

Universidade: presente!

21.25. OUTUBRO. CAMPUS DO VALE

DETERMINAÇÃO DE PARÂMETROS FÍSICOS E QUÍMICOS NA ÁGUA BRUTA DE ESTAÇÕES DE TRATAMENTO DE ÁGUA (ETAs) COM PONTOS DE CAPTAÇÃO NO LAGO GUAÍBA.

Laísa Piccardo Shiroiwa¹, Tânia Mara Pizzolato¹

¹Instituto de Química – UFRGS – Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brasil

IC - 2 -1000 700

parâmetros.

Figura 1: Representação da separação dos pontos

de coleta segundo as componentes independentes (ICs) identificadas pelo modelo estatístico: (a) P38 e

P46 sofrem menor incidência dos parâmetros físico-

maior alteração com a variação dos mesmos

Introdução

A análise dos parâmetros físicos e químicos pH, turbidez, condutividade, nitrogênio amoniacal, nitrato, oxigênio dissolvido (OD) e Demanda Bioquímica de Oxigênio (DBO) - e metais da água, na área de captação, é um fator importante pois impacta diretamente o sistema de tratamento. O Lago Guaíba fornece água destinada às Estações de Tratamento de Águas (ETAs) da cidade de Porto Alegre e recebe grande aporte de nutrientes devido ao deságue de importantes rios da região, como por exemplo, Jacuí, Caí, Gravataí e Sinos.

A partir destas considerações, este trabalho tem por objetivo analisar amostras de água de 5 pontos localizados no lago Guaíba para verificar estes parâmetros no Lago Guaíba, durante 1 ano. Até o presente momento, estão apresentados os dados obtidos o período de dezembro de 2018 a maio de 2019.

Experimental

As análises de elementos químicos foram feitas por ICP-MS, utilizando o método normalizado da Agência de Proteção Ambiental dos Estados Unidos (US EPA)200.8– para determinação dos metais solúveis em água, conforme as especificações das Tabelas 1 e 2 - e as análises físico-químicas dos parâmetros pH, nitrogênio amoniacal, nitrato, oxigênio dissolvido, condutividade e turbidez foram realizadas segundo o método normalizado da APHA.

Os dados obtidos foram processados utilizando o método de resolução de curva multivariada com mínimos quadráticos alternados (MCR-ALS)

quadraticos atternados (MON-ALO).		
Tabela 1: Condições do ICP-MS para Na, Mg, K and Ca		
Nebulizer type	MicroMist	
RF Power (W)	1600 W	
Smpl Depth	10 mm	
Plasma gas flow	15 L/min	
Auxilliary (dilution) gas flow	0,4 L/min	
Nebulizer (carrier) gas flow	0,6 L/min	
Sparay chambre temp	2°C	
Collision cell	He@3,0mL/min	
Data acquisition mode	m/z do isótopo mais abundante	
Dwell time	0,05s (m/z 23, 24, 39 e 44)	

Tabela 2: Condições do ICP-MS para Li, Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,

Ga, As, Sr, Mo, Ag, Cd, Cs, Ba, Hg, Tl, Pb, Bi	
Nebulizer type	MicroMist
RF Power (W)	1550 W
Smpl Depth	8 mm
Plasma gas flow	15L/min
Auxilliary (dilution) gas flow	0,1 L/min
Nebulizer (carrier) gas flow	0,9 L/min
Sparay chambre temp	2°C
Collision cell	He@4,3mL/min
Data acquisition mode for internal	m/z 72 para Ge, m/z 101 para Ru,
Standard	m/z 193 para Ir
Data acquisition mode for analytes	m/z do isótopo mais abundante
Dwell time	0,3s (m/z 7, 9, 51, 52, 55, 56, 59, 60,
	63, 66, 71, 72, 75, 88, 95, 101, 107,
	111, 133, 137, 193, 205, 208, 209)
	0,1s (m/z 27, 66) 0,5s (Hg)

Resultados e Discussão

três identificadas componentes Foram independentes (ICs) na definição do modelo, levando a separação dos pontos de coleta em dois grupos (como mostrado na Figura 1):

- IC 1: sazonalidade → meses de maior incidência pluviométrica coincidem com os meses mais relevantes para esse fator;
- IC 2: perfil natural da amostra → componentes comumente encontrados nesses pontos de coleta e;
- ¹¹⁰⁰ IC 3: condutividade → relacionada diretamente a concentração total de metais dissolvidos na água e turbidez da amostra.

Dos 27 metais presentes no método, vinte e um foram determinados em concentrações que variaram de químicos e (b) P36, P41B e P50 que apresentam 0,19 µg L⁻¹ a 1,22 mg L⁻¹, conforme as **Figuras 2 e 3**.

dados

de

Com exceção do cromo, os

concentrações menores que o máximo

permitido pela legislação (Art. 15, Res.

CONAMA nº357, 2005). O metal

cromo extrapolou o limite permitido (50

μg L⁻¹) no mês de março (67,25 μg L⁻¹

1), no ponto no canal de navegação -

em frente à Ponta do Dionísio,

portanto foi retirado do cálculo da

concentração média para que essa

correspondesse ao perfil apresentado

metais apresentaram

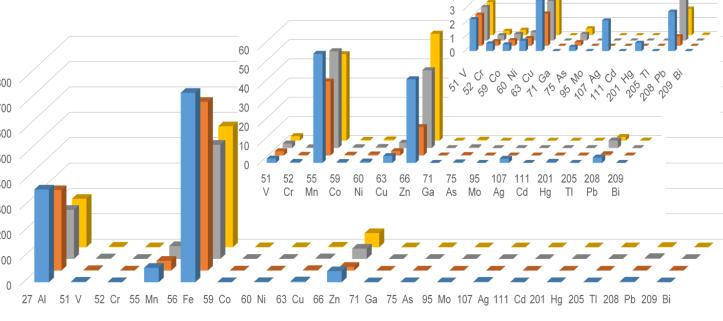
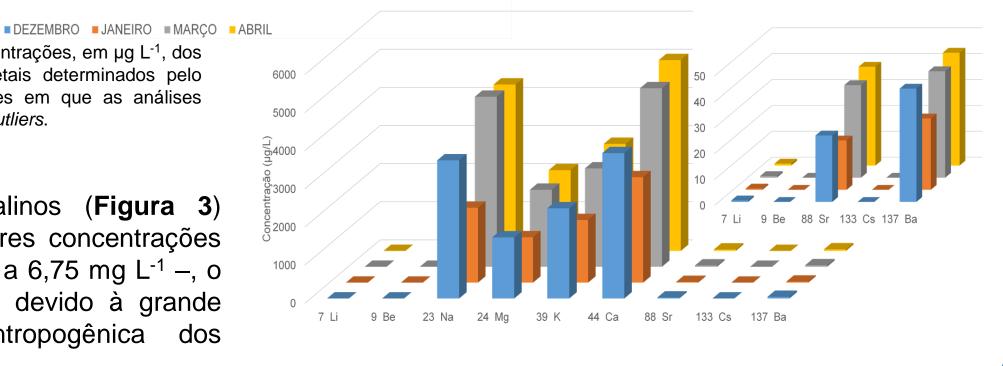



Figura 2: Média das concentrações, em µg L⁻¹, dos pontos de coleta dos metais determinados pelo método, durante os meses em que as análises foram realizadas, exceto outliers.

Os metais alcalinos (Figura 3) tiveram as maiores concentrações - de 0,23 µg L⁻¹ a 6,75 mg L⁻¹ -, o que é esperado devido à grande contribuição antropogênica dos mesmos.

pelos demais pontos.

■ DEZEMBRO ■ JANEIRO ■ MARÇO ■ ABRIL

Figura 3: Média das concentrações, em µg L⁻¹, dos pontos de coleta para todos os metais alcalinos e alcalinos terrosos, nos meses de dezembro a abril.

Conclusões

Com os resultados gerados é possível iniciar o estabelecimento do perfil da água do Lago Guaíba. Verificou-se que a condutividade é relevante para o perfil das amostras, já que tem influência de dois parâmetros estudados (turbidez e concentração total de metais solúveis), bem como a sazonalidade. Os pontos de coleta localizados à margem esquerda do Lago Guaíba – próximo de onde deságua o Arroio Dilúvio –, no Canal dos Navegantes – no Delta do Jacuí – e no canal de navegação – no alinhamento da Ponta Grossa com as pequenas Ilhas Baleias – sofrem maior incidência dos parâmetros físico-químicos medidos quando comparados com os pontos de coleta localizados no canal de navegação – em frente à Ponta do Dionísio – e no Lago Guaíba – em frente à Ponta da Cadeia.

REFERÊNCIAS

Instituto Nacional de Meteorologia, Ministério da Agricultura, Pecuária e Abastecimento. Disponível em http://www.inmet.gov.br/portal/, acessado em 12/06/2019. U.S. EPA. 1994. "Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry," Revision 5.4. Cincinnati, OH

AGRADECIMENTOS

