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Abstract

An integrable quantum spin ladder based on$b&4) symmetry algebra with boundary defects
is studied in the framework of boundary integrability. Five nontrivial solutions of the reflection
equations lead to different boundary impurities. In each case the energy spectrum is determined
using the quantum inverse scattering method. The thermodynamic properties are investigated by
means of the thermodynamic Bethe ansatz. In particular, the susceptibility and the magnetization of
the model in the vicinity of the critical points are derived along with differing magnetic properites
for antiferromagnetic and ferromagnetic impurity couplings at the edges. The results are applicable
to the strong coupling ladder compounds, such agCgH15N2)2Cly.
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1. Introduction

Research on quantum spin ladders continues to attract considerable attention from
both theoretical and experimental points of view due to their relevance to a large
number of low-dimensional materials, such as particular cuprates and organic compounds
[1-6], among others. Initially, most of the theoretical results concerning ladder systems
were obtained from the standard Heisenberg ladder. Subsequently, other models with
generalized interactions have been proposed. In this context, Nersesyan and Tsvelik [7]
introduced a spin ladder model incorporating a biquadratic spin exchange interaction
term, which, when sufficiently strong, exhibits new dimerized phases [8]. Various ladder
models have been developed by an extension of the symmetry algebra [9-13]. A special
case of the Nersesyan—Tsvelik model [7] was proposed later by Wang [12]. This model,
based on théSU(4) symmetry algebra, is exactly solvable by Bethe ansatz methods
and exhibits a spin gap in the spectrum of elementary triplet excitations, a necessary
condition for superconductivity to occur under hole doping. In addition, it was recently
observed [14] that this model can be used to describe some physical properties of different
types of two-leg ladder compounds, such ag(CgH12N2)2Cl4 [3], (CsH12N)2CuBry [4],
(51AP)2CuBI4 - 2H20 [5] and KCuCs, TICuCls [6]. In the absence of a magnetic field the
model exhibits three quantum phases, while in the presence of a strong magnetic field there
is a gapped phase in the regime< H.1, a fully polarized gapped phase féf > H.o
and a Luttinger liqguid magnetic phase in the regiflg < H < H.z. This observation
suggests that the physical properties of the ladder compounds can be accessed via the
well-established knowledge of integrable systems.

On the other hand, the effect of boundary impurities and defects also plays an important
role in quasi-one-dimensional systems. An integraBli4) spin ladder model with
a boundary defect has been proposed and investigated recently through Bethe ansatz
methods [15]. A generalization of this method to other integrable ladders can be found
in [16]. This model, however, is just a particular case of a more general family of exactly
solvable ladder models based on 8i(4) symmetry algebra that can be constructed from
more general types of bounday conditions. Basically, by this strategy, a set of equations
to deal with the boundaries, called reflection equations (RE) are introduced [17,18]. The
solutions of these equations [19-21], referred t&amatrices, in turn introduce boundary
interactions into the Hamiltonian of the system, in such a manner that integrability is
preserved. The boundary interaction terms in spin ladder models may be realized by
impurity doping at the ends of the ladder. Impurity doping in a spin ladder system with
a spin gap has been performed [22]. Substantial change in macroscopic properties such as
enhancement in spin correlations and magnetic susceptibilities are observed in the low
impurity concentration region. The boundary impurity doping may change the critical
behaviour at the boundaries of the ladder systems.

The purpose of this paper is to present a complete family of integrable spin ladder
systems based on tf&J (4) symmetry algebra with boundary impurities in a systematic
way. An analytic analysis of the thermodynamic properties of these models is then
performed by means of the thermodynamic Bethe ansatz (TBA) method and, in particular,
the effect of these impurities on the free energy, the susceptibility and the magnetization is
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discussed. So far, the results obtained provide a clear interpretation of the impurity effects
in the low temperature regime of an integrable open spin ladder system.

The paper is organized as follows. In Section 2, we presenBlit{d) solution of the
YBE and solve the corresponding RE. Furthermore, we give the explicit expressions for the
Hamiltonian with different types of boundary defects. Section 3 is devoted to the derivation
of the Bethe-ansatz solution by means of the quantum inverse scattering method (QISM).
The reader more interested in the physics of the model may choose to skip Section 3.
In Section 4, the ground state properties, the quantum phase diagram and the boundary
impurity effects are studied via the TBA. A summary and discussion of our main results is
given in Section 5.

2. Theintegrable spin ladder model with boundary impurities

Let us begin by introducing the integrable spin ladder model based o/Sii4)
symmetry with boundary fields,

L
J I
H:7”Hleg+JJ_ZSj'Tj+H1<m)+H(I), (1)
=1

where the leg part consists of Heisenberg exchange and four-spin interaction terms

L-1
1 - - = > - - > =
Hieg = Z(Z +8;-Sja+T; - Tjza+4S;-Sj4a- T - Tj+1>. (2)
j=1

The left (right) boundary termHl(”’) (Hi”) depend on arbitrary parametdys. and are
given by

—U,S;l-i"l—‘—]iU,, form=1,
U (3-s)(-T5) +3U- form =2
H"=1U_(51-Ti— (3-$)E-T) +LU-, form=3, 3)
Ui B (3+ )G+ 1) + U Torm=a
—2U_SiT{ + 3U_, for m =5,
~U4Sp - Ty, — U4, forl=1,
~Us(3= i) (3 = T§) +3U+, forl =2,
H =3 U (S - T — (3 - 85)(3 - T7)) + 3uy, fori=3, 4)
U T (3+ ) (54 T7) + Uy, fori=4
—2U} S¢Tf + 35U, forl =5.

In the above§j and Tj are the standard spi%i-operators acting on sitg¢ of the upper

and lower legs, respectivelyy and J, are the intrachain and interchain couplings (see
Fig. 1) andL is the length of the ladder. It is worth noticing thats a rescaling constant
which can be used to minimize the biquadratic term such that the quantum phase of the
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Fig. 1. Thesu(4) spin ladder with boundary impurities. are the boundary impurity coupling constants and
J are the intrachain and interchain couplings.

model (1) lies in the same Haldane spin liquid phase as that of the conventional spin ladder
(see Section 4).

Notice that the boundary terms corresponding to the first case {,/ = 1) in (3) and
(4) act as Heisenberg-type rung couplings, whereas in the secondicasg,( = 2) they
act as a-component spin interaction with boundary magnetic fields. In the thirg- 3,
[ = 3) and fourth 2 = 4,1 = 4) cases, they act as a combination of Heisenberg-type rung
coupling and;-component spin interaction with boundary magnetic fields. In the last case
(m =5,1=05) only thez-component spin interaction terms survive. The Hamiltonian (1)
thus contains five different types of boundary rung interactions at each edge of the ladder
realizing different impurity dopings. This leads to twenty five possible choices of boundary
impurities. The rung interaction in the bulk was, as usual, introduced by the chemical
potential terms given by-J ;. ZJL.:l ejl.l in the canonical basis ® ¢;. The rung states split
into a singlet and a triplet denoted by

1
1 = — — s 2 = s
1) ﬁ(lN) 1) 12) =111)
1
3)=— , 4) = , 5
13) \/E(IN)HH)) 14) =141) 5)

respectively. The leg interaction part of the Hamiltonian (2) does not change under the
basis transformation (5). However, the bulk rung interaction part and the boundary rung
interaction terms alter with respect to the choice of the order of singlet and triplet in the
basis (5).

In order to derive this model let us begin by recalling 8i&(4) R-matrix

Riow)=u-1+ P, (6)

where P is the permutation operator with matrix elememn®ss s = usdp, With
a,B,y,8 =1,2,3,4. [ is the identity operator. For later use, we denote the Boltzmann
weights in theR-matrix (6) as

wi=u-+1, w2 =1u, wz=1 (7

The quantunR-matrix (6) satisfies the Yang—Baxter equation (YBE)

R12(u — v) R13(u) R23(v) = R23(v) R13(u) R12(u — v), (8)
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guaranteeing the integrability of the model with periodic BC. TRisnatrix enjoys the
properties

Rio@)Roa(—u) =1—u?, R (u) = Riz(u), 9)
where superscript, tdenotes the transposition in the space with indekor other types
of boundary conditions, the YBE will still account for the integrability of the bulk part of
the model, but the boundary terms have to be chosen appropriately in order to preserve the
integrability. In particular, the left and right reflection matric&s, andK ., respectively,
are required to satisfy the REs [18,20]
1 2
Rio(u —v) K- (u)R21(u +v) K- (v)
2 1
=K - (0)R12(u 4+ v) K- (u)R21(u — v), (10)
1 - 2
R32(v — u) K () Rao(—u — v) K2 (v)
2 - 1
=K 2(W)Ra1(—u — v) K F @) RY* (v — u). (11)
In the above we have introduced the obj&atvhich may be determined by the relations
RL(—w Ry =1, R (—u)REw) =1, (12)
and we have used the conventional notation
1 2
X=XQly,, X=ly,®X, (13)

wherel y denotes the identity operator dhand, as usualRz1 = P - R12- P, with P being
the permutation operator. After a lengthy calculation we find the possible solutions of the
REs for the diagonak .. -matrices (see also Ref. [19])

K1y (u) 0 0 0
Ko () = 8 sz(;(u) K3z(u) 8 (14)
0 0 0 K4y (1)
The solutions forK _, corresponding to the left boundary are:
Case 1
Kl _(uw)y=u+é&_, K2 u)=K3_(u)=K4_(u)=—-u+&_; (15)
Case 2
K1 (wW)=K2_(u)=K3_(u)=u+é&_, KA (u)=—u+E_; (16)
Case 3
Kl (u)=K4_(u)=—u+E&_, K2_(u)=K3_(u)=u-+E&_; (17)
Case 4

Kl (u)=K2_(u)=—u+E&_, K3_-u)=K4_(u)=u-+E&_; (18)
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Case 5
Kl (uW)y=K3_-(u)=u+é&_, K2 W)=K4_ (u)=—-u-+é&_. (29)

On the other hand, the solutions f&r;, corresponding to the right boundary, are:

Case l

Kl (w)=—-u+&+3,
K2, (u)=K3,(u)=Ka&, (u)=u — &, +1; (20)

Case 2

K1+(M) = K2+(M) = K3+(M) = —u— E+ - 1,
KA (u)=u—5§ 43 (21)

Case 3

Kl1i(u)=K4 (w)=u—5§4+2,
K2, (u)=K3;(u)=-u—§&4 -2 (22)

Case 4

K1 (u)=K2y(uw)=u—5§4 +2,
K3,(u)=K4 (w)=-u—§& -2 (23)

Case 5

K1+(M) = K3+(M) = —u-— E+ - 2,
K2, () =K&y(u)=u— £, + 2. (24)

Inthe aboveés. = -7 are free parameters related to the leffright +-) boundary coupling
he ab L aref lated to the lefright +) bound l

U_ (Uy), respectively. The boundary pail@ﬂm)(u), K(j) wm),l,m=1,...,5, lead to the
boundary termg7 ™ andHfr” in (3) and (4). Mathematically, they combine to give twenty-
five possible choices of boundary impurities if we put impurities at both ends. However,
they are not correlated to each other directly, so it is enough to consider one impurity at
one end in each boundary condition so as to give five independent boundary defects. We
note that a special choice of the boundary tefiitt has already been investigated [15].
However, the second boundary impurity model proposed there does not have a counterpart
in the cases considered here.

The symmetries enjoyed by thiematrix (6) and the REs (10) and (11) constitute the
necessary ingredients for the integrability of the model with boundary impurities, due to
the fact that the double-row transfer matrix of the system

T(u) = tro[ K4+ () T () K— () T~ (—u)], (25)
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commutes for different values of the spectral parameter. Hg&re denotes the mon-
odromy matrix given by

T (u) = Ro,r (u)Ro,L—1(u) -+ Ro2(u)Ro 1(u) (26)

and 71 its inverse. The Hamiltonian (1) associated with the quanfRsmatrix (6) is
related to the double-row transfer matrix (25) by

:_ZJ—)”/%Inr(u) N —JLJLZ::le}lJrconst (27)
Here
d = i tro K1 (0) Ry, (0) PoL
S-Int@) MzozngjHHK 0K’ (0) +2 oy R (28)

where the prime denotes the derivative with respect to the spectral parameter. The

relation (27) clearly indicates the identificatidh. = J—”i between the boundary impurity
couplingsU+ and the free parametegs of the boundary scattering matrices. So far, we
have completed the first step towards the solution of the model with boundary impurities.
Next we proceed with the diagonalization of the transfer matrix (25) by means of the open
algebraic Bethe ansatz [25,26].

3. Thealgebraic Bethe-ansatz approach
3.1. First-level nesting structure

In order to find the spectrum of our Hamiltonian with boundary defects, we first need
to solve the eigenvalue problem of the transfer matrix, nameély= A®. As usual, the
transfer matrix (25) can be written in the form

T(A) =tro[ Ky )T (w)], (29)
whereT_ (u) is the double-row monodromy matrix defined by
T_(uw)=TwK_u)T (~u). (30)

One can verify thatl_ () also satisfies the RE (10). Following the notation used in
Refs. [23-26], we label the elements of the monodromy mattix) by

A(w) Bi(u) B2(u) Bsz(w)
Ci1(u) Di11(w) Di2(w) Diz(u)
Co(u) D21(u) D22(u) D23(u)
C3(u) Dzi(u) Ds2(u) Ds3(u)

T(u) = (32)
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and further

A() Bi(w) Ba(u)  Ba(u)
C1(u) Di1(u) Dia(u) Dia(u)
Ca(u) Da1(u) Daa(u) Da2a(u)
C3(u) D31(u) Daa(u) Ds3a(u)
Bu) Ai(w) Bo(w)  Bs(u)
P = | €@ Duw Diw Disw) | (33)
Co(u) D2i1(u) Doz(u) Das(u)
C3(u) Dz(u) Dzo(u) Das(u)
According to the first level Bethe ansatz, the eigenvedtdff the transfer matrix can be
written as

T (—u) = (32)

(@) = Biy (un) - Biy (uw)|$) Fi35 ™, (34)

where the summation is taken on the repeated indicies. The coefficients with indices
in=123,n=1,..., N will be determined later by the second level Bethe ansatz. The
first level pseudovacuutp) is chosen as the standard ferromagnetic state

$) =10, ® - ®10); ® - ®|0)1, (35)

where |0); = (1,0, 0, O)E acts as a highest-weight vector. This state corresponds to the
product of the rung singlet state in the basis (5). Different choices of the order of the
basis (5) will change the eigenvalues of the Hamiltonian which facilitates the analysis
of the ground state in different regions. From the structure offfraatrix (6), one can
deduce that the operataBs(x) andB; (1) (i = 1, 2, 3) act on the reference state as creation
operators creating particles with pseudo-momensad —u, respectively. The operators
C;(w) (i =1,...,3) behave as annihilation fields. Furthermore, using an invariant version
of the Yang—Baxter algebra,

2 1 1 2
T ~Y(—u)R12(2u) T () =T ) R12(2u) T ~1(—u), (36)

we obtain, apart from an overall fact@(u) = K1_(u)K1(u), the eigenvalue of the
transfer matrix acting on the reference state

3
TW)|g) = Jof AW + Y of ) Daalu) t16), (37)
a=1
where we have introduced the transformations
A ~ w3(2u) ~ _ -
Dij(u) = Dyj(w) — 8 @A(u) — w; () Dy () Dii (w), (38)

withi =1, 2, 3 and

A(u) = w, W) AW Au). (39)
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In the above expression,

wy () =1,

a);‘r(u) =

wq (u) =

wy (u) =

wg (1) =

form=1,...,5,
Miﬁgﬂa, fori=1,
m%, forl =2,
%, forl =3, 4,
Miﬁgﬂz), forl =5,
m%, form =1,
Mﬁ, form =3,
RS VL form =24,
m%, form =5,
m%, form =1,
Mﬁ, form =3,
By form=4,
#1/2» form=2,5,
m%, form =1,
#1/27 form =3,
Mﬁ, form =4,
u(—u+é_-1) form = 2.5,

w+1/2)(u+é-)°

with o (1) = K2,.(u), w3 (u) = K34 (1), w3 (u) = K4 (u) fori =1,

A)Aw)|0) = w1(u)?|0),

Di; (u) Di; (u)|0) = wa(u)?|0).

393

.., 5. In addition,

We note that the operatoBs (), i = 1, 2, 3, constitute a three-component vector with both
positive and negative pseudo-momenta still playing the role of the creation fields acting on
the pseudovacuum state. In order to make further progress we return to the RE (10) and

derive the commutation relations

A(u1) By (uz) =

(w2 —ur+1)(u1+uz) ~

(u2 —u1)(u

(u1+ u2)

s By (u2)A(u1)

 (ug —un)(u1+uz + 1)

_u1+u2—|—

By (u1)A(uz)

3

Y By(u1) Dpa(u2) +ab

1
= 2up +

d

1Eb<ul>A(uz>],

(40)
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(1 —uz2+1)(u1+uz2+2)
(u1 —u2)(u1+uz2+1)

< {r® s+ uz + DGr® (s — uz)ly Bo(uz) Dyi (u) }
2+

(2u1 + 1) (u1 — u2)
n 4(u1+ Duo

Qu1+ 1) (2up+ D(ug +uz+ 1)
x r®@2uy + D By (up) Aua), (41)

Dpa(u1) Bo(uz) =

r®@ut + 18 By (u1) Dic (uz)

between the diagonal fields and the creation fields. The summation convention is implied
for repeated indices. The matrix?, which satisfies the Yang—Baxter equation, takes the
form

1
b
raa=1, (1:1,2,3, rsbzm, a#b=1,2,3,

u
rg[f:m, a#b=1,23. (42)
We notice that the first term in the rhs of each of the commutation relations (40), (41)
contribute to the eigenvalues of the transfer matrix, which should be analytic functions of
the spectral parametar Consequently, the residues at singular points must vanish. This
yields the Bethe ansatz equations, which in turn assure the cancellation of the unwanted
terms in the eigenvalues of the transfer matrix after the whole nesting procedure. For
convenience, we make a shift in the spectral parametetsy — 1/2, u; = v; — 1/2,

such that the eigenvalue of the transfer matrix (25) can be obtained as

T(v)|P)
= A(v, {vi})|®)
N
- . - B - (v—vl’—l)(v+vi_1)
=Wi( 1/2)WA(U 1/2)11:!. (v —v))(w+v;) @)

—vi+D@w+v+1)

N
+W-1/2W, v-1/2]] @ AD (v, {v;}) 1),

i (w=u)wtu)
- (43)
provided that
W, (v — 1/2)W, (i — 1/2)(20; — 1)
Wi (vi = 1/2)Wy (v — 1/2)(2v; + 1)
N
rrwi—u+DHitu+l) g ,
B 111 (i —v —D(vi +v — 1)A (v {ur) v:v-' “4)

I
Herea =1, 2, 3, and we appropriately choose

Wyw)y=1 form=1,...5, (45)
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WD (utEy) _
@D ori=1,
WD HEY) for [ — 2
WX (M) — (u+l/2)(u+§++l) (46)

(u+2)(—u+éy) B
W2 (cutE e jori=3.4,

U+2) (u+£2) _
WHiDwiE e orl=5,
u—§1+1 _
W) = =g fori=1L (47)
1, fori=2,...,5,
w(—uté_—1) _
W= () = | W2 form =1, (48)
@ e form=2,...,5
] =2,...,5.

AD (v, {v;}) is the eigenvalue of the second level transfer matfix related to ar8U(3)
invariant open chain, i.e.,

@ =Tro kP TP KD TP (W), (49)
where
7O ) — D eta (D eNgN-1 50
(v. {vi}) =ry3 V4Vt o U (50)
= 1 enh 1 h
TO (v, (vi}) =ry] 0 — oMY rf) (0 — o) (51)

Here we have used the standard nota‘w@)ﬁ(v) = P - rD(v) whereP is the standard
permutation operator, which can be represented by & 3% matrix, i.e., Daf.ys =
84588y . It can be seen that the coefficienté: " act as the multi-particle vectors for the
inhomogeneous transfer matrix (49). We remark that the coefficiérgazen in (45)—(48)

are chosen in order to match the choice of the transfer matrix (49) with the néﬁbd
matrices,

k1P w) 0 0
kP ) = 0 k2P @) 0 . (52)
0 0 k3P )
Now corresponding to the first solution (20), we have
k1Yw) =k2Pw) =k3Pw) =1, (53)
k1P =k2Pw) =k3Pw) =1 (54)

And to the second solution (21):
—v+£&-1/2

K1Y =k2Pw)=1 k3P ) = 55
() =1, W= (55)
—£,+5/2
K10 = k20w =1 K3V = L5+ T2 56
() () =1, 4 (V) T —y (56)
And to the third solution (22):
_+1/2
K1V ) = k2D () = L=+ k3Pw) =1, (57)

—vtE +1/2
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3/ 1
K10y = k2B )= V=8 =32 pay g 58
T ()= (v) = v E, 132 + (V) (58)
And to the fourth solution (23):
412
K1Y =1, k2P = k3D = T2 59
() = (v) = (v) TotE 112 (59)
@, _ @y pa®, _ “V—§ —3/2
k1Pw =1 k2P =k3{ (u)_—v_§++3/2 : (60)
And to the last solution (24):
vt —1/2
k2P =1, K1Y ()= k3D = =2 61
“=1 () ~ V=TT 1 (61)
@, D\ ol V=& +3/2
k2Pw =1 k1P =k3{ (v)_—_v_§+_3/2. (62)

We can show that the reflection matrices (52) with the entries (53)—(62) do satisfy the RE

- KPwrP w+ v kP w)
K P+ v kP wrd - v, (63)
P 0 — ) KPS (—u—v) K D)

(l)tZ(v) (l)( u— U)K(l)tl( ) (1)12( —M) (64)
3.2. Second-level Bethe ansatz

In order to proceed in the nested algebraic Bethe ansatz, we have to repeat the whole
procedure presented above for the internal block of the monodromy matrix. Similarly, from
the RE (63), we can derive commutation relations,

A (1) BP (v2)

(v1 —v2— D1+ v2) ~ ) -
- B AD
(v1—v2)(v1+v2+1) ¢ (v2) (v1)

(v1+v2) 5(1) (1)
B A
(-t e WA

. [Z BY (1) D) (v2) + 8ap

2v,+1

Cuitup+1 éél)(vl)A(l)(vz)} , (65)
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Dy (1) B® (v)
_(n—v2t+Ditv2+2)
(v1 4 v2 + 1) (v1 — v2)
X {r(z)(vl + v+ 1)2,};,7(2)(01 - UZ)QZBED(U?)D&’"(M)}

2(01 + 1) 2 ¢b (1) ~ (1)
+ _ 2 ;B D;
Qv+ D(vs—v2) (21 + D)y Bg7 (u1) Dy (v2)
4(v1 + Doy

r®@u+ D% BPw)AY @), (66)

P 2t Dt Dttt

between the diagonal and the creation fields. Where again the summation convention is
implied for the repeated indices. The matri% (v) is nothing but theSU(2) invariant
R-matrix, i.e.,

1
rét=1 a=12, rg,fzm, a#tb=12,
ab v
=— b=12 67
Tba v+ 1 a 7é ( )
If we define the second level Bethe ansatz as
(W ®) = BP (1) - B () 10) Fip)'+-1, (68)

and make the rescalingg — n; — 1/2 andv = v — 1/2 we obtain from the commutation
relations (65) and (66) the eigenvaldé® (v, {v; }{u;}), i.e.,

tD@)| e D)= AP (@, {vi}{u,})|e?D)

=@+ -1
U= )@+ )

M -~
_ {Wf)‘(ﬁ ~ 12w 6 -12]] @
=1

5 —vi —1/2)@ +v; — 1/2)

N
D= (COp (
TV @ -1/2Wo - 1/2) 1:1_[1 G- +1/20+v+1/2)

M - ~

~’ l b ¢(1) 9
@ — )@+ ) R

=1 (69)
provided that

WO (- 172WS (r — 1/2)@us — 1)

Will) (i —1/2) Will)(m —1/2)Qu; + 1)

_ ﬁ (i — vi —1/2) (1 + vi — 1/2)
=1

(i —vi +1/2)(uy +v; +1/2)

M

i1 i+t1 =
N R RN YR (70)

s — i = D+ pi — 1) o
i=1 V=

i#l
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Herea =1, 2, and

%, form =3,
W =11 form=1,2,4, 1)
%’_}%2, form =5,
%7 forl =1,
%, forl =2,
wihw) = (f,ﬂ%fiﬁ’jfgj_léfg) forl =3, (72)
By forl =4
L1320 cvit 1D for) s,
#1/2, form =1,
m, form =2,
Wilj?(v) = W£12) (v) = (v+l/2)(7l;+§7+1/2), form =3, (73)
(v+f/<5)ﬁﬁz %21 . form =4,
m, form =5,
1, forl =1,
Wlﬂ/z» forl =2,
Wfrll)(v) = sz) (v) = m forl =3, 74)
%, forl =4,
Wl%ﬁ’ forl =5.

Now A@ (%, {v;}, {u}) is the eigenvalue of the third level transfer matri®’ related to
an3U(2) invariant open chain, i.e.,

@ =Tro k@) T2 ) kP T? (@), (75)
where
T (B, (i}, ) = ri5 0+ w)j2s, 113 B+ ™, (76)

o ) . . )
IO, (i), (i) = r? (0 = mM)yy gy (0 — T (77)
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3.3. Third-level Bethe ansatz

It has been shown so far that the eigenvalue problem of the transfer matrix is reduced to
the diagonalization of the isotropic Heisenberg model viitmatrices

<5+§0—1 —5+2_—1)’ form=2

K@ @) = (525 _525_) for m =3, 5, (78)
(é 2) form=1,4,
<ﬁ+oé+ _ﬁing), fori =2,

KP @) = (“%Jrl _5+2+_1), for/ =3,5, (79)
((1) 2) fori=1,4.

Following the derivation in [18], we immediately obtain the eigenvalues of the nested
transfer matrix (75), given by

~ l..1 l1...1
r@@FOT = A (o, i), (), {wq})F“” '

@ @ w; — (0 + wy)
{W HOE )H( —w)(@+w +1)

@) @ @ =)@+ )
W (U)W‘Z()H DGt m D

lg[ @O—w+DH@+w +2) F(l)ll...lM

4 (80)
ey @—w)@+w +1)
provided that
W(Z)(wl)W(z)(wl)wl ﬁ (wr — ) (wp +p@j)
WS @W @ +1) 5 =+ D0+ +1)
><lg[(wl—wm~|—1)(wz~|—wm~|—2) (81)

= (wi — wm — 1) (w; + wim)
m=1
m=#l
Here

v+&- -1 form=2,
w2 (@) = { 4E, for m = 3, 5, (82)
1, form=1,4,
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D) (e 1) =
%, forl =2,
W@ = | GO o _35, (83)
1
%1/2, forl=1,4,
—0(0—E_+2) —
%W’ form =2,
W)= LD form =35, o
yel form=1,4,
—0+&—2, forl=2,
WE@ =1 -i+& -1, fori=35, o
1, fori=1,4.

The eigenvalues (69) and (80) as well as the constraints (70), (81) on the rapigditied

w; have paved the way for the complete diagonalization of the transfer matrix (25). Making
a further shift on the rapiditiesy; — w; — 1/2, w,, - w,, — 1/2 andv = v + 1/2, the
eigenvalues of the transfer matrix (25) are given by

Alv, {vi}, (i (wy})

1 1

=K1_ —— K1 - —

(” 2) *(” 2)
2L N

+ _} - _} } w—vi —Dw+v; -1
x{WA<v 2>WA<v 2)(1}—1—2) 1_[ s T

i=1

(o NN (o - D\ @y w® 1\*
+ W V-3 Wi V-3 W)W (v) V-3

Xﬁ(v—vi+1><v+vi+1) P o—u-Potu-3P
—v)+v) T @—w+DOFu+3)

i=1

1 1 1
wug (v 3w (v 3 v (v )

2L
@ 1 1
W = _Z
X —1<”+2><” 2)

Xﬁ(v—m+%)(v+m+%)ﬁ 0 —w))v+w))
(v—m-}-%)(v—i-m-l-%)jzl(v_wj+1)(v+wl+1)

=1

1 1 1
+W§<v—5>Ws< 2>W“2)()W<()W<2>( 2)

2 - =
x W25 (v + 2) (v 2)

0
(v—w; +2Ww+w;+2)
Xlzll(v—wj+l)(v+w1~|—1)}' (86)
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The three rapiditie$vl~ JH, u)k} of flavor waves satisfy the Bethe ansatz equations

i + 2%k
g(vi,a);(vi,s_)?}ﬁ

vV —

_H(vi —u D@ v+ D P @ — = @+~ 3) 7
L —u =Dt u =D o D@3
l;él
n(wj, §)n(u;, %‘)H(MJ D+ D)
P =i = D+ — D)
lA—/I[(Mj—Mi+1)(Mj+Mi+1) @ (j—wi— P +wi— ) )
iy (i D+ pi =17 (Wj—wi+ 3 +w+3)
i#]j
(wk_Ml+2)(wk+Ml+2)
2 )82 )
(W §)2 (s - H(wk D+ — )
_ lg[ (wr —wy + D(we +w; +1) (89)

p (w —w; — D(wr +w; —1)°
i

I
R

fori=1...,N,j=1...,.Mandk=1,..., Q, respectively. Here, we have introduced
the notation

vi+éL— 2 _ _
7§ +% forl=1, m=1,
3 for[=3 m=3
fon )= | wresss OFI=3m=3, (90)
1, foril=2,4, m=2,4,
e 1
ViteiTy  fori=5, m =5,
vi—§++3
1, forl=1,2,3, m=1,2,3,
MjJrEi*% _ _
n(pj, 6+) = wj—x+3’ fori=4,m=4, (91)
wj—&+ _ _
Mj+$i, forl =5, m =25,
WAed o2 =2
Wi — S +% ’ ’
Q(wk»s:‘:): wi+E+— 2 fOI’l—3 5 m=3.5 (92)
wk S +% - ) E) - ) )

1, fori=1,4 m=1,4.
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These boundary factors coupled to the three degrees of freedom will resultin arich physical
scenario. From (27) and (86), we finally obtain the eigenvalues of the Hamiltonian (1) as

S+ S+ (L -a)L+ Y (St ). forl=m=1,25,
E =
LR C I I S 3l (’V ). fori=m=34.
(93)

4. Boundary impurity effects

Having diagonalised the Hamiltonian (1) by means of the algebraic Bethe ansatz, the
next step is to derive the thermodynamic Bethe ansatz equations.

4.1. Derivation of TBA

For later convenience in the analysis of the Bethe ansatz equations, we make the change
of variables:w; — —iv;, wy — —iw;, wy — —iw, and some rescalings in the boundary
parameter§.. The Bethe ansatz equations are now

ru—ifhvi—ruty (=5
(vi, B+) = 94
ot Hﬂv—rw+'n v = ity o
1#i
( ﬁ)l—[l—[u] rii — lg[MJ rw1~|—21—[uj rv,~|—2 _1 (95)
nix;, p+ y
a —VMz-Hllu]—ru)[ leu] i—lz
t#/
—rw =i Prwe =+ b
2 (wy, ﬁi)]"[]"[ I1 £=1 (96)
et lwk_rwl+|l LWk — T — 3
Ik
where
g(vi,ﬂi)={vf—'ﬂi’ for/=1,3,5 m=1,35, (97)
1, forl=24, m=24,
1, forl=1,2,3, m=1,2,3,
nitibs fori—=4, m=4
n(uj, B+) = “f"fﬂi’ ) ' ' (98)
KiWPetd) - for) =5 =5,
niti(B++3)
+iB _ _
ﬁifiﬁi’ fori=2,5 m=2,5,
2 (wy, ={ w—i(B++D) _ _ 99
(wk, B+) G=p, fori=3 m=3 (99)

1, fori=1,4 m=14.
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The shifts in the parametefs are given by
1
ﬁiz‘%‘i—é, fori=m=1,4,5,

ﬁi=Si—g, forl=m=2,
1
ﬁi=—§i—§, forl=m=3. (100)
Correspondingly, the energy spectrum is given by

N

E= Z( ul —|—J¢> (101)

i1 Vv—|—4

Here we have dropped some constants appearing in Eq. (93), which will be used in deriving
one point correlation functions later.

From the above Bethe ansatz equations (94)—(96), it is found that in thelcases=
1, 3,5, the solutionsy = +ig_ and v, = +ig; form two boundary bound sates in the
charge rapidity wherB.. are negative. Nevertheless, in the casem = 5, besides the
charge boundary bound states, the boundary bound states exist also in the spin rapidites,
ie.,

:{ii(ﬂ+%), wz{iiﬁ_,

:l:l(/gJr + %), i|ﬁ+

No boundary bound state exists in the remaining cases. We observe that/when

21” (1 — cosk), the reference state becomes the true ground state, i.e., the ground state
|s given by a product of the singlet rung states. The minimal gap can be easily calculated
and is given by

2J,
A=J, — 21— cosh), (102)
Y

wherek =7 /[1+ %(% + ﬂ%)]. It is obvious that gap remains almost unchanged in the
thermodynamic limit and is almost the samess J;, — % in the periodic case because

L> ﬂ% In the regime-1 < B+ < —3,/1— ;‘%, the boundary bound states are stable.

Otherwise, in the remaining regime, they become excited states. In theJlimit oo,
all the boundary bound states are excitations. We shall see that the boundary bound states

radically affect the edge ground state properties.foe —ﬂ 7 —In3) < J) < J” , the

ground state consists of three branches of Luttinger I|qU|ds associated with the rapidities
v, u andw. HereJ is the critical transition point from th8U(3) phase into th&U(4)
phase in the absence of a magnetic field. The triplet states can exist in the ground state.
This corresponds to a continuum of massless excitations.

The thermodynamics of the boundary fields can be derived from the Bethe ansatz
equations (94)—(96). We now focus on the analysis of the Bethe ansatz equations. As usual,



404 M.T. Batchelor et al. / Nuclear Physics B 669 [FS] (2003) 385-416

we define the functions

in
e =2 G0 =ilnenx),

X —|2

1 n 1 d
ap(x)=——= —n—xen(x), (103)

in terms of which the Bethe ansatz equations (94)—(96) become

£ i B (exw)* T ]"[el(vl —rup =[] ]"[ez(v, —ru), (104)
r=+ =1 r=% =1
1+
n(uj, Bo) [ ] Helw, —r) =] Hez(M/ —rm)l_[e 1(uj —rwr), (105)
r=+ r=+
- &l
M
2w, po) [ [ [Terwx —rin =] Hez(wk — rwyp). (106)
r==+ =1 r==+ 57:&’1_

In order to study the thermodynamics of the model with boundary impurities we begin
by adopting the string hypothesis [27-29]. If we defing; = —v;, u_; = —p; and
w_j = wy, the Bethe ansatz equations (94)—(96) admit the string solutions

v gl—l—l—(n—l—l 2j),

011]
Payj = Pay +i—(n +1-2j),

wasj —was—i-l—(n—i—l 2j),

in thermodynamic limit, wherg =1,...,n, 0, =1,.. N(") andvg,,
the positions of the center of the strings. The number—sfrlngsN,E“) satisfy the relation
P@ =3 nN,E“). By taking the thermodynamic limit, the Bethe ansatz equations become

Iy, @andwg, are

1
P =ant o pt(m> Z Anm % p5P + Y aum * 02, (107)
m
2
plflz)h 2L ( ) Z Anm * ,Om) + Zanm * (,0(1) (3)), (108)
3
@ 2L p ZA D+ x 02, (109)
m

where the symbok denotes the usual convolution. Hepé“)(v) a=123 are the
densities of roots of the three flavoy (“)h(v) a =1, 2,3 are the densities of holes of
the three flavors andbn ,i =1, 2, 3 are the contributions from boundary fields associated



M.T. Batchelor et al. / Nuclear Physics B 669 [FS] (2003) 385-416 405

with different rapidities. These boundary phase factors are given by

,Ot(,l) _ Zi Z?:l nt2po+1-21(A) +anp2(h), forl=1,3,5 m=1,3,5, (110)
" lanz), forl=2,4, m=2,4,
an2(A) — an1(A), forl=1,2,3, m=1,2,3,
pD = 1 Y anopia1-a() +an2() —am(h),  fori=4, m=4,
— > Y any2pir2-2(A) + an2(A) —ap1(r), forli=>5 m=5,
(111)
® Yoa 1 ni2pir1-21(A) + an2(1), forl =2,5, m=2,5,
Pon =1 = 2x Xi—1ani2ps+3-2(0) +an2(h), forl=3, m=3, (112)
an2(A), fori=1,4 m=1,A4.
In addition
Min(n,m)—1
Ann ) =88 + (L= Sun)@n—m| W) + QW) +2 Y appmya ),
=1
Min(n,m)
W)=Y dnpmr1-20).
=1

We emphasize that the boundary potentials enter in the expression for the ground state
energy implicitly via,ot()“)(v) in the above equations, with contributions to the densities

of the roots at the order of/L. In order to find the equilibrium state of the system at
fixed temperaturd” and external magnetic fiel# (> 0), we minimize the free energy

F =E — TS — HS? with respect to the densities to obtain the TBA in the form

In(1+ n,ﬁl))
In(1+ 77,(12))
In(1+ 77,<13))
1
6 (Tohm Team o (M)
= 7 +| - Zm Anm Zm Anm - Zm Anm | * In(l + @) . (113)

0 =2 mlnm Dy Anm In(1+ %)
Nm

The driving matrixG, depends on the choice of the reference state. Explicitly/ foe 0,
G= cqumr(—%Znan +nH,nH,—n(J1L + H)), giving the free energy

o0
F(T, H) > 0
T:—H—T/Zan(k)ln(1+e T )dk

oo n=1

® 0

3 a
- %Z / 3 o |n(1+e*€’(’ ;m)dk. (114)

a=1l_" n=1
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On the other hand, faf; > 0,G = colum(—%Znan +n(J. — H),nH,nH) and the free
energy is given by

K (e )

oo n=1

—%Z/zwmue

a=1l_", n=1

a)

o

(l)
) dh. (115)

Heren" (1) = p@r (1) /0D ) = expel’ (1) / T), 1 = 1, 2, 3, with the dressed energy’
playing the role of an excitation energy measured from the Fermi level.
Using the relations

(a0 + az) *Inn'9 = ay * [In(1+ 77,(;21) +In(1+ 77<a) )]

1 1
_In(l—i— W) —In(l—i— n( +l)) (116)

another form of the TBA is given by

i el
eia) (a)-i-Taz*In(l—l—e >+T(a0+a2)Zam*|n<l+e TH)

m=1

i (In (1+e S 1)>+|n<1+e $)> (117)
" (tl)l)
(a)

Ef(za) ad €m
+ Tas * |n<1+eiT> + T (ag + a2) Z App—n * |n<1+eiT>

m>=n

-7 i Am—n+1 (In(1+ ef;;;—n) + In(1+ - )) (118)

m>n

€D =g@ 4 Tayx In(

forn>2.Inthe above =1, 2,3 ande,ﬁo) )= 4) () = 0is assumed. The driving terms
are given explicitly by

T PN

e? =H, ¢? =H, for J, <0, (119)
e =—Ui+H), e =-UL+H),

8<l)=—927w1+1¢—H, ¢V =7, —H,

g?=H, ¢?—H, for J, > 0. (120)

(3) —H. (3) —H
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4.2. Boundary bound states and impurity effects

In the low temperature limit, the states with positive dressed energy are empty. The

zeros of the dressed energies define the fermi energies. We decm’ﬁ’ﬂm its positive

and negative partg,” = e\”" + 97, An analysis of Egs. (117) and (118) in the limit

T — 0 reveals that for the ground state, the roots are all real corresponding th All

dressed energi@é")Jr with n > 2 correspond to excitations. Thus the TBA for the ground
state is, for/; <0,

e® = g&l) —apx eV agxe@,

€@ =H —ay%e@ 4 arx [6(1)7 + e<3)7],

€@ =_—H—J —ar+e® +a1%@, (121)
and forJ; >0,

e® = ggl) —azx eV +agxe@,
€@ =H—arxeP +apx[eP™ +97],
e =H —a%e® fa3xe?. (122)

In this case, the free energy is given by

F(O.H) _ { —H+ [% a10)eN (0 dh+ A fo, for g, <0, 123)
2L 2% al()»)eil)_()\) dx+ %fb, for J, >0,
where
s O
=) / oy 0)e™ ™ (W) +6(Bx + Be) Evs, (124)

a:1_Qa

and 6(x) denotes a step-like function. Defirge = —%‘/1— ;’%, then in the interval

—% < B < B, 8(B) =1, elsed(B) = 0. In the aboveEs denotes the boundary bound
state energy, given by

Zi(_ﬂf 1 Z+JL), for J, >0, 129
Eps=
> Zi(—ﬂ, 1 Z), for J, <O.

It is worth noticing that if8+ < B. we should take the boundary bound states into account

in the boundary contributionsé‘i) for the cased = m = 1,3,5. The TBA (121) and

(122) provide a clear physical picture of the ground-state and in turn the thermodynamic
properties, such as the free energy, the magnetization, the susceptibility, etc. The boundary
impurities coupled to the three rapidities affect the low temperature physics at the edges in
various different ways, which we now explore.
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From the TBA (122), we notice that if; > J. = % the triplet excitations are

massive with energy gap = J; — %. The rescaling = 4 was fixed [14] for strong

coupling compounds, e.g., @€sH12N2)2Cla [3], (CsH12N)2CuBr4 [4], etc. HereJt

is the critical point at which the quantum phase transition from the three branches of
Luttinger liquid to the dimerized/ (1) phase occurs. Iff; > J., we can show that in

the presence of a strong magnetic field two of the triplet staBsa(d|4) in (5)) in the

bulk part will never be involved in the ground state. However, at the boundaries this is

not always true due to the presence of the boundary impurities. In a strong magnetic field
the ground-state may be considered as a condens&#(8j hard-core bosons. The gap

is reduced by the magnetic fiel, i.e., A=J, — % — H. Thus the first critical field

occurs at the point/.; where the gap is closed, i.ggupH:.1 = J1 — %. The quantum
phase transition from a gapped phase to gapless Luttinger phase occurs. By continuing
to increase the magnetic field over H.1, the triplet statg2) becomes involved in the
ground state with a finite susceptibility, also affected by the boundary impurities in the
low concentration regime. If the magnetic field is greater than the rung coupling, i.e.,
h > J, the triplet component2) becomes the lowest level. Therefore, it is reasonable

to choose the basis order g8), |1), |3), |14))T. Subsequently the driving terms are given

by ¢® = —27Jja1 — JL + H, ¢? =J, andg® = H. A second critical fieldH,,

(H.2 > H.1) can be determined by the magnetization arriving at its saturation §aks€l.

Then the reference state becomes the true physical state and the critical fieddgiven

by

4]
Ho=J, + 7” (126)

In this case, all the boundary impurities are gapfull with the ferromagneticgap
upg(H — Hc2).

Let us now discuss the boundary impurity effects in the vicinity of the critical p@int
After a lengthy calculation, similar to that employed in [14] for the periodic case, we find
the free energy in the presence of a strong magnetic field

(127)

F(O,H)N 4Q(JC+—Jeff) 20 1
T (1‘7)+sz’

I —Tett
4JF —5(H—H,1)

energy from the boundary impurities in the vicinity &f1. Explicitly, for |8+] > % or

where Q is the fermi point given byQ ~ and fp is the surface free

say O< Ux < 9 orUy <0, itis given by

200 —Jerr)

for T

+_
2oV o), fori=m=24.

1+A2 4+ 1), fori=m=1,3,5,
(45 +5) (128)
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For—3 < Bx < e, or sayUs > Ups= 2Jy/y (1 — /1 - :j“ ), we have

20(JF—Jett) 1 J)
_Z T ef ( + /3:(: + ﬁi-l—l ﬁ:l:_l) + Z:l:( y” /32 l + ‘]J-)

ford forl=m=13,5, (129)
_ 20U Jet)  for ) — =2, 4,

T ’

While for |8+| very small, or sayf/i < Ut < Uypg, itis given by

_2UEINQ s ppy), forl=m=1,35,

b= —@ forl=m=2,4, (130)
where
8J 2
f(Be) = __” y 1—4p2 (arctan/% - 4Qﬁi> + # arctan/%
40(JF —Jew) 1 0
r(x+20) 1-f2 (arctanﬁ— B+ Q) (131)

In the aboveJesf = J1 — H and the parameteis,. are related to the boundary impurity
couplingU4. by

i, forl=m=145,

Vv ~Us
i: ﬁ, forl=m=2, (132)
,Bi Y +

—%, forl=m=3.

7+Ui

The magnetic susceptibility follows frony ~ —dezF(g’LH). Here, to illustrate the

boundary effects, we will focus on the discussion of the strong coupling compounds
J1 > Jj with the boundary impurities in the case- m = 1. Other regimes can be handled

in a similar way. It is very clear that the stable boundary bound states are exhibited only
in the strong ferromagnetic boundary couplitig. > Ups. In Eq. (132), we emphasize
that the mathematical singular points do not exist, or alternatigely- 0 does not mean

that the rhs of Eq. (132) has singular points. For instanclit= 2J;/y, the boundary
parameterg. = 1/2. Thus the phase factors in the Bethe ansatz equations (94), (95)
and (96) are equal to 1 for the case- m = 1. In such a case, the model exihibits
special symmetry (the quantum algel8d, (4) invariant Bethe ansatz equations) which
leads to a different expression for the boundary free energy than the above ones. For
antiferromagnetic boundary coupliig. < 0, the susceptibility is given by

3 1 1 1
~ 1+ — “+=1) 133
X 7/ 4JF (H — Hpp) ( 4L ;(2 ﬂi)) (133)

while for the strong ferromagnetic coupliigy. > Ups, with U+ > 0,

3 1 3 1 1 1
~ 1+ — -t ] ). 134
X 7V4J (H — Hy) ( 4L ;(2 B+ B++1 Bi-— 1)) (134)
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magnetic field H

Fig. 2. The susceptibility versus magnetit for different impurity couplingU+ = U (U = 0 corresponds
to free boundary conditions). Here we consider the strong coupling compous(€4E1oN2)>Cly [3] with
J1 = 132K, J = 2.5K andy = 4 with an impurity concentration 2 percent in a ladder with lengths 50.

Notice, in both cases, that the susceptibility diverges with the square root of the field in the
bulk and in the boundaries. In addition, the susceptibility at the boundaries is enhanced or
decreased by different impurity dopings. This behaviour is illustrated in Fig. 2. From the
Bethe ansatz equations, we can also calculate the magnetization in the viciAity, of

0
se @ 40/, 20 1 4
oL = [ P (W) dr = (1 —) + oL Ei Sp- (135)

For antiferromagnetic boundary couplibl < O this expression reduces to
= ( 2Q> ( 1 )
SE ~ + 136
ROV o (136)

while for strong ferromagnetic boundary couplitig. >> Ups With U+ > 0,

20 ( 2Q> ( 1 1 1 )
A +—+ — . 137
Z B+ B+l pi-—1 (137)
A plot of the magnetizatio§* against the magnetic field for different boundary impurities
UL is given in Fig. 3. By analyzing both figures we can observe the competition between

the boundary impurities and the magnetic field in the thermodynamic properties. In
particular, we find an enhancement of the susceptibility in the weak anti- and ferromagnetic
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Fig. 3. The magnetization versus magnetic figldfor different impurity couplingU+ = U (U = 0 corresponds
to free boundary conditions). As in Fig. 2, we consider the strong coupling compou{@4Ei; oN2)->Cly [3]
with J; = 132K, J; = 2.5K andy = 4 with an impurity concentration 2 percent in a ladder with lengta 50.

regimes (we consider the sized. 2= 100, the impurity concentration 2 percent). The
susceptibility and the magnetization are lifted slightly in the weak antiferromagnetic
boundary regime in the case of open boundary conditions, whereas they contribute
negatively to the bulk whe/,. becomes more and more negative. This is reasonable,
since negativé/. energetically favours the singlet state (recall the boundary terms in the
Hamiltonian (1)), even if the magnetic field is very strong, such that the spin-1 component
of the triplet is involved in the ground state. The point is that a very negéfivecan
overcome the spin-1 component of the triplet and dominate the edge rung state. In this
circumstance, the edge state is a pure singlet state and the edge magnetization (136) is
zero due to the fact thdf, effectively decreases the edge magnetic figldo H.1 such

that the fermi boundarg = 0. This results in negative susceptibility and magnetization
contributions to the bulk. In contrast to this case, the ferromagnetic impurities lift the

susceptibility and the magnetization in the weak coupling regime< 2l When Uy
becomes larger, the triplet edge state is energetically favoured so that the boundary
coupling can overcome the magnetic field to bring the three components of the triplet into
the edge states. Therefore, it causes a negative contribution to the bulk susceptibility and
magnetization. This situation is different from the case of the bulk impurities, where the
susceptibility is increased by the impurity coupling due to the forward-scattering. This fact
can be seen clearly from the one point correlation function of the ground state at the edges,
for antiferromagnetic boundary coupling and weak ferromagnetic boundary coupling, i.e.,
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i
Ui < 7
. 3 d 3 20(H-Ha)  4y/y
Sg.T))=—>4 — fp=—= , 138
SaTa) ==+ g, o="3"+ T @21y — Ux)? (138)
and for ferromagnetic impurities in the strong coupling regiihe>s> Pys,
< ~._ 1 20(H-H1) aJy/y aly/y
(Sa.Tg) = = + 2 2
4 b4 J1)/y —Us)*  (2J)/y —3Uz)
4 1
Ji/y 2] B I (139)
@Ny/y +Un°] - 132

In the above: = 1, L. The boundary one point correlation functions are given by

5> o 3 1
(Sa-Tu) = _Z<NS) + Z(NT)- (140)

Here Ns and Nt are the probabilities of the singlet and triplet state respectively. This is
because the eigenvalue of the one point correlation funésipiT, ) acting on the singlet
(triplet) state is—?1 (‘—11). We have plotted the correlation function for antiferromagnetic
boundary coupling in Fig. 4.
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Fig. 4. One point correlation function (138) versus antiferromagnetic boundary coupliag a function of
magnetic field. The curve is lifted by the magnetic field, however it is decreased by the boundary impurities
which favour the singlet state. Here we consider the strong coupling compou{@Ei) oN2)-Cly [3] with

J1 =132K, Jy=25Kandy =4 andU+ = U. The casdJ = 0 corresponds to the free boundary effect.
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Fig. 5. One point correlation function vs ferromegnetic boundary couglina) The function (138) is lifted by
the magnetic field and weak magnetic impurity coupliig(b) The function (139) tends té as the boundary
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We see that the magnetic field always lifts the spin-1 triplet component. However,
in the case of antiferromagnetic boundary impurities and open boundaries the singlet
state is favoured as long d%. becomes more negative, the triplet moves out of the
edge state and the one point correlation function tends %o On the other hand, for
ferromagnetic coupling impurities (see Fig. 5), the correlation function increases due to
the ferromagnetic properties and the magnetic field in the weak coupling rég@n&eg.
However, if U+ becomes larger, the three components of the triplet get involved in the
edge state, such that the correlation function tenckfmr strong ferromagneitc impurity
coupling. This result indicates that the edge state can be a pure singlet state in the strong
antiferromagnetic boundary coupling regime whereas it turns out to be a pure triplet state in
the strong ferromagnetic boundary coupling regime. This reveals the role of antimagnetic
and ferromagnetic impurities.

On the other hand, the boundary impurities coupled to the spin degrees of freedom,
namely, ,olgz) and ,olg3) will also affect the ground state properties nontrivially. From the
free energy (123), these impurity densities will contribute to the low energy. Considering
the case/; < 0, in the absence of the magnetic field, the triplet is completely degenerate
while the fermi surface of the singlet is lifted d@s becomes more negative. Certainly,

if Ju<J- = —7(% —In3) the singlet rung state is not involved in the ground-state,
namelye® (0) > 0, whereas two triplet fermi seas still have fermi boundaries at infinity.
Under such a configuration, the dressed energy potentials are

coshZ sinhZ A
Wiy = PN gy 2rdySinhgh (141)
/3y coshra 3y sinhz
The free energy can be given by
F(,0) - 2J) 1 1
2L 3y v -y 3 + 51 Jo. (142)
where
o0 o0
fo= / P (e )y do. + / P2 (e (hy da. (143)
—00 —00

The first part in (142) is nothing but the stand&kdl(3) ground state energy of the bulk.
The remaining part is the boundary surface energy for various boundary impurities.

5. Conclusion and discussion

In summary, we have discussed in detail the algebraic Bethe-ansatz solution of an
integrable spin ladder system based on $uk4) symmetry with boundary impurities.
Five different classes of solutions of the graded RE leading to different boundary rung
interactions in the Hamiltonian were obtained. The Bethe-ansatz equations, the eigenvalues
of the transfer matrix and the energy spectrum were given explicitly. Furthermore, the
three-level transfer matrices, characterizing the different flavour sectors separately, allowed
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us to embed different impurities into the system. From the Bethe ansatz solutions (107)—
(109), we found that the boundary impurity effects characterized(by; £+), n(u;, &+)
and 2 (wg, £+) act indeed nontrivially on the densities of roots for the three rapidities and
thus change the ground state properties, the boundary bound states as well as the low-lying
energy spectrum. In the thermodynamic limit, the spin gap remains almost unchanged.
However, the boundary susceptitblity and magnetization reveal novel magnetic properties
for strong and weak impurity couplings. In strong impurity coupling, the impurities
induced by the open boundary conditions can result in either a pure triplet or a singlet edge
state due to the nature of the pure back-scattering at the edges and the magnetic impurities.
Strictly speaking, the edge state can be a pure singlet state in a strong antiferromagnetic
boundary coupling regime whereas a triplet state with an effective magnetic moment can
exist in a strong ferromagnetic boundary coupling regime. Correspondingly, the one point
correlation function for strong antiferromagnetic boundary impurities tends to the singlet
eigenvalue-3/4, whereas for strong ferromagneitc impurity coupling it tends to the triplet
eigenvalue 14. This behaviour may be observed in experiments due to different boundary
magnetic moments. Although the TBA solution of t8d(4) ladder model (1) predicts

the quantum phase diagram in good agreement with experimental results for the strong
coupling compounds, the full finite temperature thermodynamic properties of the model
remain to be calculated.
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