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RESUMO

Métodos para alta dimensão tem ganhado cada vez mais importância na literatura econométrica,
onde a inclusão de um grande número de variáveis econômicas e financeiras pode melhorar
significativamente o desempenho de previsões de séries temporais. Porém, em um contexto de alta
dimensão, métodos tradicionais enfrentam alguns problemas relacionados à interpretabilidade do
modelo, variância elevada, correlação espúria, eficiência computacional, entre outros. Métodos de
aprendizado estatístico são desenvolvidos para um melhor desempenho de previsão, combinando
técnicas de regularização e ajuste empírico dos parâmetros e são capazes de lidar com alguns
destes problemas na presença de conjuntos de dados de alta dimensão. No artigo que integra esta
dissertação, utilizamos uma variedade de métodos de aprendizado estatístico para previsão de
séries temporais, realizando diversos exercícios numéricos, incluindo simulação Monte Carlo e
análise empírica de dados. Propusemos um método chamado WLadaENet (weighted lag adaptive
Elastic Net), que combina regularização quadrática com penalização ponderada semelhante ao
método adaENet, porém, penaliza mais severamente coeficientes de variáveis com defasagens
mais elevadas, como o método WLadaLASSO. Em nossas simulações, o método WLadaENet
apresenta um bom desempenho em termos de seleção de variáveis quando o modelo é esparso e
em termos de previsão fora da amostra, mesmo quando o modelo não é esparso e apresenta não
linearidades. Em nossa primeira aplicação empírica realizamos previsões entre 1 e 12 meses da
inflação do Brasil e do núcleo de inflação, incluindo previsões da inflação acumulada. Na segunda
aplicação realizamos previsões para a inflação dos Estados Unidos. O método Ridge apresenta
um bom desempenho para as previsões da inflação brasileira e um desempenho moderado
para as previsões da inflação norte americana utilizando-se amostras de tamanho semelhante.
Porém, quando utilizada uma amostra muito maior para a previsão da inflação norte americana,
o desempenho método Ridge reduz drasticamente, enquanto o desempenho do método L2Boost
melhora significativamente, principalmente pra a inflação acumulada. O método proposto no
artigo, WLadaENet, também apresenta um bom desempenho para previsão da inflação norte
americana neste caso.

Palavras-chave: Aprendizado estatístico. Aprendizado de máquina. Métodos para alta dimensão.
Previsão de inflação. LASSO. Random forests. Boosting.



ABSTRACT

High-dimensional methods are getting more and more present in the literature and the inclusion
of a large set of economic and financial predictors can improve the time series forecasting
performance significantly. However, in high-dimensional context traditional methods face some
challenges related to the model‘s interpretability, high variance, spurious correlation, compu-
tational efficiency, among others. Statistical learning methods, which are designed to improve
out-of-sample prediction by combining regularization and empirical tuning, are able to handle
some of these issues in high-dimensional context. In the paper contained into this dissertation
we employ a variety of high-dimensional statistical learning methods in order to perform time
series forecasting, carrying out a simulation study and presenting two empirical applications. A
method we call WLadaENet (weighted lag adaptive Elastic Net) is proposed, which combines
quadratic regularization and the adaptive weighted LASSO shrinkage similarly to adaENet, but
further penalizes coefficients of higher-lagged variables like WLadaLASSO. In our Monte Carlo
implementation, the WLadaENet presents a good performance in terms of variable selection
when the model is sparse and in terms of forecasting even when the model is not sparse and
nonlinearities are included. In the first application we perform forecasts of Brazilian inflation and
the core inflation from 1 to 12 months ahead, including the accumulated inflation. In the second
application we forecast U.S. inflation. We find that Ridge Regression has a good performance
to forecast Brazilian inflation, and a moderate performance to forecast U.S. inflation when the
data have (almost) the same size, in turn, when we use a larger sample the performance of Ridge
Regression decreases while L2Boost improves its performance, especially when accumulated
inflation is considered. The method WLadaENet proposed in the paper also presents a good
performance to forecast U.S. inflation in this case.

Keywords: Time series. Statistical learning. Machine learning. High-dimensional methods.
Inflation forecasting. LASSO. Random forests. Boosting.



SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 STATISTICAL LEARNING METHODS FOR TIME SERIES FORE-

CASTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Benchmark Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Shrinkage Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Factors Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Methods Implementation and Parameters . . . . . . . . . . . . . . . . . 22
2.4 SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 EMPIRICAL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Brazilian Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 U.S. Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 CONSIDERAÇÕES FINAIS . . . . . . . . . . . . . . . . . . . . . . . . 53

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
APPENDIX A – LIST OF VARIABLES (BRAZIL) . . . . . . . . . . . 57
APPENDIX B – LIST OF VARIABLES (U.S.) . . . . . . . . . . . . . . 61



6

1 INTRODUÇÃO

O artigo que integra esta dissertação consiste em um estudo metodológico e empírico
de métodos de aprendizado estatístico para alta dimensão, para a realização de previsão de
séries temporais. Aprendizado estatístico refere-se à uma variedade de ferramentas para a
compreensão dos dados, podendo ser classificadas como supervisionadas ou não supervisionadas
(JAMES et al., 2013). Os métodos estudados aqui são classificados, em geral, como métodos
de aprendizado estatístico supervisionado. Métodos para alta dimensão estão se tornando cada
vez mais importantes na literatura e a inclusão de um grande número de variáveis financeiras e
econômicas potencialmente contribui com ganhos consideráveis de desempenho em previsões
de séries temporais.

Porém, em um contexto de alta dimensionalidade, os métodos tradicionais apresentam
três principais problemas. O primeiro problema é que as estimativas frequentemente apresentam
variância elevada, apesar de um baixo viés, reduzindo a exatidão das previsões. O segundo
problema é relacionado à interpretabilidade do modelo. Considerando-se um grande conjunto
de variáveis preditoras, é preferível determinar um subconjunto menor de variáveis que exibam
os efeitos que melhor explicam a variabilidade da variável de resposta (TIBSHIRANI, 1996;
KONZEN; ZIEGELMANN, 2016). O terceiro problema ocorre quando o número de variáveis
preditoras excede o tamanho da amostra, neste caso o método de Mínimos Quadrados Ordinários
(MQO) não pode ser implementado. Outro impacto da alta dimensionalidade é a correlação
espúria (FAN, 2014): isto refere-se a variáveis que na teoria não são correlacionadas, mas cuja
correlação amostral é elevada. Este problema pode resultar em inferências estatísticas inválidas.

Métodos de aprendizado estatístico são capazes de evitar ou contornar alguns dos proble-
mas descritos acima, em um contexto de alta dimensionalidade. Estes métodos são desenvolvidos
para um melhor desempenho de previsão fora da amostra. Gu et al. (2019) e Mullainathan e
Spiess (2017) apontam as três principais características dos métodos de aprendizado estatístico
para alta dimensão. Aprendizado estatístico (ou aprendizado de máquina) contém uma variada
coleção de métodos de previsão estatística para alta dimensão que combinam dois elementos:
regularização e ajuste empírico dos parâmetros. A natureza de alta dimensionalidade desses
métodos realçam sua flexibilidade relativa às técnicas econométricas de predição mais tradicio-
nais (GU et al., 2019). Os métodos de aprendizado estatístico tipicamente têm um regularizador
associado a eles e o ajuste empírico dos parâmetros permite a escolha do nível apropriado de
regularização (MULLAINATHAN; SPIESS, 2017).

No artigo que compõe o Capítulo 2 empregamos uma variedade de métodos de apren-
dizado estatístico (incluindo métodos baseados em encolhimento dos coeficientes, em árvores
de regressão e em boosting) para realização de previsão de séries temporais. Em particular,
propusemos um método chamado WLadaENet (weighted lag adaptive Elastic Net), que combina
regularização quadrática e a penalização ponderada adaptativa similar ao método adaENet intro-
duzido por Zou e Zhang (2009), porém, penalizando mais severamente coeficientes das variáveis
de defasagens mais elevadas, como o método WLadaLASSO proposto por Konzen e Ziegelmann
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(2016). Para comparar o desempenho dos métodos de aprendizado estatístico, realizamos um
estudo baseado em simulações onde são apresentadas três especificações de processos geradores
de dados e variamos o número de defasagens utilizadas assim como o tamanho das amostras
geradas. Também apresentamos duas aplicações empíricas, onde na primeira aplicação empírica
utilizamos o conjunto de métodos de aprendizado estatístico para realizar previsões da inflação
brasileira e do núcleo de inflação, enquanto na segunda aplicação, utilizamos estes métodos para
realizar previsões da inflação norte americana.
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2 STATISTICAL LEARNING METHODS FOR TIME SERIES FORECASTING

Klaus Böesch1 and Flavio A. Ziegelmann 2

March, 2020

Abstract. We perform time series forecasting employing a wide collection of high-dimensional
statistical learning methods, carrying out a simulation study and presenting two empirical
applications. A method we call WLadaENet (weighted lag adaptive Elastic Net) is proposed,
which combines quadratic regularization and the adaptive weighted LASSO shrinkage similarly
to adaENet, but further penalizes coefficients of higher-lagged variables like WLadaLASSO.
In our Monte Carlo implementation, the WLadaENet presents a good performance in terms of
variable selection when the model is sparse and in terms of forecasting even when the model
is not sparse and nonlinearities are included. In the first application we perform forecasts of
Brazilian inflation and the core inflation from 1 to 12 months ahead, including the accumulated
inflation. In the second application we forecast U.S. inflation. We find that Ridge Regression has
a good performance to forecast Brazilian inflation, and a moderate performance to forecast U.S.
inflation when the data have (almost) the same size. In turn, when the sample size increases the
performance of Ridge Regression decreases while L2Boost improves its performance, especially
when accumulated inflation is considered. WLadaENet also presents a good performance to
forecast U.S. inflation.

Keywords. Time series. Statistical learning. Machine learning. High-dimensional methods.
Inflation forecasting. LASSO. Random forests. Boosting.
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2.1 INTRODUCTION

This work is a methodological and empirical study of high-dimensional statistical learning
methods in order to perform time series forecasting. Statistical learning refers to a variety of
tools used for analyzing data, which can be classified as supervised or unsupervised (JAMES
et al., 2013). Most of the methods we study here belong to the former type.

High-dimensional methods are becoming more and more important in the econometrics
literature and the inclusion of a large number of financial and economic variables potentially
contributes to considerable gains for time series forecasting. However, in the high-dimensional
context the traditional methods present three main problems. The first is that estimates often
have low bias but large variance, reducing the accuracy of the forecasts. The second is related
to model interpretabillity. Considering a large set of predictors, it is preferable to determine
a smaller subset of predictors that exhibits the effects that most explain the variability of the
response variable (TIBSHIRANI, 1996; KONZEN; ZIEGELMANN, 2016). The third problem
occurs when the number of predictors exceeds the sample size in which case by construction,
the ordinary least squares (OLS) method cannot be implemented. Another impact of high-
dimensionality is spurious correlation (FAN, 2014): it refers to variables that are not correlated
in theory, but whose sample correlation is high. This problem may lead to erroneous statistical
inference.

Statistical learning methods are able to handle some of the issues. These methods are
designed to improve out-of-sample prediction. Gu et al. (2019) and Mullainathan and Spiess
(2017) point out the three main characteristics of (high-dimensional) statistical learning3 methods.
Statistical learning contains a diverse collection of high-dimensional methods for statistical
prediction that combine two elements, namely, regularization and empirical tuning. The high-
dimensional nature of these methods enhances their flexibility relative to more traditional
econometric prediction techniques (GU et al., 2019). Statistical learning methods typically have
a regularizer associated with them and the empirical tuning allows one to chose the level of
regularization appropriately (MULLAINATHAN; SPIESS, 2017).

In this work we employ a variety of statistical learning methods (including methods based
on shrinkage, regression trees and boosting) to perform time series forecasting. In particular, we
propose a method we call WLadaENet (weighted lag adaptive Elastic Net), which combines
quadratic regularization and the adaptive weighted LASSO shrinkage similarly to adaENet
introduced by Zou and Zhang (2009), but further penalizes coefficients of higher-lagged variables
like the WLadaLASSO proposed by Konzen and Ziegelmann (2016).

In order to compare the performance of the statistical learning methods considered,
a simulation study is carried out, with three different data-generating process and vary the
number of lags used as well as the sample size of simulated data. We also present two empirical
applications, where in the first one we employ a set of statistical learning methods to forecast
3 In fact, Gu et al. (2019) and Mullainathan and Spiess (2017) refer to these methods as machine learning, however

in this work we are using statistical learning in a more general context, according to Hastie et al. (2009).
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Brazilian inflation and the core inflation, while in the second application we employ these
methods to perform U.S. inflation forecasting.

2.2 LITERATURE REVIEW

High-dimensional methods are getting more and more present in the econometrics
literature and the inclusion of a large collection of economic and financial predictors can improve
the time series forecasting performance significantly. For instance, Medeiros and Vasconcelos
(2016) point out that some advances in computer science, statistics and econometrics allow us to
handle large and complex datasets and show that (on average) high-dimensional methods can
produce smaller forecasting errors for macroeconomic variables forecasting when a large set of
predictors is considered.

James et al. (2013) describe statistical learning as a vast collection of tools for under-
standing data which can be classified as supervised or unsupervised, where supervised statistical
learning consists in building a statistical model for predicting, or estimating, an output based on
just a single or a large set of inputs, while in unsupervised statistical learning problems, there
are inputs but no supervised output. Gu et al. (2019) in turn define machine learning as “(i) a
diverse collection of high-dimensional methods for statistical prediction, combined with (ii)
so-called ‘regularization’ methods for model selection and mitigation of overfit, and (iii) efficient
algorithms for searching among a vast number of potential model specifications”. In the same
direction Mullainathan and Spiess (2017) highlight the ability of machine learning to deal with
high-dimensional data and present the two key elements which allow machine learning to handle
overfitting: regularization and empirical tuning.

Considering the multiple linear regression model, when the number of predictors q ap-
proaches the sample size T , the least squares method becomes inefficient or even inconsistent and
begins to overfit noise instead of extracting signal (GU et al., 2019) . The task of regularization
is to reduce the model’s complexity, improving its out-of-sample stability and, consequently,
reducing its in-sample performance, whereas empirical tuning is used to determine the optimal
level of complexity, reducing the model’s fit of noise and preserving its fit of the signal (MUL-
LAINATHAN; SPIESS, 2017; GU et al., 2019) . As the methods employed in this work are
referred to in the literature as (supervised) machine learning as well as (supervised) statistical
learning methods, we are using high-dimensional statistical learning methods in a broad way.

Medeiros and Mendes (2016) study the asymptotic properties of adaLASSO in sparse,
high-dimensional, linear time-series models and find that its properties allow the adaLASSO to
be applied to a variety of applications in empirical finance and macroeconomics. The authors
also present an application to forecast U.S. inflation using many predictors, where adaLASSO
delivers superior forecasts compared to traditional benchmarks such as autoregressive and factor
models. Medeiros and Vasconcelos (2016) employ high-dimensional methods (LASSO-family
and bagging) to forecast macroeconomic variables, and show that high-dimensional methods
provide smaller forecast errors than autoregressive and factor models. Medeiros et al. (2016) use
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LASSO and adaLASSO to forecast Brazilian inflation and observe that LASSO-based methods
have the smallest errors for short-horizon forecasts. Konzen and Ziegelmann (2016) test LASSO-
type penalty methods for covariate selection and forecasting, and propose the WLadaLASSO
(which is based on further penalizing lagged predictors) method that presents good results
for U.S. risk premium and U.S. inflation forecasting. Garcia et al. (2017) employ a variety of
high-dimensional methods to forecast Brazilian inflation, including LASSO-based methods,
Complete Subset Regression (CSR) and Random Forest (RF), with LASSO and adaLASSO
displaying the best performance for shorter horizons, while CSR is the best method for longer
horizons. Medeiros et al. (2019) added a variety of high-dimensional methods to forecast U.S.
inflation, such as bagging, Ridge Regression, Elastic Net (and its adaptive version) and Jackknife
Model Averaging (JMA), finding that RF robustly outperforms the other methods. Gu et al.

(2019) provide a comparative analysis of methods in the machine learning repertoire, using
these methods to forecast stock returns, and identify the best performing methods as trees-based
models and neural networks.

The following sections provide some theoretical background of the methods employed in
this work.

2.2.1 Benchmark Methods

Two benchmark methods based on univariate models are considered in this work: the
Random Walk (RW) and the Autoregressive (AR).

2.2.1.1 Random Walk (RW)

Suppose that {yt}, t = 0,1,2..., follows a Random Walk process, which is a cumulative
sum of iid random variables. Defining y0 = 0, a RW with zero mean is given by yt = ε1+ ...+εt ,

t = 1,2..., where {εt} is iid noise, such that yt+1− yt = εt+1. As we are interested in forecast

yt+h, we have that yt+h = yt +
h

∑
j=1

εt+ j︸ ︷︷ ︸
ut+h

and the best h-step ahead forecast for yt+h, for all t, is

given by ŷt+h = yt , h = 1, ..,H.

2.2.1.2 Autoregressive (AR)

The Autoregressive model of order p is given by

yt+1 = φ0 +φ1yt + ...+φpyt−p+1 +ut+1, (2.1)

where yt is stationary under certain conditions and the sequence {ut} is in general supposed as
a white noise (with mean 0 and variance σ2). We are interested in forecast yt+h, h = 1, ...,H
and we only have information up to time t. An usual approach to estimate ŷt+h is to recursively
estimate one-step-ahead ŷt+1, ŷt+2, ..., ŷt+h−1, ŷt+h, based on Equation (2.1), pluggin in each
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step the previous forecasts. Alternatively, in this work we employ a direct forecast approach,
similarly to Medeiros et al. (2019), where the forecast of yt+h is given by

ŷt+h = φ̂0,h + φ̂1,hyt + ...+ φ̂p,hyt−p+1, t = 1, ...,T. (2.2)

2.2.2 Shrinkage Methods

Considering the linear model

yt+h = β0 +β1xt,1 + ...+βqxt,q +ut+h, t = 1, ...,T. (2.3)

The forecasting of yt+h is denoted as ŷt+h and given by

ŷt+h = β̂0 + β̂1xt,1 + ...+ β̂qxt,q, t = 1, ...,T. (2.4)

This section presents a class of methods that shrink the regression coefficients by imposing
a penalty on their size, i.e, the estimated coefficients in a linear model minimize a penalized
residual sum of squares

β̂ (Θ) = argmin
b0,...,bq


T−h

∑
t=1

(
yt+h−b0−

q

∑
j=1

b jxt, j

)2

︸ ︷︷ ︸
RSS(b0,...,bq)

+p(b1, ...,bq;θθθ)

 , (2.5)

where β̂ (θθθ) = (β̂0, β̂1(θθθ), ..., β̂q(θθθ)), p(.) is a penalty function and θθθ is a vector of tuning
parameters. The following shrinkage methods consider different choices for the penalty function
which are summarized in Table 1.

Table 1 – Penalty functions

Method Penalty function

Ridge p(.) = λ ∑
q
j=1 b2

j
LASSO p(.) = λ ∑

q
j=1 |b j|

ENet p(.) = λ [ρ ∑
q
j=1 |b j|+(1−ρ)∑

q
j=1 b2

j ]

adaLASSO p(.) = λ ∑
q
j=1 |β̂ ∗j |−τ |b j|

adaENet p(.) = λ [ρ ∑
q
j=1 |β̂ ∗j |−τ |b j|+(1−ρ)∑

q
j=1 b2

j ]

WLadaLASSO p(.) = λ ∑
q
j=1(|β̂ ∗j |e−αl j)−τ |b j|

WLadaENet p(.) = λ [ρ ∑
q
j=1(|β̂ ∗j |e−αl j)−τ |b j|+(1−ρ)∑

q
j=1 b2

j ]

Source: Own elaboration (2020).

2.2.2.1 Ridge Regression (RR)

Hoerl and Kennard (1970) introduce the Ridge Regression and demonstrate that this
method obtains estimations with a little bias increase and substantial variance reduction in return,
and therefore increasing the prediction accuracy. The ridge coefficients minimize a penalized
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residual sum of squares, where the penalization term takes the form p(.) = λ ∑
q
j=1 b2

j and the
minimization problem becomes

β̂
RR = argmin

b0,...,bq

[
RSS(b0, ...,bq)+λ

q

∑
j=1

b2
j

]
, (2.6)

where the complexity (or tuning) parameter λ ≥ 0 controls the amount of shrinkage (the larger
the value of λ is, the greater the amount of shrinkage and the more the coefficients are shrunk
toward zero (HASTIE et al., 2009)).

Another way to write the Ridge problem is

β̂
RR = argmin

b0,...,bq

[
RSS(b0, ...,bq)

]
subject to

q

∑
j=1

b2
j ≤ s, (2.7)

where the constraint imposed on the parameters size is explicit. There is a one-to-one corre-
spondence between the parameters λ in (2.6) and s in (2.7). Let s0 = ∑

q
j=1(β̂

OLS
j )2. If s≥ s0 (or

λ = 0), Ridge estimates will be the same as OLS estimates and values of s < s0 (or λ > 0) cause
a shrinkage of the coefficients toward zero. The Ridge problem has an analytic solution given by

β̂
RR = (XT X +λ I)−1XTyyyh, (2.8)

in matrix notation, where X is the design matrix, whose entry t, j corresponds to the tth obser-
vation of the jth predictor, yyyh is a vector containing the observations of the response variable
and I is the qxq identity matrix. The solution (2.8) adds a positive constant to the diagonal of
XT X before inversion, making the problem non-singular, even if XT X is not full rank (HASTIE
et al., 2009). Thus Ridge Regression can be implemented even when the number of predictors is
greater than the sample size.

2.2.2.2 Least Absolute Shrinkage and Selection Operator (LASSO)

As Ridge Regression obtains non-zero estimates for all coefficients it is not a variable
selection method (KONZEN; ZIEGELMANN, 2016) and hence does not provide an easily
interpretable model. Subset selection methods (such as Best-Subset Selection, Forward- and
Backward-Stepwise Selection, and Forward-Stagewise Regression), in turn, provide interpretable
models but often exhibit high variance and, consequently, do not reduce the prediction error of
the full model (HASTIE et al., 2009). Tibshirani (1996) proposes a technique called LASSO, for
Least Absolute Shrinkage and Selection Operator. This method shrinks some coefficients while
setting others to zero, retaining the good features of both subset selection and Ridge Regression
techniques. As Ridge Regression, the LASSO coefficients minimize a sum of squared residuals
subject to a penalty of the coefficients size, but adopts a L1 norm instead of a L2 penalty norm
used in Ridge Regression. The LASSO penalty takes the form p(.) = λ ∑

q
j=1 |b j| and the LASSO

estimator is given by

β̂
LASSO = argmin

b0,...,bq

[
RSS(b0, ...,bq)+λ

q

∑
j=1
|b j|

]
. (2.9)
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As in Ridge Regression λ controls the amount of penalization that is applied to the
coefficients. The tuning parameter λ is usually chosen by data-driven techniques such as cross-
validation, or through the use of information criteria (GARCIA et al., 2017). According to
Konzen and Ziegelmann (2016), in a cross-section framework the value of λ is traditionally
chosen via cross-validation, whereas in a time series set-up choosing the parameter λ using the
Bayesian Information Criterion (BIC) is most suitable.

The L1 LASSO penalty constraint makes the solution nonlinear in yt+h , and unlike Ridge
Regression, the LASSO minimization problem in Equation (2.9) does not have a closed form
expression (HASTIE et al., 2009). Computing the LASSO solution is a quadratic programming
problem.

2.2.2.3 Adaptive LASSO (adaLASSO)

As LASSO does not have the oracle properties and in some situations the variable
selection can be inconsistent. Zou (2006) proposes a new methodology called Adaptive LASSO
(adaLASSO), in order to avoid LASSO deficiencies, resulting in a method that enjoys the oracle
properties. The oracle properties refer to: 1. Consistency in variable selection; 2. Asymptotic
normality. The adaLASSO is a weighed version of LASSO that assigns different weights to
different coefficients on the LASSO penalty term. The penalty is given by p(.) = λ ∑

q
j=1 ω j|b j|

and the adaLASSO estimator is given by

β̂
adaLASSO = argmin

b0,...,bq

[
RSS(b0, ...,bq)+λ

q

∑
j=1

ω j|b j|

]
, (2.10)

where ω j = |β̂ ∗j |−τ and β̂ ∗j is the coefficient from a first-step estimation and where τ is another
tuning parameter.

Zou (2006) shows that if the weights are data-driven and cleverly chosen, then the
weighted LASSO can have the oracle properties. So he suggested using β̂ OLS as β̂ ∗ unless
collinearity is a concern, in which case he suggests β̂ RR for the best Ridge Regression fit, because
it is more stable than β̂ OLS. The value of τ must be positive and the most common value used is
τ = 1. If τ = 0 we have the traditional LASSO.

2.2.2.4 Weighted Lag adaptive LASSO (WLadaLASSO)

In time series context when adaLASSO is performed, each lagged variable can enter
as a predictor candidate and its individual penalty depends only on β̂ ∗. Assuming that the
coefficients of variables with higher lags approach zero Konzen and Ziegelmann (2016) propose
a modified version of adaLASSO with weighted lags, called Weighted Lag Adaptative LASSO
(WLadaLASSO). The WLadaLASSO penalty is given by p(.) = λ ∑

q
j=1 ω∗j |b j| and the estimator

is given by

β̂
WLadaLASSO = argmin

b0,...,bq

[
RSS(b0, ...,bq)+λ

q

∑
j=1

ω
∗
j |b j|

]
, (2.11)
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where ω∗j =
(
|β̂ ∗j |e−αl j

)−τ

, τ > 0, α ≥ 0 and l j represents the lag order of variable x j. They

suggest pluggin in β̂ RR as β̂ ∗ and chose the value of the tuning parameter α using the BIC.
Rearranging ω∗j results in ω∗j = |β̂ ∗j |−τeταl j that is equal to the adaLASSO weight ω j multiplied
by a factor eταl j . Note that if α = 0, ω∗j = ω j, then we have the traditional adaLASSO. If either
α → ∞ or l j→ ∞, then ω∗j → ∞.

2.2.2.5 Elastic Net (ENet)

According to Zou and Hastie (2005), LASSO has some limitations: (i) If the number of
predictors q is bigger than the sample size T , then LASSO selects at most T variables before
it saturates; (ii) If there is a group of variables among which the pairwise correlations are very
high, LASSO tends to select only one variable from that group; (iii) For T > q, if there are
high correlations between predictors, the prediction performance of LASSO is dominated by
Ridge Regression. Therefore LASSO is an inappropriate variable selection method in some
situations. In order to avoid some of the deficiencies of LASSO, Zou and Hastie (2005) propose
the Elastic Net as a new regularization technique. Elastic Net penalty is a convex combination
between L1 norm LASSO penalty and L2 norm Ridge Regression penalty and is given by
p(.) = λ [ρ ∑

q
j=1 |b j|+(1−ρ)∑

q
j=1 b2

j ], 0 < ρ < 1. The Elastic Net estimator takes the form4

β̂
ENet = argmin

b0,...,bq

{
RSS(b0, ...,bq)+λ

[
ρ

q

∑
j=1
|b j|+(1−ρ)

q

∑
j=1

b2
j

]}
. (2.12)

LASSO, Ridge Regression and OLS can be seen as special cases of Elastic Net. If ρ = 1
the problem reduces to LASSO while ρ = 0 corresponds to Ridge Regression, and finally, if λ = 0
there is no penalty and the problem reduces to OLS. According to Zou and Hastie (2005), Elastic
Net simultaneously performs automatic variable selection and continuous shrinkage similar to
LASSO, and additionally can select groups of correlated variables. Moreover, Elastic Net often
outperforms LASSO in terms of prediction accuracy. The authors propose an efficient algorithm
called LARS-EN for computing the entire Elastic Net regularization paths with computational
effort comparable to a single OLS fit.

2.2.2.6 Adaptive Elastic Net (adaENet)

Zou and Zhang (2009) propose the adaptive Elastic Net and establish its oracle prop-
erties under weak regularity conditions. The adaptive penalization of Elastic Net combines
quadratic regularization and the adaptive weighted lasso shrinkage, and is given by p(.) =

λ [ρ ∑
q
j=1 ω̂ j|b j|+(1−ρ)∑

q
j=1 b2

j ]. The adaptive Elastic Net estimates are given by

β̂
adaENet = argmin

b0,...,bq

{
RSS(b0, ...,bq)+λ

[
ρ

q

∑
j=1

ω̂ j|b j|+(1−ρ)
q

∑
j=1

b2
j

]}
, (2.13)

4 Zou and Hastie (2005) call Equation (2.12) the Naive Elastic Net, and prefer a rescaled version which they call
Elastic Net, we follow Friedman et al. (2010) and do not use this distinction.
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where ω̂ j = (|β̂ ∗j |+T−1)−τ , β̂ ∗j = β̂ ENet
j and τ is a positive constant. According to Zou and

Zhang (2009) the L2 penalty further regularizes the adaptive LASSO fit whenever the collinearity
may cause serious trouble and the L1 regularization parameters is responsible for the sparsity of
the estimates. They show that this method deals with the collinearity problem better than the
other oracle-like methods, enjoying improved finite sample performance.
Remark: As our implementation of the adaptive Elastic Net is based on the R package glmnet

where the parameter penalty.factor (which represents the vector of weights ω = (ω1, ...,ωq)
T )

multiplies λ , then we have, in fact, the penalty p(.) = λ [ρ ∑
q
j=1 ω̂ j|b j|+(1−ρ)∑

q
j=1 ω̂ jb2

j ].

2.2.2.7 Weighted Lag adaptive Elastic Net (WLadaENet)

We propose a method that we call Weighted Lag Adaptive Elastic Net (WLadaENet),
a combination between adaENet and WLadaLASSO, where the idea is similar to the adaptive
Elastic Net, but penalizing further the coefficients of higher-lagged covariates. The penalization
of WLadaENet is given by p(.) = λ [ρ ∑

q
j=1 ω̂∗j |b j|+ (1− ρ)∑

q
j=1 b2

j ] and the minimization
problem is similar to adaENet and the estimator is given by

β̂
WLadaENet = argmin

b0,...,bq

{
RSS(b0, ...,bq)+λ

[
ρ

q

∑
j=1

ω̂
∗
j |b j|+(1−ρ)

q

∑
j=1

b2
j

]}
, (2.14)

where ω∗j =
[(
|β̂ ∗j |

)
e−αl j

]−τ

, if either OLS or RR are employed in the first stage. In turn,

if LASSO or ENet are employed, ω̂∗j =
[(
|β̂ ∗j |+T−1

)
e−αl j

]−τ

. Similarly to WLadaLASSO,

τ > 0, α ≥ 0, l j represents the lag order and β̂ ∗j are the coefficient estimates of the first stage.
Remark: Here the situation is the same as the described to adaENet implementation. Thus we
have in fact the penalty p(.) = λ [ρ ∑

q
j=1 ω̂∗j |b j|+(1−ρ)∑

q
j=1 ω̂∗j b2

j ].

2.2.3 Ensemble Methods

According to Hastie et al. (2009), ensemble learning consists in constructing a prediction
method F̂h by combining the strengths of simple base estimators f̂h, such that the prediction rule
is given by

ŷt+h = F̂h(xxxt) = λ

B

∑
b=1

f̂h,b(xxxt), (2.15)

where λ ∈ (0,1) can be a learning rate or a weight.

2.2.3.1 Complete Subset Regression (CSR)

Subset Selection methods retain only a subset of the variables, and eliminate others from
the model, where least squares regression is employed to estimate the coefficients of the retained
covariates. Elliott et al. (2013) introduce the Complete Subset Regression which for a given set
of potential predictor variables combines forecasts from all possible linear regressions with a
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fixed number of predictors. For a set of K predictor candidates there are nk,K = K!/[(K− k)!k!]
combinations of k < K variables. Elliott et al. (2015) consider large-dimensional sets of potential
predictors where the CSR is unfeasible and indicate a pre-testing procedure as a possible solution.

Consider the liner model

yt+h = γ
Tzzzt +δ

Twwwt +ut+h, t = 1, ...,T

where zzzt is a Px1 vector of predictors which is always included in the forecasting and wwwt is a Kx1
vector of variables that we are not sure whether are useful predictors. We follow Garcia et al.

(2017) and Medeiros et al. (2019) and use a pre-testing procedure where for each variable in wwwt

we fit a linear regression of yt+h by OLS and use the absolute values of the t-statistic to select
the K̃ < K most relevant variables. The CSR forecast is given by

ŷt+h = B−1
B

∑
b=1

β̂
T
b xxxt =

[
B−1

(
B

∑
b=1

β̂
T
b

)]
︸ ︷︷ ︸

(β̂CSR)T

xxxt , (2.16)

where B = nk,K̃ = K̃!/[(K̃− k)!k!], xxxt = (zzzt ,wwwt) and β̂b = (γ̂T
b , δ̂

T
b )T , b = 1, ...,B.

2.2.3.2 Componentwise L2 Boosting (L2Boost)

Originally designed for classification, boosting was afterwards extended to encompass
regression problems. Boosting is a procedure that combines the outputs of many base or weak

learners iteratively in order to achieve high accuracy (BÜHLMANN; YU, 2003; HASTIE
et al., 2009). According to Friedman (2002) gradient boosting constructs additive regression
models by sequentially fitting a simple parameterized function (base learner) to current “pseudo”-
residuals by least-squares at each iteration, where the “pseudo”-residuals are the gradient of the
loss functional being minimized, with respect to the model values at each training data point,
evaluated at current step. The boosting technology builds an ensemble model by conducting a
regularized and supervised search in a high-dimensional space of weak learners (HASTIE et al.,
2009).

Bühlmann and Yu (2003) present a computationally simple variant of boosting algo-
rithms, L2Boost, which is constructed from a functional gradient descent algorithm employ-
ing the L2-loss function. For L2Boost method the loss function is given by L(yt+h, F̂(xxxt)) =

[yt+h− F̂(xxxt)]
2/2 such that the gradient of L(.) is ût+h = yt+h− F̂(xxxt), t = 1, ...,T −h.

Based on Bühlmann and Yu (2003), and Bai and Ng (2009) the Componentwise L2Boosting
algorithm follows the steps bellow:

1. Let F̂0(xxxt) = β̂0 = (T −h)−1
∑

T−h
t=1 yt+h and β̂1,0 = β̂2,0 = ...= β̂q,0 = 0.

2. For b = 1, ...,B:
(a) Compute the pseudo-residuals ût+h,b = yt+h− F̂b−1(xxxt), t = 1, ...,T −h.
(b) For j = 1, ...,q, regress ût+h,b on xt, j to obtain β̃ jb .
(c) Compute êt+h, j,b = ût+h,b− xt, jβ̃ jb , t = 1, ...,T −h, j = 1, ..,q.
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(d) Select j∗b = argmin
j

[∑T−h
t=1 (êt+h, j,b)

2].

(e) Define f̂b = xxx j∗b
β̃ j∗b

, where xxx j∗b
= (x1, j∗b , ...,xT−h, j∗b

)T .
(f) Update F̂b(xxxt) = F̂b−1(xxxt)+λ f̂b and β̂ j,b = β̂ j,b−1 +λβ̃ j∗b

, where 0 < λ ≤ 1.
(g) Update β̂i,b = β̂i,b−1, i 6= j.
(h) Compute the Information Criterion (IC).
3. Output β̂ L2Boost = (β̂0, β̂1,B∗ , ..., β̂q,B∗), where B∗ = argmin

1≤b≤B
IC(b).

The L2Boost forecast is given by

ŷt+h = β̂0 + β̂1,B∗xt,1 + ...+ β̂q,B∗xt,q. (2.17)

In order to avoid overfit Bühlmann (2006) proposes a stopping rule using the corrected
AICc criterion:

AICc(b) = log(σ̂2
b )+

1+dfb/(T −h)
1− (dfb +2)/(T −h)

, (2.18)

where dfb = trace(Bb), σ̂2
b = (T − h)−1

∑
T−h
t=1 {[(IT−h−Bb)yyyh]t︸ ︷︷ ︸

yt+h−F̂b(xxxt)

}2, Bb = Bb−1 + λPj∗b
(IT−h−

Bb−1), Pj∗n = x j∗b
(xT

j∗b
x j∗b

)−1xT
j∗b

and IT−h is the (T −h)x(T −h) identity matrix.
For time series, Bai and Ng (2009) use the BIC as IC of the stopping rule.

BIC(b) = log(σ̂2
b )+

dfb log(T −h)
(T −h)

. (2.19)

2.2.3.3 Random Forest (RF)

Breiman (2001) proposes the Random Forest to improve the variance reduction of bagging

predictors (BREIMAN, 1996) by reducing the correlation between the trees. Regression trees
partition the space of predictors into disjoint regions {Rk}K

k=1 and these regions are represented
by the terminal nodes (or leaves) of the corresponding tree. According to Hastie et al. (2009) a
regression tree with K regions (terminal nodes or leaves) can be formally defined by the equation

T (xxxt ;θθθ) =
K

∑
k=1

βkIRk(xxxt), (2.20)

with parameters θθθ = {Rk,βk}K
k=1 and where IRk(.) is a product of indicator functions such that

IRk(xxxt) =

{
1 if xxxt ∈ Rk,

0 otherwise.
(2.21)

Adopting as minimization criterion the sum of squares, the best β̂k is given by the average
of the yt+h that lay in region R̂k

β̂k =
∑

T−h
t=1 IR̂k

(xxxt)yt+h

∑
T−h
t=1 IR̂k

(xxxt)
. (2.22)
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The partition process starts at the root node with the whole sample, where the pair
split-point/split-variable, that most reduces the Residual Sum of Squares (RSS) is selected

(s∗, j∗) = argmax
s, j=1,...,q

[
RSS0(yyyh, β̂0)−RSS1(yyyh, β̂1(s, j))−RSS2(yyyh, β̂2(s, j))

]
, (2.23)

where s ∈ (min({xt, j}T−h
t=1 ), max({xt, j}T−h

t=1 )).
For the Random Forest algorithm consider Z = {(yt+h, xxxt)}T−h

t=1 as a learning set. Take
B bootstrap sub-samples from Z, with replacement and size T −h. A regression tree is estimated
for each bootstrapped sub-sample Z∗b , b = 1, ..,B. For each tree the process starts in the root node
with the whole sample, and then the following steps are recursively repeated, for each terminal
node of the tree until either the minimum node size nmin is reached or the reduction of RSS is
bellow a certain value:

1. Select d variables from the set of q variables at random, where d < q.
2. Choose the pair split-point/variable that most reduces the RSS among the d variables.
3. Split the current node into two new nodes.
The RF process results in an ensemble of trees {Tb}B

b=1. The final prediction of RF is
given by

ŷt+h = F̂RF
B (xxxt) = B−1

B

∑
b=1

[
Kb

∑
k=1

β̂k,bIR̂k,b
(xxxt)

]
︸ ︷︷ ︸

Tb(xxxt ,θ̂θθ b)

(2.24)

2.2.3.4 Boosting Regression Trees (B.Trees)

Boosting is a general approach that can be applied to many statistical learning methods
as well as to improve the prediction accuracy of regression trees where each tree is iteratively
grown (or constructed) using information from previously grown trees (JAMES et al., 2013).

For boosting regression trees, Friedman (2001) considers the case where each base learner
is an K-terminal node regression tree. {Rk}K

k=1 are disjoint regions that collectively cover the
space of all joint values of the predictor variables.

In boosting algorithm, for regression trees the update at each iteration has the form

F̂b(xxxt) = F̂b−1(xxxt)+λ

K

∑
k=1

β̂k,bIR̂k,b
(xxxt), (2.25)

where {R̂k,b}K
k=1 are the regions defined by the terminal nodes of the tree at the bth iteration. The

trees are constructed to predict the pseudo-responses {ût+h,b}T−h
t=1 by least squares. The {β̂k,b}K

k=1

are the corresponding least squares coefficients

β̂k,b =
∑

T−h
t=1 IR̂k,b

(xxxt)ût+h,b

∑
T−h
t=1 IR̂k,b

(xxxt)
. (2.26)



20

Then the algorithm of gradient boosting for regression trees, based on Friedman (2001), Hastie
et al. (2009) and James et al. (2013), is given by the following steps:

1. Initialize F̂0(xxxt) = β̂0 = argmin
c

∑
T−h
t=1 L(yyyt+h,c).

2. For b = 1, ...,B:
(a) For t = 1, ...,T −h, compute

ût+h,b =−
[

∂L(yt+h,F(xxxt))

∂F(xxxt)

]
F=F̂b−1

.

(b) Fit a regression tree to the targets ût+h,b with Kb terminal nodes.
(c) Update F̂b(xxxt) = F̂b−1(xxxt)+λ ∑

Kb
k=1 β̂k,bIRk,b(xxxt).

3. Output the boosted model F̂B.Trees
B (xxxt) = β̂0 +λ ∑

B
b=1

[
∑

Kb
k=1 β̂k,bIRk,b(xxxt)

]
.

Boosting has three tuning parameters (JAMES et al., 2013): (i) The number of trees B, (ii)
the shrinkage parameter λ and (iii) the number of splits db in each tree. If B is too large, boosting
tends to overfit. The parameter λ controls the boosting learning rate, where smaller values of λ

usually require larger values of B, in order to achieve good performance. The number of splits
db = Kb− 1 is the interaction depth and controls the complexity of the boosted ensemble. db

splits involve at most db variables and often db = 1 (Kb = 2) works well (JAMES et al., 2013). In
this case, the boosted stump (a tree consisting of a single split) ensemble fits an additive model.

The forecast of yt+h is given by

ŷt+h = F̂B.Trees
B (xxxt) = β̂0 +λ

B

∑
b=1

[
K

∑
k=1

β̂k,bIRk,b(xxxt)

]
︸ ︷︷ ︸

Tb(xxxt ,θ̂θθ b)

, (2.27)

where, for all b, Kb = K = d +1 and λ ∈ (0,1].

2.2.4 Factors Methods

The following methods avoid high-dimensional problems by using the common fac-
tors Ĝt estimated from the dataset {wwwt}T−h

t=1 by the method of principal components, where
wwwt = (wt,1, ...,wt,q)

T . Consider the following model

wt, j = λ
T
j Gt + et, j (2.28)

where Gt is the vector of common factors, λ j is a vector of loadings associated with Gt , and et, j

is the idiosyncratic component of wt, j, where t = 1, ...,T −h and j = 1, ...,q. The product λ T
j Gt

is the common component of wt, j (BAI; NG, 2002).

2.2.4.1 Factors

The factor approach to an h period-ahead forecast is to estimate the forecasting equation
using data for t = 1, ...,T −h:

yt+h = γ
Tzzzt +δ

T g̃t +ut+h, (2.29)
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where zzzt is a vector of predetermined variables, as a constant or lags of yt+h, g̃t includes lags
of ĝt , ĝt ⊆ Ĝt , and Ĝt are the principal components estimates of the vector Gt in the factors
model. The key task in factors based methods is the correct specification of the number of factors.
Bai and Ng (2002) set up the determination of factors as a model selection problem employing
information criteria to select the number of factors and lags. In our implementation bellow, we
follow Medeiros et al. (2019) and use the first four principal components of wt and select the
number of lags using the BIC. The forecast is given by

ŷt+h = β̂
T
BICxxxt , (2.30)

where xxxt = (zzzt , g̃t), zzzt include lags of yt+h, g̃t include lags of ĝt and β̂BIC = (γ̂T
BIC, δ̂

T
BIC)

T is
selected using the BIC from a set coefficients {β̂ OLS(l): l = 1, ..,L} estimated by OLS for each
lag.

2.2.4.2 Boosting Factors (B.Factors)

To select predictors from a large set of candidates, where they have no natural ordering,
Bai and Ng (2009) propose the use of boosting to select predictors in factor-augmented autore-
gressions. The boosting algorithm employed is the same presented for the L2Boost method,
where the BIC value is used as a stopping rule to prevent overffiting. The forecast is given by

ŷt+h = (β̂ L2Boost)Txxxt , (2.31)

where xxxt = (zzzt , g̃t), zzzt include lags of yt+h, g̃t include lags of ĝt and β̂ L2Boost is estimated through
L2Boost method.

2.3 METHODOLOGY

In order to evaluate the forecasting performance of the high-dimensional statistical
learning methods presented in the preceding section in a time series context, we carry out
several numerical exercises, including Monte Carlo simulations and empirical data analyses. The
simulation exercise consists of generating time series from classes of known models and then
evaluating/comparing the forecasting performance of the different methods. In the empirical
applications we study a large set of economic and financial variables from Brazil and the U.S.
to forecast inflation h months ahead, where h = 1, ..,12, and the accumulated inflation for 3, 6
and 12 months, comparing the performance of the high-dimensional statistical learning methods
discussed above.

Following Garcia et al. (2017) and Medeiros et al. (2019) in this work we employ a direct
forecast approach such that the h periods ahead response variable, yt+h is modeled as a function
of a set of predictors measured at up to time t, considering the following general model:

yt+h = Fh(xxxt)+ut+h, h = 1, ...,H, t = 1, ...,T, (2.32)
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where yt+h is the dependent variable in period t +h and xxxt = (xt,1, ...,xt,q)
T ∈ X⊆ Rq is a set of

covariates which contains only variables observed and available at time t. Fh(.) is the mapping
between covariates and yt+h and ut+h is the forecasting error. There is a different mapping Fh(.)

for each forecasting horizon h and for each method. We use for all methods a rolling-window
scheme of fixed length. Using a notation similar to Medeiros et al. (2019), the direct forecast
equation is given by

ŷt+h|t = F̂h,t−T w
h +1:t(xxxt), (2.33)

where F̂h,t−T w
h +1:t is the estimated target function based on data from time t−T w

h +1 up to t and
T w

h is the window size. The window size varies depending on the forecasting horizon h and the
number of lagged variables used in the method.

All methods are evaluated based on a fixed number TPF = T − T0 of point forecasts.
For each forecast horizon h = 1, ...,H (including the accumulated horizons for the empirical
applications) the methods are compared according to two different statistics, namely, the root
mean square error (RMSE) and the mean absolute error (MAE), which are defined as follows:

RMSE =

√√√√T−1
PF

T

∑
t=T0+1

(ût+h)2 and MAE = T−1
PF

T

∑
t=T0+1

|ût+h|, (2.34)

where ût+h = yt+h− ŷt+h.
To test whether the forecasts produced by the set of high-dimensional methods are

significantly different from the benchmarks and also which are the best methods, two approaches
are considered: Superior Predictive Ability and Model Confidence Set (HANSEN et al., 2011).
The first test for Superior Predictive Ability (SPA) is proposed by Hansen (2005) and compares
the forecast alternatives with the forecast benchmark. The null hypothesis of this test is that the
benchmark method is as least as good as all of the alternatives. The second test is the test for
multi-horizon Superior Predictive Ability of Quaedvlieg (2019). It compares the performance
of two given methods considering multiples forecasting horizons, where the null hypothesis
is that the benchmark is superior than the alternative method. The objective of the MCS is to
determine a set of models M∗, containing the best ones from a collection M0, such that the
true best model(s) in M0 lies in M∗ with a given confidence level, analogously to confidence
intervals or regions. When informative data is available the result is a MCS that contains only a
few models (or possibly the best one). In turn, uninformative data yield a MCS with many (or
possibly all) models.

2.3.1 Methods Implementation and Parameters

All methods are implemented in R. For all shrinkage methods we used the package glmnet.
The RF method is implemented using the package randomForestSRC and B.Trees using the
package gbm. For the shrinkage methods the parameter λ and the parameter α ∈{0,0.5,1, ...,10}
of WL methods are selected according to the BIC. The parameter ρ of ENet and its adaptive
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versions is set to 1/2 (1/3 in glmnet function). For the adaptive methods we employ Ridge
Regression in the first stage to compute the weights ω j. For the CSR method we fix K̃ = 20 and
k = 4, following Medeiros et al. (2019) and using the first four lags of yt+h as fixed controls.
The method L2Boost employs the minimum BIC as the stopping rule, where we use λ = 0.2
and the maximum number of iterations B = 10q. For RF and B.Trees we use the number of
trees B = 500 and the minimum number of observations by leaf nmin = 15. The number of splits
of B.Trees is fixed at d = 2 while for the RF this parameter is not fixed. RF is implemented
employing non-overlapping blocks bootstrap where the block size is 4. In the factors methods
we use the first four Principal Components.

The parameters of the AR model are estimated by Ordinary Least Squares (OLS) and the
order p is determined by the BIC. A set of AR models {AR(p) : p ∈ {1, ...,L} ⊂N} is estimated
and the selected model is the one which has minimum BIC. For the empirical applications the
number of lags used is L = 4.

2.4 SIMULATION

In this section we analyze and compare the performance of the statistical learning methods
presented5 in section 2.2 through a Monte Carlo simulation study. Similarly to Konzen and
Ziegelmann (2016), we perform Monte Carlo simulations with 1000 replications, simulating
n = 10 independent time series with an AR(1) structure

xt, j = φxt, j + εt, j, (2.35)

where φ = 0.5 and εt, j ∼N(0,1), j = 1, ...,n and all εt, j are independent.
We consider three different data-generating processes (DGP). The first one has a spec-

ification similar to that used in Konzen and Ziegelmann (2016), being the most sparse model
between the three:

DGP 1: yt = 0.8yt−1 +0.6xt−1,1 +0.3xt−2,1

−0.5xt−1,2−0.2xt−2,2

+0.4xt−1,3 +0.3xt−2,3

+0.4xt−1,4

−0.3xt−1,5

+0.2xt−1,6 +ut , t = 1, ...,T,

(2.36)

where ut ∼N(0,1) and all ut are mutually independent.
The second DGP is given by:

DGP 2: yt =
L

∑
`=1

a` (yt−`)+
L

∑
`=1

n

∑
j=1

b`, j
(
xt−`, j

)
+ut , t = 1, ...,T, (2.37)

5 As our simulated data do not have a factor structure we do not report results for factors methods in this section.
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where a` = 0.8(−0.5)`−1, b`, j = (0.5)` (−1)`+ j−1, ut ∼ N(0,1) and all ut are mutually inde-
pendent. In this case (DGP 2), for each value of L, we generate and analyse the simulated data
employing all lagged variables from 1 to L, thus all coefficients are different from zero.

Finally, our third DGP is a nonlinear model

DGP 3: yt =
L

∑
`=1
{a` [g(yt−`;a`)]}+

L

∑
l=1

n

∑
j=1

{
b`, j
[
g
(
xt−`, j;b`, j

)]}
+ut , t = 1, ...,T, (2.38)

where g(z;c) = z/(1+ |c|z2), ut ∼ N(0,1) and all ut are mutually independent. In terms of
Taylor’s expansion g(z;c) = z−|c|z3 + |c|2z5−|c|3z7 + |c|4z9..., such that the DGP 3 is similar
to the DGP 2 plus a nonlinear part. We remove the last 10 observations of the simulated data
end employ all the methods (except for the factors based) to perform the one-step-ahead pseudo
out-of-sample forecast for these observations using a rolling-window scheme, where the window
has size T −10. We analyze situations where L ∈ {4,12} and T ∈ {150,500,1000}. Figure 1
presents the time series plots for variables yt with 1000 observations for the three DGPs.

For the first two specifications, which are linear models, we report in Table 2 some
statistics related to model/variable selection. Although the Ridge Regression is not a variable
selection method, we included its statistics as a reference (when all variables are selected) to
compare to the performance of other methods. For each method, sample size and lag order,
we report: (1) the average fraction of variables correctly identified (FVCI); (2) the fraction of
replications where the true model is included (TMI); (3) the average fraction of relevant variables
included (FRVI); (4) the fraction of irrelevant variables excluded (FIVE) and (5) the number of
included variables (NIV). While Ridge Regression, by construction, always select all variables
and does not exclude any, the CSR always selects K̃ = 20 variables and excludes the remaining
ones. For each specification, the value of statistic for the best performing method is highlighted
in bold.

Considering DGP 1, the adaptive methods, especially WLadaENet, have the best perfor-
mance for the statistics FVCI, FIVE and NIV. When we consider the statistics TMI and FRV, the
methods ENet and L2Boost perform better than the other methods, while CSR rarely includes
the true model (TMI near or equal to zero). For the second DGP, as all coefficients are different
from zero, the statistic FIVE is zero for all methods and for each specification. For the TMI
statistic (besides Ridge) only LASSO and ENet present values different from zero but very small,
only for L = 4 and T ≥ 500. ENet, L2Boost (for T = 150 and 500) and LASSO (for T = 1000)
present the best performance in terms of the FVCI, FRVI and NIV statistics when L = 4. For
L = 12, L2Boost has the best performance (excluding Ridge) for FVCI, FRVI and NIV.

Table 4 shows the results for the one-step-ahead forecasts. We report the mean values of
RMSE and MAE across replications, and indicate in bold the method with the lowest forecasting
error for each specification. The cells in gray/blue indicate that the method is included in the
50% Model Confidence Set (MCS) using the squared/absolute error as loss function. For DGP 1
and 2 the methods with best performance in terms of errors are WLadaLASSO and WLadaENet,
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(a) DGP 1

(b) DGP 2

(c) DGP 3

Figure 1 – Time series plots of variable yt .
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except for DGP 2 when L = 4 and T = 1000, where ENet has the lowest errors and is the only
method included in the MCS. As we use all point forecasts of all replications and, consequently,
this data is very informative, we have at most three methods included in the MCS and one or
two methods in most cases. For the third DGP, which is nonlinear, when we have four lags the
methods RF, B.Trees and L2 have the best performance for the smallest simulated sample, and
are the only methods included in the MCS. For the moderate and the largest sample sizes, Ridge
has the lowest errors and is the only method in the MCS. Finally, for 12 lags, the model becomes
approximately sparse, then WLadaLASSO and WLadaENet present the lowest errors, being the
best performing methods.

In our simulations, when we have a model with a linear sparse structure, the shrinkage
methods which perform variable selection, especially those who penalize differently each variable
and further penalize the variables with longer lags (WLadaLASSO and WLadaENet), have a
better predictive performance. The same occurs when the number of lags increases. When a
nonlinear structure is introduced, the nonlinear methods have a slight advantage in terms of
predictive performance for small samples and moderate number of lags. In this case, when the
sample size increases Ridge Regression improves its performance. When the lag order increases,
and the coefficients of variables with higher lags decreases, WLadaLASSO and WLadaENet
present the lowest forecasting errors.
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Table 2 – Simulation results: Descriptive statistics of models selection for DGP 1 and DGP 2

DGP 1: Sparse model DGP 2: Dense model

4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags

T 150 500 1000 150 500 1000 150 500 1000 150 500 1000

FVCI FVCI FVCI FVCI

Ridge 0.2273 0.2273 0.2273 0.0758 0.0758 0.0758 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LASSO 0.8928 0.9342 0.9472 0.9490 0.9744 0.9790 0.4114 0.4625 0.8274 0.1643 0.1300 0.1323
ENet 0.7389 0.7740 0.7749 0.8746 0.9142 0.9176 0.4873 0.5516 0.9073 0.1932 0.1546 0.1535
adaLASSO 0.9339 0.9771 0.9850 0.9575 0.9906 0.9946 0.3316 0.3567 0.5960 0.1392 0.1013 0.1131
adaENet 0.9225 0.9727 0.9825 0.9459 0.9887 0.9935 0.3469 0.3669 0.6058 0.1518 0.1044 0.1135
WLadaLASSO 0.9562 0.9900 0.9943 0.9680 0.9967 0.9981 0.2941 0.3874 0.5320 0.0851 0.1310 0.1674
WLadaENet 0.9566 0.9906 0.9952 0.9668 0.9968 0.9984 0.2904 0.3874 0.5334 0.0847 0.1317 0.1674
CSR 0.6230 0.6667 0.6763 0.8415 0.8563 0.8588 0.4545 0.4545 0.4545 0.1515 0.1515 0.1515
L2Boost 0.8329 0.8771 0.8867 0.8202 0.9015 0.9153 0.4938 0.5328 0.6928 0.3612 0.2578 0.2793

TMI TMI TMI TMI

Ridge 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LASSO 0.5922 0.9947 1.0000 0.2995 0.9757 1.0000 0.0000 0.0013 0.0714 0.0000 0.0000 0.0000
ENet 0.7800 0.9990 1.0000 0.4745 0.9907 1.0000 0.0000 0.0037 0.1518 0.0000 0.0000 0.0000
adaLASSO 0.4075 0.9529 0.9990 0.0565 0.9153 0.9987 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
adaENet 0.4397 0.9543 0.9990 0.0643 0.9278 0.9990 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WLadaLASSO 0.4243 0.9735 1.0000 0.0637 0.9717 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WLadaENet 0.4563 0.9793 1.0000 0.0829 0.9786 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CSR 0.0001 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L2Boost 0.7574 0.9998 1.0000 0.6485 0.9988 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FRVI FRVI FRVI FRVI

Ridge 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LASSO 0.9451 0.9995 1.0000 0.8756 0.9975 1.0000 0.4114 0.4625 0.8274 0.1643 0.1300 0.1323
ENet 0.9766 0.9999 1.0000 0.9300 0.9991 1.0000 0.4873 0.5516 0.9073 0.1932 0.1546 0.1535
adaLASSO 0.9145 0.9952 0.9999 0.7698 0.9913 0.9999 0.3316 0.3567 0.5960 0.1392 0.1013 0.1131
adaENet 0.9246 0.9953 0.9999 0.7924 0.9927 0.9999 0.3469 0.3669 0.6058 0.1518 0.1044 0.1135
WLadaLASSO 0.9009 0.9973 1.0000 0.7007 0.9971 1.0000 0.2941 0.3874 0.5320 0.0851 0.1310 0.1674
WLadaENet 0.9070 0.9979 1.0000 0.7050 0.9978 1.0000 0.2904 0.3874 0.5334 0.0847 0.1317 0.1674
CSR 0.6705 0.7667 0.7878 0.4542 0.5516 0.5678 0.4545 0.4545 0.4545 0.1515 0.1515 0.1515
L2Boost 0.9728 1.0000 1.0000 0.9586 0.9999 1.0000 0.4938 0.5328 0.6928 0.3612 0.2578 0.2793

FIVE FIVE FIVE FIVE

Ridge 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - - - - -
LASSO 0.8775 0.9150 0.9317 0.9550 0.9725 0.9773 - - - - - -
ENet 0.6690 0.7075 0.7087 0.8700 0.9072 0.9108 - - - - - -
adaLASSO 0.9396 0.9717 0.9806 0.9728 0.9905 0.9942 - - - - - -
adaENet 0.9219 0.9661 0.9773 0.9585 0.9884 0.9930 - - - - - -
WLadaLASSO 0.9725 0.9878 0.9926 0.9899 0.9966 0.9979 - - - - - -
WLadaENet 0.9712 0.9884 0.9938 0.9883 0.9968 0.9982 - - - - - -
CSR 0.6090 0.6372 0.6435 0.8733 0.8813 0.8826 - - - - - -
L2Boost 0.7917 0.8410 0.8534 0.8089 0.8934 0.9084 - - - - - -

NIV NIV NIV NIV

Ridge 44.0000 44.0000 44.0000 132.0000 132.0000 132.0000 44.0000 44.0000 44.0000 132.0000 132.0000 132.0000
LASSO 13.6171 12.8855 12.3235 14.2468 13.3297 12.770 18.101 20.3482 36.4060 21.6831 17.162 17.4666
ENet 21.0193 19.944 19.9051 25.1581 21.3117 20.8805 21.4407 24.2682 39.9232 25.4983 20.4126 20.259
adaLASSO 11.1996 10.9134 10.6582 11.0108 11.0684 10.7089 14.5902 15.6959 26.2219 18.3707 13.3685 14.9258
adaENet 11.9012 11.1070 10.7692 12.9883 11.3414 10.8542 15.2643 16.1446 26.6532 20.0439 13.7855 14.985
WLadaLASSO 9.9441 10.3865 10.2527 8.2447 10.3812 10.2553 12.9418 17.0468 23.4098 11.2356 17.2919 22.1009
WLadaENet 10.0491 10.3726 10.212 8.4804 10.3736 10.2171 12.778 17.0455 23.4694 11.1768 17.3846 22.0988
CSR 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
L2Boost 16.8083 15.4067 14.9853 32.9025 23.0002 21.1782 21.728 23.4424 30.4811 47.6759 34.0347 36.8712

Source: Own elaboration from research data (2020). Note: The table presents some statistics related to model/variable selection, where FVCI
is the average fraction of variables correctly identified; TMI is the fraction of replications where the true model is included; FRVI is the average
fraction of relevant variables included; FIVE is the fraction of irrelevant variables excluded and NIV is the number of included variables. For
each specification, the value of statistic for the best performing method is highlighted in bold. Ridge Regression always select all variables and
does not exclude any, while CSR always selects K̃ = 20 variables and excludes the remaining ones.
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Table 3 – Simulation results: Errors for the DGP 1, 2 and 3

Mean of RMSEs DGP 1: Sparse model DGP 2: Dense model DGP 3: Nonlinear model

(Mean of MAEs) 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags

T 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

AR 0.9262 0.9175 0.9159 0.9269 0.9176 0.9159 0.9109 0.8983 0.8967 0.9172 0.9035 0.9027 0.7565 0.7525 0.7504 0.7558 0.7501 0.75
(0.9275) (0.9200) (0.9183) (0.9282) (0.9199) (0.9183) (0.9105) (0.8986) (0.8972) (0.9205) (0.9074) (0.9061) (0.7671) (0.7632) (0.7608) (0.7695) (0.7634) (0.7636)

Ridge 0.7274 0.6486 0.6342 1.8334 0.7171 0.6655 0.6007 0.523 0.5126 1.0237 0.5739 0.5338 0.7619 0.6616 0.6479 0.7334 0.7266 0.6733
(0.7254) (0.6451) (0.6323) (1.8488) (0.7189) (0.6652) (0.5998) (0.5225) (0.5126) (1.0286) (0.5722) (0.5337) (0.7748) (0.6723) (0.6588) (0.7444) (0.7352) (0.684)

LASSO 0.6456 0.5912 0.5809 0.6990 0.6023 0.5855 0.5906 0.5302 0.4952 0.6521 0.5520 0.5331 0.7491 0.6887 0.6683 0.7494 0.708 0.679
(0.6443) (0.5914) (0.5809) (0.6962) (0.6021) (0.5856) (0.5883) (0.529) (0.4959) (0.6513) (0.5539) (0.5339) (0.759) (0.6984) (0.6782) (0.7649) (0.7187) (0.6897)

ENet 0.6641 0.5989 0.5842 0.7572 0.6201 0.5954 0.5972 0.5282 0.4921 0.6964 0.5637 0.5404 0.7553 0.6938 0.6697 0.7535 0.7193 0.6829
(0.6622) (0.5970) (0.5831) (0.7530) (0.6182) (0.5942) (0.5946) (0.5264) (0.4934) (0.6947) (0.5655) (0.5413) (0.7652) (0.7039) (0.6794) (0.7691) (0.7313) (0.6937)

adaLASSO 0.6301 0.5836 0.5758 0.7115 0.586 0.5762 0.5696 0.5229 0.5002 0.6342 0.5259 0.5159 0.7406 0.681 0.6626 0.7441 0.6866 0.6649
(0.6290) (0.5840) (0.5763) (0.7099) (0.5869) (0.5766) (0.5676) (0.5219) (0.5011) (0.6328) (0.5269) (0.5169) (0.7521) (0.6914) (0.6732) (0.7592) (0.6963) (0.6753)

adaENet 0.6310 0.5842 0.5760 0.728 0.5867 0.5764 0.5722 0.5235 0.5000 0.6482 0.5275 0.5167 0.7441 0.6811 0.6624 0.7449 0.6891 0.6664
(0.6297) (0.5844) (0.5765) (0.7254) (0.5872) (0.5768) (0.5699) (0.5223) (0.5006) (0.6475) (0.5286) (0.5175) (0.7552) (0.6912) (0.6726) (0.7606) (0.6989) (0.6764)

WLadaLASSO 0.6168 0.5799 0.5746 0.6634 0.5805 0.5747 0.5548 0.5155 0.4966 0.5476 0.5093 0.4905 0.7263 0.6700 0.6591 0.7241 0.6662 0.6554
(0.6151) (0.5804) (0.5751) (0.6635) (0.5806) (0.5754) (0.5537) (0.5149) (0.4972) (0.5469) (0.5102) (0.4907) (0.7368) (0.6811) (0.6692) (0.7366) (0.6748) (0.6654)

WLadaENet 0.6170 0.5804 0.5746 0.6633 0.5806 0.5749 0.5546 0.5157 0.4969 0.5474 0.5088 0.4904 0.7258 0.6698 0.659 0.72 0.6663 0.6553
(0.6156) (0.5808) (0.575) (0.6632) (0.5806) (0.5754) (0.5537) (0.5149) (0.4976) (0.5469) (0.5097) (0.4906) (0.7356) (0.6806) (0.6696) (0.7326) (0.6749) (0.665)

CSR 1.3605 1.3028 1.2857 1.4464 1.3489 1.3245 0.9554 0.9366 0.9308 0.9750 0.9313 0.9259 0.7302 0.7233 0.7223 0.7367 0.7233 0.7207
(1.3633) (1.3082) (1.2897) (1.4459) (1.3522) (1.3261) (0.9583) (0.9379) (0.9323) (0.9775) (0.9371) (0.9310) (0.7405) (0.7331) (0.7323) (0.7497) (0.736) (0.7332)

L2Boost 0.6265 0.5852 0.5772 0.6660 0.5909 0.5800 0.5762 0.5248 0.5057 0.6230 0.5331 0.5192 0.7202 0.6761 0.6621 0.7449 0.6818 0.6657
(0.6263) (0.5856) (0.5775) (0.6658) (0.5921) (0.5805) (0.5739) (0.5236) (0.5060) (0.6227) (0.5342) (0.5205) (0.7306) (0.6859) (0.6722) (0.7558) (0.691) (0.6758)

RF 1.3050 1.0176 0.9151 1.3858 1.0666 0.9561 0.9367 0.8420 0.8008 0.9805 0.8739 0.8303 0.7196 0.691 0.6776 0.7322 0.706 0.6918
(1.2686) (0.9999) (0.9039) (1.3495) (1.0495) (0.9450) (0.9349) (0.8382) (0.7974) (0.9823) (0.8755) (0.8315) (0.7295) (0.7014) (0.6874) (0.7452) (0.7179) (0.7028)

B.Trees 1.4524 1.0613 0.9660 1.6040 1.0661 0.9676 0.9410 0.8390 0.8177 1.0001 0.8353 0.8110 0.7194 0.687 0.675 0.7327 0.6957 0.6769
(1.4109) (1.0401) (0.9504) (1.5656) (1.0446) (0.9518) (0.9400) (0.8354) (0.8140) (1.0004) (0.8357) (0.8121) (0.7292) (0.6984) (0.685) (0.7476) (0.7075) (0.6878)

Source: Own elaboration from research data (2020). Note: The table shows the means of root mean squared errors (RMSE) and means of mean absolute errors (MAE) in parenthesis for the forecasts across replications,
relative to the Random Walk (RW). The values in bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the 50% MCS constructed based
on the Tmax statistic using the squared/absolute errors.
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Table 4 – Simulation results: Test for Superior Predictive Ability (SPA)

Panel (a): Squared errors
DGP 1: Sparse model DGP 2: Dense model DGP 3: Nonlinear model

4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags

T 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ridge 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.522 0.000 0.000 0.000
LASSO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ENet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.509 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
adaLASSO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
adaENet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
WLadaLASSO 0.655 0.479 0.492 0.717 0.704 0.903 0.369 0.767 0.000 0.281 0.015 0.320 0.004 0.000 0.000 0.717 0.704 0.903
WLadaENet 0.352 0.010 0.540 0.720 0.285 0.105 0.622 0.236 0.000 0.682 0.515 0.654 0.010 0.000 0.000 0.720 0.285 0.105
CSR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2Boost 0.000 0.000 0.000 0.233 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.407 0.000 0.000 0.233 0.000 0.000
RF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.653 0.000 0.000 0.000 0.000 0.000
B.Trees 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.730 0.000 0.000 0.000 0.000 0.000

Panel (b): Absolute errors
DGP 1: Sparse model DGP 2: Dense model DGP 3: Nonlinear model

4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags

T 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ridge 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.484 0.498 0.000 0.000 0.000
LASSO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ENet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.512 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
adaLASSO 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
adaENet 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
WLadaLASSO 0.796 0.943 0.229 0.671 0.599 0.465 0.467 0.492 0.000 0.546 0.100 0.292 0.008 0.000 0.000 0.671 0.599 0.465
WLadaENet 0.214 0.048 0.767 0.759 0.423 0.514 0.542 0.490 0.002 0.435 0.902 0.698 0.031 0.004 0.000 0.759 0.423 0.514
CSR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2Boost 0.000 0.000 0.000 0.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.340 0.000 0.000 0.296 0.000 0.000
RF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.668 0.000 0.000 0.000 0.000 0.000
B.Trees 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.751 0.000 0.000 0.000 0.000 0.000

Source: Own elaboration from research data (2020). Note: The table reports the p-values of the test for Superior Predictive Ability of Hansen (2005) using each method as benchmark for each forecasting horizon, including
the accumulated horizons. The Panel (a) presents the p-values for the test using the squared errors and the Panel (b) using the absolute errors. The null hypothesis is that the benchmark is not inferior to any alternative
method. The gray cells indicate that the null hypothesis is rejected at the 0.05 significance level.
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2.5 EMPIRICAL ANALYSIS

In this section we present two empirical applications of inflation forecasting, where we
employ all high-dimensional statistical learning methods presented in section 2.2 to forecast
Brazilian and U.S. inflation. Table 5 summarizes all the specifications of the empirical applica-
tions presented in this work, while Figure 2 presents the time series plots of Brazilian inflation
and core inflation, and U.S. inflation, where the red intervals indicate the period for which we
perform the out-of-sample forecasts.

Table 5 – Empirical applications summary

Variables Lags q In-sample Sample size Out-of-Sample Point forecasts

CPI BR (IPCA) 95 4 380 Jan 1999-Dec 2012 168 Jan 2013-Dec 2018 72
CPI Core BR (IPCA-EX0) 95 4 380 Jan 1999-Dec 2012 168 Jan 2013-Dec 2018 72
CPI U.S. small sample 122 4 488 Jan 1999-Dec 2012 168 Jan 2013-Dec 2018 72
CPI U.S. large sample 122 4 488 Jan 1960-Dec 2012 636 Jan 2013-Dec 2018 72

Source: Own elaboration from research data (2020).

2.5.1 Brazilian Inflation

Inflation is measured using the Broad National Consumer Price Index (IPCA), which is
the Brazilian official price index. Our dataset consists of macroeconomic and financial variables
obtained from the Central Bank of Brazil, the Institute for Applied Economic Research (Ipea)
and the Brazilian Institute of Geography and Statistics (IBGE). To choose which variables to
include in the data set we followed Medeiros et al. (2016). The dataset covers the period from
January 1999 to December 2018, having 240 observations and 95 variables. The variables are
classified in the same 8 groups used in Medeiros et al. (2016), namely, Group 1 - Prices; Group
2 - Employment and Wages; Group 3 - International Transactions and Government Debt; Group
4 - Economic Activity and Production; Group 5: Taxes and Government Income; Group 6 -
Exchange Rates and Finance; Group 7 - Money and Group 8 - Economic Confidence.

The forecasts are based on a rolling-window scheme of 168 observations, such that we
have more variables (q = 380, considering 95 variables and 4 lags) than observations (T0 = 168).
All methods are evaluated based on 72 point forecasts, where the out of sample period goes
from January 2013 to December 2018. We assume that the variables in the “Prices” group (in
percentage change) are stationary. The variables in the other groups are tested for stationarity by
using both the Augmented Dick-Fuller test (ADF) and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS). The list of variables and the transformations used in order achieve stationarity are
presented in Appendix A.

Table 6 shows the root mean squared error (RMSE) and the mean absolute error (MAE)
for all forecasting methods including the mean and the median of all forecasts. The forecasts for
1 to 12 months ahead are reported as well as the accumulated forecasting inflation for 3, 6 and
12 months. The values of h-month accumulated inflation are computed using the forecasts from
1 to h steps ahead, h ∈ {3,6,12}, except for the RW method where the forecast for the h-months
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(a) CPI BR (% change)

(b) CPI Core BR (% change)

(c) CPI U.S. (log change)

Figure 2 – Time series plots of BR and U.S. inflation.
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accumulated inflation is computed using the accumulated inflation of the h previous months.
The smallest errors (RMSE and MAE) are indicated in bold for each forecasting horizon. The
gray/blue cells indicate that the method is included in the 50% Model Confidence Set (MCS)
using the squared /absolute error as loss function.

Three methods are included in the MCS for all forecasting horizons (considering both
squared and absolute errors), namely, Ridge Regression, CSR and B.Trees. Considering the
RMSE, Ridge Regression is the most accurate method for all forecasting horizons, including
accumulated except for h = 1, 3 and 4. For h = 1 and 3 the best method is B.Factors while for
h = 4, B.Trees is the most accurate. For accumulated inflation Ridge Regression presents the
lowest errors while L2Boost is the second best method for 12-months accumulated inflation.

We also performed forecasts for the core inflation IPCA-EX06 using the same dataset and
for the same periods in-sample and out-of-sample. Table 7 presents the results for the forecasts
of the core inflation. As it can be seen now the MCS includes fewer methods, mainly for h = 6,7
and 8 and for the 12-months accumulated inflation. Ridge Regression is the best method for most
horizons, while for the 12 months accumulates inflation L2Boost presented the lowest errors and
adaLASSO for h = 1.

Tables 8 and 9 present the results for Superior Predictive Ability (SPA). For the test for
SPA of Hansen (2005) we use each method as benchmark and compare to the others, where
the null hypothesis is that the benchmark is not inferior to any forecasting alternative. For the
uniform and average multi-horizon tests for SPA of Quaedvlieg (2019) we use the RW and
AR methods as benchmarks and compare to each methods. The null hypothesis is that the
benchmark is better than the alternative method. For both forecasts of inflation and core inflation
the p-values of the muti-horizon test for SPA indicates that the benchmark RW is not superior to
any alternative method at a significance level of 5% considering the squared error function. For
inflation forecasts the AR benchmark is not only statistically superior to Ridge, CSR, RF and
B.Trees while for the core inflation forecasts, the AR method is not superior to Ridge, CSR and
RF. The test for SPA of Hansen (2005) shows that Ridge, CSR, RF and B.Trees are not inferior
to any alternative for inflation forecasts for all horizons while for the core inflation forecasts only
Ridge, CSR and RF are not inferior to the alternatives.

Figures 3 to 6, inspired by Medeiros et al. (2019), show the plots of relative variable
importance (aggregated by variable groups) for all twelve forecasting horizons and for all
methods except the univariate and factors based methods, for inflation and core inflation forecasts.
Similarly to Medeiros et al. (2019), for methods based on the linear model (shrinkage methods,
CSR and L2Boost) the relative importance is computed as the average coefficient7 size. For RF
the Out-of-Bag (OOB) samples8 are used to compute the variable importance, while for B.Trees
all samples are employed. The samples are passed down the bth tree when it is grown and the
6 IPCA excluding food at home and administered prices.
7 All variables are standardized having mean zero and standard deviation one.
8 The OOB samples are the observations which are not selected in the bootstrap sample process, for each

b = 1, ...,B.
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accuracy is recorded, then the values for the variable j are permuted at random, and the accuracy
is computed once more. Then the decrease in accuracy is averaged over all trees and is used as
a measure of the importance of variable j in the forest (HASTIE et al., 2009). A missing bar
means that no variable is selected.

For Ridge Regression the relative variable importance is stable across the forecasting
horizons and does not change much between the inflation and the core inflation forecasts.
The variable importance is on average about 25% for Autoregressive terms plus the Group 1
(Prices) and for Group 4 (Economic Activity and Production) in both cases. For CSR method the
Autoregressive terms (used as controls) plus the variables of Group 1 sum on average about 75%
for the inflation forecasts and about 65% for the core. RF, B.Trees and L2Boost present a pattern
of variable importance near to Ridge but less stable across the horizons, where the importance of
Autorregressive terms plus Group 1 represent on average about 45%. For LASSO and ENet the
importance of Prices is about 45% for inflation and 35% for the core the Group 2 (Employment
and Wages) is the second most important for inflation while for the core is Group 5 (Taxes and
Government Income). When we consider the adaptive methods the importance of Prices is about
50% for inflation and 40% for the core. Group 5 is clearly the second most important for the
core, while for inflation are Groups 2 and 6 (Exchange Rates and Finance).
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Table 6 – Forecasting results: Errors for the CPI (Brazil) from 2013 to 2018

Consumer price index (Brazil) 2013-2018
Forecast horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

AR 0.89 0.84 0.83 0.78 0.71 0.72 0.74 0.76 0.83 0.84 0.89 0.88 0.80 0.77 0.75
(0.89) (0.84) (0.79) (0.75) (0.75) (0.72) (0.74) (0.73) (0.80) (0.85) (0.88) (0.92) (0.76) (0.75) (0.80)

Ridge 0.89 0.80 0.81 0.74 0.67 0.64 0.65 0.68 0.74 0.78 0.84 0.82 0.73 0.62 0.65
(0.84) (0.78) (0.77) (0.70) (0.68) (0.61) (0.61) (0.65) (0.73) (0.80) (0.82) (0.86) (0.70) (0.60) (0.66)

LASSO 0.92 0.86 0.86 0.80 0.71 0.69 0.71 0.74 0.81 0.85 0.88 0.93 0.81 0.76 0.78
(0.86) (0.86) (0.87) (0.79) (0.75) (0.68) (0.72) (0.73) (0.80) (0.87) (0.87) (0.99) (0.80) (0.75) (0.81)

ENet 0.93 0.84 0.85 0.78 0.70 0.71 0.72 0.75 0.81 0.85 0.88 0.88 0.81 0.77 0.79
(0.87) (0.87) (0.85) (0.76) (0.74) (0.70) (0.73) (0.73) (0.80) (0.85) (0.87) (0.93) (0.79) (0.75) (0.84)

adaLASSO 0.96 0.87 0.93 0.86 0.71 0.69 0.71 0.76 0.86 0.87 0.88 0.89 0.85 0.77 0.75
(0.92) (0.87) (0.94) (0.86) (0.76) (0.68) (0.71) (0.75) (0.84) (0.90) (0.86) (0.95) (0.82) (0.75) (0.76)

adaENet 0.91 0.87 0.87 0.81 0.70 0.69 0.68 0.74 0.82 0.87 0.88 0.88 0.81 0.75 0.76
(0.89) (0.87) (0.87) (0.81) (0.75) (0.68) (0.68) (0.72) (0.81) (0.88) (0.87) (0.94) (0.79) (0.74) (0.78)

WLadaLASSO 0.96 0.91 0.90 0.84 0.80 0.71 0.69 0.76 0.87 0.84 0.86 0.90 0.84 0.78 0.75
(0.93) (0.90) (0.92) (0.82) (0.82) (0.70) (0.70) (0.76) (0.85) (0.86) (0.86) (0.96) (0.80) (0.74) (0.76)

WLadaENet 0.93 0.86 0.89 0.80 0.80 0.71 0.68 0.73 0.82 0.84 0.87 0.88 0.81 0.77 0.76
(0.90) (0.88) (0.90) (0.80) (0.82) (0.72) (0.69) (0.73) (0.81) (0.86) (0.86) (0.94) (0.77) (0.75) (0.77)

CSR 0.89 0.84 0.80 0.75 0.69 0.67 0.66 0.70 0.76 0.80 0.85 0.85 0.76 0.71 0.70
(0.84) (0.85) (0.80) (0.73) (0.74) (0.65) (0.65) (0.68) (0.73) (0.79) (0.82) (0.88) (0.72) (0.66) (0.70)

L2Boost 1.01 0.90 0.94 0.93 0.76 0.72 0.72 0.76 0.85 0.85 0.88 0.89 0.84 0.76 0.67
(1.00) (0.88) (0.90) (0.85) (0.74) (0.69) (0.68) (0.69) (0.82) (0.87) (0.85) (0.89) (0.78) (0.71) (0.69)

RF 0.89 0.84 0.84 0.78 0.69 0.67 0.67 0.71 0.76 0.81 0.85 0.85 0.79 0.73 0.78
(0.84) (0.83) (0.80) (0.76) (0.73) (0.67) (0.67) (0.70) (0.76) (0.82) (0.85) (0.90) (0.76) (0.71) (0.80)

B.Trees 0.91 0.82 0.80 0.73 0.67 0.68 0.68 0.70 0.79 0.82 0.84 0.83 0.77 0.69 0.76
(0.88) (0.81) (0.76) (0.70) (0.70) (0.67) (0.68) (0.69) (0.78) (0.80) (0.81) (0.90) (0.75) (0.68) (0.80)

Factors 0.89 0.83 0.83 0.80 0.72 0.72 0.73 0.75 0.84 0.87 0.90 0.86 0.77 0.71 0.75
(0.88) (0.81) (0.78) (0.75) (0.74) (0.72) (0.72) (0.76) (0.84) (0.88) (0.90) (0.93) (0.73) (0.68) (0.73)

B.Factors 0.89 0.82 0.80 0.74 0.71 0.73 0.74 0.76 0.81 0.86 0.89 0.86 0.74 0.68 0.73
(0.83) (0.79) (0.78) (0.71) (0.75) (0.74) (0.76) (0.74) (0.80) (0.85) (0.88) (0.92) (0.71) (0.68) (0.77)

Mean 0.87 0.81 0.80 0.75 0.69 0.67 0.67 0.71 0.78 0.81 0.85 0.84 0.75 0.69 0.73
(0.83) (0.80) (0.80) (0.72) (0.72) (0.65) (0.67) (0.69) (0.77) (0.82) (0.84) (0.90) (0.74) (0.68) (0.73)

Median 0.88 0.82 0.81 0.76 0.69 0.67 0.68 0.72 0.80 0.82 0.86 0.87 0.77 0.71 0.72
(0.83) (0.81) (0.81) (0.75) (0.73) (0.66) (0.69) (0.71) (0.78) (0.84) (0.85) (0.93) (0.75) (0.70) (0.73)

Source: Own elaboration from research data (2020). Note: The table shows the root mean squared errors (RMSE) and mean absolute errors (MAE) in parenthesis for the forecasts, relative to the Random Walk (RW).
The values in bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the 50% MCS constructed based on the Tmax statistic using the
squared/absolute errors.
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Table 7 – Forecasting results: Errors for the CPI Core (Brazil) from 2013 to 2018

Consumer price index - Core (Brazil) 2013-2018
Forecast horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

AR 0.81 0.86 0.85 0.80 0.74 0.81 0.67 0.68 0.64 0.81 0.67 0.93 0.88 0.91 1.02
(0.82) (0.89) (0.85) (0.79) (0.72) (0.79) (0.70) (0.67) (0.69) (0.85) (0.69) (0.97) (0.87) (0.93) (1.14)

Ridge 0.69 0.79 0.76 0.69 0.60 0.63 0.54 0.54 0.58 0.74 0.61 0.86 0.71 0.67 0.82
(0.67) (0.75) (0.77) (0.69) (0.60) (0.64) (0.58) (0.55) (0.62) (0.75) (0.60) (0.87) (0.72) (0.67) (0.93)

LASSO 0.71 0.82 0.78 0.77 0.68 0.78 0.65 0.68 0.71 0.85 0.68 0.96 0.80 0.89 1.10
(0.69) (0.81) (0.79) (0.77) (0.67) (0.78) (0.69) (0.68) (0.74) (0.88) (0.70) (1.00) (0.85) (0.87) (1.22)

ENet 0.76 0.96 0.85 0.78 0.69 0.80 0.70 0.74 0.79 0.96 0.76 1.04 0.94 0.95 1.18
(0.76) (0.93) (0.87) (0.78) (0.68) (0.79) (0.73) (0.74) (0.81) (0.98) (0.77) (1.07) (1.02) (0.94) (1.29)

adaLASSO 0.67 0.79 0.79 0.79 0.70 0.75 0.64 0.66 0.67 0.81 0.66 0.92 0.78 0.88 1.06
(0.67) (0.80) (0.81) (0.80) (0.68) (0.75) (0.66) (0.68) (0.69) (0.83) (0.69) (0.96) (0.77) (0.83) (1.18)

adaENet 0.68 0.80 0.80 0.79 0.69 0.81 0.65 0.68 0.69 0.84 0.68 0.96 0.80 0.91 1.10
(0.68) (0.80) (0.80) (0.80) (0.67) (0.82) (0.69) (0.69) (0.71) (0.86) (0.70) (0.99) (0.80) (0.88) (1.22)

WLadaLASSO 0.68 0.80 0.79 0.81 0.72 0.78 0.63 0.66 0.69 0.85 0.67 0.90 0.79 0.88 1.02
(0.68) (0.80) (0.81) (0.82) (0.69) (0.77) (0.65) (0.68) (0.71) (0.88) (0.69) (0.94) (0.79) (0.83) (1.15)

WLadaENet 0.68 0.86 0.78 0.78 0.70 0.80 0.66 0.68 0.71 0.85 0.67 0.95 0.80 0.89 1.07
(0.68) (0.88) (0.78) (0.78) (0.67) (0.79) (0.70) (0.69) (0.74) (0.89) (0.70) (0.99) (0.80) (0.86) (1.20)

CSR 0.71 0.77 0.80 0.75 0.67 0.70 0.55 0.59 0.58 0.71 0.60 0.82 0.77 0.81 0.94
(0.70) (0.78) (0.80) (0.76) (0.67) (0.69) (0.57) (0.59) (0.62) (0.73) (0.61) (0.83) (0.79) (0.81) (1.07)

L2Boost 0.67 0.82 0.78 0.82 0.69 0.71 0.65 0.63 0.63 0.86 0.63 0.88 0.73 0.75 0.81
(0.71) (0.86) (0.82) (0.84) (0.69) (0.72) (0.65) (0.63) (0.66) (0.87) (0.66) (0.93) (0.74) (0.71) (0.83)

RF 0.72 0.82 0.81 0.73 0.64 0.65 0.56 0.58 0.61 0.75 0.59 0.83 0.81 0.78 0.93
(0.73) (0.81) (0.81) (0.73) (0.63) (0.64) (0.58) (0.58) (0.63) (0.78) (0.61) (0.85) (0.84) (0.78) (1.02)

B.Trees 0.80 0.93 0.87 0.77 0.71 0.75 0.65 0.68 0.71 0.89 0.72 1.05 0.90 0.86 1.07
(0.80) (0.89) (0.86) (0.77) (0.68) (0.73) (0.67) (0.69) (0.74) (0.93) (0.73) (1.08) (0.97) (0.88) (1.13)

Factors 0.76 0.81 0.88 0.85 0.79 0.84 0.67 0.75 0.77 0.84 0.69 0.94 0.83 0.92 1.07
(0.74) (0.78) (0.88) (0.86) (0.74) (0.86) (0.70) (0.73) (0.80) (0.84) (0.69) (0.96) (0.87) (0.92) (1.18)

B.Factors 0.72 0.84 0.87 0.78 0.71 0.77 0.65 0.64 0.66 0.80 0.67 0.90 0.82 0.84 1.04
(0.74) (0.84) (0.88) (0.79) (0.68) (0.76) (0.67) (0.64) (0.70) (0.81) (0.67) (0.93) (0.84) (0.84) (1.15)

Mean 0.68 0.77 0.75 0.72 0.65 0.71 0.60 0.63 0.64 0.77 0.64 0.88 0.74 0.79 0.98
(0.67) (0.77) (0.76) (0.71) (0.64) (0.70) (0.62) (0.63) (0.66) (0.79) (0.65) (0.91) (0.77) (0.79) (1.08)

Median 0.68 0.76 0.75 0.75 0.67 0.75 0.61 0.62 0.63 0.77 0.64 0.89 0.75 0.82 1.00
(0.68) (0.76) (0.75) (0.74) (0.65) (0.74) (0.63) (0.62) (0.66) (0.80) (0.66) (0.92) (0.79) (0.81) (1.11)

Source: Own elaboration from research data (2020). Note: The table shows the root mean squared errors (RMSE) and mean absolute errors (MAE) in parenthesis for the forecasts, relative to the Random Walk (RW).
The values in bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the 50% MCS constructed based on the Tmax statistic using the
squared/absolute errors.
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Table 8 – Forecasting results: Superior predictive ability test (CPI - Brazil, 2013-2018)

Panel (a): Squared errors
Hansen‘s test – Forecasting horizon Quaedvlieg test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.156 0.051 0.050 0.010 0.000 0.000 0.002 0.006 0.028 0.062 0.118 0.131 0.010 0.003 0.053 - - 0.944 0.991
AR 0.755 0.521 0.637 0.509 0.538 0.094 0.109 0.110 0.160 0.487 0.451 0.601 0.316 0.073 0.388 0.000 0.007 - -

Ridge 0.797 0.916 0.687 0.799 0.821 0.978 0.975 0.961 0.974 0.970 0.916 0.988 0.840 0.751 0.818 0.000 0.006 0.088 0.041
LASSO 0.633 0.450 0.423 0.366 0.548 0.205 0.163 0.184 0.282 0.379 0.477 0.292 0.201 0.037 0.306 0.000 0.004 0.357 0.586
ENet 0.525 0.518 0.514 0.487 0.574 0.111 0.143 0.165 0.265 0.437 0.470 0.525 0.262 0.063 0.286 0.000 0.005 0.405 0.351
adaLASSO 0.264 0.332 0.148 0.160 0.532 0.253 0.243 0.075 0.178 0.261 0.470 0.459 0.175 0.018 0.382 0.000 0.003 0.648 0.892
adaENet 0.690 0.363 0.450 0.319 0.590 0.252 0.594 0.234 0.198 0.319 0.451 0.496 0.206 0.057 0.353 0.000 0.002 0.422 0.465
WLadaLASSO 0.259 0.162 0.270 0.166 0.078 0.128 0.455 0.064 0.171 0.509 0.757 0.381 0.180 0.024 0.377 0.000 0.010 0.566 0.893
WLadaENet 0.586 0.402 0.285 0.400 0.079 0.086 0.627 0.370 0.235 0.536 0.611 0.509 0.194 0.021 0.352 0.000 0.005 0.571 0.728
CSR 0.788 0.500 0.898 0.784 0.675 0.603 0.761 0.658 0.818 0.740 0.933 0.736 0.666 0.210 0.406 0.000 0.006 0.156 0.037
L2Boost 0.090 0.242 0.170 0.093 0.187 0.106 0.184 0.186 0.280 0.465 0.397 0.345 0.252 0.116 0.588 0.018 0.004 0.768 0.837
RF 0.838 0.606 0.689 0.626 0.827 0.547 0.720 0.572 0.733 0.705 0.864 0.871 0.395 0.135 0.292 0.000 0.004 0.139 0.049
B.Trees 0.664 0.741 0.986 0.981 0.918 0.414 0.488 0.544 0.484 0.597 0.910 0.822 0.627 0.318 0.337 0.000 0.005 0.076 0.020
Factors 0.786 0.594 0.716 0.394 0.482 0.070 0.111 0.134 0.140 0.322 0.420 0.733 0.608 0.244 0.408 0.000 0.004 0.618 0.541
B.Factors 0.774 0.713 0.940 0.853 0.538 0.045 0.074 0.124 0.236 0.343 0.401 0.729 0.875 0.409 0.473 0.000 0.002 0.414 0.126

Mean 1.000 0.914 0.986 0.852 0.845 0.507 0.785 0.479 0.547 0.688 0.991 0.924 0.888 0.220 0.096 0.000 0.003 0.000 0.011
Median 0.953 0.790 0.933 0.736 0.675 0.497 0.559 0.418 0.311 0.670 0.764 0.672 0.571 0.150 0.459 0.000 0.003 0.000 0.019

Panel (b): Absolute errors
Hansen‘s test – Forecasting horizon Quaedvlieg test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.084 0.031 0.044 0.009 0.001 0.000 0.001 0.001 0.021 0.067 0.081 0.214 0.012 0.002 0.046 - - 0.887 0.985
AR 0.496 0.412 0.600 0.478 0.227 0.049 0.059 0.119 0.248 0.523 0.388 0.608 0.441 0.063 0.210 0.000 0.012 - -

Ridge 0.838 0.893 0.706 0.902 0.992 0.970 0.956 0.995 0.892 0.795 0.786 0.980 0.970 0.963 0.949 0.000 0.003 0.038 0.035
LASSO 0.817 0.335 0.244 0.182 0.245 0.152 0.029 0.081 0.177 0.339 0.446 0.241 0.158 0.025 0.195 0.012 0.010 0.653 0.839
ENet 0.683 0.311 0.372 0.418 0.315 0.074 0.064 0.084 0.385 0.444 0.419 0.461 0.265 0.052 0.148 0.000 0.012 0.658 0.715
adaLASSO 0.302 0.264 0.064 0.081 0.107 0.156 0.093 0.019 0.194 0.170 0.451 0.371 0.185 0.017 0.378 0.000 0.009 0.717 0.899
adaENet 0.523 0.257 0.255 0.094 0.253 0.180 0.258 0.094 0.302 0.257 0.396 0.396 0.243 0.040 0.300 0.000 0.016 0.563 0.703
WLadaLASSO 0.254 0.146 0.113 0.184 0.099 0.053 0.121 0.016 0.185 0.417 0.589 0.311 0.252 0.039 0.381 0.000 0.016 0.715 0.906
WLadaENet 0.439 0.236 0.148 0.135 0.037 0.038 0.179 0.108 0.316 0.456 0.495 0.399 0.376 0.017 0.314 0.000 0.003 0.684 0.858
CSR 0.890 0.336 0.698 0.682 0.377 0.455 0.418 0.515 0.874 0.914 0.839 0.937 0.831 0.438 0.519 0.000 0.006 0.176 0.053
L2Boost 0.061 0.278 0.198 0.188 0.326 0.144 0.265 0.388 0.319 0.381 0.439 0.709 0.409 0.200 0.568 0.005 0.019 0.659 0.647
RF 0.900 0.504 0.679 0.492 0.349 0.220 0.300 0.348 0.608 0.739 0.652 0.731 0.456 0.091 0.183 0.000 0.007 0.158 0.107
B.Trees 0.622 0.655 0.971 0.907 0.735 0.208 0.232 0.373 0.363 0.808 0.944 0.720 0.521 0.260 0.177 0.000 0.009 0.006 0.031
Factors 0.550 0.628 0.805 0.573 0.308 0.027 0.069 0.029 0.201 0.279 0.248 0.584 0.697 0.272 0.246 0.000 0.011 0.658 0.635
B.Factors 0.880 0.875 0.869 0.825 0.254 0.008 0.031 0.056 0.236 0.437 0.372 0.650 0.883 0.259 0.310 0.000 0.012 0.515 0.220

Mean 0.995 0.902 0.745 0.879 0.425 0.344 0.266 0.292 0.558 0.752 0.770 0.879 0.764 0.192 0.256 0.000 0.009 0.074 0.037
Median 0.986 0.757 0.521 0.493 0.272 0.287 0.084 0.140 0.291 0.638 0.646 0.558 0.500 0.111 0.232 0.000 0.004 0.176 0.052

Source: Own elaboration from research data (2020). Note: The table reports the p-values of the test for Superior Predictive Ability of Hansen (2005) (left) using each method as benchmark for each forecasting horizon,
including the accumulated horizons. The p-values of the uniform and average multi-horizon SPA test of Quaedvlieg (2019) are also reported (right) using RW ans AR as benchmarks. The Panel (a) presents the p-values for
the test using the squared errors and the Panel (b) using the absolute errors. The null hypothesis of the single-horizon test is that the bench of the is that the bench mark is not inferior to any alternative method. The null
hypothesis of the multi-horizon test is that the benchmark is superior to the alternative method. The gray cells indicate that the null hypothesis is rejected at the 0.05 significance level.
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Table 9 – Forecasting results: Superior predictive ability test (CPI Core - Brazil, 2013-2018)

Panel (a): Squared errors
Hansen‘s test – Forecasting horizon Quaedvlieg test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.000 0.035 0.009 0.003 0.000 0.000 0.000 0.001 0.000 0.009 0.000 0.083 0.050 0.065 0.324 - - 0.952 0.997
AR 0.013 0.145 0.075 0.085 0.020 0.007 0.036 0.015 0.354 0.225 0.052 0.116 0.138 0.104 0.162 0.000 0.006 - -

Ridge 0.639 0.710 0.650 0.859 0.590 0.708 0.722 0.994 0.901 0.711 0.693 0.382 0.885 0.947 0.949 0.000 0.003 0.000 0.011
LASSO 0.411 0.382 0.492 0.194 0.073 0.017 0.025 0.006 0.013 0.080 0.020 0.065 0.362 0.154 0.062 0.000 0.007 0.859 0.074
ENet 0.105 0.055 0.175 0.136 0.084 0.011 0.018 0.006 0.007 0.024 0.002 0.033 0.097 0.113 0.067 0.173 0.007 0.915 0.990
adaLASSO 0.895 0.659 0.423 0.141 0.062 0.066 0.126 0.046 0.181 0.271 0.107 0.157 0.472 0.174 0.085 0.000 0.001 0.271 0.070
adaENet 0.778 0.577 0.376 0.123 0.085 0.004 0.035 0.011 0.065 0.104 0.057 0.089 0.408 0.142 0.049 0.000 0.007 0.569 0.146
WLadaLASSO 0.754 0.576 0.411 0.085 0.054 0.008 0.138 0.048 0.149 0.185 0.108 0.254 0.469 0.178 0.179 0.000 0.003 0.545 0.179
WLadaENet 0.804 0.260 0.504 0.169 0.095 0.007 0.021 0.010 0.048 0.161 0.096 0.083 0.400 0.162 0.067 0.000 0.005 0.723 0.187
CSR 0.408 0.891 0.320 0.332 0.163 0.234 0.586 0.341 0.840 0.912 0.674 0.803 0.427 0.270 0.447 0.000 0.001 0.000 0.004
L2Boost 0.879 0.391 0.529 0.089 0.176 0.299 0.107 0.204 0.369 0.230 0.398 0.285 0.792 0.424 0.700 0.000 0.004 0.445 0.091
RF 0.335 0.385 0.182 0.569 0.388 0.485 0.538 0.378 0.604 0.620 0.797 0.661 0.352 0.384 0.422 0.000 0.002 0.000 0.008
B.Trees 0.011 0.090 0.113 0.180 0.038 0.066 0.073 0.025 0.071 0.086 0.003 0.024 0.129 0.176 0.123 0.242 0.005 0.885 0.885
Factors 0.152 0.443 0.059 0.007 0.002 0.001 0.044 0.002 0.000 0.123 0.032 0.093 0.364 0.068 0.085 0.000 0.005 0.943 0.974
B.Factors 0.283 0.267 0.102 0.139 0.058 0.017 0.054 0.067 0.172 0.272 0.076 0.233 0.330 0.203 0.130 0.000 0.006 0.454 0.052

Mean 0.935 0.950 0.994 0.474 0.195 0.135 0.189 0.056 0.302 0.426 0.114 0.274 0.756 0.285 0.244 0.000 0.003 0.039 0.010
Median 0.853 0.997 0.864 0.298 0.125 0.037 0.164 0.086 0.312 0.400 0.138 0.284 0.709 0.231 0.176 0.000 0.005 0.001 0.006

Panel (b): Absolute errors
Hansen‘s test – Forecasting horizon Quaedvlieg test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.000 0.035 0.024 0.008 0.000 0.001 0.000 0.000 0.000 0.019 0.000 0.138 0.093 0.084 0.354 - - 0.922 0.995
AR 0.017 0.107 0.149 0.176 0.082 0.036 0.037 0.032 0.239 0.081 0.028 0.064 0.239 0.090 0.048 0.004 0.009 - -

Ridge 0.841 0.856 0.756 0.836 0.970 0.692 0.648 0.969 0.934 0.580 0.722 0.631 0.898 0.735 0.504 0.000 0.002 0.000 0.011
LASSO 0.689 0.383 0.555 0.310 0.201 0.032 0.014 0.006 0.028 0.117 0.013 0.057 0.292 0.189 0.014 0.029 0.010 0.761 0.117
ENet 0.177 0.086 0.176 0.203 0.140 0.036 0.018 0.010 0.020 0.026 0.004 0.041 0.063 0.128 0.022 0.315 0.018 0.895 0.973
adaLASSO 0.942 0.483 0.402 0.261 0.170 0.084 0.115 0.026 0.222 0.322 0.054 0.109 0.610 0.251 0.019 0.000 0.010 0.081 0.098
adaENet 0.886 0.530 0.486 0.270 0.274 0.007 0.026 0.004 0.089 0.170 0.031 0.082 0.467 0.168 0.011 0.006 0.010 0.540 0.169
WLadaLASSO 0.820 0.502 0.360 0.182 0.142 0.015 0.163 0.027 0.171 0.084 0.064 0.150 0.554 0.261 0.035 0.000 0.007 0.337 0.166
WLadaENet 0.950 0.168 0.615 0.260 0.286 0.033 0.015 0.004 0.056 0.074 0.064 0.064 0.482 0.208 0.012 0.003 0.006 0.556 0.215
CSR 0.677 0.681 0.510 0.329 0.226 0.333 0.833 0.431 0.810 0.857 0.796 0.847 0.607 0.279 0.104 0.000 0.004 0.000 0.007
L2Boost 0.540 0.267 0.316 0.159 0.197 0.262 0.198 0.246 0.482 0.215 0.287 0.241 0.774 0.561 0.915 0.000 0.003 0.363 0.165
RF 0.304 0.413 0.344 0.636 0.534 0.735 0.664 0.408 0.702 0.525 0.647 0.689 0.276 0.352 0.260 0.000 0.005 0.000 0.008
B.Trees 0.030 0.138 0.179 0.301 0.167 0.164 0.069 0.013 0.080 0.048 0.008 0.028 0.092 0.172 0.104 0.305 0.010 0.871 0.724
Factors 0.315 0.676 0.104 0.046 0.033 0.016 0.045 0.006 0.002 0.143 0.098 0.105 0.271 0.077 0.031 0.001 0.011 0.896 0.912
B.Factors 0.312 0.272 0.108 0.172 0.190 0.033 0.072 0.097 0.138 0.368 0.132 0.251 0.344 0.220 0.039 0.000 0.010 0.474 0.047

Mean 0.978 0.870 0.930 0.621 0.449 0.245 0.274 0.074 0.366 0.329 0.186 0.244 0.779 0.306 0.096 0.000 0.004 0.000 0.010
Median 0.923 0.924 0.961 0.456 0.338 0.085 0.147 0.122 0.423 0.246 0.116 0.207 0.620 0.260 0.055 0.000 0.003 0.000 0.007

Source: Own elaboration from research data (2020). Note: The table reports the p-values of the test for Superior Predictive Ability of Hansen (2005) (left) using each method as benchmark for each forecasting horizon,
including the accumulated horizons. The p-values of the uniform and average multi-horizon SPA test of Quaedvlieg (2019) are also reported (right) using RW ans AR as benchmarks. The Panel (a) presents the p-values for
the test using the squared errors and the Panel (b) using the absolute errors. The null hypothesis of the single-horizon test is that the bench of the is that the bench mark is not inferior to any alternative method. The null
hypothesis of the multi-horizon test is that the benchmark is superior to the alternative method. The gray cells indicate that the null hypothesis is rejected at the 0.05 significance level.



38Figure 3 – Variable importance of methods Ridge, LASSO and ENet for Brazilian IPCA (a) and IPCA-EX0 (b).



39Figure 4 – Variable importance of methods adaLASSO, adaENet and WLadaLASSO for Brazilian IPCA (a) and IPCA-EX0 (b).



40Figure 5 – Variable importance of methods WLadaENet, CSR and L2Boost for Brazilian IPCA (a) and IPCA-EX0 (b).
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Figure 6 – Variable importance of methods RF and B.Trees for Brazilian IPCA (a) and IPCA-EX0 (b).
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2.5.2 U.S. Inflation

For U.S. inflation we use the variables from the FRED-MD9 database compiled by
McCracken and Ng (2016), performing forecasts only for the Consumer Price Index (CPI) in log
change. The dataset we use covers the period from January 1960 to December 2018, having 708
observations and 122 variables classified in 8 groups: Group 1 - Output and income; Group 2 -
Labor market; Group 3 - Housing; Group 4 - Consumption, orders, and inventories; Group 5 -
Money and credit; Group 6 - Interest and exchange rates; Group 7 - Prices and Group 8 - Stock
market. In order to achieve stationarity employ the transformations recommended by McCracken
and Ng (2016), except for the Group 7 (Prices) where we use the same transformations employed
in Medeiros et al. (2019). The list of variables and the transformations used are available in
Appendix B.

We compute forecasts for the same period out-of-sample used for Brazilian inflation,
from January 2013 to December 2018 but varying the period in-sample. where for the first
forecast we use the same period we used in the first application, from January 1999 to December
2012 (small sample). We also perform forecasts using the period in-sample from January 1960
to December 2012 (large sample). In the first case we have more variables (q = 488, considering
122 variables and 4 lags) than samples (T0 = 168), while in the second case the sample size
(T0 = 636) is higher than the number of predictors (q = 488).

Table 10 shows the results for the forecasts using the small sample. RW, CSR and L2Boost
are excluded from the MCS for almost all horizons. For h = 1 adaENet and WLadaENet present
the lowest errors, while for the 12-months accumulated inflation RW is the best method in terms
of RMSE, while RF presents the lowest MAE. We do not have a most accurate method for the
most horizons, but RF presents the lowest errors in 6 horizons, in cases which RF is not the most
accurate method its errors are not more than 10% (or 5% in most cases) higher than the best
method. ENet (except for h = 1) and the adaptive methods also present a good performance in
general.

In Table 11 we report the result for the forecasts using the large sample. As can be seen,
on the one hand, the performance of AR and Ridge decrease over all horizons with when we use
the large sample and, on the other hand, CSR and L2Boost increase their performances, such that
L2Boost becomes the most accurate method for the most horizons, while WLadaLASSO and
WLadaENet present the lowest errors for h=1. L2Boost is the most accurate method especially
when we consider the 3 accumulated horizons. WLadaENet also presents a good performance
having the lowest errors in 7 horizons when we consider both RMSE and MAE. The performance
reduction of Ridge is not due to the sample size increasing itself. As expected in theory and
empirically observed the performance of Ridge improves as the sample size increases. Moreover,
Zou and Hastie (2005) affirm that, for usual situations where T > q, the performance of LASSO
9 The FRED-MD is a large database containing monthly observations of macroeconomic variables, designed for

the analysis of big data and is updated in real-time thorough the FRED database. The FRED-MD is available at
https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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is dominated by Ridge if there are high correlations between predictors.
The p-values relative to the SPA tests are presented in Tables 12 and 13. When we consider

the forecasts based on the small sample, the multi-horizon test for SPA of RW benchmark
indicates that it only is not inferior to LASSO at a significance level of 0.05, while the benchmark
AR is only on average inferior to ENet and adaENet. For the forecasts based on the large sample,
both benchmarks (RW and AR) are not uniformly inferior to the Ridge, while AR is also not
inferior on average. For the single-horizon SPA test and considering the forecasts for the small
sample, the methods AR, ENet, adaLASSO, adaENet, WLadaLASSO, WLadaENet, RF, B.Trees,
Factors and B.Factors are statistically not inferior to the alternatives for all forecasting horizons.
But for the large samples the methods LASSO, ENet, adaLASSO, WLadaLASSO, WLadaENet,
CSR, L2Boost, RF and B.Trees are statistically not inferior to the alternative methods.

Figures 7 to 10 present the relative variable importance for the U.S. inflation forecasts.
The values of variable importance are computed as described in the previous section. The values
of variable importance are stable across the horizons for Ridge Regression, and do not change
much for either forecast based on the small sample or on the large sample, where in both cases
the variable importance of Autoregressive terms plus Group 7 (Prices) is about 20%. Group 2
(Labor market) is the group where the variable importance is higher, being about 25%. In the
first case ENet do not select any variable in most forecasting horizons.

When we consider the forecasts based on the small sample Group 6 (Interest and exchange
rates) presents the highest percentage of variable importance in most cases. For the forecasts
based on the large sample, except for Ridge Regression, the relative importance of Autoregressive
terms plus the Prices group assumes values between 50% and 80% (on average). When the
sample size is large LASSO and ENet present a similar pattern of variable importance and the
respective values of RMSE and MAE in Table 11 also do not differ much. The same situation
occurs to the adaptive versions of ENet and LASSO.
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Table 10 – Forecasting results: Errors for the CPI (U.S.) from 2013 to 2018 - small sample

Consumer price index (U.S.) 2013-2018 - small sample
Forecast horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

AR 0.85 0.74 0.75 0.76 0.77 0.68 0.64 0.69 0.70 0.76 0.77 0.74 0.81 0.78 1.12
(0.87) (0.72) (0.68) (0.71) (0.74) (0.61) (0.57) (0.62) (0.63) (0.70) (0.70) (0.66) (0.78) (0.71) (1.03)

Ridge 0.80 0.76 0.75 0.78 0.76 0.66 0.62 0.68 0.72 0.85 0.90 0.88 0.81 0.77 1.08
(0.81) (0.73) (0.71) (0.74) (0.73) (0.60) (0.56) (0.64) (0.70) (0.84) (0.87) (0.83) (0.83) (0.76) (1.07)

LASSO 0.73 0.74 0.95 1.18 1.29 0.68 0.71 0.76 0.81 0.77 1.24 1.27 0.80 0.88 1.22
(0.76) (0.73) (0.86) (1.12) (1.13) (0.62) (0.63) (0.69) (0.71) (0.71) (1.08) (1.18) (0.82) (0.84) (1.18)

ENet 0.82 0.74 0.73 0.76 0.76 0.67 0.65 0.69 0.70 0.77 0.76 0.71 0.80 0.77 1.09
(0.81) (0.72) (0.68) (0.71) (0.73) (0.61) (0.57) (0.61) (0.64) (0.71) (0.68) (0.62) (0.77) (0.70) (1.00)

adaLASSO 0.73 0.77 0.74 0.77 0.76 0.68 0.66 0.70 0.71 0.78 0.76 0.74 0.78 0.77 1.08
(0.77) (0.76) (0.68) (0.72) (0.74) (0.62) (0.58) (0.62) (0.64) (0.72) (0.68) (0.64) (0.79) (0.72) (0.99)

adaENet 0.71 0.76 0.73 0.76 0.76 0.68 0.65 0.69 0.70 0.78 0.76 0.71 0.78 0.77 1.07
(0.74) (0.75) (0.68) (0.72) (0.73) (0.61) (0.57) (0.61) (0.64) (0.72) (0.68) (0.62) (0.78) (0.71) (0.98)

WLadaLASSO 0.76 0.78 0.74 0.80 0.76 0.68 0.66 0.70 0.73 0.79 0.76 0.74 0.79 0.78 1.10
(0.81) (0.78) (0.70) (0.74) (0.74) (0.62) (0.58) (0.63) (0.65) (0.72) (0.68) (0.65) (0.82) (0.73) (1.00)

WLadaENet 0.71 0.76 0.74 0.79 0.76 0.68 0.65 0.69 0.71 0.79 0.76 0.72 0.78 0.77 1.08
(0.74) (0.75) (0.68) (0.73) (0.73) (0.61) (0.57) (0.61) (0.65) (0.72) (0.68) (0.62) (0.78) (0.71) (0.98)

CSR 0.82 0.81 0.83 0.85 0.86 0.76 0.70 0.74 0.77 0.86 0.85 0.82 0.89 0.95 1.45
(0.88) (0.78) (0.78) (0.80) (0.84) (0.71) (0.62) (0.66) (0.73) (0.83) (0.78) (0.75) (0.87) (0.89) (1.33)

L2Boost 0.91 0.85 1.00 0.91 0.92 0.75 0.68 0.74 0.86 0.93 0.90 0.87 0.94 0.91 1.19
(0.97) (0.86) (1.00) (0.91) (0.91) (0.68) (0.61) (0.68) (0.78) (0.92) (0.84) (0.81) (0.98) (0.90) (1.15)

RF 0.78 0.72 0.73 0.77 0.76 0.69 0.64 0.67 0.69 0.77 0.78 0.74 0.78 0.77 1.07
(0.80) (0.70) (0.67) (0.72) (0.74) (0.63) (0.56) (0.60) (0.62) (0.71) (0.69) (0.66) (0.78) (0.71) (0.95)

B.Trees 0.81 0.74 0.75 0.75 0.75 0.67 0.64 0.67 0.72 0.79 0.77 0.75 0.82 0.76 1.10
(0.84) (0.73) (0.69) (0.72) (0.72) (0.61) (0.57) (0.60) (0.68) (0.73) (0.70) (0.67) (0.81) (0.70) (1.01)

Factors 0.78 0.78 0.79 0.80 0.79 0.70 0.67 0.71 0.70 0.74 0.73 0.73 0.84 0.84 1.14
(0.80) (0.77) (0.73) (0.75) (0.75) (0.64) (0.59) (0.64) (0.65) (0.69) (0.65) (0.66) (0.84) (0.78) (1.03)

B.Factors 0.84 0.78 0.74 0.76 0.78 0.70 0.65 0.69 0.70 0.79 0.78 0.74 0.84 0.82 1.18
(0.86) (0.74) (0.67) (0.71) (0.76) (0.64) (0.57) (0.61) (0.65) (0.74) (0.70) (0.64) (0.81) (0.75) (1.08)

Mean 0.74 0.74 0.72 0.75 0.75 0.68 0.65 0.68 0.70 0.77 0.77 0.74 0.78 0.77 1.06
(0.75) (0.72) (0.67) (0.68) (0.72) (0.61) (0.56) (0.61) (0.64) (0.70) (0.68) (0.66) (0.79) (0.70) (0.96)

Median 0.74 0.75 0.73 0.76 0.75 0.67 0.65 0.68 0.71 0.78 0.76 0.72 0.77 0.76 1.08
(0.74) (0.73) (0.67) (0.71) (0.73) (0.61) (0.57) (0.61) (0.64) (0.71) (0.68) (0.63) (0.78) (0.70) (0.99)

Source: Own elaboration from research data (2020). Note: The table shows the root mean squared errors (RMSE) and mean absolute errors (MAE) in parenthesis for the forecasts, relative to the Random Walk (RW).
The values in bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the 50% MCS constructed based on the Tmax statistic using the
squared/absolute errors.
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Table 11 – Forecasting errors for the CPI (U.S) from 2013 to 2018 - large sample

Consumer price index (U.S.) 2013-2018 - large sample
Forecast horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

AR 0.87 0.79 0.81 0.86 0.86 0.78 0.72 0.73 0.75 0.84 0.87 0.78 0.90 0.97 1.43
(0.92) (0.81) (0.82) (0.85) (0.89) (0.75) (0.66) (0.67) (0.72) (0.81) (0.78) (0.68) (0.94) (0.95) (1.38)

Ridge 0.96 0.91 0.83 0.96 0.98 0.85 0.87 0.92 0.95 1.08 1.03 0.89 0.85 0.82 1.21
(1.00) (0.89) (0.84) (0.96) (1.03) (0.87) (0.83) (0.89) (0.96) (1.11) (0.98) (0.81) (0.87) (0.84) (1.28)

LASSO 0.78 0.76 0.75 0.81 0.79 0.71 0.65 0.67 0.69 0.77 0.73 0.74 0.79 0.80 1.08
(0.80) (0.76) (0.70) (0.78) (0.79) (0.67) (0.59) (0.61) (0.65) (0.71) (0.66) (0.66) (0.80) (0.75) (1.02)

ENet 0.79 0.76 0.76 0.80 0.83 0.70 0.65 0.67 0.70 0.78 0.75 0.74 0.81 0.82 1.12
(0.81) (0.77) (0.72) (0.77) (0.80) (0.66) (0.59) (0.61) (0.65) (0.73) (0.68) (0.64) (0.83) (0.77) (1.04)

adaLASSO 0.80 0.72 0.75 0.79 0.80 0.72 0.68 0.69 0.71 0.76 0.72 0.71 0.77 0.76 1.00
(0.80) (0.73) (0.71) (0.75) (0.78) (0.68) (0.62) (0.62) (0.67) (0.73) (0.66) (0.67) (0.75) (0.69) (0.91)

adaENet 0.79 0.73 0.75 0.79 0.80 0.73 0.67 0.69 0.68 0.75 0.72 0.70 0.78 0.78 1.01
(0.79) (0.73) (0.71) (0.75) (0.79) (0.70) (0.61) (0.62) (0.64) (0.72) (0.65) (0.66) (0.77) (0.72) (0.94)

WLadaLASSO 0.74 0.74 0.72 0.78 0.78 0.72 0.64 0.69 0.68 0.76 0.71 0.70 0.76 0.75 0.96
(0.73) (0.74) (0.69) (0.73) (0.76) (0.68) (0.59) (0.62) (0.64) (0.73) (0.66) (0.66) (0.75) (0.68) (0.90)

WLadaENet 0.74 0.74 0.75 0.75 0.79 0.73 0.64 0.69 0.67 0.74 0.71 0.68 0.78 0.75 0.96
(0.74) (0.76) (0.72) (0.71) (0.76) (0.69) (0.56) (0.60) (0.63) (0.71) (0.64) (0.63) (0.78) (0.68) (0.90)

CSR 0.80 0.73 0.74 0.77 0.77 0.69 0.66 0.67 0.67 0.73 0.73 0.70 0.77 0.75 1.00
(0.84) (0.74) (0.70) (0.76) (0.78) (0.67) (0.62) (0.64) (0.64) (0.70) (0.68) (0.63) (0.78) (0.70) (0.94)

L2Boost 0.78 0.73 0.72 0.79 0.74 0.67 0.62 0.64 0.67 0.75 0.74 0.72 0.73 0.70 0.93
(0.77) (0.72) (0.68) (0.75) (0.72) (0.64) (0.56) (0.61) (0.65) (0.73) (0.69) (0.65) (0.72) (0.64) (0.87)

RF 0.78 0.73 0.73 0.78 0.77 0.69 0.64 0.67 0.69 0.76 0.75 0.71 0.78 0.77 1.02
(0.81) (0.73) (0.69) (0.73) (0.76) (0.64) (0.56) (0.60) (0.63) (0.70) (0.68) (0.62) (0.78) (0.70) (0.91)

B.Trees 0.81 0.75 0.76 0.78 0.77 0.68 0.64 0.69 0.70 0.78 0.78 0.73 0.84 0.81 1.13
(0.86) (0.73) (0.72) (0.74) (0.76) (0.63) (0.58) (0.60) (0.61) (0.71) (0.69) (0.63) (0.85) (0.76) (1.05)

Factors 0.83 0.80 0.80 0.82 0.77 0.73 0.71 0.70 0.71 0.76 0.75 0.73 0.86 0.90 1.23
(0.86) (0.81) (0.78) (0.81) (0.78) (0.70) (0.67) (0.65) (0.67) (0.71) (0.68) (0.65) (0.87) (0.85) (1.21)

B.Factors 0.81 0.76 0.76 0.81 0.80 0.73 0.68 0.70 0.71 0.78 0.77 0.73 0.82 0.85 1.19
(0.85) (0.77) (0.76) (0.81) (0.82) (0.70) (0.61) (0.64) (0.67) (0.72) (0.68) (0.64) (0.83) (0.82) (1.15)

Mean 0.77 0.73 0.73 0.77 0.76 0.70 0.65 0.66 0.68 0.75 0.73 0.68 0.77 0.75 0.95
(0.78) (0.73) (0.70) (0.73) (0.76) (0.67) (0.59) (0.62) (0.65) (0.71) (0.67) (0.62) (0.77) (0.69) (0.87)

Median 0.78 0.73 0.74 0.78 0.77 0.70 0.65 0.67 0.68 0.75 0.72 0.70 0.77 0.76 1.00
(0.79) (0.73) (0.70) (0.75) (0.77) (0.67) (0.59) (0.61) (0.64) (0.70) (0.65) (0.62) (0.77) (0.71) (0.93)

Source: Own elaboration from research data (2020). Note: The table shows the root mean squared errors (RMSE) and mean absolute errors (MAE) in parenthesis for the forecasts, relative to the Random Walk (RW).
The values in bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the 50% MCS constructed based on the Tmax statistic using the
squared/absolute errors.
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Table 12 – Forecasting results: Superior predictive ability test (CPI - U.S., 2013-2018, small sample)

Panel (a): Squared errors
Hansen‘s test – Forecasting horizon Quaedvlieg‘s test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.019 0.028 0.027 0.126 0.248 0.004 0.001 0.001 0.001 0.008 0.090 0.096 0.115 0.099 0.861 - - 0.970 0.996
AR 0.079 0.556 0.320 0.702 0.617 0.473 0.661 0.594 0.772 0.559 0.155 0.343 0.781 0.701 0.343 0.000 0.003 - -

Ridge 0.240 0.292 0.423 0.669 0.567 0.909 0.955 0.738 0.557 0.010 0.020 0.027 0.749 0.644 0.510 0.000 0.004 0.922 0.946
LASSO 0.762 0.494 0.063 0.004 0.042 0.482 0.146 0.123 0.146 0.280 0.016 0.004 0.716 0.336 0.225 0.675 0.079 0.925 0.999
ENet 0.275 0.579 0.684 0.731 0.628 0.589 0.645 0.775 0.860 0.318 0.433 0.985 0.715 0.674 0.425 0.000 0.004 0.586 0.019
adaLASSO 0.609 0.127 0.418 0.623 0.676 0.447 0.506 0.633 0.662 0.175 0.440 0.375 0.974 0.822 0.500 0.000 0.005 0.810 0.352
adaENet 0.953 0.150 0.689 0.728 0.624 0.545 0.637 0.776 0.724 0.212 0.430 0.986 0.921 0.878 0.481 0.000 0.001 0.679 0.025
WLadaLASSO 0.404 0.085 0.422 0.502 0.663 0.437 0.510 0.543 0.484 0.132 0.300 0.342 0.939 0.734 0.397 0.000 0.003 0.836 0.878
WLadaENet 0.932 0.250 0.614 0.566 0.632 0.542 0.631 0.779 0.552 0.139 0.410 0.728 0.988 0.818 0.531 0.000 0.008 0.788 0.053
CSR 0.130 0.279 0.330 0.312 0.269 0.028 0.128 0.160 0.167 0.126 0.018 0.025 0.318 0.173 0.041 0.000 0.007 0.932 0.993
L2Boost 0.074 0.199 0.006 0.150 0.123 0.053 0.314 0.121 0.032 0.022 0.029 0.037 0.157 0.236 0.229 0.004 0.009 0.949 0.994
RF 0.307 0.977 0.671 0.473 0.502 0.303 0.789 0.843 0.946 0.407 0.236 0.414 0.916 0.857 0.597 0.000 0.005 0.409 0.135
B.Trees 0.179 0.610 0.458 0.831 0.977 0.612 0.752 0.868 0.550 0.132 0.231 0.194 0.734 0.942 0.399 0.000 0.007 0.754 0.193
Factors 0.271 0.155 0.355 0.454 0.486 0.231 0.399 0.344 0.780 0.963 0.894 0.476 0.571 0.451 0.257 0.000 0.006 0.785 0.916
B.Factors 0.109 0.187 0.488 0.728 0.617 0.258 0.548 0.618 0.839 0.170 0.168 0.390 0.503 0.532 0.215 0.000 0.002 0.795 0.914

Mean 0.711 0.348 0.999 0.999 0.844 0.558 0.656 0.782 0.805 0.367 0.184 0.298 1.000 0.975 0.522 0.000 0.004 0.504 0.025
Median 0.702 0.286 0.823 0.757 0.682 0.606 0.598 0.792 0.690 0.234 0.303 0.958 0.999 0.997 0.432 0.000 0.004 0.661 0.015

Panel (b): Absolute errors
Hansen‘s test – Forecasting horizon Quaedvlieg‘s test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.018 0.008 0.003 0.026 0.062 0.000 0.000 0.000 0.000 0.002 0.002 0.007 0.104 0.041 0.641 - - 0.969 0.997
AR 0.133 0.631 0.637 0.350 0.623 0.736 0.944 0.723 0.803 0.950 0.146 0.247 0.899 0.750 0.580 0.000 0.005 - -

Ridge 0.359 0.468 0.391 0.246 0.617 0.853 0.886 0.354 0.093 0.066 0.010 0.018 0.554 0.483 0.576 0.000 0.005 0.940 0.954
LASSO 0.783 0.534 0.075 0.002 0.018 0.730 0.231 0.117 0.128 0.767 0.004 0.003 0.645 0.274 0.259 0.490 0.014 0.945 0.997
ENet 0.381 0.604 0.764 0.352 0.805 0.814 0.947 0.679 0.732 0.703 0.564 0.957 0.982 0.894 0.821 0.000 0.001 0.561 0.036
adaLASSO 0.568 0.121 0.774 0.295 0.701 0.686 0.779 0.501 0.638 0.451 0.560 0.622 0.887 0.738 0.908 0.000 0.000 0.790 0.341
adaENet 0.978 0.226 0.774 0.333 0.805 0.783 0.920 0.669 0.712 0.538 0.548 0.955 0.954 0.858 0.851 0.000 0.003 0.762 0.044
WLadaLASSO 0.325 0.104 0.445 0.187 0.695 0.687 0.772 0.499 0.518 0.438 0.505 0.480 0.780 0.678 0.841 0.000 0.003 0.846 0.900
WLadaENet 0.934 0.269 0.631 0.234 0.801 0.784 0.921 0.665 0.602 0.435 0.556 0.882 0.956 0.855 0.918 0.000 0.002 0.682 0.091
CSR 0.126 0.106 0.150 0.222 0.229 0.026 0.202 0.207 0.049 0.112 0.013 0.015 0.398 0.180 0.117 0.000 0.011 0.904 0.992
L2Boost 0.044 0.085 0.000 0.030 0.143 0.124 0.416 0.109 0.009 0.012 0.001 0.001 0.098 0.124 0.299 0.015 0.013 0.943 0.991
RF 0.368 0.980 0.865 0.397 0.618 0.386 0.955 0.932 0.902 0.565 0.356 0.377 0.922 0.878 0.915 0.000 0.003 0.549 0.228
B.Trees 0.228 0.557 0.529 0.274 0.934 0.703 0.920 0.774 0.256 0.403 0.189 0.100 0.749 0.941 0.775 0.000 0.002 0.739 0.741
Factors 0.424 0.165 0.352 0.118 0.408 0.340 0.597 0.356 0.585 0.871 0.971 0.257 0.580 0.319 0.580 0.000 0.001 0.809 0.929
B.Factors 0.210 0.392 0.862 0.394 0.313 0.324 0.776 0.700 0.463 0.243 0.218 0.461 0.729 0.475 0.441 0.000 0.003 0.666 0.899

Mean 0.897 0.468 0.955 0.990 0.899 0.854 0.985 0.808 0.799 0.910 0.473 0.226 0.968 0.991 0.989 0.000 0.005 0.173 0.034
Median 0.961 0.358 0.851 0.361 0.904 0.840 0.927 0.714 0.706 0.680 0.425 0.919 0.991 0.988 0.895 0.000 0.001 0.539 0.025

Source: Own elaboration from research data (2020). Note: The table reports the p-values of the test for Superior Predictive Ability of Hansen (2005) (left) using each method as benchmark for each forecasting horizon,
including the accumulated horizons. The p-values of the uniform and average multi-horizon SPA test of Quaedvlieg (2019) are also reported (right) using RW ans AR as benchmarks. The Panel (a) presents the p-values for
the test using the squared errors and the Panel (b) using the absolute errors. The null hypothesis of the single-horizon test is that the bench of the is that the bench mark is not inferior to any alternative method. The null
hypothesis of the multi-horizon test is that the benchmark is superior to the alternative method. The gray cells indicate that the null hypothesis is rejected at the 0.05 significance level.
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Table 13 – Forecasting results: Superior predictive ability test (CPI - U.S., 2013-2018, large sample)

Panel (a): Squared errors
Hansen‘s test – Forecasting horizon Quaedvlieg‘s test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.012 0.017 0.008 0.059 0.062 0.005 0.003 0.003 0.001 0.013 0.004 0.004 0.046 0.020 0.723 - - 0.930 0.992
AR 0.042 0.105 0.089 0.222 0.224 0.072 0.199 0.286 0.296 0.046 0.087 0.232 0.080 0.020 0.055 0.000 0.008 - -

Ridge 0.005 0.049 0.044 0.069 0.027 0.004 0.020 0.024 0.017 0.002 0.004 0.068 0.253 0.320 0.245 0.292 0.045 0.879 0.969
LASSO 0.290 0.414 0.509 0.379 0.425 0.160 0.167 0.271 0.528 0.240 0.642 0.376 0.496 0.261 0.298 0.000 0.003 0.000 0.005
ENet 0.185 0.325 0.341 0.429 0.336 0.313 0.235 0.394 0.376 0.193 0.311 0.373 0.370 0.272 0.271 0.000 0.003 0.000 0.007
adaLASSO 0.226 0.971 0.466 0.499 0.450 0.055 0.151 0.122 0.212 0.480 0.757 0.536 0.542 0.334 0.646 0.000 0.001 0.000 0.011
adaENet 0.221 0.889 0.437 0.492 0.433 0.043 0.163 0.138 0.837 0.640 0.910 0.712 0.450 0.278 0.418 0.000 0.004 0.000 0.010
WLadaLASSO 0.928 0.745 0.876 0.395 0.388 0.078 0.518 0.115 0.779 0.493 0.888 0.674 0.735 0.551 0.760 0.000 0.000 0.000 0.009
WLadaENet 0.806 0.649 0.457 0.931 0.529 0.053 0.523 0.179 0.988 0.786 0.945 0.890 0.556 0.512 0.759 0.000 0.003 0.000 0.005
CSR 0.134 0.918 0.486 0.558 0.608 0.451 0.272 0.474 0.907 0.990 0.610 0.746 0.466 0.446 0.722 0.000 0.003 0.000 0.009
L2Boost 0.341 0.861 0.844 0.328 0.943 0.820 0.948 0.938 0.751 0.550 0.453 0.471 0.964 0.985 0.972 0.000 0.000 0.000 0.012
RF 0.322 0.801 0.756 0.503 0.511 0.439 0.640 0.329 0.640 0.461 0.343 0.555 0.437 0.371 0.392 0.000 0.002 0.000 0.008
B.Trees 0.143 0.429 0.345 0.538 0.442 0.634 0.404 0.171 0.376 0.201 0.144 0.456 0.317 0.316 0.256 0.000 0.001 0.000 0.005
Factors 0.083 0.119 0.110 0.122 0.428 0.081 0.045 0.081 0.187 0.414 0.378 0.439 0.181 0.051 0.099 0.000 0.002 0.136 0.009
B.Factors 0.122 0.370 0.342 0.102 0.157 0.023 0.053 0.079 0.188 0.245 0.143 0.420 0.184 0.100 0.153 0.000 0.002 0.000 0.004

Mean 0.331 0.903 0.834 0.539 0.651 0.192 0.230 0.414 0.882 0.820 0.595 0.999 0.582 0.414 0.613 0.000 0.002 0.000 0.004
Median 0.372 0.963 0.587 0.388 0.355 0.163 0.299 0.268 0.828 0.721 0.872 0.831 0.491 0.308 0.442 0.000 0.004 0.000 0.005

Panel (b): Absolute errors
Hansen’s test – Forecasting horizon Quaedvlieg‘s test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.002 0.007 0.002 0.011 0.024 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.024 0.004 0.534 - - 0.941 0.994
AR 0.022 0.142 0.035 0.134 0.080 0.064 0.154 0.300 0.038 0.077 0.110 0.354 0.025 0.013 0.045 0.000 0.005 - -

Ridge 0.006 0.060 0.029 0.013 0.004 0.006 0.006 0.024 0.004 0.002 0.002 0.040 0.161 0.119 0.112 0.395 0.037 0.848 0.966
LASSO 0.181 0.434 0.516 0.087 0.146 0.203 0.340 0.846 0.390 0.782 0.722 0.474 0.295 0.225 0.346 0.000 0.001 0.000 0.007
ENet 0.079 0.493 0.449 0.262 0.316 0.455 0.328 0.864 0.316 0.590 0.362 0.594 0.270 0.188 0.320 0.000 0.000 0.000 0.002
adaLASSO 0.170 0.863 0.505 0.429 0.180 0.107 0.100 0.538 0.160 0.585 0.634 0.294 0.674 0.542 0.798 0.000 0.001 0.004 0.014
adaENet 0.207 0.819 0.418 0.442 0.132 0.065 0.135 0.671 0.516 0.736 0.823 0.384 0.572 0.331 0.677 0.000 0.004 0.002 0.008
WLadaLASSO 0.920 0.742 0.712 0.781 0.452 0.150 0.249 0.522 0.496 0.586 0.679 0.355 0.765 0.696 0.894 0.000 0.002 0.004 0.007
WLadaENet 0.700 0.540 0.328 0.945 0.406 0.146 0.718 0.846 0.655 0.849 0.991 0.722 0.481 0.654 0.874 0.000 0.001 0.000 0.012
CSR 0.025 0.877 0.621 0.345 0.192 0.276 0.061 0.398 0.485 0.882 0.375 0.846 0.399 0.462 0.731 0.000 0.002 0.000 0.010
L2Boost 0.422 0.918 0.893 0.531 0.982 0.692 0.744 0.687 0.351 0.474 0.331 0.437 0.957 0.937 0.811 0.000 0.002 0.008 0.018
RF 0.145 0.812 0.807 0.641 0.515 0.705 0.860 0.920 0.747 0.903 0.389 0.944 0.512 0.494 0.637 0.000 0.005 0.000 0.007
B.Trees 0.119 0.755 0.349 0.529 0.500 0.819 0.497 0.833 0.927 0.705 0.275 0.812 0.221 0.225 0.316 0.000 0.006 0.000 0.002
Factors 0.083 0.179 0.091 0.048 0.277 0.130 0.127 0.178 0.181 0.726 0.352 0.614 0.082 0.034 0.088 0.000 0.003 0.102 0.012
B.Factors 0.038 0.386 0.192 0.036 0.017 0.033 0.076 0.309 0.161 0.588 0.319 0.683 0.186 0.082 0.141 0.000 0.000 0.000 0.006

Mean 0.167 0.962 0.674 0.851 0.522 0.298 0.224 0.797 0.281 0.891 0.601 0.998 0.576 0.547 0.974 0.000 0.003 0.000 0.009
Median 0.129 0.944 0.653 0.450 0.297 0.251 0.299 0.939 0.521 0.996 0.911 0.995 0.527 0.387 0.747 0.000 0.000 0.000 0.009

Source: Own elaboration from research data (2020). Note: The table reports the p-values of the test for Superior Predictive Ability of Hansen (2005) (left) using each method as benchmark for each forecasting horizon,
including the accumulated horizons. The p-values of the uniform and average multi-horizon SPA test of Quaedvlieg (2019) are also reported (right) using RW ans AR as benchmarks. The Panel (a) presents the p-values for
the test using the squared errors and the Panel (b) using the absolute errors. The null hypothesis of the single-horizon test is that the bench of the is that the bench mark is not inferior to any alternative method. The null
hypothesis of the multi-horizon test is that the benchmark is superior to the alternative method. The gray cells indicate that the null hypothesis is rejected at the 0.05 significance level.



48Figure 7 – Variable importance of methods Ridge, LASSO and ENet for U.S. CPI using the small (a) and the large samples (b)



49Figure 8 – Variable importance of methods adaLASSO, adaENet and WLadaLASSO for U.S. CPI using the small (a) and the large samples (b)



50Figure 9 – Variable importance of methods WLadaENet, CSR and L2Boost for U.S. CPI using the small (a) and the large samples (b)
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Figure 10 – Variable importance of methods RF and B.Trees for U.S. CPI using the small (a) and the large samples (b)
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2.6 CONCLUDING REMARKS

We study a variety of high-dimensional statistical learning methods to perform time
series forecasting. In order to evaluate the forecasting performance of these methods we carry
out several numerical exercises, including Monte Carlo simulations and empirical data analyses.
Through our Monte Carlo implementation, we simulate three different data-generating process,
where the first is a sparse model, the second is a dense model, and the third model presents
nonlinearities. The methods WLadaLASSO and WLadaENet, which is proposed in the paper,
have the best performance in terms of variable selection and forecast in most cases, even
when nonlinearities are present. Although these two methods have a good performance in our
simulations, they do not perform well to forecast Brazilian inflation and core inflation. In turn,
Ridge Regression presents the most accurate forecasts in most horizons both for inflation and
core inflation forecasts. For the forecasts of U.S., Ridge Regression has a moderate predictive
performance for small sample size (number of variables is larger than the samples size), whereas
its performance decreases when the large sample (sample size is larger than the number of
variables) is used. Unlike Ridge Regression, L2Boost improves its performance when the sample
size increases, especially when we consider the accumulated forecasting horizons. WLadaENet,
our proposed novel method, has a good performance to forecast U.S. inflation when the large
sample size is used.
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3 CONSIDERAÇÕES FINAIS

No artigo que integra esta dissertação apresentamos diversos métodos de aprendizado es-
tatístico, os quais propõe-se a evitar alguns dos problemas enfrentados pelos métodos tradicionais
na presença de dados de alta dimensão, obtendo um bom desempenho em termos de previsão.
Utilizamos estes métodos para realizar previsão de séries temporais, avaliando seu desempenho
através de diversos exercícios numéricos, incluindo simulação Monte Carlo e análise de dados
empíricos. Simulamos três processos geradores de dados, o primeiro deles sendo um modelo
linear com estrutura esparsa, o segundo um modelo linear com estrutura densa e o terceiro
apresentando não linearidades. Os métodos WLadaLASSO e WLadaENet tiveram um bom
desempenho em seleção de variável para o modelo linear esparso e um bom desempenho em
previsão na maioria dos casos, mesmo para o modelo com não linearidades.

Apesar destes métodos apresentarem um bom desempenho nas simulações, não tiveram
um desempenho tão bom para a previsão da inflação brasileira e do núcleo de inflação. Por sua
vez, o método Ridge apresentou um bom desempenho na maioria dos horizontes de previsão,
nestes casos. Já para a previsão da inflação norte americana, o método Ridge apresentou um
desempenho apenas moderado, utilizando-se conjuntos de dados com tamanhos similares. Neste
caso diversos métodos tiveram desempenho semelhante, como ENet, adaLASSO, adaENet,
WLadaLASSO, WLadaENet, Random Forest e B.Trees, onde o método Random Forest é o
método que apresenta os menores erros em mais horizontes de previsão.

Ao utilizar-se um conjunto de dados cujo tamanho da amostra é consideravelmente
maior (tamanho da amostra maior que o número de variáveis), para a inflação norte americana,
o desempenho do método Ridge caiu drasticamente, enquanto o método L2Boost, passou a
apresentar os menores erros de previsão. Esta melhora de desempenho é ainda mais perceptível
quando se consideram os horizontes de previsão de inflação acumulada. As previsões utilizando
o método WLadaENet, proposto no artigo, também tiveram um bom desempenho para a inflação
norte americana no segundo caso, levemente superior ao do método WLadaLASSO em alguns
horizontes de previsão. Desta forma não temos um método que é universalmente o melhor,
mas métodos que funcionam melhor em determinadas situações, onde um método que faz boas
previsões para uma determinada estrutura de dados pode não fazer boas previsões para uma
estrutura de dados diferente.
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APPENDIX A – LIST OF VARIABLES (BRAZIL)

For Tables A.1 - A.8 the column tcode denotes the following data transformation for
a series x: (1) no transformation; (2) ∆xt ; (3) ∆2xt ; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7)
∆(xt/xt−1).

Table A.1 – Group 1: Prices

Group 1: Prices
id tcode description

1 1 1 CPI: IPCA
2 2 1 GPI: IGP-10
3 3 1 GPI: IGP-DI
4 4 1 GPI: IGPM
5 5 1 CPI: INPC
6 6 1 CPI: IPCA15
7 7 1 CPI: IPCA-DP (Core - Double Weight)
8 8 1 CPI: IPCA-EX0 (Core - Exclusion)
9 9 1 CPI: IPCA-EX1 (Core - Exclusion)
10 10 1 CPI: IPCA-MS (Core - Trimmed Means Smoothed)
11 11 1 CPI: IPCA - Administred Prices
12 12 1 CPI: IPCA - Housing
13 13 1 CPI: IPCA - Personal Expenditures
14 14 1 CPI: IPCA - Gasoline
15 15 1 CPI: IPCA - Health Insurance
16 16 1 CPI: IPCA - Other
17 17 1 CPI: IPCA - Water and Sewage Rates
18 18 1 CPI: IPCA - Durable Goods

Source: Own elaboration from research data (2020).
Note: All prices in percentage change.

Table A.2 – Group 2: Employment and Wages

Group 2: Employment and Wages
id tcode description

1 19 2 Unemployment Rate (RMSP)
2 20 2 Unemployment Rate - Open (RMSP)
3 21 2 Unemployment Rate - Hidden Precarious - (RMSP)
4 22 3 Employment Personnel - Industry
5 23 3 Hours Worked - Industry
6 24 2 Minimum Wage - Real
7 25 2 Minimum Wage - PPP

Source: Own elaboration from research data (2020).
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Table A.3 – Group 3: International Transactions and Government Debt

Group 3: International Transactions and Government Debt
id tcode description

1 26 2 Current Account (US$)
2 27 2 Balance on Goods and Services (US$)
3 28 2 Balance on Goods (US$)
4 29 2 Secondary Income (US$)
5 30 1 Capital Account (US$)
6 31 2 Financial Account (US$)
7 32 2 External Debt - States and Cities
8 33 3 Fiscal Debt - Public Sector
9 34 2 Internal Debt - States and Cities
10 35 2 Internal Debt - Federal Government and Central Bank
11 36 3 Total Net Debt - States and Cities
12 37 3 Total Net Debt - Federal Government and Central Bank

Source: Own elaboration from research data (2020).

Table A.4 – Group 4: Economic Activity and Production

Group 4: Economic Activity and Production
id tcode description

1 38 2 Apparent Consumption - Alcohol
2 39 2 Apparent Consumption - Oil and Derivatives
3 40 5 Apparent Consumption - Capital Goods
4 41 5 Apparent Consumption - Intermediate Goods
5 42 5 Apparent Consumption - Consumer Goods - All
6 43 5 Apparent Consumption - Durable Consumer Goods
7 44 5 Apparent Consumption - Semi-durable and Non-durable Goods
8 45 5 Apparent Consumption - Industry General
9 46 5 Apparent Consumption - Manufacturing Industry
10 47 5 Real Income - Industry
11 48 2 Electricity - Consumption
12 49 2 Default - Number of Queries
13 50 5 Economic Condition Index
14 51 2 Bad Checks
15 52 2 Capacity Utilization
16 53 5 Industrial Production - Intermediate Goods
17 54 5 Industrial Production - General
18 55 5 Industrial Production - Capital Goods
19 56 5 Industrial Production - Metallurgy
20 57 5 Industrial Production - Cellulose and Paper
21 58 2 Industrial Production - Oil
22 59 2 Industrial Production - Steel
23 60 5 Industrial Production - Motor Vehicles
24 61 2 Slaughter - Cattle
25 62 2 Slaughter - Poultry
26 63 2 Slaughter - Pigs
27 64 5 Construction Index

Source: Own elaboration from research data (2020).
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Table A.5 – Group 5: Taxes and Government Income

Group 5: Taxes and Government Income
id tcode description

1 65 2 Cofins - total - Gross Income
2 66 3 Social Contribution over Net Profits
3 67 2 PIS/Pasep - total - Gross Income
4 68 3 Gross Collection of Federal Revenues
5 69 2 Taxes on Goods Circulation
6 70 2 Import Taxes
7 71 5 Income Taxes - Individual
8 72 5 Income Taxes - Legal Entity
9 73 6 Total Gross Income Taxes
10 74 1 Taxes on Rural Properties
11 75 5 Tax on Motor Vehicles
12 76 5 Financial Taxes
13 77 5 Industry Taxes
14 78 2 Taxes - Other
15 79 2 Taxes - Fees

Source: Own elaboration from research data (2020).

Table A.6 – Group 6: Exchange Rates and Finance

Group 6: Exchange Rates and Finance
id tcode description

1 80 2 Exchange Rate - Dollar Commercial
2 81 2 PPP conversion factor (private consumption)
3 82 5 BOVESPA Stock Index
4 83 5 Dow Jones Stock Index
5 84 2 Return on Savings
6 85 1 Returns on Gold
7 86 2 Interest Rate CDI/Over
8 87 2 Interest Rate TJLP
9 88 2 Interest Rate Over/Selic

Source: Own elaboration from research data (2020).

Table A.7 – Group 7: Money

Group 7: Money
id tcode description

1 89 2 M0
2 90 2 M1
3 91 3 M2
4 92 6 M3
5 93 6 M4

Source: Own elaboration from research data (2020).
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Table A.8 – Group 8: Economic Confidence

Group 8: Economic Confidence
id tcode description

1 94 5 Index - Consumer Confidence
2 95 5 Index - Economic Expectations

Source: Own elaboration from research data (2020).
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APPENDIX B – LIST OF VARIABLES (U.S.)

For Tables B.1 - B.8 the column tcode denotes the following data transformation for
a series x: (1) no transformation; (2) ∆xt ; (3) ∆2xt ; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt); (7)
∆(xt/xt−1). The FRED column gives mnemonics in FRED followed by a short description. The
comparable series in Global Insight is given in the column GSI.

Table B.1 – Group 1: Output and income

Group 1: Output and income
id tcode fred description gsi gsi:description

1 1 5 RPI Real Personal Income M_14386177 PI
2 2 5 W875RX1 Real personal income ex transfer receipts M_145256755 PI less transfers
3 6 5 INDPRO IP Index M_116460980 IP: total
4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M_116460981 IP: products
5 8 5 IPFINAL IP: Final Products (Market Group) M_116461268 IP: final prod
6 9 5 IPCONGD IP: Consumer Goods M_116460982 IP: cons gds
7 10 5 IPDCONGD IP: Durable Consumer Goods M_116460983 IP: cons dble
8 11 5 IPNCONGD IP: Nondurable Consumer Goods M_116460988 IP: cons nondble
9 12 5 IPBUSEQ IP: Business Equipment M_116460995 IP: bus eqpt
10 13 5 IPMAT IP: Materials M_116461002 IP: matls
11 14 5 IPDMAT IP: Durable Materials M_116461004 IP: dble matls
12 15 5 IPNMAT IP: Nondurable Materials M_116461008 IP: nondble matls
13 16 5 IPMANSICS IP: Manufacturing (SIC) M_116461013 IP: mfg
14 17 5 IPB51222s IP: Residential Utilities M_116461276 IP: res util
15 18 5 IPFUELS IP: Fuels M_116461275 IP: fuels
16 20 2 CUMFNS Capacity Utilization: Manufacturing M_116461602 Cap util

Source: McCracken and Ng (2016).
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Table B.2 – Group 2: Labor market

Group 2: Labor market
id tcode fred description gsi gsi:description

1 21* 2 HWI Help-Wanted Index for United States Help wanted indx
2 22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed M_110156531 Help wanted/unemp
3 23 5 CLF16OV Civilian Labor Force M_110156467 Emp CPS total
4 24 5 CE16OV Civilian Employment M_110156498 Emp CPS nonag
5 25 2 UNRATE Civilian Unemployment Rate M_110156541 U: all
6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks) M_110156528 U: mean duration
7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M_110156527 U < 5 wks
8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M_110156523 U 5-14 wks
9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over M_110156524 U 15+ wks
10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M_110156525 U 15-26 wks
11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over M_110156526 U 27+ wks
12 32 5 CLAIMSx Initial Claims M_15186204 UI claims
13 33 5 PAYEMS All Employees: Total nonfarm M_123109146 Emp: total
14 34 5 USGOOD All Employees: Goods-Producing Industries M_123109172 Emp: gds prod
15 35 5 CES1021000001 All Employees: Mining and Logging: Mining M_123109244 Emp: mining
16 36 5 USCONS All Employees: Construction M_123109331 Emp: const
17 37 5 MANEMP All Employees: Manufacturing M_123109542 Emp: mfg
18 38 5 DMANEMP All Employees: Durable goods M_123109573 Emp: dble gds
19 39 5 NDMANEMP All Employees: Nondurable goods M_123110741 Emp: nondbles
20 40 5 SRVPRD All Employees: Service-Providing Industries M_123109193 Emp: services
21 41 5 USTPU All Employees: Trade, Transportation & Utilities M_123111543 Emp: TTU
22 42 5 USWTRADE All Employees: Wholesale Trade M_123111563 Emp: wholesale
23 43 5 USTRADE All Employees: Retail Trade M_123111867 Emp: retail
24 44 5 USFIRE All Employees: Financial Activities M_123112777 Emp: FIRE
25 45 5 USGOVT All Employees: Government M_123114411 Emp: Govt
26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M_140687274 Avg hrs
27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M_123109554 Overtime: mfg
28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M_14386098 Avg hrs: mfg
29 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M_123109182 AHE: goods
30 128 6 CES2000000008 Avg Hourly Earnings : Construction M_123109341 AHE: const
31 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M_123109552 AHE: mfg

Source: McCracken and Ng (2016).

Table B.3 – Group 3: Housing

Group 3: Housing
id tcode fred description gsi gsi:description

1 50 4 HOUST Housing Starts: Total New Privately Owned M_110155536 Starts: nonfarm
2 51 4 HOUSTNE Housing Starts, Northeast M_110155538 Starts: NE
3 52 4 HOUSTMW Housing Starts, Midwest M_110155537 Starts: MW
4 53 4 HOUSTS Housing Starts, South M_110155543 Starts: South
5 54 4 HOUSTW Housing Starts, West M_110155544 Starts: West
6 55 4 PERMIT New Private Housing Permits (SAAR) M_110155532 BP: total
7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M_110155531 BP: NE
8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M_110155530 BP: MW
9 58 4 PERMITS New Private Housing Permits, South (SAAR) M_110155533 BP: South
10 59 4 PERMITW New Private Housing Permits, West (SAAR) M_110155534 BP: West

Source: McCracken and Ng (2016).
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Table B.4 – Group 4: Consumption, orders, and inventories

Group 4: Consumption, orders, and inventories
id tcode fred description gsi gsi:description

1 3 5 DPCERA3M086SBEA Real personal consumption expenditures M_123008274 Real Consumption
2 4 5 CMRMTSPLx Real Manu. and Trade Industries Sales M_110156998 M&T sales
3 5 5 RETAILx Retail and Food Services Sales M_130439509 Retail sales
4 65 5 AMDMNOx New Orders for Durable Goods M_14386110 Orders: dble gds
5 66 5 ANDENOx New Orders for Nondefense Capital Goods M_178554409 Orders: cap gds
6 68 5 BUSINVx Total Business Inventories M_15192014 M&T invent
7 69 2 ISRATIOx Total Business: Inventories to Sales Ratio M_15191529 M&T invent/sales

Source: McCracken and Ng (2016).

Table B.5 – Group 5: Money and credit

Group 5: Money and credit
id tcode fred description gsi gsi:description

1 70 6 M1SL M1 Money Stock M_110154984 M1
2 71 6 M2SL M2 Money Stock M_110154985 M2
3 72 5 M2REAL Real M2 Money Stock M_110154985 M2 (real)
4 73 6 AMBSL St. Louis Adjusted Monetary Base M_110154995 MB
5 74 6 TOTRESNS Total Reserves of Depository Institutions M_110155011 Reserves tot
6 76 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&I loan plus
7 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans
8 78 6 NONREVSL Total Nonrevolving Credit M_110154564 Cons credit
9 79 2 CONSPI Nonrevolving consumer credit to Personal Income M_110154569 Inst cred/PI
10 131 6 MZMSL MZM Money Stock N.A. N.A.
11 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.
12 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.
13 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.

Source: McCracken and Ng (2016).

Table B.6 – Group 6: Interest and exchange rates

Group 6: Interest and exchange rates
id tcode fred description gsi gsi:description

1 84 2 FEDFUNDS Effective Federal Funds Rate M_110155157 Fed Funds
2 85 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper
3 86 2 TB3MS 3-Month Treasury Bill M_110155165 3 mo T-bill
4 87 2 TB6MS 6-Month Treasury Bill M_110155166 6 mo T-bill
5 88 2 GS1 1-Year Treasury Rate M_110155168 1 yr T-bond
6 89 2 GS5 5-Year Treasury Rate M_110155174 5 yr T-bond
7 90 2 GS10 10-Year Treasury Rate M_110155169 10 yr T-bond
8 91 2 AAA Moody‘s Seasoned Aaa Corporate Bond Yield Aaa bond
9 92 2 BAA Moody‘s Seasoned Baa Corporate Bond Yield Baa bond
10 93 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread
14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread
16 99 1 AAAFFM Moody‘s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
17 100 1 BAAFFM Moody‘s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
18 102 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M_110154768 Ex rate: Switz
19 103 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M_110154755 Ex rate: Japan
20 104 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate M_110154772 Ex rate: UK
21 105 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M_110154744 EX rate: Canada

Source: McCracken and Ng (2016).
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Table B.7 – Group 7: Prices

Group 7: Prices
id tcode fred description gsi gsi:description

1 106 5 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds
2 107 5 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds
3 108 5 WPSID61 PPI: Intermediate Materials M_110157527 PPI: int matls
4 109 5 WPSID62 PPI: Crude Materials M_110157500 PPI: crude matls
5 110 5 OILPRICEx Crude Oil, spliced WTI and Cushing M_110157273 Spot market price
6 111 5 PPICMM PPI: Metals and metal products M_110157335 PPI: nonferrous
7 113 5 CPI CPI : All Items M_110157323 CPI-U: all
8 114 5 CPIAPPSL CPI : Apparel M_110157299 CPI-U: apparel
9 115 5 CPITRNSL CPI : Transportation M_110157302 CPI-U: transp
10 116 5 CPIMEDSL CPI : Medical Care M_110157304 CPI-U: medical
11 117 5 CUSR0000SAC CPI : Commodities M_110157314 CPI-U: comm.
12 118 5 CUSR0000SAD CPI : Durables M_110157315 CPI-U: dbles
13 119 5 CUSR0000SAS CPI : Services M_110157325 CPI-U: services
14 120 5 CPIULFSL CPI : All Items Less Food M_110157328 CPI-U: ex food
15 121 5 CUSR0000SA0L2 CPI : All items less shelter M_110157329 CPI-U: ex shelter
16 122 5 CUSR0000SA0L5 CPI : All items less medical care M_110157330 CPI-U: ex med
17 123 5 PCEPI Personal Cons. Expend.: Chain Index gmdc PCE defl
18 124 5 DDURRG3M086SBEA Personal Cons. Exp: Durable goods gmdcd PCE defl: dlbes
19 125 5 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble
20 126 5 DSERRG3M086SBEA Personal Cons. Exp: Services gmdcs PCE defl: service

Source: McCracken and Ng (2016).

Table B.8 – Group 8: Stock market

Group 8: Stock market
id tcode fred description gsi gsi:description

1 80 5 S&P 500 S&P‘s Common Stock Price Index: Composite M_110155044 S&P 500
2 81 5 S&P: indust S&P‘s Common Stock Price Index: Industrials M_110155047 S&P: indust
3 82 2 S&P div yield S&P‘s Composite Common Stock: Dividend Yield S&P div yield
4 83 5 S&P PE ratio S&P‘s Composite Common Stock: Price-Earnings Ratio S&P PE ratio

Source: McCracken and Ng (2016).
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