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RESUMO

Este trabalho é composto por trés ensaios na area de inferéncia nao-paramétrica, bas-
tante inter-relacionados. O primeiro ensaio visa estabelecer ordens de convergéncia uni-
forme sob condi¢oes mizing para o estimador linear local quando a estrutura de pontos
é fixa e da forma ¢t/T,t € {1,...,T},T € N. A ordem encontrada para as convergéncias
uniforme, em probabilidade e quase certa, é a mesma daquela estabelecida por Hansen
(2008) e Kristensen (2009) para o caso de estrutura de pontos aleatorios. O segundo en-
saio estuda as propriedades assintoticas de estimadores obtidos ao se inverter o esquema,
de estimagao em trés etapas de Vogt e Linton (2014). Foram fornecidas as ordens de
convergéncia uniforme em probabilidade para os estimadores da funcao de tendéncia e da
sequéncia periddica. Além disso, a consisténcia do estimador do periodo fundamental e a
normalidade assintética do estimador de tendéncia também foram estabelecidas. O tltimo
estudo investiga o comportamento em amostras finitas dos estimadores considerados no
segundo ensaio. Foram propostas janelas para o estimador de tendéncia do tipo plug-in.
Para as simulacoes realizadas, a janela plug-in mostrou bom desempenho e o estimador
do periodo revelou-se bastante robusto em resposta a diferentes escolhas de janelas. O

estudo foi complementado com duas aplicagoes, uma em climatologia e outra em economia.

Palavras chave: Econometria Nao-paramétrica. Regressao Local. Teoria Assintdtica.

Séries Temporais. Convergéncia Uniforme.



ABSTRACT

This work is composed of three essays in the field of nonparametric inference, all closely
inter-related. The first essay aims to stablish uniform convergence rates under mix-
ing conditions for the local linear estimator under a fixed-design setting of the form
t/T, t € {1,...,T}, T € N. It was found that the order of the weak and the strong
uniform convergence is the same as that of stablished by Hansen (2008) and Kristensen
(2009) for the random design setting. The second essay studies the asymptotic proper-
ties of the estimators derived from reversing the three-step procedure of Vogt and Linton
(2014). Weak uniform convergence rates was given to the trend and the periodic sequence
estimators. Furthermore, the consistency of the fundamental period estimator and the
asymptotic normality of the trend estimator was also stablished. The last study inves-
tigates the finite sample behavior of the estimators considered in the second essay. A
plug-in type bandwith was proposed for the trend estimator. From our simulation re-
sults, the plug-in bandwidth performed well and the period estimator showed to be quite
robust with respect to different bandwidth choices. The study was complemented with

two applications, one in climatology and the other in economics.

Keywords: Nonparametric Econometrics. Local Regression. Asymptotic Theory. Time

Series. Uniform Convergence.
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1 INTRODUCTION

The first essay of this thesis develops uniform consistency results for the local linear
estimator under mixing conditions in order to be directly applied in the next essays. The
weak and strong uniform convergence rates were provided for general kernel averages from
which we obtained the uniform rates for the local linear estimator. We restricted our atten-
tion to equally-spaced design points of the form =, =¢/T, t € {1,...,T}, T € N. This
setting is quite common in the literature of nonparametric time series regression (ROBIN-
SON, 1989; EL. MACHKOURI, 2007; VOGT;LINTON, 2014; among others). Further-
more, it also appears in the literature of nonparametric time-varying models (DALHAUS
et al., 1999; CAI, 2007) and in situations where a continuous-time process is sampled at
discrete time points (BANDI; PHILLIPS, 2003; KRISTENSEN, 2010). The convergences
were stablished uniformly over [0, 1] under arithmetically strong mixing conditions. The
kernel function was restricted to be compactly supported and Lipschitz continuous, and
inlcudes the popular Epanechnikov kernel. The uniform convergence in probability was
provided without imposing stationarity while the almost sure uniform convergence was
proved only for the stationary case.

Hansen (2008) provided a set of results on uniform convergence rates for kernel based
estimators under stationary and strongly mixing conditions. Kristensen (2009) extended
the results of Hansen (2008) by allowing the data to be heterogeneously dependent as well
as parameter dependent. A simple situation where the results of Kristensen (2009) could
be applied relates to local linear regression models where the error process is strongly
mixing without the stationarity restriction. In the literature, one can find the direct
application of the results of Kristensen (2009), originally for random design, done for fixed
design settings (see KRISTENSEN, 2009; VOGT; LINTON, 2014). While it is unclear,
we believe that providing explicit results would not only justifies such application but also
creates a background for further theoretical developments.

The second essay is the main study of this thesis. We investigated the asymptotic
properties of the estimators obtained by reversing the three-step procedure of Vogt and
Linton (2014), for time series modelled as the sum of a periodic and a trend deterministic
components plus a stochastic error process. In the first step, the trend function is esti-
mated; given the trend estimate, an estimate of the period is provided in the second step;
the last step consists in estimating the periodic sequence. The weak uniform convergence

rates of the estimators of the trend function and the periodic sequence were provided.
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The asymptotic normality for the trend estimator was also stablished. Furthermore, it
was shown that the period estimator is consistent.

When the data has only the slowly varying component (plus an error term), its
nonparametric estimation is popularly done by using a local polynomial fitting (WAT-
SON, 1964; NADARAYA, 1964; CLEVELAND, 1979; FAN, 1992) or a spline smoothing
(WAHBA, 1990; GREEN; SILVERMAN, 1993; EUBANK, 1999). On the other hand,
for models where the data is written as a periodic component plus an error term, the
nonparametric estimation of the period and values of the periodic component was investi-
gated by Sun et al. (2012) for evenly spaced fixed design points and by Hall et al. (2000)
for a random design setting. A few nonparametric methods are available to address the
problem of estimating models where both periodic and trend components are taken into
account. As an example, there is the Singular Spectrum Analysis (BROOMHEAD; KING,
1986; BROOMHEAD et al., 1987) that have been applied in natural sciences as well as
in social sciences such as economics. A more recent nonparametric method is the three-
step estimation procedure proposed by Vogt and Linton (2014). In their supplementary
material, they suggested that reversing the order of the estimation scheme was possible
in principle. In other words, one could estimate the trend function first and subsequently
estimate the period and the periodic sequence. We aimed to investigate this reversed
estimation version more deeply.

The third essay exploits the bandwidth selection problem and the finite sample per-
formance of the period estimator studied in the second essay. A plug-in type bandwidth
is proposed in order to estimate the trend function and a simulation exercise showed
good performance for the proposed bandwidth. Although we do not provide an optimal
bandwidth selection for the period estimator, we employ another simulation exercise to
evaluate the sensitivity of the estimator for different bandwidth choices having the plug-
in bandwidth, as a baseline. The motivation is simple, if the performance of the period
estimator along different bandwidths is roughly the same as that obtained using the first-
step’s bandwidth, then we would not be far worse off by choosing the plug-in bandwidth
again in the second step of the reversed estimation procedure. In our simulation, the
period estimator had a robust behaviour along different bandwidths. To evaluate how the
estimators behave for real data, we made two applications: one for climatological data
and the other for economic data. In the former, we used global temperture anomalies
data which is exactly the same as that in Vogt and Linton (2014). The latter application
consists in providing central estimates for the australian non-accelerating inflation rate of

unemployment by means of the reversed estimation procedure.
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2 UNIFORM CONVERGENCE OF LOCAL LINEAR REGRESSION FOR
STRONGLY MIXING ERRORS UNDER A FIXED DESIGN SETTING

Abstract. We provide the uniform convergence rates for the local linear estimator on
[0, 1], under equally-spaced fixed design points of the form z,r =¢/T, t € {1,..., T}, T €
N. The rates of weak uniform consistency are given without imposing stationarity, while
the rates of strong uniform consistency are given only for stationary data. Both rates are
stablished assuming the data is strongly mixing. These results explicitly show that the

result of Kristensen (2009) also hold for the mentioned fixed design setting.

Keywords: Uniform convergence. Convergence in probability. Almost sure convergence.

Local linear regression. Mixing process

JEL Codes. C1,C10, C14
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2.1 Introduction

The uniform consistency of kernel-based estimators in discrete-time has been widely
investigated under various mixing conditions (BIERENS, 1983; PELIGRAD, 1992; AN-
DREWS, 1995; MASRY, 1996; NZE; DOUKHAN, 2004; FAN; YAO, 2008; HANSEN,
2008; KRISTENSEN, 2009; BOSQ, 2012; KONG et al., 2010; LI et al., 2016; HIRUKAWA
et al., 2019). In particular, Hansen (2008) provided a set of results on uniform conver-
gence rates for stationary and strongly mixing data. More recently, Kristensen (2009)
extended the results of Hansen (2008) by allowing the data to be heterogeneously depen-
dent as well as parameter dependent. While the latter extension has an special relevance
for some semiparametric problems (see LI; WOOLDRIDGE, 2002; XTA; HARDLE, 2006),
the former is useful in situations where data are allowed to be nonstationary but strongly
mixing, for example, in Markov-Chains that have not been initialized at their stationary
distribution (YU, 1993; KIM; LEE, 2005). A simple situation where the results of Kris-
tensen (2009) could be applied relates to local linear regression models where the error
process is strongly mixing without the stationarity restriction.

In the literature, one can find the direct application of the results of Kristensen (2009),
originally for random design, done for fixed design settings (see KRISTENSEN, 2009;
VOGT; LINTON, 2014). While it is unclear, we believe that providing explicit results
would not only justify such application but also creates a background for further theoret-
ical developments.

In this study, we provide the weak and strong uniform convergence rates for kernel
averages under fixed design and its application to the local linear estimator. We restrict
our attention to equally-spaced design points of the form z, =¢/T, t € {1,.... T}, T €
N. This setting is quite common in the literature of nonparametric time series regression
(ROBINSON, 1989; HALL; HART, 2012; EL. MACHKOURI, 2007; VOGT; LINTON,
2014; among others). Furthermore, it also appears in the literature of nonparametric time-
varying models (DALHAUS et al., 1999; CAI, 2007) and in situations where a continuous-
time process is sampled at discrete time points (BANDI; PHILLIPS, 2003; KRISTENSEN,
2010).

The convergence is stablished uniformly over [0, 1] under arithmetically strong mixing
conditions. The kernel function is restricted to be compactly supported and Lipschitz
continuous, and inlcudes the popular Epanechnikov kernel. The uniform convergence
in probability is provided without imposing stationarity while the almost sure uniform

convergence is proved only for the stationary case.
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2.2 General results for kernel averages

Let {7 :1<t<T,1<T} be a triangular array of random variables on (2, F, P).

In this section, we aim to provide uniform bounds for kernel averages of the form

i/T —x

U (x) :T—lzeivTKh(i/T—x)( >J, GE{0,1, . jmax)s T €[0,1],  (2.1)

i=1
where jnax € Nis fixed, Kp(u) .= K(u/h)/h with K : R — R being a kernel-like function
and h = hp is a positive sequence satisfying h — 0 and TTh — oo as T" — oo. Since the
local polynomial regression estimators can be computed from simpler terms of the form
(2.1), we firstly focus on providing bounds for the latter.

For each T' > 1, the a-mizing coefficients of €, 1, ..., epr is defined by

ar(t)= sup sup{|P(ANB)—P(A)P(B)|: B€ Fy,A€ Flpn}, 0<t<T,
1<k<T—t
where F7; = o(ery : i <1 < k). By convention, set ap(t) = 1/4 for t <0 and ap(t) =0
for t > T'. This definition is in line with Francq and Zakotan (2005) and Withers (1981).
We say that {¢;r:1<i<T,1<T}is a-mizing (or strong mizing) if the sequence

a(t)= sup ap(t), 0<t< oo,
T:0<t<T

satisfies a(t) — 0 as t — oo.
Assumptions Throughout the text, we make the following assumptions:

A.1 [Strong Mixing Conditions| The triangular array {¢;7 : 1 < i < T,T > 1} is

strongly mixing with mixing coefficients satisfying

ap(i) < Ai P (2.2)

for some finite constants 5, A > 0. In addition, there exist universal constants s > 2

and C' > 0 such that, uniformly over T" and 1,

Elle;r]’] < C < 0 (2.3)
and 5 5
S —
g > 5 (2.4)

A.2 [Kernel Function Conditions| The real function K is Lipschitz continuous and
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has compact support, i.e., for every u € R, there are L, A; > 0 such that
K(u) =0 for |u| > L, and |K(u) — K(u')] < AjJu — /|, Vu' € R.
Note that A.2 implies that K is bounded and integrable!:

|K(u)] < K < oo, | K (u)|du < i < o0, (2.5)

supp K

for some constants K, i > 0. Furthermore, there is C' > 0 such that?
/ |K(u)uw!|du < C < o0, j€EN. (2.6)
supp K

Assumption A.1 specifies that the triangular array is arithmetically strong mixing.
The mixing rate in (2.2) is related to the uniform moment bound in (2.3) by the condition
(2.4). Clearly the parameter §, which controls the decay rate of mixing coefficients, must
be greater than 2.

The boundedness and finiteness in (2.5) and (2.6) show that assumption A.2 is strong
enough so that we do not need to make extra assumptions on the integrability of the
Kernel function.

In what follows, we assume L = 1 and [ K(w)dw = 1 for the sake of simplicity. In
addition, we will denote by C' > 0 a generic constant which may assume different values

at each appearance and does not depend on any limit variables.

2.2.1 Uniform convergence in probability

As the data is assumed to be dependent, the following variance bound involves nonzero
covariances. The proof strategy of Hansen (2008) and Kristensen (2009) consists of bound-
ing the covariances of short, medium and long lag lengths, separately. Due to our fixed
design setting, this splitting procedure is unnecessary and we are able to prove the result
more straightforwardly.

Theorem 2.1. Under A.1—A.2, for all sufficiently large T, we have

Var(¥(z)) < E, vV € [0, 1].
Th

!Since | K| has compact support and is continuous, its image is compact, and thus bounded. Since |K|
is continuous, it is Lebesgue-measurable. Then [ wpp i [ K ldp < C /. du < C as supp K has finite
(Lebesgue) measure.

2Denote f(u) := K(u)u’. Note that f is a compactly supported continuous real function. Then
f(R) = {0} U f(supp f) which is compact, and thus bounded. Since the functions v/, I(Ju| < L) and K
are (Lebesgue) measurable, f(u) = K (u)u’I(Ju| < L) is also a measurable function, as well as its absolute

value. Then [p|fldu = LLL|f(u)|d,u < 2CL < oo, for some C > 0.

upp K
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Observe that, given ¢ > 0, Theorem 2.1 and Chebyshev’s inequality imply

A

ThVar(V(z)) C
> 5) < 2 < 52

which is sufficient to conclude that |¥(z) — EW(z)| = O,(1/v/Th), pointwise, in z € [0, 1].

i <'@(I1)/_¢%M

Besides establishing a variance bound, we will also need an exponential type inequality.
We state a triangular version of Theorem 2.1 of Liebscher (1996), which is derived from
Theorem 5 of Rio et al. (1995).

Lemma 2.1 (Liebscher-Rio). Let {Z; 1} be a zero-mean triangular array such that | Z; r| <
br, with strongly mizing sequence ar. Then for any € > 0 and my < T such that
dbrmy < €, it holds that

T
P( > Zig

i=1
where U:QF,mT = SUPg<j<T-1 E[(Zﬁ?ffmTT) Zi,T>2}‘

Now we give the uniform convergence in probability over the interval [0, 1]. This is an
adaptation of Theorem 2 of Hansen (2008).

640%7mTT/ myq + ebrm8/3 my

2
T
> e) < 4exp [— € + dap(mp)—,

Theorem 2.2. Assume that A.1—A.2 hold and that, for

242
8> :_ > (2.7)
e ) BL=2/s) =225 8)
B+ 2 ’ '
the bandwidth satisfies
d)?;;LT — o(1), (2.9)

where ¢r is a positive slowly divergent sequence. Then, for

AN
ar = <ﬁ) s (210)

we have supme[(]’l]\\if(x) — E¥(z)| = Oy(ar).

Theorem 2.2 establishes the rate for uniform convergence in probability. Note that
(2.7) is a strengthening of (2.4). Furthermore, (2.7) together with (2.8) implies 6 € (0,1).
In particular, when = +o00, we have § = 1 — 2/s. Therefore condition (2.9) strengthens

of the conventional assumption that Th — oo.
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2.2.2 Almost sure uniform convergence
In this section we establish the almost sure convergence under strict stationarity.
Theorem 2.3. Assume that for any T, {e,r}_, have the same joint distribution as

{u}E ) with {uy = t € Z} being a strictly stationary stochastic process. Furthermore,
assume that A.1—A.2 are satisfied with

4 2
B> SS_+2 (2.11)
and that, for
925(1—2/;1_—24—2/37 (2.12)
the bandwidth satisfies )
% = 0(1), (2.13)

with 7 = InT(InlnT)2. Then, for

T\ /?
ar = <T_h,) s (214)

we have sup$€[071]|\if(x) — EV(z)| = O(ar) almost surely.

2.3 Application to local linear regression

Assume that the univariate data Y, 7, Yo, ..., Y are observed and that
Y;g’T :g<t/T)+€t7T, te {1,,T} (215)

where g is a smooth continuous function on [0, 1] and {e; 7} is a strongly mixing triangular
array of zero mean random variables.

The local linear estimator for g can be defined® as §(r) = €,.S;' Dy, where

G L[ SLiKwen  SLE@c-aE-oh ] oo

T | S Knw =)o = )b S Kalw = o) (=) /h)? |
Zthl Yir Kn(z — )

1
T and e; = (1,0)". (2.17)
T i ZtT:l YirKp(ze — ) (2 — x) /R

For simplicity, the dependence of the design points, x; = t/7, on T was omitted. It follows

3See Chapter 5 of Wand and Jones (1994) or Section 1.6 of Tsybakov (2008).
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from this representation that

T k
1 Ty —T
(S1)iy = smivj—2(2) : sTa(z) = > ( th ) Kp(zy — ), k€ {0,1,2}, (2.18)

t=1

Simple calculations show that we can also write the local linear estimator as

g(x) = ZWt,T(x)Yt,T, (2.19)

h
have an useful reproducing property (see Lemma 2.6). We now give the uniform conver-

where W r(z) = T‘leﬁSiiXC/T*x)Kh(t/T —x) for X(u) = (1,u)’. The weights W r

gence rates of the local linear estimator for the model (2.15).

Theorem 2.4. Assume the conditions of Theorem 2.2 hold. In addition, let the function
g be twice continuously differentiable on [0,1] and let K be nonnegative and symmetric.
Then

sup |g(z) — g(@)| = Opar + h?). (2.20)

z€[0,1]

If the conditions were strengthen to that of Theorem 2.3, then we have

sup |g(x) — g(x)] = O(ar + h?) a.s. (2.21)
z€]0,1]

2.4 Proofs

Appendix A contains several lemmas (from 2.2 to 2.11) which are used in the proofs

of this section.

Proof of Theorem 2.1 Let = € [0, 1] and let T be large enough so that J,, defined by
(2.33) and (2.34), is well-defined. By assumptions A.1-A.2, Lemma 2.2 and Dadvydov’s
inequality, it follows that

I 1 ; i/T — 2\’ (t/T — 2\’
Var(V¥(z)) < T3 Z Kh(Z/T—x)Kh(t/T—x)< / - ) ( / - > Cov(esreer)
ite T
C
S (Th)2 Z |COV(€i,T€t,T)’
ite Ty
—C 1 s— S S s s s
< e 2 Gorlli = t) I Blei ) (Blei )
ite s

C - C -
< Thy? Z Zh _ t|—ﬂ((8—2)/s) < T Z Z‘Z _ t‘2/s—2

1€y t=1 1€J, t=1
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P O(%)

ZEJ;L = 1€Jy

Proof of Theorem 2.2 For the sake of brevity, denote k;r(x) = K((i/T — x)/h)
and & r(x) = ((i/T — x)/h)?, for any z € [0,1],T € N and i € [T]. Further, let T be
sufficiently large so that the set .J,, given by (2.33) and (2.34), is well-defined. Write

T
. 1 ]
=7 ; eirkir(x)& (@) (er| > 7r) + 7 Th 2~ eirkir(x)& (@) (ler| < r)
= Rir(x) + Ror(z), (2.22)

where I is the indicator function and 7 = pp(Th)Y* with py = (InT)Y/A+8) gl +8/2/(H5),

Using Holder’s and Markov’s inequalities, we have that

E(lesr|I(lesr| > 7)) < [E(leir)]Y [EU(le;r| > 7))~ Y*
[E(leir )] *[P(lex| > 77)]' 7

IN

S
Tp

B € 7|° 1-1/s
e[S a2
It follows by (2.23), Assumption A.2 and Lemma 2.2 that

|[ERyr(2)] < E|Rir(z)| < Z|sz )& (@) E(|eir]*) mr

ZEJL

<y C;Th_s — (™) = olar), (2.24)

since, for s > 2,

1-s 1/2
h
Tr pl sTl/s 1/2( ) — 0(1)

ar InT

Hence sup,¢( 1| ERir(2)| = o(ar). From this, we cannot say much about the order
of sup,¢(o 1|10 (z )| Note that

w € {w : sup Z kir(x)&r(z)er(w)I(ler|(w) > TT)’ > CaT}
T oied,
= Jie J,:we {|er|(w) >}

= we | J{larl(w) >}
i€Jy

By the monotonicity and subadditivity of the measure, and using Markov’s inequality, we
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have

E(ler|®
P(sup|R1,T| > CGT) < ZP(|Q,T| > 77) < Z (|6;T| )

1€y 1€Jy

h Q = o(1). (2.25)

From expressions (2.24), (2.25), Lemma 2.9(v) and the triangle inequality,

sup |Rir(z) — ERy r(x)| < sup |Ry7(x)| + sup |ERyr(x)]

z€[0,1] z€[0,1] z€[0,1]

= Op<(lT) + O(CLT> = Op(CLT).

Lemma 2.9(iv) implies that sup,|Ry r(z) — ERy r(x)] = O,(ar). The replacement of €;
by the bounded variable €; 71 (]¢; 7| < 7r) produce an error of order O,(ar), uniformly in
x.

Now, we focus on the term Ry r(x). We shall construct a grid of N points on A = [0, 1].
Let Aj ={z e R: |z — ;| <arh}, j € N. For N = [1/(arh)], it is easy to see that
there is at least one set E such that F/ = U;V:lAj and A C E. The grid is obtained by
selecting each x; € I as grid points.

Make the following definitions
T
- Z|k:<T(x)€;kT|a
i=1
T
N ki (z)e; 1l
i=1

where €, = ¢ rl{|e;r| < 70} and kjp(z) = K*((i/T — x)/h) with K*(z) = A I(|z] <
2L). By our convention (and without loss of generality), L = 1. From assumption A.1, it
follows that
E|¥(z)| < o EZ Eleir| < = ; Eleir| < C, (2.26)

for some C' > 0 and all T large enough, where G, = {i € [T] : i/T € C,} with C, given
by (2.36). Analogously, we can show that E|W¥(z)| = O(1).

If z € A, then |x — x;|/h < ar by definition. Also, as ar = o(1), we eventually have
ar < 1. Thus, for each A;, | € {1,...,N}, for x € A; and T sufficiently large, Lemma
2.3 with 0 = ap gives

|Ror(z) — Ror(a)| < — Z|61T||§ZT ir(x) = &r(x)kir(z)|I(i € Dy U Dy,)
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1

S > e {lkir@)gr(z) — &)
i€DyUDy,
+ & ()| [kir () — ki (20)]}
-1 . i—1—1
1 i/T — x|’
<z 2 lal{lkr] Z .
i€DyUDy, —0
i)T — 2|
% aTkZT(SUz)}
1 ) *
< = €; 7|4 |kir(z)|arj + ark; 7(21)
Th .
zEDzUDzl
CLTJ
= Th Z|le ’LT‘ + Z’sz ZC[ zT|
= arjU(x) 4+ ar¥(x;), (2.27)

where D, = {i € [T] : |(¢/T —x)/h| < 1} for any = € R. By applying the same arguments

used in expression (2.27), for j = 0, we obtain that |¥(z) — ¥(x;)| < ar¥(x;). Using
expressions (2.26)-(2.27), for each [ = 1,..., N, and for all sufficiently large T, we have

sup|Ryr(z) — ERy ()] < Sup{\Rz r(x1) — ERyr(21)]

(EGA[ €A j

+ |Ror(7) — Ror(1)| + E|Ro (1) — Ror()]}

< sup{[Ry(w1) — BRyr(a0) + arj¥(z) + arb(z:) + Blarj¥(x) + arb(z)}

= [Ror(21) = ERor(w1)| + ar[¥(2) + BV (2)] + arj sup[¥(x) + EV(x)]

TEA;
S |R27T(l’l> — ER27T(ZEZ)| + aT(|\il(xl) — E\if(l‘l” + ZIEEI(IZ)D + CLTj Sélf [\IJ(ZE) + E\I/(I)]

< |Ryr(z;) — ERyp(x1)| + \\il(xl) — E@(xl)\ + Car + j sup [¥(z) + EV(z)]

TEA;

= By, + By + Car + j sup[¥(z) + EV(z)].

Z‘EA[

Along the above lines,

sup|W(z) + EV(z)| < sup{|¥(z) — EV(z)| + 2| EV ()|}

TEA;

< sup{|W(z) — EV(w)| + [W(x) = ()| + E[¥ () - ¥(2)]} + C

<~ E\IJ(ZE[” + aT(\i/(xj) + E\i/(d]j)) + C
< [W(x)) — BEV(x)| + |¥(x)) — EV(x))| + C
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for T sufficiently large. Therefore, when T is large enough, we have

Su,E'RZT(I) — ER27T<JZ)| S V(Bl,l + BQ’Z + BgJ + C(IT), l S {1, ey N} (2.28)
TEA]
where v = 1 + Jnax-

Define e(z) = |Ryp(z) — ERyp(x)]. Since A = [0,1] C U, 4, it follows that

SUp,e 4 €(7) < Sup,e 4, €() which implies

{sup e(xr) > 4706@} - { sup e(z) > 4fyC'aT}.

z€A T€EUA;

In addition,

w e { sup e(x) >4'yC’aT} — Ji:1<i<N:wé€ {sup e(x) >4’yC’aT}

TEUA; TE€EA;
— we€ U{sup e(x) > 470aT}.
T€EA;
Thus, from inequality (2.28), Lemma 2.11, the monotonicity and subadditivity of the

measure,

P(Sup|R27T(x) — ERyr(z)| > 470aT> < P( sup |Ryr(z) — ERy ()] > 470aT>

T€EA zEUA,

< Z P(sup e(x) > 4vCaT) < N max P(sup e(r) > 47C'aT)

TEA; I<ISN TEA;

< N max P(WBU + By + B3 > 4VCCLT>

1<IKN

< N max P(B” >aTC> 4+ N max P(BQZ >aTC'> + N max P(Bgl >aTC>

1<IKN 1<I< 1<I<

= Tl —+ T2 + Tg, (229)

for sufficiently large T

We start bounding the term Ty. Let Z; r(v) = € pkir(2)& 0 (7) — E(€; pkir ()& (7).
It is clear that |Z;r(z)] < 2K7r < Cy7p = by for some C; > 0, since i 7| < 7r and
|kir(x)] < K. Set my = (ar7r) ! and € = MagrTh. Following the proof of Theorem 2.1,

we can obtain that the sequence o7, defined in Lemma 2.1 is O(mrh). Also, note that

1 h 1/2
mp < — <TYV?(— | <TV<T
ar InT

for all sufficiently large T', and

meT . Cl Cl

arTh — a2Th " InT -0
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These facts show that the conditions of Liebscher-Rio’s Lemma are satisfied whenever T’

is large enough. Therefore, for any x, and T sufficiently large, we apply Liebscher-Rio’s

Lemma to obtain

Pwyﬂ@—ERM@ﬂ>c@q:p<

E:qum

< 4exp [—

> C’aTTh>

(CCLTTh)Q
640%7mTT/mT + (CaTTh)bTmT8/3

+ 4OCT (mT) —
mr

(CarTh)?
| 64CTh + GClCTh]
(Car)*Th
| 64C 4+ 6C,C
Ca2Th
| 64+ 6C,

< 4exp

5. T

< 4exp ] +4Am; T

=4dexp ] + 4Am;1_5T

= 4exp

— _InT| +4Am:AT
64160, }+ M

= AT ~C/OHEC) L 4 AT (aprp)' o, (2.30)

The bound (2.30) holds for 75 and T3, which can be checked by the same arguments used
for Ty. Recalling that N is asymptotically equivalent to 1/(arh), it follows from (2.29)
that

Ty + Ty + Ty = O(T~/ 45 /(40h)) + O(T (aprr) 2 [ (arh))
= 0(S) + O(S,). (2.31)

Now we show that S; and Sy are o(1). Since C' > 0 can be arbitrarily large, YV > 0 :
AC* :VC > C* : S; < T Therefore S; = o(1) for any C' > 0 large enough. On the

other hand, we have

R(+8)/s b,

Sy = —————
hb/2  h

_ O(T0(2+5)/2+1—B/2+(1+B)/s) = o(1)

1+£
(In Ty HB/2TI=B/240+8)/s _ 0[(1“ 71;¢T) 1T1ﬁ/2+(1+ﬁ)/s

Y

since ¢ InT/h = o(T?) and

2+0\ g B+1
0(7)“”5— .

by hypothesis. This shows that sup,¢( )| R2r(7) — ERy ()| = Op(ar). It completes the

proof.
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Proof of Theorem 2.3 We will use the same notation as for the proof of Theorem
2.2. Also, use the shorthand, sup, = sup,c(o ). Let 70 = (Tor)'/*. Asin (2.24), it follows
that |ERy r(x)| = O(ar), or equivalently, for some M; > 0 and 7" € N, T' > T* implies

|ERy r(x)| < Myar. Therefore, for any 7' > T,
P(sup|R17T(x) — ERLT(ZE” > M1QT> < P(sup|R17T(:1c)| + MlaT > MlaT)
= P(sup|Ry7r(x)| > 0) < P(le;r| > 7r for some i € {1,...,T})
= P(|UT| > TT):

using the triangle inequality, the monotonicity of the measure and the strict stationarity
assumption. Further, Markov’s inequality gives?*

Q

T=1

= TT = TInT(Inln T)

Hence

prwmw E&ﬂﬂ>mwyﬂw-z (lug| > )
T=1 T=T*+1

gT*—l—ZP(\uﬂ > ) < 00.
T=1

The application of Borel-Cantelli’s Lemma yields,

P(lim sgp{sup]Rl,T(:C) — ERyr(x)] > Myar}) =0
<— P(lim iI%f{SUp|R1,T(l‘) — ERyr(x)] < Myar}) =1
= P(limsup{sup|Ri r(z) — ERy r(z)| < Mar}) =1,
T T
that is, sup,|Ry r(x) — ERy r(z)| = O(ar) almost surely (a.s.).

Next, one can check that (2.30) and (2.31) hold for 79 = (T¢r)'/*. Setting A; = {z €
R: |z —z;| <arhlnlnT}, then N & (arhInlnT)~'. By hypothesis, it follows that

T—C/(64+6C1)+1/2

T 1
TfC/(64+6C )+1/2O TfC/(64+6C )+(1+ﬁ)/20
Sl - (ﬁTh)lm ' ( 3/2> ' ( 3/2)
T T

= o(T Ho(ér') = o((Tor) ™),

4See page 63 of Rudin (1976).




for M sufficiently large, and that

o T InT 6/2(T¢ )1+B _ T1—5/2+(1+5)/so 5/2+(1+ﬁ)/5)
2 Th hinlnT Ri+5/2 T

_ s 24(1 s—2—
_ O(Tl B/2+(1+8)/ +9(1+,3/2))0(¢g/ +(1+8)/ ﬁ)
_ 0<T1—6/2+(1+5)/s+9(1+6/2)¢;1+[(1+5)/5*1*ﬁ/2})

= 0((T¢T)71).

To see the last inequality, note that conditions (2.11) and (2.12) imply

(252) < 2801

2 2 s
and
4 2 4 — 1 1
il <P <= 4s+2<[(s—2) = ,8<_B+ <:>é—2>6+
s—2 2 s 2 s
1
:§+1>5+,
2 S

respectively. Since the series Y ..(T'¢r)~! converges, Borel-Cantelli’s Lemma implies

P(lim sup{ sup |Ror(z) — ERy r(z)| > 4vCaT}> =1

T—oo z€[0,1]

as desired.
Proof of Theorem 2.4 Write

9(z) = g(2)] < [g(x) = Eg(x)| + [Eg(x) — g(2)] = A1 + Az, Vo €0,1].

29

We start with the bias term A;. Using Lemmas 2.5 and 2.8, and Taylor expansion

with Lagrange reminder, we have that for any = € [0, 1] and any T sufficiently large
T

Ao = |3 W o(t/T) - ()}
t=1

S War (@) {0(a) + 'l + (/T — 2)(t/T — ) — g<x>}\

= 1> Wir(@){gle + m(t/T — 2))(t/T — z)} ~ ZmT J(H/T = 2)g'(x)

t=1

r@)|[t/T = zl|g' (@ + 7(t/T — 2)) — g'(2)]

A
TFM% m

=

ﬂ
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t/T —
<cZthT |t/T — z|* = cZthT )||t/T — |1(‘%

S

< CZsup\Wt7T(x)|h2 < Ch?
t=1 °

with 7; € (0,1). The second inequality above holds since g € C?[0, 1] implies ¢’ is Lipschitz
continuous on [0, 1]. Thus sup,c( ;) A2 = O(h?).

Turning to the next term, we have

1 -1 ne
= ’elsT,acDT

!

e _ -1
where Df., =T

S erEKa(t/T — x) ] _ [ dro() ] |
S & Ka(t/T = 2)((t/T — x)/h) dr,(z)

Therefore, we can write

-1
wealn ) -
S1 S22 dl

omitting the dependence of the entries on x and T, for brevity’s sake. Note that the fact
l|s;] — |51 < |sj — pj| guarantees that |s;| = |p;| + O(1/(Th)) holds in Lemma 2.6. In
addition, for any x € [0, 1], we have 0 < p; < C for j € {0,2} and |u;| < C by hypothesis.
It implies p?/puy = O(1). Thus, from Lemma 2.6, Lemma 2.9, and Theorem 2.2, we have

d() - S%S;ldl
1

‘/’d’

So — 8385

_ w3 + O(1/(Th))
sup Vi, < sup |do| + sup |s?s5t| sup |di| = O,(a {l—i- sup
2€[0,1] x6[0,1]| o x6[0,1]| e ‘we[o 1]’ il vlar) zef0,1] 2] + O(1/(Th))
M1 1
O“w”{ +¢2$]u2'%0(7%)} O“””{ W (Th)}

= O,(ar)O(1) = Oy(ar),
and

Vv, =

uo+o( 1)_ﬂ?+0<1§<ﬂ;>>’_ )

H1 1
~Biol—)|
Th)  m+O0/Th)| " " (Th)‘

Lemma 2.7 states that S, has a positive definite limiting matrix, implying that popue —

p3 # 0. Then
2 1
—= 4+ 0O —
fopts — 3 (Th) ’

= Oy(ar) sup

1
sup Ay < Oy(ar) sup ‘ e
z€(0,1

z€[0,1] we0a]| o — 13/ 2 + O(1/(Th))
= Oy(ar)O(1) = Oylar).
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Lemma 2.9(v) implies

sup [3(2) = 9(a)] = OU) + 0, (ar) = Oyl1* + ar),
z€(0,1
as desired.

The almost sure uniform convergence rate can be shown using the same arguments
and Lemma 2.10
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Appendix A - Auxiliary results

The quantity ¥(z) involves a sum over the set of indices {i}7_,. Since the kernel func-
tion is assumed to be compactly supported, we only need to consider a subset of indices
J, CA{1,..., T}, which depends on the point = € [0,1]. It is important to distinghish be-
tween z as an interior point and = as a boundary point of [0, 1] once the respective kernel
averages may be related to different asymptotic equivalences. Analytically, we can exam-
ine the behaviour of the kernel average "near" the boundaries instead of its behaviour at
the boundaries. Indeed, this approach is convenient when evaluating the boundary bias
of kernel estimators (see MULLER, 1991; WAND; JONES, 1994; among others). Inspired
by these ideas, we will give a definition for the mentioned set of indices J, and exploit
various right Riemann sum approximations.

Let Ty € N be such that h < 1/2 for any T' > Ty. For every T' > Ty, define the set

J,={ie[T]:i/T € C,} (2.33)
with
[0, 2 + h] , if x €0, h]
Co=<(lv—ha+h] ,ifxec(h1-nh). (2.34)
[z — h,1] ,ifz € [1—h,1]

In this study, whenever we require 7' to be sufficiently large such that J, is well defined,
we will be implicity assuming that 7" is large enough to achieve h < 1/2.

Lemma 2.2. Let T' > Ty and let kr be the cardinality of J.. Then kr = O(Th). In addi-
tion, suppose that the Kernel function K is Lipschitz continuous on its compact support.

Then, for any x € [0,1] and any sufficiently large T, it holds that

1 « /T —x J ! u—x
‘T;K(/h ) - [ ()
Proof. Suppose z € (h,1 —h). Then J, ={i € [T]:i/T € [x — h,x + h]}. Note that the
length of (z — h,z + h) shrinks to zero slower than 1/7, that is, 2h/(1/T) = 2Th — 0.
It implies that 377 > Ty : VT > Ty : J, # ©@. Then, for T > Ti, define i, = min J,
and ¢* = max .J,. Since the design points are evenly spaced, we can write the elements of
{i/T}ierm N (x — h,x 4 h) as

J

i/T —x
h

u—2a

; du

C
< —.
- T

/T4 (k—1)/T, ke{l,...,Mp}, T>T,

where My is a sequence of natural numbers. In order to provide an upper bound for kr,
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it is sufficient to find an upper bound for My. But we clearly need

i (Mp—1) i
—+—>< =+42h
T + T T +
which implies that My < CTh. Hence kr = O(Th). Analogous arguments show the same

results for z € [0,h] and z € [1 — h, 1]
Next, note that

/ I(|(u—x)/h\§1)du:/ I(x—h§u§x+h)du:/ du.

[0,1] [0,1] [0,1]N[z—h,z+h]

For x € [0,1] and T > Ty, we evaluate the following cases. If h < z and = < 1 — h, then
O<z—hand x+h <1, and so [zt — h,z+h]N[0,1] = [z — h,z+ h]. If x < h, then
r—h <0and 0 < z+h < 2h < 1, which gives [t —h,z+h]N[0,1] = [0,xz+h]. If 1-h < z,
then 1 <z +hand 0 <1—2h <x—h <1, which gives [x —h,z + h|N][0,1] = [z — h, 1].
Therefore

/ I(|(u —x)/h| < 1)du :/ du, z€l0,1], T >Tp.

[0,1] P

Furthermore, given any x € [0, 1], we must have i, /T < C, +1/T and C, — 1/T < i*/T,
where C, = inf C, and C, = sup C,. Otherwise, if i,/T —1/T > C, or C,, > i*/T +1/T,
then we would find a contradiction with the fact that both ¢, and ¢* are the minimum

and the maximum of J,. These imply that
0<i,/T—C,<1/Tand 0<C, —i*/T <1/T,

which will be used in the following.
Define J: = J, \ {i.} and let x € [0,1] be arbitrary. Using the above observations,

the triangle inequality and the Mean Value Theorem for integrals, we have

T

’%;K(Zﬁh_:ﬁ) i/Th_Ij_/olK(u;I> u;deu
:'%EK(i/Th—x) z’/Th—xﬂ_/CzKC;x) u;xjdu
Y e L C S SR
%K(z’*/Th—x> Z'*/];L_mj_}—/gz:/TK(u;x) u;xdu
Ca — _
+/ﬁ/TK(“hx) uhxdu
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J

i/T — x|
h

§i—$
h

Z

eJx

Je(55)

i

+Q+C(%—Qz)+c<0x—l—)

T r/; ‘

1 i/T —z\ (/T —z\’ G—z\[(&—z2\| C
R () ()
< K i/T —x i/T —x &—x\’

F{ () - (5)

& —xf C
() )l 7

i/T = &)/ —|'|& -7 |yT -6\, C
ST;{ z; h h +’ h }+T

C J 1 C’ C

S?’“T{ﬁ*ﬂ} 7T
with & € ((i — 1)/T,1/T) for each i € J*. O

One can easily check that Lemma 2.2 holds for the function K (u)u/, i.e., the function
without taking the absolute value. Also, note that the assumptions of the lemma are
weaker than A.2 once K is allowed to not be continuous everywhere.

Lemma 2.3. Let K be a kernel function satisfying Assumption A.2 and let § > 0. Then
there is a function K* and constants K* and p* such that |K*| < K* < oo, [p|K*(u)|du <
w* < oo and

|ZL’1 — CCQ’ S ) S L — |K(ZE1) - K(I2)| S 5K*(ZE1), V:El,xg € R. (235)
Particularly, if K*(x) = A I(|x| < 2L), then
T : : - -
1 i/T —x\ (i/T —x\’ ! u—x\ (u—z)’
— K* = K* d
’TZ ( h )( h ) / h )t

for any x € [0,1] and T large enough.

¢
T

Proof. Fix 6 > 0 and let z1,29 : |27 — 23] < § < L. Indeed, if K is Lipschitz, then
|K (1) — K(x2)| < M|z — 22| = Ar|oy — 2o {I(|z1] < 2L)+I(|21]| > 2L)}. But |24 > 2L
implies 2L — |zo| < |x1| — |@o| < |21 — 22| < L. So |x2| > L, and then K(z;) — K(z2) =0
since K has compact support. Therefore the term I(|z1| > 2L) is superfluous for the upper
bound. Hence, we can take K*(x) = AyI(|z| < 2L) which satisfies |K(z1) — K(x2)| <
OK*(z1), |K*| < Ay and [ |K*(u)|du < Ay(4L).
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Next, let T" be large enough so that the set J, = {i:i/T € C,} with

[0,z + h*| , if z €[0,h"
Co=qlr—hx+h*] ,ifze(h,1-hr"), (2.36)
[z — h* 1] ,ifxe[l—h 1]

where h* = 2Lh, is well-defined and nonempty. Note that the arguments of Lemma 2.2’s
proof can be applied to K* even though it is not continuous everywhere. Then, along the

same lines of the proof of Lemma 2.2, for any T large enough and any = € [0, 1], we have
T

() () () )

7

g () L5

1€y
Ay i/T—2z\’ (&—z\| C _C
< — — [ = —_< =
_TZ< h ) (h T
ieJ}
where J*f = J, \ {i.} with i, = min J,, and & € ((i — 1)/T,1/T),VYi € J. O

Lemma 2.4. Let T € N and f : (R,Br) — (R,Br) be a measurable function. De-
fine ar7(j) and asr(j) as the mizing coefficients of the processes {Yir} and {f(Yir)},
respectively. Then asr(j) < arr(j), for all0 <j <T.

Proof. Fix j : 0 < j < T. Denote Gf; = o((f(Yir)) : i <1 < k)and Ff, = o((Yir) :
i<l <k)forl1 <i<k<T. Ifo(f(Yor)) C o(Yir), for any t € {1,...,T}, then
Q%i C }"ﬁi for any 4, k, which in turn implies that asr(j) < aq7(j). But, o(f(Yir)) =
{(Y, o f ™A : Ae Ba} C{Y,/(B): B e B} = o(Yir), Vt € [T], and so the
result. O]

A direct consequence of Lemma 2.4 is that if {e; 7} is strongly mixing triangular array
of random variables on (€2, F) to (R, Bg), then so is {|e; 7|}, since the function | - | is
(Bg, Bgr)-measurable.

Now we restate the Proposition 1.12 of Tsybakov (2008).

Lemma 2.5 (Tsybakov). Let x € [0, 1] such that St ., defined in (2.16), is positive definite
and let Q) be a polynomial of degree at most 1. Then the local linear weights satisfy

T

> Qz)Wir(z) = Qz),

t=1
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for any sample (x1,...,x7). In particular,
T T
S Wir(z) =1 and Y (2 — 2)Wer(z) = 0. (2.37)
t=1 t=1

Proof. By hypotesis 0*Q(x;)/0x¥ = 0,Vk > 2, and then expanding Q(z;) around z gives

") (xy — ) = ¢ (x L
Qz:) = Qx) + Q'(2) (2 — ) q<)[(xt—x)/h]’

where ¢(z) = (Q(x), Q' (x)h)’. Since the local linear estimator is the solution of a weighted

least squares, for Z; = Q(x;) we have that

N

fr(z) =argmin(Z — X, 8,)W(Z — X,0,) = arg min(X,q — X, 0,) W (X,q — X.0:)
Ba

Ba
= argﬁmin(Xz<q - 6m)>/W(Xz(q - 633)) - argﬁmin<q - BzyXa,:WX:c(q - 61)
= argﬂmin(q — B2)'S1,2(q — Bx)
Z 1 (21 —a)/h
where Z = | : |, X,=|: : , Be = (9(z),g'(®)h)', ¢ = q(z) and
Z7 1 (zr—x)/h

W = diag(K((x1 — 2)/h),--- , K((xp — x)/h)). The necessary condition for Sr(z) is

aq,-BT,:Eq - 2q/BT,$/6.T + ﬁ;;;BT,mﬁx
ofo

= —QB%@(] + QBTﬂjﬂx.

As By, is symmetric and positive definite, the unique solution is given by BT(x) =q.

Then j(z) = €, fr(x) = Q(x). Hence Q(z) = Y, Q(z)Wir(z) by (2.19). The results
in (2.37) are immediate from the choices Q(x;) = 1 and Q(x¢) = z; — . O

The following lemma is an extension of Proposition 1 of Fernandez and Fernandez
(2001).
Lemma 2.6. Under A.2, for any x € [0, 1], we have

sr(x) = py(z) + O(1/(Th)), Vje {0,1,2,3), (2.38)
where p;(v) = [, w K (u)du with

[—c,1] , ifz=ch
G, =1 [-1,1 , ifxe(h,1-h)
[—1,c] , ifz=1—ch
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and 0 <c<1.
The proof of the above result follows directly from Lemma 2.2 and the definition of

Big Oh, and thus is omitted. Lemma 2.6 implies that Sy, — S, as T"— oo where

S, :/ [ ! ° ] K (u)du (2.39)

Lemma 2.7. Let K be nonnegative satisfying Assumption A.2. Suppose u({K > 0}) > 0.
Then the limiting matriz S, in (2.39) is positive definite. Moreover,

Ao, To > 0: Appin = Ao, VT > Th, Vo € [O, 1},

where A\pin 15 the smallest eigenvalue of St .

Proof. Let z € R? be a nonzero vector. Since K is nonnegative, we have
2 Spz = / ZXX'zKdu > 0,

for X = X(w) = (1,w)’. To get a contradiction, suppose Jy # 0 : f[—c,c] Yy XX'yKdu = 0.
Then ¢y X X'y = 0 p-almost everywhere (a.e.) on {K > 0} N G, which has positive
measure. However, ¢y’ X X'y is a polynomial of degree at most 2 and cannot be equal to
zero except on finitely many number of points. This means ' X X'y a;. Oon {K > 0}NG,,
a contradiction. Hence, we must have 2/S,z > 0 .

To show the next result, note that det S,,tr S, > 0 as S, is positive definite. Also,
the trace and the determinant are continuous mappings. Since Sy, — S, the continuity
implies tr S7, — trS, and det Sy, — detS,. Therefore, there must be T : VI' > T
we have det Sy, > 27'det S, > 0 and tr Sy, > 27'tr S, > 0. Thus, the sum and the
product of the two disctinct eigenvalues of St , are positive, implying a set of (strictly)

positive eigenvalues, for all sufficiently large T'. m

For any vector y € R* and for an eigenpair ((Ay,u), (A, v)) of Sr,, it holds from
Lemma 2.8 that there are Ao, ¢1, c2 > 0 such that S,y = St (crutcov) = cp A u+cod,v >
Aoy when T is large enough. It implies (1/Xo)]y| > HS;;yH

The following lemma is a restatement of Lemma 1.3 of Tsybakov (2008).

Lemma 2.8 (Tsybakov). Let Assumption A.2 hold, Ty be as in Lemma 2.7 and T* € N
is such that YT' > T*,Th > 1/2. Then for any T > max(T*,Ty) and any x € [0,1], the
weights of the local linear estimator defined in (2.19) satisfy

(i) supy, [ Wor(2)] < &

(i1) 32—y supy|Wir(2)| < C

(iii) Wir(z) =0 if [X=2] ¢ supp K.

for some constant C > 0.
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Proof. (i) Denote x; =t/T for allt € {1,...,T}. By Lemma 2.7,

W) = Wia@)l = | gpetsiax (P55 )& (“55))|
lelllszix (2 1 (B)
< gt )
< T;)\O X(@}:x) sup|K|I[(xy — z)/h € supp K]
Cv2
_ThHX x)‘—T—hS_h'

(74) From the previous result, Lemma 2.7, it follows that

T

C
Zsup|Wt,T( ZI (zy —x)/h € supp K| = Th21§6’,
t=1 7

with J, being as in Lemma 2.2, which has cardinality of order O(Th).

(i11) From the proof of (i), we have |[W; r(z)| < &I (|2=2| € supp K), and hence the
result. O

The next lemmas provide a list of results involving asymptotic notations.
Lemma 2.9. Let a; and by be positive sequences converging to zero. The following results
hold:

(Z) If C,Cy e R: Oy 7é 0, then
01 + O((IT) Cl

—02 T O(bT> - 62 + O(CLT) + O(bT),

In particular,
Ch Oy
Cy+O0(by)  Cy
(it) If Yr = Op(ar) and ar = o(br), then Yr = o0,(by);
(iii) Op(ar)O(br) = Op(arbr);
(iv) If Yr < Xp and X7 = Op(ar), then Yr = Oy(ar);
(v) If er = o(br) and X1 = O,(ar), then cp+ X1 = O,(ar +br); if instead cr = O(br),
then also cr + X1 = Oy(ar + by).

+ O(br);

Proof. (i) Denote ¢y = O(ar) and dr = O(br). Then, using Taylor expansion,

Cl—FCT_ﬁ 1 _|_C_T 1
Co+dr Col+dp/Cy Cyl+dp/Cy

g:{1 - 2—2 +o(dT)} 02{1 - d0—2 —i—o(dT)}
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CH«+<9<aT)+-cbey

== g + O(dT) -+ O(CT) + O(dT) 02

Cy

The second result is obtained analogously by setting ¢ = 0.
(i7) Let €,0 > 0 be given. By the hypotheses, 3Ty, M : P(|Yr| > Mar) < € for all
T > Ty. Further, 3T} : ar < §by since ap = o(br), for all T > T). Take 6* = Mé. Hence

P([Yr| 2 6"br) < P(|X7| 2 Mar) <,

for every T' > max(Tp, 11).
(173) Let Xy = Op(ar) and e¢r = O(br). Fix € > 0. Then 37*, M;,C > 0: VT > T*:
P(‘XT| Z MlaT) S € and |CT/bT| S C. Take M = MlC Then

P(’XTCT| Z ]\/[aTbT) = P(’XTHCT/bT‘ 2 MCLT) S P(C‘XT| Z MaT)
= P(|XT’ > MlaT) <e.

This shows that Xycr = O,(arbr) as desired.
(iv) Clearly, P(|Yr| > M) < P(|Xr| > M) if Y7 < X7, and this implies the result.
(v) Let € > 0 be fixed. By hypothesis, V6 > 0, IM; > 0: P(|Xr| > Miar) < € and
ler| < 6bp, for sufficiently large T'. Choose M : M > max(d, M;). Then

IN

P(‘XT+CT| 2 M(CLT+bT ) | > M aT+bT) |CT|)
| T|>MCLT—|—bT)—5bT)

P(1X
P(
P(|Xz| > Mar + br(M — 5))
P(
P(

IN

IN

| Xr| > Mar)
‘XT| > MlaT) ~ €.

IN

The proof for ¢ = O(br) is analogous. O

The next lemma is Lemma 2.9’s analogue for Big Oh and small oh almost surely.
Let {Y,} be a seqence of random variables on (£, F, P). We say that Y, = O(1)
almost surely, briefly Y,, = O(1)a.s., if 3M > 0 such that P(limsup,,_, . {|Y.| < M}) =1,
and Y,, = o(1) a.s. if V0 > 0 we have P(limsup,,_, . {|Y.| > d}) = 0.
Lemma 2.10. Let a; and b; be positive sequences converging to zero. The following results
hold:
(i) If Yr = O(ar) a.s. and ar = o(by), then Yr = o(b;) a.s
(ii) If Yr = O(ar) a.s. and cp = O(br), then Yrer = O(arbr) a.s.;
(1ii) If Yr < X7 and X1 = O(ar) a.s., then Yr = O(ar) a.s.;
(iv) If cr = O(br) and Xp = O(ar) a.s., then cr + Xr = O(ar + br) a.s.;
(v) If Yr = O(1) a.s., then arYr = Ol(ar) a.s.; similarly, if Yr = o(1) a.s., then

arYr = o(ar) a.s.;
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(vi) If Yr = O(1) a.s. and X1 = o(1) a.s., then Yr + X7 = O(1) a.s.

Proof. In what follows we will use the shorthand lim sup, for lim sup;_, .
(1) By hypothesis, M > 0 : P(limsup,{|Yr| < Mar}) =1 and ar < §by for all § > 0
and all T sufficiently large. Let §/M > 0 be given. Then, for every T sufficiently large,

{IYr| < Mar} C {|Yr| < dbr}

Claim 1. Let Ar and Br be two sequence of sets. Suppose that, for all sufficiently large
T, Ay C By. Then limsup; Ar C limsupy Br.

Proof of claim: By definition, limsupy Ar = (p—y Urer Ak = (-, Cr, where Cp =
Ujer Ax is a decreasing sequence. Similarly, we can write limsup, Br = (., Dr,
with Dy = (J;—; By. By hypothesis, there is some Tj such that, for any 7' > Tp, we have
Cr C Dp, which implies ﬂT>TO Cr C ﬂT>TO Dy. Since the sets Cr and Dr are decreasing,

ﬂCT:ﬂCTg mDszDT,
T T>Th T>Th T
and hence the result. |

By Claim 1 and using the monotonicity of the measure,

1 = P(limsup{|Yr| < Mar}) < P(limsup{|Yr| < dbr}),
T T

which implies that P(limsup,{|Yr| < dbr}) = 1. As ¢ is arbitrary, the result follows.
(77) By hypothesis, IM > 0 : P(limsup{|Yr| < Mar}) =1 and |br/cr| > 1/C for
some constant C' > 0 and all T sufficiently large. Take M; = MC'. Then, for all T" large
enough,
{[Yrer| < Miarbr} = {|Yr| < Myar|br/cr|} 2 {|Yr| < Mar}

From Claim 1 and the monotonicity of P,
P(lim sup{|Yrer| < Myarbr}) > P(limsup{|Yr| < Mar}) =1
T T

and thus the result.
(77i) By hypothesis and using Claim 1, there is M > 0 satisfying

P(limsup{|Yr| < Mar}) > P(limsup{|Xr| < Mar}) =1,
T T

implying the result.
(iv) By hypothesis, IM > 0 : P(limsup;{|Xr| < Mar}) = 1 and |er| < Cbyr for
some constant C' > 0 and all T sufficiently large. Choose M; = max(M,C). For this
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choice and all sufficiently large T,

{| X7 + cr| < Mi(ar +br)} 2 {|X7| < Mi(ar + br) — |er|}
2 {|Xr| < Miar + br(My — C)}
2 {|Xr| < Myap + bp(M, — M)}
2 {|Xr| < Mar}

Hence,
P(limsup{| X7 + cr| < Mi(ar + br)}) > P(limsup{|Xr| < Mar}) =1,
- T

which gives the result.

(v) By hypothesis we clearly have, for some M > 0,
P(limsup{|Yrar| < Mar}) = P(limsup{|Yr| < M}) = 1.
T T

The proof for the small oh goes in the same lines.

(vi) Given any ¢ > 0, note that
w € limsup{|Yr| < ¢} <= |Yr(w)| < c for infinitely many T’
T
and

w € limsup{|Xr| > ¢} < |Xr(w)| > ¢ for infinitely many T
T

<= | X7r(w)| < c for all but finitely many 7.
By hypothesis, for all 6 > 0 and for some M > 0, we have

|Yr(w)| < M for infinitely many T, and
| X7 (w)| < 6 for all but finitely many 7,

with probability one. Then, with probability one, the triangle inequality gives
| X7 (w) + Yr(w)| < M + 6 for infinitely many 7,

and hence the result X + Yy = O(1)a.s.

Lemma 2.11. Let X and Y be two random variables and let b € R. Then

P(IX+Y|>0b) <P(X|>b/2)+ P(]Y| > b/2).
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Proof. Let A = {(z,y) : |z +y| < b} and B = {(z,y) : |z| < b/2,|y| < b/2}. Note that
A lies in the square of side b centered at the origin. Then A O B, which in turn implies
that {(X,Y) € A} D {(X,Y) € B}. Using DeMorgan’s Law, it follows that

[(X,Y) € A} = {|X + Y] > b} C{|X] > b/2} U{|Y] > b/2} = {(X,Y) € BY"
From the monotonicity and subadditivity of the measure,

P(X +Y|>b) < P{|X| > b/2} U{|Y] > b/2}) < P(IX| > b/2) + P(|Y| > b/2).
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Appendix B - The Davydov’s inequality

The Davydov’s inequality is a covariance inequality which will be extensively used in
this study. Because it is our basic tool, we will review how it can be proved based on Bosq
(2012) and Rio (2017). A good understanding of the results below can give us insights on
how to bound covariances when we are faced with more complicated situations.

Define the indicator function of a subset A C R as

(2) 1 ,ifzeA
xXr) = .
x4 0 ,ifegA

The following identity will be shown to be useful when dealing with covariances.

Lemma 2.12. For any a,b € R, we have that b — a = 72 X(—00.2)(@) = X(=o0,2] (b)d.

Proof. Clearly, X(—co.2](@) — X(-c0,2)(b) is nonzero if, and only if, e <z <bor b <z < a.

Furthermore,

00 b
a<r<b —= / X(—o00,2] (@) = X(—o0,q(b)dx = / ldz =b—a

and

a

b<z<a = / X(—o0,2] (@) = X(—o0] (b)dx = —1dx

b
ldx = b — a.

J
J

Hence, regardless the case, the desired equality holds. O

Given a measurable space (€2, .A), the above lemma shows that if Z;, Z5 : Q@ — R are
random variables, then Zs(w) — Z1(w) = [ X(—c02)(Z1(W)) = X (—o0,2)(Zo(w))dz, Yw € Q.

Let (2, A, P) be a probability space and let X, Y : Q — R be random variables. Define
the joint distribution function as Fxy(z,y) = Pxy((—o00,z] X (—00,y]) = P{X(w) <
z,Y (w) <y}, where Pxy : Bgz — [0,1] is the joint probability distribution (or the push-
forward measure) of X and Y. Given the joint distribution function Fxy, the marginal
distribution function of X is defined as Fx(z) = Pxy((—o0,z] x R). We assume the
notation {X(w) € B} = X 1(B).
Lemma 2.13 (Hoeffding’s Lemma). Let Fiy and Fy be the marginal distribution functions

of X and 'Y, respectively, given their joint distribution function Fxy. Then
Cov(XY)=EXY)-EX)EY)= / / Fxy(z,y) — Fx(x)Fy(y)dzdy, (2.40)

provided the expectations E|XY|, E|X| and E|Y| are finite.
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Proof. Firstly, we need to show a few results. Let (X,Y),(Xs,Y2) be independent and
identically distributed according to Fx y.
Claim 2. (i) Cov(X,Y) = Cov(Xs,Ys);

(i) EX = EXo;

) X LYsand Xy LY, where L denotes the independence of random variables;

) Cov(X(—o002)(X), X(~00,a](Y)) = Cov(X(—c0x)(X2); X(~00,2)(Y2)), VX € R;

(V) EX(—o0,2](X) = EX(—o0,0(X2), V2 € R;

) X(=o0,(X) L X(—o0,0)(Y2) and X(—o0,2)(X2) L X(—00,2](Y), V2 € R;

) El(X(-o0a] © X)(X(-o0w) 0 Y)] = PUX <2,V <y}) and E[(X(-s0a 0 X)] = P{X <
Proof of claim: (i) The first result is obvious. (ii) Since the probability distribution Px y is
uniquely determined by the distribution function F y, it follows that Fy(y) = Pxy (R X
(—00,9y]) = Px,v, (R X (—00,y]) = Fy,(y), which in turn, implies that P, = Py,. Hence
E(Y) = [zPy(dzx) = [xPy,(dz) = E(Y3). (iii) To see the independence, Fx y,(z,y2) =
iy 2y 00 Xy, 50, ¥2 (T, Y T2,y Y2) = lily, o0 Fx v, (T2, Y2) limy o0 Fx v (2, y) = Fx () Fy, (y2).

(vi) Since X is independent of Y, by definition, o(X) = {X"YB) : B € Bgr}
and o(Y3) are independent, meaning that P(A N B) = P(A)P(B), VA € o(Y2),B €
o(X). It is well known that o(X),o(Y;) are sub-o-algebras of A. Given any z,y €
R, let f = X(—oon] and g = X(—ooy be two (R,Br) — (R, Br) measurable functions.
Then (f o X)™'(A) = X 1(f!(A)) € 0(X),VA € Bg, since f~'(A) € Bg. The same
holds for g o Y,. It implies that o(f o X) = {(f o X)}(A) : A € Bg} C o(X)
and o(g o Ys) C o(Ys). As o(Y2) and o(X) are independent, so are o(f o X) and
o(g oY;). Therefore the measurable indicator functions preserve the independence of
the random variables. (iv) Furthermore, Frox gov(21,91) = P{f(X) < z1,9(Y) <
yi} = P{X € f7H(—o0,m],Y € g7 (—o0,yi]} = Pxy(f'(—00,21] x g7 (—00,y1]) =
Px,y, (f (=00, 21] x g7 (=00, 11]) = Foxs govs (21, y1). This immediately implies Cov(fo
X3, g0Ys) = Cov(foX,goY). (v) By assumption, it is clear that the marginal probability
distributions must be the same (Py = Py,). Therefore, E(f = [o(f VP(dz) =
Jg f(w)Px(dw) = [; f(w)Px,(dw) = E(f o X5), since the 1nd1cator functlon is a nonneg-

ative measurable function. (vii) Finally,

[ oo X)@P(0) = [ X Px(da) = Px((=50.2]) = PUX < a})

and

/Q X(—o0.2]x (—ooy) (X (W), Y (w)) P(dw) = /R _ X(=ooalx(~o0y] (w') Pxy (dw')

= P({X <z,Y <y}).
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By Claim 2, Lemma 2.12 and the Fubini-Tonelli’s theorem, it follows that

2Cov(X,Y) = Cov(X,Y) + Cov(Xs,Y?)
— B(X,Y) + B(X2,Y2) — E(X)E(Y) — E(X,)E(Y))
= B(X,Y + X2, V3) — E(X;Y) — E(XY))
= E((X; - X)(Y2 —Y))

/ / / X(~o0,a] _X(—oo,w}(XQ)] [X(—oo,y](y) —X(—oo,y](ié)}dxdydP
[ ] [rcoe0) = X (C50)] [xoe(¥) = X (V2] aPdady
=2 / / Cov(X (00,2 (X); X(=00,0) (Y))dwdy
=2 [ [ Bl CONC (V)] = BN (0] B [ ()] ey
=2 [ [ Far(e.w) - Fxla)Fr ey

since E|X, — X||Ya — Y| < 2(E|XY| + E|X|E|Y]) < 0. m

Lemma 2.14. Let F be the distribution function of random variable X and let F~1 :
[0,1] — R be the generalized inverse distribution function defined by F~(u) = inf{x €
R : F(z) > u}. Moreover, define the quantile function of X by Q(z) = inf{z € R :
P(X >x) <z},z€R. Then, for any x € R and any z € (0,1)

2 < P(X >z) <= z<Q(2). (2.41)

Proof. Let x € R and z € (0,1). Then z € {y : F(y) > F(x)} and F~'(F(x)) = inf{y :
F(y) > F(x)}, by definition. Thus F~'(F(z)) < x, or equivalently, Q(1 — F(z)) < z,
since Q(1 —z) = inf{z : 1 — F(z) < 1—2z2} = F!(2). Also, F(F7'(2)) = F(inf{y :
F(y) > z}) > z. It is clear that @ is nonincreasing since z; < zy implies {P(X > z) <
21} CT{P(X > ) < 2z},

Supose z > P(X > x) =1—F(z). Then Q(2) < Q(1— F(z)) < z. Conversely, if = >
Q(z)=F'(1—2),then F(z) > F(F'(1—2)>1-2 < 2>1-F(z) = P(X > x2).

The result follows by contraposition. O]

The next theorem can be found in Bosq (2012, Theorem 1.1).
Theorem 2.5 (Rio’s Inequality). Let X and Y be two integrable random variables and let
Q|x|; Q|v| be the quantile functions of | X|,|Y|, respectively. Then if Qx|Qy| is integrable
over (0,1),

2«

[Cov(X,Y)| <2 ) Qx| (w) Qv (u)du (2.42)
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where a = a(0(X),0(Y)) = suppe,(x),ceor)| P(BNC) — P(B)P(C)].
Proof. Let X = X — X~ and Y =Y — Y. From the bilinearity of the covariance,

Cov(X,Y) = Cov(X, Y ")+ Cov(X,Y ") — Cov(XH,Y7) — Cov(X,YT)

< Cov(XT,YT) +Cov(X,Y )+ Cov(XT, Y7 )+ Cov(X,YT)
= Cov(|X], [Y]).

By the Hoeffding’s Lemma, Cov(X*,Y ™) fo fo (X <u,Y <v)—P(X <u)P(Y <
)dudv. Note that, if A} = {X < wu}and Ay = {Y < v}, then P(A;NAy)—P(A;)P(As) =
— P(AT U A3) — [(1 = P(A7))(1 — P(A3))] = P(A] N A7) — P(A7)P(A3). Hence
Cov(Xt,YT) = [T [[P(X >u,Y >v)— P(X >u)P(Y > v)dudv. Apply the same

argument to the other covariance’s terms to obtain the following set of equalities
Cov(X+, V) = /OO /Oo P(X >u,Y > v) = P(X > 0)P(Y > v)dudv
Cov(X™, Y™ / / X >u,—-Y >v)— P(—X >u)P(-Y > v)dudv
Cov(X—, Y1) = / / P(—X >u,Y >v) — P(—X > u)P(Y > v)dudv
Cov(XT, Y™ / / P(X >u,—Y >v) — P(X >u)P(=Y > v)dudv.

Put a = P(X > u),b = P(—X > u),c = P(Y >v) and d = P(=Y > v). Note that the
integrand of any of the above equations are bounded by a > 0 as well as by, at least, two

elements of {a, b, c,d}, due to the monotonicity of the measure. Then

|Cov(X, Y)] < [Cov(]X], [Y])
|Cov(XT, Y )|+ |Cov(X™,Y7)| + [Cov(XT,Y7)| + [Cov(X ™, YT

IN

= /000 /OOO [inf{c, a,c} + inf{e, a,d} + inf{a, b, c} + inf{a, b, d}]dudv
= /OO /OO [inf{2q,2a, c + d} + inf{2a, 2b, ¢ + d}|dudv
o Jo
= /Ooo /OOO inf{4a, 2(a + b), 2(c + d) }dudv
= 2/000 /000 inf{2q, P(|X| > u), P(|Y]| > v) }dudv, (2.43)
where the last equality follows from

a+b=PX>u)+P(—X >u)=P{X >u} U{X < —u})+ P{X >u} N{X < —u})
=P{X >u} U{X < —u}) + P(D)
= P(IX] > w),
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and, similarly, from ¢+ d = P(]Y| > v). Define e = P(|X| > u) and f = P(]Y| > v), and

note that
¢ o' , if a <inf{e, f}
/ X(~coinf(e.))(2)dz = § . : : 7
0 inf{e, f} , if a > inf{e, f}

and that z € (—oo,inf(e, f)] <= 2z € (—o0,€] N (—o0, f]. Then, by Lemma 2.14,

2« 2
inf(2a e, f) :/ X(—o0.e] (2) X (—o0,f1(2)d2 :/ X(—00,Qx ()] (W)X (~00.Q)y (2)] (V) 2,
0 0

since it holds that 0 < a < 1/4 (see Bradley, 2005). From Fubini-Tonelli’s theorem and
(2.43), we have that

cox<2 [ [ [ xcmomer @ map oo duds

Qx|(2) Qy(2)
< 2/ {/ 1du/ 1dv} dz
0 0 0

= 2/0 aQ\X|(Z)Q\Y\(2)dZ

]

Corollary 2.5.1 (Davydov’s Inequality). Let X and Y be two random variables such that
X € LYP),Y € L"(P) where ¢ > 1,7 > 1 are finite and 1/q+1/r =1—1/p. Then

|Cov(X,Y)| < 2p(20)' P X |[g[[Y |l (2.44)

Proof. Let X € LP(P),Y € LP(P), meaning that || X|, = ([|X]?%dP)Y? < co and that
1Y, = ([]Y]"dP)Y" < oo, respectively. By the Markov’s inequality, we have that

HXHq 1X1q \* 1XTlg ) *
u
< 2 [xpap -
HXHZ/Q HXH

=u, Yu € (0,1). (2.45)

The inequality (2.45) is equivalent to Qx|(u) < || X||,/u'/?, Vu € (0,1), by the contrapo-

sition of Lemma 2.14. These results hold analogously for Y. From Rio’s inequality,

. 2 X oY I,
Cov(X, V) <2 [ Quei()@u(w)du <2 | Hoga it

2
— 2 X, IV, / WP du = 2| XY | (20) 7.
0



ol

Assumption A.1 imposes that {e, 7} is strongly mixing on (€2, F, P). Remember that

the a-mixing coefficients are defined as

ar(j)= sup sup{|P(ANB)— P(A)P(B)|: B¢ .7:%1,14 € f%k+j}, 0<j<T,
1<k<T—j
where Fj; = o(ery i <1 < k). Let f(A,B) = |P(ANB)—P(A)P(B)| for any A, B € F.
It holds that

alo(egr), oler)) & sup{f(A,B) : A € o(err), B € o(evr)}
€ {sup{f(A,B): Acolejr),B € o(€pyr)}:0<j<T}

C {sup{f (A, B) : A€ o(Ui_io(eir)), B € o(UZ; ), yoleir))}: 0 <j < T}
— {sup{f(A4,B): Ae F/ B¢ Fl—yt:0<j <Th.

Taking the supremum over j yields a(o(e;),0(e;)) < a(|l—t|). We shall use this fact when
applying Davydov’s inequality.

If X and Y are essentially bounded random variables (X,Y € L*(P)), where we
define ||Z||oc = inf{a : P(Z > a) = 0} < +oo0, VZ € L*(P), then Rio’s inequality
implies

2
Cov(X.Y)| < 20 0)Qw(©) [ du = 40l X[V

This result is also known as Billingsley’s inequality. From Corollary 2.5.1, we immediately
see that

|Cov(X, V)| < 4a" X[V ]|,
if X € LY(P)and Y € L®(P). It is then possible to derive another version of Davydov’s
inequality.

Corollary 2.5.2 (Davydov’s Inequality 2). Let X and Y be two random variables such
that X € LY(P),Y € L"(P) where ¢ > 1,r > 1 are finite and 1/q+ 1/r =1—1/p. Then

[Cov (X, Y)| < 6a'/7||X]| Y] (2.46)

Proof. Put M = o~ V"||Y||,, Y1 = Yxqvi<my and Yo =Y =Y. Then Y =Y, 4+ Y5 and
|Y1] < M. Therefore, applying Corollary 2.5.1 and Holder’s inequality,

|Cov(X,Y)| = [Cov(X, Y1 + Y3)| < |Cov(X, Y1)+ |Cov(X,Ys)|
< 4! MY Xl Valloo + 201X gl Y2l o1y
< 2| X[l 2M a4 [[Yalgp-1)-
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Let s = q/(q — 1) for simplicity. By Holder’s and Markov’s inequalities, it follows that

E(]Y ["xqyisany) < [EIY [T (P(Y] > M) < [BYTE(Y] /M)
— E|Y|7’MS—7’7

and then

1Valls = {EY (1= xgvisan) [} = {B(Y I'xgrvsan) Y7 = {BIYT M}
— (B[ (0 B )t = By -8+ (008)
= (B]Y[")'ral/?.

From this, |Cov(X, V)| < 2[|X |42 7Y, + [V [|;0!/?) = 6a!/?[| X[l Y]], =
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3 NONPARAMETRIC ESTIMATION OF A SMOOTH TREND IN THE
PRESENCE OF A PERIODIC SEQUENCE

Abstract. We develop the asymptotic theory for the estimators derived from reversing
the three-step procedure of Vogt and Linton (2014). We provide the uniform weak con-
vergence rates of the trend function and periodic sequence estimators. We establish the
asymptotic normality for the trend estimator. We also show that the period estimator is

consistent.

Keywords: Nonparametric Regression. Periodic sequence. Asymptotic analysis

JEL Codes. C13, C14, C22;
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3.1 Introduction

One way to deal with time series presenting a periodic and a trend behavior is to
model them additively. That is, the series is written as the sum of a periodic and a
trend components plus a stochastic error process. Although the nonparametric estima-
tion of such model seems to be appealing due to its flexibility, in most studies the data
are modeled as having only the trend or only the periodic component, and rarely both
components are considered together. When the data has only the slowly varying com-
ponent (plus an error term), its nonparametric estimation is popularly done by using a
local polynomial fit (WATSON, 1964; NADARAYA, 1964; CLEVELAND, 1979; FAN,
1992) or a spline smoothing (WAHBA, 1990; GREEN; SILVERMAN;, 1993; EUBANK,
1999). On the other hand, for models where the data is written as a periodic component
plus an error term, the nonparametric estimation of the period and values of the periodic
component was investigated by Sun et al. (2012) for evenly spaced fixed design points and
by Hall et al. (2000) for a random design setting.

A few nonparametric methods are available to address the problem of estimating mod-
els where both periodic and trend components are taken into account. As an example,
we can mention the Singular Spectrum Analysis (BROOMHEAD; KING, 1986; BROOM-
HEAD et al., 1987) that have been applied in natural sciences as well as in social sciences
such as economics. A more recent nonparametric method is the three-step estimation
procedure proposed by Vogt and Linton (2014). In the first step, the fundamental period
of the periodic sequence is estimated. Given the period estimate, an estimate of the pe-
riodic sequence is provided in the second step. The last step consists in estimating the
trend function using the local linear regression. Their asymptotic analysis investigated the
uniform weak convergence rates and the asymptotic normality for the estimators of the
trend function and the periodic sequence. In addition, the period estimator was proved
to be consistent. In their supplementary material, they suggested that reversing the order
of the estimation scheme was possible in principle. In other words, one could estimate
the trend function first and subsequently estimate the period and the periodic sequence.
We aim to investigate this reversed estimation version more deeply.

In this section, we develop the asymptotic theory for the estimators involved in the
reversed procedure of Vogt and Linton (2014). We provide the uniform weak convergence
of the estimators of the trend function and of the periodic sequence. The asymptotic nor-
mality for the trend estimator is also stablished. We also show that the period estimator

1S consistent.
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3.2 The model

Let T € N and assume the time series {Y;r : ¢ = 1,--- , T} is observed and follows
the model
Y;57T :g(t/T)+m(t)—|—et7T, t = 1,2,...,T7 (31)

where g is a function of deterministic trend, {m(t) };cn is a deterministic periodic sequence
with unknown period 6y € N and E(e,r) = 0. By definition, the periodic sequence must
satisfy m(s) = m(s + kbp) for any s € [0y] and any k € N. Implicitly, 6, is assumed to be
the smallest period of the sequence m(t). For the asymptotic analysis, model (3.1) offers
a framework such that as T grows we get additional information on the value of g(t/T),
at a given neighborhood of ¢/T', and on the value m(s), for a given s € [f], due to its
periodic property.

The assumption on m(t) allows us to represent the values of the sequence as m(t) =
220:1 sIs(t) where I4(t) = I(t = s+ kb : k € N) and [ the indicator function. Note that
this representation comes naturally from the periodicity of the sequence without having
to make any additional parametric restriction.

In matrix notation, model (3.1) becomes
Y =g+ Xg,0+¢, (3.2)

where Y = (Yir,...,Yr ) is the vector of observations, g = {¢(1/T),...,9(T/T)} is the
trend component, Xo = [ly, Iy, ...] is the design matrix with Iy, being the 6y x 6

identity matrix and € = (€17, ..., err)" is the error vector.

3.3 Estimation

The estimation procedure is done by reversing the steps of Vogt and Linton (2014) as
they suggested in their supplementary material. We first estimate the trend function and
then proceed by estimating the periodic sequence.

For the asymptotic analysis, we assume that m and g are normalized to satisfy
Zzozl m(s) = 0. From now on, we denote by C' a generic positive constant which may

take different values at different appearances.

3.3.1 Step 1: Estimation of the Trend Function

If the periodic sequence m in equation (3.1) is known, then the local linear estimator

for the trend g and its first derivative gV h, at = € [0, 1], is given by

Pla) = [ I , ] = 57\ An, (3.3)
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T A T Lz L=
1 t:lK(Th ) t:1<Th K<Th )
STx:ﬁ T t_ . t T t_. 2 t_ . ) Zt,T:K,T_m(t)
| SL(E) () (50 k()
A 1 ?fl K(T;:Z) Zi
T.x — g t_ . LA )
Th i ZtT:l(TT>K(Th )ZtT

with Sy, being an invertible matrix, Ay := h a bandwidth sequence and K a kernel-like

3 (3.4)

(!E) = Z Wt,T<x)Zt,T7

t=1
) for e; = (1,0) and X(u) = (1,u). How-

function. Straighforward calculations shows that we can write

g

o t/T—x -z
(4
ever, the estimator P is infeasible since we do not observe m(t¢). One could try to estimate

where W, r(z) = ﬁe&S}iX(

g by simply ignoring the periodic component, i.e., using
(3.5)

T
g(x) =Y Wir(z)Yir.
t=1

The local linear weights W, r(z) can be readily replaced by Nadaraya-Watson’s weights.
Although the latter is simpler, it suffers from boundary bias (WAND; JONES, 1994, p.

126).

3.3.2 Step 2: Estimation of the Period
The period estimation is carried out by means of a penalized residual sum of squares

minimization.
Let S = Y, — g(t/T). If the trend function were known, the period 6, could be
(3.6)

estimated from
S = Xgoﬁ + €,
S Srr). For each 0 € {1,...,0r} with O7 < T, define the least

where S = [Si7,.
squares estimate of model (3.6) with period 6 by
(3.7)

Bo = (X3 Xe) ' X3S,
|" with Iy being the 6 x 6 identity matrix. In addition, let the

Iy
(3.9)

where Xy = [y
associated penalized residual sum of squares be given by
Q(0, A\r) = RSS(0) + A\ b,
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where A7 is a divergent real sequence and RSS(0) = ||S — Xp5y||2 with ||-|| denoting the

usual Euclidean norm on R”. The estimator of the period 6, is the minimizer

0 = argmin Q(6, Ar). (3.9)
1<6<Or
The rates with which the sequences Ay and ©r are allowed to diverge will be specified
later on. The estimator in (3.9) is infeasible though. We approximate 0 using gnT =
Y+ — g(t/T) through
0 = arg min Q(6, \r) (3.10)

1<0<0r

where
Q(0, \r) = RSS(6) + Arf and RSS(8) = ||S — Xp5]%,

with By = (X)Xg) ' XS and S = [Sy.r, ..., Spr]

As pointed out by Vogt and Linton (2014), this period estimation can also be regarded
as a model selection problem. Also, the presence of the [p-regularization parameter Ay can
prevent the period estimator from choosing large periods (multiples of 6;). The selection

of Ay will be discussed in the next chapter.

3.3.3 Step 3: Estimation of the Periodic Sequence

If S;r=Yir —g(t/T) and 6y were known, we could estimate /5 using
B = (Xp, Xo,) " Xo,S- (3.11)
We propose to estimate § by the feasible estimator

B = (X};X;5) ' X;S. (3.12)

3.4 Asymptotics

For the asymptotic analysis, the following conditions are made.

1. (Condition 1) The triangular array {e, r} is strongly mixing with coefficients a(k)
satisfying a(k) < Ca” for some positive constants a < 1 and C.

2. (Condition 2) E(|e,r|“") < C and E(e} ;(In(1 + €,7))*) < C for some constants
0<dand 0<C < oo

3. (Condition 3) g is twice continuously differentiable on [0, 1]

4. (Condition 4) The kernel function K is nonnegative, symmetric around zero, Lip-
schitz continuous and has compact support.

5. (Condition 5) The bandwidth h > 0 satisfies h — 0 and Th? — oo as T — oo.

Condition 1 says that the error array is a-mixing with geometrically mixing rates.



o8

Condition 2 gives uniform moment bounds for the error random variables. The bound on
E(e/(In(1 + €;,7))?) will be shown to be important since we are allowing for nonstation-
arity. The conditions on g and K are standard to derive the properties of the local linear
estimator.

Without loss of generality, assume supp K = [—1,1] and [, K(u)du = 1.

upp K
To derive the asymptotic properties of g(z), define

T .
1 t/T —x T—=x
VT,x - E Z K(/T)K(‘Y/T>E(ELTEJ‘7T), xr € (h, 1-— h),

t,j=1

where kp is the cardinality of the set J, = {i € [T] :4/T € (x — h,z + h)}.

Theorem 3.1. Suppose Conditions 1-4 hold. If nT/(T°h) = o(1) for some 0 € (0,1],

then it holds that
R InT
sup |g(z) — g(x)| = Op(\/ T + h2>, T — oo.
z€[0,1]

Moreover, if V, = limp_,o, Vr. ezists and Th® = O(1), then
VTh(§(z) — g(x) — J.) % 2N(0,V,), T — oo, Vae (h1—h),

where J, = 271h?¢" (z) [w*K (u)du.

Theorem 3.1 says that the local linear estimator still has good asymptotic properties
if we ignore the presence of the periodic component. The uniform convergence rate is the
same as that obtained in the oracle case. Inspecting the proof of the theorem, we can
conclude that the naive estimator g has the oracle property, i.e., ¢ has the same limiting
distribution as that of estimator g, defined in (3.4), which is obtained assuming that m
is known. We can also find that the replacement of §(z) by g(x) results in an error of
asymptotically negligible order O(T~!), uniformly on z and h. This implies that the
bandwidth for ¢ could be selected using the same techniques as used for the estimator g.
In the next chapter, however, we will see that employing asymptotic bandwidth selection
rules for g may lead to poor performance on finite samples. |This is another theoretical
result suggesting that the optimal plugin h for § is of order T—1/5 ]

Note that Theorem 3.1 can be applied to cases where the aim is only to estimate
the trend function nonparametrically. If a correct examination detects the presence of
a periodic component in the time series, then the direct application of the local linear
estimator is acceptable, under certain circumstances.

Say that a real sequence ar is ©(by) if there are constants m, M > 0 such that

brm < ar < Mbr for all sufficiently large T'.
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Theorem 3.2. Let Conditions 1 — 4 be fulfilled. Assume that the bandwidth satisfies
h = O(T~Y4) and that O < CT*°% | for some small w > 0. Moreover, choose
the regularization parameter Ar to satisfy T1/4@TP;/2 = o(Ar) and A\ = o(T) for some
positive sequence pr slowly diverging to infinity (e.g. pr =InlnT). Then 0=0,+ 0p(1).
Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied. Then

1<t<T

max |i(t) — m(t)| = op(<%) 1/2), T — oo,

where pr 1s a positive sequence slowly diverging to infinity.

3.5 Proofs

Appendix C contains several lemmas (from 3.1 to 3.11) which are used in the proofs

of this section.

Proof of Theorem 3.1. Write

9(x) — g(2)| < |9(x) — g(z)| + |g(z) — g(z)]
= A, + Ay, (3.13)

where g is the estimator in the oracle case, defined in (3.4).

From Theorem 2.4 of Chapter 2, we have that sup,c A2 = O,(y/InT/(Th) + h?).
Now, we show that sup,cp 1) A1 is dominated by sup,cp 1) A2. For this, we go along the
lines of the proof of Theorem 2.4.

We have that A, = |€'1557;MT,:¢’ where

1

MT,:): - T

i Kt/ T = x)m(t) ]: [m ]
S (U ) En(t/T = aym(t)

my

Then, rewrite

2.1 V.
mo = stsg | Ve gy

-1
50 S m

sup A; = sup 6'1[0 1] [O]:SHP v

x d

z€[0,1] z€[0,1] S1  S9 mq z€[0,1]

S0 — 8255 "

where the dependencies of the entries on T and x were omitted, for brevity’s sake. Consider
the quantity p;, j € {0, 1,2}, defined in Lemma 2.6 of Chapter 2. The fact ||s;] — |p;]] <
|s; — pj| guarantees that |s;| = |u;| + O(1/(Th)) also holds. In addition, given x € [0, 1],
we have 0 < p; < C for j € {0,2} and |py| < C, by Condition 4. Tt implies u3 /s = O(1).

For any natural numbers T', 6, > 0, define E = {i € [0] : Kon = |T/6y] + 1}. Then,
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for j € {0,1}, x € [0,1] and T sufficiently large, Lemmas 3.4 and 3.10 gives

: (%)[;WQ J“) > H}
|

1€l =1
—_——  —
<C =0

It implies that mg and my are O(1/T) uniformly on € [0, 1]. Then

|i| + O/ (T
e + O(1/(T

Vi < sup |mo| + [s3s5"| sup my| = O(T_l){H
2€[0,1] z€[0,1]

+ O(Tlh) } oY)

(Th))’
(T'h))

Lemma 2.7 of Chapter 2 guarantees that the limiting matrix of St is positive definite.

1
O(T™Y) s Lﬂ)(—)'
() sup fopts — 13 Th

z€[0,1]

)

#1
2

—o {1+

and

V=

M0+O( 1)_pﬁ+0(1

/
Th pe + O(1/

It implies that pous — p? # 0. Then

A =0(T™ 1) Sup o — M1/M2 +O(1/(Th))

z€[0,1]

— O(TY).

o

Hence sup,c(oq|9(z) — g(x)| = Op(\/InT/(Th) + h* + T~") = O,(y/InT/(Th) 4 h?). To

make the second equality clear, note that

TnT\ "
TaT:( - ) — o0 and Th? = 0o

and so \/InT/(Th) + h*+ T = O(\/InT/(Th) + h?).
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We now turn to the asymptotic normality. Write

§(@) — gle) = [§(2) — 35@)] + [3(x) — 9(a)]
:wm—mﬂ+[mw@wmwm4+b]mmm4(mm
=% + g% +4". (3.16)

From the previous part of the proof, vVThg? = O((h/T)Y?) . Furthermore, standard
calculations for the bias of the local linear estimator give g? = J, + o(h?) where J, =
271h2g" (x) [ u?K (u)du (see Appendix G of Chapter 4). From (3.3), we can express the
stochastic term by

¢V = eﬁSﬁiVT@, (3.17)

where

VT,m -

1 ZL Ky(t)T — x)eur ] _ [ Vo ]
T thzl(tﬂ;;x)Kh(t/T— LE)Q,T U1 '

As before, rewrite

v Vo —sisylur Vo 52551y
7= 50—3%32_1 _30—8%32_1 80—8%82_17
where ) O(1/(Th)) )
9 1 HI T 231
858, = =—=4+0(1/(Th
2T+ O(1/(Th)) — pa (1/(Th))
and

2
so = sty = HE—EL 1 O(1/(Th),
2

using Lemma 2.6 of Chapter 2. The assumption that z € (h,1 — h) implies y; = 0 and
o = 1 for T large enough. Also, we have that 0 < pp < 1 and that popg — p? # 0, where
the latter is implied by Lemma 2.7 of Chapter 2 . Thus, from Theorem 2.2 and Lemma
2.9 of Chapter 2, it is easily seen that

v _ 1 O(1/(Th))
I T 1voa/(th)" T 1 o(/(Th))
=wvo+ O(1/(Th))O,(\/InT/(Th)) = vy + 0,(1/VTh).

v = (1 4+ O(1/(Th)))vo + O(1/(Th))v;

By definition,

kr 1~ (t/T—z kr 1
VThoy = | ———=> K — Ited,)=1m—m—"=) X 3.18
=gy DK (T Jartt e =\ e XN 6

where X, 7 := K((t/T — z)/h)e,rI(t € J;). Lemma 3.11 implies that the triangle array
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{X:r} is also strong mixing with mixing coefficients bounded by the mixing coefficients of
{e:7}. The problem of obtaining exact value of kr is similar to that of counting the number
of 1/T-periodic points on the set (0,2h). Therefore, kr equals Klj/;,: =[(2h—s)/(1/T)],

s

for some 0 < s < 1/T. Thus kr ~ 2Th — sT = 2Th, since 0 < sT" < 1. Tt implies
V[ (Th) = /2.
The application of Politis-Ekstrom’s CLT (Theorem 3.6 of Appendix D) and Corollary

3.6.1 gives
VThue 5 2N(0, V). (3.19)

Hence, by Slutsky’s Theorem,
VTh(§(x) — g(z) — J) = o(1) + o(VTh3) + 0,(1) + VThug > 2N(0, V).

Proof of Theorem 3.2 By Lemmas 3.2 ,3.8 and 3.9, we obtain that P(8 # 6,) = o(1).
Note that, for any & > 0, {|0 — 6| > 6} C {|6 — 6] > 0} = {6 # 6,}. Using the
monotonicity of the measure and taking limits, it follows that limg_., P(|0 — 6| > ) =
0, ¥& > 0, that is, § — 6y = 0,(1).

Proof of Theorem 3.3 Denote

m(s) =e.f = e;(Xé-Xé)*lXéS, se{l,...,0}
m(s) = ¢4 = &, (Xo Xo) 1 X03, 5 € {1,...,00}

Then

o _ o I o
max [m(t) —m(t)] < max [m(t) — m(t)] + max |m(t) —m(t)| + max |m(t) —m(t)]

= M1 —+ M2 —+ Mg.
By monotonicity ans subadditivity of the measure and by Theorem 3.2, we have that

P(VThM; > §) < P(VTh max |m(t) — m(t)| > 6,0 = 0,) + P(0 # 6;)

1<t<T
< i P(VTh|m(t) —m(t)| > 8,0 = 6,) + o(1)
t=1
=6y P(0) + o(1) = o(1),
for every § > 0, since /3 = 3 when 6 = 6. Thus

VThM, = 0,(1). (3.20)
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For the term M5, observe that

1
*-‘NQ:)—‘
HO

Y
IS
=
7N
iy
ST
—
K
~_
|
Ne)
7 N\
’ﬂk
—
=
~

B_B: DOoXéo(g_g) -

m(6o) — m(6)

In addition, both m(t) and m(t) are y-periodic, and then, maxj<;<p|m(t) — m(t)| =

maxj<¢<g,|m(t) — m(t)]. We can then represent M, as averages of the form:

fo
wo . ¢, T
R 1 s ~ [ Wey ¢ + (k’ — 1)90 We, ¢ + (]{7 — 1)00
s, (0 =m0 = o frem — 2 G B

K%
w@ot T T .
we,+ + (K —1)b 7 we,+ + (k — 1)y
< )
%WTZWA F ) ol) (M
Wo,t5 k=1 i=1
K90
1)90 s T T
We, ¢ + (/{Z — 1)9 .
+ 12?50 we - Z ZWZT( T m(i)
0.t i=
&)
'Lugo £ T T
’l,U@Ot + (kf — 1)9 A
+ max |- K Z ZWZT( T €1
0> ts 1=

= Mg + Mp" + Ms.

The non-stochastic terms satisfy

VThM < C(Th)Y?h? < C(Th°)Y? = o(1), (3.21)
1/2
VThM < C(Th)l/z% < c(%) = o(1). (3.22)

On the other hand, for each t € {1,..., T}, we have

L)

K
ngtT T
ot + (K —1)8 ot + (K —1)0
{ 3 (e (e

we tT kk'=1 ,5=1

90
woq, T T C

Z Z (sup|Wir(z )?|Cov(e;r, €jr)] < Th

( wGOfT k,k'=1 4,j5=1 Tt
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and then Chebychev’s inequality implies
p O Th
PIMs>C 28] <Y =22 =o(1).
( ’ Th)_;ThPT o)

Thus M5 = O,(\/pt/(Th)). Analogously, we can obtain that

“’90,th

1
Var(Keo Z 6w907t+(k—1)90,T)

weo,nT k=1

90
weo,t,T

1 C =, ans
: (KGO )1/2 Z |COV(Ew907t+(k71)907T’Ew901t+(k/71)90’T)| < KOO Z(CL O)
w1 kk'=1 w6, k=0
C
< —.
- T
Therefore,

P(M3 > \/%_}J < i %Th =o(1).

i=1

Finally, combining these results we obtain
ma [(t) — m(5)] = 0,((Th) ™) + o((Th) ™) + Op(Th)™2) + Oy pr (Th)™?)

= Op((Th)™2 + pr(Th)™"2) = Oy(pr(Th)™'/?).
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Appendix C - Technical Details

We start by stating some preliminary results. For every 6 € N, let [Ty = Xp(X;Xy) ' X},
be the matrix of projection onto the column space of Xy and call My = I — Ily as the
annihilator matrix of Xy, with Xy =[Iy Iy ...] being a T' x 6 matrix. To simplify the
notations, we will use the shorthands X = Xy, 1l := Il and M = M, whenever no risk
of confusion exists.

Lemma 3.1. Let 0 € N. It holds that:
(i) TI and M are symmetric and idempotent;

(i1) for a regression model S = X+ ¢, the least residual sum of squares can be written

as RSS(0) = S'MS.

Proof. (i) I = [X(X'X)7'X") = X[(X'X)" X' = X[(X'X)]'X' = X(X'X)'X' =
I1. Further, II> = X (X'X) "' X/X(X'X)"' X' = XI(X'X) ' X' =1L

The annihilator is also symmetric as M’ = I —II' = [ — II = M. In addition, M? =
(I-I)I—T)=1—2I+112=7—2[+11=1—11= M.

(ii) Since ILS = X (X'X)"'X'S = X3, it follows that S—X 3 = S—I1S = (I-II)S = MS.
Hence, RSS(0) = (S — XB)(S — X3) = S'M'MS = S'M2S = S'MS. O

Lemma 3.2. Let

go = (9o(1/T),.... go(T/T))" with gy(x) = Z Wir(2)lg(x) — g(i/T)];
9n = (Gm(L/T)s - gu(T/T)) with g(x) =Y Wi ()m(i); and

9e = (9:(1/T),..., g(T/T)) with ge(x) =Y Wiz (x)eir.
Denote B = 1Iy — 1ly,. Then

PO #60) < Y P{Q(6,Ar) < Q6o M)}, (3.23)
1<0<Or
076,

and, for each 0 # 0y, it holds that
P{Q(0. Ar) < Q0. Ar)} = PLV™ 4+ V™) Vo) < — By + W 4 Wi

— QSgb + 2537" _ 2U0(9b:gm) _ 2U6(9b»95) _ 2U0(9b:€) + 2U9(gm7g5) _ 2U9(gm7€) + Sge
— 854 Ar(fo — 0)}, (3.24)
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where

Ve(“) = —¢ De, Ve(e’ge) = —€ By, Ve(ge’ge) = —g.Bg., By = (X,8) My(Xg,3).
Wi = g,Bg, Wi = g, Bgm, Sg" = (Xo8) Mogs, Sg™ = (Xoy3) Mogm,
U = gBgm: U™ = g,Bg, U™ = g,Be, U, = g, By.
U = g Be,  S§ = (X0, Moge, S = (Xg,8) Mye.

Proof. Since 0 € O],

wef{f#6} « WO\ {b}:we{f=0} <= we [J {§=06}
01€[07]\{60}
From the subadditivity of the measure, P(6 # 6y) < Y i<o,<o, P(6 = 6;). For each
61760
0, € [O7] \ {00}, the following relations hold

0 =0, < argminQ(,\r) =60, < min Q(,\r) = Q(f1, \r)

1<0<Or 1<0<Or

— Q(0,\r) > Q(01, A1),V € {1,...,07}. (3.25)
It implies that, for each 6; € [O7] \ {6},

{6=06}= ﬂ {Q(0, A1) > Q(61, A1)} S {Q(00, \r) > Q(61, )},

1<6<Or

and then P(6 = 6;) < P(Q(6y, \r) > Q(1,\r)), by the monotonicity of the measure.
Thus P(6 # 6,) < leeefeeT P{Q(61, A1) < Q(60, A1)}
1 0 - N
Lemma 3.1 implies that RSS(0) = S’MyS. Therefore, from (3.2),

RSS(0) =(Xao8 + (9 = §) + €) My (Xo, 5 + (9 = §) + )

(X008 + G5 — g — ge + €) My (XgoB8+ b — g — g + )
(Xo,8) Mo (X, 8) + g, Mogy + Gy Mogm + 9. Mage + € Mge

+ 2[(Xo,8) Mogs — (Xo,8) Mogm — (Xo,8)' Moge + (Xg,8)' Mye

— gyMpGm — g, Moge + g, Moe + gi, Mog. — g, Mae + g.Mpe], (3.26)

where § = (§(1/T),....§(T/T)) with g(x) = 3_i, Wir(2)Yir = 3,2 War(2)[9(i/T) +
m(z) + ei,T]-

Since Mp, annihilates Xj,, i.e., My, Xy, = 0, we immediately see from equation (3.26)
that

RSS(60) =95 Moo gs + G Moy gim + 9. Mayge + € May€ + 2(—g, Ma, gm
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— sMoyge + gy Moy + g1, Mayge — G Ma,€ + g Mpye). (3.27)
Hence, from definition (3.10),

0 < Q(bo, Ar) — Q(0, Ar) = 5" My, S — 5'MyS + Ay (6o — 0)
= —(Xg,8) My(Xo0,3) + gy (Mo, — M) g, + gp,(May — Mp) g — ge(Mg — Mp,)ge
— € (M — My, )e + 2[—(Xo,8) Mogs + (Xo,3) Mogu, + (Xo,3) Mage — (Xo,3)' Mpe
— 95(Moy — My)gm — g5(Ma, — Mo)ge + g,(Mo, — Mo)e + g, (Mo, — Mo)ge
— (Mg, — My)e — g.(My — My, )]

which gives the desired result. O]

Now we need to investigate the structure of the terms described in equation (3.24).
Given a sample size T € N, a period 6 € {1,...,07} and a point s € {1,...,0},
define the subset A%, = {s+ k0 : k € N} C [T]. In addition, denote the cardinality of

S
A% by K? .. In words, A? . is the set of f-periodic points, starting at s, in {1,...,T}.

Lemma 3.3. It holds that K? = [152] + 1.

Proof. The elements of AZT are s,s+60,s+20,...,s+ (KgT —1)6. Clearly, T'is an upper
bound of A? . and s+ K? .6 > T. Then

T - T -
s+ (Kl —1)0<Tand s+ K'0>T < KngTSHand Klp > — i

T—5s T—s
) 2
7 7 (3.28)

= —1<Kl;—1<

Claim 3. Let a € R and K € Z. Then a — 1 < K < g implies K = |a].

Proof of claim: From K < a, we have K < |a]. On the other hand, from a — 1 < K, we
have a < K + 1, which implies |a] < K + 1 since [a] < a. Also, |a] < K + 1 if, and only
if, |a] < K. Hence K = |a]. |

The application of Claim 2 in (3.28) leads to K¢} = LT*SJ + L O

0

We shall see that KfvT ~ T/0 as a consequence of Lemma 3.3.

Lemma 3.4. KgT is either L%J or L%J + 1.

Proof. From Lemma 3.3, K¢, = [1=2] + 1.

Claim 4. For any a,b € R, |a| + |b] < |a+0b] < |a] + |0 +1.

Proof of claim: Put a = |a] +¢; and b= |b] + ¢, with ¢1,¢2 € [0,1). Then 0 <¢; + ¢ <

2 = 0< [ +c) <1 Since |a+b] = |a] + [b] +c1 +c2] = |a] + [b] + [a + 2,

we immediately have the result. [ |
By Claim 4, we have that L%J + L‘TSJ < LT(;SJ < L%J + L_TSJ + 1. Since {_TSJ =

—[g] and H — lfors=1,...,0, it follows that {%J 1< {T;SJ < L%J Thus
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L%J <K!p < L%J + 1, and so the integer K7, can only be L%J or L%J + 1. O

Let w* : Z x Z — Z be a function given by w*(z,y) =y — | =+ |z and let the section
of w* at x, denoted by w : E, — Z, be defined as y — w*(z,y), where E, = {y : (z,y) €
Z X Z}. If wr : [Or] x [T] — [T] is defined exactly as w*, i.e., wr(0,t) =t — [(t —1)/0],
then its section satisfies wpr : [T] — {1,...,0}. For brevity’s sake, we will use the
shorthand wy r(t) o wy¢. Intuitively, this function is an initial point catcher in the sense
that if £ € AQT, then wyp, = s. Although this function may look fairly technical, it will
be conveninent when exploiting the structure of the matrices involved in the estimator

(3.10).

Lemma 3.5. The projection matriz 1y is given by
Iy = Xy DXy,

where D = diag(1/KY{ ,...,1/K{ ), and corresponds to the first T rows and to the first
T columns of the block matrix Igo @ D. That is,

D D

Iy=|D D (3.29)

TXT

Proof. The ith column of X & Xy is a T-vector with ones in the coordinates k : k € Al

and zeros everywhere else. Then we can write X’ = [z ---x¢] where 2; = >, 40 €3, Vi €
i, T

{1,...,0}, i.e., a summation of canonical vectors of R”. It follows that
(X'X)yy=afpy =4 o0 (3.30)
0 ,if i # g

Hence (X'X)™' = D = diag(1/KY{ ;, ..., K{ ).
Now, describe the matrix X in terms of rows as X = [y,...,yr] with y; € R’ i €
{1,...,T}. Observe that IIy = X DX’ is equivalent to

viDyr -y Dyr
Iy = : : (3.31)
yrDyr -+ yrDyr
and that y; = ey, , with wg; = i—[5*0,Vi € {1,...,T}. Denote €y, , = (€uwp,1,- - -+ Cupi0)-
Then for any 1 <14,7 <T,

6 [/
/ . _ _
yz‘Dyj - e’wg’iDewe,j - E § ewe,i,kewe,pl(D)kJ - ewe,mwe,iewe,pwe,j(D)we,i,we,j
k=1 =1
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_ (D)we,mwe,i ) if Wy ; = Wy, j
0 s if We,i % Wy, j

since the only nonzero coordinate of the canonical vector e, , is the (wg,;)-th coordinate.
However, wy,; = wy,; is equivalent to say that i,j € AST for some s € {1,...,0}. It

determines the desired structure

D14 0 1 Dy 0
. o -
0 Do O . De,el D D
)= | D, 0 1 Dy, 0 - | Db D (3.32)
: S o
’ [ : [
0 Doy, O -~ Dagy
9 Pee 0 Coeel
| N |
0

Several terms in equation (3.24) of the Lemma 3.2 have in common the product
(I — Ip)(Xp,5). The next lemma gives a convenient form, although technical, to deal
with this term afterwards.

Lemma 3.6. The expression (I —1lp)(Xy,5) can be written as the vector

(V75 Yor Ty AT - - - s Vom0 - -+ ) € R”

where
. K o
Yoo =m(s) — 7 m((k—1)0 +wps), Vse{l,...,0%} (3.33)
wo,s, T k=1

with T' > 0% and 0% denoting the least common multiple of 0y and 0. Moreover, vs can

be decomposed as

Vs, T = fs + RS,T (334)
with R&T == Rl,s,T + R2757T and
1 &
& =m(s) — o m((k —1)0 + wys) (3.35)
0 k=1
00 Kg;g T 1 fo
Rigr=11- 2 — k—1)60 s 3.36
= (1= | ) - )
w 38 kzl
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K% .
1 we, s
Ry sr = 50 Z m((k—1)8 + wys). (3.37)

we s, 1
’ — 6
k=6g [Kw9,51T/00J +1

Proof. From Lemma (3.5), it holds that

m(1)
Iy—Dy —Dy --- : T
V2,7
(Ir —Hg)Xg8=1| —Do Ip—Dg --- m(0y) | = N : (3.38)
r ] ) v
which immediately gives
] LS
n=m() - > m((k—1)0 + 1)
1T p—q
] Kjr
Yo = m(0) — 0 > m((k—1)0 + 1)
6, T k=1
] LS
Yorr =m0 +1) — - > m((k—1)0+1
LT p—q
omitting the dependence of the indices of v on T, for simplicity. Hence, fori=1,...,T,
we have that
Koy or
1 :
KT
Given any i € {1,...,0%}, observe that
) - i+ k6" — 1 ‘ . i —1 k6*
W irkoe = 1 + kOT — {TJGZZ—H{;@ —{{ 7 J + 7 }9
— 1 — 1
— i+ k6" — VTJH—kG:’“":i— V ; Je
T
! (3.40)

= W, 1{721,,\\ JiL: J—l—l

By (3.39) and (3.40), for all i € {1,...,6*} and all k € {1,..., [(T —4)/6%| + 1},

Yitkor = i — m(i) +m(i +k0%) = ;,
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since 6% is a multiple of 6y and m has period 6y by definition. This gives us the desired

formula, ie., (I —1Ilp)(XoyB) = (V15 s Vo=, 1 VT - - - s Vo= 105 - - - )-
To decompose 7, we first consider at the summation

6
K“’H,SVT

> om((k—1)0+wps), sefl,....0% (3.41)

k=1

Note that we are evaluating the fy-periodic sequence m at points that are multiples of 6,
in (3.41). Therefore, we must have

m(wgs) + -+ +m(wps + (0p — 1)8) = m(wgs + 0o8) + - - - + m(wy s + (26p — 1)0)
= m(wgs + 2000) + - - - + m(wy s + (30) — 1)6)

= m(wps + (k — 1)860) + - - - + m(wy, + (ko — 1)6), (3.42)

for any k € {1,..., kmax}. Without loss of generality, let wys = s € {1,...,0}. Define
kmax = max{k € N : s+(kfy—1)0 € A .}. Since the greatest element of A? ;. is s+(K!,—
1)0, we clearly have that knafo is bounded by K¢, and thus knax < [K?7/6]. On the
other hand, |K?,./60,]0, < K¢, which implies |K? /0] € {k € N: s+(kbh—1)0 € A%}
Hence the equality', kmax = [KE /00 -

From the above observations, we can split (3.41) as a sum of (6yf)-periodic points,

given by (3.42), plus a remainder:

0

wq ;T
> m((k—1)0 + wy,y)
k=1
(K5, | )/00100 LS
= > m((k =10+ wp) + > m((k —1)0 + wy.)
k=1 k=L(KY, | 1)/60)00+1
6
= {Q—J > m((k—1)0 + wy.) + > m((k —1)0 +wes).  (3.43)
0 k=1 k=[(K}, 1)/00)00+1

'To gain insight into this result, observe that counting points of the form s + (k6o — 1)0 in A? . is
equivalent to count points of the form 6y + (k — 1)6p in the enumeration Efj ={1,2,..., Kfj}. Indeed,
the set {s+ (k6o — 1)0}ren N A? 1 is consituted by the foth, 20oth, ... points of A? ;.. So we rely on the
problem of counting the multiples of 8y starting at 6y in Ef7T. Lemma (3.3) tells that the number ky,.x

is exactly KggerT = (K0 —00)/00] +1=[(KI7)/60).
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From equations (3.33) and (3.43),

4

1 wg 5T 1 6o
Yor = m(s) 5 (k= 16+ wp) () 2= > m((k — 16+ w,)
wo,s, T =1 0 k=1
1 &
=m(s) - - > m((k = 1)6 + w,,)
0 k=1
0o 0 0o
1 1 | K1
" > ml(k = 1)0 + wps) — KT L G J > m((k = 1)0 + wp.s)
k=1 Wo,s5 k=1
6
1 wQ,S,T
50 Z m((k—1)8 + wys)
W0 T k= ((K8, | 7)/00160-+1
= gs + Rl,s,T + R2,S,T
for any s € {1,...,67}, where (£) stands for “plus and minus”. O

From equation (3.33), we immediately see that if 6 = 6y, then v, = 0. When 6 # 6y,
distinguish between two cases:
(A) 0 +# 60y and 6 is not a multiple of 6.
(B) 0 # 0y and 6 is a multiple of 6.
Lemma 3.7. The decomposition vso = & + Rsp, s =1,...,0%, has the following prop-

erties:

(1) |Rsx| < ngo , where C' is a positive constant;
wg,S,T

(i1) if case B holds, then & = 0,Vs € [67];

(iii) if case A holds, then 3s € [0%] : & # 0; moreover, uniformly on the set {s € [6%] :

& # 0}, In > 0 such that || > n.

Proof. (i) Without loss of generality, assume wy, = s. Let s € {1,...,0}. Since for any
r € R,n € Z, it holds that |z] =n <= n <z <n+ 1, we have

- - 15 -

K? K?
—=o< 2L 120 (3.44)
0o 0o
Klr| 6 0
—=0<1- | =2 < 3.45
B { 90 J KE,T Kse,T ( )

Then, by Lemma 3.6 and (3.45),

1 o VngJ %
Risrl=|—||l — — | —— E m((k—1)0+s
| 11 7T| '90' KSQ’T 90 P (( ) )
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(3.46)

-----

Klr | Kir
0< @ ==L — | 22T 1) <4, (3.47)
0o 0o
Thus, by Lemma 3.6 and (3.47),
0
1 w97S7T
Ros.r| = ‘— 20 >, ml(k=1)0+wp)
woe T k=bo | KO, 1/60]+1

(3.48)

By combining (3.46) and (3.48), we obtain |R;,
(ii) Suppose that case B holds, i.e., 6 = 16, for some natural number [ > 1. Since 6
is the period of m, we obtain that

1 & 0
& =mls)— — > m((k— 1)l + wig,.) = m(s) — 2-m(wig,s)

fo — 0o

-1

i ﬁ%):a Vse{1,...,0%).

:m(G_WE_1P%>+LZ%Jwﬁ_ﬂn&_{l%

16y
(iii) Suppose that case A holds and that there is some 6 such that &
,07}. But, for any r € N; it holds that m(s) = m(s + r0*) and

7 1 1
Wo s4roe = (s +10%) — {%J@ =5— r 7 JQ = Wy 5.

=0, Vs €

{1,

Thus, formula (3.35) implies that 6 satisfies & = 0, Vs € N. Since s +r0 € N and

Wy s1ro = Wy s also holds, for all s, € N, then &, =0 and

90 90
1 1
— E m((k—1)0+wyps) =—>» m((k—1)0+wpsir0), s,7 €N, (3.49)
b= 7 b i 7

(s +r6), Vs,r € N, which implies that m has period 6. As

respectively. Hence m(s) =
. Note that

Oy is the smallest period of m, we cannot have 6 < #,. Then assume 6 > 6,
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0/0y — 1 < |0/6y] < 0/0y and hence [0/6y]0, is in the interval (6 — 6y, ) which contains
exactly 0y — 1 integers. It means that 3k € {1,...,00 — 1} : 0 = |0/0]0y + k, which in

turn implies
m(s) =m(s+0) =m(s+[0/00]0g + k) =m(s + k), Vs €N,

contradicting the fact that k < 6y cannot be a period of m. Hence, for every 6 under case
A, 3se{l,...,0%} : & #N0.

To prove the next result, let s € {1,...,0%} be such that £ # 0. Observe that
0, ZZ“  m((k —1)8 4+ wep) is the average of 6y points of the sequence {m(t)}. Since
the range of {m(¢)} has at most 6, distinct points, the number of possible values that
the average can take is at most (293(;1) (i.e., the combination of 6, values taken 6, at
a time with repetition). As a consequence, & can also take only a finite number of
values. Denote the finite set of possible values of & by Bs. Define B = Bf U B}, where
Bf ={r € By : x >0} and By = {z € B; : © < 0}. Since Bf, B, are finite sets,
there are M; = min(B}) and My = max(B;). Set 7y = min(M;,—M,) > 0. Then
B*N B,,(0) = O, where B, (0) = {x € R : |z| < n,} is the open ball centered at zero
with radius 7,. It implies that B} C [B,, (0)]°. Take n = minseq, . gey.¢,20 Ms to obtain

B: C [B,,(0)]° C [B,(0)]°, Vs € {1,...,6%} : {& # 0. In words, all possible nonzero values
of & satisfies |£;| > n uniformly. O

Now we are in position to characterize some asymptotic properties of the terms in-
volved in equation (3.24).
Lemma 3.8. Let {v;} be an arbitrary divergent sequence of positive numbers. Let h =
O(T~Y*) and ©p < CT?*°~% for some small w > 0. Assume that Conditions 1-4 are
fulfilled . Moreover, consider n = n(0) = #S, where S is the subset of indices s €
{1,...,0%} for which & # 0. Then there are a sufficiently small constant ¢ > 0 and
Ty € N such that for all T > Ty,

T T VI'/h
(in case A): By > = , P ’Sﬂ > UTi < % , P |Sg€ > Tn /
6 6 v 6
59| < C—W_, 58| < C—”\/_
(in case B) : By =0, Sy =0, Sge =0, Sy"=0, S;=0.
Moreover, in both cases A and B,
C C
P(IUg™ ) > vr/VR) < =, P(IU) > or/vh ) < —, [Wg"| <C,
vt vt
e C e C
P(IUgm N > vr/Vi ) < . P(IUS7 > or/Vh ) < 0 WIS C
vy Ut
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|U9(gb79m)‘ <C.

Proof. We begin with 6 satisfying case A.
Define 5S¢ = {1,...,0"} \' S. Lemma 3.7 (i) and Lemma 3.4 imply that |Rsr| <
Cbty/|T/)0| < COr/T, Vs € {1,...,0%}. It follows from Lemmas 3.1, 3.6, 3.7 and the

triangle inequality for subtraction that

By = (Xg,3) (I = T1p) (X, 8) = (X, 3)' (I — 1) (I — Ty)( X, 5)
= (’71,T7 e 7’}/917']“, Ce )(’}/LT7 N ,j/gz,T, e ),

0 T
T
- |F [Tt > ez J{zm+zm}
L7 k=1 k=6 |T/6% |+1 kes kese

T T
> (9_33 Z|§k + Rk,T|2 = \‘QxJ Z’Sk RkT \‘HﬁJ Z(|§k| _ |Rk,T|)2
- - keSS keS kes
T
~ e > (&l® + [Rual” = 208k Birl) > { JZ|§k (€] = 2[Re.r[)
L7 kes kes
T T
2 “y ZWW —2|Ryr))] > iy Z[T]CQ]
kesS kesS
T T
= 010277% = c%, VT > Ty,

for some T, > 0 and some sufficiently small constants? ¢, co > 0. The fact that |Re.r| — 0
implies the existence of such positive constant ¢, for all sufficiently large 7.

Next, write

Z%TQT = Z%TQT+ Z Ve, TELT

tels telge

where Ig = {t : wp=; € S} and Ige = {t : wy=; € S°}. Using Lemma 3.4, the cardinalities
of Is and [gc satisfy

T T T T T
#[sgn({%J—l—l)§n<9—x+1>§n(§—l—1):n ;QS”T; (3.50)

H#HIge < (67 — n)qg;J + 1) <@ (0—1; + 1) < 0o(T +6) <2007, (3.51)

2As |T/6%) > T/0" —1>T/(06y) — 1 and the convergent sequence

T/(@@o)—l_ 1(1 9)T1>>o

T/ b

1
T )

is monotone increasing and strict positive by the assumption ©7 < T, we can take ¢; € (0,1/6p) so that
|T/6%] > ¢1T/0 holds for all T large enough.
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for every T. By Lemma 2.11 of Chapter 2,

> T % ) (3.52)

From Lemmas 3.6 and 3.7 (iii), it follows that |y, 7| < |&|+|Rer| < maxier,. g, |m(i)|+
Coy/Kf, < C, Vt € {1,...,T}. Furthermore, it holds that E[Z:tT:1 Yerer] = 0, by

assumption. From Chebychev’s and Davydov’s (Corollary 2.5.1) inequalities, Conditions

1-2 and (3.50),
46 1 46
T b [( Z %,TQ,T) } —v%nT

v nT
> 7T R ) < Val"( Z’Yt,Tﬁt,T) UQn

telg telg telg
:anT {ZZ%T%T €17 614
telg lelg
40
< > el Il [Covier, er)]
UTnTth[S
Co
< Z{COV €T, €,r)|
UTn tlels
c'o 246)/(4+6 445 445
< 37 allt = 1) EIEDB(Je g} 4B e ]
T tlel
< 200 Z (a|t71|)172/(4+5) < 27 ZZ [t—1|
vpnd” tlel UTnT telg 1=1
Co > co 2nT C
< 2a" < — < = 3.53
_U%nTtezI;;a —ovanT 0 T vz (3.53)
<C

On the other hand, Lemma 3.7(¢) implies that |v; 7| = |Rir| < COp/T,Vi € S¢ , which

in turn gives

2
ar< > %,Tet,T) = EK > %,Tet,:r) } < hwrllnallCoviens, e.r)|

telge telge telge l€lge

Or 02
0( T) QQOTZQCL <C—

IN
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using (3.51). Then, by Chebychev’s inequality,

nT @2 Ja @3 T 3(2/5—w)—2
E S o <=L <L <C
( et 0 > — T vinT T 0AT? T V2
telge
T4 C
<(C—— < —. (3.54)
vp vp

By combining the inequalities (3.52)-(3.54), we have that

o v [nT
P(\Sg\>7T ; )g

(3.55)

Sl O

for any T
Similarly,

Sge_Z%TZWZTt/T 61T+Z%TZW1T75/T eir = A+ A%
tels

telge

Using the definition of J,, given by (2.33) and (2.34), Lemma 2.8 of Chapter 2 and the
assumption that K has compact support

tlelg t,5=1

< Z Z Vernrl|Cov(eir, €j.r)| sup sup [Wir(z)| sup sup [Wjr(z)
ticls (ij)EJt/TXJz/T 1€[T) z€[0,1] JE[T] z€[0,1]

Th Z Z |COV(€7;,T,€]T

tleIS (’L ])Ejt/TXJl/T

Var(Ag‘ { Z Z Ve TV, TVVzT(t/T)Ez TW (l/T)EJ TI(Z & Jt/T>I<j € Jl/T)}

< 22@3

th[SZEJt/T 7=0
C [(2nT n\:T
(W( ! )kT_C(5> L (3.56)

for all T sufficiently large, where kr = #J, = O(Th) by Lemma 2.2 of Chapter 2. Since
lvir] < COr/T = o(1), Vi € S¢, Var(AJ) is dominated by Var(Aj). Therefore, for T

sufficiently large,
vrny/T/h T (n\° 20 2
> ———— | <C—|+ — ] =
2 9 h 9 VTN / T/h

(e
P(‘Sge > o QT/h ) < ©

and thus,
2 (3.57)

IN

From the proofs of Theorems 3.1 and 2.4, |S>1_, Wi p(z)m(i)| < C/T and |31, Wir(x)[g(z)—
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g(i/T)]| < Ch? hold uniformly over = € [0,1] for T large enough, respectively. Then

T
|Sgb| < Z‘%,T’
t=1

S Wit/ Dlo(t/T) - o6/ T)]| < €1 3l

t=1
< ChQ( Z|’Yt,T| + Z |’Yt,T|)
telg telge
T T
<on2( 2T oo Zocn2 (L 1 g0,
0 T 0 ——
—o(T)
<CorTR? < (JM (3.58)

0

for all sufficiently large T, using the hypothesis that h = O(T~/*). By Condition 5,
T-' = o(h?), implying that the term |S5™ | is dominated by |S5*|. Hence |S§™| < Cn\/T/9,
also holds for T" large enough.

Now, let 0 satisfy case B. Using similar arguments as for Lemma 3.7(ii)’s proof ,

K9 1
1
Yor = m(s) = 2 > m((k—1)0 + wy,s)
we,s, T =1
169

_ m(s) - Z m((k — 1)[00 + wl@g,s)

Wigg,s: 1 k=1

= m(s) + m(wig,,s)

= m(wlgo s { 0 Jl@o) +m(wpg, s) =0, Vse{l,...,0%},

for some 1 < 1 € N. Then, by Lemma 3.6, (I — IIp) Xy, is the zero T-vector. We thus
have By = S = Sj° = Sj™ = 55" = 0.

It remains to bound the terms Wg, Wgm Uo9m) plow9e) rowe) grlomse) gnq griome),
which do not have (I —1IIy) Xy, 5 in their formulas. We start with the non-stochastic terms
Wi Wi, Ua(gb’gm). From Lemma 3.5,

Do Dy --- Dg, D,
(ITy — I1gy ) g = Dy Dy — | Dy, De, ap
[ K B [ K7° —1)8 ]
ﬁ sy %(%) @ P gb(%)

Koy, r

— i —
1 0,7 0+(k—1)0 90 T 0o+ (k—1)60
K. > kot gb( T ) eo > k=1 7T
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where Dy = diag(1/K{ ;,...,1/K§ ;) and Dy, = dz’ag(l/Kff’T, ce 1/Kg§’T). Hence,
(4

é%@m 3 gt

|9, (TITg — TLg, ) gs| <

wo, i, T =1
K%
w97,
co(r) [ 2 ()]
b
we LT k=1 T
= Dﬁ”’ + Dg”. (3.59)

Since sup,cpo 11lgs(z)| = O(h?) and h = O(T~'/*), it holds that

K§,
1 0,l»

D <CZhQ[K9 > h2] < CTh* = O(1).
we, 1, T =1

Clearly, we also have D3* = O(1). Therefore, for T sufficiently large
Wik < C. (3.60)

Since sup,ep1ylgm(z)| = O(1/T) and so, dominated by sup,cp1)/gs(%)|, we have that the
terms [W¢™| and |US%9™)| are also dominated by |W¢"|. Then, for T sufficiently large

(Wi < C, (3.61)
[Uorom)| < . (3.62)

We finally turn to the stochastic terms U9, U39 {9 and U™ Note that
for arbitrary =,y € RT, 2/ By = ¢/ Bx. Then write

0

6 1 & fwe+ (k—1)8
gbg de Z/T |:K9 Z gb( T )]

w1, T =1

)

- de |T) [ 1%’Tgb<w9°’l - (jlf — 1)90)]

wao LT k=1

_ Gggb,ge) . Gggb ge)_ (3.63)

Then, from Davydov’s inequality,

1
Var(Gggng = {de l/T Je t/T)W

lt=1 wo 1,1~ we ¢, T
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0

{ i"z; 0 (w9,+ 1)6)HK§§1’Tgb(w9,t+(Tl~c'1)9)”

Z Z |Cov(e;rejr)| sup sup |[Wir(x)| sup sup |W;r(x)|h?

=1 (i, )eJt/Tle/T i€[T] z€[0,1] JET] z€[0,1]

| /\

h2
Z > [Cov(eirer)| < OET%T < CTh?,

Lt=1 (4, J)eJt/TXJl/T

for T large enough, where J, and kr are defined as in (3.56). Also, Var(Gggb’ge)) < CTh3.
By Chebychev’s inequality,

P <|U0(9b»95)

+ |G§gb,ge)

>’UT/\/E>

U Ur
+ P G gb ge
2/ ) (' T o0vn )
4
Cﬂ < — ¢ (3.64)
'UT UT

> vT/\/ﬁ> < P<|G§9”’g€)

<p <|Gggb,ge)

for T large enough. Analogously as in (3.63), we decompose

Ue(gb,ge) _ Gggm,ge) _ G(ng,ge)7

Ue(gm,e) _ Gggm,s) _ G%m,&))
Ue(gbve) — Gggbve) _ Gggb7€)‘

It can be easily seen that the sequence Var(GZ(»gb’g‘)) dominates Var (Gggm 9e) ), Var(G g E))
and Var(G gee ),z' € {1,2}. Hence,

C
Pl |ufemed| > UT/\/E> <. (3.65)
T

C
pl Ul > vT/\/_> < (3.66)

vt

C
Pl Ui >vT/\/_> < (3.67)

vt

for T large enough.

]

Say that a real sequence ar is O(br) if there are constants m,M > 0 such that
brm < ap < Mby for all sufficiently large T'.
Lemma 3.9. Suppose the conditions of Lemma 3.8 hold. Assume that h = ©(T~1/%),
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A = o(T) and T'*© ,01/2 = o(Ar), where pr is a positive sequence slowly diverging to
infinity. Then for all 0 # 0y : 1 < 0 < Or and oll T sufficiently large,

C

TPT'

Pr{Q(8, A1) < Q(O, A1)} < 5

Proof. In general, given a probability space (€2, F, P) and F-measurable sets A, Ay, ..., Ag,
it holds that

() a) | =lan(na)]ofan (U )

i€ k] i€ (k] i€ (k]
c[ar m W)o(U )

and then, by the monotonicity and subadditivity of the measure, P(A) < P [Aﬂ <ﬂie[,€] AZ>] +

S P(AD).
Set vp = /Orpr and pr = InlnT . Then pr = o(T*), for any a > 0. Suppose that 6

satisfies the case A. By the above result together with Lemma 3.8, we obtain

P{Q(Q/\T)<Q(90,)\T)}<p{ YO | yes) | ) < _p ey e

_ ngb + 283’" o 2U6(gb7gm) _ 2U9(gb>ge) _ 2U0(9b:€) + 2U(9m,ge) _ 2U0(9m76) + Sge

— S5+ Ar(6o — 0), ”‘/_ Sg| < UT”W U§99)| < vy )V,
U3 < vr/ Vi, U] < vTNE, U < vwﬁ}
P( ”\Q/T ) + P(}ng > UT”\/QTW ) + P(|U;9m’9€> > UT/\/E)
¥ p(w;w > vwﬁ) ¥ p(w;ww N ) n p(wgwn > UTNE)

/T /h C
S P{‘/’H(€7€) + ‘/'9(5796) + ‘/’9(96796) S _BH + CUTn 0 / + AT(QO _ 9)} + 7

Vi
for all T" sufficiently large.
If 6 > 60, then

(CUTn\/T_/h + M0y — 9)) b Cu

< T*7/207w1 InT 1/2 — 1
0 nT — C( nin ) O( )7

3

for T large enough. If 8 < 6y, then

Th/T/h 0 CUT 9 )\T .
(CUT 0 + )\T(GO - (9)) nT = \/—_ T = 0(1),




84

by the hypothesis Ay = o(T'). Therefore, regardless of whether 6 > 6y or 6 < 6, it holds
that Voo > 0: 377 € N VT > T, : |Copny/T/h/0 + Ap(0y — 0)| < 6onT'/6 . Hence, for
every s : ¢ > 05 > 0, Lemma 3.8 implies that there exists 75 > 77 > 0 such that for all
T >1T,

— B@ + CUTTZ/Q\/ T/]’L + /\T(QQ — Q) S —<C — 52)TLT/0 = —C’mT/@, (368)

for some positive constant C;. Applying Lemma 2.11 two times, we have

C

2
v

P{Q(Q,)\T) S Q(eo,)\T)} S P{V'G(QG) + ‘/0(6795) + ‘/‘0(95,96) S _ClnT/e} +
C

+ | ‘/6(96 795) _
v

< P{|V9“)| + [yese) > C’lnT/Q} +

< P{W;“U > ch/e} + p{|v;€’gf> > ch/e}

+ P{\V;}W > ch/e} e
vr

C

2:P1+P2+P3+—2, (369)
vt
for T sufficiently large. Now we need to bound each of the probabilities P;, P, and Ps.
We start with Ps. Analogously to the decomposition as for (3.59) in the Lemma 3.8’s

proof, we can write

‘/G(geyge) — gé(HQO _ H0>ge

90

T T 4 (k—1)0
0o,l - 0

= altm [ — 3 ()]

=1 woy, 1T k=1

K@
T wg 1T
1 ’ w971+(k5—1)9

=30l [ X oM

=1 wo, 1,1 =1
= V909 g0, (3.70)

From Lemma 2.11 we have that

T T
P3 S P |‘/€(9167!]6) _ ‘/6(.%6796) Z Cn_ S P “/‘9(!{6,95) _I_ "/'g(geyge) 2 Cn—
b ) 6T s , @T
CnT CnT
< P V(gﬁzg€) > P V(gey!]e) > 2
< (| 0.1 =5 @T> + (] 02 > 56,
= Poa+ Fop. (3.71)

Denote Jl,t = Jt/T X Jl/T X J[we?lJr(kfl)e]/T X J[wg,,ﬁ(kfl)e}/Ta for any l,t € [T], where
Jeyx € [0,1], is defined as in (3.56). The application of Theorem 2.1 of Rio (2017) with
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the hypothesis that E(e/p(In(1 + €,1)?%)) < oo gives

e 1 & (gt (k=102
Var (V2o )SE{{dea/T)[KQ > o i)
=1 wo,1, T =1
KG KG
C T wg 1T " wg ¢, T T
< Ty Z Z |E(€e;r€r T€; 1€ )|
Lt=1 k=1 k=1 4 jj'=1
1
X =35 7] I((ZZ’]])EJH>
ng Z,Tngyt,T
C T 2
<oz 3 X EGaan))
l,t=1 i,i'EJt/TXJl/T

(3.72)

for T large enough, where kr = #J, = O(Th), (p,q,7,s) = (i,7,7,j") — min Jyr + 1,
al(u) =inf{k e N: a(k) <u}, Qp(u) =inf{t > 0: P(lex| > t) <u} .
The same bound holds for Var(‘/e{gl"gf)). By Chebychev’s inequality

P3 < C<@Z> < CT77/1072w —COT~ 2/5+wT 3/10—3w < = ¢ (373)

o @TPT

The remaining stochastic terms can be decomposed analogously as

Ve(ﬁage) — ‘/;9(61796) _ VG(,EQ’QG)?
(e,€) €,€) (e,€)
Vi =V - v

Using Theorem 2.1 of Rio (2017) again, we have

T

e 1 C
Var(V ) Var(v 9e) ) < C(Th)2 Z |E(€;rei rejrey )| < ok
i g, =1
K? K

weT ’LUQ/T

Var(v'a(ge))y\/ar(ve(;f S T Z Z Z |E(€i 7€ 76w, R L 1)

i,i'=1 k=1 k=1

cez <& i
< T2 Z |E(€i,T€i’,T6j7T€j’,T)|SC@T.

i1,5,5'=1
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for T large enough. Then P, < C/(O7pr). In addition, from Chebychev’s inequality,

Pl < CT*2/5*4W _ CT*2/5+wT75w < ¢ 7 (374)
Orpr
for all sufficiently large 7.
Hence, in case A,
~ ~ C
TPT

for all sufficiently large T'.

Next, let us focus in case B. By Lemma 3.8,

P{Q(Q, Ar) < Q(907/\T)} < p{%(“) + ‘/’0(5796) + %(ge,ge) < ng” + Wegm _ 2U0(9b:gm)

_ 2U9(gb7g€) _ 2U0(gb76) + 2U6(gmyg€) _ 2U6(gm76) _'_ )\T(eo _ 9)’ ’Uo(g’ng€)

< UT/\/E,

’Ue(glnge)

€ € C
< vp/Vh, US| < vp/Vh, US| < vT/\/ﬁ} +
T

C
S P{‘/&(E,E) + ‘/0(6796) _I_ ‘/'0(967!]6) S CUT/h _I_ AT(QO — 9)} + ’U—2’
T

for T large enough. Since 6y — 6 < 0 and T+*p}/*07 = o(\r), it follows that, for all T
sufficiently large, there is Cy > 0 satisfying

% + A (6o — 0) < CTY (Orpr)? + Ap(0p — 0) < Ap(Cy + (6 — 0)) < —Ci)r,

for any 4 > 0 small enough so that Cé, + (6 — ) < 0. We thus have that

C

2
vp

P{Q(Q)AT) < @(907 )\T)} < P{Ve(e,e) + Vg(ﬁ,ge) + Vg(ge,gs) < —CAT} +

< P{WH“H > OAT} + P{ng?gd > OAT}
C
+ P{H/e(gmge) Z C)\T} + —
ur
C
=01+ Q2+ Qs+ . (3.76)
ur
Along the same lines as for the case A, we have that
C C C
;@3 < < < ;
0 Qs (Arh)? = ©Fpr ~ Orpr
2 5/4 ~3/4
Q1§06—<C’@T@T < C C

< :
A T TVROpr T e/ pp T Orpr
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Therefore, in case B,

P{Q(0,\r) < Q(60, M)} < @G :

TPT

for sufficiently large 7' O]

Lemma 3.10. Let x € [0,1], i € {1,...,6p} and 6y € {1,...,07}, with 1 < Oy < T, be
giwen with T large enough so that the set

Joi={k € {1,... K%} : (i+ (k—1)00)/T € C,}

where
[0,[[)+h] ) wae [Oah]
Co=qlr—h,xz+h] ,ifze(h1-h),
[z — h,1] , ifx e[l —h1]

s well-defined and nonempty. Then the cardinality of J,; s O(Kf}}h). Denote 72267T7k =
(1 + (k—=1)0y)/T, YT,k € N. Under Condition 4, for all sufficiently large T and j € N,

6o
1 4T , ’Vz?v,T,k: —z\J 1 U—1 J C
‘Kon ; Kh(%‘,(;,T,k - 35) (T) — /0 Kh(u — :1:) ( N ) du| < h"

Proof. Define k, = min J,;, k* = max J,, C, = sup C, and C, = infC,. For brevity’s
sake, let v = 72(;,T,k and Jy; = Jo; \ {k.}. Along the same lines of Lemma 2.2’s proof
in the previous chapter, we can find that #J,;, = O(Th/6,) = O(ngph), by Lemma 3.4,
and that 0 < C, — Y= < 0p/T and 0 <y, — C, < 6y/T hold. Furthermore, we have

‘Kleo ZmKh(fyk_x)(’Vk;xy_/th(u—x)(U;x)jdu

0T ked,
1 _ J Yi+60/T _ J
S 7% Z Kh(”)/k—ll) (th x) — Z / Kh(U—SC) (Uh5(7> du
Kir keJr keJz, Tk
1 Vi, — T I Ve u—x|
+ Kz%Kh(vk* —m) b . ‘ +/Cz Kh(u—x) du
Ca |
—i—/ Kh(u—x) i du
/T
1 Ve — T 70, & — g C
Sk;.K%Kh(%—f)< . ) _TKh<§k_x)( . ) + o




38

1 o ( )(fk—x)’ C
o Z h k
‘K@T Kel, h Th
<C/T?
1 ke x J fk—x J C C
o S5 (ans) () 5 6
T keJs
1 T — T 7 &i—x 7
<7 2 {0 0|(55) - (55)
0o
KivTICEJ;Z- h h
& —axl c _C
17 K (v — ) — K (& — ) +ﬂ§ﬁ’

where § € (Y, + 0o/T) for each k € J; ;. To see that |1/Kf}} —00/T| < C/T? holds,
note that the facts

r 1< r < r <— 1 ! > 1 1 >0
—_— J— J— a = J— J—
0 6o | = 6o Ty -1 T/6, " |T/6y] T/0 —
and
T<LTJ+1<T+1<:>O> 1 1 > 1 I = —b
b | 6o = 0, |T/6y| +1 T/6g = T/0y+1 T/6,
imply
T262
: 2 T 0 —_ 2
Hm Tar =l oo =0
T2(92
. 2 Rt 0 — 2
Am T bT_TIEEoTueoT 0

and thus T?ap, T?by are convergent nonnegative sequences, which in turn imply that there
is C' > 0 such that both ar and by are bounded by C'/T?. By Lemma 3.4, KzOT is either
|T/6y| or |T/6y] + 1. Therefore, \1/K2°T —0o/T| < max(ar,br) < C/T?. O

Lemma 3.11. Let T € N be given. Let {e,7 : 1 <t < T,T > 1} be a strong mizing
triangular array on (Q, F, P) with mizing sequence ap and {a;r(x) : 1 <t <T,T > 1} be
a triangular array of finite real numbers. Finally, let J C [T be a set and ky its cardinality
with kr being a sequence diverging to infinity. Then the sub-array {a;re,rI(t € J): 1<
t <T,T > 1} is also strongly mizing with mizing coefficients o/r(j) bounded by ar(j), for
any 0 <5 <T.

Proof. By definition,

op(j) = sup sup{|P(ANB)— P(A)P(B)|: A€ Fip,B€ Fir}t, 0<j<T

1<k<T—j
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where Ffp = o(ayrefp 11 <1< k)and ¢, = erl(t € J). Forany 1 <i <k <T, we

have

Flr=olagrer:i <1 <k)=o(U_olarer))
C o(Uio(ar, 1))
= o{Uil(e/7) " (Br) U {0, Q}]}

= o(Ui(eir) ™ (Br)) = oefp i <1< ), (3.77)

since the sigma-algebra generated by a constant is the trivial sigma-algebra. To justify
the inclusion in (3.77), consider the function f : R? — R defined by f(z,y) = zy.

Claim 5. The function f : (R? Bg:) — (R, Bgr) is measurable.

Proof of claim: The Borel sigma-algebra on R? is defined as the sigma-algebra generated

by the set of open sets in R?. That is, it is the smallest sigma-algebra containing all open

sets in R?. Furthermore, it is well known that f : (R? Bg2) — (R, Bgr) is measurable if,

and only if, Va € R, {(z,y) : f(z,y) < a} € Bge. Since f is continuous, {f~!(—o0,a)} is

open, and hence must be in Bge, for any a € R. [ |
Define the random vector Z = (X,Y). As XY = f(Z) and f is Borel,

o XY)=0(f(2)={(Z o f)A):AcBr} C{ZYB): BeBr}=0(X,Y).
From (3.77), for any 0 < j < T and any 1 < k < T — j, it holds that

Fip Coler: 1 <1< k)= o{(Uepnsol(er)) U (Uepnso(0)}
= o{(Uiemrario(ar)) U {0, Q}}
= o{Uiemniano(er)} € o{(U o(er))} (3.78)

and similarly
Fgﬂj Colgr:k+j<I<T)C a{(UlT:kHa(el,T))}. (3.79)

The inclusions (3.78) and (3.79) imply the result. O
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Appendix D - General Central Limit Theorems for mixing arrays

Politis et al. (1997) obtained a Central Limit Theorem (CLT) for strong mixing se-

quences without the strict stationarity assumption. CLTs for strong mixing sequences are
traditionally proved using Bernstein’s method. The main idea of this method is to split
asum X + ...+ X, into a sum of nearly independent random variables (the big blocks)
and a sum of other terms (small blocks) which is asymptotically negligible if properly
normalized. In order to derived this result, we need the following lemmas.
Lemma 3.12 (Ibragimov’s Bound). Let {X;} be a sequence of random vectors defined on
a probability space and let F° = o(X; : a < t < b). Also, denote the mizing coefficient
corresponding to {X;} by ax. Let Y1,Ys be random variables measurable with respect to
FP ooy Fims respectively. In addition, let Y|, Yy be independent random variables having
the same probability distribution as Yy, Ys, respectively. Denote the characteristic functions
of Y1+ Y5 and Y/ + Y] by ¢ and ¢, respectively. Then sup,|p(t) — ¢'(t)] < 16ax(m).

Proof. By Euler’s formula and Billingsley’s inequality, we have

o(t) — ' (1)] = }E(eit(YlJrYz)) _ E(eit(Yl’JrYQ’))} = | B(¢™1ei?) — B(e™) B(e1?)]
= }Cov(cos tY; +isintY;, costYs + isin tY2)|
< |Cov(costYi, costYs)| + |Cov(sintYy, sintYs)|
+ |Cov(costYy,sintYs)| 4+ |Cov(sintYi, costYs)|
< 16ax(m),

since esssuplcos(tY;)| < 1 and esssuplsin(tY;)| < 1 (and thus are in L*°), for any ¢ and
any ¢ = 1, 2. O

Lemma 3.13 (Doukhan’s Moment Bound). Let {X;} be a sequence of mean zero random

variables and denote the corresponding mizing coefficient by ax. Define, for 7 > 2 and
0>0

C(r,0) =Y (k+ 12" (k),
k=0

d
L(r,6,d) = Z||XZ||:+6»
i=1

D(7,8,d) = max(L(t,6,d), [L(2,6,d)]?).

Then E|Z?:1 XZ-’T < BD(1,6,d), where B is a constant depending only on 7,9 and ax.
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In particular, if T is an even integer, then

d
E))  Xi|" < B(7,6)D(r,6,d)

=1

where B(T,0) can be computed recursively, e.g., for 7 up to 4,

B(1,6) < 1;

B(2,0) < 18max{1,C(2,9)};
B(3,0) < 102max{1,C(3,4)};
B(4,0) < 3024 max{1,C?(4,6)}.

If we additionally assume that || X;||l2425 < A, Vi, then

E Ii X[ < paio?
i=1
where ' = {3024 max[1, C?(4, §)]} 241 H42=0)/0 A2+0)(1+6/2)
The proof of this lemma is in the Appendix A of Politis et al. (1997).
Theorem 3.4 (Lyapunov’s CLT). Suppose that {X;} is a sequence of independent random
variables such that, for each i, E(X;) = p; < oo and Var(X;) = o¢? < oo. Define
= Y b 0% If there exists § > 0 so that |X;|*™ are integrable and the Lyaponov’s

condition holds, 1i.e.,

lim —ZE{|X — Y =0,

then
—Z X — ) 5 N(0,1).
on 1o
For a proof of the Lyapunov’s CLT, see Theorem 27.3 of Billingsley (1995).
Theorem 3.5 (Politis’ CLT). Let {X,;:1<i<d,} be a triangular array of mean zero

random variables. Denote the strong mizing coefficient corresponding to the nth row by
a,. Define

a+k—1 a+k—1
1/2
nka'_ § -X%za nka =k / E -X%Za and 0- _‘\kw(jﬁk@)
i=a

Assume the conditions: for some § > 0,
(A.1) HXn,i||2+26 <A, Vn,i;
(A.2) o) 2

Sup,|o

— o° uniformly in a, i.e., for any sequence k, = k that tends to infinity,

n.k,a

2 :
rka— 0| =0 asn — oo;
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(A.3) Sk + 1% (k) < K, vn,

where A, K are finite constants, independent of n, k or a. Then

dn
Tdod = N(0,0%), e, d;V23" X,; — N(0,0%).

i=1
Proof. For each row n, and given lengths b,, [,,, define

bn,
Un,i = ZXnv(i_l)(bn'Hn)-l-k? 1 S 1 S T'n
k=1

bn+in

Voi = Z Xo(im D) (bntln)tks L <8< — 1
k=bn+1

Vn,rn - Xn,(rnfl)(anrln)Jrl +--+ Xn,dn7

where 7, is the greatest integer i so that (i — 1)(b, + [,,) + b, < d,. Then S, 4,1 =
E:;l Un,i+ Z;Zl Vyi- Note that representing .S, 4, 1 in this way, the indices of the sum is
splitted into alternating blocks of lengths b,, and [,,. We want to choose [, small enough
so that d "/ S Vi = 0 but big enough so that dn'? Yo, Uy, can be approximated
by a sum of independent random variables also normalized by d,, 172,

Choose b, = Ldf/ﬂ and [, = Ldf’/ﬂ. Observing that r, is |(d, — b,)/ (b, + 1,,)] or
| (dy, — bn)/ (b, + 1) ] + 1, we have the asymptotic equivalences®: b, ~ d* 1, ~ d)* and
Ty ~ d}/ 4

Firstly, we show that d;l/z o Vi 2 0 as n — oo. Since its expectation is zero, it

is sufficient to prove that the variance vanishes. Under assumptions A.1 and A.3, note

that Lemma 3.13 implies?

2
< B(2,0)D(2,9,1,)

l’!L

Z X, (i—1) (bptn) +bn b
k=1

< 18max{1,C(2,8)}L(2,6,1,) < 18K, A* := Cl,,.

EWV,.*’=F

Then the application of Minkowski’s inequality r,, — 1 times gives

Tn 1/2 Tn 9 1/2 Tn 9
{Var(dnlﬂzvn,i)} = [ / (Z d,;l/?Vn,z-) dP] < Z[ / (d;lﬂvn,@-) dP]
=1 =1 =1

3/4 _
3Since dy, — by ~ dy and by + I, ~ dy/*, we have lim,, o, L $2tn) =1,

nt+ln
4For every k > 0, it holds that 1 < (k + 1)2 and o/ @ (k) < af/&l”)(k), with the observation that

0 < ap <1/4,¥n. Thus C(2,6) < C(4,6) < K. Further, note that when ¢ = r,, V,, . is the sum of at
most I, + by, terms. In this case, E|V,, ., |*> < C(b, +1,), for some C' > 0.

1/2
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7”nZ

:d—”ﬁ{m[E<V%>P/Z U

< dn1/2{rn<01n>1/2 +[C (b, + ln>]1/2} =d,'?O(d¥*®)

From Chebychev’s inequality, P(\dﬁl/z St Vil > w) <w 2 Var(d, — ot Vo) for any
w > 0. Taking the limit over n gives the convergence in probability.

Let U, ;,
distribution as U, ;, for each 1 < ¢ < r,. Define the sums £, = d;l/Q Z§=1 U, and
3 T/L g = dn s Z

for any ¢ and n,

1 < i < r,, be independent random variables so that UT’M- has the same

and their characteristic functions ¢g, ., pr , respectively. Then,

’Vl’L’

’SOan“n (t) - SOF”Il,rn (t)’ = ‘EeitFn,rn _ Eethn .

n'rn

- ‘EetF — EetFrrn £+ BeitFrrn—1 Rt~V

vl . vl .
; it —d ; it —L
+ Betfrm=2Il  Be'Vin £ £ BTl  Be' Vi

L Unyrp

Ul
= ‘Ee“an — BetFrm 4 BeitFam-1 Bt VI _ BeitPur—1 BtV

it itF, it Yrarn LY
Ee Vi — Fe'"mm=2Fe" Vin H;’;TnEe Vit

+ BeitFrm—aqn
+ ...

TLJ

+ el Ee“r Ee“Fane”rH% Bt Vi

Tn—2 i

. . n,J

=D (Betmren — EeitFnk Bt )H’“nmEe”tﬁ
k=1

U,
it 2T

+ Eeitfnm — Bettfnrm-1 Rt Vin

rn—1
E (Ee"tF"v’c+1 Ee“F"kEe dn

k=1

< 1 (16a, (1)),

IN

Z}san  — PE

using Lemma 3.12 (Ibragimov’s Bound) and the fact that |¢y, | < 1, V& =1,...,7,
Purposely choose «,(k) < K/k? which allows the mixing coefficient to decrease slow

enough so that condition A.3 is violated. Then
167,00, (1) < 167, K /12 = O(d; /%) = o(1).

Since a,(k) has to be strictly less that K/k* (i.e., decrease at a faster rate) to satisfy
condition A.3, then sup,|¢r, . (t) — wry, (1 )| = 0 as n — oo. Hence, F,,, KN L, n—
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We now show that F, . % N(0,02). Write

Tn 1 Tn
(; U,’m) =5 ZVar(U = rnbn ZE (U2

=1

Tn

2
:EZE 1/2U7” ZE[( 1/ZZX (zl(n—&-l)—&-k)}'

i=1
Condition A.2 implies that Var(b, 1/QUM-) — ¢ uniformly in i. Then

Tn

1
— ) Var(b,*Uy;) — 0

T
=1

Tn

! — Y [Var(b,?U,;) — 0]

r
"1'1

< —Z|Var b, 2U,,) — o°|
< sup]Var( 20,0 — 0% =0 (3.80)

Assume K > 1 without loss of generality. From Lemma 3.13,

1

b(2+5 ’ |2+6 < {3024 maX[LKZ]}24[1+4(2—6)/5]A(2+6)(1+6/2) — (381)

Combining (3.80) and (3.81), we have

n —(2+8)/2 ™™ 24 —H Tn U’ . 244
()] e ()] el
k=1 n

=1

<71 2 O(1)O(ry) = O(1;,°?) = o(1).

Since the Lyapunov’s condition is satisfied, we use Theorem 3.4 to obtain that

> U
Var(3:", U’ D2

% N(0,1). (3.82)

As showed in (3.80), (rub,) " Var(3_,~, Uy, ;) — 02, but 7,b, ~ d,,. Therefore

1 L Tnbn
nh—>r20 d_ Var(z Un,i) n— o0 d n—o00 Tn n var Z

n k=1

and hence,

Vi m U
\/ ar( ;—1 ’”)—m. (3.83)

For simplicity, denote Y;, = > 77" Uy i/+/5n and b, = /s, /dy, where s, = Var(} ", Uy ;),



95

and consider Y ~ N(0,1). Assume Y, %Y and b, — o to represent expressions (3.82)
and (3.83), respectively. It follows that Vo € R : Ve, eo > 0:IN;, N e N:n > N} —
|P(Y, <xz/b,) — P(Y <x/b,)| <e/2and n> Ny = |P(Y <z/b,) —P(Y <z/o)| <

€2/2, since the distribution function of Y is continuous. In particular, for ¢; = e,

|P(b,Y, <z)—PObY <z)| <|P(Y, <x/b,)— PY <z/b,)|
+|P(Y <x/b,) — P(Y < z/0)|
<€

Thus b,Y, % ¢V That is,

Var(3 iy Un) 21 Un il Uni 4
\/ dn Var(>im U )12 - L2 — oN(0,1). (3.84)

Since d;, '/* S Vi = 0 and (3.84) hold, the application of Slutsky’s theorem gives

S, iy Unii + 3702 Vi
d,lc%,l _ 2ila »d1/2211 i N(0,0%).

]

The next theorem is due to Ekstrom (2014) who provided a more general CLT with-
out imposing the condition A.2 of Politi’s CLT. Belyaev and Sjostedt-de Luna (2000)
introduced the notion of weakly approaching sequences of distributions, generalizing the
concept of weak convergence of distributions without the need to have a limiting distri-
bution. Two sequences of distribution laws {£(Y,)} and {£(X,)} of random variables
{Y,} and {X,}, respectively, are said to weakly approach each other if for any bounded
continuous function f, we have E(f(Y,)) — E(f(X,)) — 0 as n — oo, and we write
L(Y,) &% L(X,), n— oco.

Theorem 3.6 (Politis-Ekstrom’s CLT). Let {X,,; : 1 <i <d,} be a triangular array of
mean zero random variables and consider the notations of Theorem 3.5. If conditions A.1
and A.3 of Theorem 3.5 hold true, then

ﬁ(Tn,dn,l) & N(07 Ui,dn,l)'

Corollary 3.6.1. Under the assumptions of Theorem 3.6, if we additionaly have Ui,dn,l —

d
o? asn — oo, then T, 4,1 — N(0,0?).

Proof. Let {X,} : X, ~ N(0,02, |) and Y,y = T, 4,1 for every n. Denote M,(t) as
the moment generating function associated to X,, for each n. Then lim, , M,(t) =
lim,, o e7ndntt/2 = e7#/2 for all ¢ € R, by hypothesis. Therefore X, -5 X with
X ~ N(0,6%), from Theorem 3 of Curtiss (1942). Using portmanteau’s Lemma (VAART,
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1998, p. 6) we have that for all bounded continuous function f,

lim E(f(Y,)) — E(f(X)) = lim E(f(Yn)) — E(f(Xn)) + lim E(f(X5)) - E(f(X)) =0

n—0o0 n—oo n—0o0

implying Y, 4 X , as desired. O]

To illustrate the applicability of the Politis-Ekstrom’s CLT, consider the triangular
array {X;r} = {XyrI(t € J,r)} in (3.18) where the set J,r = {t € [T] : t/T € (z —
h,x+ h)}, for some x € (h,1— h), has cardinality kr. For each T, the smallest element of
Je1 C [T] does not need to be 1. It does not mean, however, that we cannot use the CLT.
If {e; 1} satisfies the conditions of Theorem 3.6, so does {X;r} by Lemma 3.11. Since,
for each T', J, r is a finite set, then there is a bijection fr : J,r — {1,...,kr]} which
enables us to treat the array {X;rI(t € J,r)} = {Xir,t € Jo7, T > 1} equivalently as
{Zir,1 <i < |kp],T > 1} where Z;p = Xy )1
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Appendix E - A note on the proof of Vogt and Linton

In the proof of Lemma A4 in the supplementary material of Vogt and Linton (2014),
a similar bound problem to that of inequality (3.72), in this study, appeared. An upper
bound for a sum of products of four random variables was required in order to prove
the lemma and, ultimately, to prove the consistency of the period estimator. For this,
they introduced the concept of separated indices. In their words, "we say that an index
i1 is separated from the indices iy, ..., i if iy — x| > CylogT for a sufficiently large
constant Cy and all £ = 2,...,d". This concept allowed the authors to split the following

summation as

/] 0
r KDR K
E E § Ele(k—1)011o €16k —1)0+1) €11] = E Ele(k—1)0115 €16k —1)0+1 €1
LU=1 k=1 k=1 (LU k,k')eT

+ E E[E(k—1)9+19616(k/71)9+z;Ezf],
(LI k') eTe

where "I" is the set of tuples (I,1’, k, k') such that none of the indices {,!’, (k — 1), (k' —
1)0 + [} is separated from the others and I'® is its complement" and iy = wp, in our
notation. After bounding the sum over I', the sum over its complement ['“ was bounded
using the argument that "for any tuple (1,0, k, k') € I'°, there exists an index, say [, which
is separated from the others". However, such set of indices is only a proper subset of I'°.

To make our argument clearer, let us give an explicit definition of I' based on Vogt
and Linton (2014):

L= {1V kK)e[T)* noneof I,I',(k—1)0 + 1y, (K —1)0 + 1
is separated from the others}
= {(,I',k, k') € [T]* : every index I,I', (k — 1)0 + lg, (K’ — 1)0 + I,
is not separated from the others}

= {(i1, i, i5,44) € [T]*: V5 € [4] : Yk € (4] \ {j} « [£(5;) — f(in)] < C2log T}

where
i Jif j e {1,2}
f(ij) = (i — D)0+ — [(.1—1)/0] ,if j=3
(i, —1)0+iy— |(i2—1)/0] ,ifj=4

Therefore, its complement is given by

¢ = {(ir,2,43,10) € [T]": 3j € [4] : 3k € [4]\ {5} : [/ (i) — f(ir)| > Colog T}



98

Note that Vogt and Linton considered the set
{(iv,d2,43,40) € [T1" 2 35 € [4] : Vh € [4]\ {5} « [/ (i) — f(ix)] > Calog T},

which is a proper subset of I'“, and is not sufficient for the proof.

As an example, assume {¢;} i.i.d. (and thus, strongly mixing) with mean zero and finite
variance. The tuple (I,[, k, k) with [ = 1 and k = Cylog T/0+2 is in I' for T large enough.
But Cov(er, €610+ o105 7€110+Ca10sT) = E(F)E(€ g1 cp1057) = [E(€7)]? = C < 00, by the
hypotheses. Hence, the argument of Vogt and Linton that for any (I,I',k, k") € T¢,
Cov(e, €1 E(k—1)0+1p E (k' —1)041],) < CT~% for arbitrarily large C5 > 0 does not hold.
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4 NONPARAMETRIC ESTIMATION OF A SMOOTH TREND IN THE
PRESENCE OF A PERIODIC SEQUENCE: FINITE SAMPLE BEHAV-
IOR AND APPLICATIONS

Abstract. We investigate the finite sample behavior of the estimators obtained by re-
versing the procedure of Vogt and Linton (2014). We suggest a plug-in type bandwidth
for the trend estimator. Our simulations showed a good performance for the suggested
bandwidth selector and a fairly robust behavior of the period estimator over different
bandwidths. We complement the study with two applications: one in global temperature
data and the other in the estimation of the non-accelerating inflation rate of unemploy-

ment.

Keywords: Nonparametric regression. Asymptotic analysis. Monte Carlo Simulation.

JEL Codes. C14; C15; C22.
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4.1 Introduction

Vogt and Linton (2014) proposed a three-step procedure to estimate a trend function
in the presence of a periodic sequence. In the previous section, we showed some asymp-
totic properties of the estimators derived by reversing their original estimation procedure.
Desirable large sample properties, such as (uniform) consistency and asymptotic normal-
ity was proved. In practice, we may be interested in assessing the finite sample behaviour
of such estimators. As these estimators depend on a bandwidth choice, we must have a
suitable bandwidth selection criteria.

In the present section, we investigate the finite sample behaviour of the estimators
involved in the reversed estimation procedure of Vogt and Linton (2014). A plug-in type
bandwidth is proposed in order to estimate the trend function, in the first step. Our
simulation exercise showed a good performance for the proposed bandwidth. Although
we do not provide an optimal bandwidth selection for the period estimator, we employ
a simulation exercise to evaluate the sensitivity of the estimator for different bandwidth
choices having the plug-in bandwidth, used in the first step, as a baseline. The motivation
is simple: if the performance of the period estimator along different bandwidths is roughly
the same as that obtained using the first-step’s bandwidth, then we would not be far worse
off by choosing the plug-in bandwidth again. In our simulation, the period estimator had
a robust behaviour along different bandwidths.

To evaluate how the estimators behave for real data, we made two applications: one for
climatological data and the other for economic data. In the former, we used global temper-
ture anomalies data which is exactly the same as that in Vogt and Linton (2014). The lat-
ter application consists in providing central estimates for the australian non-accelerating
inflation rate of unemployment by means of the reversed estimation procedure estudied

so far.

4.2 Bandwidth selection for the trend estimator

The local polynomial regression requires the choice of a bandwidth parameter. The
bandwidth selection is usually done by a cross-validation algorithm or a plug-in method
(see Wand and Jones, 1994; Fan and Gijbels, 1996). In this section we focus on a plug-in
type bandwidth based on minimizing the Mean Integrated Squared Error (MISE) for the
trend estimator g, defined by (3.5) in Chapter 3.

Consider the model (3.1) of Chapter 3: for any 7' € N, {Y;r: ¢t =1,...,T} follows

YnT:g(t/T)—i—m(t)—l—et,T, t e {1,...,T}, (41)

where g : [0, 1] — R is a deterministic trend function, m is a fy-periodic real sequence and

{e:r}I_, is a zero mean random sequence. Assume again that g and m are normalized so



that Zfil m(t) = 0. In matrix form, Yr = gr + my + er where Y = (Yip, ..., Y1),
gr = (9(1/T),...,9(T/T)), my = (m(1),...,m(T)) and er = (€17, ..., err)"
Define the naive local linear estimator for By = (g(x),¢'(z))" as

éT(.CE) = [ g(x>) = (A%WTAT)_l(A/TWTYT) = S’_’[_‘lDTv

J'(x

where

1 (27 —x)

; S0 S1 1 .

Ap = : , St = [s ) ], WT:fdlag(Kh(ml—x),...,Kh(xT—x)),

1 (zp —x) b
Dy = (dy,dy)’,
with

T
1
Sk =7 Z(iﬂt — 2)* Ky (2, — x), k€N,
=1
1 T
dp = 7 Z(zt — x)kKh(mt —z)Yir, k€N,

t=1

Kp(u) = K(u/h)/h and z; = i/T. For simplicity, the dependence of the matrices S and
Dy on x € [0,1] and the dependence of the design points on 7" were omitted.
Denote the covariance matrix of the errors ey by I'r. The exact Mean Squared Error

(MSE) of the naive trend estimator in (3.5) is given by
MSE(z,h) = b%(z) + Vr(z), (4.2)

where
br(z) = €15 A Wr(9r — ApBr(x) + mr)

and
VT (KE) = 6/1 SflA}WTFTWTATSflel .

Following the ideas of Fan et al. (1996) and Fernandez and Fernéndez (2001), we approx-

imate the bias by a 2nd order Taylor expansion,

52

br(z) ~ by (@) = ¢, 5" [ .
3

] g;(x)/Z + e'IS;lA'TWTmT. (4.3)

Given appropriate estimators for ¢, 6y, m and I'z, an estimate ]\75\E(x, h) of (4.2) is

obtined. Define the estimator for the Mean Integrated Squared Errors (MISE) by means
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of right Riemann sums approximation:
MISE(h / MSE(z, h)dx ZMSE i/T,h). (4.4)
Then the plug-in bandwidth is selected from
1 o ——
hopt = in — MSE@/T, h). 4.5
pi = Arg min 7, ; (¢/T',h) (4.5)

Since the first  points of the periodic sequence estimator 3 defined in (3.12) do not
necessarily sum zero, we heuristically propose the selector A, which is the particular
case of (4.5) that uses 3 — 1%3 as the estimator of my.

In the next sections, the estimation procedures will be carried out with the Epanech-

nikov kernel.

4.2.1 Simulation: plug-in bandwidth performance

In this section we analyze the finite sample performance of the proposed bandwidth
selector via a Monte Carlo experiment. The data generating process is the same as that
of Section 6 of Vogt and Linton (2014). Model (4.1) is simulated with

2 3
m(t>=sm(9—ﬁt+ ) glw) =207 e = 045e s+,
0

fo = 60 and 7, ' Y " N(0,07). To achieve strict stationarity, assume ey ~ N(0,07/(1 —
0.45%)). In a first step, we approximate the MISE between the trend function g and the

estimator g,

MISE(h) = E/(g(a;; h) — g(x))*dw, (4.6)

on a grid of equally spaced bandwidth values consisted of 300 points from 0.1 to 1,
by means of Riemann sums and through 500 Monte Carlo simulations. Obviously, the
function ¢ in (4.6) is assumed to be known in order to make the computation feasible.
By minimizing the approximated MISE in h, we obtain a numerical approximation of
hmin = argmin, MISE(h). This is done for the sample sizes T' € {160, 250,500} and for
the error variances o, € {0.2,0.4,0.6}.

In the second step, another 500 random samples are generated and the selector hqp;
is computed for every sample. We perform Monte Carlo approximations once more to
calculate the expected value and the standard deviation of h,py as well as the MSE between
MISE(hopt) and MISE(hyiy), denoted as AM (hopt), which will serve as an efficiency
measurement. That is, AM (hep) = E(MISE(hep) — MISE(hmin))?. This exercise is

done for every choice of sample sizes and error variances mentioned in the first step and
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*

is replicated to the selector hg .

Now, we describe the computation of the bandwidth hgp. With the help of the pilot
bandwidth, hpie, = 0.5, we estimate g, 6y and m using the estimators g, 6 and m proposed
in Chapter 3. The exact procedure to estimate the period will be detailed in the next
section. With 7 and ¢ in hand, we can calculate the residuals ¢, = Y; —m(t) — g(t/T),t €
{1,..., T}, which will be used to estimate the covariance matrix I'r of the first order

autoregressive errors. The natural estimator for 'y has the structure

1 Ia )62 ~T—1

oot P
Ir=62| p* p 1 pre (4.7)

I pATfl ﬁTfQ [)Tf?) 1 |
with

~ 23172 €€r—1 ~2 1 ~2
==—F——and == ) ¢€. 4.8
g Ethl € T fz; t ( )

In (4.7), 62 and p’ are estimators for the variance and the j-order autocorrelation of {¢;},
respectively. The integral of the functional derivative ¢ is estimated by fitting a second
order polynomial to g, globally, through the parametric fit Y; —m(t) = a1 (t/T)+ax(t/T)?
with & being the generalized least squares estimate associated to the matrix (4.7). The
resulting estimator is defined by §° = 24. Since §"(t/T) = 24 is constant for t €
{1,...,T}, we have f/g\"2 = (2&)? by means of Riemann sum approximation. This simple
procedure (known as “Rule-of-thumb”) is somewhat crude but requires little programming.

The heuristic selector hg, is computed analogously except that periodic sequence m
is estimated via 3 — 1%5.

Table 1 shows that hep, and hg,, performed well, specially for the sample sizes 160

and 500. We can also see that their efficiencies worsen as the error’s variance gets bigger.

4.3 Sensitivity of the period estimator over bandwidths

In this section, we analyze the finite sample behavior of the period estimator along a
set of different bandwidth values using Monte Carlo experiments.

We follow the heuristic procedure proposed by Vogt and Linton (2014), for selecting
the regularization parameter of the period estimator. Consider the simple model without

trend
SuT = m(t) + €T (49)

where {€, 7}/, have the same joint distribution as {u;};_, with {u, : t € Z} being a

sequence of independent and identically distributed zero mean random variables which
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Table 1: Plug-in bandwidths

Mean St. Dev. AM x 10°
h0pt h:pt hOpt tht hom

T =160
62 =0.25 0.90 | 0.91 0.811]0.08 0.09 | 2.41 9.35

‘752 =0.5 091 | 0.88 0.801]0.12 0.12] 9.23 18.39
52 =0.75 0.92 | 0.86 0.79]0.14 0.13 | 33.62 37.23

T = 250
62 =0.25 0.58 | 0.64 0.64 | 0.16 0.15| 1.68 1.69

‘752 =0.5 0.58 | 0.68 0.69 | 0.16 0.16 | 2.77 2.48
52 =0.75 0.59 | 0.69 0.70 | 0.18 0.17 | 5.62 5.27

T = 500
52 =0.25 0.32 1 0.34 0.39] 0.05 0.05| 0.09 0.14

052 =0.5 0.42 | 0.40 0.44 | 0.09 0.07 | 0.51 0.53
52 =0.75 0.43 | 0.47 0501 0.14 0.12| 1.89 1.76

T = 800

62 =0.25 0.28 | 0.31 0.36 | 0.03 0.03 | 0.00 0.08

52 =0.5 0.34 | 0.35 0.40 | 0.04 0.04 | 0.11 0.30

52 =0.75 0.35 | 0.38 0.43 ] 0.07 0.06 | 0.46 0.62

* The table presents the expectation, standard deviation and the effi-

ciency measurement associated with each bandwidth selector. Here,
AM (h) = E(MISE(h) — MISE (hmin))2.

hmin h;

opt

Q

Q

also has finite variance. As showed by Vogt and Linton (2014), when 6 = r6, for some
integer r, it holds that E{RSS(rfy)} + o?ry = E{RSS(6y)} + c%6y. This suggests to
choose the penalization parameter A\ larger than o2 in order to avoid choosing multiples
of 6y. However, the penalization should not be too large otherwise the criterion function
Q) at 6y, defined in (3.8), becomes larger than the criterion function at § = 1. From this

heuristics, they proposed to choose the regularization parameter as
A = o2k, (4.10)

where k7 is a slowly divergent sequence and 0 = E(u?) < co. To meet the conditions of
Theorem 3.2, kr should grow slightly faster than 7'/4.

Given a bandwidth choice, let S = (S’LT, . ,S'T,T)’ =Y — g be the estimted data
obtained from the naive trend estimates and let fy = (X} Xy) ' X;S. Since o? is unknown

in (4.10), it is replaced by the standard estimator

T <2
52 — Zi:l &

- (4.11)

where é = S — 1h with 1 = f; and § = arg min1g9§@T”g — Xgfl||. As noted by the

authors, although 6 is an inconsistent estimator of 6y, it equals 6, for some r € N with
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probability approaching to one . Since multiples of 8y are also periods of m, we could use
m as a preliminary estimator of m in order to calculate the residuals.

The model used in the simulation exercise is exactly the same as that in Section 1.2. To
be comparable with the results of Vogt and Linton (2014), we perform 1000 simulations

for the sample sizes T' = {160, 250,500} and for 02 € {0.2,0.4,0.6}. We choose three
15 ,5/4 105

different bandwidths values based on hep defined in the previous section: hgg, hope, hopy

and hgp itself. The plug-in bandwidth Ay, for each case, is considered to be its expected
value, obtained in the simulation of Section 1.2 (which is presented in the third column
of Table 1). Note that hi{f is a choice satisfying Theorem 3.2 since the bandwidth is
assumed to be O(T /%) and hep is of order ©(T /%), according to Appendix G.

The selection rule above for the penalization parameter does not take into account
the dependence structure of the autoregressive errors. As long as the correlation is not
too strong, o2 should dominate the long-run variance justifying the use of the rule under

several dependent cases. Based on Appendix F, we use the rule

1 0
Ar = 02<1 s >T1/4, (1.12)

with the autocorrelation parameter being estimated by p = Zthz €61/ Zthl ¢; and the

variance o2, by (4.11).

Table 2: Empirical probabilities that 6 = 60 and that 55 < 6 < 65.

P(6 = 60) P(55 < 0 < 65)
T=160 T=250 T=500 T=800 | T=160 T=250 T=500 T=800
Chosen bandwidth: hg%
02 =0.25 0.20 0.43 0.96 1.00 1.00 1.00 1.00 1.00
02 =0.5 0.16 0.27 0.85 1.00 0.97 0.98 1.00 1.00
0% =0.75 0.14 0.24 0.68 0.99 0.90 0.99 1.00 1.00
Chosen bandwidth: Ay
02 =0.25 0.21 0.43 0.96 1.00 1.00 0.99 1.00 1.00
0% =0.5 0.15 0.27 0.85 1.00 0.97 0.98 1.00 1.00
0% =0.75 0.13 0.25 0.68 0.99 0.90 0.99 1.00 1.00
Chosen bandwidth: ho/y
0% =0.25 0.21 0.43 0.96 1.00 1.00 1.00 1.00 1.00
o2 =0.5 0.15 0.25 0.85 1.00 0.96 0.98 1.00 1.00
o2 =0.75 0.13 0.24 0.68 0.99 0.89 0.99 1.00 1.00
Chosen bandwidth: h%
02 =0.25 0.19 0.41 0.95 1.00 1.00 0.99 1.00 1.00
0% =0.5 0.15 0.26 0.85 1.00 0.96 0.98 1.00 1.00
o2 =0.75 0.14 0.23 0.67 0.99 0.88 0.99 1.00 1.00

Table 2 presents the empirical probabilities P(f = 60) and P(55 < 0 < 65) for different

sample sizes, error variances and bandwidth choices. Overall, the period estimator 6 per-
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Figure 4.1: Yearly temperature anomalies.
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formed fairly robust over different bandwidths and with a good accuracy when compared
with the results of Vogt and Linton (2014).

Table 4 and Figures 4.9 - 4.10 in Appendix I present additional results for A7, and
for sample sizes which are in the 60-periodic orbit or 120,140 and 160. In all cases, the
period estimator showed to be robust as well.

In the absence of a bandwidth selection rule for the period estimator 6, the robustness
over bandwidths is highly desirable. In this exercise, if one chooses the same bandwidth
hopt selected in the first step of our estimation procedure, his period estimator would be

almost as accurate as that obtained using other bandwidth choices considered above.

4.4 Applications

4.4.1 Global temperature anomalies

We illustrate the applicability of the proposed reversed three-step procedure to the
HadCrut3! data used in Vogt and Linton (2014). The data refers to the yearly global
mean temperature anomalies from 1850 to 2011. More specifically, these are temperature
deviations from the average of 1961-1990 measured in degree Celsius. As pointed by the
authors, the global mean temperature records suggest that there has been a significant
upward trend in the temperatures (BLOOMFIELD, 1992; HANSEN et al., 2002) and some
existing researches indicate that the global temperature system possesses an oscillation
with period in the region between 60 and 70 years (SCHLESINGER; RAMANKUTTY,
1994; MAZZARELLA, 2007). Figure 4.1 depicts the data.

We fit the model (3.1) to the temperature data and estimate the trend function g,
the unknown period 6y and the periodic sequence m, in this order. Since the period

estimator @ shown to be robust to different bandwidths in Section 4.3, we choose the

!The dataset have been developed by the Climatic Research Unit in conjunction with the Hadley
Centre. It can be accessed by the link: https://crudata.uea.ac.uk/cru/data/crutem3/HadCRUT3-gl.dat
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Figure 4.2: Autocorrelation and partial autocorrelation functions of the pilot residuals.
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same bandwidth, hg ., in all steps of the estimation.

We employed the pilot bandwidth i, = 0.5 for the computation of the selector A . As
described in section 4.2, we need preliminary estimates g, Gép),m(p) and Fg?) of g,6y,m
and D'y, respectively, to approximate the ]\TI?E, and it is accomplished based on h,.
Then our reversed estimation procedure is used to obtain ¢, Hép ) and the centered m®
with the bandwidth h,, producing the residuals P =Y — g0) — ),

Figure 4.2 depicts the autocorrelation and partial autocorrelation functions of e®
from where we can conjecture that we are dealing with a first order moving average
error proccess. Inspecting various ARMA models we found that the lowest Bayesian
information criterion (BIC) is associated with the MA(1) model. Therefore, we estimate

the covariance matrix I'r by

1+p* P 0
p1+p D

Iy =62 0 po1+p7 0 . (4.13)
0 0 0 - 14 p?

with p and &f] being the maximum likelihood estimates of the moving average coefficient
and the variance of the innovations, respectively. Having all preliminary estimates in

hand, we approximate MISE (h) and then perform a numerical minimization over h. We

*

opt = 0.43. By selecting this bandwidth, we perform our

obtained the minimum point A
estimation procedure again to obtain the final estimates Q,é and 8. In assuming MA(1)
errors we highlight that the penalization rule becomes just Ay = o?T"/4. This selection
rule for the penalization parameter was used to estimate both 9((];7) and 6.

Figure 4.3 (a) shows the values of the estimated trend §. In particular, § becomes
monotone increasing after the year of 1874, indicting a predominant upward trend within

the time interval under analysis. We found an oscillation with period 63 which is depicted
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Figure 4.3: Estimated values for the trend function, the period and the periodic se-
quence.
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in Figure 4.3 (b) where we can see an evident downward spike in the criterion func-
tion. The estimated 63-periodic sequence is illustrated in Figure 4.3 (¢). Therefore, the
estimated results are consistent with the evidences found in the climate change literature.

The estimated residuals € = Y — g — BXg are reported at Figure 4.4 as well as its
autocorrelation function. The residuals do not appear to have a strong trend or periodic
behavior. In addition, the autocorrelation function of the residuals do not appear to show

a strong dependence over time.

4.4.2 Australian non-accelerating inflation rate of unemployment

The tradeoff between inflation and unemployment has been investigated by many
economists, giving rise to some ideas that are now central in mainstream macroeconomics.
One of the most widely known economic concept is the Phillip’s Curve (PHILLIPS, 1958)
which stablishes an inverse relationship between inflation and unemployment. Phillips
(1958) found a relatively stable negative correlation between the rate of change in nominal
wages and the unemployment rate in United Kingdom. Later, Samuelson and Solow

(1960) showed a similar relationship in United States, but focusing in inflation rates
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rather than in rates of change in nominal wages. They also championed that it could
be used as a policy tool (HALL; HART, 2012). Ideally, by determining the fiscal and
monetary policy to change the aggregate demand, poliymakers would be able to choose
any pair of unemployment and inflation rates on the Phillip’s Curve.

Seminal works of Friedman (1968) and Phelps (1967, 1968) introduced the idea that
monetary attempts to keep the unemployment low at the cost of higher inflation would
be just temporarily successful. When the inflation expectations be adjusted to the new
rate of monetary growth, the unemployment rate comes back to its natural rate. Many
authors do consider the natural rate of unemployment and the non-accelerating inflation
rate of unemployment (NAIRU) as synomyms (GORDON, 1997; STAIGER et al., 1997;
STIGLITZ, 1997; MANKIW, 1985; BALL; MANKIW, 2002), i.e., as the unemployment
rate consistent with stable (or non-accelerating) inflation. In this section, both concepts
will be treated as equivalent.

In the Phillip’s Curve literature, the Friedman-Phelps framework can be expressed as
(BALL; MANKIW, 2002; BALL; MAZUMDER, 2019; FUHRER et al., 2009)

7Tt:7Tt71+Oé<U:—Ut)+Ut, « >O, te {1,,T} (414)

where 7, is the inflation rate, u; is the unemployment rate, u; is the NAIRU and v, is an
error term. Equation 4.14 is commonly called the accelerationist Phillip’s Curve. It differs
from the basic Phillip’s Curve mainly because it includes the (time-varying) NAIRU and
the lagged inflation rate which is implicity assumed to be the expected inflation rate at
the current time, Fy(m;) = m_1.

Equation 4.14 is equivalent to

%—f—ut :uj+% (4.15)

where Am; = m — m_1. Once « is known and observations of Am; and w; are given,
Ball and Mankiw (2002) suggested that u} could be estimated from (4.15) using standard
trend extraction tools. At a first step, they assumed u; constant to obtain an ordinary
least squares (OLS) estimate & for the parameter o from model (4.14), and then use & in
(4.15) to estimate u} as the trend of the Hodrick-Prescott (HP) filter.

We will extend the approach of Ball and Mankiw (2002) in order to illustrate our
estimation procedure using australian data. Our aim is to provide central estimates for
the time-varying NAIRU?.

’The confidence intervals for the local linear trend estimator has nothing to do with the standard
deviations of stochastic NAIRUs that often appear in the literature. While the former relates to estimation
errors, the latter relates to the variance assumed in the NAIRU’s dynamics.
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Given T € N, assume the observations {(Am, 7, u; 1)}, follow the model

A = yer + my(t) (4.16)

upr = Ty r + ma(t) (4.17)

yer = o f(t/T) — ze7) + ver, (4.18)

for any t € {1,...,T}, where my, my are two unknown deterministic periodic sequences

with fundamental periods 61, 6, respectively, f is an unknown deterministic smooth func-

tion interpreted as the NAIRU and {v;r} is a strictly stationary and strongly mixing
stochastic process®. Additionally, assume that 2% my(i)/a + my(i) = 0 and denote the
fundamental period of m;/a + mg by 6. In particular, if both m; and my have period
one (aperiodic), we rely on a model similar to (4.14). By our model, equation (4.18) is

equivalent to

Aﬂ't’T V¢

+ U T = f(t/T) + ma(t) + E, (419)

where m, = my/a + my. Given an initial estimate al® of a, we can obtain estimates
FO 00 m© of £ 6y, m, using our proposed method.
To gain finite sample insights, suppose that £ 0 are given and the following re-

gression model is used to re-estimate « in (4.18),

A’ﬂ't’T = ﬁ(f(o) (t/T) — ut,T) + Vs, T (420)

for t € {1,...,T}. Then we would be ignoring the seasonal term of Ar resulting in a
biased least squares estimate (see Appendix H). If the seasonal term ms is not orthogonal
to A, then it also has to be taken into account in order to separate the partial effects of

xp and of my. Therefore, one can suggest to use the model

p(0)
Amyr = B(f(o) (t)T) —wr)+ Z BiDit 1w + ver (4.21)

i=1
where D; ;= I(t € {1,..., T} : t =i+ k0O for some k € N), which is simply a periodic
dummy variable. If, say, 0y = LCM (6, 03)*, then Am and u are fy-periodic, even though

it is not necessarily their least periods. It can be shown that the least squares estimate of

3Theorem 6 in Section 28.5 of Fristedt and Gray (1996) implies that a stationary proccess is strongly
mixing if and only if it is ergodic. Technically, we also need to ensure that data generating proccess of
(ye,1, e, 7) satisfies E(zyrver) = 0 and E(xfT) < oo, V1 <i<T,VT €N, and is jointly stationary
ergodic to obtain consistent ordinary least squares estimates (see Proposition 2.1(a) of Hayashi, 2000).

4Although it holds in most cases, there are situations where it is false. For example, take o =
1,mi(t) = {(—=1)'} and ms = —m; both periodic with least period equal to 2. Then mi/a + ms =
{0,0,...} which has least period 1. On the other hand, take o = 1,m; = {1,2,3,4,1,2,3,4,...} and
mo = (0,0,—2,-2,0,0,—2,—2,...) both periodic sequences with least period 4. But m;/a + ms =
{1,2,1,2,...} which has period 2. These examples show that if our assumption fails, §y may not be a
(multiple) period of my or ms.
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3 from (4.21) is the same to that of obtained using (4.20) but with A7 and £ —u being
priorly 6(*)-deseasonalized (see Appendix H). From these facts, we can conclude that there
may be an excessive number of seasonal dummies in the model (4.21), if 6y = LC M (64, 65).
This implies a possible loss of efficiency (see Appendix H).
We briefly describe the NAIRU estimation from our model as follows:
(a) Calculate the OLS estimate a(*) of a from (4.18) assuming f constant;
(b) Given a(?, estimate f, 6y using our proposed estimators f© 6© for the trend and
period, respectively, from (4.19);

(c) Given f© 9O estimate o by the OLS estimate 3 obtained from (4.21);

(d) Given B, estimate f again using our proposed naive trend estimator f("a) from
(4.19).

Based on Ball and Mankiw (2002), we also estimate the time-varying NAIRU using
the HP filter as follows

(a) Calculate the OLS estimate a(*) of a from (4.14) assuming u} constant;

(b) Given a(®, use the HP filter estimate u” of u} from (4.15);

(c) Given ul” | estimate a by the OLS estimate o) obtained from (4.14);

(d) Given aV)] estimate u} again using the HP filter estimate u™ from (4.15).

According to the estimates of Reserve Bank of Australia (RBA), the NAIRU was
around 7 per cent in early 1980 and declined to around 6 per cent in 1985. It reached
a peak in the mid-1990s at around 7 per cent and, subsequently, declined more or less
steadly since then to around 5 per cent in early 2017 (CUSBERT et al., 2017).

We used annual data’ from 1968 to 2019 to provide australian NAIRU estimates for
the period 1980-2017. The estimation for the trend function and for the periodic sequence
are done in the same way as in section 4.4.1, with a pilot bandwith equal to 0.3. We report
that the bandwidth selection of hj, considered a MA(2) error proccess, and the value
hiy = 0.24 was obtained.

A periodic sequence of period 13 was captured in the estimated time series AHLT/a(O)—i—
u; . By observing the criterion function in Figure 4.6(a), the heuristicaly selected penal-
ization parameter Ay, defined in (4.10), should perhaps be slightly increased. Nevertheless,
the downward spike at period 13 is evident, producing the periodic sequence illustrated
in Figure 4.6(b).

The final estimates for the time-varying NAIRU are presented in Figure 4.7. It shows
our proposed method estimates and the estimates of the method which uses the HP filter.
We consider the Hodrick-Prescott’s penalization parameters A € {10, 100,400}, which are
usual for annual data (RAVN; UHLIG, 2002). One can see that our proposed method

°The inflation data is the growth rate of OECD’s CPI (total all items for Australia),
code CPALTTO01AUAG657N, retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/CPALTT01AUAG657N.  Unemployment rate data (aged 15
and over, all persons for Australia), code LRUNTTTTAUA156S, can be obtained in
https:/ /fred.stlouisfed.org/series/LRUNTTTTAUA156S.
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produced fairly different NAIRU estimates from that obtained through HP’s estimates.
Furthermore, our estimates seem to be in line with those described by RBA (see Figure
4.12 in Appendix I), except for the beginning of the sample where we obtained values
around 6 per cent instead of 7 per cent. However our aim is not to hit the exact values
estimated from RBA since their model treat the NAIRU as stochastic and many other
variables are considered as well as its lagged values. As mentioned by Setterfield et al.
(1992) for the case of Canada, the NAIRU estimates are sensitive to model specification
and the definition of variables.

Figure 4.5: Unemployment rates and first differences of the inflation rates .
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Figure 4.7: NAIRU estimates.
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Appendix F - Penalization parameter selection

In this section, we clarify the penalization parameter selection employed in our simu-
lations and derive the asymptotic plug-in bandwidth for the naive trend estimator g.

To motivate formula (4.12) for selecting the penalization parameter, consider the
model (4.9) with {u;} being a weakly stationary autoregressive error proccess of order
1. By denoting RSS(#) as the residual sum of squares associated with the least squares
estimator based on the period 6, Vogt and Linton (2014) in page 8 of their supplementary

material, showed that

T
R0 _ I ey (— > 1 <t>fs<t’>et,Tetl,T)7

t=1 s=1 S T p=1

where I5(t) = I(t = k@ + s for some k € N) with I being the indicator function. Therefore

8

RSS(6) L1/ 1
E{ T ] :Ui—ZT(KO Z COV us+(k 1)y Ust(k'— 1)9))

2 is the variance of the proccess. Now, let ¢ : Z — R be the autocorrelation

where o

function, and observe that

Kg,T 0_2 Kse-,T
— Z Cov(Ust (k—1)0, Us+(k'—~1)0) = K; Z c(0|k — K|
8T k=1 5T k=1

r S,T
=02 |c(0) +2 Z c(df) 1
L d=1 ST d=1

Also, note that > 7~ |¢(df)| < oo, by the stationarity assumption®. Let e > 0 be arbitrary.
Then there exists T, € N such that for every K, > Kf, we have ZK(; L<dlc(dd)] <e.
Therefore, for any 7' > T,

Kng]. sT
1 ) €
o > |dc(d9\<—{ Z |dc (d9)] > |dc(d9)|}

6 6
KS,TE SdSK.s,T

Precisely, > o, |c(d)] = |¢°|/(1 — |¢?]) where ¢ is the autoregressive coefficient of {u;}.
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sTe
< = [ > |dc (dO)| > Kﬁﬂc(d@)]}
R KS,TESdSKS,T
9
< Z c(d)| + Z | d9))|
s,T d—=
K’bT6 1
s, T d=1

0
By taking limits on both sides, we have 1/KY 51 |dc(df)| — 0, since € > 0 is
arbitrary. Thus

0

KlfT kkzl CoV (Ugs (k-1)0; Us (17— 1)8) =2 { +2) (dﬁ)} = [1 +2) ¢d91
21+ ¢
Tuq o
With these observations, we obtain that
RSS(# 1 ,1+4¢f s ,01+¢f 1
E[ }— —21T<u1_¢9+0(1)):au—auT1_¢9+0(T)

Hence,

1+¢9 a 1+¢r90
u _ ¢9 ~ E[RSS(T@O)] +T900-12‘1_—¢7‘90

where 02 = 0%/(1 — ¢?) with o? being the variance of the error of the autoregressive

E[RSS(6)] + 6yo>

proccess. Thus,

1 + ¢90 a 1 + ¢T‘90 1 + qb@o + ¢90

E[RSS(Q())] + 00/\T1_—¢90 =~ E[RSS(T’Qo)] + 0'3 (7’901 — ¢r90 — 901 — ¢00 ‘90/\T ¢90
1 + rfg
E[RSS(T’@O)] + 7’60)\’1“1_—22;,90

if Ay > 02. This reasoning justifies the use of (4.12), when T is large enough. Clearly,
similar arguments can be used to justify this type of selection for general stationary
ARMA (p,q) proccesses.
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Appendix G - Asymptotic plug-in bandwidth

Next, we derive an asymptotic plug-in method to select the bandwidth for the trend
estimator g. We strengthen the assumptions on the model (4.1) by requiring that the
error process is strictly stationary: for any T, {¢, 7}/, have the same joint distribution
as {u; 1, with {u; : t € Z} being a strictly stationary stochastic process. Furthermore,
assume
(B1) The covariance structure of the process {¢, r } satisfies Cov(e; 1, €;rx.1) = 02c(k), |k| =
0,1,..., VT e N, and )7, klc(k)| < oo;

(B2) The bandwidth sequence h,, := h satisfies h > 0, h — 0 and Th? — oc;

(B3) ¢ is second continuously differentiable on [0, 1];

(B4) The kernel function K is symmetric around zero, Lipschitz continuous and differen-
tiable in its compact support.

Note that Conditions 1 and 2 imply B17. Without loss of generality, we assume
supp K = [—1,1] and [ K(u)du = 1.

Define the term

1 T

dy, = T Z(%ﬁ — )" Ky(z, — x)eyr, k€ {0,1}. (4.22)
t=1

From Proposition 1 and 2 of Fernandez and Fernandez (2001) or Theorem 1 of Hart
(1991), we have the following results.
Proposition 4.1. Let x € (h,1 — h). Under B2 and B4, we have

lim h7s; =p;, Vi€ {0,1,2,3}, (4.23)

T—00

where p; = [WK(u)du. In particular, limp_,oo H'SpH™' = S, where H = diag(1, h)
and the 2 x 2 matrices St and S are given by (St)i; = Sitj—2 and (S)ij = Hitj—2,
respectively. Furthermore, if B1, B2 and B4 hold, then

Jim Th Cov(h™'df, h™7d}) = vjc(e), Vi, j € {0,1}, (4.24)
—s00
where v; = [ U K?(u)du and c(€) = a?[c(0) +2>°,°, ¢(1)]. Equivalently,

Jim ThE(H™'D3:DiH™) = Dele)
—00

in matriz form, where D = (d5,d%) and D = (vg, v1)".

TUsing the ratio test, we have (k + 1)a**1/(ka*) — a < 1 as k — oo, if 0 < a < 1. Then, from
Davydov’s inequality, > r, kloZe(k)| < C > 2, ka® < oo, if Conditions 1 and 2 holds. Since the
variance is finite,y ;- ; k|c(k)| < co.
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Consider the notations of section 4.2 and Proposition 4.1 and define p = (pg, u3)’.

Theorem 4.1. Under B1-BY, for any x € (h,1 — h), the asymptotic expressions for the
bias and the variance of BT(x) are, respectively,

. a 2 "
Bias(Br(z)) = h 92(@51%
A a 1 ~
Var(Br(z)) ~ T—hc(e)S_lDS_l.

Proof. We start with the derivation of the bias. Write
E[BT(m)] = SEIA/TWT(Q —+ m) =G+ M,

where g = (g(z1),...,9(xr)) and m = (m(1),...,m(T))’, with z; = ¢/T, omitting the
dependence of both G and M on x and T' . The 2nd-order Taylor expansion of g about
x is given by

9(x) + (21 — )¢ (2) + (21 — 2)°9" (2)/2 + o (21 — 2)?)
g = :

9(x) + (o — )¢ (x) + (o0 — 2)°¢"(2)/2 + o((2r — 2)?)

(71 — 1‘)2 (Il - 1’)2
= ArBr(z) + g (x)/2 : +o0
(w7 — 95)2 (w7 — 1’)2
Then, recalling that Sy = AL WrAr,
p (21 — 1’)2 (71 — $)2
6=+ S5m0 | oSy
(w7 — 1’)2 (w7 — x)z
12 h2
T ACON B . 495
@)+ 57 ( R (4.25)

Define £ = {i e {1,...,6p}: KzOT = |T/6y|}. Turning to the term M, we have

L T | Lo K%
ellAlTWTm = T Z Kh(l’t — x)m(t) = T Z m(t) Z Kh(xt+(k_1)90 - l‘)
t=1 t=1 k=1

~ 2> mioniy{ [ ot arau+ 00y

— %{/_11 K (w)dw + 0(1/(Th))} [Z m()KY + ) m(t)KfPT}

tel teke
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{/ K (w)dw +O(1/(Th)) }Zm

N , teke
=1 —o(1)
= 2 3 mlt) + O(/(T?1)) = My + O(1/(T*h)),
tGE‘C

using condition B4 and Lemmas 3.4 and 3.10 of Chapter 3. Similarly,
1 T
ea AL Werm = T tz:; Ky(zy — ) (2 — x)m(t)

- %{/11 K (w)wdw +0<1/(Th))} > m(t) = 0(1/T?).

tekbc

Therefore,

+0 < gzg_i )) . (4.26)

Then,

M,
0

~

Br(z)—B(z) = S3' D+ S5 (M [ 52

+
2 S5

40 ( ()~ ) +o< h )) .
(T2h)1 B3

This equation is convenient since it decomposes Bp(z) — B(z) into a bias part and a

stochastic part. From Proposition 4.1,

HE[By(x) - B(x)] = HS;' (9—” [ Wi T ol1) ] ; [ M, ]

2 o(h?) 0
(T2h)—1 h2
o ( a2n)-t ) O\ g
2 12 M
_h 92(3”)HS;1H " |+ HS HE [ v ]
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+O((T?h) )HS;'HH™!

+o(h*)HS:'H [ 1 ]

2

) o)
n? (T2h)~!

13 h2g" (z) g1 [ 2

since My = O(1/T) = o(h?*) by B2. On the other hand,
Var(HBy(z)) = E(HS7' DD STV H) = E(HS;*HH ™'\ DiDi H ' HS7V H)
~ %C(E)S_lf)s_l.
O

Corollary 4.1.1. Under B1-B4, for any © € (h,1 — h), the asymptotic Mean Squared
Error (MSE) of the trend estimator §(x) satisfies

MSE(§(x),h) = MSE(x,h) ~ ~ (@)pz

(4.27)

Theorem 4.1 implies that if h converges to zero slow enough, i.e., 1/T = o(h?), then
the asymptotic bias is the same as that for the model assuming the periodic component
is known. When h? is allowed to converge to zero faster than 1/7, i.e., Th? = o(1), then
the local asymptotic bias is dominated by the periodic component M; = O(1/T). In
this case, the bias-variance trade-off disappears, and the smaller A is chosen, the greater
the asymptotic M SE will be. Tt corroborates with the intuition that h should not be
chosen too small when estimating the trend of model (4.1) in the presence of the periodic
sequence.

Hence, the Asymptotic Mean Integrated Squared Error (AMISE) is

RN

AMISE(R) = —-2 + C(;)}fo.

(4.28)

Given good estimators for the integral of the functional g"2 and for c(e), say [ g% and

¢(e), it makes sense to select h as the minimizer of formula (4.28) which is

Vo 6(6) 1/5
has - D) N7 . 4.2
(Gi7ier) (4:29)
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Appendix H - Some effects of periodic sequences on least squares estimates

To make the arguments as simple as possible, suppose that the random sample (y, x)
has = as deterministic. Although similar conclusions are obtained with stochastic x by
imposing another set of classical least squares conditions (see Hayashi, 2000). Here we
clarify the known consequences of omitting relevant variables or including superfluous
variables as well as the equivalence between the least squares estimates obtained by a
periodic adjustment within the regression model and that obtained using priorly periodic

adjusted variables. Assume that the regression model is
y=xza+ DB +e€ (4.30)

where y is a T-vector of dependent variables, x is a T x d matrix of "fixed" regressors,
D = Dy = (Ip, Ip,...) is a T x 6 matrix of periodic dummies with I, being the 6 x 6
identity matrix and € is a T-vector of errors. In this appendix, we always assume that the
true model fulfills the Gauss-Markov conditions, thus resulting in a best linear unbiased

estimator (BLUE). However, the estimated model is
u=za+e€. (4.31)
Since the least squares (LS) estimate is & = (z'x) " '2'y, equation (4.30) implies
& =a+ (@'z) 2 (DB +e).

We immediately see that & is biased and the bias term is given by (2'x) 2’ Dp.

Now assume that the model is given by
Y = T + €,

but the estimated model is
y=xa+ Df +e.

Let M =[x D] be the n x (d+ k) augmented matrix. The solution for the least squares

(o) o) (2]

—1 -1
x'y _ A B x'y
Dy | Dy |’

problem of the estimated model is

(6,8) = (M'M)"'M'y =

D'z D'D

B x  2'D
B C E
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and then

a=|(A-BE'C)" ~(A-BEC)BE |

z'y
D'y
=(A—BE'C) Y2’y — BE"'D'y)
= (2'z —2’D(D'D) ' D'z) Y (2'y — 2’D(D'D)"*D'y).

The projection matrix IT = D(D'D)~'D’ was already studied in Lemma 3.5, where we
found that

K K

I=| K K

TXT
with K = diag(1/K{,...,1/K{;) and K! = |(T' —1i)/6] + 1. The annihilator-like
matrix M = Ir — II acts as a periodic adjustment matrix since it subtracts from any
T-vector its #-periodic means. Using the technical notation as that of Chapt(zr 2, we can
explicitly obtain that the i-th coordinate of My is given by y; —1/K§ Ztiwa y; with
wy,; =1i— [(i—1)/0|, where one can see the interpretation of M as a pefiodic (or seasonal)

adjustment matrix. Hence
& = (o' Mx) ™ 2’ My. (4.32)

Since the true model is y = za + ¢, we have from (4.32) that
& = a+ (o’ Mz) 2’ Me, (4.33)

revealing an unbiased estimator. It is well known that the covariance matrix of the BLUE
estimator a for the true model is o?(z’z)™'. By Lemma 3.1(i), M is symmetric and

€

idempotent. Then the covariance matrix of & is given by
E[(& —a)(@— )] = E[(a’Mz) (o' Me' Mx)(xMz') ] = o?(a’ Mz) L.

A general relative efficiency analysis can be made by introducing the following partial
order relation: we say that two Hermitian matrices A and B with equal dimensions satisfy
A = B if A— B is positive semi-definite.

Claim 6. Let A and B be two real, symmetric and positive definite T x T" matrices. The
matrix A — B is positive semi-definite if, and only if, B~! — A~! is positive semi-definite.
Proof of claim: By the positive definiteness hypothesis, there exist unique square root

172 respectively. Tt holds

matrices A2 and BY? with inverse matrices A~Y2 and B~
that A = B <= B Y2AB1? » | — Aing = 1, where )¢ is the infimum of

the spectrum of B~Y2AB~1/2. To see this, let M = B~Y24AB~1/2 — I and let v be an
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eigenvector corresponding to a eigenvalue A, and observe that (Mv,v) = (v,v)(A—1) > 0.

Further, since B~'/2AB~'/2 = (B~Y/2AY2)(AY2B~1/2) and commuting matrices share the
same eigenvalue spectrum, we must have AV/2B71AY2 = | «—— B! » AL

[

By setting A = (’Mz)™! and B = (2’x)~!, we see that A and B are positive definite

since 2’z and (Mx)' (Mx) are positive semi-definite and invertible. Also B™! — A~ =

o'llx = (Ilz)'(Ilz) is positive semi-definite. By the above claim, a is more efficient that &

1 —o2(2'z)~1 is positive semi-definite, unless [Tz = 0 (that is,

in the sense than o2 (2’ Mx)~
'D = 0). Using the relation =, we arrived with the conclusion that the only case where
both estimators are equally efficient is when x is uncorrelated with D.

One final observation is that equation (4.32) implies the equivalence between the least
squares estimate of model

y=za+ Dp +e¢

and the least squares estimate obtained from a model that uses seasonal adjusted variables
My = Mxa + e,

by the symmetry and idempotency of M.
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Appendix I - Additional reports

Table 3 shows the performance of the asymptotic plug-in h,s for the simulation exercise

*

of Section 4.2.1. The asymptotic selector performs poorly when compared to hopy and hg

specially for the smaller sample sizes T € {160,250}. This suggests that the bias part of
the MISE(h) of g is highly affected by the periodic component m, discouranging the use

of asymptotic plug-in rules for small samples.

Table 3: Asymptotic plug-in bandwidth performance

Mean | St. Dev. | AM x 10°
hmin has has has
T =160
02 =0.25 0.90 | 0.33 0.08 586.47
0?2 =05 0.91 | 0.41 0.35 383.14
o2 =0.75 0.92 | 0.43 0.19 364.77
T = 250
02 =0.25 0.58 | 0.30 0.04 16.87
0?2 =05 0.58 | 0.35 0.11 7.33
o? =0.75 0.59 | 0.38 0.11 7.84
T = 500
o? =0.25 0.32 | 0.26 0.02 0.19
0?2 =0.5 0.42 | 0.30 0.03 0.14
o? =0.75 0.43 | 0.33 0.05 0.14
T = 800
o2 =0.25 0.28 | 0.24 0.01 0.02
0?2 =0.5 0.34 | 0.28 0.02 0.01
o2 =0.75 0.35 | 0.30 0.03 0.02

" The table presents the expectation, standard deviation
and the efficiency measurement associated with each
bandwidth selector. Here, AM(h) = E(MISE(h) —
MISE(hmin))?.

Table 4 shows the sensitiveness of 6 over different bandwidth values, which are powers
of h;pt and h,s. Eventhough the behavior of h,g is distinct from the other selectors, the
accuracy of the period estimator # remained roughly unchanged for all selected bandwidths
and for each pair (62, T). Tables 4 and 2 offer a strong evidence that the estimator 0 is
robust with respect to bandwidth choices, for the considered model.

Figure 4.8 presents the results of the simulation exercise of Section 4.2.1 for the sample
sizes 120, 140, 160, 240, 260, 280, 420, 440 and 460. The expected values of the bandwidth
selector h,s are flatter than that of h.p and tht. This is due to the absence of the
periodic component in the asymptotic MISE defined in (4.28). On the other hand, the
exact MSE, defined in (4.2), depends directly on m. It implies that the integrated bias

carries the 60-periodic behavior of m, which in turn produces the oscillatory behavior on

*

opt depicted in Figure 4.8. As can be seen from the plots of the

the means of hyp and h
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Table 4: Sensitivity of § based on hip and hys.

P(0 = 60) P(55 < 6 <65)
T=160 T=250 T=500 T=800 | T=160 T=250 T=500 T=800

Chosen bandwidth: h%)P

o2 =0.25 0.20 0.43 0.96 1.00 1.00 1.00 1.00 1.00

02 =0.5 0.16 0.27 0.85 1.00 0.97 0.98 1.00 1.00

0?2 =0.75 0.14 0.24 0.67 0.99 0.90 0.99 1.00 1.00
Chosen bandwidth: A7,

o2 =0.25 0.20 0.43 0.96 1.00 1.00 0.99 1.00 1.00

02 =0.5 0.16 0.26 0.85 1.00 0.97 0.98 1.00 1.00

o2 =0.75 0.14 0.25 0.68 0.99 0.90 0.99 1.00 1.00
Chosen bandwidth: )"

02 =0.25 0.20 0.43 0.96 1.00 1.00 1.00 1.00 1.00

02 =0.5 0.16 0.26 0.85 1.00 0.97 0.98 1.00 1.00

o2 =0.75 0.14 0.24 0.68 0.99 0.90 0.99 1.00 1.00
Chosen bandwidth: h}l

o2 =0.25 0.20 0.41 0.95 1.00 1.00 0.99 1.00 1.00

02 =0.5 0.15 0.26 0.85 1.00 0.96 0.98 1.00 1.00

o? =0.75 0.13 0.23 0.67 0.99 0.89 0.99 1.00 1.00
Chosen bandwidth: h2;

02 =0.25 0.19 0.44 0.96 1.00 1.00 0.99 1.00 1.00

02 =0.5 0.15 0.27 0.85 1.00 0.96 0.98 1.00 1.00

o? =0.75 0.13 0.25 0.68 0.99 0.89 0.99 1.00 1.00
Chosen bandwidth: h,e

o2 =0.25 0.12 0.40 0.95 1.00 0.95 0.99 1.00 1.00

02 =0.5 0.12 0.25 0.86 1.00 0.90 0.98 1.00 1.00

o2 =0.75 0.12 0.24 0.68 0.99 0.83 0.99 1.00 1.00
Chosen bandwidth: Ao’

0?2 =0.25 0.09 0.39 0.95 1.00 0.87 0.99 1.00 1.00

o2 =0.5 0.11 0.23 0.84 1.00 0.82 0.98 1.00 1.00

o2 =0.75 0.08 0.23 0.67 0.99 0.73 0.99 1.00 1.00
Chosen bandwidth: hl?

o2 =0.25 0.08 0.34 0.94 1.00 0.77 0.99 1.00 1.00

o2 =0.5 0.08 0.20 0.85 1.00 0.63 0.98 1.00 1.00

o2 =0.75 0.07 0.23 0.67 0.99 0.55 0.99 1.00 1.00

approximated MISE’s minimum point, Ay, this periodic behavior should be captured by
any reasonable bandwidth selector for § when the sample is relatively small.

The simulation exercise of Section 4.3 is extended to the same samples sizes as in
Figure 4.8, and the results are presented in Figures 4.9, 4.10 and 4.11 for bandwidth

*

variations with respect to A,

hops and h,s, respectively. Note that Figures 4.9 and 4.10
are almost the same. More importantly, regardless of whether the chosen base is hg,, or
hopt, the accuracy of 6 does not change too much along the expoents 0.5,1,1.25 and 1.5,

for each pair (02, T). This property does not hold when the sample size is small (120, 140
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Figure 4.8: Bandwidth selection performance for the trend estimator ¢
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and 160) and the chosen base is h,g, as can be seen in Figure 4.11.

Figure 4.12 reproduces the NAIRU estimates of Cusbert et al. (2017).

Table 5 presents the OLS outputs of step (c¢) of the estimation schemes described in
Section 4.4.2. Model 1 is given by (4.21) where the regressor gap consists in the difference
between the NAIRU and the unemployment rate, and X is the i-th column of the 52 x 13
dummy matrix X = [l13 I13 ...| with I3 being the 13 x 13 identity matrix. Models
2, 3 and 4 relate to estimates of equation (4.14) when u; is previously estimated by HP

filter using penalization parameters 10, 100 and 400, respectively.
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Figure 4.11: Bandwidth sensitiveness of 0 based on hys
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Table 5: Least squares regression outputs.

Model 1 Model 2 Model 3 Model 4

gap 0.36* 0.51%* 0.51*** 0.47*
(0.13) (0.10) (0.14) (0.15)
X, —0.78
(0.85)
X 1.66
(0.85)
X3 —1.26
(0.85)
Xy —1.08
(0.85)
X5 0.93
(0.84)
X 1.04
(0.85)
X5 2.30**
(0.85)
X3 —0.29
(0.85)
Xo —1.05
(0.85)
Xio —0.44
(0.84)
X1 —1.82*
(0.85)
X9 0.08
(0.85)
Xi3 0.83
(0.85)
R? 0.49 0.34 0.20 0.16
Adj. R? 0.30 0.33 0.19 0.15
Num. obs. 52 52 52 52

**%p < 0.001; **p < 0.01; *p < 0.05



5 CONCLUDING REMARKS

The first essay of this thesis develops uniform consistency results for the local linear
estimator under mixing conditions in order to be directly applied in the next essays.
The weak and strong uniform convergence rates were provided for general kernel averages
from which we obtained the uniform rates for the local linear estimator. We restricted our
attention to equally-spaced design points of the form z, o =¢/T, t € {1,...,T}, T € N.
The convergences were stablished uniformly over [0, 1] under arithmetically strong mixing
conditions. The kernel function was restricted to be compactly supported and Lipschitz
continuous, and inlcudes the popular Epanechnikov kernel. The uniform convergence in
probability was provided without imposing stationarity while the almost sure uniform
convergence was proved only for the stationary case.

The second essay is the main study of this thesis. We investigated the asymptotic
properties of the estimators obtained by reversing the three-step procedure of Vogt and
Linton (2014), for time series modelled as the sum of a periodic and a trend deterministic
components plus a stochastic error process. In the first step, the trend function is esti-
mated; given the trend estimate, an estimate of the period is provided in the second step;
the last step consists in estimating the periodic sequence. The weak uniform convergence
rates of the estimators of the trend function and the periodic sequence were provided.
The asymptotic normality for the trend estimator was also stablished. Furthermore, it
was shown that the period estimator is consistent.

The third essay exploits the bandwidth selection problem and the finite sample per-
formance of the period estimator studied in the second essay. A plug-in type bandwidth
is proposed in order to estimate the trend function and a simulation exercise showed good
performance for the proposed bandwidth. We also employed another simulation where
the period estimator behaved robustly in response to different bandwidth choices. As a
complement, two applications applications were made: one for climatological data and
the other for economic data. In the former, we used global temperture anomalies data
which is exactly the same as that in Vogt and Linton (2014). The latter application
consists in providing central estimates for the australian non-accelerating inflation rate of

unemployment by means of the reversed estimation procedure.
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