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Abstract

An integrable quantum spin ladder based on theSU(4) symmetry algebra with boundary defec
is studied in the framework of boundary integrability. Five nontrivial solutions of the reflec
equations lead to different boundary impurities. In each case the energy spectrum is dete
using the quantum inverse scattering method. The thermodynamic properties are investig
means of the thermodynamic Bethe ansatz. In particular, the susceptibility and the magnetiz
the model in the vicinity of the critical points are derived along with differing magnetic prope
for antiferromagnetic and ferromagnetic impurity couplings at the edges. The results are app
to the strong coupling ladder compounds, such as Cu2(C5H12N2)2Cl4.
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1. Introduction

Research on quantum spin ladders continues to attract considerable attentio
both theoretical and experimental points of view due to their relevance to a
number of low-dimensional materials, such as particular cuprates and organic comp
[1–6], among others. Initially, most of the theoretical results concerning ladder sy
were obtained from the standard Heisenberg ladder. Subsequently, other mode
generalized interactions have been proposed. In this context, Nersesyan and Tsv
introduced a spin ladder model incorporating a biquadratic spin exchange inter
term, which, when sufficiently strong, exhibits new dimerized phases [8]. Various la
models have been developed by an extension of the symmetry algebra [9–13]. A
case of the Nersesyan–Tsvelik model [7] was proposed later by Wang [12]. This m
based on theSU(4) symmetry algebra, is exactly solvable by Bethe ansatz met
and exhibits a spin gap in the spectrum of elementary triplet excitations, a nec
condition for superconductivity to occur under hole doping. In addition, it was rec
observed [14] that this model can be used to describe some physical properties of d
types of two-leg ladder compounds, such as Cu2(C5H12N2)2Cl4 [3], (C5H12N)2CuBr4 [4],
(5IAP)2CuBr4 · 2H2O [5] and KCuCl3, TlCuCl3 [6]. In the absence of a magnetic field t
model exhibits three quantum phases, while in the presence of a strong magnetic fie
is a gapped phase in the regimeH < Hc1, a fully polarized gapped phase forH > Hc2
and a Luttinger liquid magnetic phase in the regimeHc1 < H < Hc2. This observation
suggests that the physical properties of the ladder compounds can be accessed
well-established knowledge of integrable systems.

On the other hand, the effect of boundary impurities and defects also plays an imp
role in quasi-one-dimensional systems. An integrableSU(4) spin ladder model with
a boundary defect has been proposed and investigated recently through Bethe
methods [15]. A generalization of this method to other integrable ladders can be
in [16]. This model, however, is just a particular case of a more general family of ex
solvable ladder models based on theSU(4) symmetry algebra that can be constructed fr
more general types of bounday conditions. Basically, by this strategy, a set of equ
to deal with the boundaries, called reflection equations (RE) are introduced [17,18
solutions of these equations [19–21], referred to asK-matrices, in turn introduce bounda
interactions into the Hamiltonian of the system, in such a manner that integrabi
preserved. The boundary interaction terms in spin ladder models may be realiz
impurity doping at the ends of the ladder. Impurity doping in a spin ladder system
a spin gap has been performed [22]. Substantial change in macroscopic properties
enhancement in spin correlations and magnetic susceptibilities are observed in t
impurity concentration region. The boundary impurity doping may change the cr
behaviour at the boundaries of the ladder systems.

The purpose of this paper is to present a complete family of integrable spin l
systems based on theSU(4) symmetry algebra with boundary impurities in a system
way. An analytic analysis of the thermodynamic properties of these models is

performed by means of the thermodynamic Bethe ansatz (TBA) method and, in particular,
the effect of these impurities on the free energy, the susceptibility and the magnetization is
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discussed. So far, the results obtained provide a clear interpretation of the impurity
in the low temperature regime of an integrable open spin ladder system.

The paper is organized as follows. In Section 2, we present theSU(4) solution of the
YBE and solve the corresponding RE. Furthermore, we give the explicit expressions
Hamiltonian with different types of boundary defects. Section 3 is devoted to the deriv
of the Bethe-ansatz solution by means of the quantum inverse scattering method (Q
The reader more interested in the physics of the model may choose to skip Sec
In Section 4, the ground state properties, the quantum phase diagram and the bo
impurity effects are studied via the TBA. A summary and discussion of our main resu
given in Section 5.

2. The integrable spin ladder model with boundary impurities

Let us begin by introducing the integrable spin ladder model based on theSU(4)
symmetry with boundary fields,

(1)H = J‖
γ
Hleg+ J⊥

L∑
j=1

�Sj · �Tj +H(m)
1 +H(l)

L ,

where the leg part consists of Heisenberg exchange and four-spin interaction terms

(2)Hleg=
L−1∑
j=1

(
1

4
+ �Sj · �Sj+1+ �Tj · �Tj+1+ 4�Sj · �Sj+1 · �Tj · �Tj+1

)
.

The left (right) boundary termsH(m)
1 (H(l)

L ) depend on arbitrary parametersU± and are
given by

(3)H
(m)
1 =




−U− �S1 · �T1− 1
4U−, for m= 1,

−U−
(1

2 − Sz1
)( 1

2 − T z1
)+ 1

2U−, for m= 2,

U−
(�S1 · �T1−

(1
2 − Sz1

)( 1
2 − T z1

))+ 1
4U−, for m= 3,

U−
(�S1 · �T1−

(1
2 + Sz1

)( 1
2 + T z1

))+ 1
4U−, for m= 4,

−2U−Sz1T
z
1 + 1

2U−, for m= 5,

(4)H
(l)
L =




−U+ �SL · �TL − 1
4U+, for l = 1,

−U+
( 1

2 − SzL
)(1

2 − T zL
)+ 1

2U+, for l = 2,

U+
(�SL · �TL − (1

2 − SzL
)(1

2 − T zL
))+ 1

4U+, for l = 3,

U+
(�SL · �TL − (1

2 + SzL
)(1

2 + T zL
))+ 1

4U+, for l = 4,

−2U+SzLT
z
L + 1

2U+, for l = 5.

In the above�Sj and �Tj are the standard spin-1
2 operators acting on sitej of the upper

and lower legs, respectively,J‖ andJ⊥ are the intrachain and interchain couplings (

Fig. 1) andL is the length of the ladder. It is worth noticing thatγ is a rescaling constant
which can be used to minimize the biquadratic term such that the quantum phase of the
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Fig. 1. Thesu(4) spin ladder with boundary impurities.U± are the boundary impurity coupling constants.J‖ and
J⊥ are the intrachain and interchain couplings.

model (1) lies in the same Haldane spin liquid phase as that of the conventional spin
(see Section 4).

Notice that the boundary terms corresponding to the first case (m= 1, l = 1) in (3) and
(4) act as Heisenberg-type rung couplings, whereas in the second case (m= 2, l = 2) they
act as az-component spin interaction with boundary magnetic fields. In the third (m= 3,
l = 3) and fourth (m= 4, l = 4) cases, they act as a combination of Heisenberg-type
coupling andz-component spin interaction with boundary magnetic fields. In the last
(m= 5, l = 5) only thez-component spin interaction terms survive. The Hamiltonian
thus contains five different types of boundary rung interactions at each edge of the
realizing different impurity dopings. This leads to twenty five possible choices of boun
impurities. The rung interaction in the bulk was, as usual, introduced by the che
potential terms given by−J⊥∑L

j=1 e
11
j in the canonical basisei ⊗ ej . The rung states spl

into a singlet and a triplet denoted by

|1〉 = 1√
2

(|↑↓〉 − |↓↑〉), |2〉 = |↑↑〉,

(5)|3〉 = 1√
2

(|↑↓〉 + |↓↑〉), |4〉 = |↓↓〉,

respectively. The leg interaction part of the Hamiltonian (2) does not change und
basis transformation (5). However, the bulk rung interaction part and the boundary
interaction terms alter with respect to the choice of the order of singlet and triplet
basis (5).

In order to derive this model let us begin by recalling theSU(4) R-matrix

(6)R12(u)= u · I + P,
where P is the permutation operator with matrix elementsPαβ,γ δ = δαδδβγ with
α,β, γ, δ = 1,2,3,4. I is the identity operator. For later use, we denote the Boltzm
weights in theR-matrix (6) as

(7)w1= u+ 1, w2= u, w3= 1.

The quantumR-matrix (6) satisfies the Yang–Baxter equation (YBE)
(8)R12(u− v)R13(u)R23(v)=R23(v)R13(u)R12(u− v),
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guaranteeing the integrability of the model with periodic BC. ThisR-matrix enjoys the
properties

(9)R12(u)R21(−u)= 1− u2, R
t1t2
12 (u)=R12(u),

where superscript ta denotes the transposition in the space with indexa. For other types
of boundary conditions, the YBE will still account for the integrability of the bulk par
the model, but the boundary terms have to be chosen appropriately in order to prese
integrability. In particular, the left and right reflection matrices,K− andK+, respectively,
are required to satisfy the REs [18,20]

R12(u− v)
1
K− (u)R21(u+ v)

2
K− (v)

(10)= 2
K− (v)R12(u+ v)

1
K− (u)R21(u− v),

R
t1t2
21 (v − u)

1
K

t1+(u)R̃12(−u− v)
2
K

t2+(v)

(11)= 2
K

t2+(v)R̃21(−u− v)
1
K

t1+(u)R
t1t2
12 (v − u).

In the above we have introduced the objectR̃ which may be determined by the relations

(12)R̃
t2
12(−u)Rt1

21(u)= 1, R̃
t1
21(−u)Rt2

12(u)= 1,

and we have used the conventional notation

(13)
1
X≡X⊗ IV2,

2
X≡ IV1 ⊗X,

whereIV denotes the identity operator onV and, as usual,R21= P ·R12 · P, with P being
the permutation operator. After a lengthy calculation we find the possible solutions
REs for the diagonalK±-matrices (see also Ref. [19])

(14)K±(u)=


K1±(u) 0 0 0

0 K2±(u) 0 0
0 0 K3±(u) 0
0 0 0 K4±(u)


 .

The solutions forK−, corresponding to the left boundary are:

Case 1

(15)K1−(u)= u+ ξ−, K2−(u)=K3−(u)=K4−(u)=−u+ ξ−;
Case 2

(16)K1−(u)=K2−(u)=K3−(u)= u+ ξ−, K4−(u)=−u+ ξ−;
Case 3

(17)K1−(u)=K4−(u)=−u+ ξ−, K2−(u)=K3−(u)= u+ ξ−;
Case 4
(18)K1−(u)=K2−(u)=−u+ ξ−, K3−(u)=K4−(u)= u+ ξ−;
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Case 5

(19)K1−(u)=K3−(u)= u+ ξ−, K2−(u)=K4−(u)=−u+ ξ−.

On the other hand, the solutions forK+, corresponding to the right boundary, are:

Case 1

K1+(u)=−u+ ξ+ + 3,

(20)K2+(u)=K3+(u)=K4+(u)= u− ξ+ + 1;
Case 2

K1+(u)=K2+(u)=K3+(u)=−u− ξ+ − 1,

(21)K4+(u)= u− ξ+ + 3;
Case 3

K1+(u)=K4+(u)= u− ξ+ + 2,

(22)K2+(u)=K3+(u)=−u− ξ+ − 2;
Case 4

K1+(u)=K2+(u)= u− ξ+ + 2,

(23)K3+(u)=K4+(u)=−u− ξ+ − 2;
Case 5

K1+(u)=K3+(u)=−u− ξ+ − 2,

(24)K2+(u)=K4+(u)= u− ξ+ + 2.

In the aboveξ± = J‖
γU± are free parameters related to the left− (right+) boundary coupling

U− (U+), respectively. The boundary pairsK(m)− (u), K
(l)
+ (u), l,m= 1, . . . ,5, lead to the

boundary termsH(m)
− andH(l)

+ in (3) and (4). Mathematically, they combine to give twen
five possible choices of boundary impurities if we put impurities at both ends. How
they are not correlated to each other directly, so it is enough to consider one impu
one end in each boundary condition so as to give five independent boundary defec
note that a special choice of the boundary termH(1) has already been investigated [1
However, the second boundary impurity model proposed there does not have a coun
in the cases considered here.

The symmetries enjoyed by theR-matrix (6) and the REs (10) and (11) constitute
necessary ingredients for the integrability of the model with boundary impurities, d
the fact that the double-row transfer matrix of the system
(25)τ (u)= tr0
[
K+(u)T (u)K−(u)T −1(−u)],
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commutes for different values of the spectral parameter. HereT (u) denotes the mon
odromy matrix given by

(26)T (u)=R0,L(u)R0,L−1(u) · · ·R0,2(u)R0,1(u)

andT −1 its inverse. The Hamiltonian (1) associated with the quantumR-matrix (6) is
related to the double-row transfer matrix (25) by

(27)H =− J‖
2γ

d

du
ln τ (u)

∣∣∣∣
u=0
− J⊥

L∑
j=1

e11
j + const.

Here

(28)
d

du
ln τ (u)

∣∣∣∣
u=0
= 2

L−1∑
j=1

Hjj+1+K−1− (0)K ′−(0)+ 2
tr0K+(0)R′0L(0)P0L

tr0K+(0)
,

where the prime denotes the derivative with respect to the spectral paramete
relation (27) clearly indicates the identificationU± = J‖

γ ξ± between the boundary impuri
couplingsU± and the free parametersξ± of the boundary scattering matrices. So far,
have completed the first step towards the solution of the model with boundary impu
Next we proceed with the diagonalization of the transfer matrix (25) by means of the
algebraic Bethe ansatz [25,26].

3. The algebraic Bethe-ansatz approach

3.1. First-level nesting structure

In order to find the spectrum of our Hamiltonian with boundary defects, we first
to solve the eigenvalue problem of the transfer matrix, namelyτΦ = λΦ. As usual, the
transfer matrix (25) can be written in the form

(29)τ (λ)= tr0
[
K+(u)T̃−(u)

]
,

whereT̃−(u) is the double-row monodromy matrix defined by

(30)T̃−(u)= T (u)K−(u)T −1(−u).
One can verify thatT̃−(u) also satisfies the RE (10). Following the notation used
Refs. [23–26], we label the elements of the monodromy matrixT (u) by

(31)T (u)=


A(u) B1(u) B2(u) B3(u)

C1(u) D11(u) D12(u) D13(u)


 ,
C2(u) D21(u) D22(u) D23(u)

C3(u) D31(u) D32(u) D33(u)
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and further

(32)T −1(−u)=



Ā(u) B̄1(u) B̄2(u) B̄3(u)

C̄1(u) D̄11(u) D̄12(u) D̄13(u)

C̄2(u) D̄21(u) D̄22(u) D̄23(u)

C̄3(u) D̄31(u) D̄32(u) D̄33(u)


 ,

(33)T̃−(u)=



B̃(u) Ã1(u) B̃2(u) B̃3(u)

C̃1(u) D̃11(u) D̃12(u) D̃13(u)

C̃2(u) D̃21(u) D̃22(u) D̃23(u)

C̃3(u) D̃31(u) D̃32(u) D̃33(u)


 .

According to the first level Bethe ansatz, the eigenvectors|Φ〉 of the transfer matrix can b
written as

(34)|Φ〉 = B̃i1(u1) · · · B̃iN (uN)|φ〉F i1...iN(1) ,

where the summation is taken on the repeated indicies. The coefficients with in
in = 1,2,3, n = 1, . . . ,N will be determined later by the second level Bethe ansatz.
first level pseudovacuum|φ〉 is chosen as the standard ferromagnetic state

(35)|φ〉 = |0〉L⊗ · · · ⊗ |0〉i ⊗ · · · ⊗ |0〉1,
where |0〉i = (1,0,0,0)ti acts as a highest-weight vector. This state corresponds t
product of the rung singlet state in the basis (5). Different choices of the order o
basis (5) will change the eigenvalues of the Hamiltonian which facilitates the an
of the ground state in different regions. From the structure of theR-matrix (6), one can
deduce that the operatorsBi(u) andB̄i(u) (i = 1,2,3) act on the reference state as creat
operators creating particles with pseudo-momentau and−u, respectively. The operato
Ci(u) (i = 1, . . . ,3) behave as annihilation fields. Furthermore, using an invariant ve
of the Yang–Baxter algebra,

(36)
2
T
−1(−u)R12(2u)

1
T (u)= 1

T (u)R12(2u)
2
T
−1(−u),

we obtain, apart from an overall factorQ(u) = K1−(u)K1+(u), the eigenvalue of th
transfer matrix acting on the reference state|φ〉

(37)τ (u)|φ〉 =
{
ω+A(u)Ã(u)+

3∑
a=1

ω+a (u)D̂aa(u)
}
|φ〉,

where we have introduced the transformations

(38)D̂ij (u)= D̃ij (u)− δij w3(2u)

w1(2u)
Ã(u)= ω−i (u)Dii(u)D̄ii (u),

with i = 1,2,3 and
(39)Ã(u)= ω−A(u)A(u)Ā(u).



oth
ing on
0) and
M.T. Batchelor et al. / Nuclear Physics B 669 [FS] (2003) 385–416 393

In the above expression,

ω−A(u)= 1, for m= 1, . . . ,5,

ω+A(u)=




(u+2)(u+ξ+)
(u+1/2)(u+ξ++3) , for l = 1,
(u+2)(u+ξ+)

(u+1/2)(u+ξ++1) , for l = 2,
(u+2)(−u+ξ+)

(u+1/2)(−u+ξ+−2) , for l = 3,4,
(u+2)(u+ξ+)

(u+1/2)(u+ξ++2) , for l = 5,

ω−1 (u)=




u(−u+ξ−−1)
(u+1/2)(u+ξ−) , form= 1,
u(u+ξ−+1)

(u+1/2)(−u+ξ−) , form= 3,
u

u+1/2, form= 2,4,
u(−u+ξ−−1)
(u+1/2)(u+ξ−) , form= 5,

ω−2 (u)=




u(−u+ξ−−1)
(u+1/2)(u+ξ−) , form= 1,
u(u+ξ−+1)

(u+1/2)(−u+ξ−) , form= 3,
u(u+ξ−+1)

(u+1/2)(−u+ξ−) , form= 4,
u

u+1/2, form= 2,5,

ω−3 (u)=




u(−u+ξ−−1)
(u+1/2)(u+ξ−) , form= 1,
u

u+1/2, form= 3,
u(u+ξ−+1)

(u+1/2)(−u+ξ−) , form= 4,
u(−u+ξ−−1)
(u+1/2)(u+ξ−) , form= 2,5,

with ω+1 (u)=K2+(u), ω+2 (u)=K3+(u), ω+3 (u)=K4+(u) for l = 1, . . . ,5. In addition,

A(u)Ā(u)|0〉 =w1(u)
2|0〉, Dii(u)D̄ii (u)|0〉 =w2(u)

2|0〉.
We note that the operators̃Bi(u), i = 1,2,3, constitute a three-component vector with b
positive and negative pseudo-momenta still playing the role of the creation fields act
the pseudovacuum state. In order to make further progress we return to the RE (1
derive the commutation relations

Ã(u1)B̃a(u2)= (u2− u1+ 1)(u1+ u2)

(u2− u1)(u1+ u2+ 1)
B̃a(u2)Ã(u1)

− (u1+ u2)

(u2− u1)(u1+ u2+ 1)
B̃a(u1)Ã(u2)

− 1

u + u + 1

[
3∑
B̃b(u1)D̂ba(u2)+ δab 1

2u + 1
B̃b(u1)A(u2)

]
,

(40)
1 2

b=1 2
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(41)

D̂bd (u1)B̃c(u2)= (u1− u2+ 1)(u1+ u2+ 2)

(u1− u2)(u1+ u2+ 1)

× {
r(1)(u1+ u2+ 1)ebghr

(1)(u1− u2)
ih
cd B̃e(u2)D̂gi(u1)

}
− 2(u1+ 1)

(2u1+ 1)(u1− u2)
r(1)(2u1+ 1)gbid B̃g(u1)D̂ic(u2)

+ 4(u1+ 1)u2

(2u1+ 1)(2u2+ 1)(u1+ u2+ 1)

× r(1)(2u1+ 1)gbcd B̃g(u1)Ã(u2),

between the diagonal fields and the creation fields. The summation convention is im
for repeated indices. The matrixr(1), which satisfies the Yang–Baxter equation, takes
form

raaaa = 1, a = 1,2,3, rabab =
1

u+ 1
, a �= b= 1,2,3,

(42)rabba =
u

u+ 1
, a �= b= 1,2,3.

We notice that the first term in the rhs of each of the commutation relations (40)
contribute to the eigenvalues of the transfer matrix, which should be analytic functio
the spectral parameteru. Consequently, the residues at singular points must vanish.
yields the Bethe ansatz equations, which in turn assure the cancellation of the un
terms in the eigenvalues of the transfer matrix after the whole nesting procedur
convenience, we make a shift in the spectral parameters,u = v − 1/2, ui = vi − 1/2,
such that the eigenvalue of the transfer matrix (25) can be obtained as

τ (v)|Φ〉
=Λ(v, {vi})|Φ〉
=W+A (v − 1/2)W−A (v − 1/2)

N∏
i=1

(v− vi − 1)(v + vi − 1)

(v − vi)(v + vi) |Φ〉

(43)

+W+a (v − 1/2)W−a (v − 1/2)
N∏
i=1

(v− vi + 1)(v + vi + 1)

(v − vi)(v + vi) Λ(1)
(
v, {vi}

)|Φ〉,
provided that

W+A (vi − 1/2)W−A (vi − 1/2)(2vi − 1)

W+1 (vi − 1/2)W−1 (vi − 1/2)(2vi + 1)

(44)=
N∏
l=1
l �=i

(vi − vl + 1)(vi + vl + 1)

(vi − vl − 1)(vi + vl − 1)
Λ(1)

(
v, {vi}

)∣∣∣∣∣
v=vi

.

Herea = 1,2,3, and we appropriately choose
(45)W−A (u)= 1, for m= 1, . . . ,5,
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(46)W+A (u)=




(u+2)(u+ξ+)
(u+1/2)(u+ξ++3) , for l = 1,
(u+2)(u+ξ+)

(u+1/2)(u+ξ++1) , for l = 2,
(u+2)(−u+ξ+)

(u+1/2)(−u+ξ+−2) , for l = 3,4,
(u+2)(u+ξ+)

(u+1/2)(u+ξ++2) , for l = 5,

(47)W+a (u)=
{

u−ξ++1
−u−ξ+−3, for l = 1,

1, for l = 2, . . . ,5,

(48)W−a (u)=
{

u(−u+ξ−−1)
(u+1/2)(u+ξ−) , form= 1,
u

u+1/2, form= 2, . . . ,5.

Λ(1)(v, {vi}) is the eigenvalue of the second level transfer matrixτ (1) related to anSU(3)
invariant open chain, i.e.,

(49)τ (1) = Tr0K
(1)
+ (v)T (1)(v)K

(1)
− (v)T̄ (1)(v),

where

(50)T (1)
(
v, {vi}

)= r(1)12 (v+ v1)
e1a
h1g1
· · · r(1)12 (v + vN )eNgN−1

hNgN
,

(51)T̄ (1)
(
v, {vi}

)= r(1)21 (v− vN )eNhNlN−1iN
· · · r(1)21 (v− v1)

e1h1
ai1
.

Here we have used the standard notationr(1)12 (v) = P · r(1)(v) whereP is the standard
permutation operator, which can be represented by a 32 × 32 matrix, i.e., pαβ,γ δ =
δαδδβγ . It can be seen that the coefficientsF i1...in(1) act as the multi-particle vectors for th
inhomogeneous transfer matrix (49). We remark that the coefficientsW given in (45)–(48)
are chosen in order to match the choice of the transfer matrix (49) with the nestedK

(1)
± -

matrices,

(52)K
(1)
± (v)=


K1(1)± (v) 0 0

0 K2(1)± (v) 0

0 0 K3(1)± (v)


 .

Now corresponding to the first solution (20), we have

(53)K1(1)− (v)=K2(1)− (v)=K3(1)− (v)= 1,

(54)K1(1)+ (v)=K2(1)+ (v)=K3(1)+ (v)= 1.

And to the second solution (21):

(55)K1(1)− (v)=K2(1)− (v)= 1, K3(1)− (v)=
−v + ξ− − 1/2

v + ξ− − 1/2
,

(56)K1(1)+ (v)=K2(1)+ (v)= 1, K3(1)+ (v)=
v − ξ+ + 5/2

−v − ξ+ − 1/2
.

And to the third solution (22):

(1) (1) v + ξ− + 1/2 (1)
 (57)K1− (v)=K2− (v)= −v + ξ− + 1/2
, K3− (v)= 1,
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(58)K1(1)+ (v)=K2(1)+ (v)=
−v − ξ+ − 3/2

v − ξ+ + 3/2
, K3(1)+ (v)= 1.

And to the fourth solution (23):

(59)K1(1)− (v)= 1, K2(1)− (v)=K3(1)− (v)=
v + ξ− + 1/2

−v + ξ− + 1/2
,

(60)K1(1)+ (v)= 1, K2(1)+ (v)=K3(1)+ (v)=
−v − ξ+ − 3/2

v − ξ+ + 3/2
.

And to the last solution (24):

(61)K2(1)− (v)= 1, K1(1)− (v)=K3(1)− (v)=
−v + ξ− − 1/2

v + ξ− − 1/2
,

(62)K2(1)+ (v)= 1, K1(1)+ (v)=K3(1)+ (v)=
v − ξ+ + 3/2

−v − ξ+ − 3/2
.

We can show that the reflection matrices (52) with the entries (53)–(62) do satisfy th

r
(1)
12 (u− v)

1
K
(1)
− (u)r

(1)
21 (u+ v)

2
K
(1)
− (v)

(63)= 2
K
(1)
− (v)r

(1)
12 (u+ v)

1
K
(1)
− (u)r

(1)
21 (u− v),

r
(1)
21

t1t2
(v − u) 1

K
(1) t1+ (u)r̃

(1)
12 (−u− v)

2
K
(1) t2+ (v)

(64)= 2
K
(1) t2+ (v)r̃

(1)
21 (−u− v)

1
K
(1) t1+ (u)r

(1)
12

t1t2
(v − u).

3.2. Second-level Bethe ansatz

In order to proceed in the nested algebraic Bethe ansatz, we have to repeat the
procedure presented above for the internal block of the monodromy matrix. Similarly
the RE (63), we can derive commutation relations,

Ã(1)(v1)B̃
(1)
a (v2)

= (v1− v2− 1)(v1+ v2)

(v1− v2)(v1+ v2+ 1)
B̃(1)a (v2)

˜A(1)(v1)

+ (v1+ v2)

(v1− v2)(v1+ v2+ 1)
B̃(1)a (v1)Ã

(1)(v2)

1
[

2∑ ˜ (1) ˆ (1) 1 ˜ (1) (1)

]

(65)−

v1+ v2+ 1
b=1

Bb (v1)Dba (v2)+ δab
2v2+ 1

Bb (v1)A (v2) ,
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(66)

D̂
(1)
bd (v1)B̃

(1)
c (v2)

= (v1− v2+ 1)(v1+ v2+ 2)

(v1+ v2+ 1)(v1− v2)

× {
r(2)(v1+ v2+ 1)ebghr

(2)(v1− v2)
ih
cd B̃

(1)
e (v2)D̂gi(v1)

}
− 2(v1+ 1)

(2v1+ 1)(v1− v2)
r(2)(2v1+ 1)gbid B̃

(1)
g (u1)D̂

(1)
ic (v2)

+ 4(v1+ 1)v2

(2v1+ 1)(2v2+ 1)(v1+ v2+ 1)
r(1)(2v1+ 1)gbcd B̃

(1)
g (v1)Ã

(1)(v2),

between the diagonal and the creation fields. Where again the summation conven
implied for the repeated indices. The matrixr(2)(v) is nothing but theSU(2) invariant
R-matrix, i.e.,

raaaa = 1, a = 1,2, rabab =
1

v + 1
, a �= b = 1,2,

(67)rabba =
v

v + 1
, a �= b= 1,2.

If we define the second level Bethe ansatz as

(68)
∣∣Ψ (1)〉= B̃(1)l1 (µ1) · · · B̃(1)lM (µM)|0〉F(2)l1...lM ,

and make the rescalingsµl→µl − 1/2 andv = ṽ− 1/2 we obtain from the commutatio
relations (65) and (66) the eigenvalueΛ(1)(v, {vi }{µj }), i.e.,

τ (1)(ṽ)
∣∣Ψ (1)〉=Λ(1)(ṽ, {vi}{µj })∣∣Ψ (1)〉

(69)

=
{
W
(1)
+A(ṽ − 1/2)W(1)

−A(ṽ − 1/2)
M∏
l=1

(ṽ −µl − 1)(ṽ+µl − 1)

(ṽ −µl)(ṽ+µl)

+W(1)
+a (ṽ − 1/2)W(1)

−a (ṽ − 1/2)
N∏
i=1

(ṽ − vi − 1/2)(ṽ+ vi − 1/2)

(ṽ − vi + 1/2)(ṽ+ vi + 1/2)

×
M∏
l=1

(ṽ −µl + 1)(ṽ+µl + 1)

(ṽ−µl)(ṽ +µl) Λ(2)
(
ṽ, {vi}, {µl}

)}∣∣Φ(1)〉,
provided that

W
(1)
+A(µl − 1/2)W(1)

−A(µl − 1/2)(2µl − 1)

W
(1)
+1 (µl − 1/2)W(1)

−1(µl − 1/2)(2µl + 1)

=
N∏
i=1

(µl − vi − 1/2)(µl + vi − 1/2)

(µl − vi + 1/2)(µl + vi + 1/2)

(70)×
M∏ (µl −µi + 1)(µl +µi + 1)

Λ(2)
(
ṽ, {vi}, {µl}

)∣∣∣∣ .
i=1
i �=l
(µl −µi − 1)(µl +µi − 1) ∣

ṽ=µl
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Herea = 1,2, and

(71)W
(1)
−A(v)=




v+ξ−+1/2
−v+ξ−+1/2, for m= 3,

1, for m= 1,2,4,
−v+ξ−−1/2
v+ξ−−1/2 , for m= 5,

(72)W
(1)
+A(v)=




v+3/2
v+1/2, for l = 1,
(v+3/2)(v+ξ+−1/2)
(v+1/2)(v+ξ++1/2) , for l = 2,
(v+3/2)(v+ξ++1/2)
(v+1/2)(−v+ξ+−3/2) , for l = 3,
(v+3/2)(−v+ξ++1/2)
(v+1/2)(−v+ξ+−3/2) , for l = 4,
(v+3/2)(−v+ξ+−1/2)
(v+1/2)(v+ξ++3/2) , for l = 5,

(73)W
(1)
−1 (v)=W(1)

−2(v)=




v
v+1/2, for m= 1,

v
(v+1/2)(v+ξ−−1/2) , for m= 2,

v
(v+1/2)(−v+ξ−+1/2) , for m= 3,

v(v+ξ−+3/2)
(v+1/2)(−v+ξ−+1/2) , for m= 4,

v
(v+1/2)(v+ξ−−1/2) , for m= 5,

(74)W
(1)
+1 (v)=W(1)

+2(v)=




1, for l = 1,
1

v+ξ++1/2, for l = 2,
1

−v+ξ+−3/2, for l = 3,
v+ξ++3/2
−v+ξ+−3/2, for l = 4,

1
v+ξ++3/2, for l = 5.

Now Λ(2)(ṽ, {vi}, {µl}) is the eigenvalue of the third level transfer matrixτ (2) related to
anSU(2) invariant open chain, i.e.,

(75)τ (2) = Tr0K
(2)
+ (ṽ)T (2)(ṽ)K

(2)
− (ṽ)T̄ (2)(ṽ),

where

(76)T (2)
(
ṽ, {vi}, {µl}

)= r(2)12 (ṽ +µ1)
e1a
h1g1
· · · r(2)12 (ṽ +µM)eMgM−1

hMgM
,

(77)T̄ (1)
(
ṽ, {vi}, {µl}

)= r(2)21 (ṽ −µM)eMhMlM−1iM
· · · r(2)21 (ṽ −µ1)

e1h1
ai1
.
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3.3. Third-level Bethe ansatz

It has been shown so far that the eigenvalue problem of the transfer matrix is redu
the diagonalization of the isotropic Heisenberg model withK-matrices

(78)K
(2)
− (ṽ)=




(
ṽ + ξ− − 1 0

0 −ṽ+ ξ− − 1

)
, for m= 2,(

ṽ + ξ− 0
0 −ṽ + ξ−

)
, for m= 3,5,(

1 0
0 1

)
, for m= 1,4,

(79)K
(2)
+ (ṽ)=




(
ṽ + ξ+ 0

0 −ṽ + ξ+
)
, for l = 2,(

ṽ + ξ+ + 1 0
0 −ṽ+ ξ+ − 1

)
, for l = 3,5,(

1 0
0 1

)
, for l = 1,4.

Following the derivation in [18], we immediately obtain the eigenvalues of the ne
transfer matrix (75), given by

τ (2)(ṽ)F (1)
l1...lM =Λ(2)(v, {vi}, {µl}, {wq})F (1)l1...lM

(80)

=
{
W
(2)
+1(ṽ)W

(2)
−1 (ṽ)

Q∏
l=1

(ṽ−wl − 1)(ṽ +wl)
(ṽ−wl)(ṽ +wl + 1)

+W(2)
+2(ṽ)W

(2)
−2 (ṽ)

M∏
l=1

(ṽ −µl)(ṽ +µl)
(ṽ −µl + 1)(ṽ +µl + 1)

×
Q∏
l=1

(ṽ −wl + 1)(ṽ +wl + 2)

(ṽ −wl)(ṽ +wl + 1)

}
F (1)

l1...lM
,

provided that

W
(2)
+1 (wl)W

(2)
−1(wl)wl

W
(2)
+2 (wl)W

(2)
−2(wl)(wl + 1)

=
M∏
j=1

(wl −µj )(wl +µj )
(wl −µj + 1)(wl +µj + 1)

(81)×
Q∏
m=1
m�=l

(wl −wm + 1)(wl +wm + 2)

(wl −wm − 1)(wl +wm) .

Here

(2)

{
ṽ + ξ− − 1, for m= 2,
(82)W−1 (ṽ)= ṽ + ξ−, for m= 3,5,
1, for m= 1,4,
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(83)W
(2)
+1 (ṽ)=



(ṽ+1)(ṽ+ξ+−1)

2ṽ+1 , for l = 2,
(ṽ+1)(ṽ+ξ+)

2ṽ+1 , for l = 3,5,
ṽ+1
ṽ+1/2, for l = 1,4,

(84)W
(2)
−2 (ṽ)=



−ṽ(ṽ−ξ−+2)
ṽ+1/2 , for m= 2,

−ṽ(ṽ−ξ−+1)
ṽ+1/2 , for m= 3,5,
ṽ

ṽ+1/2, for m= 1,4,

(85)W
(2)
+2 (ṽ)=

{−ṽ+ ξ+ − 2, for l = 2,
−ṽ+ ξ+ − 1, for l = 3,5,
1, for l = 1,4.

The eigenvalues (69) and (80) as well as the constraints (70), (81) on the rapiditiesµl and
wl have paved the way for the complete diagonalization of the transfer matrix (25). M
a further shift on the rapidities,wl → wl − 1/2, wm→ wm − 1/2 andṽ = v + 1/2, the
eigenvalues of the transfer matrix (25) are given by

Λ
(
v, {vi}, {µl}, {wj }

)
=K1−

(
v − 1

2

)
K1+

(
v − 1

2

)

×
{
W+A

(
v − 1

2

)
W−A

(
v − 1

2

)(
v + 1

2

)2L N∏
i=1

(v − vi − 1)(v + vi − 1)

(v − vi)(v + vi)

+W+1
(
v − 1

2

)
W−1

(
v − 1

2

)
W
(1)
+A(v)W

(1)
−A(v)

(
v − 1

2

)2L

×
N∏
i=1

(v − vi + 1)(v+ vi + 1)

(v − vi)(v + vi)
M∏
l=1

(v− ul − 1
2)(v+ ul − 1

2)

(v− ul + 1
2)(v+ ul + 1

2)

+W+2
(
v − 1

2

)
W−2

(
v − 1

2

)
W
(1)
+1 (v)W

(1)
−1 (v)W

(2)
+1

(
v + 1

2

)

×W(2)
−1

(
v + 1

2

)(
v − 1

2

)2L

×
M∏
l=1

(v −µl + 3
2)(v +µl + 3

2)

(v −µl + 1
2)(v +µl + 1

2)

Q∏
j=1

(v −wj)(v +wj)
(v −wj + 1)(v+wl + 1)

+W+3
(
v − 1

2

)
W−3

(
v − 1

2

)
W
(1)
+2 (v)W

(1)
−2 (v)W

(2)
+2

(
v + 1

2

)

×W(2)
−2

(
v + 1

2

)(
v − 1

2

)2L

Q∏ (v−wj + 2)(v+wj + 2)
}

(86)×
j=1

(v−wj + 1)(v +wl + 1)
.
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The three rapidities
{
vi,µj ,wk

}
of flavor waves satisfy the Bethe ansatz equations

ζ(vi , ξ+)ζ(vi , ξ−)
(vi + 1

2)
2L

(vi − 1
2)

2L

(87)=
N∏
l=1
l �=i

(vi − vl + 1)(vi + vl + 1)

(vi − vl − 1)(vi + vl − 1)

M∏
l=1

(vi −µl − 1
2)(vi +µl − 1

2)

(vi −µl + 1
2)(vi +µl + 1

2)
,

η(µj , ξ+)η(µj , ξ−)
N∏
i=1

(µj − vi + 1
2)(µj + vi + 1

2)

(µj − vi − 1
2)(µj + vi − 1

2)

(88)=
M∏
i=1
i �=j

(µj −µi + 1)(µj +µi + 1)

(µj −µi − 1)(µj +µi − 1)

Q∏
l=1

(µj −wl − 1
2)(µj +wl − 1

2)

(µj −wl + 1
2)(µj +wl + 1

2)
,

Ω(wk, ξ+)Ω(wk, ξ−)
M∏
l=1

(wk −µl + 1
2)(wk +µl + 1

2)

(wk −µl − 1
2)(wk +µl − 1

2)

(89)=
Q∏
l=1
l �=k

(wk −wl + 1)(wk +wl + 1)

(wk −wl − 1)(wk +wl − 1)
,

for i = 1, . . . ,N , j = 1, . . . ,M andk = 1, . . . ,Q, respectively. Here, we have introduc
the notation

(90)ζ(vi , ξ±)=




vi+ξ±− 1
2

vi−ξ±+ 1
2
, for l = 1, m= 1,

vi−ξ±− 1
2

vi+ξ±+ 1
2
, for l = 3, m= 3,

1, for l = 2,4, m= 2,4,
vi+ξ±− 1

2

vi−ξ±+ 1
2
, for l = 5, m= 5,

(91)η(µj , ξ±)=




1, for l = 1,2,3, m= 1,2,3,
µj+ξ±− 1

2

µj−ξ±+ 1
2
, for l = 4, m= 4,

µj−ξ±
µj+ξ± , for l = 5, m= 5,

(92)Ω(wk, ξ±)=



wk+ξ±− 3

2

wk−ξ±+ 3
2
, for l = 2, m= 2,

wk+ξ±− 1
2
1 , for l = 3,5, m= 3,5,
 wk−ξ±+ 2

1, for l = 1,4, m= 1,4.
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These boundary factors coupled to the three degrees of freedom will result in a rich ph
scenario. From (27) and (86), we finally obtain the eigenvalues of the Hamiltonian (1

(93)

E =



U+
2 + U−

2 +
( J‖
γ
− J⊥

)
L+∑N

i=1

( J‖
γ

1
v2
i − 1

4
+ J⊥

)
, for l =m= 1,2,5,

−U+2 − U−
2 +

(J‖
γ
− J⊥

)
L+∑N

i=1

( J‖
γ

1
v2
i − 1

4
+ J⊥

)
, for l =m= 3,4.

4. Boundary impurity effects

Having diagonalised the Hamiltonian (1) by means of the algebraic Bethe ansa
next step is to derive the thermodynamic Bethe ansatz equations.

4.1. Derivation of TBA

For later convenience in the analysis of the Bethe ansatz equations, we make the
of variables:vi →−ivi , µl →−iµl , wk →−iwk and some rescalings in the bounda
parametersξ±. The Bethe ansatz equations are now

(94)ζ(vi , β±)
∏
r=±

N∏
l=1
l �=i

vi − rvl − i

vi − rvl + i

M∏
l=1

vi − rµl + i
2

vi − rµl − i
2

= (vi −
i
2)

2L

(vi + i
2)

2L
,

(95)η(µj ,β±)
∏
r=±

M∏
i=1
i �=j

µj − rµi − i

µj − rµi + i

Q∏
l=1

µj − rwl + i
2

µj − rwl − i
2

N∏
i=1

µj − rvi + i
2

µj − rvi − i
2

= 1,

(96)Ω(wk,β±)
∏
r=±

Q∏
l=1
l �=k

wk − rwl − i

wk − rwl + i

M∏
l=1

wk − rµl + i
2

wk − rµl − i
2

= 1,

where

(97)ζ(vi , β±)=
{
vi+iβ±
vi−iβ± , for l = 1,3,5, m= 1,3,5,

1, for l = 2,4, m= 2,4,

(98)η(µj ,β±)=




1, for l = 1,2,3, m= 1,2,3,
µj+iβ±
µj−iβ± , for l = 4, m= 4,

µj−i(β±+ 1
2 )

µj+i(β±+ 1
2 )
, for l = 5, m= 5,

(99)Ω(wk,β±)=

 wk+iβ±
wk−iβ± , for l = 2,5, m= 2,5,
wk−i(β±+1)
 wk+i(β±+1) , for l = 3, m= 3,

1, for l = 1,4, m= 1,4.
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The shifts in the parametersξ± are given by

β± = ξ± − 1

2
, for l =m= 1,4,5,

β± = ξ± − 3

2
, for l =m= 2,

(100)β± =−ξ± − 1

2
, for l =m= 3.

Correspondingly, the energy spectrum is given by

(101)E =
N∑
i=1

(
−J‖
γ

1

v2
i + 1

4

+ J⊥
)
.

Here we have dropped some constants appearing in Eq. (93), which will be used in d
one point correlation functions later.

From the above Bethe ansatz equations (94)–(96), it is found that in the casesl =m=
1,3,5, the solutionsvl = ±iβ− and vr = ±iβ+ form two boundary bound sates in th
charge rapidity whenβ± are negative. Nevertheless, in the casel = m = 5, besides the
charge boundary bound states, the boundary bound states exist also in the spin ra
i.e.,

µ=
{
±i
(
β− + 1

2

)
,

±i
(
β+ + 1

2

)
,

w =
{±iβ−,
±iβ+.

No boundary bound state exists in the remaining cases. We observe that whenJ⊥ >
2J‖
γ
(1− cosk), the reference state becomes the true ground state, i.e., the groun

is given by a product of the singlet rung states. The minimal gap can be easily calc
and is given by

(102)∆= J⊥ − 2J‖
γ
(1− cosk),

wherek = π/[1+ 1
4L(

1
β+ + 1

β− )]. It is obvious that gap remains almost unchanged in

thermodynamic limit and is almost the same as∆= J⊥ − 4J‖
γ

in the periodic case becau

L� 1
β± . In the regime−1

2 < β± < −1
2

√
1− 4J‖

γ J⊥ , the boundary bound states are stab
Otherwise, in the remaining regime, they become excited states. In the limitJ⊥ →∞,
all the boundary bound states are excitations. We shall see that the boundary boun
radically affect the edge ground state properties. ForJ−c =− J‖γ ( π√3

− ln3) < J⊥ < 4J‖
γ

, the

ground state consists of three branches of Luttinger liquids associated with the rap
v, µ andw. HereJ−c is the critical transition point from theSU(3) phase into theSU(4)
phase in the absence of a magnetic field. The triplet states can exist in the groun
This corresponds to a continuum of massless excitations.
The thermodynamics of the boundary fields can be derived from the Bethe ansatz
equations (94)–(96). We now focus on the analysis of the Bethe ansatz equations. As usual,
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we define the functions

en(x)= x + i n2
x − i n2

, θn(x)= i ln en(x),

(103)an(x)= 1

2π

n

x2+ n2

4

≡ 1

2π

d

dx
θn(x),

in terms of which the Bethe ansatz equations (94)–(96) become

(104)ζ(vi , β±)
(
e1(vi)

)2L ∏
r=±

M∏
l=1

e1(vi − rµl)=
∏
r=±

N∏
l=1
l �=i

e2(vi − rvl),

(105)η(µj ,β±)
∏
r=±

N∏
l=1

e1(µj − rvl)=
∏
r=±

M∏
l=1
l �=j

e2(µj − rµl)
Q∏
l=1

e−1(µj − rwl),

(106)Ω(wk,β±)
∏
r=±

M∏
l=1

e1(wk − rµl)=
∏
r=±

Q∏
l=1
l �=k

e2(wk − rwl).

In order to study the thermodynamics of the model with boundary impurities we b
by adopting the string hypothesis [27–29]. If we definev−j = −vj , µ−l = −µl and
w−k =wk , the Bethe ansatz equations (94)–(96) admit the string solutions

vnα1j
= vnα1

+ i
1

2
(n+ 1− 2j),

µnα2j
= µnα2

+ i
1

2
(n+ 1− 2j),

wnα3j
=wnα3

+ i
1

2
(n+ 1− 2j),

in thermodynamic limit, wherej = 1, . . . , n, αa = 1, . . . ,N(a)n andvnα1
, µnα2

andwnα3
are

the positions of the center of the strings. The number ofn-stringsN(a)n satisfy the relation
P (a) =∑

n nN
(a)
n . By taking the thermodynamic limit, the Bethe ansatz equations bec

(107)ρ(1)hn = an + 1

2L
ρ
(1)
bn −

∑
m

Anm ∗ ρ(1)m +
∑
m

anm ∗ ρ(2)m ,

(108)ρ(2)hn = 1

2L
ρ
(2)
bn −

∑
m

Anm ∗ ρ(2)m +
∑
m

anm ∗ (ρ(1)m + ρ(3)m ),

(109)ρ(3)hn = 1

2L
ρ
(3)
bn −

∑
m

Anm ∗ ρ(3)m +
∑
m

anm ∗ ρ(2)m ,

where the symbol∗ denotes the usual convolution. Hereρ(a)n (v), a = 1,2,3 are the
(a)h
densities of roots of the three flavors,ρn (v), a = 1,2,3 are the densities of holes of

the three flavors andρ(i)bn , i = 1,2,3 are the contributions from boundary fields associated
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with different rapidities. These boundary phase factors are given by

(110)ρ
(1)
bn =

{∑
±
∑n
l=1 an+2β±+1−2l(λ)+ an2(λ), for l = 1,3,5, m= 1,3,5,

an2(λ), for l = 2,4, m= 2,4,

(111)

ρ
(2)
bn =



an2(λ)− an1(λ), for l = 1,2,3, m= 1,2,3,∑
±
∑n
l=1an+2β±+1−2l (λ)+ an2(λ)− an1(λ), for l = 4, m= 4,

−∑
±
∑n
l=1an+2β±+2−2l(λ)+ an2(λ)− an1(λ), for l = 5, m= 5,

(112)ρ
(3)
bn =



∑
±
∑n
l=1an+2β±+1−2l (λ)+ an2(λ), for l = 2,5, m= 2,5,

−∑
±
∑n
l=1an+2β±+3−2l(λ)+ an2(λ), for l = 3, m= 3,

an2(λ), for l = 1,4, m= 1,4.

In addition

Anm(λ)= δ(λ)δnm + (1− δnm)a|n−m|(λ)+ an+m(λ)+ 2
Min(n,m)−1∑

l=1

a|n−m|+2l (λ),

anm(λ)=
Min(n,m)∑
l=1

an+m+1−2l(λ).

We emphasize that the boundary potentials enter in the expression for the groun
energy implicitly viaρ(a)b (v) in the above equations, with contributions to the dens
of the roots at the order of 1/L. In order to find the equilibrium state of the system
fixed temperatureT and external magnetic fieldH (� 0), we minimize the free energ
F =E − T S −HSz with respect to the densities to obtain the TBA in the form


ln
(
1+ η(1)n

)
ln
(
1+ η(2)n

)
ln
(
1+ η(3)n

)



(113)= Gn
T
+



∑
mAnm −∑

m anm 0

−∑
m anm

∑
mAnm −∑

m anm

0 −∑
m anm

∑
mAnm


 ∗




ln
(
1+ 1

η
(1)
m

)
ln
(
1+ 1

η
(2)
m

)
ln
(
1+ 1

η
(3)
m

)

 .

The driving matrixGn depends on the choice of the reference state. Explicitly, forJ⊥ < 0,
G= column(− J‖

γ
2πan+ nH,nH,−n(J⊥ +H)), giving the free energy

F(T ,H)

2L
=−H − T

∞∫
−∞

∞∑
n=1

an(λ) ln
(
1+ e− ε

(1)
n (λ)

T

)
dλ

(114)− T
3∑ ∞∫ ∞∑

ρ
(a) ln

(
1+ e− ε

(a)
n (λ)

T

)
dλ.
2L
a=1−∞ n=1

bn
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On the other hand, forJ⊥ > 0,G= colum(− J‖
γ

2πan+ n(J⊥ −H),nH,nH) and the free
energy is given by

F(T ,H)

2L
=−T

∞∫
−∞

∞∑
n=1

an(λ) ln
(
1+ e− ε

(1)
n (λ)

T

)
dλ

(115)− T

2L

3∑
a=1

∞∫
−∞

∞∑
n=1

ρ
(a)
bn ln

(
1+ e− ε

(a)
n (λ)

T

)
dλ.

Hereη(l)n (λ)= ρ(l)h(λ)/ρ(l)(λ)≡ exp(ε(l)n (λ)/T ), l = 1,2,3, with the dressed energyε(l)n
playing the role of an excitation energy measured from the Fermi level.

Using the relations

(a0+ a2) ∗ lnη(a)n = a1 ∗
[
ln
(
1+ η(a)n+1

)+ ln
(
1+ η(a)n−1

)]
(116)− ln

(
1+ 1

η
(a−1)
n

)
− ln

(
1+ 1

η
(a+1)
n

)
,

another form of the TBA is given by

(117)

ε
(a)
1 = g(a)1 + T a2 ∗ ln

(
1+ e−

ε
(a)
1
T

)
+ T (a0+ a2)

∞∑
m=1

am ∗ ln
(
1+ e−

ε
(a)
m+1
T

)

− T
∞∑
m=1

am ∗
(

ln
(
1+ e− ε

(a−1)
m
T

)
+ ln

(
1+ e− ε

(a+1)
m
T

))
,

(118)

ε(a)n = g(a)n + T a1 ∗ ln
(
1+ e

ε
(a)
n−1
T

)

+ T a2 ∗ ln
(
1+ e− ε

(a)
n
T

)
+ T (a0+ a2)

∞∑
m�n

am−n ∗ ln
(
1+ e− ε

(a)
m
T

)

− T
∞∑
m�n

am−n+1 ∗
(

ln
(
1+ e− ε

(a−1)
m
T

)
+ ln

(
1+ e− ε

(a+1)
m
T

))
,

for n� 2. In the abovea = 1,2,3 andε(0)n (λ)= ε(4)n (λ)= 0 is assumed. The driving term
are given explicitly by

(119)

g
(1)
1 =− J‖γ 2πa1+H,
g
(2)
1 =H,
g
(3)
1 =−(J⊥ +H),

g
(1)
n =H,
g
(2)
n =H,
g
(3)
n =−(J⊥ +H),

for J⊥ < 0,

(120)

g
(1)
1 =− J‖γ 2πa1+ J⊥ −H,
g
(2)
1 =H,

g
(1)
n = J⊥ −H,
g
(2)
n =H, for J⊥ � 0.
g
(3)
1 =H, g

(3)
n =H.
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4.2. Boundary bound states and impurity effects

In the low temperature limit, the states with positive dressed energy are empty
zeros of the dressed energies define the fermi energies. We decomposeε

(a)
n into its positive

and negative parts,ε(a)n = ε(a)+n + ε(a)−n . An analysis of Eqs. (117) and (118) in the lim
T → 0 reveals that for the ground state, the roots are all real corresponding ton = 1. All
dressed energiesε(a)+n with n� 2 correspond to excitations. Thus the TBA for the grou
state is, forJ⊥ < 0,

ε(1) = g(1)1 − a2 ∗ ε(1)− + a1 ∗ ε(2)−,
ε(2) =H − a2 ∗ ε(2)− + a1 ∗

[
ε(1)− + ε(3)−],

(121)ε(3) =−H − J⊥ − a2 ∗ ε(3)− + a1 ∗ ε(2)−,
and forJ⊥ � 0,

ε(1) = g(1)1 − a2 ∗ ε(1)− + a1 ∗ ε(2)−,
ε(2) =H − a2 ∗ ε(2)− + a1 ∗

[
ε(1)− + ε(3)−],

(122)ε(3) =H − a2 ∗ ε(3)− + a1 ∗ ε(2)−.
In this case, the free energy is given by

(123)
F(0,H)

2L
=
{−H + ∫∞

−∞ a1(λ)ε
(1)−
1 (λ) dλ+ 1

2Lfb, for J⊥ < 0,∫∞
−∞ a1(λ)ε

(1)−
1 (λ) dλ+ 1

2Lfb, for J⊥ � 0,

where

(124)fb=
3∑
a=1

Qa∫
−Qa

ρ
(a)
b1 (λ)ε

(a)−
1 (λ)+ θ(β± + βc)Ebs,

and θ(x) denotes a step-like function. Defineβc = −1
2

√
1− 4J‖

γ J⊥ , then in the interva

−1
2 < β < βc, θ(β) = 1, elseθ(β) = 0. In the aboveEbs denotes the boundary boun

state energy, given by

(125)Ebs=



∑
±
(− J‖

γ
1

−β2±+ 1
4
+ J⊥

)
, for J⊥ � 0,∑

±
(− J‖

γ
1

−β2±+ 1
4

)
, for J⊥ < 0.

It is worth noticing that ifβ± < βc we should take the boundary bound states into acc
in the boundary contributionsρ(a)b1 for the casesl = m = 1,3,5. The TBA (121) and
(122) provide a clear physical picture of the ground-state and in turn the thermody
properties, such as the free energy, the magnetization, the susceptibility, etc. The bo

impurities coupled to the three rapidities affect the low temperature physics at the edges in
various different ways, which we now explore.
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From the TBA (122), we notice that ifJ⊥ > J+c = 4J‖
γ

the triplet excitations are

massive with energy gap∆ = J⊥ − 4J‖
γ

. The rescalingγ = 4 was fixed [14] for strong

coupling compounds, e.g., Cu2(C5H12N2)2Cl4 [3], (C5H12N)2CuBr4 [4], etc. HereJ+c
is the critical point at which the quantum phase transition from the three branch
Luttinger liquid to the dimerizedU(1) phase occurs. IfJ⊥ > J+c , we can show that in
the presence of a strong magnetic field two of the triplet states (|3〉 and |4〉 in (5)) in the
bulk part will never be involved in the ground state. However, at the boundaries t
not always true due to the presence of the boundary impurities. In a strong magnet
the ground-state may be considered as a condensate ofSU(2) hard-core bosons. The ga

is reduced by the magnetic fieldH , i.e.,∆ = J⊥ − 4J‖
γ
− H . Thus the first critical field

occurs at the pointHc1 where the gap is closed, i.e.,gµBHc1 = J⊥ − 4J‖
γ

. The quantum
phase transition from a gapped phase to gapless Luttinger phase occurs. By con
to increase the magnetic fieldH overHc1, the triplet state|2〉 becomes involved in th
ground state with a finite susceptibility, also affected by the boundary impurities i
low concentration regime. If the magnetic field is greater than the rung coupling
h > J⊥, the triplet component|2〉 becomes the lowest level. Therefore, it is reasona
to choose the basis order as(|2〉, |1〉, |3〉, |4〉)T. Subsequently the driving terms are giv
by g(1) = −2πJ‖a1 − J⊥ + H , g(2) = J⊥ and g(3) = H . A second critical fieldHc2
(Hc2>Hc1) can be determined by the magnetization arriving at its saturation valueSz = 1.
Then the reference state becomes the true physical state and the critical fieldHc2 is given
by

(126)Hc2= J⊥ + 4J‖
γ
.

In this case, all the boundary impurities are gapfull with the ferromagnetic gap∆ =
µBg(H −Hc2).

Let us now discuss the boundary impurity effects in the vicinity of the critical pointHc1.
After a lengthy calculation, similar to that employed in [14] for the periodic case, we
the free energy in the presence of a strong magnetic fieldH ,

(127)
F(0,H)

2L
≈−4Q(J+c − Jeff)

π

(
1− 2Q

π

)
+ 1

2L
fb,

whereQ is the fermi point given byQ ≈
√

J+c −Jeff
4J+c −5(H−Hc1) and fb is the surface free

energy from the boundary impurities in the vicinity ofHc1. Explicitly, for |β±| � 1
2, or

say 0<U± � J‖
γ

orU± < 0, it is given by

−2Q(J+c −Jeff)

π

(
1+ 1

β+ + 1
β−
)
, for l =m= 1,3,5,
(128)fb≈−2Q(J+c −Jeff)

π
, for l =m= 2,4.
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For−1
2 < β±  βc, or sayU± �Ubs= 2J‖/γ

(
1−

√
1− 4J‖

γ J⊥
)
, we have

(129)fb≈



−∑

±
2Q(J+c −Jeff)

π

(3
2 + 1

β± + 1
β±+1 − 1

β±−1

)+∑
±
(− J‖

γ
1

−β2±+ 1
4
+ J⊥

)
,

for l =m= 1,3,5,

−2Q(J+c −Jeff)

π
, for l =m= 2,4.

While for |β±| very small, or sayJ‖
γ
< U± <Ubs, it is given by

(130)fb≈

−

2(J+c −Jeff)Q

π
+∑

± f (β±), for l =m= 1,3,5,

−2Q(J+c −Jeff)

π
, for l =m= 2,4,

where

f (β±)=−8J‖
πγ

1

1− 4β2±

(
arctan

Q

β±
− 4Qβ±

)
+ 2Jeff

π
arctan

Q

β±

(131)+ 4Q(J+c − Jeff)

π(π + 2Q)

1

1− β2±

(
arctan

Q

β±
− β±Q

)
.

In the aboveJeff = J⊥ −H and the parametersβ± are related to the boundary impuri
couplingU± by

(132)
1

β±
=




2U±
2J‖
γ −U±

, for l =m= 1,4,5,

2U±
2J‖
γ
−3U±

, for l =m= 2,

− 2U±
2J‖
γ +U±

, for l =m= 3.

The magnetic susceptibility follows fromχ ≈ − d2

dH2
F(0,H)

2L . Here, to illustrate the
boundary effects, we will focus on the discussion of the strong coupling compo
J⊥ � J‖ with the boundary impurities in the casel =m= 1. Other regimes can be handl
in a similar way. It is very clear that the stable boundary bound states are exhibite
in the strong ferromagnetic boundary couplingU± > Ubs. In Eq. (132), we emphasiz
that the mathematical singular points do not exist, or alternativelyβ± = 0 does not mean
that the rhs of Eq. (132) has singular points. For instance, ifU± = 2J‖/γ , the boundary
parametersξ± = 1/2. Thus the phase factors in the Bethe ansatz equations (94)
and (96) are equal to 1 for the casel = m = 1. In such a case, the model exihib
special symmetry (the quantum algebraSUq(4) invariant Bethe ansatz equations) whi
leads to a different expression for the boundary free energy than the above one
antiferromagnetic boundary couplingU± < 0, the susceptibility is given by

(133)χ ≈ 3

π
√

4J+c (H −Hc1)

(
1+ 1

4L

∑
±

(
1

2
+ 1

β±

))
,

while for the strong ferromagnetic couplingU± �Ubs, with U± > 0,( ∑( ))

(134)χ ≈ 3

π
√

4J+c (H −Hc1)
1+ 1

4L ±

3

2
+ 1

β±
+ 1

β± + 1
− 1

β± − 1
.
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Fig. 2. The susceptibility versus magneticH for different impurity couplingU± = U (U = 0 corresponds
to free boundary conditions). Here we consider the strong coupling compound Cu2(C5H12N2)2Cl4 [3] with
J⊥ = 13.2K , J‖ = 2.5K andγ = 4 with an impurity concentration 2 percent in a ladder with lengthL= 50.

Notice, in both cases, that the susceptibility diverges with the square root of the field
bulk and in the boundaries. In addition, the susceptibility at the boundaries is enhan
decreased by different impurity dopings. This behaviour is illustrated in Fig. 2. From
Bethe ansatz equations, we can also calculate the magnetization in the vicinity ofHc1,

(135)
Sz

2L
=

Q∫
−Q

ρ
(1)
1 (λ) dλ= 4Q

π

(
1− 2Q

π

)
+ 1

2L

∑
±
Szb.

For antiferromagnetic boundary couplingU± < 0 this expression reduces to

(136)Szb ≈
∑
±

2Q

π

(
1− 2Q

π

)(
1

2
+ 1

β±

)
,

while for strong ferromagnetic boundary couplingU± �Ubs with U± > 0,

(137)Szb ≈
∑
±

2Q

π

(
1− 2Q

π

)(
3

2
+ 1

β±
+ 1

β± + 1
− 1

β± − 1

)
.

A plot of the magnetizationSz against the magnetic field for different boundary impurit
U± is given in Fig. 3. By analyzing both figures we can observe the competition bet

the boundary impurities and the magnetic field in the thermodynamic properties. In
particular, we find an enhancement of the susceptibility in the weak anti- and ferromagnetic
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Fig. 3. The magnetization versus magnetic fieldH for different impurity couplingU± = U (U = 0 corresponds
to free boundary conditions). As in Fig. 2, we consider the strong coupling compound Cu2(C5H12N2)2Cl4 [3]
with J⊥ = 13.2K , J‖ = 2.5K andγ = 4 with an impurity concentration 2 percent in a ladder with lengthL= 50.

regimes (we consider the sizes 2L = 100, the impurity concentration 2 percent). T
susceptibility and the magnetization are lifted slightly in the weak antiferromag
boundary regime in the case of open boundary conditions, whereas they con
negatively to the bulk whenU± becomes more and more negative. This is reason
since negativeU± energetically favours the singlet state (recall the boundary terms i
Hamiltonian (1)), even if the magnetic field is very strong, such that the spin-1 comp
of the triplet is involved in the ground state. The point is that a very negativeU± can
overcome the spin-1 component of the triplet and dominate the edge rung state.
circumstance, the edge state is a pure singlet state and the edge magnetization
zero due to the fact thatU± effectively decreases the edge magnetic fieldH to Hc1 such
that the fermi boundaryQ = 0. This results in negative susceptibility and magnetiza
contributions to the bulk. In contrast to this case, the ferromagnetic impurities lif
susceptibility and the magnetization in the weak coupling regimeU± < J‖

γ
. WhenU±

becomes larger, the triplet edge state is energetically favoured so that the bo
coupling can overcome the magnetic field to bring the three components of the tripl
the edge states. Therefore, it causes a negative contribution to the bulk susceptibi
magnetization. This situation is different from the case of the bulk impurities, wher
susceptibility is increased by the impurity coupling due to the forward-scattering. Thi

can be seen clearly from the one point correlation function of the ground state at the edges,
for antiferromagnetic boundary coupling and weak ferromagnetic boundary coupling, i.e.,
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U± � J‖
γ

,

(138)〈�Sa. �Ta〉 = −3

4
+ d

dU±
fb=−3

4
+ 2Q(H −Hc1)

π

4J‖/γ
(2J‖/γ −U±)2 ,

and for ferromagnetic impurities in the strong coupling regimeU± � Pbs,

(139)

〈�Sa. �Ta〉 = 1

4
+ 2Q(H −Hc1)

π

[
4J‖/γ

(2J‖/γ −U±)2 −
4J‖/γ

(2J‖/γ − 3U±)2

+ 4J‖/γ
(2J‖/γ +U±)2

]
− 1

(1− γU±
J‖ )

2
.

In the abovea = 1,L. The boundary one point correlation functions are given by

(140)〈�Sa. �Ta〉 = −3

4
〈NS〉 + 1

4
〈NT〉.

HereNS andNT are the probabilities of the singlet and triplet state respectively. Th
because the eigenvalue of the one point correlation function〈�Sa. �Ta〉 acting on the single
(triplet) state is−3

4 ( 1
4). We have plotted the correlation function for antiferromagn

boundary coupling in Fig. 4.

Fig. 4. One point correlation function (138) versus antiferromagnetic boundary couplingU as a function of
magnetic field. The curve is lifted by the magnetic field, however it is decreased by the boundary imp

which favour the singlet state. Here we consider the strong coupling compound Cu2(C5H12N2)2Cl4 [3] with
J⊥ = 13.2 K, J‖ = 2.5 K andγ = 4 andU± = U . The caseU = 0 corresponds to the free boundary effect.
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(a)

(b)

Fig. 5. One point correlation function vs ferromegnetic boundary couplingU : (a) The function (138) is lifted by
the magnetic field and weak magnetic impurity couplingU . (b) The function (139) tends to14 as the boundary
impurity coupling becomes larger. Here we again consider the strong coupling compound Cu2(C5H12N2)2Cl4 [3]

with J⊥ = 13.2K , J‖ = 2.5K andγ = 4 andU± = U . The caseU = 0 corresponds to free boundaries.
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We see that the magnetic field always lifts the spin-1 triplet component. How
in the case of antiferromagnetic boundary impurities and open boundaries the
state is favoured as long asU± becomes more negative, the triplet moves out of
edge state and the one point correlation function tends to−3

4. On the other hand, fo
ferromagnetic coupling impurities (see Fig. 5), the correlation function increases d
the ferromagnetic properties and the magnetic field in the weak coupling regimeU± < J‖

γ
.

However, ifU± becomes larger, the three components of the triplet get involved in
edge state, such that the correlation function tends to1

4 for strong ferromagneitc impurit
coupling. This result indicates that the edge state can be a pure singlet state in the
antiferromagnetic boundary coupling regime whereas it turns out to be a pure triplet s
the strong ferromagnetic boundary coupling regime. This reveals the role of antima
and ferromagnetic impurities.

On the other hand, the boundary impurities coupled to the spin degrees of fre
namely,ρ(2)b andρ(3)b will also affect the ground state properties nontrivially. From
free energy (123), these impurity densities will contribute to the low energy. Consid
the caseJ⊥ < 0, in the absence of the magnetic field, the triplet is completely degen
while the fermi surface of the singlet is lifted asJ⊥ becomes more negative. Certain
if J⊥ < J−c = − J‖γ ( π√3

− ln 3) the singlet rung state is not involved in the ground-st

namelyε(3)(0)� 0, whereas two triplet fermi seas still have fermi boundaries at infi
Under such a configuration, the dressed energy potentials are

(141)ε(1)(λ)=−2πJ‖√
3γ

coshπ3λ

coshπλ
, ε(2)(λ)=−2πJ‖√

3γ

sinhπ3λ

sinhπλ
.

The free energy can be given by

(142)
F(0,0)

2L
≈−2J‖

3γ

(
ψ(1)−ψ

(
1

3

))
+ 1

2L
fb,

where

(143)fb=
∞∫
−∞

ρ
(1)
b1 (λ)ε

(1)
1 (λ) dλ+

∞∫
−∞

ρ
(2)
b1 (λ)ε

(2)
1 (λ) dλ.

The first part in (142) is nothing but the standardSU(3) ground state energy of the bul
The remaining part is the boundary surface energy for various boundary impurities.

5. Conclusion and discussion

In summary, we have discussed in detail the algebraic Bethe-ansatz solution
integrable spin ladder system based on theSU(4) symmetry with boundary impurities
Five different classes of solutions of the graded RE leading to different boundary
interactions in the Hamiltonian were obtained. The Bethe-ansatz equations, the eige

of the transfer matrix and the energy spectrum were given explicitly. Furthermore, the
three-level transfer matrices, characterizing the different flavour sectors separately, allowed
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us to embed different impurities into the system. From the Bethe ansatz solutions
(109), we found that the boundary impurity effects characterized byζ(vi , ξ±), η(µj , ξ±)
andΩ(wk, ξ±) act indeed nontrivially on the densities of roots for the three rapidities
thus change the ground state properties, the boundary bound states as well as the lo
energy spectrum. In the thermodynamic limit, the spin gap remains almost uncha
However, the boundary susceptitblity and magnetization reveal novel magnetic pro
for strong and weak impurity couplings. In strong impurity coupling, the impur
induced by the open boundary conditions can result in either a pure triplet or a single
state due to the nature of the pure back-scattering at the edges and the magnetic im
Strictly speaking, the edge state can be a pure singlet state in a strong antiferrom
boundary coupling regime whereas a triplet state with an effective magnetic mome
exist in a strong ferromagnetic boundary coupling regime. Correspondingly, the one
correlation function for strong antiferromagnetic boundary impurities tends to the s
eigenvalue−3/4, whereas for strong ferromagneitc impurity coupling it tends to the tr
eigenvalue 1/4. This behaviour may be observed in experiments due to different bou
magnetic moments. Although the TBA solution of theSU(4) ladder model (1) predict
the quantum phase diagram in good agreement with experimental results for the
coupling compounds, the full finite temperature thermodynamic properties of the m
remain to be calculated.
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