8, 1X5 — ol <&, [T vl <A, [T -9l < &,
IZs—nl <4}
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Taking into account that

(212) (Il <A, 1% - X5 <] 2 [\/Es;p Wy = Wl < 6

where Ap is the set introduced in Lemma 2.4, we obtain

P2 P{|X; —¢ll <6, IIT5 - ¢l <&, |2 =l < &,

)\/Esuplwh _thl < 6'} 2
(2.13) & ; , ,
> P{IIX5 —oll <&, IT% — )l < &', 125 ~nll <6’} -

—P{\/Esupri/‘{_f';1 - Wi, | 25’}.
Aa

6!2

WF‘-%'J'H‘%] !

Now, by choosing 0 < A < ToBon(
0
2.4,

€o > 0 sufficiently small, and using Lemma

' 12
o i ' 48T VA )
- Sy e X = =

— PR A < .
2exp{ p [SOT(so,l,b,??)-i-z]}, 0<e<eg

IA

The processes X, and (Ty'%, Zf) are independent. Thus the action functional of the
corresponding three-dimensional random process is the sum of the functionals (2.10) and
(2.9). Using the lower bound corresponding to this action functional we see that for all
v > 0, there exists €9 > 0 such that

P{IX5 —ll <&, IT5% — gl <&, 125 —nl| <& } 2
1 r~
zexp{—g [SOT((P:¢SH)+%:|}1 0 <e < ep.

The result follows by substituting the last two estimates into (2.13)
a

Proposition 2.3. Condition (A.II) holds, i.e, V6 >0, Yy >0, Vso >0, Jeo > 0 such
that

P {por (X, %, 2), 8(s0)) 2 6} < exp{—%(so ~'r>}

12



for any 0 < ¢ < gp.

Proof. Let § >0, v >0, and sy > 0 be given. The trajectories of (1§, 2Z¢) belong to
F, x Fy with probability 1. Let (¢¢,7%), ¢=1,---,N be a finite § -net in the compact
set F3 X Fz. Then for any 8y > 0,

P{por (X2, ¥5,27) , &(s0) 26} <
< 3 [P four (e 74,290 80) 28, 1T =il <6,
=1
12 =il <&, 1% = X5l 2 60} +

+ P {por ((Xe,%,25),8(s0)) 2 6, ITe - il <&,
12¢ = nill < &, 1% - X5l <o} =

(2.14)

N
s Z [P(I}) + P(13)] .

i=1

Using inclusion (2.12) we can see that
P(1}) < P{IIFs - 4/l < 6, 1% - X5ull > 6o }

< P{sup|W¢1 ——Wt,| 250}.

&

Choosing 0 < §' < ﬁ(%gzrr)' it follows from Lemma 2.4 that
8

(2.15) P(I}) < exp {—%(so - -})}, 0 < e < gp.

Tekir s {"" € Cpo,n(R) : (9, 9%,7') € 6(30)} and &¥'(s0) = {p € Clo,7y(R) : Siz(p) <
s0,p0 =z},i =1,.-- ,N. Observe that F C ®¥'(s9) , F' is compact (see proof of
Proposition 2.1), and F¥ x {¢'} x {n'} C &(so). Then, by choosing § > 0 even smaller
if necessary, one can see that there exists §; > 0 such that

P(1) < P{por(X,F) 2 &, | T¢ = 47l < 6, 125 =il < 6/, %5 = Xill < 6o }.

Now, for any é* >0,
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P(5) < P {por(Re, ) 2 &1, |Te - ')l < 8, 125 = nfll < &,
1Xe - X501 < 60, por(Xe, 8% (s0)) 2 6%} +
(2.16) +P {por(Xe, F) 2 61, | T — 9]l < &, |25 —nfl| < 6,
1% = X551l < bo, por(e, &% (s0)) < 67}
= P(L") +P(5*).
Choose 0 < 6 < £ to get

i . i 6*
P(Iy')< P {pw (Xﬁ,,-, 3 (30)) B .5} _

Using the upper bound associated with the action functional (2.10) we obtain for g > 0
sufficiently small

(2.17) P(I}') < exp {—é(so - %)}, 0 <e<e.

To estimate the second summand in (2.16), consider the compact set K obtained by

omitting the 6;-neighborhood of F¥ from the compact set ®¥'(sg). Let ¢!, ...,oM be a
finite A-net for K . Choose 0 < A < §; and §* > 0 sufficiently small such that K + 6*
is covered by the finite A-net. Clearly F* is contained in the complement of the A-net.
Then

M .
P3%) < 3P IR - o)l < A, 18 = X5l < 6o, T = il < 8, 125 = 'l < 6 }.
j=1

From the Lipschitz continuity of the function a(z,y) in the variable ¢ we get the following
inclusion:

(1% = /Il < A] € [IFs - 1o%'|| < (& +1)(T +1)4]

where K > 0 is the Lipschitz constant and 'I‘f"“’j is the process introduced in (2.5). Then

M
P®) < S P{IIXG — ol < A+ 6o, [ 159 — il <5, 125 — il < 6}

=1

for some § > 0 which can be taken small whenever A, 8, and § are small.

14



The independence of the processes X 3 and (Tf’“’i yZ§) implies that for §; = max {A+
50: S: 6‘}:
o M . : . .
P < Y {P[IX5 - ¢/l < 8] x P[IX9 — 9l < &, 1125~ n'll < o]}

j=1

Now, if we choose A, 6y, 4 and § small enough (and hence 62 will be small) one can
prove (see [3], Chapter 3 ) that there exists ey > 0 such that

M
. 17~ g = &
P(I*) £ Eexp {_E [Sur(tp’,W,ﬂ‘) - %] }, 0 <e <eo.

=1

Since ¢/ € K then (p7,9%,n') ¢ ;i;(so). Hence, for ¢y > 0 sufficiently small we get

(2.18) P(I}?) < exp {—%(30 - %)}, 0 <e<ep.

Substituting the estimates (2.17) and (2.18) into (2.16), we obtain

(2.19) P(I}) < exp {——i-(so - %)}, 0 <e <L ego.

The result follows putting together the estimates (2.15) and (2.19) into (2.14).
O

So far we have proved that the functional Spr in (2.11) is the normalized action func-
tional for the family of processes (X§, T¢, Zf) with normalizing coefficient -i- . Now, we
are ready to get the action functional for the family of processes (X, Z§).

Theorem 2.1. The normalized action functional for the family of processes (ff ,Z§) on
(Co,11(R?); por) is

. T |4, |2 T .o —_—_
iréx}% {% i ) J“—;-;—‘Lds + fo L(ps,1s,7s) ds} , ifyisa.c.,n€ Fy,
(2.20) Sor(p,n) = 400, in the rest of

Clo,1)(R?)

with normalizing coefficient 2. Moreover, Sor(,7) is jointly lower semicontinuous.

Proof. Let us consider the operator G on (Cjo,11(R?); por) into (Cio,11(R?); por) defined
by G(¢,%,n) = (¢,n). Clearly G is a continuous operator. Let {u°} be the family of the

distributions of (X¢,T¢, Z¢) on (Cto,17(R®); por). If {v*} is the family of the distributions
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of (X¢,Z¢) on (Cio,1(R?); por) then v¢(A) = p¢(G~1(A)) for any Borel subset A of
Clo,7)(R?). Then, according to Theorem 3.3.1 in (3], the normalized action functional for
(X¢,Z¢) is given by

SUT(‘P: 7?) = inf {gﬂT(G‘—’s "5: ﬁ) : ((151"1{_)1 ﬁ) €eG™ (('Pv 7?))}

and +oco if G~ ((p,n)) = 0. Further, the normalizing coefficient is 1. From this we
obtain (2.20).

Recall that the functional Syr in (2.11) is jointly lower semicontinuous in all variables
(see Lemma 2.3). Since Fj is compact the infimum in (2.20) is attained. Therefore,
Sor(p,n) is also jointly lower semicontinuous.

O
3. Wave Front Propagation

In this part we shall use the same approach as in Freidlin in [2] (Chapter VI) and in [5].
For this reason most of the results here will not be proved in details.
Let us define

(3.1) V(t,z) = sup {ne — Soe(,n) : ¢ € Cpo,q(R), po =z, @1 € Go, 1 € Fr }

where So; given in (2.20) is the normalized action functional for (X§,Z¢) and Gy =
suppg. It turns out that under a suitable assumption (called Condition (N) by Freidlin
in [2] ), the solution u®(%,z,y) of (1.3) converges to a step function u°(¢,z,y) as € | 0
given by

0, if V(¢ g <b
Uu(t,:lt,y)={ ’ l ( ,:L‘)(O Iyl—

1, if V(,z)>0, |y|<Lb.
In other words, the set {(¢,z,y): V(t,z) =0, |y| < b} describes the position of the wave
front as € | 0.

The fact that lim. o u®(¢,z,y) = 0 in the region where V(¢,z) < 0 is a consequence of
the following Laplace-type asymptotic formula:

(3.2) ljff}ldn E.,9(X{)exp {%Zf} =V(t,z)

where Zf is defined in (2.3). This formula is obtained by using the properties : compact-
ness of the level sets, lower bound, and upper bound corresponding to the action functional
Sor in (2.20). The proof is similar to the proof of Lemma 6.2.1 in [2]. Using (3.2) and
(1.6) we get lslflc? ué(t,z,y) =0 if V(t,z2) < 0. In fact one can prove that the convergence

is uniform in any compact subset of {(¢,z,y): V(¢,z) <0, |y| <b}.
To prove that lifﬁl u®(t,z,y) = 1 in the region where V(t,z) > 0 we shall assume the
£

following condition (see [2]):
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Condition (N): For all (¢,z) such that V(¢,z) =0 ,

V(tam) = SUP{??t - SOt((Psn) P € C[O,t](R)s Yo =2, Pt € GO: V(t - 3&598) <0
for s € (0,t), n € Fy }

As in Theorem 6.2.1 in [2] one can prove that under Condition (N), lim.jo u®(¢,z,y) =1
uniformly in (¢,z,y) belonging to any compact subset of {(¢,z,y): V(t,z) >0, |y| < b}.
This set may be interpreted as the domain occupied by the excitation. The set G =
{z € R: V(t,z) > 0} x [—b,b] represents the excited region at time t. Notice that
{(t,z) : V(t,z) = 0} is the graph of some continuous function of z and {(¢,z,y) :
V(t,z) =0, |y| < b} describes the position of the wave front.

Remark §8.1. The nonlinear term in (1.3) may depend on the slow variable, i.e, f =
f(z,y,u). In this case the process Z¢ in (2.3) becomes Zf = f; o(Xe,Ye)ds where
e(z,y) = e(=,y,0). 5

The action functional for (X¢,Z¢) is given by (2.20) if we understand L(z,a?,a?)
as the Legendre transform of the first eigenvalue of problem (2.7) with ¢(z,y) instead of
¢(y). Relation (1.5) becomes

t
(3.3) u®(t,z,y) = E7,9(X7)exp {%/0 o(XE, Y75, ut(t — s,Xj,Y:))ds}.

One can verify that assuming Condition (N), the asymptotic behavior of u®(t,z,y)
in (3.3) as ¢ | 0 is described in the same way as in the case of the nonlinear term be
independent of z.

The following example was considered by Freidlin in [4].

Example 3.1. Consider problem (1.3) with the small diffusion coefficient and the non-
linear term independent of the slow variable x, i.e., a(z,y) = a(y) and ¢(z,y) =¢(y). In
this case the function V(¢,z) in (3.1) is given by

. 12 ' t .
V(t,z) = sup {m—j %I——ds—f L(vs,ms)ds : o =, go:EGo,ngFa,nEFa}
0 8 0

where L(a!,a?) is the Legendre transform of the first eigenvalue A(f1,f2) of problem
(1) '

To simplify the solution we will assume that Go = {z : z < 0}. From the Euler-
Lagrange equation (see [1]),

(z—2) ¢t |~
V(t,z) = sup {fygt—-L 71,72)t — —_) =
(t:2) T)7¥2,% ( ) 2 2m

-ic(3)
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where 0 <c <7 <¢ 0<a<v,<a, z€R and L(a) = sup {"Yg-—L(’h,'}fz)-—az;‘,l?}.
T2
Using the properties of the functions A($1,82) and L(a',a®) one can see that there

exists a unique positive root a* of the equation £(a) =0. Thus V(¢,z) > 0 if and only if
z < a*t. The position of the wave front is described by the set {(¢,z,y) : =z = a*¢, |y| <
b}. Clearly Condition (N) is satisfied and the asymptotic velocity is constant (equal to
a*).

Now we shall construct an example showing that Condition (N) is not always fulfilled.
Example 3.2. Take a(z,y) = a(y), Go = {z: ¢ <0}, and ¢(z,y) = c(z) = c1&[z<n) +

c2X[z>h] for fixed h >0 and ¢; > ¢
Let

_ t B l t-!f_{!i N t .
RO‘(‘Pﬂb)—/‘; c(ps) ds 2-[; Ei’s ds /OL(¢3)dS

where L(a) is the Legendre transform of the first eigenvalue of the pfoblem

_ { 36" () + ) () = NB)$(w),  for Iyl <b
¢ (b)=9¢(-b)=0
with # € R. The function V(¢,z) in (3.1) is transformed into

V(tz) = Bp {Rot(0,¥) : ¢ € Clo,g(R), o = &, @1 € Go, ¥ € Fa}.
wl

Notice that inside each domain (0,k) and (h,+c0) the Euler equations imply that
¢ =0 and 3 = 0. Hence, the extremals ¢ of Ro:(¢,) are straight lines or broken lines
with vertices on = = h and the extremals i are straight lines trought the origin.

First consider the case z < h. It is easily verified that the extremal ¢ is a segment of
line connecting the points (0,0) and (¢,z), and V(t,z) =tL1(¥) where

Li(a) = sup {cl -- iaz - L(q’)} :
a<y<a 2y
Let a; be the unique positive root of £i(a) = 0. Then, V(¢,z) = 0 if and only if
T = tay. Set TgEaLl.

Secondly, let © > h. One can verify that the extremal ¢ is a broken line starting at
(0,0) with vertice (t1,h) for some 0 < t; <t satisfying % < f_"t": which means that the
broken line is upwards convex. The function V(t,z) is given by

0<t1 <t
0<a<vy<a

Vo = s {a [o- (7 - 20| + -t [ - - - L) }.

Let
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La(a) = sup {cz — ia:2 — L('y)}
a<q<a 2y

and a; be the unique positive root of £3(a) = 0. Taking into account that ¢; > c2 one

can see that ay < ay.

Define

V(t,z) = sup {(t —t1)L2 (3 — h) } ;
To<t <t t—1

Since t L (%) is incredsing in ¢t we have 17(1‘,:5) =(t—To)L: (:’_‘T’,;) . Then 17(15,:1:) =0
if and only if z = h 4+ as(t — Tp).

It is not difficult to verify that V(¢,z) > V(¢,z) for « > h. Therefore, the region
{(t,2) : V(t,z) = 0} is contained in the region {(¢,z): V(¢,z) < 0}. This means that the
velocity of the wave front in the region = > h, t > Tp, is not less than as. Moreover,
using the relation for V(¢,z), it is possible to show that in the region where z > h and
t > Ty, the velocity of the wave front is close to a3 .

Taking into account the shape of the extremal ¢ and the fact that a; < a; one can
see that Condition (N) is not fulfilled.

Example (3.2) shows that Condition (N) is a restriction. We shall now analyze the wave
front of u®(t,z,y) in (3.3) as €.| 0 in a general situation, without Condition (N). We
shall consider only the case when the small diffusion coefficient is independent of the slow
variable, i.e, a(z,y) = a(y) and the nonlinear term depends on z and y. In the rest of
this section the reader should be aware of such assumptions when we refer to u®(¢,z,y)
as the solution of problem (1.3).

From the assumptions on the function a(y) we know that for each € > 0 the differential
operator

9 10* eafy) &
3: 2e 6y2 2 O0z?

(3.4)

is uniformly parabolic. Besides, it is possible to prove (see [5]) that 0 < u®(¢,z,y) < 1A||g]|,
i.e., the solution u*(¢,z,y) of problem (1.3) is bounded. The following properties are con-
sequences of the maximum principle for linear uniformly parabolic equations :

(M.1) If u§(¢,z,y) and u§(t,z,y) are the solutions of (1.3) for g = g1(z) and g = gz(z)
respectively and gi(z) > g2(z) for = € R then u§(¢,z,y) = ui(t,z,y) for t 20, z €
R, [y] <b.

(M.2) If u§(¢,z,y) and u§(¢,z,y) are the solutions of (1.3) for respectively f = fi(z,y,u)

and f = fy(z,y,u) with the same initial function g and fi(z,y,u) > f2(z,y,u) for
ly <b, z€R ,0<u<1V|g| ,then u§(t,z,y) > u§(t,z,y) for t >0, z €R, |yl <b.
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Let us introduce the functional T = 7r(t, %', ?) on (—00,4+00) X Clo,400)(R) X Clo,4c0)
([—b,b]) with values in [0,+oc0] defined by

Tr(t, ¢, p?) = inf {3 P (t—s,03,93) €F X [—b,+b]},

where F' is any closed subset of (—c0,4+00) x R. Denote by © the set of all such
functionals. Notice that 7r(2,¢?,¢?) does not depend on 2.

We can see that Tr(t, X¢,Y¢) is the first time when the process (t—s, X¢, Y¥¢) reaches
F x [=b,+b]; 7F is a Markov time with respect to the family of o-fields {F, : s > 0}
with F, being the minimal o-field in the probability space such that (5(" §,Y5) is Fi-
measurable for any s; < s .

Define a function V*(¢,z) by

3.5) V()= inf sup {niar — So,ear(9sm) : ¢ € Clo,g(R), o =z, ¢ € Go, 1 € Fe }
TEY e

where So; is defined in (2.20) and it is the normalized action functional for (ff ,Z8) (see

Remark 3.1). Since 7 =¢ and 7 = 0 belong to © we have V*(t,z) < (0A V(t,z)) <0
where V(t,z) is the function (3.1).

Let us consider for each # > 0 the family of processes (V; ﬁfzy) = (t,, X¢, Y5, ﬁfzy)
on the set H = (—o0,+00) x R x [—b,b] where t; =t — s is a deterministic process with
velocity —1 and (X§¢,Y;) satisfies (1.4). This process is governed by the operator (3.4)
in the interior of H and subject to the reflection along the normal of its boundary. Using
the strong Markov property of the process (V5; ﬁfxy) we derive from (3.3) that

tAT
(36) osu’(t,x,y)=Efzyu‘(m,)exp{§ / c(X:,Y:,u‘(V:))ds}.
0

The above equality holds for any Markov time 7 with respect to the family of o-fields F, .
The use of equality (3.5) instead of (3.3) is the main difference between the approachs for
the general case and the case when Condition (N) holds.

Asin Lemma 1 in [5] one can prove that lim.jo u*(¢,z,y) = 0 uniformlyin (¢,z,y) from
any compact subset of {(t,z,y): ¢t >0, V*(t,z) <0, |y| < b}. Taking into account that
V*(t,z) < 0 forevery ¢t > 0, z € R, we can see that the region where lim, o u®(¢,z,y) = 1
must be contained in the set

M={tzy):t>0,|yl <b V*(t,z) =0}.
We shall prove that the interior of M is contained in the region above cited. To prove
this fact we shall use a kind of "cone” argument, i.e., we shall identify a set of points
(to,z0,y0) such that for each such a point there exists a positive constant A such that
lim, o u¢(¢,z,y) = 1 uniformly in (¢,z,y) from any compact subset of
KA

to,Zo

={(t,z,y) 1t > to, [yl b, |z — 20| < A(t —20) }-
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It turns out that the points (to,z0,y0) € (M) satisfy the above condition. It is also
possible to prove that if (f9,z0,y0) € M® then there exists a positive constant B such
that lim.|o u®(¢,z,y) = 0 uniformly in any compact subset of

DB

to,zo —

= {(t,z,y): t <o, |ly| < b, |z —z0| < B(to — 1) }.

Hence the frontier OM of the set M determines the position of the limit wave as € | 0.
The main result in this part is established in the following theorem:

Theorem 3.1. Let u®(t,z,y) be the solution of problem (1.3) with a(z,y) = a(y) and

the nonlinear term depending also on the slow variable . Then,

(a) 1111(;11:. (t,z,y) =0 uniformly in (t,z,y) belonging to any compact subset of {(t,z,y) :

V*(t,2) <0, |y| <b}.

(b) liﬁ)l u®(t,z,y) = 1 uniformly in (t,z,y) from any compact subset of (M) where
£

M= {(,z,y): V*t,z)=0, ly| < b}.

Part (a) of the above theorem can be proved in the same way as Lemma 1 in [5]. For
convenience we will split the proof of Part (b) in some lemmas and propositions.

Let us introduce for each zg € R, yo € [-b,b], § > 0, and k > 0 a function ¢%% given
by '

Il

e« if |z —20| < e™ yo| < e~

gz,é(x,y) - { ’ I 0| |y |
0, otherwise.

Let f(v) = inf, yf(m,y,v) and f(v) = &v)v. The function f satisfies the same condi-
tions of f(z,y,v) given in the introduction of this paper. Let & = &0) = SUP,>o &(v)-

Let v*5(t,z,y) be the solution of the problem

(Qitay) _ L B (o) | caly) Poti(thony) | Lz
ot 2% oy ) ZENE |

for [y| < b, >0,z €R

UC,E(U, z, y) — gz’a(m, y)

00"3(t,2,1)
[P =l

(3.7)

The Feynman-Kac formula implies that
S5 = 1 [ 3
(3.8) 0< v"‘s(t,m,y) = Egyg"a(Xf,l’]‘) exp {E/ é (v"'s(t - S,Xf,lf:)) ds}
0

where X¢ satisfies the stochastic differential equation

dX¢ = \fea(YE)dW,, Xi==z

with W; being a Wiener process independent of Y;*. The action functional for the family
of processes X§ is 1Sor(p) with
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1 l T 9"1 2 T h . P
(3.9) Sor(p) = ver: {2 Js J_,'p:L ds + f; L(r,b,)ds} , if pisa. c.
Tee, in the rest of Cfo,7)(R)

where L(a) is the same function as in Example 3.2.

Let p.(t,z,z) be the transition probability density of z + VEKW; where 0 < a
K < @ and W, is a Wiener process. It is easily seen that V&, > 0,t>0,deo >0, &
0 such that

<
o

(3.10) pe(t,z,2) > e_ic]“, for |t — 2| < 8, 0<e<ep

and ¢g is independent of K .

Proposition 3.1. Vé, > 0, Vs; € (0, %1), 36,€0,83 > 0 such that

(3.11) v(s1,2,y) > e if |z—z0| <&, ly| <5, 0<e< e

Proof. One can prove (see [5]) that 0 < v®%(t,z,y) < 1V ||g%%|| < 1; since &) > 0 if
0<v <1 then &v*®)>0. From (3.8) we have

vs’a(tazsy) s E;ygg’s(ftcsytc) "y
(312) = e""'f‘ﬁ:y(lff = -'Ifol < e_%i:l]/tz = yﬂl < e“‘t‘;{) =5
= 4B [P, (1Xr - mol < ™%, |7 — 3ol < ¥ /7).

But the conditional distribution of X§ given Y = § is the distribution of the process

(X7, Pg) defined by X{Y = z + \/ea(§)W;. Then, the corresponding conditional prob-
e ; e (130 _ Y
ability in (3.12) is equal to X[I.t‘.*—-yul‘(e' ! ]Px (|Xt zo| <e ) ;

Let 62 > 0 be given. Using (3.10) one can see that there exist § > 0, 65 > 0, g > 0
such that

PE(|X9? — 2| < e %) > e_%%, if |z — zo| < 83, 0 < € < .

On the other hand, it is well known (see [14] or Theorem 1.7.1 in [2]) that the normalized
Lebesgue measure in [—b,d] is the unique invariant probability measure for the process
Y:. Besides, for any bounded and measurable function f,

cot
<alflen { -2

b
Bif(r) -5 [ Sy
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where ¢; and ¢y are some positive constants (independent of f); note that ¢z can be

taken less or equal to 1. Then Pf(|YF — yo| < e~ %) > cre—t Eef"-L“ —1). Now, by

choosing § < cot/k and t € (0, %1) we can find €9 > 0 sufficiently small such that

P;(Iy}e -y < e‘*:_s) > e‘f&, for 0 < e < ¢gq.

Using the above estimates into (3.12) we get (3.11).

Let us define the function L(a ) by
s 1 5
L(a)= sup é——a’*—L(y);.
0<a<v<a 2y

Using the properties of the functions A(#) and L(«) one can verify that there exists an
unique positive root a* of the equation L(a)=0.

Proposition 3.2. Let v®%(¢,z,y) be the solution of problem (3.7). Then
(a) liﬁ}v”‘s(t,w,y) = 0 uniformly in (t,z,y) from any compact subset of Q_ x [—b;b]
£

where Q_ = {(t,z,y) : |z — zo| > ta* i
(b) ].iflc"l v9%(t,z,y) = 1 uniformly in (t,z,y) from any compact subset of Q4 x [—b;b]

where Q4 = {@,z,y) : |z — 20| < ta*.

Proof. Define m(t,z) = inf {Soi(¢) : ¥ € Cjo,g(R), po = z, p¢ = zo } where Sp; is given
in (3.9). Using the Euler equations we get

. . 1 fz—2= Y
m(z’t)_to<;2£$a{§§( ; )+L('r)}-

Since &(v) < & we obtain from (3.8)

0< UE’G(tixa y) < e%ﬁ;yg!’ﬁ(ff,y;f),

Notice that the initial function g% depends on e. This fact does not affect the proof of
part (a): it is similar to the proof of Lemma 6.2.1 in [2] and we omit it. But the proof of
part (b) is sligthly different.

First of all we shall prove that if (¢,z,y) belongs to the set {(¢,z,y) : m(t,z) = &, |y| <
b} then for all §; > 0, there exists g > 0 such that v®°(¢,z,y) > exp {—%1} for 0 <
€ < gg. To see this take (¢,z,y) such that m(t,z) = é&. Then 2z = z¢ £ ta* . Fix
z = z¢ + ta*. Define .

o + a*t, if selo,6
b = :z:g—{r-a*t-i-(xg—x-i-ﬂa*);:é_:'_%a_, if se(6,t—V8)
zo + a* (t — s), if se(t—0,t).
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where ¢; and c¢; are some positive constants (independent of f); note that c; can be
taken less or equal to 1. Then 13;(|Yf —yo| < e %) > cle_i(%em-—_’“i —1). Now, by
choosing § < cat/k and t € (0, %) we can find g9 > 0 sufficiently small such that

P;(]Y,‘ — | < e“g) > e‘%‘, for 0 < ¢ < gp.

Using the above estimates into (3.12) we get (3.11).

Let us define the function L(a) by
y Lo g
L(a) = sup E——a“*—L(y)¢.
0<a<vy<a 2y

Using the properties of the functions A(f) and L(«) one can verify that there exists an
unique positive root a* of the equation L(a) =0.

Proposition 3.2. Let v®%(t,z,y) be the solution of problem (3.7). Then
(a) lifg v%(¢,z,y) = 0 uniformly in (¢,z,y) from any compact subset of Q_ x [—b;d]
3

where Q_ = {(t,z,y) : |z — zo| > ta* ¥
(b) liﬁlx v99(t,z,y) = 1 uniformly in (t,z,y) from any compact subset of Q4 x [—b;b]

where Q4 = {(t,z,y) : |z — zo| < ta*.

Proof. Define m(t,z) = inf {So:(¢) : ¢ € Clo,4(R), wo = =, ¢ = z¢ } where S, is given
in (3.9). Using the Euler equations we get

o p 1 fz—= 2
m(wﬁ)—to(glgf@{ﬂ( : ) +L('r)}-

Since &(v) < & we obtain from (3.8)

0 < v*¥(t,2,y) < e¥ B2 g% ( Xz, Yy).

Notice that the initial function g%® depends on e. This fact does not affect the proof of
part (a): it is similar to the proof of Lemma 6.2.1 in [2] and we omit it. But the proof of
part (b) is sligthly different.

First of all we shall prove that if (¢,z,y) belongs to the set {(¢,z,y) : m(¢,z) = &, |y| <
b} then for all 6, > 0, there exists €9 > 0 such that v®(t,2,y) > exp {—%} for 0 <
e < go. To see this take (¢,z,y) such that m(¢,z) = é&. Then z = z¢ £ta* . Fix
z = z¢ + ta*. Define

zo + a*t, if s€/0,6
53 ={ o+ a*t+ (zo —:z:—!-ﬁa*)ﬁ_??a., if se€(6,t— \/ﬁ]
zo + a* (t — s), if se(t—v6,t.
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The piece-wise linear function ¢, connects the points (zo,t) and (z,0). Besides (t —
$,0s,y) € Q_ for s € [0,t —/8]. Using the Markov property of the process (X£,YE)
and Proposition 3.1 we conclude that for every &, > 0 and s; € (0,42) there exist
8, €0, 63 > 0 such that

= > I e 55
v& (¢, z,y) = Eiyvs"s (sl,Xf_,i,l’}f_sl) exp {E,/ ¢ (v""s(t — 381 — 8, X¢, Y;)) ds} >
0

> e“%g‘ X = X
= Ty (| Xf_,, —zo|<8a]

t—ay

t—31 -
X exp {l/ g (v"a(t -8 — 3,X§,Y:)) ds}, 0 <e < eo.
0

£

For s; > 0 sufficiently small we get

§n
vt 2,9) 2 T H L Xz _guc ¥

t—a; o
X exp{%f E(‘u"’a(t—sl —-s,X:,Y:)) ds}.
0

Using the Lipschitz continuity of &(v), part (a) of this proposition, and the lower bound
corresponding to the action functional (3.9) one can deduce that for § > 0 and €9 > 0
sufficiently small

§

b9 -~ 1 2 ~
Us,a(tax: y) 2 e_ﬁE:y [Ilf‘_&".ﬂ%&] 2 6_53- exp {E(Ct - Sm(qis))}, 0 <€ S €o-

Now, by choosing 6 > 0 even smaller if necessary and recalling that m(¢,z) = & we get

& — Sou(4) > —% . Hence there exists § > 0 and €y > 0 such that v®%(¢,z,y) > e~ % if
O<e<egg.
From this result one can prove that.

]_iﬁ}lv'!!'s(t,a:’y) =1 for (t,:c,y) € é-[-
€

by using arguments similar to the ones in the proof of Theorem 6.2.1 in [2].
O

Lemma 3.1. Suppose that lim.jo € In u®(to,%o,y0) = 0, to > 0. Then there exists a
constant A > 0 such that lim.|o u*(¢,z,y) = 1 uniformly in (,z,y) from any compact
subset of

Kf ., ={(s;2,9) 1 s> t0, [yl < b, |z =m0 < A(s —t0)}.
Proof. The proof of this lemma is similar to Lemma 2 in [5].
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Assume that lim, o € In u®(¢p,zo,%0) = 0. Then for any § > 0, there exists g > 0
such that u®(to,z0,y0) > e‘iﬁ?, 0 < & < g9. Using the a priori bound for the Hélder norm
of u®(t,z,y) we derive that

k&

u®(to,,y) > e~ for |z —zo| < e, |y —yo| < e %

for some positive constant k. Then u®(to,z,y) > v®%(0,z,y) for € R and |y| < b.
Using properties (M.1)-(M.2) we conclude that

u®(t,z,y) > v (t —to,z,y) fort >y, z €R,|y|<b.

By Proposition 3.2 (b), lim.jo v*%(t — to,2,y) =1 if |z — 20| < (¢t — to)a*, |y| < b uni-
formly in any compact subset of {(¢,2,y): |z — zo| < (t —to)a*, [y| < b}. Take A = a*
and the result follows.

a

The following lemma is analogous to Lemma 3 in [5].

Lemma 3.2. )
(a) Assume that lim, , u® (to,0,y0) = 0 for some sequence € | 0. Then there exists

A > 0 such that lim |, ue (t,z,y) =0 uniformlyin (t,z,y) belonging to compact subsets
of DA .. ={(t,z,y): 0 <t <to, |zo — z| < A(to — 1), |y| < b} .

(b) Let g = {(t2,y) : lim, g ue (t,z,y) =0,t > 0}. Forevery compact F belonging
to the interior (€)) of £) | lim, o u® (¢,2,y) = 0 uniformly in F.

Proof. The proof of part (a) follows from Lemma 3.1 by contradiction argument. The

uniformity of the convergence is a consequence of the uniformity of the bounds in Propo-
sition 3.2 (b). Part (b) follows by observing that the compact set F' can be covered by a

finite number of sets Dfi ,, with vertices (tx,zx) € (8(")) \F .
5 O

Remark 3.1. 1t follows from Lemma 3.2 (a) that if (¢,z,y) € £¢) then (t — h,z,y) €
(€(=)) for any 0 < h < t. Thus, &) C (EN),

Remark 3.2. Taking into account Lemma 3.2 and Remark 3.1 we conclude that the set
() has the form {(s,z): z € R, 0 < s < s(z)} x [~b,b] , where s(z) is some function
of z .

The proof of the following lemma is similar to the proof of Lemma 4 in [5].

Lemma 3.3. Let M = {(t,z,y) : t > 0,z € R, |y| < b, V*(¢t,z) = 0}. Let F be a
compact subset of (M). Then lim,.|o eln u®(t,z,y) = 0 uniformly in (t,z,y) € F.

Proof. From Remark 3.2 we can see that the functional
r=1(t,¢",¢%) =inf {s: (t 5, 01,02) ¢ (€€ )}
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is independent of the third argument ¢?. The reader can check the proof of Lemma 4 in [5]
to realize that this fact allows us to use the same arguments used by Freidlin in that lemma.

a

Now we can see that Theorem 3.1 (b) follows from Lemma 3.1 and Lemma 3.3. No-
tice that the position of the wave front is described by the frontier OM of the set
M = {(t,z,y) : V*(t,z) = 0,|y| < b} and, by Remark 3.2, the boundary of the set
{(t,z) : V*(t,z) = 0} is the graph of some function of z. Notice that the definition of
V*(t,z) and V(¢,z) imply that {(t,2): V(t,z) < 0} C {(¢,z) : V*(¢,z) < 0}. Hence, if
Condition (N) is fulfilled these two sets are the same.

4. Remarks and Generalizations

Remark 4.1. Suppose that the initial function g in (1.3) depends also on the fast variable
y. Let Hy = supp ¢ C R x [—b,b] and [Ho] = [(Ho)]. Let Go be the projection of Hy
over the z-axis. Clearly [Go] = [(Go)]. Let us assume that [Go] # R. In this case the
asymptotic behavior of the solution of (1.3) is the same as before: exactly as in Theorem
6.2.1 [2] one can prove that for any v > 0, there exists g > 0 such that

& =5 1 [t
Bus(%e Y00 {2 [ arr)dsh som {Iv@ar+al), 0<e<en
0

Hence, lim.jou®(t,z,y) =0 if V(¢,z) <0, where V(¢,z) is given in (3.1). However, the
fact that lim¢jo u®(¢,z,y) = 1 in the region V(t,z) > 0 is obtained in a slightly different
way.

Forany é; > 0 choose functions ¢, 7j such that ¢ € Cjp 4(R), $o = z, ¢: € Go, 7 € F,
and Rng((ﬁ, ﬁ) > V(t,:z:) — %2- where Rgg(@,ﬁ) = ﬁg - Sm((,a,ﬁ) and Sog((ﬁ,ﬁ) is defined
in (2.20). The upper semicontinuity of Ro; and the fact that [Go] = [(Go)] allow us to
choose ¢ such that dist (¢¢,R\ Go) > 0.

Take y* € [—b,b] and a sufficiently small positive constant K such that g(z,y) > 0 for
lz—¢¢| < K and |y—y*| < K (we may assume y* € (—b,b)). Let min(|;_g,|<K, |y—y*|<K]
g(z,y) =c1 > 0.

Define

c, if |$_’9§t|SK: |y“"'y*|SK
0, otherwise.

9(z,y) = {

Let @5(t,z,y) be the solution of (1.3) with initial function § and nonlinear term f(u) =
infy f(y,u). Then,

u(s,z,y) 2 E;yg(}f:,}’:) = clﬁ:y {lf: — o] S K, Y —y* < 'K} ‘

Recall that X¢ = z + /e Wz, where T¢ = 15 a(Xe,YE)dv and W, is a R-Wiener
process starting at zero and independent of Y. Then, the conditional distribution of X
given T¢ = v, with 9 € Fj, is the distribution of
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X, =:1:+\/EW¢..

Clearly X % and Y7 are independent. Moreover, the transition probability density of
Xy, satisfies a relation similar to (3.10). Then, one can see (as in the proof of Proposition
3.1) that Vé, >0, Vs> 0, 36; >0, Jeo > 0 (g0 independent of ) such that

" b s 5
if |[c—@¢ <é; and 0<e<ep.
']

On the other hand, one can show (see the proof of Proposition 3.1) that for s € (0, ),
Jdeg > 0 sufficiently small such that

P {|IYf —y*| < K} > exp {—-g—z_-}, for 0 < € < €.

Therefore, V82 > 0, Vs; € (0,62/8), 36; > 0, €9 > 0 such that

Pe {I1Xs, —ed <Kl — | < K} = B [Be, (1%, - ¢ < K, V5 -y < K/TeY] 2
) . 8o
> exp {_Zi"} X Py {[Y:1 -y < K} > exp{—z—Z}
if |z — @ < 61, |yl <9, and 0 < € < g and then , for those values of (z,y),
u(s1,z,y) > e=% for 81 € (0,%2 :

Now, using the strong Markov property and properties (M.1)-(M.2) we obtain for any
0<sy <t

~ - 1 t—81 -
ut(t,z,y) = Eg u(s1,Xi g, Yils, ) €Xp {E /0 c (Y:,’,u‘(t - 381 — 8, X;, Y:)) ds} >
- s 1 [t i
> E;yﬁ‘(sl, X o Yf_sl)exp {E /0 c (l’:f, u®(t —s1 — 8, X¢, l’;‘)) ds},

for 0 < e <. Choose s; € (0,%) to get

& _ 83 ~ 1 % o
u®(t,z,y) > e %E:yx[lf:_,l—(@:ldx]exp {EA c (Y:,u‘(t -8 — s,Xj,Y;’)) ds}.

Since s; can be chosen érbitra.rily small, the rest of the proof is the same as in Theorem
6.2.1 in [2].
Remark 4.2. Assume that the initial function in (1.3) depends on € > 0 in the following
way: lim. o €ln g*(z) = p(z) uniformly in z, u(z) is uniformly continuous, p(z) <0 for

z>0, p0)=0,and p(z) <p for z<0.
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Define V(t,z) as:

V(t,2) = sup {ne + p(ps) — Soe(e,n) : ¢ € Co,q(R), w0 =z, 1 € Fr}

where Sp; is given in (2.20).

One can prove that the position of the wave front of u®(t,z,y) as € | 0 is determined
by V(t,z) = 0. The main point here is to see that the Laplace-type asymptotic formula
(3.2) still holds with V(t,z) instead of V(t,z). The proof is the same of Lemma 6.2.1 [2]
if we take into account the assumptions made on g¢°(z).

Notice that if pi(z) < pa(z) for = > 0 then the wave front corresponding to p2
reaches some fixed value z faster than the wave corresponding to g;. The minimum
asymptotic velocity is obtained when u(z) = —c0, i.e, when g(z) =0 for =z > 0.

Remark 4.8. Using results from [5] and [6] one can show that V(t,z) = V*(¢,z) for
t>0,z € R where V*(t,z) is defined in (3.5) and

Vtz) = sup{ min [na — Soa(sn) : ¥ € Cpo,q(R), o = 2, ¢ € Go, 1 € Fz]} :
w,n (0Zast
Remark 4.4. Consider a weakly coupled R.D.E. with equations of the type as in (1.3):

(Oui(t,z,y) _ 1 O%ui(t,z,y) | ea(z,y) ui(t, z,y)
at T2 O0y? 2 Oz? ¥

1
(4.1) te

fk(yaui) =+ dej(ui - u;)] , z€R,[y[<bt>0
i=1
uz(0,2,y) =gi(x)

oui(t,z,y
k(ay ) |y=d:b — 0

“

for k=1,---,n and d;; >0 for 7,5 € {1,---,n} and i # j.
The probabilistic approach allows us to analyze the behavior of the solution of the prob-
lem (4.1) as € | 0 by considering the right continuous strong Markov process (X¢,Y,v{;

H;y .) in the phase space RXx[—b,b]x{1,:-+,n} corresponding to the infinitesimal operator

1 3*h(z,y,1) % eai(z,y) 0%h(z,y,?)

Aeh(a?, y,Z) = % 8y2 2 -63;2

+ é Z dji [h(m,y,j) - h(x? y’i)]

i=1

where h is bounded, has uniformly continuous bounded first and second order derivatives
in z and y up to the boundary, and %—%%Ml[y:ib = 0. For the existence and properties
of such processes see, for example, Skorokhod [13].
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As in Part 3 of this paper, the propagation of the wave front for (4.1) is analyzed by
considering the form of the action functional for the family of processes (X, fot cue(YF) ds).

Remark 4.5. The space of the fast variable can be any compact subset D of R" (with
smooth enough boundary). The fast motion can be described by any diffusion process
with coefficients independent of the slow variable, with reflection along the inward normal
to the boundary 0D of D. For a construction of such processes, see for example Freidlin
[2]. More general boundary conditions may also be considered (see Wentzell [15]).

Remark 4.6. Let (Y3, P,) be a Markov family in the phase space (D, B(D)) where D C R”
is compact and B(D) is the o-field generated by the Borel subsets of D in the topology
inherited from the Euclidean norm in R". Let {T};}:>0 be the semigroup of operators
given by Tyg(y) = E,g(Y:), g a bounded and measurable function, and A?! its infinitesimal
generator. Problem (1.3) can be generalized to

Ou(t,z,y) _ Ale, e
e = Au(t, z,y) +

forceR,yeD,t>0
u®(0,2,y) = g(z)

ea(z,y) 0%us(t,z,y)
3 g F f(y, *)

(4.2)

where A" is the infinitesimal generator of (Y:;P,).

Under some general assumptions on (Y3; P _y5 of the Feller type and of stochastic con-
tinuity, a Large Deviation Principle for the family of processes Z§ = fo ¢(Yz)ds can be
established.

Again, the limit behavior of the solution of problem (4.2) is analyzed by means of the
action functional for (X§, Z§).

Remark 4.7. As the slow motion, Markov processes belonging to the class of the locally
infinitely divisible processes can be considered. These processes are extentions of processes
with independent increments. Wentzell, in [17], established a Large Deviation Principle
for locally infinitely divisible processes by assuming suitable conditions on the cumulant
of such processes.

The slow variable in (4.2) can be an infinitely divisible process with frequent jumps
whose infinitesimal generator is given by

fy)f(“:)—b( ,y)—f(w)+ a(z,y) 5 f(@)+

+3 [ | [f e +cB) - f() - sﬁdf | pey(d8),
R\{U}
where p; , is a measure on R\ {0} such that f B2 piz,y(dB) < co. The subscript (y)

R\{0}
means that the above operator depends also on the fast variable. For more details about
this process, the reader may consult [3] or [17].
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