
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

SIMONE ANDRÉ DA COSTA CAVALHEIRO

Relational Approach of Graph Grammars

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Profa. Dra. Leila Ribeiro
Advisor

Prof. Dr. Antônio Carlos da Rocha Costa
Coadvisor

Porto Alegre, July 2010



CIP – CATALOGING-IN-PUBLICATION

Cavalheiro, Simone André da Costa

Relational Approach of Graph Grammars / Simone André da
Costa Cavalheiro. – Porto Alegre: PPGC da UFRGS, 2010.

137 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2010. Advisor: Leila Ribeiro; Coadvisor: Antônio Carlos da
Rocha Costa.

1. Graph grammar. 2. Theorem proving. 3. First-order logic.
4. Formal specification. 5. Formal verification. I. Ribeiro,Leila.
II. Costa, Antônio Carlos da Rocha. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Vice-Reitor Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-chefe do Instituto de Informática: BeatrizRegina Bastos Haro



ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Leila Ribeiro, who accepted me under her super-
vision as a PhD student, and for her support and guidance during this research. I would
like to thank her for the various revisions and suggestions throughout this work. Without
her support, this work would not be the same.

I would like to express my thanks to my friend, teacher and co-advisor Antônio Carlos
da Rocha Costa. He has given me great incentive since my master’s course. I would also
like to show my gratitude to my colleagues from the Department of Informatics at UFPel.
Their support makes possible the conclusion of this work.

Special thanks to my husband and son, for their love and care,and support in difficult
moments. Thanks to all my family that was always looking forward to seeing the success
of this work. Thanks also to my friends for the emotional support. Thanks to God, for
making me able to carry out this work.



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Graph Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Model Checking and Theorem Proving. . . . . . . . . . . . . . . . . . . 12
1.4 Graph Grammar Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Goals and Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . 16
1.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.1 Other Approaches for Analysing Infinite-State Systems . . . . . . . . . . 16
1.6.2 Other Approaches that Adopt a Relational, Logical or Set Theoretical

Representation for Graphs and Graph Grammars . . . . . . . . . . . .. . 18
1.6.3 Other Approaches for Theorem Proving Concurrent Systems . . . . . . . 19
1.7 Thesis Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 GRAPH GRAMMARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Working Example: The Token Ring Protocol . . . . . . . . . . . . . . . 24

3 RELATIONAL REPRESENTATION OF GRAPH GRAMMARS . . . . . 28
3.1 Relational Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Rule Applications as First-Order Definable Transductions . . . . . . . . 33
3.3 Verifying Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 DEALING WITH ATTRIBUTED GRAPHS . . . . . . . . . . . . . . . . . 44
4.1 Attributed Graph Grammars . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Relational Structures Representing Attributed Graph Grammars . . . . 50
4.3 Token Ring Example with Attributed Graphs . . . . . . . . . . . . . . . 57

5 EXTENDING THE APPROACH TO GRAPH GRAMMARS WITH NEG-
ATIVE APPLICATION CONDITIONS . . . . . . . . . . . . . . . . . . . 64

5.1 Graph Grammar with NACs . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Specifying the Token Ring Protocol with NACs . . . . . . . . . . . . . . 65



5.3 Relational Representation of Graph Grammars with NACs . . . . . . . 66
5.4 Token Ring Protocol with NACs Verification . . . . . . . . . . . . . . . . 72

6 PATTERNS FOR PROPERTIES OVER REACHABLE STATES IN GRAPH
GRAMMARS SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . 74

6.1 The Standard Library of Functions . . . . . . . . . . . . . . . . . . . . . 74
6.2 Property Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Specification of a Mobile System . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 THEOREM PROVING GRAPH GRAMMARS USING EVENT-B . . . . 87
7.1 Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Graph Grammars in Event-B . . . . . . . . . . . . . . . . . . . . . . . . 88

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX A ALGEBRAIC SPECIFICATIONS . . . . . . . . . . . . . . . 115
A.1 Basic Concepts of Algebraic Specifications. . . . . . . . . . . . . . . . . 115

APPENDIX B TOKEN RING SPECIFICATION . . . . . . . . . . . . . . . 118
B.1 Event-B Context of Token Ring . . . . . . . . . . . . . . . . . . . . . . . 118
B.2 Event-B Machine of Token Ring . . . . . . . . . . . . . . . . . . . . . . 128

APPENDIX C RESUMO ESTENDIDO DA TESE . . . . . . . . . . . . . . 133



LIST OF FIGURES

Figure 2.1: Token Ring Graph Grammar . . . . . . . . . . . . . . . . . . . .. . 24
Figure 2.2: Alternative Definition of the Token Ring GG . . . . .. . . . . . . . 25
Figure 2.3: Application of the Ruleα1 to Initial Graph . . . . . . . . . . . . . . 26
Figure 2.4: Application of the Ruleα2 to Initial Graph . . . . . . . . . . . . . . 26

Figure 4.1: Rule Application using Attributed Graphs . . . . .. . . . . . . . . . 44
Figure 4.2: Attributed Graph . . . . . . . . . . . . . . . . . . . . . . . . . .. . 45
Figure 4.3: Typed Attributed Graph . . . . . . . . . . . . . . . . . . . . .. . . 47
Figure 4.4: Typed Attributed Graph Graphical Notation . . . .. . . . . . . . . . 47
Figure 4.5: SignatureSIGTRing . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 4.6: Final AlgebraF TRing = (FStatus, FNat, activeF , standbyF , 0F , succF , +F ,−F , modF ) 58
Figure 4.7: Term AlgebraT TRing(X) = (TStatus, TNat, activeT , standbyT , 0T , succT ,+T ,−T , modT ) 58
Figure 4.8: Value AlgebraATRing = (AStatus, ANat, activeA, standbyA , 0A, succA,+A,−A, modA) 59
Figure 4.9: Type Graph and Initial Graph . . . . . . . . . . . . . . . . .. . . . 59
Figure 4.10: Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 5.1: Token Ring Graph Grammar with NACs . . . . . . . . . . . .. . . . 66
Figure 5.2: Alternative Definition of the Token Ring GG with NACs . . . . . . . 67
Figure 5.3: Rule R5’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.1: Mobile System Graph Grammar . . . . . . . . . . . . . . . . .. . . 84

Figure 7.1: Example of Graph Grammar . . . . . . . . . . . . . . . . . . . .. . 89
Figure 7.2: Event-B Type Graph . . . . . . . . . . . . . . . . . . . . . . . . .. 90
Figure 7.3: Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . .. . . 91
Figure 7.4: Event-B GraphG . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 7.5: Event-B Rule Structure . . . . . . . . . . . . . . . . . . . . .. . . 92
Figure 7.6: Event-B Rule Event . . . . . . . . . . . . . . . . . . . . . . . . .. 93
Figure 7.7: Stating Properties . . . . . . . . . . . . . . . . . . . . . . . .. . . 94



LIST OF TABLES

Table 3.1: Formulas used in Definition 16 . . . . . . . . . . . . . . . . .. . . . 37

Table 4.1: Formulas used inθ specifications . . . . . . . . . . . . . . . . . . . 55

Table 5.1: Construction of Constraints . . . . . . . . . . . . . . . . .. . . . . 71

Table 6.1: Standard Library . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76
Table 6.2: Standard Library (Cont.) . . . . . . . . . . . . . . . . . . . .. . . . 77
Table 6.3: Standard Library (Cont.) . . . . . . . . . . . . . . . . . . . .. . . . 78
Table 6.4: A Pattern Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . .79
Table 6.5: Absence of Resources Pattern . . . . . . . . . . . . . . . . .. . . . 81
Table 6.6: List of Properties . . . . . . . . . . . . . . . . . . . . . . . . . .. . 82
Table 6.7: List of Another Properties . . . . . . . . . . . . . . . . . . .. . . . 83
Table 6.8: Properties Specification for the Mobile System . .. . . . . . . . . . 85



ABSTRACT

Graph grammars are a formal language well-suited to applications in which states
have a complex topology (involving not only many types of elements, but also different
types of relations between them) and in which behaviour is essentially data-driven, that
is, events are triggered basically by particular configurations of the state. Many reac-
tive systems are examples of this class of applications, such as protocols for distributed
and mobile systems, simulation of biological systems, and many others. The verifica-
tion of graph grammar models through model-checking is currently supported by various
approaches. Although model-checking is an important analysis method, it has as disad-
vantage the need to build the complete state space, which canlead to the state explosion
problem. Much progress has been made to deal with this difficulty, and many techniques
have increased the size of the systems that may be verified. Other approaches propose
to over- and/or under-approximate the state-space, but in this case it is not possible to
check arbitrary properties. Besides model checking, theorem proving is another well-
established approach for verification. Theorem proving is atechnique where both the
system and its desired properties are expressed as formulasin some mathematical logic.
A logical description defines the system, establishing a setof axioms and inference rules.
The process of verification consists of finding a proof of the required property from the
axioms or intermediary lemmas of the system. Each verification technique has arguments
for and against its use, but we can say that model-checking and theorem proving are com-
plementary. Most of the existing approaches use model checkers to analyse properties
of computations, that is, properties over the sequences of steps a system may engage in.
Properties about reachable states are handled, if at all possible, only in very restricted
ways. In this work, our main aim is to provide a means to prove properties of reachable
graphs of graph grammar models using the theorem proving technique. We propose an
encoding of (the Single-Pushout approach of) graph grammarspecifications into a rela-
tional and logical approach which allows the application ofthe mathematical induction
technique to analyse systems with infinite state-spaces. Wehave defined graph grammars
using relational structures and used logical languages to model rule applications. We
first consider the case of simple (typed) graphs, and then we extend the approach to the
non-trivial case of attributed-graphs and grammars with negative application conditions.
Besides that, based on this relational encoding, we establish patterns for the presentation,
codification and reuse of property specifications. The pattern has the goal of helping and
simplifying the task of stating precise requirements to be verified. Finally, we propose to
implement relational definitions of graph grammars in event-B structures, such that it is
possible to use the event-B provers to demonstrate properties of a graph grammar.

Keywords: Graph grammar, theorem proving, first-order logic, formal specification, for-
mal verification.



RESUMO

Abordagem Relacional de Gramática de Grafos

Gramática de grafos é uma linguagem formal bastante adequada para sistemas cu-
jos estados possuem uma topologia complexa (que envolvem vários tipos de elementos
e diferentes tipos de relações entre eles) e cujo comportamento é essencialmente orien-
tado pelos dados, isto é, eventos são disparados por configurações particulares do estado.
Vários sistemas reativos são exemplos desta classe de aplicações, como protocolos para
sistemas distribuídos e móveis, simulação de sistemas biológicos, entre outros. A verifica-
ção de gramática de grafos através da técnica de verificação de modelos já é utilizada por
diversas abordagens. Embora esta técnica constitua um método de análise bastante impor-
tante, ela tem como desvantagem a necessidade de construir oespaço de estados completo
do sistema, o que pode levar ao problema da explosão de estados. Bastante progresso tem
sido feito para lidar com esta dificuldade, e diversas técnicas têm aumentado o tamanho
dos sistemas que podem ser verificados. Outras abordagens propõem aproximar o espaço
de estados, mas neste caso não é possível a verificação de propriedades arbitrárias. Além
da verificação de modelos, a prova de teoremas constitui outra técnica consolidada para
verificação formal. Nesta técnica tanto o sistema quanto suas propriedades são expressas
em alguma lógica matemática. O processo de prova consiste emencontrar uma prova a
partir dos axiomas e lemas intermediários do sistema. Cada técnica tem argumentos pró e
contra o seu uso, mas é possível dizer que a verificação de modelos e a prova de teoremas
são complementares. A maioria das abordagens utilizam verificadores de modelos para
analisar propriedades de computações, isto é, sobre a seqüência de passos de um sistema.
Propriedades sobre estados alcançáveis só são verificadas de forma restrita. O objetivo
deste trabalho é prover uma abordagem para a prova de propriedades de grafos alcançá-
veis de uma gramática de grafos através da técnica de prova deteoremas. Propõe-se uma
tradução (da abordagemSingle-Pushout) de gramática de grafos para uma abordagem
lógica e relacional, a qual permite a aplicação de indução matemática para análise de sis-
temas com espaço de estados infinito. Definiu-se gramática degrafos utilizando estruturas
relacionais e aplicações de regras com linguagens lógicas.Inicialmente considerou-se o
caso de grafos (tipados) simples, e então se estendeu a abordagem para grafos com atri-
butos e gramáticas com condições negativas de aplicação. Além disso, baseado nesta
abordagem, foram estabelecidos padrões para a definição, codificação e reuso de especi-
ficações de propriedades. O sistema de padrões tem o objetivode auxiliar e simplificar
a tarefa de especificar requisitos de forma precisa. Finalmente, propõe-se implementar
definições relacionais de gramática de grafos em estruturasdeevent-B, de forma que seja
possível utilizar os provadores disponíveis paraevent-Bpara demonstrar propriedades de
gramática de grafos.

Palavras-chave: Gramática de Grafos, prova de teoremas, lógica de primeira ordem,
especificação formal, verificação formal.
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1 INTRODUCTION

1.1 Motivation

Hardware and software systems are everywhere: in communication, transportation,
financial, administration and in our homes. Everyday they grow in scale and scope, many
times having to interact with another complex and independent environments. Together
with this increase in complexity, the possibility of subtleerrors is intensified and can
lead to catastrophic losses (examples are found in (DAVIS, 2005) and (HUTH; RYAN,
2000)). Facing this, techniques to aid the development of reliable and correct systems
are becoming more and more needed (DWYER et al., 2007). One way of achieving this
goal is through the use of formal methods, which are mathematically-based techniques
that can offer rigorous and effective ways to model, design and analyse computer systems
(CRAIGEN; GERHART; RALSTON, 1993).

During the past two decades, various case studies and industrial applications (WOOD-
COCK et al., 2009; ALPUENTE; COOK; JOUBERT, 2009; CLARKE; WING, 1996;
HINCHEY; BOWEN, 1995; CRAIGEN; GERHART; RALSTON, 1993) have confirmed
the significant importance of the use of formal methods to improve the quality of both
hardware and software designs. The description of a system by a formal specification
language has shown to provide a solid foundation to guide later development activities
and obtain through verification a high confidence that the system satisfies its require-
ments. Well-formed specifications, validated with respectto critical properties, have
supplied a basis for generating correct and efficient sourcecode. Notable examples can
be found in the most diverse domains (WOODCOCK et al., 2009; HANEBERG et al.,
2007; HOMMERSOM et al., 2007; HINCHEY; BOWEN, 1999; BOWEN; HINCHEY,
1997; HINCHEY; BOWEN, 1995): transportation, telecommunication and information
systems, security, protocols and hardware. An impressive and relatively recent exam-
ple is the traffic management system for line 14 (Tolbiac-Madeleine) of the Paris metro
system (BEHM et al., 1999). The system is completely automatic (supporting driverless
trains) and had the safety-critical parts formally developed by Matra Transport Interna-
tional using B (ABRIAL, 1996). According to (BEHM et al., 1999), the abstract and
concrete model was specified with approximately 100,000 lines of B code and 87,000
lines of ADA code. About 28,000 lemmas were automatically proved by B tool. Errors
were found and corrected during the development. After applying a conventional testing
process, not a single error was found.

Nevertheless, the employment of such methods is far from trivial: it requires some
mathematical expertise, demands quality documentation and increases the time spent in
the first stages of the development. Despite a significant number of successful stories, the
software engineering community has not been convinced on a large scale of the validity
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of formal approaches (BOWEN; HINCHEY, 2005, 2006). The mostcommon reasons
against the use of formal methods in practice are the extension of development cycle, the
need of extensive personnel training, the difficulties in finding suitable abstractions and
the mathematical knowledge required. Therefore, though promising, several improve-
ments are needed to turn the use of these methods and their support tools a common
practice in software development process.

Experts in formal methods have analysed the situation and examined the issues con-
cerning the use of formal methods in industrial software development (ABRIAL, 2006;
ROSSI, 2005; KNIGHT, 1998; MICHAEL; W., 1996; ROSENBLUM, 1996). One pon-
dered possibility is that present formal methods might be incomplete or inadequate for
some applications. Heitmeyer (HEITMEYER, 2006) argues that the most popular model-
ing languages used in industry, like UML (JACOBSON; BOOCH; RUMBAUGH, 1999)
and Stateflow (The MathWorks, 2007), lack explicit formal semantics and produce large
specifications (including a lot of implementing details). To tackle this situation he pro-
poses to enhance existing formal languages with features such as suitable graphical inter-
faces, encouraging thus their use by practitioners.

This scenario claims further research to provide suitable specification and verification
techniques for the software development community. Our dependence on software sys-
tems grows everyday. Clients and users demand that their systems are delivered with a
high level of accuracy and trust. Software engineers shouldhave the tools upon which
this trust can be built. The present thesis contributes to the development of such tools,
furnishing theoretical foundations for the analysis of a range of systems.

1.2 Graph Grammar

Graph grammars (short GG) are a formal language suitable forthe specification of a
wide range of computational systems (EHRIG et al., 1999). This formalism is specially
well-suited to applications in which states have a complex topology (involving not only
many types of elements, but also different types of relations between them) and in which
behaviour is essentially data-driven, that is, events are triggered basically by particular
configurations of the state. Many reactive systems are examples of this class of appli-
cations, such as protocols for distributed and mobile systems, simulation of biological
systems, etc. Additionally to the complex states and reactive behaviour, concurrency and
non-determinism play an essential role in this area of applications: many events may hap-
pen concurrently, if they all are enabled, and the choice of occurrence between conflicting
events is non-deterministic.

The basic idea of graph grammars is to model the states of a system as graphs and de-
scribe the possible state changes as rules (where the left- and right-hand sides are graphs).
The operational behaviour of the system is expressed via applications of these rules to
graphs depicting the actual states of the system. Rules operate locally on the state-graph,
and therefore it is possible that many rules are applied at the same time.

In general, a graph grammar system is composed by atype graph, characterizing the
types of vertices and edges allowed in the system, aninitial graph, representing the initial
state of the system and aset of rules, describing the possible state changes that can occur.
A rule has a left-hand side and a right-hand side, which are both graphs, and a partial graph
morphism that connect the graphs in some compatible way and determine what should be
modified by the rule application. Depending on the conditions imposed by these rules,
they may be mutually exclusive or not. In the latter case, oneof them will be chosen
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non-deterministically to be executed. The initial state has the function of restricting the
computation and the reachable states allowed in the system.All state graphs are labeled
by the type graph via graph morphisms. This allows that some inconsistent states of the
system be ruled out by the typing compatibility.

Typically, the semantics of a system described using a graphgrammar is a transi-
tion system where the states are graphs and the transitions describe the possible rule
applications. A rule is applicable in a state if there is a match, that is, an occurrence
of the left-hand side of the rule in the state. This formalismhas been used in very dis-
tinct applications such as image recognition and generation (LLADÓS; SÁNCHEZ, 2003;
HUSSEIN; HASSANIEN, 1999; BUNKE, 1991), analysis of fault behaviours (DOTTI;
RIBEIRO; SANTOS, 2003), database models (SONG et al., 2004), music composition
(WANKMÜLLER, 1986), DNA computing (CERVO; RIBEIRO, 2002) and visual pro-
gramming languages (ZHANG; ZHANG; ORGUN, 2001), among manyothers (SAK-
SENA; WIBLING; JONSSON, 2008; CORRADINI et al., 2006; EHRIGet al., 1999,
1987).

Graph grammars are appealing as specification formalism because they are formal and
based on simple, but powerful concepts to describe behaviour. At the same time they have
a nice graphical layout that helps even non-theoreticians understand a specification. Due
to the declarative style (using rules), concurrency arisesnaturally in a specification: if
rules do not conflict (do not try to update the same portion of the state), they may be ap-
plied in parallel (it is not necessary to say explicitly which rules shall occur concurrently).
Consequently, graph grammars can be seen as a very suitable formalism to achieve a good
and understandable description of concurrent systems.

The verification of concurrent systems is much more complex than sequential ones.
Concurrent systems usually consist of several autonomous components that run in par-
allel and interact with each other (for example, via messages). The interaction between
these components affects the behaviour of the whole system,such that is not enough to
know that each component works as expected to know that the whole system will present
the expected behaviour. For that reason, the analysis of this kind of systems demands the
verification of the system as a whole, and this is a difficult task: the high level of par-
allelism generates a number of possible computations. In such situations, the reasoning
is almost unfeasible without adopting formal techniques. Therefore, we can say that the
use of formal methods for verification purposes is mandatoryfor ensuring correctness of
concurrent systems.

1.3 Model Checking and Theorem Proving

Model Checking (EDMUND M. CLARKE; GRUMBERG; PELED, 1999) and The-
orem Proving (ROBINSON; VORONKOV, 2001) are two well-established approaches
used to analyse systems for critical and desired properties. Model checking takes as input
a finite model representing a concurrent system and a property to be checked against the
system, and then exhaustively performs a state space searchdeciding if the property holds
in that model. The process is automatic, in many cases efficient and can also be used to
check partial specifications. In some cases, when properties are violated counterexamples
can be produced, providing important debugging information.

Since the number of states of a system is typically exponential in the size of its
description, the main disadvantage of model checking is thestate explosion problem.
Much progress has been made to deal with this difficulty, and many techniques have in-
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creased the size of the systems that may be verified: partial ordered reduction (LLUCH-
LAFUENTE; EDELKAMP; LEUE, 2002), abstraction (CLARKE et al., 2001), symbolic
representation (BIERE et al., 1999; BURCH et al., 1992), among others. However, these
approaches generally derive the model as an under- or over-approximation of system’s be-
haviour, which can result in inconclusive error reports or inconclusive verification reports
(DWYER et al., 2007).

Theorem proving (CLARKE; WING, 1996) is a technique where both the system and
its desired properties are expressed as formulas in some mathematical logic. A formal
system defines the logic, establishing a set of axioms and inference rules. The verification
process consists in finding a proof of the required property from the axioms or interme-
diary lemmas of the system. In contrast to model checking, theorem proving can deal
directly with infinite state spaces and it relies on techniques such as structural induction
to prove over infinite domains. The use of this technique may require interaction with a
human; however, by constructing the proof the user often gains very useful perceptions
into the system and/or the property being proved.

1.4 Graph Grammar Analysis

In this section we review methods and tools available for theformalism of graph gram-
mars. First we present environments based on graph transformation proposed for the de-
velopment of software systems, considering in particular the available analysis techniques
in each tool. Finally we discuss approaches designed to model check graph grammars.

There are at least two widespread graph transformation languages, AGG (ERMEL;
RUDOLF; TAENTZER, 1999) and PROGRES (SCHüRR; WINTER; ZüNDORF, 1999),
which offer a declarative and visual programming method forthe development of software
systems. PROGRES (PROgrammed Graph REwriting Systems) (RANGER; WEINELL,
2008) is an environment for creating, analysing (type checking), compiling and debugging
graph transformation specifications.

The AGG (Attributed Graph Grammar) system (THE AGG SYSTEM, 2010; ERMEL;
RUDOLF; TAENTZER, 1999), besides simulation, supports validation of attributed graph
grammars. Attributed graph grammars extend the basic graphgrammar formalism with
attributed graphs, giving raise to a language to reason about attributes (data values). Com-
pared with AGG (FUSS et al., 2007), PROGRES provides the highest level of maturity,
including a syntax-directed editor, an interpreter, and a code generation mechanism. On
the other hand, AGG provides more analysis methods than PROGRES.

An attributed graph grammar can be validated in AGG system through two analy-
sis techniques, namely critical pair analysis (HECKEL; KüSTER; TAENTZER, 2002)
and consistency checking (HECKEL; WAGNER, 1995). Criticalpair analysis is used to
check if a system has a functional behaviour. Functional behaviour is required when the
specification has to be functional (i.e., terminating and confluent (HECKEL; KüSTER;
TAENTZER, 2002)) in order to ensure the existence of a uniqueresult. For instance,
functional behaviour is specially important when we use graph grammars for automated
translation of visual models into code or semantic domains (HAUSMANN; HECKEL;
TAENTZER, 2002), since the result of the translation must beunique. The functional be-
haviour is also expected when using graph grammars for parsing visual languages (BOT-
TONI; TAENTZER; SCHüRR, 2000), since it avoids the overheadof backtracking nec-
essary for the parsing.

The AGG consistency control mechanism is able to check if a given graph satisfies
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certain consistency conditions specified for a graph grammar. Consistency conditions
(HECKEL; WAGNER, 1995) describe basic properties of graphsthat have to be pre-
served by the application of rules. AGG transforms global consistency conditions into
post application conditions for individual rules. A so-constructed rule is applicable to a
consistent graph if and only if the derived graph is consistent, too. The post application
conditions generated from graphical consistency constraints ensure consistency of a graph
grammar during rule application. However, graphical consistency constraints just express
very basic graph conditions such as the existence or uniqueness of certain nodes or edges.
They can not express structural conditions like the existence of paths or circles of arbi-
trary length or global properties as e.g. connectivity. Also, the translation of consistency
constraints into post conditions might cause problems for rules with attribute conditions.

The Tiger project (Transformation-based Generation of modeling Environments) ex-
tends (TIGER PROJECT, 2010) the AGG engine by a concrete visual syntax definition
for visual model representation. From the definition of the visual language, the Tiger gen-
erator generates Java source code. The generated Java code implements an Eclipse visual
editor plug-in based on Graphical Editing Framework (CONSORTIUM, 2010; EHRIG
et al., 2005). The result is a generated environment for the visual language simulation
(RENSINK et al., 2008; TAMáS MéSZáROS; MEZEI, 2008). The focus of Tiger is the
visualization power and not the graph transformation speed. Also, since it is an editor
generator, where graph rules are translated to palette or context menu entries, no means
to control rule application, and to apply more than one rule without user interaction are
supported.

Besides that, a simulation environment for a specific class of graph grammars, Ob-
ject Based Graph Grammars (OBGG), was proposed in (DUARTE etal., 2002). OBGG
(DOTTI; RIBEIRO, 2000) incorporate object-based concepts, such as communication
through message passing and encapsulation, to describe object-based systems. The pro-
posed framework was used to simulate mobile applications for open environments (RÖDEL
et al., 2002), control systems (COPSTEIN; COSTA MÓRA; RIBEIRO, 2000) and oth-
ers (RIBEIRO; COPSTEIN, 1998). The first step to simulate an OBGG system con-
sists in translating the specification into a simulation model. The environment uses a
defined algorithm to translate the specification to a Java program, that actually simulates
the behaviour of the specification. This process was shown tobe very useful in finding
specification errors (for example, missing rules or wrong behaviours) and estimating the
communication behaviour (for example, the number of exchanged messages to complete
a service) (RIBEIRO; DOTTI; BARDOHL, 2005; KREOWSKI et al.,2005).

However, through simulation, it is not possible to make conclusive assertions about
the behaviour of a system. Thus, many methods and tools were proposed to allow the
model checking of graph grammars. GROOVE (GRaphs for Object-Oriented Verifica-
tion) (RENSINK, 2004a) is a tool that generates the space-state of a graph grammar, in
the attempt that the resulting transition system can be model checked. But, as emphasized
in (KASTENBERG; RENSINK, 2006a), if we consider time-performance, GROOVE can
not compete with SPIN (HOLZMANN, 1997a). For that reason, a common strategy that
has been applied is the translation of graph grammar models into formal languages that
are input languages of established model checkers. In such case, the main steps for model
checking of graph grammars specifications are (RIBEIRO; DOTTI; BARDOHL, 2005):
i) translate the specification to a verification model that serves as input to a model checker;
ii) define properties in some temporal logic; iii) check the properties against the model
(model checking); iv) analyse results.
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(FOSS; RIBEIRO, 2004) presents a translation of OBGG specifications toπ-calculus
(MILNER, 1999). Following this method, automatic checkers(for example, HAL (FER-
RARI et al., 1998) and Mobility Workbench (VICTOR; MOLLER, 1994)) can be used
to verify a system. The semantic compatibility of the translation is depicted in (FOSS,
2003). Nevertheless, as described in (RIBEIRO; DOTTI; BARDOHL, 2005), some prob-
lems were encountered using this approach: models had to be considerably restricted such
that OBGG objects had no internal state and limitations werebrought by the use of ex-
isting model checkers (specially while supporting the replication operator ofπ-calculus).
As a result, only small examples could be translated.

Another proposal (DOTTI et al., 2003) translated OBGG specifications to PROMELA
(PROcess/PROtocol MEta LAnguage), allowing the verification of OBGG models using
the SPIN (Simple Promela INterpreter) model checker (HOLZMANN, 1997a). This ap-
proach provides a means to verify properties based on events. Verification of properties
based on states only works for specifications with a static number of objects. For spec-
ifications with dynamic creation of objects, it would be necessary to create dynamically
new global variables - feature not supported by the tool. Then, the focus given in this
proposal was to prove properties about possible OBGG derivations.

Compositional verification, using an assume-guarantee approach, is also provided
(DOTTI et al., 2006). This work improved the approach for property specification, en-
abling the proof of properties about the internal state of involved objects. Moreover, there
is an extension of graph grammars (MICHELON; COSTA; RIBEIRO, 2006) that explic-
itly models time restrictions and allows the automatic verification of properties with the
UPPAAL model checker (BEHRMANN; DAVID; LARSEN, 2004). In this case, seman-
tics of real-time systems is defined in terms of Timed Automata (ALUR; DILL, 1994),
the input language of UPPAAL. Besides, verification techniques for another kind of graph
transformation systems can be found in (RENSINK; SCHMIDT; VARRÓ, 2004).

Although model checking is an important analysis method, ithas as disadvantage the
need to build the complete state space, which can lead to the state explosion problem.
In many cases, verification terminates because of insufficient resources, such as mem-
ory. Consequently, the use of this approach can be very time and space consuming, not
allowing the verification of properties of many systems.

Several works (MCNEW; KLAVINS, 2006; KORFF, 1991; DIXIT; MOLDOVAN,
1991) have been concerned on reducing the usually enormous number of states and tran-
sitions produced by a graph grammar system. Paolo Baldan, Andrea Corradini and Bar-
bara König propose a framework (BALDAN; CORRADINI; KöNIG, 2008; BALDAN;
KÖNIG, 2002) for the verification of infinite-state graph transformation systems based
on the construction of finite structures approximating their behaviour. Details about such
approach are described in Section 1.6.

Each verification technique has arguments for and against its use, but we can say
that model-checking and theorem proving are complementary. Most of the existing ap-
proaches use model checkers to analyse properties of computations. Properties about
reachable states are handled, if at all possible, only in very restricted ways. Currently
there are no approaches that allow the use of theorem proversto prove properties that in-
volve infinite states in the context of graph grammars. Our work was developed to provide
a means to prove properties about reachable graphs of a (infinite-state graph) grammar us-
ing the theorem proving technique.
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1.5 Goals and Structure of this Thesis

The main aim of this thesis is to provide a relational approach for graph grammars
that allows the application of theorem proving technique toanalyse concurrent and reac-
tive systems that involve an infinite number of states.

More specifically, the main contributions of this work are listed below:

1. the description of a relational definition for graph grammars;

2. the extension of the approach to particular classes of graph grammars, named at-
tributed graph grammars and graph grammars with negative application conditions;

3. the establishment of an strategy that can be applied to analyse infinite-state systems
specified as graph grammars;

4. the definition of patterns for the presentation, codification and reuse of property
specifications.

Besides that, we propose a translation of graph grammar specifications in Event-B
structures, such that it is possible to use the theorem provers available for Event-B (for
instance, through the Rodin platform) to demonstrate properties of a graph grammar. This
translation is based on the relational approach of graph grammars.

Thestructure of the thesiscan be divided in three main parts, Foundations, Techniques
and Applications, described as follows.

Part I: Foundations. The main aim of this part is to define a representation for graph
grammars that allows the use of theorem proving technique toprove properties of
systems specified in this formalism. We propose the definition of graph grammars
using relational structures, where rule applications are modeled as graph grammar
transformations using logical formulas. We have also shownthat this approach
is equivalent to the Single-Pushout approach or simply SPO-approach (ROZEN-
BERG, 1997) to graph grammars. At last, we have extended the approach to other
classes of graph grammars, namely, attributed graph grammars and graph grammars
with negative application conditions.

Part II: Techniques. In this part, we define a library of recursive functions and the spec-
ification of patterns that can be used to specify properties over reachable states for
systems specified in graph grammars. The pattern has the goalof helping and sim-
plifying the task of stating precise requirements to be verified.

Part III: Applications. In the last part, we use Event-B to analyse properties of graph
grammars. We translate graph grammar specifications in Event-B structures, such
that it is possible to use the Event-B provers to demonstrateproperties of a graph
grammar. This translation is based on the relational definition of graph grammars.

1.6 Related Works

1.6.1 Other Approaches for Analysing Infinite-State Systems

Nowadays, several software systems involve a range of aspects like dynamic creation
of objects and threads, data manipulation and others, whichrequire the reasoning about
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infinite-state specifications. Many approaches have been focused on this issue. One of
them is regular model checking (ABDULLA et al., 2004; BOUAJJANI; HABERMEHL;
VOJNAR, 2004; KESTEN et al., 2001), an automata-based approach that encodes sets of
states (or configurations) as regular sets of words and transitions as finite state transducers
(automata). A crucial problem to be faced in the use of such technique to verify graph
grammar models is the lack of expressivity of finite automatato represent arbitrary graphs.
Another problem is the state space explosion in automata representations of the sets of
configurations (or reachability relations) being examinedthat could just be minimized
with some kind of abstraction or approximation.

Many other approaches deal with infinite-state verification. For instance, Delzanno
(DELZANNO, 2000) shows that symbolic model-checking can beused to verify a large
class of cache coherence protocols, while Fisher and his colleagues (FISHER; KONEV;
LISITSA, 2005) apply temporal reasoning to analyse similarkind of systems. It is impor-
tant to notice that in general systems analysed using such techniques must be described by
simple action-reaction models, in which states must have a non-complex representation.

Paolo Baldan and Barbara König proposed (BALDAN; CORRADINI; KÖNIG, 2008;
BALDAN; KÖNIG, 2002) to approximate the behaviour of (infinite-state) graph transfor-
mation systems (GTSs) by a chain of finite under-approximations or by a chain of finite
over-approximations, at a levelk of accuracy of the full unfolding of the system. A GTS
is a finite set of graph rules. Then, a graph grammar can be seenas a GTS with an initial
state. The unfolding semantics of a graph grammar (RIBEIRO,1996; BALDAN et al.,
2007) defines an operational model of computation that represents all its possible sequen-
tial and concurrent derivations (i.e., all its computations). It is generally infinite for non
trivial systems. The under-approximations of the behaviour of a graph grammar are ob-
tained by truncating the construction of the unfolding at a finite depthk (thek-truncation).
The over-approximations of the behaviour of a graph grammarare achieved by construct-
ing a Petri graph (that is a Petri net with a (hyper)graph structure over places) up to a
certain depthk (thek-covering). A covering represents all computations of the original
system (but possibly more).

The (under- and over-) approximations converge, in a categorical sense, to the full un-
folding (BALDAN; KÖNIG, 2002): "the unfolding of a graph grammar can be expressed
as the colimit of the chain ofk-truncations or as the limit of the chain ofk-coverings".
These approximations are used to verify liveness and safetyproperties of a GTS. Under-
approximations for infinite-state systems don’t allow performing any computation of the
original system in the truncations. Therefore, they are used to verify some liveness prop-
erties like "eventually P" for a predicate P. Coverings permit verifying deadlock-freedom
and safety properties like "always P" for a predicate P. However, due to the presence of
spurious runs, introduced by the abstraction, it is usuallynot possible to verify properties
of the kind "there exists a run" with particular properties (BALDAN; KÖNIG; RENSINK,
2005). These approaches are restricted to GTSs with simple rules: rules can not preserve
edges (but can produce and delete edges), delete nodes and consume edges with the same
label. Besides, the left-hand side of a rule must be connected.

In (BALDAN; KÖNIG; RENSINK, 2005) the unfolding approach (by over-approxi-
mations) is compared with another proposal, the partitioning approach. This last one
approximates graphs according to their local structure. For example, the local structure of
a node can be defined by the number of incident edges; and the local structure of an edge
can be defined as the tuple of the local structure of its extreme nodes. A similarity relation
over the elements of a graph is used to partition the graph. This relation is originated
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from any function that associates to each graph element its local structure. A notion
of local structure proposed in (RENSINK, 2004b) gives rise to an abstract function that
preserves a fragment of two-variable first-order logic withcounting quantifiers. However,
rule applications or rule effects are generally not preserved. I.e., if a rule is applicable to
a graph, the same rule or its abstraction must not be applicable to the abstraction of the
graph. Actually, the partitioning approach is at a stage where there are only preliminary
ideas on how to transform the graph abstractions (BALDAN; KÖNIG; RENSINK, 2005).
There isn’t a theory to perform actual verifications.

Conversely, the unfolding approach (by over-approximations) can be used to execute
concrete analysis. In (BALDAN; KÖNIG; KÖNIG, 2003) a monadic second-order logic
over graphs to characterize typical graph properties is proposed. It shows an encoding
of such graph formulas into quantifier-free formulas over Petri net markings. The work
identifies a subclass of formulas F such that the validity of Fover a GTS G is implied by
the validity of the encoding of F over the Petri net approximation of G. This result allows
the use of verification techniques for Petri nets to analyse agiven GTS. I.e., the Petri net
produced by the approximated unfolding algorithm and the formula itself can be analysed
by a model checker or a similar tool. Also, a tool for the analysis of GTSs using this
approximation is under development (BALDAN; CORRADINI; KÖNIG, 2008; KöNIG;
KOZIOURA, 2008; KÖNIG; KOZIOURA, 2005).

1.6.2 Other Approaches that Adopt a Relational, Logical or Set Theoretical Rep-
resentation for Graphs and Graph Grammars

The representation of graph grammar that we have proposed was inspired by Bruno
Courcelle’s research about logic and graphs (COURCELLE, 2000, 1997). Courcelle
investigates in various papers (BLUMENSATH; COURCELLE, 2006; COURCELLE,
2004, 1994a) the representation of graphs and hypergraphs by relational structures as well
as the expressiveness of its properties by logical languages. In (COURCELLE, 1991) he
presents a comparison among various descriptions of graph sets (by characteristic prop-
erties expressed in monadic second-order logic, by context-free graph grammars and by
forbidden minors) and in (COURCELLE; ENGELFRIET; ROZENBERG, 1993; COUR-
CELLE, 1990) he shows that every set of graphs defined by a single HR (Hyperedge Re-
placement) or VR (Vertex Replacement) graph grammar has a decidable monadic theory.
The description of graph properties and transformation of graphs in monadic second-order
logic is proposed at (COURCELLE, 1994b). However, these works are not particularly
interested in effectively verifying properties of graph transformation systems.

Other authors have investigated the analysis of GTSs based on relational logic or set
theory. Baresi and Spoletini (BARESI; SPOLETINI, 2006) explore the formal language
Alloy to find instances and counterexamples for models and GTSs. In fact, with Al-
loy, they only analyse the system for a finite scope, whose size is user-defined. Strecker
(STRECKER, 2008), aiming to verify structural properties of GTSs, proposes a formal-
ization of graph transformations in a set-theoretic model.The approach replaces the match
occurrence (i.e., the applicability condition of a rule) bya formula over graph structure,
constructed over a fragment of first-order logic. Graphs andgraphs transformations are
formalized with datatypes, predicates, functions, definitions and transformations in a set-
theoretic model. The proposal has been carried out in Isabelle (NIPKOW; PAULSON;
WENZEL, 2002) and the focus is given to prove structural properties. His goal is to
obtain a language for writing graph transformation programs and reasoning about them.
Nevertheless, the language has only two statements, one to apply a rule repeatedly to a
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graph, and another to apply several rules in a specific order to a graph. Until now, the
work just presents a glimpse of how to reason about graph transformations.

1.6.3 Other Approaches for Theorem Proving Concurrent Systems

CSP Prover (ISOBE; ROGGENBACH, 2008a) is an interactive theorem prover for
the process algebra CSP (HOARE, 1978) based on the theorem prover Isabelle (PAUL-
SON, 1994). CSP Prover allows the analysis of typical properties of scalable concur-
rent systems, such as scalability, parametrization, localactivity, global result and others.
Examples of concurrent systems analysed in CSP Prover are the Uniform Candy Distri-
bution Puzzle (ISOBE; ROGGENBACH, 2008a), a systolic array(ISOBE; ROGGEN-
BACH; GRUNER, 2005) and part of a standard of electronic payment system (ISOBE;
ROGGENBACH, 2008b). Other tools for theorem proving CSP have been presented: Tej
and Wolff propose another encoding of CSP in Isabelle/HOL, HOL-CSP (TEJ; WOLFF,
1997); Schneider and Dutertre encode CSP traces in PVS (DUTERTRE; SCHNEIDER,
1997).

Based on general purpose theorem provers like Isabelle (PAULSON, 1994), HOL
(GORDON; MELHAM, 1993) or PVS (OWRE; RUSHBY; SHANKAR, 1992), many
other tools for theorem proving process algebras (BASTEN; HOOMAN, 1999; GROEN-
BOOM et al., 1995; CAMILLERI; INVERARDI; NESI, 1991; ARCHERet al., 1992;
GERBER; GUNTER; LEE, 1991) have been presented. In addition, a range of other
formal languages designed for concurrent systems have beenencoded in proof assis-
tants. The formalization of Petri Nets was specified in HOL (BARROS LUCENA, 1991),
Coq (CHOPPY; MAYERO; PETRUCCI, 2008; HAMID, 2008), Isabelle (LEHMANN;
LEUSCHEL, 2003), among others.

Circus (WOODCOCK; CAVALCANTI, 2001), another alternativelanguage for the
development of reactive systems, is being mechanized in theProofPower-Z theorem prover
(LEMMA1-LTD., 2010). Circus (WOODCOCK; CAVALCANTI, 2002)can be seen as
a combination of Z (WOODCOCK; DAVIES, 1996) and CSP with a refinement calcu-
lus. A branch of the Circus project (PROJECT, 2010) is devoted to the mechanization of
the Circus semantics and on the proof of its refinement laws (ZEYDA; CAVALCANTI,
2009). The basis of this work is the mechanization of the UTP theories (Unifying Theories
of Programming) of relations, designs, reactive processes, and CSP (ZEYDA; CAVAL-
CANTI, 2008; OLIVEIRA; CAVALCANTI; WOODCOCK, 2006).

In this thesis, we propose the use of Event-B (ABRIAL, 2007) for the analysis of
graph grammar systems. Event-B has been used in the specification and analysis of many
systems: interaction protocols of multi-agent systems (JEMNI BEN AYED; SIALA,
2008), bus protocols (FRANCA et al., 2009; CANSELL et al., 2002), file systems (DAM-
CHOOM; BUTLER; ABRIAL, 2008; DAMCHOOM; BUTLER, 2009), air traffic infor-
mation system (REZAZADEH; EVANS; BUTLER, 2007), among others.

A graphical front end based on UML for Event-B, UML-B (SNOOK;BUTLER, 2008;
SAID; BUTLER; SNOOK, 2009), provides support for object-oriented modelling con-
cepts. The tools available for UML-B include drawing tools and a translator that au-
tomatically generates Event-B models. Also, an encoding ofa process algebra into the
Event-B method can be found in (AIT-AMEUR et al., 2009). In fact, what the authors
propose is a (informal) translation of a BNF grammar to a set of Event B models. The
translation is illustrated with a specific language describing a classical process algebra.

The main reason for theorem proving graph grammars is that, besides being formal,
its visual style, its powerful and expressive way of describing complex states (via graphs)
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and its rule-based behaviour modelling provide a natural and intuitive means of describing
concurrent and reactive systems. These are advantages of graph grammars comparing to
other specification methods such as process algebras and Petri Nets. Although Petri Nets
is also a visual language, its representation of states by sets of tokens is not well suited
for the specification of systems with complex topologies on states.

Besides that, the feature of providing asynchronous communication allows a natural
description of reactive systems, but has the drawback that when synchronous commu-
nication is needed, the specifier has to explicitly introduce state variables and messages
with corresponding rules to simulate a synchronous messagepassing scheme. The choice
of specification method shall always take into account the main characteristics of the ap-
plication being modelled, and also the features offered by the specification formalism.
For inherently synchronous systems, formalisms based on process algebras may be more
adequate. For asynchronous systems, graph grammars offer amore natural specification
means.

1.7 Thesis Outline

The rest of this text is organized as follows:

• Chapter 2: This chapter introduces the graph grammar specification language ac-
cording to the SPO-approach (ROZENBERG, 1997). First, we present the main
definitions, which are considered to underlie the followingwork. Next, we illus-
trate the use of graph grammars specifying the token-ring protocol. This working
example is retaken in subsequent chapters to elucidate new definitions.

• Chapter 3: In this chapter we propose a relational approach to graph grammars
that allows the application of the mathematical induction technique to analyse sys-
tems with infinite state-spaces. We have defined graph grammars using relational
structures and used first-order logic to model rule applications. We also check the
well-definedness of such definitions. At last, we use our approach to verify proper-
ties of the token-ring protocol.

• Chapter 4: This chapter extends the approach to attributed graph grammars. At-
tributed graph grammars enrich the graph grammar formalismintegrating data types
into graphs, by allowing assignment of values to vertices and/or edges. We first
establish the relational representation of attributed graph grammars and then we
modify and extend the token-ring protocol.

• Chapter 5: In this chapter we consider the case of graph grammars with negative
application conditions. Negative application conditionsrestrict the application of a
rule by asserting that a specific structure must not be present in a state-graph, before
applying the rule. We also show the use of graph grammars withnegative applica-
tion conditions for the specification and verification of thetoken-ring protocol.

• Chapter 6: This chapter presents specification patterns forproperties over reachable
states in the approach of graph grammars. The patterns are based on functions that
describe typical characteristics or elements of graphs (like the type of a vertex, the
set of all edges of some type, the cardinality of vertices, etc.). We show how these
functions can be defined in the framework of relational graphgrammars.



21

• Chapter 7: In this chapter we use Event-B to analyse properties of graph grammars.
Due to the similarity between Event-B models and graph grammar specifications,
specially concerning the rule-based behaviour, we proposeto translate graph gram-
mar specifications in Event-B structures, such that it is possible to use the Event-B
provers to demonstrate properties of a graph grammar. This translation is based on
the relational definition of graph grammars.

• Chapter 8: Finally, we summarise the contributions of this thesis and list possible
developments for the work presented here.
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2 GRAPH GRAMMARS

In this chapter, we review the basic definitions of graph grammars used in this thesis.
It can be seen as a set-theoretical presentation of the algebraic single-pushout approach
(see, e.g., (ROZENBERG, 1997; BALDAN; KÖNIG; KÖNIG, 2003)).

Graph grammars generalize Chomsky grammars from strings tographs: it specifies a
system in terms of states, described by graphs, and state changes, described by rules hav-
ing graphs at the left- and right-hand sides. Graph rules areused to capture the dynamical
aspects of the systems. That is, from the initial state of thesystem (the initial graph), the
application of rules successively changes the system state.

2.1 Basic Definitions

Definition 1 (Graph, Graph morphism). A graph G = (VG, EG, srcG, trgG) consists
of a set of verticesVG, a set of edgesEG, a source and a target functionsrcG, trgG :
EG → VG. A (partial) graph morphismg : G → H from a graphG to a graphH
is a tupleg = (gV ert, gEdge) consisting of two partial functionsgV ert : VG → VH and
gEdge : EG → EH which are weakly homomorphic, i.e.,gV ert ◦ srcG ≥ srcH ◦ gEdge and
gV ert ◦ trgG ≥ trgH ◦ gEdge.1 A morphismg is called total/ injective if both components
are total/ injective, respectively.

The weak commutativity used above means that everything that is preserved (mapped)
by the morphism must be compatible, that is, every edge that is mapped bygEdge must be
compatible with the mapping of its source and target vertices bygV ert. The term “weak”
is used because the compatibility is just required on preserved items, not on all items. A
typed graph is a graph equipped with a morphismtG to a fixed graph of types.

Definition 2 (Typed Graph, Typed Graph Morphism). A typed graphGT is a tupleGT =
(G, tG, T ), where G and T are graphs andtG : G → T is a total graph morphism called
typing morphism. A typed graph morphismbetween graphsGT andHT with type graph
T is a morphismg : G → H such thattG ≥ tH ◦ g (that is,g may only map elements of
the same type).

A rule specifies a possible behaviour of the system. It consists of a left-hand side,
describing items that must be present in a state to enable therule application and a right-
hand side, expressing items that will be present after the rule application. We require that
rules do not collapse vertices or edges (are injective) and do not delete vertices.

1≥ is the usual relation between partial functions meaning “more defined than”. ConsideringgH

Edge :
dom(gEdge) →֒ EG andgEdge! : dom(gEdge) → EH thegEdge domain inclusion and restriction, respec-
tively, we writegV ert ◦ srcG ≥ srcH ◦ gEdge iff gV ert ◦ srcG ◦ gH

Edge = srcH ◦ gEdge!, and we write
gV ert ◦ trgG ≥ trgH ◦ gEdge iff gV ert ◦ trgG ◦ gH

Edge = trgH ◦ gEdge!.
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The imposed restrictions do not represent a several limitation for many practical ap-
plications. The purpose of the graph grammars that we have inmind in this thesis is
the specification of concurrent and reactive systems. The components of a left rule-graph
must represent resources that shall not be identified by a transformation (rule application).
And the deletion of a node can be simulated by using extra edges or, depending on the
case, by leaving the node isolated (BALDAN; CORRADINI; KÖNIG, 2003). Then, it
must not affect the expressiveness of the formalism. Furthermore, it leads us to a more
simple theory: if we allowed deletion of nodes, extra conditions (such as the occurrence
of dangling edges) should be considered when applying a ruleto a state-graph.

Definition 3 (Rule). Let T be a graph. Arule with respect toT is an injective typed
graph morphismα : LT → RT from a typed graphLT to a typed graphRT , such that
αV ert : VL → VR is a total function on the set of vertices.

A graph grammar is composed of atype graph, characterizing the types of vertices
and edges allowed in a system, aninitial graph, representing the initial state of a system
and aset of rules, describing the possible state changes that can occur in a system.

Definition 4 (Graph Grammar). A (typed) graph grammaris a tupleGG = (T, G0, R),
such thatT is a type graph (the type of the grammar),G0 is a graph typed overT (the
initial graph of the grammar) andR is a set of rules with respect to typeT .

Given a ruleα and a stateG, we say that this rule is applicable in this state if there is
a matchm, that is, an image of the left-hand side of the rule in the state. The operational
behaviour of a graph grammar is defined in terms of rule applications. In what follows,
A⊎B denotes the disjoint union of setsA andB andrng(f) denotes the range of function
f , that is, the image of the domain off .

Definition 5 (Match, Rule Application). Given a ruleα : LT → RT with respect to a type
graphT , a matchof a ruleα in a typed graphGT is a total typed graph morphismm :

LT → GT which is injective on edges. Arule applicationGT (α,m)
=⇒ HT , or the application

of α to a typed graphGT at matchm, generates a typed graphHT = (H, tH , T ), with
H = (VH , EH , srcH, trgH), as follows:

Vertices ofH:
VH = VG ⊎ (VR − αV ert(VL))

Edges ofH:
EH = (EG −mEdge(EL)) ⊎ ER

Source and target functions ofH:

srcH(e) =

{
srcG(e) if e ∈ (EG −mEdge(EL))
m(srcR(e)) if e ∈ ER

trgH(e) =

{
trgG(e) if e ∈ (EG −mEdge(EL))
m(trgR(e)) if e ∈ ER

wherem : VR → VH is defined by

m(v) =

{
mV ert(v0) if v ∈ rng(αV ert) andv = αV ert(v0)
v otherwise
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Typing morphism: The morphismtH = (tHV ert, t
H
Edge) fromH to T is

tHV ert(v) =

{
tGV ert(v) if v ∈ VG

tRV ert(v) if v ∈ (VR − αV ert(VL))

tHEdge(e) =

{
tGEdge(e) if e ∈ (EG −mEdge(EL))
tREdge(e) if e ∈ ER

Intuitively, the application ofα toG at the matchm first removes fromG the image of
the edges inL. Then, graphG is extended by adding the new nodes inR (i.e., the nodes
in VR − αV ert(VL)) and the edges ofR. This construction can be described by a pushout
in a suitable category of typed graphs (LöWE, 1993).

2.2 Working Example: The Token Ring Protocol

We illustrate the use of graph grammars specifying the token-ring protocol. This
protocol is used to control the access of various stations toa shared transmission medium
in a ring topology network (TANENBAUM, 2002). According to the protocol, a special
bit pattern, called the token, is transmitted from station to station in only one direction.
When a station wants to send some content through the network, it waits for the token,
holds it, and sends the message (data frame) to the ring. The message circulates the
ring and all stations may copy its contents. When the messagecompletes the cycle, it is
received by the originating station, which then removes themessage from the ring and
sends the token to the next station, restarting the cycle. Ifonly one token exists, only one
station may be transmitting at a given time. Here we will model a token-ring protocol in
an environment in which new stations may be added at any time.
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Figure 2.1: Token Ring Graph Grammar

Figure 2.1 illustrates the graph grammar for the example. The type graphT defines a
single type of node (Node) , and five types of edges (Message),Token (Token),
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Figure 2.2: Alternative Definition of the Token Ring GG

(Next), Act (Active Station) and Stb (Standby Station). represents a net-
work station and defines a frame of data. The stations are connected by edges of
type . The Token represents a special signal which enables the station to start the
transmission. Every station is either an active station (Act ), meaning that the station is
transmitting a message on the network, or a standby station (Stb ). There can be only one
active station on a ring at a time. The initial graphG0 defines a ring with three nodes.
Initially the Token is at a specific station and no station is transmitting information on the
network (all stations have aStb edge).

The behaviour of the protocol is modeled by the rules. In the graphical representation,
usually the morphism is not explicitly represented; we assume that items of a graph are
mapped to items with same names. A standby node with a token edge may retain this edge
and send a message, becoming an active station (ruleα1), or pass the token to the next
node (ruleα2). When a message is received by a standby node, ruleα3 can be applied
and the message is passed to the next node. If the receiving node is an active station, then
ruleα4 can be applied, removing the message from the ring and sending the token to the
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next station. Ruleα5 is applied to insert a new station into the ring. This model has an
infinite state-space and generates an infinite number of possible computations.

Although the graphical representation shown in Figure 2.1 is natural, to obtain a rela-
tional representation of a graph grammar we will assume, without loss of generality, that
all items (vertices or edges) that appear in graph grammar have different names. Thus,
we need to explicitly show the morphisms when defining the rules of a grammar. In our
example, a grammar that is (behaviourally) equivalent to the one shown in Figure 2.1 is
depicted in Figure 2.2 (morphisms are shown below the graphical representation). Note
that, in the definition of morphismα1, the edgeStb11 of L1 is not mapped, this means
that it is deleted by this rule; edgeMsg11 is not in the image ofα1, and therefore is
created by this rule.
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Figure 2.3: Application of the Ruleα1 to Initial Graph
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Figure 2.4: Application of the Ruleα2 to Initial Graph

Examples of rule applications are presented in Figure 2.3 and in Figure 2.4. In Figure
2.3 ruleα1 is applied to the initial graphG0, modeling the situation where stationN01
sends a message through the network. In Figure 2.4 ruleα2 is applied to the initial graph
G0. In this case stationN01 remains in standby and passes the token to the next station.



27

Both rulesα1 andα2 compete to update the same portion of the state. In this case,one
of the rules is (non-deterministically) chosen to be applied, representing the fact that a
station may decide to hold the token and send a message, or to forward the token.
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3 RELATIONAL REPRESENTATION OF GRAPH GRAM-
MARS

Aiming to define a theory that allows the formulation of properties and the develop-
ment of proofs for systems specified as graph grammars, we propose a representation of
graph grammars by relational structures (i.e., by structures with relations only). Our ap-
proach is equivalent to the SPO-approach (ROZENBERG, 1997), and our choice for such
encoding relies on the possibility of using a theorem proverto semi-automate the proofs.

3.1 Relational Structures

A relational structure (COURCELLE, 1997) is a tuple formed by a set and by a family
of relations over this set.

Definition 6 (Relational Structures). Let R be a finite set of relation symbols, where
eachR ∈ R has an associated positive integer called its arity, denoted byρ(R). AnR-
structure is a tupleS = 〈DS, (RS)R∈R〉 such thatDS is a possibly empty set called
the domain ofS and eachRS is a ρ(R)-ary relation onDS, i.e., a subset ofDρ(R)

S .
R(d1, . . . , dn) holds inS if and only if (d1, . . . , dn) ∈ RS, whered1, . . . , dn ∈ DS. The
class ofR-structures is denoted bySTR(R).

We start by defining a relational structure to model graphs, and establishing a rela-
tional representation for graph morphisms, typed graphs and rules, which will later be
used to build the relational structure associated to a graphgrammar. A relational structure
representing a graphG is a tuple composed of a set, the domain of the structure, repre-
senting all vertices and edges ofG and by two finite relations: a unary relation, i.e. a
setvertG, defining the set of vertices ofG and a ternary relationincG representing the
incidence relation between vertices and edges ofG.

Definition 7 (Relational Structure Representing a Graph). LetRgr = {vert, inc} be a set
of relations, wherevert is unary andinc is ternary. Given a graphG = (VG, EG, srcG,
trgG), a relational structure representingG is aRgr-structure|G| = 〈DG, (RG)R∈Rgr

〉,
where:

• DG = VG ∪ EG is the union of sets of vertices and edges ofG.

• vertG = VG, i.e. vertG(x) iff x ∈ VG;

• incG ⊆ EG×VG×VG, with incG(x, y, z) iff x ∈ EG∧ srcG(x) = y∧ trgG(x) = z;
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Example 1. The typed graphG0 depicted in Figure 2.2 can be defined by the relational
structure|G0| = 〈DG0, {vertG0, incG0}〉, where

Domain: DG0 = VG0 ∪ EG0 with

VG0 = {N01,N02,N03}

EG0 = {Tok01, Stb01, Stb02, Stb03,Nxt01,Nxt02,Nxt03}

Relations:

vertG0 = {N01,N02,N03}

incG0 = {(Tok01, N01, N01), (Stb01, N01, N01), (Nxt01, N01, N02), (Stb02,
N02,N02), (Nxt02, N02, N03), (Stb03,N03,N03), (Nxt03,N03,N01)}.

Proposition 1. The relational structure|G| is well-defined.

Proof. By definition, the relational structure|G| has the same set of vertices ofG. The
ternary relationincG specifies the set of directed edges. Each edgex of G is related, by
incG, to (and only to) two vertices: its source and target vertices. Nothing else belongs to
incG. Then,|G| defines graphG.

The relational representation of a graph morphismg from a graphG to a graphH is
obtained through two binary relations: one to relate vertices (gV ) and other to relate edges
(gE). Since these relations just map vertices and edges names, we have to impose some
restrictions to ensure that they represent a morphism. Thetype consistency conditions
state that if two vertices are related bygV then the first one must be a vertex ofG and the
second one a vertex ofH, and if two edges are related bygE, then the first one must be
an edge ofG and the second one an edge ofH. The(morphism) commutativity condition
assures that the mapping of edges preserves the mapping of source and target vertices.

Definition 8 (Relational Graph Morphism). Let |G| = 〈VG ∪ EG, {vertG, incG}〉 and
|H| = 〈VH ∪ EH , {vertH , incH}〉 beRgr-structures representing graphs. Arelational
graph morphism|g| from |G| to |H| is defined by a set|g| = {gV , gE} of binary relations
where:

• gV ⊆ VG × VH is a partial function that relates vertices of|G| to vertices of|H|;

• gE ⊆ EG × EH is a partial function that relates edges of|G| to edges of|H|;

such that the following conditions are satisfied:

• Type Consistency Conditions.∀x, x′,
[gV (x, x′)] ⇒ vertG(x) ∧ vertH(x′); and
[gE(x, x′)] ⇒ ∃y, y′, z, z′[incG(x, y, z) ∧ incH(x′, y′, z′)];

• Morphism Commutativity Condition.∀x, y, z, x′, y′, z′,
[gE(x, x′) ∧ incG(x, y, z) ∧ incH(x′, y′, z′) ⇒ gV (y, y′) ∧ gV (z, z′)].

g is called total/injective if relationsgV andgE are total/injective functions, respectively.

Proposition 2. A relational graph morphismg = {gV , gE} from |G| to |H| is a well-
defined graph morphism from graphG to graphH.
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Proof. We havegV andgE denoting partial functions. According to the type consistency
conditions, they relate vertices and edges ofG andH, respectively. Moreover, due to
the morphism commutativity condition, every edge that is related bygE must be com-
patible with the relations established bygV . In other words, if an edgex is related by
gE to an edgex′, then its source and target vertices must be related bygV , i.e., the weak
commutativity holds.

A typing morphism is a graph morphism that has the role of typing all elements of a
graphG over a graphT . Thus, its relational definition is the same as graph morphisms,
with the restriction that both relations must represent total functions.

Definition 9 (Relational Typing Morphism). Let |G| and |T | be Rgr-structures repre-
senting graphs. Arelational typing morphism from|G| over |T | is defined by a total
relational graph morphism|tG| = {tGV , t

G
E} from |G| to |T |.

Example 2. The relational typing morphism from|G0| over|T | (see Figure 2.2) is defined
by |tG0| = {tG0

V , tG0
E }, with tG0

V = {(N01,Node), (N02,Node), (N03, Node)} andtG0
E =

{(Tok01,Tok), (Stb01, Stb), (Stb02, Stb), (Stb03, Stb), (Nxt01,Nxt), (Nxt02,Nxt),
(Nxt03,Nxt)}.

Proposition 3. A relational typing morphism is a well-defined typing morphism.

Proof. Following Proposition 2 a relational typing morphism is a well-defined graph mor-
phism. Since both relations in a relational typing morphismmust be total functions, it is
a well-defined typing morphism.

The relational representation of a typed graphGT = (G, tG, T ) is defined by two
Rgr-structures representingG andT and by a relational typing morphism, which defines
exactly the typing morphismtG.

Definition 10 (Relational Representation of a Typed Graph). Given a typed graphGT =
(G, tG, T ) with tG = (tGV ert, t

G
Edge), a relational representation ofGT is given by a tuple

|GT | = 〈|G|, |tG|, |T |〉 where:

• |G| and|T | areRgr-structures representingG andT respectively;

• |tG| = {tGV ert, t
G
Edge} is a relational typing morphism from|G| over |T |.

Proposition 4. The relational representation of a typed graph is well-defined.

Proof. By Proposition 1 the relational representation of graphs iswell-defined and by
Proposition 3 the relational typing morphism is well-defined. Since the definition of the
relational typing morphism guarantees that it represents the same typing morphism given,
then the relational representation|GT | defines the same typed graphGT .

A relational graph morphism is also the basis of the relational definition of a relational
typed graph morphism from a graphG to a graphH. Since both graphs are typed over
the same graphT , a (typed morphism) compatibility conditionassures that the mappings
of vertices and edges preserve types.

Definition 11 (Relational (Typed) Graph Morphism ). Let |G|, |H| and |T | be Rgr -
structures representing graphs and|tG| = {tGV , t

G
E} and |tH | = {tHV , t

H
E } be relational

typing morphisms from|G| and |H| over |T |, respectively. Arelational (typed) graph
morphism from|GT | to |HT | is defined by a relational graph morphism|g| = {gV , gE}
from |G| to |H|, such that the typed morphism compatibility condition is satisfied:
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• (Typed Morphism) Compatibility Condition.∀x, x′, y,
[gV (x, x′) ∧ tGV (x, y) ⇒ tHV (x′, y)]; and
[gE(x, x′) ∧ tGE(x, y) ⇒ tHE (x′, y)].

Proposition 5. The relational representation of a typed graph morphism is well-defined.

Proof. Following Proposition 2, a relational graph morphism is a well-defined graph mor-
phism. The (typed morphism) compatibility condition guarantees that the relational typed
graph morphism only maps elements of the same type.

Given a ruleα : LT → RT , its relational representation is given by the relational
representation of typed graphsLT andRT , together with a relational typed morphism
which must define the same morphism given. Note that, since a rule does not delete
vertices, the functionαV ert must be total.

Definition 12 (Relational Representation of a Rule). Given a ruleα : LT → RT ,
α = (αV ert, αEdge), a relational representation ofα is given by a tuple〈|LT |, |α|, |RT |〉
where:

• |LT | = 〈|L|, |tL|, |T |〉 and |RT | = 〈|R|, |tR|, |T |〉 are relational representations of
typed graphsLT andRT , respectively;

• |α| = {αV ert, αEdge} is a relational typed graph morphism from|LT | to |RT |.

Example 3. The relational typed graph morphism of ruleα1 illustrated in Figure 2.2
is defined by|α1| = {α1V

, α1E
}, whereα1V

= {(N11,N13), (N12,N14)} andα1E
=

{(Tok11,Tok12), (Nxt11,Nxt12)}. The relational typing morphisms from|L1| and |R1|
over |T | are respectively given bytL1

V = {(N11,Node), (N12,Node)}, tL1
E = {(Tok11,

Tok), (Stb11, Stb), (Nxt11,Nxt)} andtR1
V = {(N13,Node), (N14, Node)}, tR1

E = {(Tok12,
Tok), (Act11,Act), (Nxt12,Nxt), (Msg11,Msg)}.

Proposition 6. A relational representation of a rule is well-defined.

Proof. By Proposition 4 the relational representation of typed graphs is well defined and
by Proposition 5 the relational representation of a typed graph morphism is well-defined.
Also, the definition of the relational typed graph morphism guarantees that it represents
the same morphism given. Then, the relational graph morphism is injective with the
component that relates vertices total.

Given a graph grammarGG = (T,G0, R), we define a relational structure|GG|
associated to it as a tuple composed of a set and a collection of relations. The set describes
the domain of the structure. The relations define the type graph, the initial graph and the
rules. The type graph is defined by relations of aRgr-structure representingT . The initial
graphG0, and the left- and right-hand sides of rules are specified by relations ofRgr-
structures representing graphs, which are typed overT by relational typing morphisms.
Relational typed graph morphisms map the graphs of left-hand side and right-hand side
of rules.

Definition 13 (Relational Structure Associated to a Graph Grammar). LetRGG =
{vertT , incT , vertG0, incG0, t

G0
V , tG0

E , (vertLi, incLi, t
Li
V , t

Li
E , vertRi, incRi, t

Ri
V , t

Ri
E ,

αiV , αiE)i∈{1,...,n}} be a set of relation symbols. Given a graph grammarGG = (T,G0, R)
whereR has cardinalityn, theRGG-structure associated toGG, denoted by|GG|, is the
tuple〈DGG, (r)r∈RGG

〉1 where

1In order to simplify the reading we omit the subscriptGG in relations.
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• DGG = VGG ∪ EGG is the set of vertices and edges of the graph grammar, where:
VGG ⊆ VT ∪VG0∪ (VLi∪VRi)i∈{1,...,n} andEGG ⊆ ET ∪EG0∪ (ELi∪ERi)i∈{1,...,n}

withVT ∩VG0∩(VLi∩VRi)i∈{1,...,n} = ∅ andET ∩EG0∩(ELi∩ERi)i∈{1,...,n} = ∅;

• vertT and incT model thetype graph. They are the relations of aRgr-structure
|T | = 〈VT ∪ET , {vertT , incT}〉 representing graphT .

• vertG0, incG0, tG0
V and tG0

E model theinitial graph typed overT , i.e., they are the
relations that compose the relational representation ofG0T .

• Each collection(vertLi, incLi, t
Li
V , t

Li
E , vertRi, incRi, t

Ri
V , t

Ri
E , αiV , αiE) defines

a rule:

– vertLi, incLi, t
Li
V and tLi

E model theleft-hand sideof the rule, i. e., they are
the relations of the relational representation ofLiT .

– vertRi, incRi, t
Ri
V andtRi

E model theright-hand sideof the rule, i. e., they are
the relations of the relational representation ofRiT .

– αiV andαiE are relations of|αi|, which defines arelational typed graph mor-
phism from |LiT | to |RiT |, such that the tuple〈|LiT |, |αi|, |Ri

T |〉 is a rela-
tional representation of ruleαi : LiT → RiT .

Example 4. The relational structure that represents the graph grammarof the example
described in Section 2.2 is:

|GG| = 〈VGG ∪ EGG, {vertT , incT , vertG0, incG0, tG0V
, tG0E

,

vertL1, incL1, tL1
V , tL1

E , vertR1, incR1, tR1
V , tR1

E , α1V
, α1E

,

vertL2, incL2, tL2
V , tL2

E , vertR2, incR2, tR2
V , tR2

E , α2V
, α2E

,

vertL3, incL3, tL3
V , tL3

E , vertR3, incR3, tR3
V , tR3

E , α3V
, α3E

,

vertL4, incL4, tL4
V , tL4

E , vertR4, incR4, tR4
V , tR4

E , α4V
, α4E

,

vertL5, incL5, tL5
V , tL5

E , vertR5, incR5, tR5
V , tR5

E , α5V
, α5E

}〉,

where:

(Domain) Vertex names,VGG = { Node,N01, . . . ,N03,N11, . . . ,N14,N21, . . . ,N24,N31,
. . . ,N34,N41, . . . ,N44,N51, . . . ,N55};

Edges names,EGG = { Nxt,Nxt01,Nxt02,Nxt03,Nxt11,Nxt12,Nxt21,Nxt22,
Nxt31,Nxt32,Nxt41,Nxt42,Nxt51,Nxt52,Nxt53,Tok,
Tok01,Tok11,Tok12,Tok21,Tok22,Tok41,Tok42,Msg,
Msg11,Msg31,Msg32,Msg41,Act,Act11,Act41,Stb,
Stb01,Stb02,Stb03,Stb11,Stb21,Stb22,Stb31,Stb32,
Stb42,Stb51 }.

(Type GraphT ) Vertices,vertT = { Node };
Edges, incT = { (Nxt,Node,Node), (Tok,Node,Node),

(Msg,Node,Node), (Stb,Node,Node),
(Act,Node,Node) }.

(Initial Graph G0) Vertices, vertG0 = { N01,N02,N03 };
Edges, incG0 = { (Tok01,N01,N01), (Stb01,N01,N01),

(Nxt01,N01,N02), (Stb02,N02,N02),
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(Nxt02,N02,N03), (Stb03,N03,N03),
(Nxt03,N03,N01) };

Typing vertices,tG0
V = { (N01,Node), (N02,Node), (N03,Node) };

Typing edges, tG0
E = { (Tok01,Tok), (Stb01,Stb), (Nxt01,Nxt),

(Stb02,Stb), (Nxt02,Nxt), (Stb03,Stb),
(Nxt03,Nxt) }.

(Rule 1) Left Graph L1:
Vertices, vertL1 = { N11,N12 };
Edges, incL1 = { (Tok11,N11,N11), (Stb11,N11,N11),

(Nxt11,N11,N12) };
Typing vertices, tL1

V = { (N11,Node), (N12,Node) };
Typing edges, tL1

E = { (Tok11,Tok), (Stb11,Stb), (Nxt11,Nxt) }.
Right GraphR1:
Vertices, vertR1 = { N13,N14 };
Edges, incR1 = { (Tok12,N13,N13), (Act11,N13,N13),

(Nxt12,N13,N14), (Msg11,N14,N14) };
Typing vertices, tR1

V = { (N13,Node), (N14,Node) };
Typing edges, tR1

E = { (Tok12,Tok), (Act11,Act), (Nxt12,Nxt),
(Msg11,Msg) }.

Relational Ruleα1:
Mapping vertices, α1V

= { (N11,N13), (N12,N14) };
Mapping edges, α1E

= { (Tok11,Tok12), (Nxt11,Nxt12) }.

(Rules 2 to 5 are analogous)

Proposition 7. The relational structure|GG| is well-defined.

Proof. Follows immediately from Propositions 1, 4 and 6.

3.2 Rule Applications as First-Order Definable Transductions

In this section, inspired by the definition of monadic second-order definable transduc-
tion, introduced in (COURCELLE, 1997), we show how to define rule applications as
graph grammar transformations. This approach will allow a graph grammar theory to be
defined, which will be later used to verify properties of distributed and reactive systems.

A monadic second-order definable transduction (COURCELLE,1997) replaces for
graphs the notion of finite automaton used for transformations of words or trees. It is
defined through a tuple(ϕ, ψ, (θq)q∈Q) of monadic second-order formulas (GUREVICH,
1985) that specifies aQ-structureT = 〈DT , (RT )R∈Q〉 based on anR-structureS =
〈DS, (RS)R∈R〉. The first formula of the tuple,ϕ, establishes a condition to be satisfied
in order to make the transduction possible. The following formulaψ defines the domain
of the relationT . Finally, for each relationq ∈ Q, a formulaθ defines the elements
of theT domain that belong to the relation. In the original definition, it is possible to
makek copies of the original structureS before redefining the relationsq, to obtain the
new structureT . Next, we present the definition of first-order definable transductions (via
first-order formulas) without copies of the original structure, which is enough to represent
rule applications as graph-grammar transformations.
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Definition 14 (First-Order Definable Transduction). Let R andQ be two finite ranked
sets of relation symbols. LetW be a finite set of variables (parameters) andFO(R,W)
be the set of first-order formulas overR, with free variables inW. A (Q,R)-definition
schemeis a tuple∆ = (ϕ, ψ, (θq)q∈Q), whereϕ ∈ FO(R,W), ψ ∈ FO(R,W ∪ {x1})
andθq ∈ FO(R,W ∪ {x1, . . . , xρ(q)}).

These formulas are intended to define a structureT in STR(Q) from a structureS
in STR(R) in the following way: letS ∈ STR(R) andγ be aW-assignment inS, a
Q-structureT with domainDT ⊆ DS is defined in(S, γ) by∆ if:

1. (S, γ) |= ϕ. Formulaϕ establishes a condition to be fulfilled so that the translation
is possible. I.e.,T is defined only ifϕ holds true inS for someγ.

2. DT = {d ∈ DS | (S, γ, d) |= ψ}. Assuming that 1. is satisfied, formulaψ defines
the domain ofT as the set of elements in theS domain that satisfyψ for γ.

3. for eachq ∈ Q, qT = {(d1, . . . , dt) ∈ Dt
T | (S, γ, d1, . . . , dt) |= θq}, wheret =

ρ(q). Formulasθq define the relationqT for eachq ∈ Q.

SinceT is associated in a unique way withS, γ and∆ whenever it is defined (whenever
(S, γ) |= ϕ) we can use the functional notationdef∆(S, γ) for T . A transduction defined
by ∆ is the relationdef∆ := {(S, T ) | T = def∆(S, γ) for someW-assignmentγ in
S} ⊆ STR(R) × STR(Q). f ⊆ STR(R) × STR(Q) is a FO-definable transduction,
if it is equal todef∆, for some(Q,R)-definition scheme∆. In the case whereW = ∅ we
say thatf is definable without parameters.

A rule application may be described by a FO-definable transduction on relational
structures associated to graph grammars. The result of the transduction over a graph
grammar is another graph grammar whose initial state corresponds to the result of the
application of a ruleαi at a matchm to the initial state of the original grammar. The
other components of the grammar remain unchanged (i.e., theresulting grammar has the
same type graph and rules of the original one). In order to define rule application as a
FO-definable transduction, we first introduce the relational representation of a match.

Definition 15 (Relational Representation of a Match). Given a matchm : LT → GT ,
m = (mV ert, mEdge), a relational representation of matchm is given by a tuple〈|LT |,
|m|, |GT |〉 where:

• |LT | = 〈|L|, |tL|, |T |〉 and |GT | = 〈|G|, |tG|, |T |〉 are relational representations of
typed graphsLT andGT , respectively;

• |m| = {mV ert, mEdge} is a relational typed graph morphism from|LT | to |GT |.

Example 5. The relational graph morphism|m1| = {m1V , m1E} from |L1| to |G0|
(see Figure 2.3), wherem1V = {(N11,N01), (N12,N02)} andm1E = {(Nxt11,Nxt01),
(Tok11,Tok01), (Stb11, Stb01)} represents a relational match of rule|α1| in |G0|. Both
relations represent total functions andm1E is injective. Besides, the mapping respect the
typed morphism compatibility condition. We can also notice, for instance, that the pair
(Nxt11,Nxt01) preserves types, i.e, both clausestL1

E (Nxt11,Nxt) and tG0
E (Nxt01,Nxt)

hold (see Initial Graph and Left Graph definitions in Example4).

Proposition 8. A relational representation of a match is well-defined.
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Proof. By Proposition 4 the relational representation of typed graphs is well defined and
by Proposition 5 the relational representation of a typed graph morphism is well-defined.
The definition of the relational typed graph morphism guarantees that it represents the
same morphism given. Then, the relational graph morphism istotal, with the component
that relates edges injective.

Now, a rule application is represented by a definable transduction (i.e., by a tuple of
first-order formulas) that defines aRGG-structure|GG|′ (i.e., a graph grammar) based
on anotherRGG-structure|GG|. Before applying the transduction, we must first fix a
relational representation of a ruleαi and a relational representation of a matchm of αi
in G0T . Then, theRGG-definition scheme∆ = (ϕ, ψ, (θq)q∈RGG

) defines the relational
structure|GG|′ from |GG|, which corresponds to the same grammar, excepted that|G0|′

(initial state of |GG|′) represents the result of the application of|αi| at match|m| in
|G0|. In ∆, ϕ ensures that|m| effectively defines a match,ψ defines the domain of
the resulting grammar (the same of original grammar) and each formulaθq, q ∈ RGG,
defines the elements that will be present in relationsqGG′, q ∈ RGG of the resulting
grammar. In fact, the collection(θq) defines the structure associated to graph grammar
|GG|′. Since the type graph and the rules remain unchanged, the formulas that define
these components are constructed in the obvious way (they are defined by relations of
the original grammar). FormulasθvertG0

, θincG0
, θtG0V

, θtG0E
that define the resulting

graph of the rule application are specified according to Definition 5. Table 3.1 presents
the intuitive meaning and the notation used inθ specifications.

Definition 16 (Rule Application as FO-Definable Transduction). LetGG = (T,G0, R)
be a graph grammar such that the sets of edges and vertices of graphsT , G0, Li and
Ri are disjoint, and let|GG| be the relational structure associated toGG. Given a rule
αi : Li → Ri of GG and a corresponding matchm : Li → G0, with the relational
representations respectively given by|αi| = {αiV , αiE} from |Li| to |Ri| and |m| =
{mV , mE} of |Li| in |G0|, ∆ = (ϕ, ψ, (θq)q∈RGG

), withW = ∅, defines a transduction
that maps a graph grammar|GG| to a graph grammar|GG|′, such that|G0|′ (initial
state of|GG|′) corresponds to the result of the application of rule|αi| at match|m| in
|G0| (initial state of|GG|), where:

ϕ expresses that|m| = {mV , mE} defines a total relational typed graph morphism, with
mE injective. So, it must guarantee that the following conditions are satisfied.

• |m| is a total relational graph morphism:

– mV ⊆ VLi × VG0 is a total function:

∀x

((
vertLi(x)

)
⇒ ∃!x′

(
mV (x, x′) ∧ vertG0(x

′)
))

– mE ⊆ ELi ×EG0 is a total function:

∀x, y, z

((
incLi(x, y, z)

)
⇒ ∃!x′, y′, z′

(
mE(x, x′) ∧ incG0(x

′, y′, z′)
))

– {mV , mE} satisfies the Type Consistency and the Morphism Commuta-
tivity Conditions.
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• |m| is a relational typed graph morphism withmE injective:

– mE is injective:

∀x, y

((
mE(x, y)

)
⇒ ∄x′

(
mE(x′, y)

))

– {mV , mE} satisfy the Typed Morphism Compatibility Condition.

ψ is the Boolean constant true (same domain).

θvertT , θincT
are, respectively, the formulasvertT (x) andincT (x, y, z) (same type graph).

θvertG0
is the formulavertG0(x) ∨ nvertRi(x) (see next table).

θincG0
(x, y, z) is the formulanincG0(x, y, z) ∨ nincRi(x, y, z).

θtG0

V
(x, t) is the formulanvertG0(x, t) ∨

[
nvertRi(x) ∧ tRi

V (x, t)

]
.

θtG0

E
(x, t) is the formulantG0

E (x, t) ∨ tRi
E (x, t).

θvertLi
, θincLi

, θtLi
V

, θtLi
E

, θvertRi
, θincRi

, θtRi
V

, θtRi
E

, θαiV
, θαiE

are respectively the formulas
vertLi(x), incLi(x, y, z), tLi

V (x, y), tLi
E (x, y), vertRi(x), incRi(x, y, z), tRi

V (x, y),
tRi
E (x, y), αiV (x, y) andαiE(x, y), for i = 1 .. n (same rules).

Example 6. The graph grammar that results of the application of rule|α1| at match|m1|
in |G0| (|GG| initial state), has its initial graph defined by the relations (see Figure 2.3):

vertG0|GG|′
= { N01, N02, N03 };

incG0|GG|′
= { (Stb02, N02, N02), (Nxt02, N02,N03), (Stb03, N03, N03),

(Nxt03, N03, N01), (Tok12, N01, N01), (Act11, N01, N01),
(Nxt12, N01, N02), (Msg11, N02, N02) }

tG0
V|GG|′

= { (N01, Node), (N02, Node), (N03, Node) };

tG0
E|GG|′

= { (Stb02, Stb), (Nxt02, Nxt), (Stb03, Stb), (Nxt03, Nxt) ,

(Tok12, Tok), (Act11, Act), (Nxt12, Nxt), (Msg11, Msg) }.

The elements of these relations are those of|GG|′ domain (same domain as|GG|) that
satisfy the formulas,θvertG0

, θincG0
, θtG0

V
, θtG0

E
, respectively.

Proposition 9. The rule application as a FO-definable transduction is well-defined.

Proof. Let |GG|′ be the result of the transduction applied to graph grammar|GG| corre-
sponding to the application of relational rule|αi| at relational match|m|. Considering that
the given rule|αi| = {αiV , αiE} and the given match|m| = {mV , mE} are the relational
representations ofαi : LiT → RiT andm : LiT → G0T , respectively, and considering
HT = (H, tH , T ) to be the typed graph obtained by the application ofαi to graphG0T at
matchm (according to Definition 5) we have to show that2:

1. vert′T andinc′T are the relations of aRgr-structure|T |′ = 〈V ′
T ∪ E ′

T ,
{vert′T , inc

′
T}〉 representing graphT = (VT , ET , srcT , trgT ).

2Each relationr of |GG|′ will be denoted byr′ to avoid confusion with the relations of|GG| (denoted
by the unprimed names).
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Table 3.1: Formulas used in Definition 16
Notation Intuitive Meaning Formula

vertG(x) x is a vertex of graphG in GG. vertG(x)

incG(x, y, z) x is an edge of graphG with source
vertexy and target vertexz in GG.

incG(x, y, z)

tGV (x, y) x is a vertex of graphG of type y
in GG.

tGV (x, y)

tGE(x, y) x is an edge of graphG of typey in
GG.

tGE(x, y)

αiV (x, y) x is a vertex of graphLi mapped to
vertexy of Ri by ruleαi in GG.

αiV (x, y)

αiE (x, y) x is an edge of graphLi mapped to
edgey of Ri by ruleαi in GG.

αiE (x, y)

nvertRi(x) x is a vertex of graphRi that is not
image of the ruleαi in GG.

vertRi(x) ∧ ∄y
(
αiV (y, x)

)

nincG0(x, y, z) x is an edge of graphG0 with
sourcey and targetz in GG that is
not image of the match.

incG0(x, y, z) ∧ ∄w
(
mE(w, x)

)

nincRi(x, y, z) x is an edge of graphRi with
source and target vertices given by
binary relationn.

∃r, s
[
incRi(x, r, s)∧n(r, y)∧n(s, z)

]

n(r, y) Vertexr is related to some different
vertex y if it is image of the rule
applied to some vertexv. In this
caser is related with the image of
the match applied tov. Vertexr is
related to itself if it is not image of
the rule.

{
∃v
(
αiV (v, r) ∧ mV (v, y)

)
if r 6= y

∄v αiV (v, r) if r = y

nvertG0(x, t) x is a vertex of graphG0 of type t
in GG.

vertG0(x) ∧ tG0
V (x, t)

ntG0
E (x, t) x is an edge of graphG0 of type

t in GG that is not image of the
match.

∃y, z
(
incG0(x, y, z)

)
∧

∧ ∄w
(
mE(w, x)

)
∧ tG0

E (x, t)

• x ∈ vert′T iff x ∈ VT : By θvertT definition,x ∈ vert′T iff x ∈ vertT . Since
vertT is the relation of aRgr-structure representingT , then (following Defi-
nition 7)x ∈ vertT iff x ∈ VT .

• (x, y, z) ∈ inc′T iff x ∈ ET ∧ srcT (x) = y∧ trgT (x) = z: By θincT
definition,

(x, y, z) ∈ inc′T iff (x, y, z) ∈ incT . SinceincT is the relation of aRgr-
structure representingT , then (following Definition 7)(x, y, z) ∈ incT iff x ∈
ET ∧ srcT (x) = y ∧ trgT (x) = z.

2. vert′G0 andinc′G0 are the relations of aRgr-structure|G0|′ = 〈V ′
G0 ∪ E ′

G0,
{vert′G0, inc

′
G0}〉 representing graphH = (VH , EH , srcH, trgH).

• x ∈ vert′G0 iff x ∈ VH : By θvertG0
definition,x ∈ vert′G0 iff x ∈ vertG0 or

(x ∈ vertRi ∧ ∄y, (y, x) ∈ αiV ).

– Let x ∈ vertG0. Since|G0| is a relational representation ofG0, we have
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x ∈ VG0. Therefore, by Definition 5,x ∈ VH .

– Let x ∈ vertRi such that∄y, (y, x) ∈ αiV . Since|Ri| is a relational rep-
resentation ofRi, x ∈ VRi. Also, as|αi| is a relational representation of
αi = (αiV ert

, αiEdge
), by Definition 12,∄y, αiV ert

(y) = x. Consequently,
x ∈ (VRi − αiV ert

(VLi)), and by Definition 5,x ∈ VH .

The proof in the other direction (only if case) is analogous.

• (x, y, z) ∈ inc′G0iff x ∈ EH ∧ srcH(x) = y ∧ trgH(x) = z: By θincG0

definition, (x, y, z) ∈ inc′G0iff
(
(x, y, z) ∈ incG0 ∧ ∄w, (w, x) ∈ mE

)
or

∃r, s
(
(x, r, s) ∈ incRi ∧ (r, y) ∈ n ∧ (s, z) ∈ n

)
.

– Let (x, y, z) ∈ incG0, such that∄w, (w, x) ∈ mE. Since|G0| is the
relational representation ofG0, we havex ∈ EG0 ∧ srcG0(x) = y ∧
trgG0(x) = z. Also, as|m| is a relational representation ofm = (mV ert,
mEdge), by Definition 15,∄w,mEdge(w) = x. As a result,x ∈ EG0 −
mEdge(ELi) , i.e. by Definition 5,x ∈ EH . In this case, the source and
target vertices ofx in H are the same ofG0, i.e.,y andz respectively.

– Let (x, r, s) ∈ incRi, wheren(r, y) andn(s, z) hold. Considering that
|Ri| is a relational representation ofRi we havex ∈ ERi ∧ srcRi(x) =
r ∧ trgRi(x) = s. Consequently, by Definition 5,x ∈ EH . As n(r, y)
holds, we have two alternatives:

∗ ∃v,
(
αiV (v, r) ∧mV (v, y)

)
with r 6= y. In this case, since|αi| is a

relational representation of ruleαi and|m| is a relational representa-
tion ofm, we haveαiV ert

(v) = r andmV ert(v) = y. Hence, by Def-
inition 5, srcH(x) = m(srcRi(x)) = m(r) = mV ert(v)

(
sincer ∈

rng(αiV ert
) andr = αiV ert

(v)
)

= y.

∗ ∄v, αiV (v, r) with r = y. Thus,∄v such thatαiV ert
(v) = r. By

Definition 5, in this case,srcH(x) = m(srcRi(x)) = m(r) = r = y.

Following a similar argument, ifn(s, z) holds, we can conclude in both
alternatives thattrgH(x) = z .

The only if proof is similar.

3. tG0
V

′ andtG0
E

′ are from the set|tG0|′ such that the tuple〈|G0|′, |tG0|′, |T |′〉 is a rela-
tional representation of the typed graphHT = (H, tH , T ).

• (x, t) ∈ tG0
V

′
iff tHV ert(x) = t: By θtG0

V
definition,(x, t) ∈ tG0

V

′
iff(

x ∈ vertG0 ∧ (x, t) ∈ tG0
V

)
or
(
x ∈ vertRi ∧ ∄y, (y, x) ∈ αiV ∧

∧ (x, t) ∈ tRi
V

)
.

– Let x ∈ vertG0 and(x, t) ∈ tG0
V . Since〈|G0|, |tG0|, |T |〉, with |tG0| =

{tG0
V , tG0

E }, is a relational representation of the typed graphG0T , we have
x ∈ VG0 andtG0

V ert(x) = t. Then, by Definition 5tHV ert(x) = tG0
V ert(x) = t.

– Let x ∈ vertRi and (x, t) ∈ tRi
V , such that∄y, (y, x) ∈ αiV . Since

〈|Ri|, |tRi|, |T |〉, with |tRi| = {tRi
V , t

Ri
E }, is a relational representation

of the typed graphRiT and |αi| is a relational representation ofαi, we
havex ∈ VRi, t

Ri
V ert(x) = t and∄y, αiV ert

(y) = x. Then,x ∈ (VRi −
αiV ert

(VLi)) and by Definition 5,tHV ert(x) = tRi
V ert(x) = t.
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The only if proof is similar.

• (x, t) ∈ tG0
E

′
iff tHEdge(x) = t: By θtG0

E
definition,(x, t) ∈ tG0

E

′
iff(

∃y, z, (x, y, z) ∈ incG0 ∧ ∄w, (w, x) ∈ mE ∧ (x, t) ∈ tG0
E

)
or (x, t) ∈ tRi

E .

– Let (x, t) ∈ tG0
E , such that∃y, z, (x, y, z) ∈ incG0 and∄w, (w, x) ∈ mE.

Since|G0|, |m| and〈|G0|, |tG0|, |T |〉 are relational representations ofG0,
m andG0T , respectively, we havex ∈ EG0, ∄w,mEdge(w) = x and
tG0
Edge(x) = t. I.e., x ∈ (EG0 − mEdge(ELi)). Then, by Definition 5,
tHEdge(x) = tG0

Edge(x) = t.
– Let (x, t) ∈ tRi

E . Since〈|Ri|, |tRi|, |T |〉, with |tRi| = {tRi
V , t

Ri
E }, is a

relational representation of the typed graphRiT , we havex ∈ ERi and
tRi
Edge(x) = t. Thus, by Definition 5,tHEdge(x) = tRi

Edge(x) = t.

The only if proof is similar.

3.3 Verifying Properties

In this section, we lay the foundation for the creation of a graph grammar theory,
which may be used to formulate properties and develop proofs. This proposal of for-
malization was inspired by the standard procedure of Isabelle (NIPKOW; PAULSON;
WENZEL, 2002) to the development of proofs: working with Isabelle means creating
theories. Nevertheless, the definitions here proposed mustguide the analysis of graph
grammar systems in any other proof assistant.

The relational definition of a graph grammar establishes a set of axioms to be used in
the proof process. That is, given a relational structure|GG| = 〈DGG, (R)R∈RGG

〉, each
relationR of |GG| defines an axiom:R(x1, . . . , xn) ≡ true iff (x1, . . . , xn) ∈ R. The
theory defines a data type named reachable graph and a standard library of functions.

Definition 17 (Reachable Graph Data Type). Thedata type reachable graph(reach_gr)
of a graph grammar is defined with two constructors, one for the initial graphG0 and
another one for the operatorap(αi,m) that applies the ruleαi at matchm to a reachable
graph.

datatypegg reach_gr= G0

| ap(αi,m) “ gg reach_gr”

G0 is defined by relationsvertG0, incG0, t
G0
V , tG0

E of |GG|. Relations of the resulting
graph of a rule application are defined according to the transduction defined in Section
3.2.

Thestandard library provides a collection of (recursive) functions that can be used
to state and prove desirable properties. Properties about reachable states may be proven
by induction, since this data type is recursively defined.

For instance, we define two functions: one to determine the types of edges of a reach-
able graph and another to indicate if a reachable graph has a ring topology. Let|GG| be
the relational structure associated to a graph grammar.3

3Again, in what follows, we omit the subscriptGG in relations, assuming that it is clear from context
which grammar is under consideration.
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In the following we assume a fixed given grammarGG = (T,G0, R).

[Library function tip: Types of Edges of a Reachable Graph]The types of edges of a
reachable graph are recursively defined by:

tipE G0 = {(x, t) | tG0
E (x, t)} (3.1a)

tipE ap(αi,m) G = {(x, t) | tRi
E (x, t) ∨ [(x, t) ∈ tipE G ∧ ∄w mEαi

(w, x)]} (3.1b)

That is, if we consider the initial graph (3.1a), typing is given by the relationtG0
E of

the relational structure. If we consider a graph obtained from applying ruleαi at match
m = {mVαi

, mEαi
} to graphG (3.1b), the type of an edge is either the type of edges of

the right-hand side of the rule or a type of edge of graphG (in the latter case, the edge
can not be image of the match).�

[Library function Ring: Ring Topology in a Reachable Graph] Initially, we define
the transitive closure of edges of typet in a graphG, denoted byTCt

incG
, by:

∀a, x, y, z
(
[incG(a, x, y) ∧ tGE(a, t) → (x, y) ∈ TCt

incG
] ∧

[(x, y) ∈ TCt
incG

∧ (y, z) ∈ TCt
incG

→ (x, z) ∈ TCt
incG

]
)

Then, the function that indicates if a reachable graph has a ring topology of edges of
typet is defined by:

Ringt G0 ≡ ∀x [vertG0(x) → (x, x) ∈ TCt
incG0

] ∧ (3.2a)

∧ ∀a, b, x, y, z [incG0(a, x, y) ∧ t
G0
E (a, t) ∧ incG0(b, x, z) ∧

∧ tG0
E (b, t) → a = b] ∧ (3.2b)

∧ ∀x, z [vertG0(x) ∧ vertG0(z) → (x, z) ∈ TCt
incG0

] (3.2c)

Ringt ap(αi,m) G ≡ Ringt G ∧ (3.2d)

∧ ∀a, x, y, z, w [incLi(a, x, y) ∧ t
Li
E (a, t) ∧ αiV (x, z)∧

∧ αiV (y, w) → (z, w) ∈ TCt
incRi

] ∧ (3.2e)

∧ ∀a, b, x, y, z [incRi(a, x, y) ∧ t
Ri
E (a, t) ∧ incRi(b, x, z)∧

∧ tRi
E (b, t) → a = b] (3.2f)

That is,G0 has a ring topology if the following conditions are satisfied:

(3.2a) There is a cycle, i.e., every vertex ofG0 has a path with origin and destination in
itself;

(3.2b) There is no bifurcation of edges of typet in G0, i.e., if there are two edges of typet
with origin at the same vertex, these edges are equal. This property guarantees that
the paths of edges of typet in G0 are unique;

(3.2c) The graph is connected, i.e., from every vertex inG0 there is a path to all other
vertices.

And, to have a graph with a ring topology resulting from the application of a ruleαi =
{αiV , αiE} to a reachable graph, it must be guaranteed that:
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(3.2d) The reachable graph before applyingαi has a ring structure;

(3.2e) For every edgea of typet going fromx to y in Li there is a corresponding path in
Ri starting at the imageαiV of x and ending at the imageαiV of y;

(3.2f) There is no bifurcation of edges of typet in Ri. This guarantees that the paths of
edges of typet in Ri are unique.

�

Other functions could also be included in the library, such as functions to define types
of vertices of a reachable graph, cardinality of edges, cardinality of vertices and many oth-
ers. Having established the theory, we describe theproof strategy used to prove proper-
ties for a system specified in graph grammar. First, we must define the relational structure
associated to the grammar (according to Definition 13). The relations of this structure de-
fine axioms that are used in the proofs. Then we may state a goalto be proven using logic
formulas. Considering that the property states some desirable characteristic of reachable
graphs, the proof must be performed in the following way: first (base case), the property
is verified for the initial graph (G0) and then, at the inductive step, the property is verified
for every rule of the grammar applicable to a reachable graphG (i.e., for ap(αi,m) G),
considering that the property is valid forG. This process may be semi-automated: it
may proceed until a separate property or lemma is required, then we must establish the
property or prove the lemma, and then the proof of the original goal can continue.

Now, we give twoexamplesof proofs of properties for the Token Ring protocol: one
about types of edges and another about the structure of reachable graphs.

Property 1. Any reachable graph has exactly one edge of the typeTok.

According to the definition oftipE, previously established in the library, the property
to be proven can be stated by the formula:

∃!x [(x,Tok) ∈ tipE reach_gr].

Proof.

Basis:Here, the property is verified for the initial graphG0.

∃!x [(x,Tok) ∈ tipE G0]
(3.1a)
≡ ∃!x [tG0

E (x,Tok)] ≡ true.

The last equivalences may be verified automatically. Since the relational structure that
defines the grammar has a single pair with the second component Tok belonging to the
relationtG0

E (see Example 2), the logical expression must be evaluated totrue.

Hypothesis:For any reachable graphG ∃!x[(x,Tok) ∈ tipEG]

Inductive Step: Assuming the hypothesis, the proof reduces to five cases, depending on
the rule that is applicable:

Rule α1: ∃!x [(x,Tok) ∈ tipE ap(α1,m) G)]
(3.1b)
≡

∃!x [tR1
E (x,Tok) ∨ [(x,Tok) ∈ tipE G ∧ ∄w mEα1

(w, x)]].
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Now it is necessary to inform if the edgex of typeTok of the reachable graph is an
image of the match or not, when ruleαi is applied. This can be done by stating:

∀x (x,Tok) ∈ tipE G, ∃w mEαi
(w, x) ⇔ ∃w tLi

E (w,Tok) (3.3)

According to (3.3), the edge of typeTok of the reachable graph will be an image of
the match if and only if the left-hand side of the applied rulecontains an edge of
the typeTok. Then:

∃!x [tR1
E (x,Tok) ∨ [(x,Tok) ∈ tipE G ∧ ∄w mEα1

(w, x)]]
(3.3)
≡

∃!x [tR1
E (x,Tok) ∨ [(x,Tok) ∈ tipE G ∧ ∄w tL1E

(w,Tok)]] ≡ true.

There is a (single) pair at the relationtR1
E that has the second componentTok (see

Example 3). Besides it is assumed by hypothesis that(x,Tok) ∈ tipE G. Since
expression∄wmEα1

(w, x) is evaluated to false (there is a pair in relationtL1
E that has

the second componentTok), the complete formula may be automatically evaluated
to true.

Rulesα2 to α5: The proofs for rulesα2, α3, α4 andα5 are analogous. It is important
to notice that, since the property that informs if an edge of typeTok is the image
of a match has already been stated, the verification for theserules may proceed
automatically.

Property 2. Any reachable graph has a ring topology of edges of typeNxt.

Considering that the transitive closure of edges and the function that identifies a ring
topology are previously defined in the library, the propertyto be proven can be stated as:

RingNxt reach_gr ≡ true.

Proof.

Basis: We instantiate the equations (3.2a), (3.2b) and (3.2c) of theRing definition with
G0 andNxt

RingNxt G0
def.
≡ ∀x [vertG0(x) → (x, x) ∈ TCNxt

incG0
] ∧ (eqn 3.2a)

∧∀a, b, x, y, z [incG0(a, x, y) ∧ t
G0
E (a,Nxt) ∧ incG0(b, x, z)∧

∧tG0
E (b,Nxt) → a = b] ∧ (eqn 3.2b)

∧∀x, z [vertG0(x) ∧ vertG0(z) → (x, z) ∈ TCNxt
incG0

] ≡ (eqn 3.2c)
≡ true

Considering that the result of the operationTCNxt
incG0

is the set{(N01,N02), (N02,N03),
(N03,N01), (N01,N03), (N02,N01), (N03,N02), (N01,N01), (N02,N02), (N03,N03)},
(eqn 3.2a) and (eqn 3.2c) are satisfied. (eqn 3.2b) is also satisfied because there are no
two edges of the typeNxt in G0 starting at the same vertex (see Examples 1 and 2).

Hypothesis:For any reachable graphG RingNxt G ≡ true⇒

Inductive Step: Again, here we have to prove for all rulesα1 to α5. We show the proof
for the first rule, the others are analogous.
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RingNxt ap(α1, m) G
def.
≡ RingNxt G ∧ (eqn 3.2d)

∧∀a, x, y, z, w [incL1(a, x, y) ∧ t
L1
E (a,Nxt) ∧ α1V

(x, z) ∧
∧α1V

(y, w) → (z, w) ∈ TCNxt
incR1

] ∧ (eqn 3.2e)
∧∀a, b, x, y, z [incR1(a, x, y) ∧ t

R1
E (a,Nxt) ∧ incR1(b, x, z)∧

∧tR1
E (b,Nxt) → a = b] ≡ (eqn 3.2f)
≡ true

This property may be verified automatically: (eqn 3.2d) is valid by the induction
hypothesis; (eqn 3.2e) is valid by the result of the operation TCNxt

incR1
; and (eqn 3.2f) is

valid because there are no two edges of typeNxt starting at the same node inR1 (see
Example 3).
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4 DEALING WITH ATTRIBUTED GRAPHS

An attributed graph has two components: a graphical part (a graph) and a data part.
These components are linked by attribution functions or edges (depending on the ap-
proach). The data part allows the use of variables and terms in the rules (as attributes),
giving the specifier a better level of abstraction with respect to grammars using only non-
attributed graphs. Figure 4.1 shows an example of rule application using attributed graphs.
In rule r : L → R, instead of using concrete values, one typically uses variables and
terms. Equations restrict the situations in which the rule may be applied. To be able to
apply such a rule, we must find, besides the graph homomorphism fromL toG, an assign-
ment of values to the variables of the rule that satisfy all equations. If such an assignment
is found (likeasg in the figure), the rule can be applied and the resulting graphH is
obtained as previously defined (as in Def. 5) with the values of attributes of the vertices
changing as defined in the rules.

4

3

3 2

4

4

3 2

x

x y

z

x y

r

z = x + 1

x = y + 1

asg:

x → 3

y → 2

z → 4

L R

G H

Figure 4.1: Rule Application using Attributed Graphs

In (EHRIG et al., 2006), an attributed graph is a graph in which some vertices are
actually data values, and some edges are attribution edges,that is, all data values are con-
sidered as vertices and there are special edges connecting graphical vertices to these data
vertices. This approach has a very nice theory but, for (automated) verification purposes,
it is not directly useful because typically data types involve infinite sets of values, and
thus each graph will be an infinite structure (because data values are vertices).

A different approach was presented by GROOVE in (KASTENBERG, 2006), in which
the data values were modeled as term graphs. In this approach, rewriting takes place at
two different levels: normal graph rewriting for the graphical part and term graph rewrit-
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ing for the data part of the attributed graph. However, modeling data types as terms has
some disadvantages: many data types can be more naturally expressed as “textual" terms;
resolution for many of the most used equational systems (like natural numbers, booleans,
strings, lists, ...) is already efficiently implemented, whereas there are some limitations
for term graph rewriting. Moreover, this technique presented for GROOVE is for finite
state graph transformation systems.

A new approach to perform verification of attributed GTS was presented in (KÖNIG;
KOZIOURA, 2008). This approach is based on (LöWE; KORFF; WAGNER, 1993), in
which there is an attribution function mapping elements from the graphical part to the
data part of the graph. Here the data part is not seen as vertices or edges of an attributed
part, but rather as a set of values. The disadvantage is that it is not possible to change the
value of the attribute of a vertex without deleting this vertex (because a simple change of
attribute would not be compatible with the original attribution function, and this compati-
bility is a requirement for the definition of morphisms). In (KÖNIG; KOZIOURA, 2008)
this drawback does not play a role since only edges are attributed, and all edges belonging
to the left-hand side of a rule must be deleted.

Our approach is inspired by both (EHRIG et al., 2006) and (KÖNIG; KOZIOURA,
2008). On the one hand, we will have some special kind of edgesof the graph that will be
calledattribute edgesor simplyattributesand will be used actually to describe attribution
of vertices. But on the other hand, we will have a function assigning a data value to each
of these attribute edges. This way, we can model that the attributea1 of a vertex changes
(by deleting the attribute edge corresponding toa1 and creating a new one with the new
value) in a framework in which graphs are not infinite (because data values must not be
part of the graph).

For example, the left-hand side of the attributed rule shownbefore would be actually
described by the graph depicted in Figure 4.2: dashed loop edges are placed onto the
vertices that will get attributed, and the attribute valuesare actually connected to these
edges.

x

x y

Figure 4.2: Attributed Graph

4.1 Attributed Graph Grammars

We use algebraic specifications to define data types, and algebras to describe the val-
ues that can be used as attributes. Appendix A provides basicdefinitions of algebraic
specifications (these concepts will also be informally introduced as necessary).

A signatureSIG = (S,OP ) consists of a setS of sorts and a setOP of constant
and operations symbols. Given a set of variablesX (of sorts inS), theset of termsover
SIG is denoted byTOP (X) (this is defined inductively by stating that all variables and
constants are terms, and then all possible applications of operation symbols inOP to
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existing terms are also terms). Anequationis a pair of terms(t1, t2), and is usually
denoted byt1 = t2. A specificationis a pairSPEC = (SIG,Eqns) consisting of a
signature and a set of equations over this signature. Analgebrafor specificationSPEC,
or SPEC-algebra, consists of one set for each sort symbol ofSIG, calledcarrier set,
and one function for each operation symbol ofSIG such that all equations inEqns
are satisfied (satisfaction of one equation is checked by substituting all variables in the
equation by values of corresponding carrier sets and verifying whether the equality holds,
for all possible substitutions). Given twoSPEC-algebras, a homomorphism between
them is a set of functions mapping corresponding carrier sets that are compatible with
all functions of the algebras. The set obtained by the disjoint union of all carrier sets of
algebraA is denoted byU(A).

In the following, letloop(G) denote the subset of edges of a graph that are loops, that
is, edges that have the same source and target vertices. In a graph, some of its loop edges
will be considered as special edges: they will be used to connect a vertex to an attribute
value.

Definition 18 (Attributed Graph). Given a specificationSPEC, anattributed graphis a
tupleAG = (G,A, attrG) whereG = (VG, EG, srcG, trgG) is a graph,A is a SPEC-
algebra, and

attrG : AttrEG → U(A)

is a total function, withAttrEG ⊆ loop(G). Edges belonging toAttrEG are called
attribute edges.

A (partial) attributed graph morphismg between attributed graphsAG andAH is
a pair g = (gGraph, gAlg) consisting of a graph morphismgGraph = (gV ert, gEdge) and an
algebra homomorphismgAlg between the corresponding components that are compatible
with the attribution, i.e.

∀e ∈ AttrEG [gAlg(attrG(e)) = attrH(gEdge(e))]

An attributed graph morphismg is called total/ injective if all components are total/ in-
jective, respectively.

The role of the type graph is to define the types of vertices andedges of instance
graphs. It is thus adequate that the part of the type graph describing data elements consists
of names of types. Therefore, we require that the algebra of the type graph is a final one,
that is, an algebra in which all carrier sets are singletons.In practice, we will use the name
of the corresponding sort as the only element in a carrier setinterpreting it. With respect
to the attribute edges, there may be many different kinds of attribute edges for the same
vertex, and this is described by the existence of many of suchedges in the type graph. The
two requirements that we impose on a typed attributed graph are (i) attribute uniqueness:
there may be at most one attributed edge of each kind connected to the same vertex (that
is, at most one value for this attribute is associated to eachvertex), and (ii)attribute
completeness: in an attributed graph, all attributes of each vertex must be defined (that is,
once an attribute edge exists in the type graph, there must bea corresponding value in any
instance graph). These requirements make sense in practice, since when a list of attributes
is defined for a vertex, typically one wants that all verticesof each graph will have values
for those attributes (completeness), and these values are unique (uniqueness).

For example, Figure 4.3 shows a type graphT in which we can see three types of
attributes, two natural numbers and one boolean. GraphG is typed overT (the morphism
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is given by the dashed arrows). To have a cleaner graphical representation, we will draw
a typed attributed graph as shown in Figure 4.4. Here we namedthe attribute edges to
make clear which is which in an instance graph. The morphism on the algebra component
is not shown, but it is obvious: The algebra ofT will have as carrier setsTNat = {Nat}
andTBool = {Bool}, and the algebra forG will haveGNat = {0, 1, 2, 3, 4, 5, . . .} and
GBool = {true, false}. In this case, there is only one possible way to map between the
algebras ofG andT , that is to map all natural numbers to the elementNat andtrue and
false toBool.

T

G

Nat

Nat

Bool

1

true

3

2

false

2

Figure 4.3: Typed Attributed Graph

T

G

Nat (a1)

Nat (a2)

Bool

1 (a1)

true

3 (a1)

2 
(a2)false

2 (a2)

Figure 4.4: Typed Attributed Graph Graphical Notation

Definition 19 (Attributed Type Graph, Typed Attributed Graphs). Given a specification
SPEC, anattributed type graphis an attributed graphAT = (T,A, attrT ) in which all
carrier sets ofA are singletons.

A typed attributed graphis a tupleAGAT = (AG, tAG, AT ), whereAG is an at-
tributed graph,AT is an attributed type graph andtAG : AG → AT is a total attributed
graph morphism calledattributed typing morphismsuch that

• Attribute Uniqueness Condition.∀e1, e2 ∈ AttrEG

[srcG(e1) = srcG(e2) ⇒ tAG
Edge(e1) 6= tAG

Edge(e2)]

• Attribute Completeness Condition.∀e ∈ AttrET

[∃e′ ∈ AttrEG[tAG
Edge(e

′) = e]]

We denote byattrV the partial function that associates values to the verticesof an
attributed graph. This function is defined byattrV : VG × AttrET → U(A), for all
(v, at) ∈ VG × AttrET
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attrV (v, at) =

{
attrG(e) if ∃e ∈ AttrEG [srcG(e) = v ∧ attrT (tAG

Edge(e)) = at]
undefined otherwise

A typed attributed graph morphismbetween graphsAGAT andAHAT with attributed
type graphAT is an attributed graph morphismg betweenAG andAH such thattAG ≥
tAH ◦ g (that is,g may only map between elements of the same type).

Note: The functionattrV is well-defined because if there is an attribute edge at some
vertex, it will be the only one of its kind (due to the restriction imposed on typed attributed
graphs).

Since in the following we will be dealing only with typed attributed graphs, we will
omit the word “typed".

Rules specify patterns of behaviour of a system. Therefore,it is natural that variables
and expressions (terms) are used for the data part of the graph. We will restrict possible
attributes in left- and right-hand sides to be variables, and the possible relations between
these variables will be expressed by equations associated to each rule. When applying a
rule, all its equations will be required to be satisfied by thechosen assignment of values
to variables. The following definition is a slight modification of the usual descriptions of
rules using attributed graphs. Usually, a quotient term algebra satisfying all equations of
the specification plus the rule equations is used as attribute algebra. This gives rise to a
simple and elegant definition. However, since here our aim isto find a finite representa-
tion of attributed graph grammars in terms of relational structures, this standard definition
is not suitable (in a quotient term algebra, each element of acarrier set is an equivalence
class of terms, and this set is typically infinite for many useful data types). Therefore, we
just use terms as attributes, that is, we use the term algebraover the signature of the spec-
ification as attribute algebra (in the definition below, we equivalently use the term algebra
over a specification without equations). In such an algebra,each carrier set consists of
all terms that can be constructed using the operations defined for the corresponding sort,
functions just represent the syntactical construction of terms (for example for a termt and
algebra operationopA corresponding to an operatorop in the signature, we would have
opA(t) = op(t)). Consequently, all terms are considered to represent different values in a
term algebra, since they are syntactically different. The satisfaction of the equations will
be dealt with in the match construction, that is, in the application of a rule.

Definition 20 (Attributed Rule). Given a specificationSPEC = (SIG,Eqns). A rule
overSPEC with typeAT is a tupleattRule = (r,X, ruleEqns) where

• X is a set of variables over the sorts ofSPEC;

• r : (L, TOP (X), attrL)AT → (R, TOP (X), attrR)AT is an injective attributed graph
morphism over the specification(SIG,∅) in whichrV ert : VL → VR is a total func-
tion on the set of vertices, the algebra component is the identity on the term algebra
TOP (X), and all attributes used in the left- and right hand sides arevariables, i. e.⋃

e∈AttrEL
attrL(e) ∪

⋃
e∈AttrER

attrR(e) ⊆ X.

• ruleEqns is a set of equations using terms ofTOP (X) such that

– in all equationst1 = t2 ∈ ruleEqns, t1 ∈ X andt2 involves only variables
that are attributes ofL;
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– all variablesx used inR are either inL or there is an equationx = t2 in
ruleEqns.

An attributed graph grammar is composed of anattributed type graph, aninitial graph
and aset of rules.

Definition 21 (Attributed Graph Grammar). Given a specificationSPEC and aSPEC-
algebraA, a (typed) attributed graph grammaris a tupleAGG = (AT,AG0, R), such
that AT (the type of the grammar) is an attributed type graph overSPEC, AG0 (the
initial graph of the grammar) is an attributed graph typed overAT using algebraA, and
R is a set of rules overSPEC with typeAT .

To define a match, we have to relate, additionally to the graphmorphism, the variables
of the left-hand side of the rule to the actual values of attributes in the graph in which the
rule shall be applied. Additionally, the match construction must assure that all equations
of the specification and the rule equations are satisfied by the chosen assignment of vari-
ables to values. This will be achieved by first, lifting the rule to a corresponding one
having a quotient term algebra as attribute algebra. This isa standard construction in al-
gebraic specification. Then, the actual match will include an algebra homomorphism from
this quotient term algebra to the actual algebra used in the graph to which the rule is being
applied. The existence of this homomorphism guarantees that all necessary equations are
satisfied.

Definition 22 (Attributed Match). Let a specificationSPEC = (SIG,Eqns), a rule
overSPEC attRule = (r,X, ruleEqns), r : ALAT → ARAT , withAL = (L, TOP (X),
attrL), and aSPEC attributed graphAGAT be given. Anattributed matchm : ALAT →
AGAT is a total attributed graph morphismm = (mGraph, mAlg) such thatmEdge is injec-
tive,ALAT = (L, Teq(X), attrL), whereTeq(X) is the algebra obtained by constructing
the quotient term algebra of the specification(SIG,Eqns ∪ ruleEqns) using the set of
variablesX, and, for all termt ∈ TOP (X), attrL(t) = [attrL(t)].

Practically, given a set of variablesX and an algebraA, if we define an evaluation
functioneval : X → U(A), there is a unique way to construct the algebra homomorphism
(in case it exists for this assignment). First, we check whether all equations inEqns ∪
ruleEqns are satisfied by this assignment. If not, this assignment of values to variables
can not lead to an algebra homomorphism, and thus no match canexist using thiseval
function. Otherwise, we build the extension ofeval to (equivalence classes of) terms, that
will be denoted byeval : Teq(X) → U(A). This is the homomorphism we are looking
for.

Definition 23 (Rule Application). Given a specificationSPEC, a rule overSPEC with
typeAT attRule = (r,X, ruleEqns) with r : (L, TOP (X), attrL)AT → (R, TOP (X),
attrR)AT , and a matchm : (L, Teq(X), attrL)AT → (G,AG, attrG)AT the application
of rule attRule at matchm results in the typed attributed graphAHAT , with AH =
(H,AH , attrH), where

• H is the resulting graph of applying ruleL→ R to graphG (as in Def. 5);

• AH = AG;



50

• ∀e ∈ AttrEH

attrH(e) =

{
attrG(e) if e ∈ EG −mEdge(EL)
mAlg(attrR(e)) if e ∈ ER

• the typing morphismtAH is defined as in Def. 5 for vertices and edges, andtAH
Alg is

defined as follows:

∀a ∈ rng(attrH), tAH
Alg (a) =

{
tAG
Alg(a) if attrG(e) = a ∧ e ∈ EG −mEdge(EL)
tAR
Alg(w) if w ∈ rng(attrR) ∧mAlg(w) = a

Proposition 10. Rule application is well-defined (i.e. graphAH is actually an attributed
graph).

Proof. Following Definition 5,H is a well-defined graph and by Definition 18,AH = AG

is a SPEC-algebra. SinceattrG, attrR andmAlg define total functions,attrH is defined
for all loop edges ofH, i.e.,attrH is a total function betweenAttrEH andU(A). Then,
AH = (H,AH , attrH) is a well-defined attributed graph. The attribute completeness
condition is satisfied because, each vertex ofH must be either inG or inR (or in both):
in any case, sinceR andG are attributed graphs, all attributes of this vertex must be
present and will be copied toH by construction (Def. 5). Attribute uniqueness is due
to the fact thatL, R andG have at most one attribute of each kind and that the match
is total: in this case, either this value of this attribute inthe resulting graphH will be
given byG (if r preserves this attribute) or byR (if r changes the value of this attribute).
Moreover, since the algebra component of the typing morphism is the identity and the
other components are compatible with typing (due to Def. 5),AHAT is a well-defined
typed attributed graph.

4.2 Relational Structures Representing Attributed Graph Grammars

In this section we describe the representation of attributed graph grammars by rela-
tional structures. The following definitions are proposed assuming a fixed specification
SPEC and a fixed algebra A over SPEC. The relational structurerepresenting an attributed
graph is essentially Def. 7, including data values in the domain and adding one relation to
represent the attribution. Note that only the used data values were included in the domain,
not the whole algebra.

Definition 24 (Relational Structure Representing an Attributed Graph). LetRagr = {vert,
inc, attr} be a set of relations, wherevert is unary, inc is ternary andattr is binary.
Given an attributed graphAG = (G,A, attrG), a relational structure representingAG
is aRagr-structure|AG| = 〈DAG, (RAG)R∈Ragr

〉, where:

• DAG = VG ∪EG ∪ rng(attrG)

• vertAG and incAG are the relations defined in Def. 7 (relational structure repre-
senting a graph);

• attrAG ⊆ EG × rng(attrG) with (e, a) ∈ attrAG ⇐⇒ attrG(e) = a

Proposition 11. The relational structure|AG| is well-defined.
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Proof. By Proposition 1,〈VG ∪ EG, vertAG, incAG〉 is a well-defined graph. Since the
binary relationattrAG is defined according toattrG, it specifies a value for each attribute
edge. Then,|AG| is well-defined.

The definition of relational morphisms between attributed graphs only adds a rela-
tionship between the data values, and requires basically the same conditions as in Def.
8.

Definition 25 (Relational Attributed Graph Morphism). Let |AG| = 〈VG ∪ EG ∪
rng(attrG), {vertAG, incAG, attrAG}〉 and |AH| = 〈VH ∪ EH ∪ rng(attrH), {vertAH ,
incAH , attrAH}〉 beRagr-structures representing attributed graphs. Arelational attributed
graph morphismg from |AG| to |AH| is defined by a setg = {gV , gE, gA} of binary re-
lations where:

• gV andgE form a relational representation of a graph morphism between the un-
derlying graphs (Def. 8);

• gA ⊆ rng(attrG) × rng(attrH) is a partial function that relates attributes of|AG|
to attributes of|AH|

such that the following conditions are satisfied:

• Attribute Consistency Condition.∀a, a′,
[gA(a, a′)] ⇒ ∃e, e′[attrAG(e, a) ∧ attrAH(e′, a′) ];

• Attributed Morphism Commutativity Condition.∀e, a, e′, a′,
[gA(a, a′) ∧ attrAG(e, a) ∧ attrAH(e′, a′) ⇒ gE(e, e′)]

g is called total/injective if relationsgV , gE andgA are total/injective functions, respec-
tively.

Proposition 12. A relational attributed graph morphismg = {gV , gE, gA} from |AG| to
|AH| is well-defined.

Proof. By Proposition 2,{gV , gE} is a well-defined graph morphism.gA is a partial
function that, according to the attribute consistency condition, relates attributes of|AG|
to attributes of|AH|. Moreover, due to the attributed morphism commutativity condition,
the relations established bygA must be compatible with the relations established bygE.

The relational representation of typed attributed graphs replaces the relational repre-
sentations of typed graphs and graph morphism of Def. 10 by relational representation of
attributed typed graphs and attributed graph morphism, respectively.

Definition 26 (Relational Representation of a Typed Attributed Graph). Given a typed
attributed graphAGAT = (AG, tAG, AT ) with tAG = (tAG

V ert, t
AG
Edge, t

AG
Alg), a relational

representation ofAGAT is given by a tuple|AGAT | = 〈|AG|, |tAG|, |AT |〉 where:

• |AG| and|AT | areRagr-structures representingAG andAT , respectively;

• |tAG| = {tAG
V ert, t

AG
Edge, t

AG
A } is a total relational attributed graph morphism from

|AG| over |AT |, with tAG
A corresponding totAG

Alg restricted to the elements that are
in rng(attrG) andrng(attrT );
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Proposition 13. The relational representation of a typed attributed graph is well-defined.

Proof. By Proposition 11, the relational representation of attributed graphs is well-defined
and by Proposition 12, the relational representation of an attributed graph morphism is
well-defined. Besides,|AG| defines the same set of edges ofAG (by Def. 22) and the
relational attributed graph morphism between the relational attributed graphs represents
the same morphism given. Then, the attribute uniqueness andcompleteness conditions
are still valid.

The definition of relational morphisms between attributed graphs basically extends
the (typed morphism) compatibility condition of Def. 11 with the relationship between
data values included in the graph morphism.

Definition 27 (Relational (Typed) Attributed Graph Morphism ). Let |AG|, |AH| and
|AT | beRagr-structures representing attributed graphs, where|AT | is the relational rep-
resentation of an attributed type graph, and let|tAG| = {tAG

V , tAG
E , tAG

A } and |tAH | =
{tAH

V , tAH
E , tAH

A } be total relational attributed graph morphisms from|AG| and |AH| to
|AT |, respectively. Arelational attributed (typed) graph morphism from|AGT | to |AHT |
is defined by a relational attributed graph morphism|g| = {gV , gE, gA} from |AG| to
|AH|, such that the attributed typed morphism compatibility condition is satisfied:

• (Attributed Typed Morphism) Compatibility Condition.∀x, x′, y,
[gV (x, x′) ∧ tAG

V (x, y) ⇒ tAH
V (x′, y)];

[gE(x, x′) ∧ tAG
E (x, y) ⇒ tAH

E (x′, y)]; and
[gA(x, x′) ∧ tAG

A (x, y) ⇒ tAH
A (x′, y)].

Proposition 14. The relational representation of a typed attributed graph morphism is
well-defined.

Proof. Following Proposition 12, a relational graph morphism is well-defined. The (typed
morphism) compatibility condition guarantees that the relational attributed typed graph
morphism only maps elements of the same type.

The relational representation of an attributed rule is given by a relational typed at-
tributed graph morphism between typed attributed graphs together with two relations: a
unary relation to represent the set of variables overSPEC and a binary relation to model
the set of equations.

Definition 28 (Relational Representation of an Attributed Rule). Given a ruleattRule
= (r,X, ruleEqns) overSPEC with typeAT , such thatr = ((rV ert, rEdge), rAlg)), r :
ALAT → ARAT , withAL = (L, TOP (X), attrL) andAR = (R, TOP (X), attrR), a re-
lational representation ofattRule is given by a tuple|attRule| = 〈|ALAT |, |r|, |ARAT |,
var, |ruleEqns|〉 where:

• |ALAT | and|ARAT | are relational representations of typed attributed graphsALAT

andARAT , respectively;

• |r| = {rV ert, rEdge, rA} is a relational typed attributed graph morphism from|ALAT |
to |ARAT |, whererA corresponds torAlg restricted to the elements that are in
rng(attrL) andrng(attrR);

• var ⊆ X, withx ∈ var ⇐⇒ x ∈ X;
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• |ruleEqns| ⊆ TOP (X) × TOP (X), with (t1, t2) ∈ |ruleEqns| ⇐⇒ (t1, t2) ∈
ruleEqns.

Proposition 15. A relational representation of an attributed rule is well-defined.

Proof. According to Proposition 13 the relational representationof typed attributed graphs
is well defined and according to Proposition 14 the relational representation of a typed at-
tributed graph morphism is well-defined. The definition of the relational typed attributed
graph morphism guarantees that it represents the morphism given. Then, the morphism
is injective and the component that relates vertices is total. Besides,var is a set of vari-
ables over the sorts ofSPEC and|ruleEqns| defines the same setruleEqns (and thus,
satisfies the same conditions asruleEqns).

The definition of relational structure associated to an attributed graph grammar is anal-
ogous to the case without attributes, we just have to add the components that correspond
to the values of attributes and map these attributes. Remindthat we assume a fixed speci-
ficationSPEC and an algebraA overSPEC.

Definition 29 (Relational Structure Associated to an Attributed Graph Grammar). Let
RAGG = {vertAT , incAT , attrAT , vertAG0, incAG0, attrAG0, t

AG0
V , tAG0

E , tAG0
A , (vertALi,

incALi, attrALi, t
ALi
V , tALi

E , tALi
A , vertARi, incARi, attrARi, t

ARi
V , tARi

E , tARi
A , riV , riE , riA,

vari, |ruleEqns|i)i∈{1,...,n}} be a set of relation symbols. Given a specificationSPEC,
a corresponding algebraA, and an attributed graph grammarAGG = (AT,AG0, R)
overSPEC andA, whereR has cardinalityn, theRAGG-structure associated toAGG,
denoted by|AGG|, is the tuple〈DAGG, (r)r∈RAGG

〉 where

• DAGG = VAGG ∪EAGG ∪AAGG is the set of vertices, edges and attribute values of
the graph grammar, where:VAGG∩EAGG∩AAGG = ∅, VAGG = VT ∪VG0∪ (VLi∪
VRi)i∈{1,...,n},EAGG = ET ∪EG0 ∪ (ELi ∪ERi)i∈{1,...,n} andAAGG = rng(attrT )∪
rng(attrG0) ∪ (rng(attrLi) ∪ rng(attrRi))i∈{1,...,n}

• vertAT , incAT andattrAT model theattributed type graph.

• vertAG0, incAG0, attrAG0, tAG0
V , tAG0

E and tAG0
A model theinitial graph typed over

AT , i.e., they are the relations that compose the relational representation ofAG0AT .

• Each collection(vertALi, incALi, attrALi, t
ALi
V , tALi

E , tALi
A , vertARi, incARi, attrARi,

tARi
V , tARi

E , tARi
A , riV , riE , riA, vari, |ruleEqns|i) defines arule.

Proposition 16. The relational structure|AGG| is well-defined.

Proof. Follows immediately from Propositions 11, 13 and 15.

The definition of the attributed match is also analogous to the one without attributes.
However here the match should also include the mapping between the corresponding
algebras. Since an assignment of values to the variables involved in the rule uniquely
determines the corresponding algebra homomorphism, we will restrict the mapping to
these variables in the relational representation of an attributed match. Note thatX may
contain variables that are not inL, and therefore the image of this assignment may not
be completely in the graph to which the rule is being applied.That is why the relational
representation of an attributed match has 4 components: therelational representations of
the left-hand side of a rule, the graph to which the rule shallbe applied, and the match
morphism; together with a relation representing the complete assignment of values to
variables described by the match.
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Definition 30 (Relational Representation of an Attributed Match). Given a specification
SPEC, a rule overSPEC attRule = (r,X, ruleEqns) with r : ALAT → ARAT , and
a matchm = ((mV er, mEdge), mAlg) fromALAT to AGAT , withAG = (G,AG, attrG),
a relational representation ofm is given by a tuple〈asg, |ALAT |, |m|, |AGAT |〉 where:

• asg ⊆ X × U(AG) is a relation that corresponds to the algebra homomorphism
mAlg, restricted to the variables inX;

• |ALAT | and|AGAT | are relational representations of typed attributed graphsALAT

andAGAT , respectively;

• |m| = {mV ert, mEdge, asgL} is a relational typed attributed graph morphism from
|ALAT | to |AGAT | where

– asgL is a restriction ofasg to the variables appearing inL

Proposition 17. A relational representation of an attributed match is well-defined.

Proof. According to Proposition 13 the relational representationof typed attributed graphs
is well defined and according to Proposition 14 the relational representation of a typed at-
tributed graph morphism is well-defined. The definition of the relational typed attributed
graph morphism guarantees that it represents the morphism given. Then, the morphism
is total, the component that relates edges is injective andasg satisfies all equations in
ruleEqns.

For the definition of rule application as a transduction, everything of Def. 16 remains
the same. We have just to extend the condition of rule application and add formulas, which
will respectively specify the attribution function of graphs, the data values component of
typing morphisms and the set of variables and equations of rules. That is, some formulas
must be added in the definition of∆. Table 4.1 describes the intuitive meaning and the
notation used in the following definition.

Definition 31 (Rule Application as Definable Transduction for AttributedGraph Gram-
mars). LetAGG = (AT,AG0, R) be an attributed graph grammar over a specification
SPEC and an algebraA, such that the sets of edges and vertices of graphsAT ,AG0,ALi
andARi are disjoint, and let|AGG| be the relational structure associated toAGG. Given
a ruleattRule = (αi,X, ruleEqns), αi : ALiAT → ARiAT , ofAGG and a correspond-
ing matchm = ((mV er, mEdge), mAlg) fromALiAT toAG0AT , with the relational repre-
sentations respectively given by|attRule| = 〈|ALiAT |, |αi|, |ARiAT |, var, |ruleEqns|〉
and 〈asg, |ALiAT |, |m|, |AG0AT |〉, ∆ = (ϕ, ψ, (θq)q∈RAGG

), with W = ∅, defines a
transduction that maps an attributed graph grammar|AGG| to an attributed graph
grammar |AGG|′, such that|AG0|′ (initial state of|AGG|′) corresponds to the result of
the application of rule|attRule| at match|m| in |AG0| (initial state of|AGG|), where:

ϕ expresses that|m| = {mV , mE , asgL} defines a total relational typed attributed graph
morphism, withmE injective (as in Def.16) and thatasg satisfies all equations in
|ruleEqns|.

ψ, θvertAT
, θincAT

, θvertAG0
, θincAG0

, θtAG0

V
, θtAG0

E
, θvertALi

, θincALi
, θtALi

V
, θtALi

E
, θvertARi

,
θincARi

, θtARi
V

, θtARi
E

, θαiV
, θαiE

are the same formulas specified in Def. 16.

θattrAT
is the formulaattrAT (x, y).



55

θattrAG0
(x, y) is the formulanattrAG0(x, y) ∨ nattrARi(x, y).

θtAG0

A
(x, t) is the formulantAG0

A (x, t) ∨ ntARi
A (x, t).

θattrALi
, θtALi

A
, θattrARi

, θtARi
A

, θαiA
, θvari

, θ|ruleEqns|i are respectively the formulas
attrALi(x, y), tALi

A (x, y), attrARi(x, y), tARi
A (x, y), αiA(x) vari(x) and

|ruleEqns|i(x, y), for i = 1 .. n.

Table 4.1: Formulas used inθ specifications
Notation Intuitive Meaning Formula

attrG(x, y) x is an attribute edge of graphG
with valuey.

attrG(x, y)

tGA(x, y) x is a value of graphG of typey. tGA(x, y)

vari(x) x is a variable over the sorts of
SPEC.

vari(x)

|ruleEqns|i(x, y) x = y is an equation overSPEC. |ruleEqns|i(x, y)

nattrAG0(x, y) x is an attribute edge of graph
AG0 with valuey that is not im-
age of the match.

attrAG0(x, y) ∧ ∄w
(
mE(w, x)

)

nattrARi(x, y) x is an attribute edge of graph
ARi with value w, that is as-
signed, by the match component
asg, to y

∃w
[
attrARi(x,w) ∧ asg(w, y)

]

ntAG0
A (x, t) x is a value of graphAG0 of type

t of an attribute edge that is not
image of the match.

∃y
(
attrAG0(y, x)

)
∧

∧∄w
(
mE(w, y)

)
∧ tAG0

A (x, t)

ntARi
A (x, t) x is a value assigned byasg to the

value of an attribute edge of type
t of graphARi .

∃y,w
[
attrARi(y,w) ∧ asg(w, x) ∧

tARi
A (w, t)

]

The well-definedness of the rule application as a definable transduction is still valid
for the attributed version. The proof is analogous to the proof of Proposition 9. We have
just to include the relations that define the attributed version of the graphs and morphisms.

Proposition 18. The rule application as a definable transduction for attributed graph
grammars is well-defined.

Proof. Assume a fixed specification SPEC and a fixed algebraA. Let |AGG|′ be the result
of the transduction applied to attributed graph grammar|AGG| over SPEC correspond-
ing to the application of relational rule|attRule| at relational match〈asg, |ALiAT |, |m|,
|AG0AT |〉, with |m| = {mV , mE , asgL} . Considering that the given rule|attRule| =
〈|ALiAT |, |αi|, |ARiAT |, var, |ruleEqns|〉, with |αi| = {αiV , αiE , αiA} and the relational
match specified above are the relational representations ofattRule = (αi, X, ruleEqns)
over SPEC, withαi : ALiAT → ARiAT , andm : ALiAT → AG0AT , respectively, and
consideringAHAT with AH = (H,AH , attrH) to be the typed attributed graph obtained
by the application ofattRule to graphAG0AT at matchm (according to Definition 23)
we have to show that1:

1Each relationr of |AGG|′ will be denoted byr′ to avoid confusion with the relations of|AGG| (de-
noted by the unprimed names).
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1. vert′AT , inc′AT andattr′AT are the relations of aRagr-structure|AT |′ = 〈V ′
T ∪ E ′

T∪
rng(attrT ), {vert′AT , inc

′
AT , attr

′
AT}〉 representing graphAT = (T,A, attrT ), with

T = (VT , ET , srcT , trgT ).

• x ∈ vert′AT iff x ∈ VT , and(x, y, z) ∈ inc′AT iff x ∈ ET ∧ srcT (x) = y ∧
trgT (x) = z: Both are assured by Proposition 9.

• (x, y) ∈ attr′AT iff (x, y) ∈ ET × rng(attrT ) ∧ attrT (x) = y: By θattrAT

definition, x ∈ attr′AT iff (x, y) ∈ attrAT . SinceattrAT is the relation of
a Ragr-structure representingAT , then (following Definition 24)(x, y) ∈
attrAT iff (x, y) ∈ ET × rng(attrT ) ∧ attrT (x) = y.

2. vert′AG0, inc
′
AG0 andattr′AG0 are the relations of aRagr-structure|AG0|′ = 〈V ′

G0 ∪
E ′

G0 ∪ rng(attr
′
G0), {vert

′
AG0, inc

′
AG0, attr

′
AG0}〉 representing graphAH = (H,A,

attrH), withH = (VH , EH , srcH , trgH).

• x ∈ vert′AG0 iff x ∈ VH , and (x, y, z) ∈ inc′AG0iff x ∈ EH ∧ srcH(x) =
y ∧ trgH(x) = z: Follows from Proposition 9.

• (x, y) ∈ attr′AG0 iff (x, y) ∈ EH × rng(attrH) ∧ attrH(x) = y: By θattrAG0

definition,x ∈ attr′AG0 iff
(
(x, y) ∈ attrAG0 ∧ ∄w, (w, x) ∈ mE

)
or ∃w

(
(x,

w) ∈ attrARi ∧ (w, y) ∈ asg
)

– Let (x, y) ∈ attrAG0, such that∄w, (w, x) ∈ mE. Since|AG0| is the
relational representation ofAG0, we havex ∈ EG0 ∧ y ∈ rng(attrG0) ∧
attrG0(x) = y. Also, as |m| is a relational representation ofm =
((mV ert, mEdge), mAlg), by Definition 30,∄w,mEdge(w) = x. As a re-
sult, x ∈ EG0 − mEdge(EALi) , i.e. by Definition 23,x ∈ EH . In this
case, the attribute ofx in H is the same ofG0, i.e., attrH(x) = y and
y ∈ rng(attrH).

– Let (x, w) ∈ attrARi, with (w, y) ∈ asg. Considering that|ARi| is
a relational representation ofRi we havex ∈ ERi ∧ w ∈ rng(attrRi) ∧
attrRi(x) = w. Consequently, by Definition 23,x ∈ EH . In this case, the
attribute ofx in H is given by the result ofmAlg applied to the attribute
of x, i.e., the result ofmAlg(w). Sinceasg corresponds to the algebra
homomorphismmAlg restricted to the variables inX, we havemAlg(w) =
y. Then,attrH(x) = mAlg(w) = y andy ∈ rng(attrH).

The proof in the other direction (only if case) is analogous.

3. tAG0
V

′, tAG0
E

′ andtAG0
A

′ are from the set|tAG0|′ such that the tuple〈|AG0|′, |tAG0|′, |AT |′〉
is a relational representation of the typed attributed graphAHAT = (AH, tAH , AT ).

• (x, t) ∈ tAG0
V

′
iff tHV ert(x) = t, and(x, t) ∈ tAG0

E

′
iff tHEdge(x) = t: Follows

from Proposition 9.

• (x, t) ∈ tAG0
A

′
iff tHAlg(x) = t: By θtAG0

A
definition,(x, t) ∈ tAG0

A

′
iff(

∃y, (y, x) ∈ attrAG0 ∧ ∄w, (w, y) ∈ mE∧ (x, t) ∈ tAG0
A

)
or
(
∃y, w,

(
(y, w) ∈

attrARi ∧ (w, x) ∈ asg ∧ (w, t) ∈ tARi
A

))
.

– Let (x, t) ∈ tAG0
A , such that∃y, (y, x) ∈ attrAG0 and∄w, (w, y) ∈ mE.

Since|AG0|, |m| and〈|AG0|, |tAG0|, |AT |〉 are relational representations
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ofAG0,m andAG0AT , respectively, we havey ∈ EG0, ∄w,mEdge(w) =
y, attrG0(y) = x andtAG0

Alg (x) = t. I.e.,x ∈ (EG0 −mEdge(ELi)). Then,
by Definition 23,tHAlg(x) = tAG0

Alg (x) = t.
– Let (y, w) ∈ attrARi, (w, t) ∈ tARi

A and(w, x) ∈ asg. Since〈|ARi|, |tARi|,
|AT |〉 is the relational representation of the attributed typed graphARiAT ,
we havey ∈ ERi, w ∈ rng(attrRi) andtARi

Alg (w) = t. Also, considering
thatasg corresponds to the algebra homomorphismmAlg restricted toX,
mAlg(w) = x. Thus, by Definition 23,tHAlg(x) = tARi

Alg (w) = t.

The only if proof is similar.

4.3 Token Ring Example with Attributed Graphs

In this subsection we modify and extend the token-ring protocol. The basic idea of the
protocol remains the same: all stations are connected in a ring and each station can receive
transmissions only from its immediate neighbor. Permission to transmit is granted by a
token that circulates around the ring. Now, we include a buffer to store received messages
in each station, and each station has its own buffer size. Forthis example, we will use
the typesNat for natural numbers andStatus, that can be either active or standby. These
data types can be described by the algebraic specificationTRing= (SIGTRing , Eqns):
the signature is shown in Figure 4.5, we omitted the equations (they are the usual ones for
the corresponding functions on natural numbers, there are no equations for sortStatus).

TRing : sorts Status, Nat
opns

active :→ Status
standby :→ Status
0 : → Nat
succ : Nat→ Nat
+ : Nat× Nat→ Nat
- : Nat× Nat→ Nat
mod : Nat× Nat→ Nat

Figure 4.5: SignatureSIGTRing

Models for algebraic specification are algebras, and they are constructed by assign-
ing a set to each sort name (called carrier set) and a functionto each operation symbol.
Moreover, functions shall be compatible with the equationsof the specification. In our
approach, we will use three different models for each specification: a final model (to de-
fine the type graph), a term-algebra (to be used in rules), anda concrete “value" algebra
(that is used to attribute the initial and all reachable graphs). For the token ring example,
these algebras are shown in Figures 4.6, 4.7 and 4.8, respectively.

All these algebras are possible interpretations of the symbols in TRing. The carrier
sets define which elements may be used as attribute values. There is a unique homomor-
phism from any algebra toF TRing (because there is only one possible way in which we
can map elements of the corresponding carrier sets). Moreover, if we fix an assignment
from X to values inATRing, there is also only one possible way in which we can map
T TRing(X) toATRing.
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FStatus = {Status}

FNat = {Nat}

activeF :→ FStatus activeF () = Status

standbyF :→ FStatus standbyF () = Status

0F :→ FNat 0F () = Nat

succF : FNat → FNat ∀n ∈ FNat : succF (n) = Nat

+F : FNat × FNat → FNat ∀n1, n2 ∈ FNat : +F (n1, n2) = Nat

−F : FNat × FNat → FNat ∀n1, n2 ∈ FNat : −F (n1, n2) = Nat

modF : FNat × FNat → FNat ∀n1, n2 ∈ FNat : modF (n1, n2) = Nat

Figure 4.6:Final AlgebraF TRing = (FStatus, FNat, activeF , standbyF , 0F , succF ,+F ,−F , modF )

X = (XStatus,XNat) with XStatus = {x, y} andXNat = {n,m, p}

TStatus = {active, standby, x, y}

TNat = {0, n,m, p, succ(0), succ(n), succ(m), succ(p), succ(succ(0)), succ(succ(n)),
succ(0) + n, n + m, ...}

activeT :→ TStatus activeT () = active

standbyT :→ TStatus standbyT () = standby

0T :→ TNat 0T () = 0

succT : TNat → TNat ∀n ∈ TNat : succT (n) = succ(n)

+T : TNat × TNat → TNat ∀n1, n2 ∈ TNat : +T (n1, n2) = n1 + n2

−T : TNat × TNat → TNat ∀n1, n2 ∈ TNat : −T (n1, n2) = n1 − n2

modT : TNat × TNat → TNat ∀n1, n2 ∈ TNat : modT (n1, n2) = n1 mod n2

Figure 4.7:Term AlgebraT TRing(X) = (TStatus, TNat, activeT , standbyT , 0T , succT , +T ,−T , modT )
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AStatus = {act, stb}

ANat = {0, 1, 2, 3, 4, 5, 6, ...}

activeA :→ AStatus activeA() = act

standbyA :→ AStatus standbyA() = stb

0A :→ ANat 0A() = 0

succA : ANat → ANat usual successor function for naturals

+A : ANat × ANat → ANat usual sum function for naturals

−A : ANat × ANat → ANat usual subtraction function, withn1 − n2 = 0, if n1 < n2

modA : ANat × ANat → ANat usual modulo function for naturals

Figure 4.8:Value AlgebraATRing = (AStatus, ANat, activeA, standbyA, 0A, succA,+A,−A, modA)

Now that the data part is defined, we can construct the grammarthat describes the
behaviour of the modified token ring. The type graph and the initial graph are depicted in
Figure 4.9. The rules are illustrated in Figure 4.10. In the graphical representation of rules,
we only draw the attribute (edges) that are modified by the rule (however, formally, all
attributes are part of each graph). Also, for convenience, we used same variable names in
different rules (but this specification can be translated toan equivalent one using different
variable names).

Node

Tok

MsgNxt

Status

(Sta)
Nat

(Lim)

Nat

(Cmsg)

T

N01

N03N02

Nxt01 Nxt03

Nxt02

stb (Sta 01)

Tok01

10 (Lim01)

0 (Cmsg01)

0 

(Cmsg02)

15 

(Lim02)

stb

(Sta02)

stb (Sta 03)

0 

(Cmsg03)
20 

(Lim03) G0

Figure 4.9: Type Graph and Initial Graph

Type graph: We replaced theAct and Stb edges of the previous specification by an
attribute of typeStatus (Sta). Moreover, we included two attributes of typeNat:
one to control how many messages are currently in a station (Cmsg) and other to
establish a limit to the buffer of received messages in each node (Lim). Note that,
since the final algebra is used to construct the type graph, the values associated to
attributesCmsg, Lim andSta areNat, Nat andStatus, respectively. Thus, this
attributed graph actually defines not only the types of graphical elements, but also
the types of (data) attributes that will be allowed in any instance graph.

Initial graph: The values of attributes are taken from algebraATRing. Initially, no station
is transmitting through the network (the value of edges of typeSta is stb) and the
message buffers are empty (the value of eachCmsg-typed edge is0). The values
of theLim-typed edges specify the limit of received (and not treated)messages of
each station.
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Rules: We use the term algebraT TRing(X) to specify the rules. Rulesr1, r2 and r4
keep, respectively, the same meaning of rulesα1, α2 andα4 previously presented,
but now there is an attribute (edge) of typeSta, attributed with a variable namex.
Equations are used to ensure that each rule can only be applied in case the node
is in the required status:x = standby for rulesr1 andr2 or x = active for rule
r4. The status of the node after the application of the rule is determined by the
variable in the right-hand side and the respective equationof the rule. Ruler3 (as
α3) also handles the receipt of a message by astandby node. This rule can only be
applied if the buffer of received messages has not achieved the limit, i.e., ifm < p
(determined by the condition(m modp) = m). In this case, the message is passed
to the next node and the counter of messages is incremented. Rule r6 simulates the
treatment of the message by a station by decrementing the message counter. Rule
r5 (asα5) can be applied to insert a new node into the ring. The node is inserted
with a buffer that stores at most 10 messages.

Next, we describe the main steps involved in the proof of the following property: the
buffer of each node never exceeds its limit. First of all, we must define two functions in
the standard library: one to determine pairs of edges of fixedtypes with source and tar-
get in the same vertex, and another to indicate the attributes of edges of a reachable graph.

[Library function Loop: Edges with source and target in the same vertex]This
function that returns pairs of edges(e, f), with e of typet1 andf of typet2, with source
and target in the same vertex:

Loopt1,t2 G0 =
{

(e, f) | ∃x [incG0(e, x, x) ∧ incG0(f, x, x)] ∧ tG0
E (e, t1) ∧ tG0

E (f, t2)
}

(4.1a)

Loopt1,t2 ap(αi,m) g =
{

(e, f) |
[
∃x [incRi(e, x, x) ∧ incRi(f, x, x)] ∧ tRi

E (e, t1)∧

∧ tRi
E (f, t2)

]
∨ (4.1b)

[
(e, f) ∈ Loopt1,t2 g ∧ ∄w mEαi

(w, e) ∧ ∄w mEαi
(w, f)

]
∨

(4.1c)
[
∃x incg(e, x, x) ∧ tgE(e, t1) ∧ ∄w mEαi

(w, e)∧

∧ ∃y incRi(f, y, y) ∧ tRi
E (f, t2) ∧ ∃z [αiE(z, y)∧

∧ mVαi
(z, x)]

]
∨ (4.1d)

[
∃x incg(f, x, x) ∧ tgE(f, t2) ∧ ∄w mEαi

(w, f)∧

∃y incRi(e, y, y) ∧ tRi
E (e, t1)∧

∃z [αiE(z, y) ∧ mVαi
(z, x)]

]}
(4.1e)

For the initial graph, the pairs are determined by relationsincG0 and tG0
E of |GG|

(4.1a). For the result of the application of ruleαi at matchm = {mVαi
, mEαi

, asgL} to
graphg, the pairs are either edges of the right-hand side of the rule(4.1b), edges of graph
g with source and target in the same vertex that are not image ofthe match (4.1c), or pairs
of edges, one ofRi and other ofg (that is not image of the match), which have source and
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Figure 4.10: Rules

target in the same vertex after the application of the rule ((4.1d) or (4.1e)). The guarantee
of having source and target in the same vertex after the application of the rule is stated by
the last term of (4.1d) and (4.1e).�

[Library function AttrE: Attributes of edges of a reachable graph] The set of pairs
(edge, attribute) of a reachable graph are recursively defined by:

AttE G0 = {(e, a) | attrG0(e, a)} (4.2a)

AttE ap(αi,m) g = {(e, a) | attrRi(e, a) ∨ [(e, a) ∈ AttE g ∧ ∄w mEαi
(w, e)]} (4.2b)

If we take the initial graph (4.2a), the pairs are specified bythe relationattrG0 of the
relational structure. If we consider the graph obtained from the application of ruleαi at
matchm = {mVαi

, mEαi
, asgL} to graphg (4.2b), the attributes are either the attributes

of edges of the right-hand side of the rule or the attributes of edges (that are not image of
the match) ofg. �

The proof strategy applied in verification of properties is the same described before:
we use mathematical induction, considering that the relations of the relational structure
define axioms to be used during the proof. Now, since we use variables as attributes in the
left- and right-hand sides of rules, in many cases, at the inductive step the development of
the proof involves variables. In this case, in order to establish the property, we must regard
the equations of the applied rule as “local axioms". We say “local" because the equations
of each rule can only be regarded as axioms for the step of the proof that involves the
application of that rule. This can be done because, to apply arule, we assume that there is
a match that makes these equations true, and the property is proven only for such matches
(because in other cases, it would not be possible to apply therule). Now we can state the
property to be proven.

Property 3. The attributes of edges of typeCmsg are always less than the attributes of
edges of typeLim, if they both have source and target in the same vertex.

According to the definitions previously established in the library, the property to be
proven can be enunciated by the formula:
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∀(e1, e2) ∈ LoopCmsg,Limreach_gr.[(e1, a1) ∈ AttE reach_gr ∧(e2, a2) ∈ AttE reach_gr ⇒
⇒ a1 ≤ a2]

Proof.

Basis:We have to prove

∀(e1, e2) ∈ LoopCmsg,LimG0.[(e1, a1) ∈ AttE G0 ∧ (e2, a2) ∈ AttE G0 ⇒ a1 ≤ a2]

Considering the result of the functionLoopCmsg,LimG0 (equations (4.1)) and the definition
of AttE (equation (4.2a)), this formula reduces to
∀(e1, e2) ∈ {(Cmsg01, Lim01), (Cmsg02, Lim02), (Cmsg03, Lim03) .[attrG0(e1, a1) ∧
attrG0(e2, a2) ⇒ a1 ≤ a2]

Now the implication must be verified for each pair of edges. For the first instance, con-
sulting the relational structure associated to the graph grammar, the pair of edges/attributes
that satisfies the antecedent are(Cmsg01, 0) and(Lim01, 10). Since0 ≤ 10 the conse-
quent is evaluated to true. The verification for other instances is similar. Thus, the prop-
erty is valid for the initial graph.

Hypothesis:Assume that the property is valid for any reachable graphG:

∀(e1, e2) ∈ LoopCmsg,LimG.[(e1, a1) ∈ AttE G ∧ (e2, a2) ∈ AttE G⇒ a1 ≤ a2]

Inductive Step: We have to prove

∀(e1, e2) ∈ LoopCmsg,Limap(ri,m)G.[(e1, a1) ∈ AttE ap(ri,m)G ∧
∧ (e2, a2) ∈ AttE ap(ri,m)G⇒ a1 ≤ a2]

Since we have 6 rules, we have 6 cases to consider (note that, although not depicted in
Figure 4.10, all attribute edges are part of each left- and right-hand side of the rules, due
to the attribute completeness requirement):

Rule r1: First, we have to constructLoopCmsg,Limap(r1, m)G and then check whether
these pairs satisfy the required property. Since the kinds of edges we are consider-
ing are attribute edges and due to the attribute completeness property required for
(typed) attributed graphs, the graphsG, L andR will have values for both attributes
Cmsg andLim. This means that we only have to consider the cases describedby
equations (4.1b) and (4.1c) in the definition ofLoop:

(i) A pair (e, f) that satisfies (4.1b): In rule r1, such pairs are(Cmsg13, Lim13)
and(Cmsg14, Lim14). Assume that the names of variables associated to at-
tributesCmsg and Lim in graphR1 are cmsg13 and lim13 (connected to
nodeN13) and cmsg14 and lim14 (connected to nodeN14). Then, the
functionAttE will returnattrR1(Cmsg13, cmsg13) andattrR1(Lim13, lim13),
plus all pairsattrG(Cmsgi, cmsgi) andattrG(Limi, limi), for each nodei of
G that is not in the image of matchm. Thus, what we have to verify is if
cmsg13 ≤ lim13 and cmsg14 ≤ lim14. But, since these attributes were
not changed by the rule, this is the same as verifying ifcmsg11 ≤ lim11
andcmsg12 ≤ lim12 (the corresponding variables in the left-hand side of the
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rule). But considering that there is a matchmmapping the left-hand side toG,
there are corresponding values inG for these variables. By induction hypoth-
esis, all pairs(eG, fG) that come fromG satisfy the property, and therefore
we conclude that the pair(e, f) also satisfies the property.

(ii) A pair (e, f) that satisfies (4.1c): This pair is inLoopCmsg,LimG, and therefore
by induction hypothesis satisfies the property.

Rulesr2 and r4: Analogous to ruler1.

Rule r3: We start analogously to the case ofr1, find out that we have to prove thatn ≤ p
andcmsg34 ≤ lim34. The latter is analogous to caser1. To prove thatn ≤ p, we
have to consider the equations ofr3 as axioms. Then, consideringn = m + 1 and
m mod p = m as valid formulas, and using the pre-defined theories corresponding
to the used specification, it is possible to prove (using a theorem prover in a semi-
automated way) that the property is satisfied for this case.

Rule r5: Here, we will have to prove for the newly created node thatn ≤ p (for the
other nodes, the proof is similar to the previous cases). Assuming the equation as
an axiom, we haven = 0 andp = 10 (actually, the last equation isp = succ10(0)).
But any possible matchm would need to assign the value zero ton and10 to p
(otherwise, it would not be a match for this rule). Therefore, we can conclude that
n ≤ p.

Rulesr6: Again, here we will have to prove thatn ≤ p, assumingn = m−1 as true. But,
since the attributeLim is preserved by the rule, it must be also in the left-hand side,
that is matched viam to a value, saylimG, in G. Moreover, variablem must also
be mapped to a value, saycmsgG in G. SinceG satisfies the property by induction
hypothesis, we have thatcmsgG ≤ limG, and therefore we can conclude that the
m ≤ p. Together with the fact thatn = m− 1, this makesn ≤ p true.
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5 EXTENDING THE APPROACH TO GRAPH GRAMMARS
WITH NEGATIVE APPLICATION CONDITIONS

Application conditions specify conditions under which rules can be applied to a given
state-graph in order to obtain a new state-graph. Application conditions generally com-
prisecontextual conditions, specifying the existence (in case of positive conditions)or
non-existence (in case of negative ones) of nodes, edges or subgraphs in the given graph
andembedding restrictions, regarding the match morphisms. Until now, we considered
only one restriction on matches: that they are injective on edges. The main purpose of
the graph grammars that we have in mind in this thesis is the specification of concurrent
and reactive systems. In such systems, a non-injective match means that the member of
needed resource is not relevant.

In this chapter, we propose to extend the relational approach to graph grammars with
contextual conditions, particularly negative ones. Negative application conditions (NACs)
restrict the application of a rule by asserting that a specific structure must not be present
in a state-graph before applying the rule. We adopt the concept of NACs introduced by
Habel, Heckel and Taentzer in (HABEL; HECKEL; TAENTZER, 1996) due to two main
reasons: first, because they propose this extension in the framework of the single-pushout
approach (the same one we have been applying) and second, because their approach has
a visual representation that does not affect the graphical structure of the specifications. In
their work, they also proved that rules defined with both positive and negative application
conditions can be expressed (through context enlargement)by new rules with just negative
application conditions.

The extension of graph grammars by application conditions may raise our flexibil-
ity in the use of the relational approach for the specification of systems in all kinds of
application areas. As emphasized in (HABEL; HECKEL; TAENTZER, 1996), applica-
tion conditions are a necessary component of every nontrivial specification. If we do not
specify them formally, we will not be able to analyse them formally.

5.1 Graph Grammar with NACs

Graph grammars with negative application conditions are graph grammars whose
rules are enriched with negative application conditions. Negative application conditions
are expressed by sets of total morphisms starting from the left-hand side of the rules.

Definition 32 (Rule with Negative Application Conditions). A rule with negative appli-
cation conditions (NACs)is a pair α̂ = (α : LT → RT , AN(α)) consisting of a rule
α : LT → RT with respect toT (Def. 3) and a set of negative application conditions
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AN(α) ⊆ MOR(LT ), whereMOR(LT ) denotes the set of all total typed graph mor-
phisms from the typed graphLT to graphs typed overT .

Graph grammars with NACs allows the specification of a set of NACs for each rule of
the grammar.

Definition 33 (Graph Grammar with NACs). A graph grammar with negative applica-
tion conditionsis a tupleGGN = (T,G0, R̂), such thatT is a type graph,G0 is a graph
typed overT andR̂ is a set of rules with NACs.

A rule with NACs α̂ = (α : LT → RT , AN(α)) is applicable to a graphGT if there
is a matchm : LT → GT that satisfies all NACs fromAN(α).

Definition 34 (Match Satisfaction, Rules with NACs Application). Let α̂ = (α : LT →
RT , AN(α)) be a rule with NACs and letm : LT → GT be a match ofα in GT . Then
matchm satisfies a NACl from AN(α), with l : LT → L̂T , l ∈ AN(α) if there is not a
total injective1 graph morphismn : L̂T → GT such thatn ◦ l = m.

L
T

G
T

L
T^

R
Tl α

m
Xn

Match m satisfies all NACs of̂α, if it satisfies each NAC fromAN(α). Rule α̂ is
applicable toGT viam, ifm satisfies all NACs of̂α. If α̂ is applicable toGT viam therule

application with application conditionGT (α̂,m)
=⇒ HT is the rule applicationGT (α,m)

=⇒ HT

(see Def. 5).

5.2 Specifying the Token Ring Protocol with NACs

In this section we show the use of graph grammars with negative application condi-
tions for the specification of the token-ring protocol. The intent of the protocol is the same
and it follows the description detailed in Section 2.2.

The graphical representation of the graph grammar is illustrated in Figure 5.1. The
adoption of NACs simplifies the type and the initial graphs, suppressing the Standby
edges. NACs in rulesα1, α2, α3 andα5 restrict the application of the rules to non-active
stations. Rulesα1 andα2 specify the behaviour of the protocol when a non-active station
receives a token: it may hold the token and send a message to the next node, becoming an
active station (ruleα1) or simply pass the token to the next station (ruleα2). By ruleα3
if a non-active station receives a message, it may pass the message to the next node. Rule
α4 is not modified, detailing the receipt of a message by an active station: it removes
the message from the ring and sends the token to the next station. NACs in ruleα5
restrict the insertion of new stations in the ring to occur only among non-active stations.
The concrete representation used in the relational approach (detailed in next section) is
depicted in Figure 5.2.

It is important to notice that we require two separate constraints,l15 andl25, in rule
α5. This means that anAct edge in any of the stations is forbidden. A key feature consists

1We adopt injective satisfaction in order to express cardinality restrictions.
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Figure 5.1: Token Ring Graph Grammar with NACs

in distinguishing this specification from ruleα5′ depicted in Figure 5.3. In that case, an
Act edge in both stations is forbidden, i.e.bothobjects must not exist at the same time.
Given a graph consisting of just one of the two stations active,α5′ is applicable since there
is no anAct edge in one of the stations, while productionα5 is not applicable because of
the existing edge.

5.3 Relational Representation of Graph Grammars with NACs

Next we detail the relational representation of graph grammars with NACs. The def-
inition of relational rules with NACs just replaces the graph morphisms from Definition
32 by relational ones.

Definition 35 (Relational Rule with Negative Application Conditions). A relational rule
with negative application conditions (NACs)is a pairα̂ = (α,AN(α)) consisting of a re-
lational ruleα = 〈|LT |, |α|, |RT |〉 and a set of negative application conditionsAN(α) ⊆
MOR(|LT |), whereMOR(|LT |) denotes the set of all total relational typed graph mor-
phisms from the relational typed graph|LT | to relational typed graphs typed over|T |.

Proposition 19. A relational rule with negative application conditions is awell-defined
rule with negative application conditions.

Proof. By Proposition 6 the relational rule is well defined and by Proposition 5 the rela-
tional typed graph morphisms are well-defined. Also, all relational graph morphisms that
define NACs are total.

The extension of the relational representation of graph grammars with negative ap-
plication conditions adds to the original definition (Def. 13) a tuple of relations for each
relational rule which allows the specification of a set of NACs for the corresponding rule.
Then, a relational graph grammar with negative applicationconditions is composed by a
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Figure 5.2: Alternative Definition of the Token Ring GG with NACs
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relational type graph, characterizing the types of vertices and edges allowed in asystem,
an initial relational graph, representing the initial state of a system anda set of rela-
tional rules (possibly with negative application conditions), describing the possible state
changes that can occur in a system.

Definition 36 (Relational Graph Grammar with NACs). LetRGGN = {vertT , incT , vertG0,

incG0, t
G0
V , tG0

E ,
(
vertLi, incLi, t

Li
V , t

Li
E , vertRi, incRi, t

Ri
V , t

Ri
E , αiV , αiE , (vertL̂ji, incL̂ji,

tL̂ji
V , tL̂ji

E , ljiV , ljiE)j∈{1,...,m}

)

i∈{1,...,n}
} be a set of relation symbols. Arelational graph

grammar with negative application conditionsis aRGGN -structure|GGN | = 〈DGGN ,
(r)r∈RGGN

〉 where

• DGGN = VGGN ∪ EGGN is the set of vertices and edges of the graph grammar,
where:VGGN∩EGGN = ∅, VGGN = VT∪VG0∪

(
VLi∪VRi∪(VL̂ji)j∈{1,...,m}

)
i∈{1,...,n}

andEGGN = ET ∪EG0∪
(
ELi ∪ERi ∪ (EL̂ji)j∈{1,...,m})

)
i∈{1,...,n}

.

• |T | = 〈VT ∪ ET , {vertT , incT}〉 defines a relational graph(the type of the gram-
mar).

• |G0T | = 〈|G0|, |tG0|, |T |〉, with |G0| = 〈VG0 ∪ EG0, {vertG0, incG0}〉 and |tG0| =
{tG0

V , tG0
E }, defines a relational typed graph(the initial graph of the grammar).

• Each collection
(
vertLi, incLi, t

Li
V , t

Li
E , vertRi, incRi, t

Ri
V , t

Ri
E , αiV , αiE , (vertL̂ji,

incL̂ji, t
L̂ji
V , tL̂ji

E , ljiV , ljiE)j∈{1,...,m}

)
defines arule with negative application con-

ditions:

– |LiT | = 〈|Li|, |tLi|, |T |〉, with |Li| = 〈VLi ∪ ELi, {vertLi, incLi}〉 and |tLi| =
{tLi

V , t
Li
E }, defines a relational typed graph(the left-hand side of the rule).
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– |RiT | = 〈|Ri|, |tRi|, |T |〉, with |Ri| = 〈VRi∪ERi, {vertRi, incRi}〉 and|tRi| =
{tRi

V , t
Ri
E }, defines a relational typed graph(the right-hand side of the rule).

– 〈|LiT |, |αi|, |Ri
T |〉, with |αi| = {αiV , αiE}, defines a relational rule.

– each collection(vertL̂ji, incL̂ji, t
L̂ji
V , tL̂ji

E , ljiV , ljiE) defines a NAC(a negative
application condition):

∗ |L̂jiT | = 〈|L̂ji|, |tL̂ji|, |T |〉, with |L̂ji| = 〈VL̂ji ∪EL̂ji, {vertL̂ji, incL̂ji}〉

and|tL̂ji| = {tL̂ji
V , tL̂ji

E }, defines a relational typed graph.

∗ |lji| = {ljiV , ljiE} defines a total relational graph morphism from|LiT |
to |L̂jiT |.

In case that variablem is set to null, no negative application condition is associated
to ruleαi.

Proposition 20. The relational structure|GGN | is well-defined.

Proof. Follows immediately from Propositions 1, 4, 6 and 19.

A relational rule with negative application conditions is applicable to a state-graph if
there is a relational match which satisfies all negative application conditions of the applied
rule.

Definition 37 (Relational Match Satisfaction). Let 〈|LT |, |α|, |RT |〉 be a relational rule,
and let|GT | = 〈|G|, |tG|, |T |〉 be a relational typed graph.

A relational match|m| = {mV , mE} of the given rule in|GT | satisfies a NAC|lj| =
{ljV , ljE} from |LT | to |L̂jT |, if there is not a total injective relational graph morphism
n = {nV , nE} from |L̂jT | to |GT | that satisfies the following condition:

• NAC Satisfaction ConditionnV ◦ ljV
= mV andnE ◦ ljE

= mE.

A relational match satisfies all NACs of a ruleif it satisfies each individual NAC of the
rule.

The graph grammar obtained after a rule (with NACs) application can be also defined
as a definable transduction withθ formulas as described in Definition 16. We have just
to extend theϕ formula to include the satisfaction of the relational matchfor all NACs of
the applied rule. That is,ϕ must also express that for each NAC|lji| = {ljiV , ljiE} from
|LT | to |L̂jiT | of the selected rule, there is no total injective relationalgraph morphism
|n| = {nV , nE} from |L̂jiT | to |G0T | which satisfies the following conditions:

∀v ∈ vertLi [ljiV (v, x) ∧mV (v, y) ⇒ nV (x, y)]

∀e ∈ incLi [ljiE(e, x) ∧mE(e, y) ⇒ nE(x, y)].

Next, for each NAC|lji| = {ljiV , ljiE} from |LT | to |L̂jiT | of a selected rule, we
describe one way of finding total relational graph morphismsfrom |L̂jiT | to |G0T | that
satisfy the NAC satisfaction condition. This can be done in two main steps:

1. We must find total injective relational graph morphisms from |L̂jiT | to |G0T |;

2. We must attest the NAC satisfaction condition for each morphism found in the first
step.
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If at least one relational graph morphism is obtained after the second step, then the se-
lected rule can not be applied to the selected match.

STEP 1: Defining total (injective) relational graph morphisms
Let |lj| = {ljiV , ljiE} be a NAC from|LiT | to |L̂ijT | of the selected ruleαi and let

m = {mV , mE} be the given match of|LiT | in |G0T |. We have to find an embedding,
of |L̂jiT | to the initial graph|G0T |. This is a widely explored problem, known as the
subgraph homomorphism problem. Some works like (SCHFüRR, 1997; EDELKAMP;
JABBAR; LLUCH-LAFUENTE, 2006; GEISS et al., 2006) have shown that it is possible
to reduce its average-case complexity.

Our approach makes use of the representation and solution proposed in (RUDOLF,
2000). In this work, Rudolf proposes to represent and solve the problem of graph match-
ing as a constraint satisfaction problem (CSP). The advantage of such choice relays on
the possibility of applying optimized solution algorithms(KUMAR, 1992; LECOUTRE,
2009) that have already been proposed for CSPs. Such representation has also been
successfully applied in the implementation of the matchingsubsystem of the Attributed
Graph Grammar System (ERMEL; RUDOLF; TAENTZER, 1999).

A constraint satisfaction problem (CSP)consists of:

• a finite set of variablesX = {x1, . . . , xn};

• a finite and discrete domainDk of possible values for every variablexk ∈ X;

• a finite set of constraints on the variables ofX; aconstraintCS onS = (x1, . . . , xr)
is a relationCS ⊆ D1 × . . .×Dr.

Any tupleΓ = (a1, . . . , an), ak ∈ Dk denotes aninstantiationof a CSP. We writeΓ(xk) =
ak for the value ofxk underΓ. A constraintCS on S = (x1, . . . , xr) is satisfiedby an
instantiationΓ if (Γ(x1), . . . ,Γ(xr)) ∈ CS. An instantiation is asolutionfor a CSP if it
satisfies all constraints of the problem.

Given two graphs|L̂jiT | = 〈|L̂ji|, |tL̂ji|, |T |〉, with |L̂ji| = 〈VL̂ji ∪ EL̂ji, {vertL̂ji,

incL̂ji}〉 and|G0T | = 〈|G0|, |tG0|, |T |〉, with |G0T | = 〈VG0 ∪ EG0, {vertG0, incG0}〉, we
construct a CSP as follows:

• X = VL̂ji ∪ EL̂ji = {x1, . . . , xn}, n = |X|;

• Dk =

{
VG0, if xk ∈ VL̂ji

EG0, otherwise
, k ∈ 1, . . . , n

• The set of constraints is built according to Table 5.1: whenever a condition listed
in the left column of the table holds for a given pair of variables(xk, xl), the corre-
sponding constraint is to be included in the set of constraints.

Any solutionΓ = (a1, . . . , an) of the resulting CSP defines a total relational graph
morphism|n| = {nV , nE} from |L̂jiT | to |G0T | as follows:

nV = {(xk, ak)|xk ∈ VL̂ji ∧ Γ(xk) = ak}

nE = {(xk, ak)|xk ∈ EL̂ji ∧ Γ(xk) = ak}

Proposition 21. Setn = {nV , nE} specified above defines a total relational graph mor-
phism from|L̂jiT | to |G0T |.



71

Proof. Since each variable is attributed with only one element of the respective domain,
both relations define partial functions. They are total because a value is instantiated to
each variable (and all vertices and edges of|L̂jiT | are considered as variables).Dk,
Cvtype

xk
andCetype

xk
specifications guarantee the type consistency conditions.Morphism

commutativity conditions hold due toCsource
(xk,xl)

andCtarget

(xk,xl)
constraints.

If we restrict ourselves only to solutions that attribute different values to each variable,
we have total injective relational graph morphisms.

Table 5.1: Construction of Constraints
Condition Constraint Intuitive Mean-

ing

xk = xl,
xk ∈ VL̂ji

Cvtype
xk

= {d ∈ Dk |

∃t[tL̂ji
V (xk, t) ∧ t

G0
V (d, t)]}

Values instantiated
to a vertex-
variable xk must
be of the same type
of the variable.
I.e., vertices types
must be preserved.

xk = xl,
xk ∈ EL̂ji

Cetype
xk

= {d ∈ Dk |

∃t[tL̂ji
E (xk, t) ∧ t

G0
E (d, t)]}

Values instantiated
to an edge-variable
xk must be of
the same type of
the variable. I.e.,
edges types must
be preserved.

xk ∈ EL̂ji,
xl ∈ VL̂ji,
∃y[incL̂ji(xk, xl, y)]

Csource
(xk,xl)

= {(dk, dl) ∈ Dk ×Dl|

∃y[incG0(dk, dl, y)]}

If xl is source of
xk, the value of
xl must be source
of the value ofxk.
I.e., sources must
be preserved.

xk ∈ EL̂ji,
xl ∈ VL̂ji,
∃y[incL̂ji(xk, y, xl)]

Ctarget

(xk,xl)
= {(dk, dl) ∈ Dk ×Dl|

∃y[incG0(dk, y, dl)]}

If xl is target of
xk, the value of
xl must be target
of the value ofxk.
I.e., targets must
be preserved.

xk = xl,
xk ∈ VL̂ji

Cvvalue
xk

= {dk ∈ Dk|
∃v, dk[ljiV (v, xk) ∧mV (v, dk)}

NAC satisfaction
condition must
be satisfied for
vertices.

xk = xl,
xk ∈ EL̂ji

Cevalue
xk

= {dk ∈ Dk|
∃v, dk[ljiE(v, xk) ∧mE(v, dk)}

NAC satisfaction
condition must be
satisfied for edges.
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STEP 2: Attesting the NAC satisfaction condition
Although the restrictionsCvvalue

xk
andCevalue

xk
discard values of variables that would not

satisfy the NAC satisfaction condition, they do not guarantee its satisfaction. For instance,
if the NAC maps two vertices to the same vertex and if the givenmatch maps them to
different ones, the total injective relational graph morphism can be defined, satisfying
the constraints, but not respecting the commutativity required in the NAC satisfaction
condition. Thus, after defining a total injective relational graph morphism|n| = {nV , nE}
from |L̂jiT | to |G0T |, we still have to verify the following conditions:

∀v ∈ vertLi [ljiV (v, x) ∧mV (v, y) ⇒ nV (x, y)]

∀e ∈ incLi [ljiE(e, x) ∧mE(e, y) ⇒ nE(x, y)].

5.4 Token Ring Protocol with NACs Verification

In the verification step, the existence of NACs determines extra conditions that can
be used during the proofs. As an illustration, we prove the property that establishes that
any reachable graph has at most one active station. First of all, we have to include in the
standard library, a function that returns the number of edges of specific type in a reachable
graph.

[Library function carde: Cardinality of Specific Edges] The number of edges of type
t in a reachable graph is recursively defined by:

cardet G0 = ♯{x|∃y, z[incG0(x, y, z)] ∧ t
G0
E (x, t)} (5.1a)

cardet ap
αi
mG = cardetG− ♯{x|∃y, z[incLi(x, y, z)] ∧ t

Li
E (x, t)}+

+ ♯{x|∃y, z[incRi(x, y, z)] ∧ t
Ri
E (x, t)} (5.1b)

The number of edges of typet (or the number oft edges) for the initial graph is deter-
mined by the number of elements of typet (specified usingtG0

E ) that belong to relation
incG0. The number oft edges of a graph resulting from a rule application to graphG is
designated by the number oft edges ofG, less the number oft edges of the left-hand side
of the rule plus the number oft edges of the right-hand side of the rule.�

Now, we can state the following.

Property 4. Any reachable graph has at most one edge of the typeAct.

According to the definition ofcarde, previously defined, the property to be proven can
be stated by the formula:

cardeActG ≤ 1.

Proof.

Basis: The property is verified for the initial graph: functioncardeAct of the stated prop-
erty is instantiated forG0. Then, just by consulting the relations of the relational structure
that defines the initial graph the property is trivially evaluated to true.

Hypothesis⇒ Inductive Step: Assuming that the property is valid for any reachable
graphG, the proof requires 5 cases, depending on the considered rule. These cases can
be grouped into 3 classes:
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Case Class 1 (rulesα1, α2): A non-active station must hold the token.In this case, just
applying the function definition, the property can be violated because (by induction
hypothesis) we consider the possibility of existing an active station inG. However,
we would not have such case in this class. In fact, together with Property 1 (previ-
ously demonstrated for the case without NACs, which could besimilarly proved for
current specification) which establishes that "any reachable graph has exactly one
edge of type Token", we can also establish a property that states that "the token is
always in the active station, if there is one". And then, using these pre-established
properties together with the condition determined by the NAC, which determines
that we must have a token in an non-active station for the rules to be applied, it is
possible to deduce that we do not have an active station inG. And then, just con-
sulting the relations of left-hand side and right-hand sideof the considered rule, the
property is validated.

Case Class 2 (ruleα4): An active station must hold the token.For this proof we can use
the following statement: there is an image using the match for all items that are in
the left-hand side. That is, we have one active station inG. Then, consulting the
relations of the relational structure, the property is validated.

Case Class 3 (rulesα3, α5): Other cases.In this class, consulting the relations of left-
hand side and right-hand side of the considered rules, it is possible to identify that
there are no deleted, created or preservedAct edges. Then, the proof is completed
by using the induction hypothesis.
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6 PATTERNS FOR PROPERTIES OVER REACHABLE STATES
IN GRAPH GRAMMARS SPECIFICATIONS

Independently of the verification technique chosen to be applied, (semi-) automated
verification involves the description of both the system andits desired properties in some
formal specification language. The level of maturity and experience required to write
these specifications is one of the first obstacles to the adoption of such techniques. Partic-
ularly, the specification of system requirements must be precise enough to support (semi-
)automated validation and accessible enough to be stated bypractitioners.

Until now, we focused on the (relational) description of systems. In this chapter, we
propose patterns for the presentation, codification and reuse of property specifications.
The patterns have the goal of helping and simplifying the task of stating precise require-
ments to be verified. Besides, it must prevent ambiguities and inaccuracies during the
validation stage. Differently from most existing approaches (DWYER; AVRUNIN; COR-
BETT, 1999; CHECHIK; PAUN, 1999; SALAMAH et al., 2007) we focus on properties
about reachable states for (infinite-)state verification. Most of existing patterns for prop-
erty specification describe properties about traces for finite-state verification tools. These
two approaches are complementary.

The patterns are based on functions that describe typical characteristics or elements
of graphs (like the type of a vertex, the set of all edges of some type, the cardinality of
vertices, etc.). In this chapter we will show how these functions can be defined in the
framework of relational graph grammars. Since the relational approach is actually an
encoding of algebraic (Single-Pushout - SPO) graph grammars (EHRIG et al., 1997), the
property patterns presented are suitable for this class of graph grammars. To generalize
to other classes, it would be necessary to provide corresponding encodings for the basic
operation of rule application (this is what differentiatesmost graph grammar approaches).

Section 6.1 defines a standard library of functions to be usedin the specifications.
Section 6.2 describes our taxonomy and explain the patterns. Section 6.3 illustrates the
use of the pattern system instantiating properties for a very simple mobile system. Section
6.4 discusses related works.

6.1 The Standard Library of Functions

The relational approach previously defined allowed the use of the technique of math-
ematical induction to prove properties about the internal states of systems specified as
graph grammars.The properties were stated using pre-defined functions.

To create specification patterns for the characterization of systems requirements in
this approach, we firstly define a standard library of these pre-defined functions. Most
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functions are specified for the reachable graph data type. This data type must be defined
with two constructors, one for the initial graph G0 and another one for the operatorapαi

m

that applies the rule|αi| at match|m| = {mαi
V , m

αi
E } to a reachable graph. Auxiliary

functions are defined to operate on graphs.
Table 6.1, Table 6.2 and Table 6.3 present some library functions. The library is

not complete and must grow over as new specifications are required. Each function
is recursively defined. Functions defined over the reachablegraph data type are spec-
ified for the initial graph in the base case and for the graph resulting of a rule appli-
cation in the inductive step. Depending on the description,functions return a set (as
(1) to (4), (9) to (22) and (24) to (25)), a natural number (as (5) to (8)) or a Boolean
(as (23) and (26)). Relations used in definitions are from therelational structure that
characterizes the graph grammar. They are considered as axioms, that is, considering
|GG| = 〈DGG, (R)R∈RGG

〉 the relational structure associated to the grammar, we have
R(x1, . . . , xn) ≡ true iff (x1, . . . , xn) ∈ R.

This collection must help the developer not only in the properties specification but
also in the construction of proofs. For instance, function (2) vertt1 returns the vertices
of type t1 of a reachable graph. Such vertices of the initial graph (i.e., vertt1 G0) are
determined by relationtG0

V of the relational structure. The vertices of typet1 of the graph
obtained from applying rule|αi| at match|m| to a graph|G| (i.e.,vertt1 ap

αi
mG) are either

vertices of graph|G| or vertices of the right-hand side of the rule that are not image of the
rule.

The cardinality of edges function (6) returns the number of edges of a reachable graph.
The number of edges of graphG0 is determined by the number of elements of relation
incG0. The number of edges of a graph resulting from a rule application to graphG is
designated by the number of edges ofG, less the number of edges of the left-hand side
of the rule plus the number of edges of the right-hand side of the rule. This function is
well-defined because according to the definition of rule application (seeθ specifications
in Definition 16). The edges of the resulting graph are the edges of the right-hand side of
the applied rule together with the edges of graphG that are not image of the match. Since
the match is total and injective in the edge component, the number of decreased edges is
the number of edges of the left-hand side of the applied rule.

6.2 Property Patterns

Now we define a collection of patterns for state properties specifications. Instead of
specifying state properties just as forbidden or desired graphs as frequently done, we adopt
logical formulas to describe them. As emphasized in (STRECKER, 2008), formulas over
graph structure are more expressive than pattern graphs.

Patterns were developed to capture recurrent solutions to design and coding problems.
According to Dwyer et al. (DWYER; AVRUNIN; CORBETT, 1999), through a pattern
system, the specifier can identify similar requirements, select patterns that fit to those
requirements and instantiate solutions that incorporate the patterns. In our approach, a set
of relations characterizes the initial state and the possible behaviours of the system, and a
definable transduction (that can be seen as an inference rule) describes the possible next
states of the system. A state property specification patternis a generalized description of
a frequently occurring requirement on the admissible states of a system. It describes the
essential arrangement of some aspect of the states of the system and provides expression
of this arrangement.

We attempt to give a collection of independent patterns fromwhich a set of interesting
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Table 6.1: Standard Library
Ref. Description Function Definition

(1) Edges of edgt1 G0 = {x | tG0
E (x, t1)}

specific type edgt1 apαi
m G = {x | tRi

E (x, t1) ∨ [x ∈ edgt1G ∧ ∄w mαi
E (w, x)]}

(2) Vertices of vertt1 G0 = {x | tG0
V (x, t1)}

specific type vertt1 apαi
m G = {x | [tRi

V (x, t1) ∧ ∄w αiV (w, x)] ∨ x ∈ vertt1G}
(3) Edges with edg G0 = {(x, y, z) | incG0(x, y, z)}

source and edg apαi
m G = {(x, y, z) | [(x, y, z) ∈ inc G ∧ ∄w mαi

E (w, x)]∨
target vertices ∨ [∃r, s incRi(x, r, s) ∧ ∃w1, w2 [αiV (w1, r)∧

∧ αiV (w2, s) ∧ mαi
V (w1, y) ∧ mαi

V (w2, z)]]∨
∨ [incRi(x, y, z) ∧ ∄w1, w2 [αiV (w1, y)∧
∧ αiV (w2, z)]] ∨ ∃r [incRi(x, r, z)∧
∧ ∃w1 [αiV (w1, r) ∧ mαi

V (r, y)]∧
∧ ∄w2 αiV (w2, z)] ∨ ∃s [incRi(x, y, s)∧
∧ ∄w1 αiV (w1, y) ∧ ∃w2[αiV (w2, s) ∧ mαi

V (s, z)]]}
(4) Vertices vert G0 = {x | vertG0(x)}

vert apαi
mG = {x | x ∈ vert G ∨ [vertRi(x) ∧ ∄w αiV (w, x)]}

(5) Cardinality cardV G0 = ♯vertG0

of vertices cardV apαi
m G = cardV G + ♯vertRi − ♯vertLi

(6) Cardinality cardE G0 = ♯incG0

of edges cardE apαi
mG = cardEG − ♯incLi + ♯incRi

(7) Cardinality cardvt1 G0 = ♯{x|vertG0(x) ∧ tG0
V (x, t1)}

of specific cardvt1 apαi
mG = cardvt1G + ♯{x|vertRi(x) ∧ tRi

V (x, t1)}−
vertices −♯{x|vertLi(x) ∧ tLi

V (x, t1)}}
(8) Cardinality cardet1 G0 = ♯{x|∃y, z[incG0(x, y, z)] ∧ tG0

E (x, t1)}
of specific cardet1 apαi

m G = cardet1G−
edges −♯{x|∃y, z[incLi(x, y, z)] ∧ tLi

E (x, t1)}+
+♯{x|∃y, z[incRi(x, y, z)] ∧ tRi

E (x, t1)}
(9) Pairs of loop ploopt1,t2 G0 = {(e, f) | ∃x [incG0(e, x, x) ∧ incG0(f, x, x)]∧

edges of ∧ tG0
E (e, t1) ∧ tG0

E (f, t2)}
specific types ploopt1,t2 apαi

m G = {(e, f) |[∃x [incRi(e, x, x) ∧ incRi(f, x, x)]∧
with source ∧ tRi

E (e, t1) ∧ tRi
E (f, t2)] ∨ [(e, f) ∈ ploopt1,t2 G∧

and target in ∧ ∄w mαi
E (w, e) ∧ ∄w mαi

E (w, f)]∨
the same vertex ∨ [∃x incG(e, x, x) ∧ tGE(e, t1)∧

∧ ∄w mαi
E (w, e) ∧ ∃y incRi(f, y, y)∧

∧ tRi
E (f, t2) ∧ ∃z[αiE(z, y) ∧ mαi

V (z, x)]]∨
∨ [∃x incG(f, x, x) ∧ tGE(f, t2)∧
∧ ∄w mαi

E (w, f) ∧ ∃y incRi(e, y, y) ∧
∧ tRi

E (e, t1) ∧ ∃z [αiE(z, y) ∧ mαi
V (z, x)]]

(10) Edges with edgst1 G0 = {x|∃y, z[incG0(x, y, z)] ∧ tG0
V (y, t1)}

specific edgst1 apαi
mG = {x|[x ∈ edgst1G ∧ ∄w mαi

E (w, x)]∨
source ∨ [∃y, z[incRi(x, y, z)] ∧ tRi

V (y, t1)]}
(11) Edges with edgtt1 G0 = {x|∃y, z[incG0(x, y, z)] ∧ tG0

V (z, t1)}
specific edgtt1 apαi

m G = {x|[x ∈ edgtt1G ∧ ∄w mαi
E (w, x)]∨

target ∨ [∃y, z[incRi(x, y, z)] ∧ tRi
V (z, t1)]}

(12) Edges with edglt1,t2 G0 = {x|∃y, z[incG0(x, y, z)] ∧ tG0
V (y, t1) ∧ tG0

V (z, t2)}
specific source edglt1,t2 apαi

m G = {x|[x ∈ edglt1,t2G ∧ ∄w mαi
E (w, x)]∨

and target ∨ [∃y, z[incRi(x, y, z)] ∧ tRi
V (y, t1) ∧ tRi

V (z, t2)]}
(13) Loop loop G0 = {x|∃y incG0(x, y, y)}

edges loop apαi
mG = {x|∃y incRi(x, y, y) ∨ [x ∈ loop G∧

∧ ∄w mαi
E (w, x)]}
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Table 6.2: Standard Library (Cont.)
Ref. Description Function Definition

(14) Attributes attE G0 = {(x, a) | attrG0(x, a)}
of edges attE apαi

mG = {(x, a) | attrRi(x, a) ∨ [(x, a) ∈ attE G∧
∧ ∄w mαi

E (w, x)]}
(15) Attributes attt1 G0 = {(x, a) | attrG0(x, a) ∧ tG0

A (x, t1)}
of specific attt1 apαi

m G = {(x, a) | [attrRi(x, a) ∧ tRi
A (x, t1)]∨

type ∨ [(x, a) ∈ attt1 G ∧ ∄w mαi
E (w, x)]}

(16) Source vertices verto G0 = {x | vertG0(x) ∧ ∃y, z incG0(y, x, z)∧
∧ ∄y, z incG0(y, z, x)}

verto apαi
mG = {x | [vertRi(x) ∧ ∃y, z [incRi(y, x, z)]∧

∧ ∄w αiV (w, x) ∧ ∄y, z [incRi(y, z, x)]]∨

∨
[
vertG(x) ∧

[
∃w1m

αi
V (w1, x) →

→ [∃y, z incG(y, x, z) ∧ ∄w mαi
E (w, y)∧

∧ [∃y, z incG(y, z, x) → ∃w mαi
E (w, y)]∧

∧ ∃w2 [αiV (w1, w2) ∧ ∄y, z incRi(y, z, w2)]]∨
∨ [∃w2 αiV (w1, w2) ∧ ∃y, z incRi(y, w2, z)∧
∧ ∄y, z incRi(y, z, w2) ∧ [∃y, z incG(y, z, x) →

→ ∃w mαi
E (w, y)]]

]]
∨ [vertG(x) ∧ [∄w mαi

E (w, x) →

→ ∃y, z incG(y, x, z) ∧ ∄y, z incG(y, z, x)]]
(17) Sink vertices verti G0 = {x | vertG0(x) ∧ ∃y, z incG0(y, z, x)∧

∧ ∄y, z incG0(y, x, z)}
verti apαi

mG = {x | [vertRi(x) ∧ ∃y, z [incRi(y, z, x)]∧
∧ ∄w αiV (w, x) ∧ ∄y, z [incRi(y, x, z)]]∨

∨
[
vertG(x) ∧

[
∃w1m

αi
V (w1, x) →

→ [∃y, z incG(y, z, x) ∧ ∄w mαi
E (w, y)∧

∧ [∃y, z incG(y, x, z) → ∃w mαi
E (w, y)]∧

∧ ∃w2 [αiV (w1, w2) ∧ ∄y, z incRi(y, w2, z)]]∨
∨ [∃w2 αiV (w1, w2) ∧ ∃y, z incRi(y, z, w2)∧
∧ ∄y, z incRi(y, w2, z) ∧ [∃y, z incG(y, x, z) →

→ ∃w mαi
E (w, y)]]

]]
∨ [vertG(x) ∧ [∄w mαi

V (w, x) →

→ ∃y, z incG(y, z, x) ∧ ∄y, z incG(y, x, z)]]
(18) Isolated ivert G0 = {x | vertG0(x) ∧ ∄y, z [incG0(y, x, z)∨

vertices ∨ incG0(y, z, x)]}
ivert apαi

mG = {x | [vertRi(x) ∧ ∄y, z [incRi(y, z, x)∨
∨ incRi(y, x, z)] ∧ ∄w αiV (w, x)]∨
[vertG(x) ∧ [∃y, z [incG(y, z, x)∨
∨ incG(y, x, z)] → ∃w mαi

E (w, y)]∧
∧ [∃w mαi

V (w, x) → ∃w1 [αiV (w, w1)
∧ ∄y, z [incRi(y, z, w1) ∨ incRi(y, w1, z)]]]]

(19) Vertices vertst1 G0 = {x | vertG0(x) ∧ ∃y, z incG0(y, x, z) ∧ tG0
E (y, t1)}

that are vertst1 apαi
mG = {x | [vertRi(x) ∧ ∄w αiV (w, x)∧

source of ∧ ∃y, z incRi(y, x, z) ∧ tRi
E (y, t1)]∨

specific ∨ [vertG(x) ∧ ∃y, z incG(y, x, z)∧
edges ∧ tGE(y, t1) ∧ ∄w mαi

E (w, y)]∨
∨ [vertG(x) ∧ ∃w1, w2 [mαi

V (w1, x)∧
∧ αiV (w1, w2) ∧ ∃y, z incRi(y, w2, z) ∧ tRi

E (y, t1)]]
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Table 6.3: Standard Library (Cont.)
Ref. Description Function Definition

(20) Vertices verttt1 G0 = {x | vertG0(x) ∧ ∃y, z incG0(y, z, x) ∧ tG0
E (y, t1)}

that are verttt1 apαi
m G = {x | [vertRi(x) ∧ ∄w αiV (w, x)∧

target of ∧ ∃y, z incRi(y, z, x) ∧ tRi
E (y, t1)]∨

specific ∨ [vertG(x) ∧ ∃y, z incG(y, z, x)∧
edges ∧ tGE(y, t1) ∧ ∄w mαi

E (w, y)]∨
∨ [vertG(x) ∧ ∃w1, w2 [mαi

V (w1, x)∧
∧ αiV (w1, w2) ∧ ∃y, z incRi(y, z, w2)∧
∧ tRi

E (y, t1)]]
(21) Vertices that rvertv G0 = {x | [x = v ∧ vertG0(v)] ∨ ∃y, z [y ∈ rvertv G0∧

are reachable ∧ incG0(z, y, x)]}
from a specific rvertv apαi

mG = {x | [x = v ∧ x ∈ vert apαi
mG]∨

vertex ∨ ∃y, z [y ∈ rvertv apαi
m G ∧ (z, y, x) ∈ edg apαi

mG]}
(22) Transitive closure tranct1G = {(x, y) | [incG(a, x, y) ∧ tGE(a, t1)]∨

of t1 edges inG ∨ [(x, z) ∈ tranct1G ∧ (z, y) ∈ tranct1G]
(23) Ring topology ringt1 G0 = ∀x [vertG0(x) → tranct1G0(x, x)]∧

∧ ∀a, b, x, y, z [incG0(a, x, y) ∧ tG0
E (a, t1)∧

∧ incG0(b, x, z) ∧ tG0
E (b, t1) → a = b]∧

∧ ∀x, z [vertG0(x) ∧ vertG0(z) →
→ tranct1G0(x, z)]

ringt1 apαi
m G = ringt1

G∧
∧ ∀a, x, y, z, w [incLi(a, x, y) ∧ tLi

E (a, t1)∧
∧ αiV (x, z) ∧ αiV (y, w) → tranct1Ri(z, w)]∧
∧ ∀a, b, x, y, z [incRi(a, x, y) ∧ tRi

E (a, t1)∧
incRi(b, x, z) ∧ tRi

E (b, t1) → a = b]
(24) Root vertices root G = {x | vertG(x) ∧ ∄y, z incG(y, z, x)∧

in G ∧ ∃y, z incG(y, x, z)}
(25) Reachable verticesreachv G = {v} ∪ {x | ∃y, z [y ∈ reachv G∧

from v in G ∧ incG(z, y, x)]}
(26) Tree topology tree G0 = ∃!x root G0(x) ∧ ∀x [¬root G0(x) →

→ ∃!y, z incG0(y, z, x)] ∧ ∄x, y incG0(x, y, y)∧
∧ ∀x, y, z, w [incG0(x, y, z) ∧ incG0(w, y, z) →
→ x = w] ∧ ∀x, y [vertG0(x) ∧ root G0(y) →
→ reachy G0(x)]

tree apαi
mG =

[
∃x1, y1, z1 [incLi(x1, y1, z1) ∧ ∄w αiE(x1, w)] →

→ ∃x2, y2, z2 [incRi(x2, y2, z2) ∧ z2 = αiV (z1)∧

∧ ∃v reachαiV (v)Ri(y2)]
]
∧

[
∃x1, y1, z1[incRi(x1, y1, z1) ∧ ∄w αiE(w, x1)] →

→
[
[∄w αiV (w, z1) ∧ ∃v reachαiV (v)Ri(y1)]∨

∨ [∃x2, y2, w2[αiV (w2, z1) ∧ incLi(x2, y2, w2)∧
∧ ∄w1 αiE(x2, w1)] ∧ ∃v reachαiV (v)Ri(y1)]∨
∨ [∃w1, w2 [αiV (w1, z1) ∧ mαi

V (w1, w2)∧

∧ root G(w2)] ∧ ∄w αiV (w, y1)]
]]
∧

[
[∃x1 vertRi(x1) ∧ ∄w αiV (w, x1)] →

[
∃y1, z1[

incRi(y1, z1, x1) ∧ ∄w αiE(w, y1)∧
∧ ∃v reachαiV (v)Ri(z1)] ∨ [∃y2, z2[
incRi(y2, x1, z2) ∧ ∄w αiE(w, y2) ∧ ∃w, w2[

αiV (w, z2) ∧ mαi
V (w, w2) ∧ root G(w2)]]]

]]
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specifications about the internal state of the systems can beconstructed. We do not intend
to provide the smallest set of patterns that can generate alluseful specifications nor a
complete list of specifications. We indeed try to specify patterns, which must commonly
appear as state property specifications and expect that thiscollection be expanded, as new
property specifications do not match with the existing patterns.

Table 6.4: A Pattern Taxonomy
1. Functional

1.1 Resources

1.1.1 Absence

1.1.2 Existence

1.1.3 Universality

1.1.4 Cardinality

1.1.5 Dependence

1.2 Data

1.2.1 Absence

1.2.2 Existence

1.2.3 Universality

1.2.4 Comparison

1.2.5 Dependence

2. Structural

2.1 Topology

2.1.1 Absence

2.1.2 Existence

2.2 Adjacency

2.2.1 Absence

2.2.2 Existence

2.2.3 Universality

The patterns must assist developers into the process of mapping descriptions of the
states of the system into the formalism, allowing the specification of state properties with-
out much expertise. To help the user in finding the appropriate pattern for each situation,
we organized the patterns using the taxonomy in Table 6.4. Wedefine three levels of
hierarchy. The first level differentiates properties that expressfunctionalaspects of the
system from properties that specifystructuralcharacteristics of the states. The functional
pattern is divided in the second level according to the kind of information that it describes:
the patternresourcesdeal with relations between vertices, edges (that do not describe at-
tributes) and their types; the patterndata handle attribute edges. The structural pattern
consider the arrangement between vertices and edges: in itssecond level, thetopology
pattern depicts the physical configuration of the states, determining how the vertices are
connected, while theadjacencypattern treats the neighboring between vertices, edges
and their types. The third level distinguishes, for each specificity, if the properties occur,
do not occur or occur for all items of definite characteristics. The resource pattern still
discriminates properties that deal with cardinality and dependence of specific items. The
data pattern, besides dependence, also identifies properties that compare attributes. In the
following, we briefly describe the formulas of the third level of the taxonomy:

Absence: state formulas specifying the non-occurrence of particular characteristics in all
reachable states.

Existence: state formulas specifying the occurrence of particular characteristics in all
reachable states.

Universality: state formulas specifying characteristics of all verticesor edges (possibly
of some specific type) occurring in all reachable states.



80

Cardinality: state formulas specifying characteristics about the number of vertices or
edges (possibly of some specific type) occurring in all reachable states.

Dependence:conditional state formulas occurring in all reachable states.

Comparison: state formulas specifying relations between attributes (possibly of specific
types) in all reachable graphs.

Table 6.5 depicts (part of) the absence of resources pattern. A pattern consists of a name,
a brief explanation of the pattern’s intent, a list of properties mappings and descriptions of
uses and purposes. For each stated property, we list the functions of the standard library
used in the pattern. We do not express all patterns in full detail. Instead, in Table 6.6 we
list the statement of some properties together with its classification. Also, in Table 6.7 we
list another properties with its classification and the respective functions of the standard
library that must be used in its assertion.

6.3 Specification of a Mobile System

We describe the use of the pattern system specifying a very simple mobile system.
The system consists of a network of interconnected antennasand mobile users. Each
user, connected to a single antenna, may start/finish a communication with another user.
The user may be switched to another antenna. New antennas andusers can be added to
the system at any time.

Figure 6.1 illustrates the graph grammar for the example. The type graphT describes
two types of nodesAnt (Antenna) andUsr (User) and three types of edgesAcn (connec-
tion between antennas),Ucn (connection between users and antennas) andCal (commu-
nication between users). The initial graphG0, in Figure 6.1, specifies a system with two
antennas and two users.

Ruleα1 models the establishment of a communication between users. Ruleα2 de-
scribes the introduction of a new antenna into the network. Ruleα3 specifies the situation
in which a user is switched to another antenna. Ruleα4 express the end of communication
between users. The inclusion of new users is depicted by ruleα5 and the introduction of
new links between existing antennas is delineated by ruleα6.

The pattern system and the standard library previously presented can assist, for exam-
ple, in the statement of the properties detailed in Table 6.8. Since the example does not
involve attributes, properties of the Data pattern were notenunciated.

It is important to notice that in many cases the property to bestated will not be exactly
the same property listed in the pattern, but instead it will be a composition of some de-
scribed properties. For instance, the last two properties enunciated in Table 6.8 fit in this
case. Nevertheless, as well as the other cases both the standard library and the patterns
are very helpful to assist the developer in these specifications. In fact, the description of
such properties must use functions of the standard library and, in most cases they must be
instantiated through some inclusion, deletion or variation of the Boolean operators of one
of the detailed patterns.

6.4 Related Work

Dwyer, Avrunin and Corbett (DWYER; AVRUNIN; CORBETT, 1998,1999) intro-
duced a specification pattern system for finite-state verification. The system is designed
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Table 6.5: Absence of Resources Pattern

Absence of Resources Pattern

Express characteristics that are not allowed in all reachable states of the system.

Properties Mappings

Property Functions of
Std. Library

Pattern

There are no edges of typet1 and
t2 simultaneously.

(1) ∄x, y [x ∈ edgt1g∧y ∈ edgt2g]

There are no vertices of typet1 and
t2 simultaneously.

(2) ∄x, y [x ∈ vertt1g ∧ y ∈
vertt2g]

There are no edges of typet1 and
vertices of typet2 simultaneously.

( 1,2) ∄x, y [x ∈ edgt1g ∧ y ∈
vertt2g]

There are no pairs of loop edges of
typest1 andt2 with source and tar-
get in the same vertex.

(9) ∄(x, y) [(x, y) ∈ ploopt1,t2g]

There are no edges with source in
a vertex of typet and edges with
target in a vertex of typet simulta-
neously.

(10, 11) ∄x, y [x ∈ edgstg ∧ y ∈
edgttg]

There are no two edges with source
and target of the same type.

(12) ∀t1, t2 [∄x, y [x ∈ edglt1,t2 ∧
y ∈ edglt1,t2 ]]

There are no loop edges of typest1
andt2 simultaneously.

(1, 13) ∄x, y [x ∈ loop g∧y ∈ loop g∧
x ∈ edgt1g ∧ y ∈ edgt2g]

There are no source vertices. (16) ∄x[x ∈ verto g]

There are no source vertices of
type t.

(2, 16) ∄x[x ∈ verto g ∧ x ∈ verttg]

There are no sink vertices. (17) ∄x[x ∈ verti g]

There are no sink vertices of type
t.

(2, 17) ∄x[x ∈ verti g ∧ x ∈ verttg]

There are no isolated vertices. (18) ∄x[x ∈ ivert g]

There are no isolated vertices of
typet.

(2, 18) ∄x[x ∈ ivert g ∧ x ∈ verttg]

There are no edges of typet and
isolated vertices simultaneously.

(1, 18) ∄x, y [x ∈ edgtg∧y ∈ ivert g]

Uses and Purposes
This pattern can be applied to describe the impossibility of
specific actions and the inexistence of physical connections or physical resources.
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Table 6.6: List of Properties
Property Functions

of Std. Lib.
Pattern Classif.

There is an edge of typet. (1) ∃x [x ∈ edgtg] (1.1.2)

There is a vertex of typet1 that is (2,19,20) ∃x [x ∈ vertt1g ∧ (1.1.2)
source of an edge of typet2 and ∧ x ∈ vertst2g ∧
target of an edge of typet3. ∧ x ∈ verttt3g]

All vertices of typet1 are source of (2,19) ∀x [x ∈ vertt1g → (1.1.3)
edges of typet2. → x ∈ vertst2 g]

All vertices of typet are not isolated. (1,18) ∀x [x ∈ verttg → (1.1.3)
→ x /∈ ivert g]

There are at leastn vertices of typet. (8) cardvtg ≥ n (1.1.4)

There is only one source vertex of (2, 16) ∃!x[x ∈ verttg ∧ (1.1.4)
typet. ∧ x ∈ verto g]

If there is an edge with source in a (10,11) ∃x[x ∈ edgst1g] → (1.1.5)
vertex of typet1, then there is an edge
with target in a vertex of typet2.

→ ∃y[y ∈ edgtt2g]

There are no attributes of typet1 that (15) ∀x, y, a, b[(x, a) ∈ attt1g (1.2.1)
are equal to attributes of typet2. ∧(y, b) ∈ attt2g → a 6= b]

There is an attribute of typet (15) ∃x, a[(x, a) ∈ atttg] (1.2.2)

All attributes of typet are less thann. (15) ∀x, a[(x, a) ∈ atttg → (1.2.3)
→ a < n]

All attributes of edges of typet1 are (9,14) ∀x, y, a, b[(x, y) ∈ (1.2.4)
always great than attributes of edges ploopt1,t2g ∧ (x, a) ∈
of typet2, if they both have source attEg ∧ (y, b) ∈ attEg →
and target in the same vertex. → a > b]

If there is an attribute of typet1 then (15) ∃x[x ∈ attt1g] → (1.2.5)
there is an attribute of typet2. → ∃y[y ∈ attt2g]

There is a tree topology. (26) tree g ≡ true (2.1.2)

There is a vertex of typet1 that is not (2,21) ∃x[x ∈ vertt1g ∧ ∀y[y ∈ (2.2.1)
reachable from any vertex of typet2. vertt2g → x /∈ rvertyg]]

There is a vertex that is target of an (19,20) ∃x[x ∈ verttt1g ∧ (2.2.2)
edge of typet1 and source of an edge
of typet2.

∧ x ∈ vertst2g]

All vertices of typet1 are reachable (2,21) ∀x, y[x ∈ vertt1g ∧ y ∈ (2.2.3)
from vertices of typet2. vertt2g → x ∈ rvertyg]
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Table 6.7: List of Another Properties
Property Functions

of Std.
Library

Classif.

There is a vertex of typet. (2) (1.1.2)

There is an edge of typet1 and a vertex of typet2. (1,2) (1.1.2)

All vertices of typet are not sink. (1,17) (1.1.3)

There is only one edge of typet. (1) (1.1.4)

There is only one vertex of typet. (7) (1.1.4)

There is only one vertex of typet1 that is source of an edge of typet2. (2,19) (1.1.4)

The number of edges is odd. (6) (1.1.4)

The number of edges is less thann. (6) (1.1.4)

The number of edges of typet is even. (8) (1.1.4)

There are at leastn vertices. (5) (1.1.4)

If there is no edge of typet1, then there is no edge of typet2. (1) (1.1.5)

If there is an edge with source in a vertex of typet1 and target in a
vertex of typet2, then there is a loop edge of typet3.

(1,12,13) (1.1.5)

If there is an edge of typet1, then there is a vertex of typet2. (1,2) (1.1.5)

If there is no vertex of typet1, then there is no vertex of typet2. (2) (1.1.5)

There is no attribute of typet that is great thann. (15) (1.2.1)

All attributes of typet1 are less than attributes of typet2. (15) (1.2.4)

There is not a ring topology of edges of typet. (22,23) (2.1.1)

There is not a tree topology. (24,25,26) (2.1.1)

There is a ring topology of edges of typet. (22,23) (2.1.2)

There is one or more isolated vertices. (18) (2.2.1)

There is an isolated vertex of typet. (2,18) (2.2.1)

There is a vertex of typet1 that is reachable from a vertex of typet2. (2,21) (2.2.2)

All isolated vertices are of typet (2,18) (2.2.3)

All vertices that are target of edges of typet1 are source of edges of
typet2.

(19,20) (2.2.3)
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Figure 6.1: Mobile System Graph Grammar

to describe a portion (a scope) of a system’s execution that is free or contains instances
of certain events or states. It is organized in a hierarchy based on the kind of system
behaviour they describe. Inside each pattern the properties are divided by scope and it is
provided mappings to five formalisms - LTL, CTL, Graphical Interval Logic, Quantified
Regular Expressions and INCA query language - which are input languages of finite-state
verification tools, such as SPIN (HOLZMANN, 1997b), SMV (MCMILLAN, 1992) and
many others. Their intent has been to capture the knowledge of experts in formal methods
to assist practitioners in the task of writing their properties.

Many other researchers have used patterns to the specification of properties for finite-
state verification. For instance, in (SMITH et al., 2002; COBLEIGH; AVRUNIN; CLARKE,
2006), Cobleigh and her co-authors have proposed templatesusing disciplined natural lan-
guage, finite state automata and question tree to construct the patterns described in Dwyer
et al. Corbett and his colleagues (CORBETT et al., 2000) usedthe same pattern system
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Table 6.8: Properties Specification for the Mobile System
Description Property Formula Class.

There are no an-
tennas outside of
the network.

There are no isolated ver-
tices of typeAnt.

∄x[x ∈ ivert g ∧ x ∈ vertAntg] 1.1.1

There are no dis-
connected users.

There are no isolated ver-
tices of typeUsr.

∄x[x ∈ ivert g ∧ x ∈ vertUsrg] 1.1.1

Users are always
connected to an-
tennas.

All vertices of type Usr

are source of edges of type
Ucn.

∀x [x ∈ vertUsr g → x ∈
vertsUcn g]

1.1.3

It is always possi-
ble to make a call
into the network.

There is an edge of type
Acn.

∃x [x ∈ edgAcn g] 1.1.2

There are at least
two antennas into
the network.

The number of vertices of
type Ant is great or equal
to 2.

cardvAnt g ≥ 2 1.1.4

It is possible to
establish a con-
nection between
each pair of an-
tennas.

Each vertex of typeAnt is
reachable from any other
vertex of typeAnt.

∀x, y[x ∈ vertAntg ∧ y ∈
vertAntg → y ∈ rvertxg]

2.2.3

Each antenna al-
lows the start of a
communication.

For each vertex of type
Ant, there is at least one
edge of type Acn with
source in this vertex.

∀x[x ∈ vertAntg →
∃y, w[(y, x, w) ∈ edg g ∧ y ∈
edgAcng]]

1.1.3

If there are users
in communica-
tion, then there
is a connection
between their
antennas.

If there is an edgey of type
Cal with source in a vertex
y1 of type Usr and target
in a vertexy2 of typeUsr,
then there is an edgez1 of
typeUcn with source iny1
and target inw1, an edge
z2 of typeUcn with source
in y2 and target inw2 and
an edgew of typeAcn with
sourcew1 and targetw2.

∃y, y1, y2 [y ∈ edgCalg ∧
y1 ∈ vertUsrg ∧ y2 ∈
vertUsrg] → ∃z1, z2, w1, w2, w
[(z1, y1, w1) ∈ edg g ∧ z1 ∈
edgUcng ∧ (z2, y2, w2) ∈ edg g ∧
z2 ∈ edgUcng ∧ (w, w1, w2) ∈
edg g ∧ w ∈ edgAcn g]

1.1.5

to provide a structured-English specification language. In(YANG; EVANS, 2004) , Yang
and Evans also used pattern templates to infer temporal properties. Alternatively, the work
of Jörges et al. (JöRGES; MARGARIA; STEFFEN, 2006) combinesformula graphs with
the pattern system for the specification of temporal properties. Bitsch (BITSCH, 2001)
created a catalogue for the specification of safety properties.

Other researchers combine specification languages to extend the property patterns.
Chechick and Paun (CHECHIK; PAUN, 1999; PAUN; CHECHIK, 1999) extend the pat-
tern system of Dwyer et al. to reason about events. Drusinsky(DRUSINSKY, 2004)
combine LTL with Harel statecharts to enable visual, logical and non-deterministic spec-
ifications. The Property Specification Tool (Prospec) (MONDRAGON; GATES, 2004;
MONDRAGON et al., 2007) introduce composite propositions for specifying properties
that include multiple events or conditions. And the work of Salamah et al. (SALAMAH
et al., 2007) provide general templates for generating specifications in LTL for all pat-
tern, scope and composite propositions combinations. Yu etal. (YU et al., 2006) also
extend the Dwyer et al.’s pattern system with a logical composition of patterns to allow
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the specification of complex requirements.
Specification patterns for probabilistic and real-time models have also been delin-

eated. The ProProST (GRUNSKE, 2008) pattern system can be used to formulate re-
quirements in probabilistic logics and the real-time specification patterns described in
(KONRAD; CHENG, 2005) support the formalization of properties in terms of real-time
temporal logics. A similar system for the specification of real-time requirements can also
be found in (GRUHN; LAUE, 2006). Letier et al. (LETIER; LAMSWEERDE, 2002)
introduced operationalization patterns to specify typical occurring goals that include real-
time information. Besides, Flake et al. (FLAKE; MUELLER, 2000) have developed
structured English sentences to help in the formal description of real-time properties.

A number of other works have investigated the processing of natural language speci-
fications into formal logics. In (ALI, 1994) is proposed a logical language designated for
natural language processing. The Attempto project (FUCHS;SCHWERTEL; SCHWIT-
TER, 1998) translates a subset of standard English languageinto a syntactic variant of
first-order logic and offers a tool to support automatic reasoning. Similarly, the Circe
project (AMBRIOLA; GERVASI, 2006) leads with the translation of natural language
properties into propositional logic. Furthermore, a tool to identify and analyse logical
inconsistencies in natural language requirements is proposed in (GERVASI; ZOWGHI,
2005).

Differently from previous pattern systems, our proposal makes use of the theorem
proving technique (RUSHBY, 2001), which allows us to deal with the verification of
both finite and infinite systems. The focus of the work, until now, has been to treat in-
ternal properties that are valid for all reachable states of(infinite-state) systems specified
as graph grammars. Our intent has been to provide a simple wayof stating properties
about the arrangement of the internal states. For this reason, together with the definition
of the standard library of functions, the pattern has the purpose of offering several pos-
sible direct instantiations of properties over states or simply of guiding the developer of
which functions must be used in the specifications. We have used first-order logic as the
underlying language of specification, whereas natural language has been used to describe
informally what the property is designated to assert. We believe that our pattern system
complements the existing approaches and provides the first steps in the direction of a
pattern for infinite-state verification through graph grammars.



87

7 THEOREM PROVING GRAPH GRAMMARS USING EVENT-
B

In this chapter we use Event-B to analyse properties of graphgrammars. Event-B
(DEPLOY, 2010) is a state-based formal method closely related to Classical B (ABRIAL,
1996). It has been successfully used in several applications, having available tool support
for both model specification and analysis. Due to the similarity between Event-B mod-
els and graph grammar specifications, specially concerningthe rule-based behaviour, we
propose to translate graph grammar specifications in Event-B structures, such that it is
possible to use the Event-B provers to demonstrate properties of a graph grammar. This
translation is based on the relational definition of graph grammars. Up to now, we restrict
ourselves only to graph grammars without attributes or negative application conditions.

The chapter is organized as follows. Section 7.1 briefly introduces the Event-B for-
malism and Section 7.2 shows how a graph grammar can be translated into an Event-B
program.

7.1 Event-B

Event-B (DEPLOY, 2010) is a state-based formalism closely related to Classical B
(ABRIAL, 1996) and Action Systems (BACK; SERE, 1989).

Definition 38 (Event-B Model, Event). An Event-B Model is defined by a tupleEBModel =
(c, s, P, v, I, RI , E) wherec are constants ands are sets known in the model;v are the
model variables1; P (c, s) is a collection of axioms constrainingc and s; I(c, s, v) is a
model invariant limiting the possible states ofv s.t. ∃c, s, v · P (c, s) ∧ I(c, s, v) - i.e. P
andI characterise a non-empty set of model states;RI(c, s, v

′) is an initialization action
computing initial values for the model variables; andE is a set of modelevents.

Given statesv, v′ an event is a tuplee = (H,S) whereH(c, s, v) is the guard and
S(c, s, v, v′) is the before-after predicate that defines a relation between current and next
states. We also denote an event guard byH(v), the before-after predicate byS(v, v′) and
the initialization action byRI(v

′).

An Event-B model is assembled from two parts, acontextwhich defines the triple
(c, s, P ) and amachinewhich defines the other elements(v, I, RI , E).

Model correctness is demonstrated by generating and discharging a collection of proof
obligations. The modelconsistencycondition states that whenever an event or an initial-
ization action is attempted, there exists a suitable new state v′ such that the model in-

1For convenience, as in (ABRIAL, 1996), no distinction is made between a set of variables and a state
of a system.
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variant is maintained -I(v′). This is usually stated as two separate proof obligations:
a feasibility (I(v) ∧ H(v) ⇒ ∃v′ · S(v, v′)) and an invariant satisfaction obligation
(I(v) ∧ H(v) ∧ S(v, v′) ⇒ I(v′)). The behaviour of an Event-B model is the transi-
tion system defined as follows.

Definition 39 (Event-B Model Behaviour). GivenEBModel = (c, s, P, v, I, RI , E), its
behaviour is given by a transition systemBST = (BState, BS0,→) where:BState =
{〈v〉|v is astate}∪Undef , BS0 = Undef , and→⊆ BState×BState is the transition
relation given by the rules:

start
RI(v

′) ∧ I(v′)
Undef → 〈v′〉

transition
∃(H,S) ∈ E · I(v) ∧H(v) ∧ S(v, v′) ∧ I(v′)

〈v〉 → 〈v′〉

According to rulestart the model is initialized to a state satisfyingRI ∧ I and then,
as long as there is an enabled event (ruletransition), the model may evolve by firing an
enabled event and computing the next state according to the event’s before-after predicate.
Events are atomic. In case there is more than one enabled event at a certain state, the
choice is non-deterministic. The semantics of an Event-B model is given in the form of
proof semantics, based on Dijkstra’s work on weakest preconditions (DIJKSTRA, 1976).

An extensive tool support through the Rodin Platform makes Event-B especially at-
tractive (DEPLOY, 2010; ABRIAL et al., 2010). An integratedEclipse-based develop-
ment environment is actively developed, and open to third-party extensions in the form
of Eclipse plug-ins. The main verification technique is theorem proving supported by a
collection of theorem provers, but there is also some support for model checking. The
support offered for theorem proving through the platform allows one to: browse the proof
structure; select hypotheses and lemmas to be used; invoke different provers integrated to
the platform; define and select tactics to be used; among others (ABRIAL et al., 2010).

7.2 Graph Grammars in Event-B

The behaviour of an Event-B model is similar to a graph grammar: there is a notion of
state (given by a set of variables in Event-B, and by a graph ina graph grammar) and a step
is defined by an atomic operation on the current state (an event that updates variables in
Event-B and a rule application in a graph grammar). Each stepshould preserve properties
of the state. In Event-B, these properties are stated as invariants. In a graph grammar,
the properties that are guaranteed to be preserved are related to the graph structure (only
well-formed graphs can be generated).

Now, we first present an overview of the translation of a graphgrammarGG in an
event-B model, and then explain in more details how each component is transformed. The
translation is based on the relational graph grammar|GG| corresponding toGG. Assume
thatGG hasn rules, namedα1 to αn and i ∈ {1, . . . , n}. The event-B components
describing this graph grammar are:

• Thesetsknown in the model arevertT , edgeT (the sets of vertices and edges of the
type graphT ), vertLi, edgeLi, vertRi andedgeRi (the sets of vertices and edges of
the left and right-hand side of each rulei) .

• The constantsinclude vertices and edges of the type graph and rules, as well as
(names of) typing functionstLi

V , tLi
E , tRi

V andtRi
E , source and target functionssourceT ,
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targetT , sourceLi, targetLi, sourceRi and targetRi and relational rulesαiV and
αiE .

• Theaxiomsdefine explicitly all sets and functions of the model (whose names were
declared above). The types of functions are also declared asaxioms.

• The model variablesare specified by relationsvertG, edgeG, sourceG, targetG2,
tGV andtGE. They define a state of the system as a reachable graphG typed overT
(see Def. 10).

• The invariantsare used to define the types of variables.

• The initialization actiondefines the initial values for the variablesvertG, edgeG,
sourceG, targetG, tGV andtGE. It specifies the initial graphG0.

• The set ofeventsmodels rule applications. An event is defined for each rule ofthe
grammar. Theguardguarantees the existence of a match of the left-hand side of the
corresponding rule in a state-graph of the grammar. Thebefore-afterpredicate is
defined by a parallel assignment (to the variables that modelthe current state graph)
and implements the formulas in Def. 16.

Now, we present this translation in more details. We will usea simple example, de-
picted in Figure 7.1, to illustrate how graphs, typed graphsand rules can be translated to
Event-B components.

(a) Type GraphT (b) Start GraphGT

(c) Ruleα1

Figure 7.1: Example of Graph Grammar

Graphs: According to Def. 7 and Def. 13, setsVGG andEGG contain all possible vertices
and edge names that may appear in graphs of this relational structure. We will define
these sets as:

2RelationsedgeG (unary),sourceG (binary) andtargetG (binary) are an alternative representation for
incG (ternary). We have(x, y, z) ∈ incG iff x ∈ edgeG ∧ (x, y) ∈ sourceG ∧ (x, z) ∈ targetG.
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VGG = vertT ∪ N, wherevertT is the set of names used as vertex types inGG
(we assume thatvertT ∩ N = ∅);

EGG = edgeT ∪N, whereedgeT is the set of names used as edge types inGG (we
assume thatedgeT ∩ N = ∅).

Moreover, we assume thatvertT ∩ edgeT = ∅.

The type graphT is defined in an event-B context as described in Figure 7.2, where
we define all vertex and edge types as constants, as well as theincidence relation
relating them. In the axioms, we define these sets explicitly(for example, axiom
axm1 means thatvertT = {V ertex1, V ertex2}). Text after a// is a comment.

CONTEXT ctx_GG
SETS

vertT // (Type Graph ) Vertices
edgeT // (Type Graph ) Edges

CONSTANTS
Vertex1 Vertex2

Edge1 Edge2

incT

AXIOMS
axm1 : partition(vertT , {Vertex1}, {Vertex2})
axm2 : partition(edgeT , {Edge1}, {Edge2})
axm3 : incT ⊆ (edgeT × vertT × vertT )
axm4 : partition(incT , {Edge1 7→ Vertex1 7→ Vertex1}, {Edge2 7→ Vertex1 7→

Vertex2})

END

Figure 7.2: Event-B Type Graph

Instances of vertices and edges that appear in graphs representing states will be de-
scribed by natural numbers. It is not necessary to have distinct numbers for vertices
and edges: a graph may have a vertex with identity1 as well as an edge with iden-
tity 1, these elements will be different because one will be mappedto a vertex type
and the other to an edge type. To be able to manipulate instances easily, we define
the functionssource, target andedgeName (see Figure 7.3).

A graph typed over a type graphT (Def. 10) is modelled by a set of variables
describing its set of vertices, incidence relation, and typing functions. It is possible
to state the type consistency and morphism commutativity conditions (stated in Def.
8) as invariants. However, since we will always generate well-formed graphs (the
start graph is well-formed and events implement the single-pushout construction),
we will skip these invariants (each invariant that is used generates proof obligations
and therefore it is advisable to use only the necessary ones).

Figure 7.4 shows the definition of a graphG typed overT . Invariants are used to
define the types of the variables (for example,tG_V is a total function fromvertG
to vertT andtG_E is a partial function from the set of natural numbers toedgeT ).

There is a special event in an event-B model that is executed before any other. This
is the initialization event. In our encoding, this event will be used to create the start
graph of a graph grammar. This is done by assigning initial values in the variables
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CONSTANTS
source

target

edgeName

AXIOMS
axm5 : source ∈ (N × N × N) → N
axm6 : ∀a, b, c ·a ∈ N ∧ b ∈ N ∧ c ∈ N ⇒ source(a 7→ b 7→ c) = b

axm7 : target ∈ (N × N × N) → N
axm8 : ∀a, b, c ·a ∈ N ∧ b ∈ N ∧ c ∈ N ⇒ target(a 7→ b 7→ c) = c

axm9 : edgeName ∈ (N × N × N) → N
axm10 : ∀a, b, c ·a ∈ N ∧ b ∈ N ∧ c ∈ N ⇒ edgeName(a 7→ b 7→ c) = a

END

Figure 7.3: Auxiliary Functions

MACHINE mch_GG
SEES ctx_GG
VARIABLES

vertG // (Graph) Vertices
incG // (Graph) Edges
tG_V // Typing of vertices
tG_E // Typing of edges

INVARIANTS
inv_vertG : vertG ∈ P(N)
inv_incG : incG ∈ P(N × N × N)
inv_tG_V : tG_V ∈ vertG → vertT

inv_tG_E : tG_E ∈ N 7→ edgeT

EVENTS
Initialisation

begin
act1 : vertG := {1}
act2 : incG := {1 7→ 1 7→ 1}
act3 : tG_V := {1 7→ Vertex1}
act4 : tG_E := {1 7→ Edge1}

end

Figure 7.4: Event-B GraphG

that correspond to graphG (see Figure 7.4) depicted in Figure 7.1. In an event,
there is no notion of order in the attributions belonging to the same event. A triple
(a, b, c) ∈ N × N × N is denoted bya 7→ b 7→ c in event-B.

Rules: Left- and right-hand sides of rules are graphs, and thus willhave representa-
tions as defined previously. Additionally, we have to define the partial morphism
(αV , αE) that maps elements from the left- to the right-hand side of the rule (Def.
12). The Event-B enconding of ruleα1 depicted in Figure 7.1 is shown in Fig-
ure 7.5. Since rules do not change during execution, their structures are defined as
constants.

It is important to notice that some axioms and invariants listed in an event-B spec-
ification guarantee the logical conditions imposed in the relational definitions. For
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SETS
vertL1

edgeL1

vertR1

edgeR1

CONSTANTS
v1_L1 // vertex of LHS
e1_L1 // edge of LHS
v1_R1 // vertex of RHS
v2_R1 // vertex of RHS
e1_R1 // edge of RHS
sourceL1

targetL1

edgeNameL1

incL1

tL1_V // (Rule 1) Typing vertices of LHS
tL1_E // (Rule 1) Typing edges of LHS
incR1

tR1_V // (Rule 1) Typing vertices of RHS
tR1_E // (Rule 1) Typing edges of RHS
alpha1V // (Rule 1) Rule morphism: mapping vertices
alpha1E // (Rule 1) Rule morphism: mapping edges

AXIOMS
axm11 : partition(vertL1 , {v1_L1})
axm12 : partition(edgeL1 , {e1_L1})
axm13 : incL1 ⊆ (edgeL1 × vertL1 × vertL1 )
axm14 : partition(incL1 , {e1_L1 7→ v1_L1 7→ v1_L1})
axm15 : tL1_V ∈ vertL1 → vertT

axm16 : partition(tL1_V , {v1_L1 7→ Vertex1})
axm17 : tL1_E ∈ edgeL1 → edgeT

axm18 : partition(tL1_E , {e1_L1 7→ Edge1})
axm19 : partition(vertR1 , {v1_R1}, {v2_R1})
axm20 : partition(edgeR1 , {e1_R1})
axm21 : incR1 ⊆ (edgeR1 × vertR1 × vertR1 )
axm22 : partition(incR1 , {e1_R1 7→ v1_R1 7→ v2_R1})
axm23 : tR1_V ∈ vertR1 → vertT

axm24 : partition(tR1_V , {v1_R1 7→ Vertex1}, {v2_R1 7→ Vertex2})
axm25 : tR1_E ∈ edgeR1 → edgeT

axm26 : partition(tR1_E , {e1_R1 7→ Edge2})
axm27 : sourceL1 ∈ (edgeL1 × vertL1 × vertL1 ) → vertL1

axm28 : ∀a, b, c ·a ∈ edgeL1 ∧ b ∈ vertL1 ∧ c ∈ vertL1 ⇒ sourceL1 (a 7→ b 7→ c) = b

axm29 : targetL1 ∈ (edgeL1 × vertL1 × vertL1 ) → vertL1

axm30 : ∀a, b, c ·a ∈ edgeL1 ∧ b ∈ vertL1 ∧ c ∈ vertL1 ⇒ targetL1 (a 7→ b 7→ c) = c

axm31 : edgeNameL1 ∈ (edgeL1 × vertL1 × vertL1 ) → edgeL1

axm32 : ∀a, b, c ·a ∈ edgeL1 ∧ b ∈ vertL1 ∧ c ∈ vertL1 ⇒ edgeNameL1 (a 7→ b 7→ c) = a

axm33 : alpha1V ∈ vertL1 → vertR1

axm34 : partition(alpha1V , {v1_L1 7→ v1_R1})
axm35 : alpha1E ∈ edgeL1 7→ edgeR1

axm36 : alpha1E = ∅
axm37 : dom(edgeNameL1 ) = incL1

axm38 : ran(edgeNameL1 ) = dom(tL1_E )

END

Figure 7.5: Event-B Rule Structure

instance,tR1_V (respect.tR1_E) defines a total function that relates vertices (re-
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spect. edges) ofR1 to vertices (respect. edges) ofT . Axiomsaxm37 andaxm38
are included for well-definedness of the edge type compatibility that must be guar-
anteed when finding a match (see guardgrd8 in Figure 7.6).

The behaviour of a rule (Def. 16) is described by an event (forthe example,
by eventrule1 in Figure 7.6). Whenever there are concrete values for variables
mV,mE, newV, newE that satisfies the guard conditions, the event may occur.
Guard conditionsgrd1, grd2 andgrd7 to grd9 assure that this pair is actually a
match from the left-hand side of the rule to graphG (see Def. 15). Guard con-
ditionsgrd3 andgrd4 ensure thatnewV andnewE are new fresh elements in the
graph. Remaining guard conditions (grd5 andgrd6) guarantee the well-definedness
of the action that update the settG_E. The actions update the state graph (graph
G) according to the rule. In this example one loop edge is deleted and a vertex and
a new edge are created. A vertexnewV is created with typeV ertex2, and an edge
newE with typeEdge2 is also created. The source of this new edge is the image
of the only vertex in the left-hand side of the rule inG and the target is the newly
created vertex.

EVENTS
Event rule1 =̂

any
mV

mE

newV

newE

where
grd1 : mV ∈ vertL1 → vertG // total on vertices
grd2 : mE ∈ incL1 ֌ incG // total and injective on edges
grd3 : newV ∈ N \ vertG // newV is a fresh vertex name
grd4 : newE ∈ (N \ {x |x ∈ N ∧ (∃y, z ·y ∈ N ∧ z ∈ N ∧ (x 7→ y 7→ z ) ∈ incG)}) \

dom(tG_E ) // newE is a fresh edge name
grd5 : ran(mE ) ⊆ dom(edgeName) // well-definedness ofact6
grd6 : ran(edgeName ◦ mE ) ⊆ dom(tG_E ) // well-definedness ofact6
grd7 : ∀v ·v ∈ vertL1 ⇒ tL1_V (v) = tG_V (mV (v))

// vertex type compatibility
grd8 : ∀e ·e ∈ incL1 ⇒ tL1_E (edgeNameL1 (e)) = tG_E (edgeName(mE (e)))

// edge type compatibility
grd9 : ∀e ·e ∈ incL1 ⇒ mV (sourceL1 (e)) = source(mE (e)) ∧ mV (targetL1 (e)) =

target(mE (e))
// source/target compatibility

then
act3 : vertG := vertG ∪ {newV }
act4 : incG := {newE 7→ source(mE (e1_L1 7→ v1_L1 7→ v1_L1 )) 7→ newV }∪(incG\

{mE (e1_L1 7→ v1_L1 7→ v1_L1 )})
act5 : tG_V := tG_V ∪ {newV 7→ Vertex2}
act6 : tG_E := (tG_E \ {edgeName(mE (e1_L1 7→ v1_L1 7→ v1_L1 )) 7→ Edge1}) ∪

{newE 7→ Edge2}
end

END

Figure 7.6: Event-B Rule Event

Preservation of semantics:According to Def. 39, the semantics of Event-B, the first
event that occurs must be the initialization event. This event occurs only once in
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INVARIANTS

prop1 : finite(incG)

prop2 : card(incG) ≤ 2

Figure 7.7: Stating Properties

any computation. In our translation, the occurrence of thisevent will generate a
state that represents the start graph of the grammar. From this point on, any enabled
event may happen. Each of the other events represents one rule of the grammar: the
guard describes the existence of a match, and the actions describe the effect of the
rule application. Whenever there is a match for a rule according to Def. 15 the guard
of the corresponding event will be true and this event will beenabled (and also, if
the event is enabled, there must be a match for the corresponding rule). Among all
enabled events, the choice of the one that will happen is non-deterministic, exactly
as defined in the semantics of a graph grammar. The effect of the occurrence of an
event is a parallel assignment to the variables that composethe description of the
state graph. These assignments were defined according to Def. 16, that was proven
to be equivalent to a SPO derivation step. Thus, the transition system of the event-B
model generated from a graph grammar corresponds exactly tothe behavior of the
grammar.

Proving Properties: Once the start graph and all rules are represented in the event-B
model, the property to be proved can be stated as an invariant. For example, we
could add the invariantsfinite(incG) andcard(incG) ≤ 2, meaning respectively
that any reachable graph has a finite number of edges and that no reachable graph
can have more than 2 edges (see Figure 7.7). For the given example, these properties
are true, and this can be easily proven by the Rodin platform.

The example described above generated 24 proof obligationswith 22 of them proved
automatically. The event-B specification of the Token Ring example is detailed in Ap-
pendix B.
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8 CONCLUSION

In this thesis we introduced a relational and logical approach to graph grammars to
allow the analysis of asynchronous distributed systems with infinite state space. We have
used relational structures to characterize graph grammarsand defined rule applications as
definable transductions. We have first considered graph grammars defined over simple
(typed) graphs, and then we extended the representation to attributed graphs and gram-
mars with negative application conditions. We have shown that our approach offers a
faithful encoding for SPO graph grammars and can thus be usedas basis to enable the use
of the theorem proving techniques to prove properties within this approach, complement-
ing the existing approaches based on model checking techniques. Our main contribution
should not be seen as a new approach to describe graph grammars, but rather as a way
to allow theorem proving techniques (and tools) to be used inexisting approaches (we
modelled SPO here, but the theory could be used as basis to handle other approaches as
well). This is relevant since graph grammars offer an interesting specification technique
for a variety of application areas and up to now theorem proving techniques could not be
used to analyse properties of graph grammars. The main contributions of this work are:

• The relational and logical representation of graph grammars(Chapter 3) estab-
lishes the theoretical foundations for the analysis of graph grammars through the-
orem proving. We represent graph grammars and their behaviour using relational
and logical structures because they are the basis of theoremprovers. Related works
(STRECKER, 2008; BARESI; SPOLETINI, 2006) that adopt a description of graph
grammars based on logical or set theoretical representations either are not effec-
tively verifying properties of graph grammars or are limited to analyse a system for
a finite scope, whose size is user-defined. Approaches for analysing infinite-state
graph grammars (BALDAN; CORRADINI; KÖNIG, 2008; BALDAN; KÖNIG;
RENSINK, 2005) derive the model as approximations, which can result in incon-
clusive verification reports.

The definition of graph grammars as relational structures (Def. 13) allows the asso-
ciation of a graph grammar to a tuple composed of a set and a collection of relations
over this set. The set describes the domain of the structure (the set of vertices and
edges of the graph grammar) and the relations define the type graph, the initial
graph and the rules. A series of logical conditions impose restrictions to the ele-
ments of these relations such that they really represent thecomponents of a graph
grammar (graphs, typed graphs, graph morphisms and rules).The application of
a rule is described by a definable transduction (Def. 16), that can be seen as an
inference rule on the relational structure associated to a graph grammar. The result
of the transduction is another graph grammar whose initial state corresponds to the



96

result of the application of a rule at a given match to the initial state of the origi-
nal grammar. The other components of the grammar remain unchanged (i.e., the
resulting grammar has the same type graph and rules of the original one). Propo-
sitions 7 and 9 assure that the adopted encoding is well-defined. For verification
purposes, the relations of the relational structure define axioms that are used in the
proofs and properties about reachable states are proven by induction: first (base
case) the property is verified for the initial graph and then,at the inductive step, the
property is verified for every rule of the grammar applicableto a reachable graph
G, considering that the property is valid forG.

• Therelational approach for attributed graph grammars(Chapter 4) is an extension
of the basic formalism integrating the use of data types intographs. Attributed graph
grammars are very interesting from a practical point of view, since it is possible to
use variables and terms when specifying the behaviour expressed by rules. These
values (or terms) come from algebras specified as abstract data types. The use of at-
tributed graphs gives the specifier a language that is more suitable for specification,
merging the advantages of the graphical representation with the standard represen-
tation of classical data types. From a practical perspective, attributed graphs are
needed, since it is not feasible to encode data types like natural numbers or strings,
etc. into graphs. For verification, the presence of attributes poses additional prob-
lems, since data types are often infinite sets. In fact, even restricting to only finite
sets, specifications using attributed graphs often give rise to non-verifiable systems
due to state-explosion. There are few approaches to verify attributed graph gram-
mars, like (KASTENBERG, 2006) and (KÖNIG; KOZIOURA, 2008) and they
work for limited classes of grammars. We show that attributes can be smoothly
integrated in our representation of graph grammars. Our approach provides a basis
for a framework to reason about a large class of graph grammars, including those
grammars that specify systems with infinite state-space, without using any kind of
approximation.

Definitions 29 and 31 express the relational representationof an attributed graph
grammar. Propositions 16 and 18 assure that the relational extension is well-defined.
The proof strategy applied in verification step is the same described before: we use
mathematical induction, considering that the relations ofthe relational structure de-
fine axioms to be used during the proof. The difference is thatnow we use variables
as attributes in the left- and right-hand sides of rules, andthen, in many cases, at
the inductive step the development of the proof involves variables. In this case, in
order to establish the property, we must regard the equations of the applied rule as
axioms.

• Theextension to graph grammars with negative application conditions (Chapter 5)
allows the specification that a certain structure is forbidden when performing a rule
application, enhancing the expressiveness of the transformation. Particularly, nega-
tive application conditions restrict the application of a rule by expressing that a spe-
cific structure (e.g. nodes, edges or subgraphs) must not be present before applying
the rule to a certain state-graph. Application conditions are commonly used in non-
trivial specifications. As emphasized in (HABEL; HECKEL; TAENTZER, 1996),
they are frequently expressed informally by assuming a kindof control mechanism
that is not specified. Nevertheless such strategy prohibitsformal specification and
verification. The expression of NACs is currently possible in graph grammar tools
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(ERMEL; RUDOLF; TAENTZER, 1999; SCHüRR; WINTER; ZüNDORF, 1999)
that focus on the analysis of conflicts and functional behaviour. NACs can also
be specified in GROOVE (KASTENBERG; RENSINK, 2006b) for the analysis of
infinite-state graph grammars in case that the state-space can be computed on a
finitely representable fragment .

Definition 36 associates a relational structure to a graph grammar with negative ap-
plication conditions. Proposition 20 shows the well-definedness of our relational
definition. In this approach, extra conditions must be checked before a rule applica-
tion assuming that the forbidden elements are not in the state-graph. In verification
step, the existence of NACs determines extra conditions that can be used during the
proofs.

• The property patterns(Chapter 6) proposal contains 15 pattern classes in which
functional and structural requirements of reachable states can be formulated. The
patterns have the goal of helping and simplifying the task ofstating precise require-
ments to be verified. It must provides enough help for the specification of properties
over reachable states of graph grammars. We believe that theproposed patterns rep-
resent the first step towards a specification pattern for properties over states in the
context of graph grammars. Differently from most existing approaches (DWYER;
AVRUNIN; CORBETT, 1999; CHECHIK; PAUN, 1999; SALAMAH et al., 2007),
we focus on properties about reachable states for (infinite-)state verification. Most
of existing patterns for property specification describe properties about traces for
finite-state verification tools. These two approaches are complementary.

Tables 6.1, 6.2 and 6.3 describe a standard library of functions that describe typical
characteristics or elements of graphs (like the set of vertices of some type, the set of
edges of some type, the cardinality of vertices, etc.). These functions were defined
in the framework of relational graph grammars. Table 6.4 proposes a pattern taxon-
omy and Tables 6.6 and 6.7 list a collection of patterns for property specifications.

• The modelling of graph grammar specifications in event-B structures(Chapter 7)
enables the use of event-B provers (for instance, through the Rodin platform) to
demonstrate properties of a graph grammar. Event-B (DEPLOY, 2010) has been
successfully used in several other applications, having available tool support for
both model specification and analysis. Event-B was chosen due to the similarity
between event-B models and graph grammar specifications, specially concerning
the rule-based behaviour. Many other works have been concerning on theorem
proving concurrent systems (ZEYDA; CAVALCANTI, 2009; ISOBE; ROGGEN-
BACH, 2008a; LEHMANN; LEUSCHEL, 2003), but for asynchronous systems,
graph grammars have the advantage because of its visual and modular style.

To define the event-B model, we used the relational definitionof graph grammars.
The type graph is defined in an event-B context, where vertex,edge types and the
incidence relation relating them are constants. A set of axioms define these sets ex-
plicitly. A graph typed over a type graph is modelled by a set of variables describing
its set of vertices, incidence relation, and typing functions. The compatibility con-
ditions of types and source and target of edges can be stated as invariants. The
initialization event is used to create the start graph. The structure of a rule is de-
fined by sets, constants and axioms. The behaviour of a rule isdescribed by an
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event with guard conditions. A set of actions update the state graph according to
the rule.

Finally, we can say that the research field in theorem provinggraph grammars is just
in its first stages. There are a number of open issues that may be subject of future works.

• Besides implementation, case studies are necessary to evaluate and improve the
proposed approach. Up to now, the extensions of the graph grammar basic for-
malism were not specified in Rodin platform. We could also investigate to which
extent the theory of refinement, that is very well-developedin event-B, could be
used to validate a stepwise development based on graph grammars. Another plan is
the implementation of the data type reachable graph to be used in the specification
and verification of graph grammar models. This strategy mustbe compared and
evaluated with relation to the adopted implementation.

• Other classes of graph grammars not considered in this thesis comprise many prac-
tical applications. For instance, object-based graph grammars (DOTTI et al., 2003),
timed object-based graph grammars (MICHELON; COSTA; RIBEIRO, 2007, 2006),
object-oriented graph grammars (FERREIRA; FOSS; RIBEIRO,2007) and many
others (SCHFüRR, 1997) possibly with other kind of graph structures, like hyper-
graphs, labelled and attributed hypergraphs, have their own application fields. So it
should be appealing to investigate a general description ofthe relational approach
such that many kinds of graphs and/or grammars become instances of this general
framework.

• The approach here proposed may be defined for Double-Pushout(DPO) graph
grammars (EHRIG et al., 1997) without any mayor problems. Inthe SPO approach
it is just necessary to find an image of the left-hand side of a rule into a reachable
graph in order that a rule could be applied. In the DPO approach some extra restric-
tions must be checked, namedgluing condition, before a rule can be applied. This
means that some extra logic formulas (or extra guard conditions in case of event B
structures) must be included to be verified before a rule application.

• The property patterns may also be incorporated in a proof framework. It would be
helpful, as far as possible, to detail for each stated requirement the properties or
lemmas that must be claimed for the conclusion of the proof, including strategies
of proofs that can be adopted in each case. Simultaneously, astructured English
grammar could be developed to assist the formulation of properties. Besides that, a
natural extension of the stated patterns would be the investigation of requirements
described with higher-order logics. We should, at last, complement and evaluate
our pattern system surveying an appropriate number of real-world specifications.

• Another topic of investigation is the use of theorem provingtechnique to analyse
other kind of properties, like safety and liveness properties. For instance, controlla-
bility, or the property of reaching a particular (set of) state(s) of the system whatever
be the current one, is an important subject of analysis. Suchproperty can not be ver-
ified through mathematical induction, since it is not finitary. It should be defined
over all future behaviours of the system.
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APPENDIX A ALGEBRAIC SPECIFICATIONS

A.1 Basic Concepts of Algebraic Specifications

Definition 40 (Signature). A signatureSIG = (S,OP ) consists of a setS of sorts and a
setOP of constant and operations symbols. The setOP is the union of pairwise disjoint
subsets:

- Ks, set of constant symbols of sortss ∈ S.

- OPw,s, set of operation symbols with argument sortsw ∈ S+ and range sorts ∈ S,
for all s ∈ S andw ∈ S+.

Definition 41 (Algebra). An algebraA = (SA, OPA) of a signatureSIG = (S,OP ),
also called SIG-Algebra, is given by two familiesSA = (As)s∈S andOP = (NA)N∈OP

where

1. As are sets for alls ∈ S, called base sets or carrier sets ofA.

2. NA are elementsNA ∈ As for all constant symbolsN ∈ Ks i. e. N :→ s e s ∈ S,
called constants of A.

3. NA : As1 × As2 × · · · × Asn → As are functions for all operation symbolsN ∈
OPs1...sn,s (i.e.N : s1 . . . sn → s) ands1 . . . sn ∈ S+, s ∈ S, called operations of
A, where “×” denotes the cartesian product of sets.

Definition 42 (Variables and Terms). LetSIG = (S,OP ) be a signature andXs for each
s ∈ S a set, called set of variables of sorts. We assume that these setsXs are pairwise
disjoint and also disjoint withOP . The unionX =

⋃
s∈S Xs is calledset of variables

with respect to SIG.
The setsTOP,s(X) of terms of sort sis inductively defined by:

1. Xs ∪Ks ⊆ TOP,s(X) whereKs is the set of constant symbols of sorts.

2. N(t1, . . . , tn) ∈ TOP,s(X) for all operation symbolsN ∈ OP withN : s1 . . . sn →
s and all termst1 ∈ TOP,s1

, . . . , tn ∈ TOP,sn
.

3. There are no further terms of sorts ∈ TOP,s(X).

The setTOP,s of terms without variables of sorts s, also calledground termsof sorts,
is defined for the empty setX = ∅ of variables by:TOP,s = TOP,s(∅)

The set of termsTOP (X) and the set of terms without variablesTOP are defined by:
TOP (X) =

⋃
s∈S TOP,s(X) andTOP =

⋃
s∈S TOP,s
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Definition 43 (Evaluation of Terms). LetTOP be the set of terms for a signatureSIG =
(S,OP ) andA a SIG-algebra. Theevaluationeval : TOP → A is recursively defined by:

(i) eval(N) = NA for all constant symbols N ∈ K
(ii) eval(N(t1, . . . , tn)) =

NA(eval(t1), . . . , eval(tn)) for all N(t1, . . . , tn) ∈ TOP .
Given a set of variablesX for SIG = (S,OP ) and anassignmentasg : X → A

with asg(x) ∈ A for x ∈ Xs ands ∈ S. Theextended assignmentasg : TOP (X) → A
of the assignmentasg : X → A is recursively defined by:

(i) asg(x) = asg(x) for all variables x ∈ X
asg(N) = NA for all constant symbols N ∈ K

(ii) asg(N(t1, . . . , tn)) =
NA(asg(t1), . . . , asg(tn)) for all N(t1, . . . , tn) ∈ TOP (X).

Definition 44 (Equations and Validity). Given a signatureSIG = (S,OP ) and variables
X with respect toSIG. A triple e = (X,L,R) with L,R ∈ TOP,s(X) for somes ∈ S is
called anequationof sorts with respect toSIG. The equatione = (X,L,R) is called
valid in a SIG-algebraA if for all assignmentsasg : X → A we haveasg(L) = asg(R)
whereasg is the extended assignment ofasg. If e is valid inA we also say thatA satisfies
e.

Ground equationsare equationse = (X,L,R) with X = ∅. In this caseL andR
are ground terms.

Definition 45 (Derivation of Terms). Given a setE of equations for a signatureSIG =
(S,OP ) with a fixed set of variablesX = Xe for each equatione. (L,R) ∈ E defines
two substitution Trules:

(1) L⇒ R (R − L − rule)
(2) R ⇒ L (L − R − rule)

A Trule t1 ⇒ t2 is applicableto a termt ∈ TOP (X) if there is an assignmentasg :
X → TOP (X) with extensionasg : TOP (X) → TOP (X) such that we have fort1 =
asg(t1) andt2 = asg(t2): t1 is a subterm oft.

The replacement oft1 by t2 in t yields a termt′ and is denoted byt′ = t(t1/t2). In this
case we writet⇒ t′, calleddirect derivation fromt to t′ viaE, using Trulet1 ⇒ t2 and
assignmentasg.

A sequence ofn ≥ 0 direct derivationst0 ⇒ t1 ⇒ · · · ⇒ tn with t = t0 and
t′ = tn written ast

∗
⇒ t′, is calledderivation fromt to t′ viaE ande′ = (t, t′) is called

derived equationfromE with fixedX. The derivationt
∗
⇒ t′ is correctwith respect to a

SIG-algebraA if we have for each assignmentasg : X → A, asg(t) = asg(t′).

Definition 46 (Specification and SPEC-algebra). A specificationSPEC = (S,OP,E)
consists of a signatureSIG = (S,OP ) and a setE of equationse with respect toSIG.
An algebraA of the specificationSPEC, shortSPEC-algebra, is an algebraA of the
signatureSIG which satisfies all equations inE.

Definition 47 (Homomorphism). LetA andB be algebras of the same signatureSIG =
(S,OP ) or specificationSPEC = (S,OP,E). A homomorphismf : A → B, also
calledSIG- or SPEC-homomorphism, is a family of functions

fs : As → Bs for s ∈ S

such that for each constant symbolN :→ s in OP ands ∈ S

fs(NA) = NB
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and for each operation symbolN : s1 . . . sn → s inOP and allai ∈ Asi
, for i = 1, . . . , n

fs(NA(a1, . . . , an)) = NB(fs1
(a1), . . . , fsn

(an))

Alg(SIG) denotes the category of all SIG-algebras and SIG-homomorphisms.U de-
notes the forgetful functor fromAlg(SIG) to Setyielding the disjoint union of carrier sets
(and homomorphisms).

Definition 48 (Congruence on Ground Terms). Given a specificationSPEC = (S,OP,E)
the relation≡ on ground terms defined for allt1, t2 ∈ TOP by

t1 ≡ t2 if and only if evalA(t1) = evalA(t2) for all SPEC − algebras A
is calledcongruence on ground terms.
It satisfies the following conditions for allt1, t2, t3 ∈ TOP :
1. t1 ≡ t1. (reflexivity)
2. t1 ≡ t2 implies t2 ≡ t1. (symmetry)
3. t1 ≡ t2 and t2 ≡ t3 implies t1 ≡ t3. (transitivity)
4. t1 ≡ t′1, . . . , tn ≡ t′n implies N(t1, . . . , tn) ≡ N(t′1, . . . , t

′
n) (congruence)

for all operation symbols N : s1 . . . sn → s in OP with n ≥ 1 and all ground
terms ti, t

′
i of sort si for i = 1, . . . , n.

5. Each derivation t1
∗
⇒ t2 via E between ground terms t1, t2 ∈ TOP implies

t1 ≡ t2.
6. If there is a SPEC − algebra A with evalA(t1) 6= evalA(t2) for some

ground terms t1, t2 ∈ TOP then we have t1 6≡ t2.

Definition 49 (Algebra of Terms). The algebra(ST , OPT ) with

(i) ST = (TOP,s)s∈S as the family of base sets.

(ii) NT = N as constant forN :→ s.

(iii) NT : TOP,s1
(X) × · · · × TOP,sn

(X) → TOP,s(X)defined by

NT (t1, . . . , tn) = N(t1, . . . , tn)

for N : s1 . . . sn → s andti ∈ TOP,si
(X), i = 1, . . . , n, as the operations.

is called thealgebra of terms with respect to SIG and X, or simply theterm algebra.

Definition 50 (Quotient Term Algebra). Given a specificationSPEC = (S,OP,E) the
quotient term algebraTSPEC = ((Qs)s∈S′, (NQ)N∈OP ) is defined by:

1. For eachs ∈ S we have a base set

Qs = {[t]/t ∈ TOP,s}

where the congruence class[t] is defined by:

[t] = {t′/t′ ≡ t}.

2. For each constant symbolN :→ s in OP the constantNQ is the congruence class
generated byN : NQ = [N ]

3. For each operation symbolN : s1 . . . sn → s inOP the operationNQ : Qs1
×· · ·×

Qsn
→ Qs is defined by

NQ([t1], . . . , [tn]) = [N(t1, . . . , tn)]

for all termsti of sortsi and all i = 1, . . . , n.
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APPENDIX B TOKEN RING SPECIFICATION

Next we describe the Event-B specification of the Token Ring protocol. This model
was based on the relational structure depicted in Example 4.The model generated 86
proof obligations with 57 of them proved automatically. It is also important to notice that
the great majority of proof obligations discharged by interactive proof involved just the
direct execution of an event-b prover, the simple addition of hypothesis or the instantiation
of universal quantifiers.

B.1 Event-B Context of Token Ring

An Event-B Specification of ctx_trAll
Creation Date: 8 Mar 2010 @ 08:23:33 PM

CONTEXT ctx_trAll

SETS

V_GG // (Domain) Vertices names – V_GG⊆ N

E_GG // (Domain) Edges names – E_GG⊆ N

vertT // (Type Graph T) Vertices

edgeT // (Type Graph T) Types of edges

vertL1 // (Rule 1) Left Graph L1 – Vertices

edgeL1 // (Rule 1) Left Graph L1 – Edges

vertR1 // (Rule 1) Right Graph R1 – Vertices

edgeR1 // (Rule 1) Right Graph R1 – Edges

vertL2 // (Rule 2) Left Graph L2 – Vertices

edgeL2 // (Rule 2) Left Graph L2 – Edges

vertR2 // (Rule 2) Right Graph R2 – Vertices

edgeR2 // (Rule 2) Right Graph R2 – Edges

vertL3 // (Rule 3) Left Graph L3 – Vertices

edgeL3 // (Rule 3) Left Graph L3 – Edges

vertR3 // (Rule 3) Right Graph R3 – Vertices

edgeR3 // (Rule 3) Right Graph R3 – Edges

vertL4 // (Rule 4) Left Graph L4 – Vertices

edgeL4 // (Rule 4) Left Graph L4 – Edges

vertR4 // (Rule 4) Right Graph R4 – Vertices
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edgeR4 // (Rule 4) Right Graph R4 – Edges

vertL5 // (Rule 5) Left Graph L5 – Vertices

edgeL5 // (Rule 5) Left Graph L5 – Edges

vertR5 // (Rule 5) Right Graph R5 – Vertices

edgeR5 // (Rule 5) Right Graph R5 – Edges

CONSTANTS

Node // Type of node

Nxt // Type of edge

Tok // Type of edge

Msg // Type of edge

Stb // Type of edge

Act // Type of edge

N11 // (Rule 1) Vertex name – N11∈ vertL1

N12 // (Rule 1) Vertex name – N12∈ vertL1

N13 // (Rule 1) Vertex name – N13∈ vertR1

N14 // (Rule 1) Vertex name – N14∈ vertR1

N21 // (Rule 2) Vertex name – N21∈ vertL2

N22 // (Rule 2) Vertex name – N22∈ vertL2

N23 // (Rule 2) Vertex name – N23∈ vertR2

N24 // (Rule 2) Vertex name – N24∈ vertR2

N31 // (Rule 3) Vertex name – N31∈ vertL3

N32 // (Rule 3) Vertex name – N32∈ vertL3

N33 // (Rule 3) Vertex name – N33∈ vertR3

N34 // (Rule 3) Vertex name – N34∈ vertR3

N41 // (Rule 4) Vertex name – N41∈ vertL4

N42 // (Rule 4) Vertex name – N42∈ vertL4

N43 // (Rule 4) Vertex name – N43∈ vertR4

N44 // (Rule 4) Vertex name – N44∈ vertR4

N51 // (Rule 5) Vertex name – N51∈ vertL5

N52 // (Rule 5) Vertex name – N52∈ vertL5

N53 // (Rule 5) Vertex name – N53∈ vertR5

N54 // (Rule 5) Vertex name – N54∈ vertR5

N55 // (Rule 5) Vertex name – N55∈ vertR5

Tok11 // (Rule 1) Edge name – Tok11∈ edgeL1

Stb11 // (Rule 1) Edge name – Stb11∈ edgeL1

Nxt11 // (Rule 1) Edge name – Nxt11∈ edgeL1

Tok12 // (Rule 1) Edge name – Tok12∈ edgeR1

Nxt12 // (Rule 1) Edge name – Nxt12∈ edgeR1

Act11 // (Rule 1) Edge name – Act11∈ edgeR1

Msg11 // (Rule 1) Edge name – Msg11∈ edgeR1

Tok21 // (Rule 2) Edge name – Tok21∈ edgeL2

Stb21 // (Rule 2) Edge name – Stb21∈ edgeL2
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Nxt21 // (Rule 2) Edge name – Nxt21∈ edgeL2

Tok22 // (Rule 2) Edge name – Tok22∈ edgeR2

Stb22 // (Rule 2) Edge name – Stb22∈ edgeR2

Nxt22 // (Rule 2) Edge name – Nxt22∈ edgeR2

Stb31 // (Rule 3) Edge name – Stb31∈ edgeL3

Nxt31 // (Rule 3) Edge name – Nxt31∈ edgeL3

Msg31 // (Rule 3) Edge name – Msg31∈ edgeL3

Nxt32 // (Rule 3) Edge name – Nxt32∈ edgeR3

Stb32 // (Rule 3) Edge name – Stb32∈ edgeR3

Msg32 // (Rule 3) Edge name – Msg32∈ edgeR3

Msg41 // (Rule 4) Edge name – Msg41∈ edgeL4

Nxt41 // (Rule 4) Edge name – Nxt41∈ edgeL4

Act41 // (Rule 4) Edge name – Act41∈ edgeL4

Tok41 // (Rule 4) Edge name – Tok41∈ edgeL4

Tok42 // (Rule 4) Edge name – Tok42∈ edgeR4

Nxt42 // (Rule 4) Edge name – Nxt42∈ edgeR4

Stb42 // (Rule 4) Edge name – Stb42∈ edgeR4

Stb51 // (Rule 5) Edge name – Stb51∈ edgeL5

Nxt51 // (Rule 5) Edge name – Nxt51∈ edgeR5

Nxt52 // (Rule 5) Edge name – Nxt52∈ edgeR5

Nxt53 // (Rule 5) Edge name – Nxt53∈ edgeR5

sourceL1 // (Rule 1) function sourceL1 – returns the source of an edge of L1

targetL1 // (Rule 1) function targetL1 – returns the target of an edge of L1

tL1_V // (Rule 1) Typing left vertices, tL1_V

tL1_E // (Rule 1) Typing left edges, tL1_E

sourceR1 // (Rule 1) function sourceR1 – returns the source of an edge of R1

targetR1 // (Rule 1) function targetR1 – returns the target of an edge of R1

tR1_V // (Rule 1) Typing right vertices, tR1_V

tR1_E // (Rule 1) Typing right edges, tR1_E

alpha1V // (Rule 1) Relational Rule alpha1: mapping vertices

alpha1E // (Rule 1) Relational Rule alpha1: mapping edges

sourceL2 // (Rule 2) function sourceL2 – returns the source of an edge of L2

targetL2 // (Rule 2) function targetL2 – returns the target of an edge of L2

tL2_V // (Rule 2) Typing left vertices, tL2_V

tL2_E // (Rule 2) Typing left edges, tL2_E

sourceR2 // (Rule 2) function sourceR2 – returns the source of an edge of R2

targetR2 // (Rule 2) function targetL2 – returns the target of an edge of R2

tR2_V // (Rule 2) Typing right vertices, tR2_V

tR2_E // (Rule 2) Typing right edges, tR2_E

alpha2V // (Rule 2) Relational Rule alpha2: mapping vertices

alpha2E // (Rule 2) Relational Rule alpha2: mapping edges

sourceL3 // (Rule 3) function sourceL3 – returns the source of an edge of L3
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targetL3 // (Rule 3) function targetL3 – returns the target of an edge of L3

tL3_V // (Rule 3) Typing left vertices, tL3_V

tL3_E // (Rule 3) Typing left edges, tL3_E

sourceR3 // (Rule 3) function sourceR3 – returns the source of an edge of R3

targetR3 // (Rule 3) function targetR3 – returns the target of an edge of R3

tR3_V // (Rule 3) Typing right vertices, tR3_V

tR3_E // (Rule 3) Typing right edges, tR3_E

alpha3V // (Rule 3) Relational Rule alpha3: mapping vertices

alpha3E // (Rule 3) Relational Rule alpha3: mapping edges

sourceL4 // (Rule 4) function sourceL4 – returns the source of an edge of L4

targetL4 // (Rule 4) function targetL4 – returns the target of an edge of L4

tL4_V // (Rule 4) Typing left vertices, tL4_V

tL4_E // (Rule 4) Typing left edges, tL

sourceR4 // (Rule 4) function sourceR4 – returns the source of an edge of R4

targetR4 // (Rule 4) function targetR4 – returns the target of an edge of R4

tR4_V // (Rule 4) Typing right vertices, tR4_V

tR4_E // (Rule 4) Typing right edges, tR4_E

alpha4V // (Rule 4) Relational Rule alpha4: mapping vertices

alpha4E // (Rule 4) Relational Rule alpha4: mapping edges

sourceL5 // (Rule 5) function sourceL5 – returns the source of an edge of L5

targetL5 // (Rule 5) function targetL5 – returns the target of an edge of L5

tL5_V // (Rule 5) Typing left vertices, tL5_V

tL5_E // (Rule 5) Typing left edges, tL5_E

sourceR5 // (Rule 5) function sourceR5 – returns the source of an edge of R5

targetR5 // (Rule 5) function targetR5 – returns the target of an edge of R5

tR5_V // (Rule 5) Typing right vertices, tR5_V

tR5_E // (Rule 5) Typing right edges, tR5_E

alpha5V // (Rule 5) Relational Rule alpha5: mapping vertices

alpha5E // (Rule 5) Relational Rule alpha5: mapping edges

sourceT // function sourceT – returns the source of an edge of T

targetT // function targetT – returns the target of an edge of T

AXIOMS
axm_vertT : partition(vertT , {Node})

// (Type Graph T) vertT = { Node}

axm_edgeT : partition(edgeT , {Nxt}, {Tok}, {Msg}, {Stb}, {Act})
// (Type Graph T) edgeT = { Nxt, Tok, Msg, Stb, Act} inc

axm_srcTtype : sourceT ∈ edgeT → vertT

// (Type Graph T) function sourceT

axn_srcTdef : partition(sourceT , {Nxt 7→ Node}, {Tok 7→ Node},
{Msg 7→ Node}, {Stb 7→ Node}, {Act 7→ Node})
// (Type Graph T) function sourceT

axm_tgtTtype : targetT ∈ edgeT → vertT

// (Type Graph T) function targetT
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axn_tgtTdef : partition(targetT , {Nxt 7→ Node}, {Tok 7→ Node},
{Msg 7→ Node}, {Stb 7→ Node}, {Act 7→ Node})
// (Type Graph T) function targetT

axm_vertL1 : partition(vertL1 , {N11}, {N12})
// (Rule 1) Left Graph L1 – Vertices

axm_edgeL1 : partition(edgeL1 , {Tok11}, {Stb11}, {Nxt11})
// (Rule 1) Left Graph L1 – Edges names

axm_srcL1type : sourceL1 ∈ edgeL1 → vertL1

// (Rule 1) function sourceL1
axn_srcL1def : partition(sourceL1 , {Tok11 7→ N11}, {Stb11 7→ N11},

{Nxt11 7→ N11})
// (Rule 1) function sourceL1

axm_tgtL1type : targetL1 ∈ edgeL1 → vertL1

// (Rule 1) function targetL1
axn_tgtL1def : partition(targetL1 , {Tok11 7→ N11}, {Stb11 7→ N11},

{Nxt11 7→ N12})
// (Rule 1) function targetL1

axm_tL1_V : tL1_V ∈ vertL1 → vertT

// (Rule 1) Typing left vertices, tL1_V
axm_tL1_V_def : partition(tL1_V , {N11 7→ Node}, {N12 7→ Node})

// (Rule 1) Typing left vertices, tL1_V
axm_tL1_E : tL1_E ∈ edgeL1 → edgeT

// (Rule 1) Typing left edges, tL1_E
axm_tL1_E_def : partition(tL1_E , {Tok11 7→ Tok}, {Stb11 7→ Stb},

{Nxt11 7→ Nxt})
// (Rule 1) Typing left edges, tL1_E

axm_vertR1 : partition(vertR1 , {N13}, {N14})
// (Rule 1) Right Graph R1 – Vertices

axm_edgeR1 : partition(edgeR1 , {Tok12}, {Act11}, {Nxt12}, {Msg11})
(Rule 1) Right Graph R1 – Edges names

axm_srcR1type : sourceR1 ∈ edgeR1 → vertR1

// (Rule 1) function sourceR1
axn_srcR1def : partition(sourceR1 , {Tok12 7→ N13}, {Act11 7→ N13},

{Nxt12 7→ N13}, {Msg11 7→ N14})
// (Rule 1) function sourceR1

axm_tgtR1type : targetR1 ∈ edgeR1 → vertR1

// (Rule 1) function targetR1
axn_tgtR1def : partition(targetR1 , {Tok12 7→ N13}, {Act11 7→ N13},

{Nxt12 7→ N14}, {Msg11 7→ N14})
// (Rule 1) function targetR1

axm_tR1_V : tR1_V ∈ vertR1 → vertT

// (Rule 1) Typing right vertices, tR1_V
axm_tR1_V_def : partition(tR1_V , {N13 7→ Node}, {N14 7→ Node})

// (Rule 1) Typing right vertices, tR1_V
axm_tR1_E : tR1_E ∈ edgeR1 → edgeT

// (Rule 1) Typing right edges, tR1_E
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axm_tR1_E_def : partition(tR1_E , {Tok12 7→ Tok}, {Act11 7→ Act},
{Nxt12 7→ Nxt}, {Msg11 7→ Msg})
// (Rule 1) Typing right edges, tR1_E

axm_alpha1V : alpha1V ∈ vertL1 7→ vertR1

// (Rule 1) Relational Rule alpha1: mapping vertices
axm_alpha1V_def : partition(alpha1V , {N11 7→ N13}, {N12 7→ N14})

// (Rule 1) Relational Rule alpha1: mapping vertices
axm_alpha1E : alpha1E ∈ edgeL1 7→ edgeR1

// (Rule 1) Relational Rule alpha1: mapping edges
axm_alpha1E_def : partition(alpha1E , {Tok11 7→ Tok12}, {Nxt11 7→ Nxt12})

// (Rule 1) Relational Rule alpha1: mapping edges
axm_vertL2 : partition(vertL2 , {N21}, {N22})

// (Rule 2) Left Graph L2 – Vertices
axm_edgeL2 : partition(edgeL2 , {Tok21}, {Stb21}, {Nxt21})

// (Rule 2) Left Graph L2 – Edges names
axm_srcL2type : sourceL2 ∈ edgeL2 → vertL2

// (Rule 2) function sourceL2
axn_srcL2def : partition(sourceL2 , {Tok21 7→ N21}, {Stb21 7→ N21},

{Nxt21 7→ N21})
// (Rule 2) function sourceL2

axm_tgtL2type : targetL2 ∈ edgeL2 → vertL2

// (Rule 2) function targetL2
axn_tgtL2def : partition(targetL2 , {Tok21 7→ N21}, {Stb21 7→ N21},

{Nxt21 7→ N22})
// (Rule 2) function targetL2

axm_tL2_V : tL2_V ∈ vertL2 → vertT

// (Rule 2) Typing left vertices, tL2_V
axm_tL2_V_def : partition(tL2_V , {N21 7→ Node}, {N22 7→ Node})

// (Rule 2) Typing left vertices, tL2_V
axm_tL2_E : tL2_E ∈ edgeL2 → edgeT

// (Rule 2) Typing left edges, tL2_E
axm_tL2_E_def : partition(tL2_E , {Tok21 7→ Tok}, {Stb21 7→ Stb},

{Nxt21 7→ Nxt})
// (Rule 2) Typing left edges, tL2_E

axm_vertR2 : partition(vertR2 , {N23}, {N24})
// (Rule 2) Right Graph R2 – Vertices

axm_edgeR2 : partition(edgeR2 , {Tok22}, {Stb22}, {Nxt22})
// (Rule 2) Right Graph R2 – Edges names

axm_srcR2type : sourceR2 ∈ edgeR2 → vertR2

// (Rule 2) function sourceR2
axn_srcR2def : partition(sourceR2 , {Tok22 7→ N24}, {Stb22 7→ N23},

{Nxt22 7→ N23})
// (Rule 2) function sourceL2

axm_tgtR2type : targetR2 ∈ edgeR2 → vertR2

// (Rule 2) function targetR2
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axn_tgtR2def : partition(targetR2 , {Tok22 7→ N24}, {Stb22 7→ N23},
{Nxt22 7→ N24})
// (Rule 2) function targetR2

axm_tR2_V : tR2_V ∈ vertR2 → vertT

// (Rule 2) Typing right vertices, tR2_V
axm_tR2_V_def : partition(tR2_V , {N23 7→ Node}, {N24 7→ Node})

// (Rule 2) Typing right vertices, tR2_V
axm_tR2_E : tR2_E ∈ edgeR2 → edgeT

// (Rule 2) Typing right edges, tR2_E
axm_tR2_E_def : partition(tR2_E , {Stb22 7→ Stb}, {Tok22 7→ Tok},

{Nxt22 7→ Nxt})
// (Rule 2) Typing right edges, tR2_E

axm_alpha2V : alpha2V ∈ vertL2 7→ vertR2

// (Rule 2) Relational Rule alpha2: mapping vertices
axm_alpha2V_def : partition(alpha2V , {N21 7→ N23}, {N22 7→ N24})

// (Rule 2) Relational Rule alpha2: mapping vertices
axm_alpha2E : alpha2E ∈ edgeL2 7→ edgeR2

// (Rule 2) Relational Rule alpha2: mapping edges
axm_alpha2E_def : partition(alpha2E , {Stb21 7→ Stb22}, {Nxt21 7→ Nxt22})

// (Rule 2) Relational Rule alpha2: mapping edges
axm_vertL3 : partition(vertL3 , {N31}, {N32})

// (Rule 3) Left Graph L3 – Vertices
axm_edgeL3 : partition(edgeL3 , {Stb31}, {Msg31}, {Nxt31})

// (Rule 3) Left Graph L3 – Edges names
axm_srcL3type : sourceL3 ∈ edgeL3 → vertL3

// (Rule 3) function sourceL3
axn_srcL3def : partition(sourceL3 , {Msg31 7→ N31}, {Stb31 7→ N31},

{Nxt31 7→ N31})
// (Rule 3) function sourceL3

axm_tgtL3type : targetL3 ∈ edgeL3 → vertL3

// (Rule 3) function targetL3
axn_tgtL3def : partition(targetL3 , {Msg31 7→ N31}, {Stb31 7→ N31},

{Nxt31 7→ N32})
// (Rule 3) function targetL3

axm_tL3_V : tL3_V ∈ vertL3 → vertT

// (Rule 3) Typing left vertices, tL3_V
axm_tL3_V_def : partition(tL3_V , {N31 7→ Node}, {N32 7→ Node})

// (Rule 3) Typing left vertices, tL3_V
axm_tL3_E : tL3_E ∈ edgeL3 → edgeT

// (Rule 3) Typing left edges, tL3_E
axm_tL3_E_def : partition(tL3_E , {Stb31 7→ Stb}, {Msg31 7→ Msg},

{Nxt31 7→ Nxt})
// (Rule 3) Typing left edges, tL3_E

axm_vertR3 : partition(vertR3 , {N33}, {N34})
// (Rule 3) Right Graph R3 – Vertices
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axm_edgeR3 : partition(edgeR3 , {Stb32}, {Nxt32}, {Msg32})
// (Rule 3) Right Graph R3 – Edges names

axm_srcR3type : sourceR3 ∈ edgeR3 → vertR3

// (Rule 3) function sourceR3
axn_srcR3def : partition(sourceR3 , {Msg32 7→ N34}, {Stb32 7→ N33},

{Nxt32 7→ N33})
// (Rule 3) function sourceR3

axm_tgtR3type : targetR3 ∈ edgeR3 → vertR3

// (Rule 3) function targetR3
axn_tgtR3def : partition(targetR3 , {Msg32 7→ N34}, {Stb32 7→ N33},

{Nxt32 7→ N34})
// (Rule 3) function targetR3

axm_tR3_V : tR3_V ∈ vertR3 → vertT

// (Rule 3) Typing right vertices, tR3_V
axm_tR3_V_def : partition(tR3_V , {N33 7→ Node}, {N34 7→ Node})

// (Rule 3) Typing right vertices, tR3_V
axm_tR3_E : tR3_E ∈ edgeR3 → edgeT

// (Rule 3) Typing right edges, tR3_E
axm_tR3_E_def : partition(tR3_E , {Stb32 7→ Stb}, {Msg32 7→ Msg},

{Nxt32 7→ Nxt})
(Rule 3) Typing right edges, tR3_E

axm_alpha3V : alpha3V ∈ vertL3 7→ vertR3

(Rule 3) Relational Rule alpha3: mapping vertices
axm_alpha3V_def : partition(alpha3V , {N31 7→ N33}, {N32 7→ N34})

// (Rule 3) Relational Rule alpha3: mapping vertices
axm_alpha3E : alpha3E ∈ edgeL3 7→ edgeR3

// (Rule 3) Relational Rule alpha3: mapping edges
axm_alpha3E_def : partition(alpha3E , {Stb31 7→ Stb32}, {Nxt31 7→ Nxt32})

// (Rule 3) Relational Rule alpha3: mapping edges
axm_vertL4 : partition(vertL4 , {N41}, {N42})

// (Rule 4) Left Graph L4 – Vertices
axm_edgeL4 : partition(edgeL4 , {Tok41}, {Act41}, {Msg41}, {Nxt41})

// (Rule 4) Left Graph L4 – Edges names
axm_srcL4type : sourceL4 ∈ edgeL4 → vertL4

// (Rule 4) function sourceL4
axn_srcL4def : partition(sourceL4 , {Tok41 7→ N41}, {Msg41 7→ N41},

{Act41 7→ N41}, {Nxt41 7→ N41})
// (Rule 4) function sourceL4

axm_tgtL4type : targetL4 ∈ edgeL4 → vertL4

// (Rule 4) function targetL4
axn_tgtL4def : partition(targetL4 , {Tok41 7→ N41}, {Msg41 7→ N41},

{Act41 7→ N41}, {Nxt41 7→ N42})
// (Rule 4) function targetL4

axm_tL4_V : tL4_V ∈ vertL4 → vertT

// (Rule 4) Typing left vertices, tL4_V
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axm_tL4_V_def : partition(tL4_V , {N41 7→ Node}, {N42 7→ Node})
// (Rule 4) Typing left vertices, tL4_V

axm_tL4_E : tL4_E ∈ edgeL4 → edgeT

// (Rule 4) Typing left edges, tL4_E
axm_tL4_E_def : partition(tL4_E , {Tok41 7→ Tok}, {Msg41 7→ Msg},

{Act41 7→ Act}, {Nxt41 7→ Nxt})
// (Rule 4) Typing left edges, tL4_E

axm_vertR4 : partition(vertR4 , {N43}, {N44})
// (Rule 4) Right Graph R4 – Vertices

axm_edgeR4 : partition(edgeR4 , {Tok42}, {Stb42}, {Nxt42})
// (Rule 4) Right Graph R4 – Edges names

axm_srcR4type : sourceR4 ∈ edgeR4 → vertR4

// (Rule 4) function sourceR4
axn_srcR4def : partition(sourceR4 , {Tok42 7→ N44}, {Stb42 7→ N43},

{Nxt42 7→ N43})
// (Rule 4) function sourceR4

axm_tgtR4type : targetR4 ∈ edgeR4 → vertR4

// (Rule 4) function targetR4
axn_tgtR4def : partition(targetR4 , {Tok42 7→ N44}, {Stb42 7→ N43},

{Nxt42 7→ N44})
// (Rule 4) function targetR4

axm_tR4_V : tR4_V ∈ vertR4 → vertT

// (Rule 4) Typing right vertices, tR4_V
axm_tR4_V_def : partition(tR4_V , {N43 7→ Node}, {N44 7→ Node})

// (Rule 4) Typing right vertices, tR4_V
axm_tR4_E : tR4_E ∈ edgeR4 → edgeT

// (Rule 4) Typing right edges, tR4_E
axm_tR4_E_def : partition(tR4_E , {Stb42 7→ Stb}, {Tok42 7→ Tok},

{Nxt42 7→ Nxt})
// (Rule 4) Typing right edges, tR4_E

axm_alpha4V : alpha4V ∈ vertL4 7→ vertR4

// (Rule 4) Relational Rule alpha4: mapping vertices
axm_alpha4V_def : partition(alpha4V , {N41 7→ N43}, {N42 7→ N44})

// (Rule 4) Relational Rule alpha4: mapping vertices
axm_alpha4E : alpha4E ∈ edgeL4 7→ edgeR4

// (Rule 4) Relational Rule alpha4: mapping edges
axm_alpha4E_def : partition(alpha4E , {Nxt41 7→ Nxt42})

// (Rule 4) Relational Rule alpha4: mapping edges
axm_vertL5 : partition(vertL5 , {N51}, {N52})

// (Rule 5) Left Graph L5 – Vertices
axm_edgeL5 : partition(edgeL5 , {Nxt51})

// (Rule 5) Left Graph L5 – Edges names
axm_tL5_V : tL5_V ∈ vertL5 → vertT

// (Rule 5) Typing left vertices, tL5_V
axm_srcL5type : sourceL5 ∈ edgeL5 → vertL5

// (Rule 5) function sourceL5
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axn_srcL5def : partition(sourceL5 , {Nxt51 7→ N51})
// (Rule 5) function sourceL5

axm_tgtL5type : targetL5 ∈ edgeL5 → vertL5

// (Rule 5) function targetL5

axn_tgtL5def : partition(targetL5 , {Nxt51 7→ N52})
// (Rule 5) function targetL5

axm_tL5_V_def : partition(tL5_V , {N51 7→ Node}, {N52 7→ Node})
// (Rule 5) Typing left vertices, tL5_V

axm_tL5_E : tL5_E ∈ edgeL5 → edgeT

// (Rule 5) Typing left edges, tL5_E

axm_tL5_E_def : partition(tL5_E , {Nxt51 7→ Nxt})
// (Rule 5) Typing left edges, tL5_E

axm_vertR5 : partition(vertR5 , {N53}, {N54}, {N55})
// (Rule 5) Right Graph R5 – Vertices

axm_edgeR5 : partition(edgeR5 , {Stb51}, {Nxt52}, {Nxt53})
// (Rule 5) Right Graph R5 – Edges names

axm_srcR5type : sourceR5 ∈ edgeR5 → vertR5

// (Rule 5) function sourceR5

axn_srcR5def : partition(sourceR5 , {Stb51 7→ N55}, {Nxt52 7→ N53},
{Nxt53 7→ N55})
// (Rule 5) function sourceR5

axm_tgtR5type : targetR5 ∈ edgeR5 → vertR5

// (Rule 5) function targetR5

axn_tgtR5def : partition(targetR5 , {Stb51 7→ N55}, {Nxt52 7→ N55},
{Nxt53 7→ N54})
// (Rule 5) function targetR5

axm_tR5_V : tR5_V ∈ vertR5 → vertT

// (Rule 5) Typing right vertices, tR5_V

axm_tR5_V_def : partition(tR5_V , {N53 7→ Node}, {N54 7→ Node},
{N55 7→ Node})
// (Rule 5) Typing right vertices, tR5_V

axm_tR5_E : tR5_E ∈ edgeR5 → edgeT

// (Rule 5) Typing right vertices, tR5_V

axm_tR5_E_def : partition(tR5_E , {Stb51 7→ Stb}, {Nxt52 7→ Nxt},
{Nxt53 7→ Nxt})
// (Rule 5) Typing right edges, tR5_E

axm_alpha5V : alpha5V ∈ vertL5 7→ vertR5

// (Rule 5) Relational Rule alpha5: mapping vertices

axm_alpha5V_def : partition(alpha5V , {N51 7→ N53}, {N52 7→ N54})
// (Rule 5) Relational Rule alpha5: mapping vertices

axm_alpha5E : alpha5E ∈ edgeL5 7→ edgeR5

// (Rule 5) Relational Rule alpha5: mapping edges

axm_alpha5E_def : alpha5E = ∅
// (Rule 5) Relational Rule alpha5: mapping edges

axmNxtTok : Nxt 6= Tok
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axmNxtMsg : Nxt 6= Msg

axmNxtStb : Nxt 6= Stb

axmNxtAct : Nxt 6= Act

axmTokMsg : Tok 6= Msg

axmTokStb : Tok 6= Stb

axmTokAct : Tok 6= Act

axmMsgStb : Msg 6= Stb

axmMsgAct : Msg 6= Act

axmStbAct : Stb 6= Act

END

B.2 Event-B Machine of Token Ring

An Event-B Specification of mch_trAll
Creation Date: 8 Mar 2010 @ 09:59:48 PM

MACHINE mch_trAll

SEES ctx_trAll

VARIABLES

vertG // (Graph) Vertices

edgeG // (Graph) Edges

sourceG // (Graph) function sourceG

targetG // (Graph) function targetG

tG_V // (Graph) Typing vertices, tG_V

tG_E // (Graph) Typing edges, tG_E

INVARIANTS

inv_vertG : vertG ∈ P(N)
// (Graph) Vertices are natural numbers.

inv_edgeG : edgeG ∈ P(N)
// (Graph) Edges are natural numbers.

inv_srcGtype : sourceG ∈ edgeG → vertG

// (Graph) function sourceG

inv_tgtGtype : targetG ∈ edgeG → vertG

// (Graph) function targetG

inv_tG_V : tG_V ∈ vertG → vertT

// (Graph) function tG_V

inv_tG_E : tG_E ∈ edgeG → edgeT

// (Graph) function tG_E

prop1fin : finite(dom(tG_E ⊲ {Tok}))
// Property 0: The set of edges of type Tok of a reachable graphis finite.

prop1 : card(dom(tG_E ⊲ {Tok})) = 1

// Property 1: Any reachable graph has exactly one edge of type Tok.

EVENTS
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Initialisation

begin
act_vertG : vertG := {1 , 2 , 3}

// (G = G0) Vertices
act_edgeG : edgeG := {1 , 2 , 3 , 4 , 5 , 6 , 7}

// (G = G0) Edges
act_srcG : sourceG := {1 7→ 1 , 2 7→ 1 , 3 7→ 1 , 4 7→ 2 , 5 7→ 2 , 6 7→

3 , 7 7→ 3}
// (G = G0) function sourceG

act_tgtG : targetG := {1 7→ 1 , 2 7→ 1 , 3 7→ 2 , 4 7→ 2 , 5 7→ 3 , 6 7→
3 , 7 7→ 1}
// (G = G0) function targetG

act_tG_V : tG_V := {1 7→ Node, 2 7→ Node, 3 7→ Node}
// (G = G0) Typing vertices

act_tG_E : tG_E := {1 7→ Tok , 2 7→ Stb, 3 7→ Nxt , 4 7→ Stb, 5 7→
Nxt , 6 7→ Stb, 7 7→ Nxt}
// (G = G0) Typing edges

end

Event rule1 =̂

any
mV // mV component of a match
mE // mE component of a match
newEmsg // new fresh name for an edge
newEact // new fresh name for an edge

where
grd_mV : mV ∈ vertL1 → vertG

// mV is total
grd_mE : mE ∈ edgeL1 ֌ edgeG

// mE is total and injective
grd_newEmsg : newEmsg ∈ N \ edgeG

// newEmsg is a fresh name
grd_newEact : newEact ∈ N \ edgeG

// newEact is a fresh name
grd_E1E2 : newEmsg 6= newEact

grd_vertices : ∀v ·v ∈ vertL1 ⇒ tL1_V (v) = tG_V (mV (v))
vertex compatibility

grd_edges : ∀e ·e ∈ edgeL1 ⇒ tL1_E (e) = tG_E (mE (e))
edge compatibility

grd_srctgt : ∀e ·e ∈ edgeL1 ⇒ mV (sourceL1 (e)) = sourceG(mE (e)) ∧
mV (targetL1 (e)) = targetG(mE (e))
source/target compatibility

then
act_E : edgeG := (edgeG \ {mE (Stb11 )}) ∪ {newEmsg , newEact}
act_src : sourceG := ({mE (Stb11 )}⊳−sourceG)∪{newEact 7→ mV (N11 ),

newEmsg 7→ mV (N12 )}
act_tgt : targetG := ({mE (Stb11 )}⊳−targetG)∪{newEact 7→ mV (N11 ),

newEmsg 7→ mV (N12 )}
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act_tE : tG_E := ({mE (Stb11 )}⊳−tG_E )∪{newEact 7→ Act , newEmsg 7→
Msg}

end

Event rule2 =̂

any
mV // mV component of a match
mE // mE component of a match
newEtok // new fresh name for an edge

where
grd_mV : mV ∈ vertL2 → vertG

// mV is total
grd_mE : mE ∈ edgeL2 ֌ edgeG

// mE is total and injective
grd_newE1 : newEtok ∈ N \ edgeG

// newEtok is a fresh name
grd_vertices : ∀v ·v ∈ vertL2 ⇒ tL2_V (v) = tG_V (mV (v))

vertex compatibility
grd_edges : ∀e ·e ∈ edgeL2 ⇒ tL2_E (e) = tG_E (mE (e))

edge compatibility
grd_srctgt : ∀e ·e ∈ edgeL2 ⇒ mV (sourceL2 (e)) = sourceG(mE (e)) ∧

mV (targetL2 (e)) = targetG(mE (e))
source/target compatibility

then
act_E : edgeG := (edgeG \ {mE (Tok21 )}) ∪ {newEtok}
act_src : sourceG := ({mE (Tok21 )}⊳−sourceG)∪{newEtok 7→ mV (N22 )}
act_tgt : targetG := ({mE (Tok21 )}⊳−targetG)∪{newEtok 7→ mV (N22 )}
act_tE : tG_E := ({mE (Tok21 )}⊳− tG_E ) ∪ {newEtok 7→ Tok}

end

Event rule3 =̂

any
mV // mV component of a match
mE // mE component of a match
newEmsg // new fresh name for an edge

where
grd_mV : mV ∈ vertL3 → vertG

// mV is total
grd_mE : mE ∈ edgeL3 ֌ edgeG

// mE is total and injective
grd_newE : newEmsg ∈ N \ edgeG

// newEmsg is a fresh name
grd_vertices : ∀v ·v ∈ vertL3 ⇒ tL3_V (v) = tG_V (mV (v))

vertex compatibility
grd_edges : ∀e ·e ∈ edgeL3 ⇒ tL3_E (e) = tG_E (mE (e))

edge compatibility
grd_srctgt : ∀e ·e ∈ edgeL3 ⇒ mV (sourceL3 (e)) = sourceG(mE (e)) ∧

mV (targetL3 (e)) = targetG(mE (e))
source/target compatibility
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then
act_E : edgeG := (edgeG \ {mE (Msg31 )}) ∪ {newEmsg}
act_src : sourceG := ({mE (Msg31 )}⊳−sourceG)∪{newEmsg 7→ mV (N32 )}
act_tgt : targetG := ({mE (Msg31 )}⊳−targetG)∪{newEmsg 7→ mV (N32 )}
act_tE : tG_E := ({mE (Msg31 )} ⊳− tG_E ) ∪ {newEmsg 7→ Msg}

end

Event rule4 =̂

any
mV // mV component of a match
mE // mE component of a match
newEstb // new fresh name for an edge
newEtok // new fresh name for an edge

where
grd_mV : mV ∈ vertL4 → vertG

// mV is total
grd_mE : mE ∈ edgeL4 ֌ edgeG

// mE is total and injective
grd_newEstb : newEstb ∈ N \ edgeG

// newEstb is a fresh name
grd_newEtok : newEtok ∈ N \ edgeG

// newEtok is a fresh name
grd_newE1E2 : newEstb 6= newEtok

grd_vertices : ∀v ·v ∈ vertL4 ⇒ tL4_V (v) = tG_V (mV (v))
vertex compatibility

grd_edges : ∀e ·e ∈ edgeL4 ⇒ tL4_E (e) = tG_E (mE (e))
edge compatibility

grd_srctgt : ∀e ·e ∈ edgeL4 ⇒ mV (sourceL4 (e)) = sourceG(mE (e)) ∧
mV (targetL4 (e)) = targetG(mE (e))
source/target compatibility

then
act_E : edgeG := (edgeG \ {mE (Tok41 ),mE (Act41 ),mE (Msg41 )}) ∪

{newEstb, newEtok}
act_src : sourceG := ({mE (Tok41 ),mE (Act41 ),mE (Msg41 )}⊳−sourceG)∪

{newEstb 7→ mV (N41 ), newEtok 7→ mV (N42 )}
act_tgt : targetG := ({mE (Tok41 ),mE (Act41 ),mE (Msg41 )}⊳−targetG)∪

{newEstb 7→ mV (N41 ), newEtok 7→ mV (N42 )}
act_tE : tG_E := ({mE (Tok41 ),mE (Act41 ),mE (Msg41 )} ⊳− tG_E ) ∪

{newEstb 7→ Stb, newEtok 7→ Tok}

end

Event rule5 =̂

any
mV // mV component of a match
mE // mE component of a match
newV // new fresh name for a vertex
newE1 // new fresh name for an edge
newE2 // new fresh name for an edge
newEstb // new fresh name for an edge
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where
grd_mV : mV ∈ vertL5 → vertG

// mV is total
grd_mE : mE ∈ edgeL5 ֌ edgeG

// mE is total and injective
grd_newV : newV ∈ N \ vertG

// newV is a fresh name
grd_newEstb : newEstb ∈ N \ edgeG

// newEstb is a fresh name
grd_newE1 : newE1 ∈ N \ edgeG

// newE1 is a fresh name
grd_newE2 : newE2 ∈ N \ edgeG

// newE2 is a fresh name
grd_newE1E2 : newE1 6= newE2

grd_newE2stb : newE2 6= newEstb

grd_newE1stb : newE1 6= newEstb

grd_vertices : ∀v ·v ∈ vertL5 ⇒ tL5_V (v) = tG_V (mV (v))
vertex compatibility

grd_edges : ∀e ·e ∈ edgeL5 ⇒ tL5_E (e) = tG_E (mE (e))
edge compatibility

grd_srctgt : ∀e ·e ∈ edgeL5 ⇒ mV (sourceL5 (e)) = sourceG(mE (e)) ∧
mV (targetL5 (e)) = targetG(mE (e))
source/target compatibility

then
act_vertG : vertG := vertG ∪ {newV }
act_tG_V : tG_V := tG_V ∪ {newV 7→ Node}
act_E : edgeG := (edgeG \ {mE (Nxt51 )}) ∪ {newE1 , newE2 , newEstb}
act_src : sourceG := ({mE (Nxt51 )}⊳−sourceG)∪{newE1 7→ mV (N51 ), newE2 7→

newV , newEstb 7→ newV }
act_tgt : targetG := ({mE (Nxt51 )}⊳−targetG)∪{newE1 7→ newV , newE2 7→

mV (N52 ), newEstb 7→ newV }
act_tE : tG_E := ({mE (Nxt51 )}⊳− tG_E ) ∪ {newE1 7→ Nxt , newE2 7→

Nxt , newEstb 7→ Stb}
end

END
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APPENDIX C RESUMO ESTENDIDO DA TESE

Nesta tese, introduziu-se uma abordagem lógica e relacional de gramática de grafos
para permitir a análise de sistemas distribuídos e assíncronos com espaço de estados in-
finito. Utilizou-se estruturas relacionais para caracterizar gramática de grafos e definiu-se
aplicações de regras como transduções definíveis. Primeiroconsiderou-se gramática de
grafos definidas sobre grafos (tipados) simples, e então se estendeu a representação para
grafos com atributos e para gramáticas com condições negativas de aplicação. Mostrou-
se que a abordagem proposta oferece uma codificação adequadapara a definiçãosingle
pushout(SPO) de gramática de grafos, podendo ser utilizada como base para o uso de
técnicas de prova de teoremas para prova de propriedades, complementando as aborda-
gens existentes baseadas em técnicas de verificação automática de modelos. A maior
contribuição deste trabalho não deve ser vista como uma novaabordagem para descrever
gramática de grafos, mas como uma forma de permitir o uso de técnicas (e ferramentas)
de prova de teoremas para as abordagens existentes (modelou-se aqui a abordagem SPO,
mas a teoria proposta pode também ser utilizada como base para manipular outras abor-
dagens). Este é um resultado relevante desde que gramática de grafos oferece uma técnica
de especificação interessante para diversas áreas de aplicações e, até o momento, técnicas
de prova de teoremas não podiam ser utilizadas para analisarpropriedades de gramáticas
de grafos. As principais contribuições deste trabalho são:

• A representação lógica e relacional de gramática de grafos(Capítulo 3) estabelece
as fundamentações teóricas para a análise de gramáticas de grafos através de prova
de teoremas. Representou-se gramática de grafos e seu comportamento utilizando
estruturas lógicas e relacionais porque elas constituem a base de provadores de teo-
remas. Trabalhos relacionados (STRECKER, 2008; BARESI; SPOLETINI, 2006)
que adotam uma descrição de gramática de grafos baseada em representações lógi-
cas ou em teoria dos conjuntos, ou não estão verificando propriedades de gramáticas
de grafos ou estão limitadas para analisar sistemas dentro de um escopo finito, cujo
tamanho é definido pelo usuário. Abordagens para analisar gramática de grafos
com número infinito de estados (BALDAN; CORRADINI; KÖNIG, 2008; BAL-
DAN; KÖNIG; RENSINK, 2005) derivam o modelo como aproximações, as quais
podem resultar em relatórios inconclusivos de verificação.

A definição de gramática de grafos como estruturas relacionais (Def. 13) permite a
associação de uma gramática de grafos com uma tupla compostade um conjunto e
uma coleção de relações sobre este conjunto. O conjunto descreve o domínio da es-
trutura (o conjunto de vértices e arcos da gramática de grafos) e as relações definem
o grafo tipo, o grafo inicial e as regras. Uma série de condições lógicas impõe re-
strições aos elementos destas relações para garantir que elas realmente representem
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os componentes de uma gramática de grafos (grafos, grafos tipados, morfismos de
grafos e regras). A aplicação de uma regra é descrita por uma transdução definível
(Def. 16), que pode ser vista como uma regra de inferência na estrutura relacional
associada a gramática de grafos. O resultado da transdução éoutra gramática de
grafos cujo estado inicial corresponde ao resultado da aplicação de uma regra a
um dadomatchao estado inicial da gramática original. Os outros componentes da
gramática permanece inalterados (isto é, a gramática resultante tem o mesmo grafo
tipo e regras da gramática original). Proposições 7 e 9 garantem que a codificação
adotada está bem-definida. Para uso em verificação, as relações da estrutura rela-
cional definem axiomas que podem ser utilizados nas provas e propriedades sobre
estados alcançáveis são provadas por indução: primeiro (caso base) a propriedade é
verificada para o grafo inicial e então, no passo indutivo, a propriedade é verificada
para cada regra da gramática aplicável a um grafo alcançávelG, considerando que
a propriedade é válida paraG.

• A abordagem relacional para gramáticas de grafos com atributos (Capítulo 4) é
uma extensão do formalismo básico que integra o uso de tipos de dados em grafos.
Gramática de grafos com atributos é bastante interessante do ponto de vista prático,
desde que é possível utilizar variáveis e termos quando se especifica o comporta-
mento expresso por regras. Estes valores (ou termos) vêm de álgebras especificadas
como tipos abstratos de dados. O uso de grafos com atributos fornece ao especifi-
cador uma linguagem que é mais adequada para especificação, combinando as van-
tagens da representação gráfica com uma representação padrão para tipos de dados
clássicos. Partindo de uma perspectiva prática, grafos comatributos são necessários
desde que não é viável codificar tipos de dados como números naturais ou strings,
etc. em grafos. Para verificação formal, a presença de atributos insere proble-
mas adicionais, desde que tipos de dados são frequentementeconjuntos infinitos.
Na verdade, mesmo restringindo apenas para conjuntos finitos, especificações que
usam grafos com atributos frequentemente levam a sistemas não verificáveis dev-
ido a explosão de estados. Existem algumas abordagens para verificar gramáticas
de grafos com atributos, como (KASTENBERG, 2006) e (KÖNIG; KOZIOURA,
2008) e elas funcionam para classes limitadas de gramáticas. Mostrou-se que
atributos podem ser integrados de forma adequada na representação proposta de
gramática de grafos. A abordagem proposta provê uma base para uma ferramenta
para argumentar sobre uma classe maior de gramática de grafos, incluindo gramáti-
cas que especificam sistemas com espaço de estados infinito, sem utilizar nenhum
tipo de aproximação.

As Definições 29 e 31 expressam a representação relacional deuma gramática de
grafos com atributos. As Proposições 16 e 18 garantem que a extensão relacional
está bem-definida. A estratégia de prova aplicada na etapa deverificação é a mesma
descrita anteriormente: utilizou-se indução matemática,considerando que as re-
lações da estrutura relacional definem axiomas a serem utilizados nas provas. A
diferença é que agora utilizou-se variáveis como atributosno lado direito e esquerdo
das regras, e então, em diversas situações, no passo indutivo o desenvolvimento de
provas envolve variáveis. Neste caso, para estabelecer a propriedade, devem-se
considerar as equações da regra que está sendo aplicada comoaxiomas.
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• A extensão para gramática de grafos com condições negativas de aplicação(Capí-
tulo 5) permite a especificação de que uma certa estrutura é proibida ao se executar
uma aplicação de regra, aumentando a expressividade da transformação. Particu-
larmente, condições negativas de aplicação (NACs) restringem a aplicação de uma
regra expressando que uma estrutura específica (por exemplonodos, arcos ou sub-
grafos) não devem estar presentes num grafo-estado antes dese aplicar uma regra.
Condições de aplicação são comumente utilizadas em especificações não triviais.
Como enfatizado em (HABEL; HECKEL; TAENTZER, 1996) elas sãoexpressas
frequentemente de maneira informal assumindo algum tipo demecanismo de con-
trole que não é especificado. No entanto, tal estratégia impede especificação e
verificação formal. A expressão de NACs é atualmente possível em ferramentas
(ERMEL; RUDOLF; TAENTZER, 1999; SCHüRR; WINTER; ZüNDORF, 1999)
de gramática de grafos que focam em análise de conflitos e comportamento fun-
cional. NACs também podem ser especificadas em GROOVE (KASTENBERG;
RENSINK, 2006b) para a análise de gramáticas de grafos com estados infinitos, no
caso em que o espaço de estados possa ser representado dentrode um fragmento
finito.

A Definição 36 associa uma estrutura relacional a uma gramática de grafos com
condições negativas de aplicação. A Proposição 20 mostra que a definição rela-
cional está bem-definida. Nesta abordagem, condições extras devem ser checadas
antes de uma aplicação de regra para garantir que os elementos proibidos não estão
no grafo-estado. Na etapa de verificação, a existência de NACs determina condições
extras que podem ser utilizadas durante as provas.

• Ospadrões de propriedades(Capítulo 6) propostos contêm 15 classes de padrões,
dentro das quais requisitos funcionais e estruturais de estados alcançáveis podem
ser formulados. Os padrões tem o objetivo de auxiliar e simplificar a tarefa de
descrever requisitos precisos a serem verificados. Eles devem prover o auxílio su-
ficiente para a especificação de propriedades sobre estados alcançáveis de gramáti-
cas de grafos. Acredita-se que os padrões propostos representam o primeiro passo
na direção de um padrão de especificação para propriedades sobre estados no con-
texto de gramáticas de grafos. Diferentemente da maioria das abordagens propostas
(DWYER; AVRUNIN; CORBETT, 1999; CHECHIK; PAUN, 1999; SALAMAH
et al., 2007), o foco foi dado em propriedades sobre estados alcançáveis para verifi-
cação de estados (infinitos). A maioria dos padrões existentes para especificação de
propriedades descrevem propriedades sobre traços para ferramentas de verificação
de estados finitos. Estas duas abordagens são complementares.

As Tabelas 6.1, 6.2 e 6.3 descrevem uma biblioteca padrão de funções que de-
screvem características típicas ou elementos de grafos (como vértices de determi-
nado tipo, o conjunto de todos os arcos de algum tipo, a cardinalidade de vértices,
etc.). Estas funções foram definidas dentro do escopo de gramáticas de grafos rela-
cionais. A Tabela 6.4 propõe uma taxonomia de padrões enquanto as Tabelas 6.6 e
6.7 listam uma coleção de padrões para especificação de propriedades.

• A modelagem de especificações de gramática de grafos em estruturas de event-
B (Capítulo 7) permitiu o uso de provadores de event-B (através da plataforma
Rodin) para demonstrar propriedades de uma gramática de grafos. Event-B (DE-
PLOY, 2010) tem sido utilizado com sucesso em diversas outras aplicações e pos-
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sui ferramentas de suporte disponíveis tanto para especificação quanto para análise.
Event-B foi escolhida devido a similaridade entre modelos event-B e especificações
em gramáticas de grafos, especialmente o comportamento baseado em regras. Di-
versos outros trabalhos (ZEYDA; CAVALCANTI, 2009; ISOBE; ROGGENBACH,
2008a; LEHMANN; LEUSCHEL, 2003) têm focado na prova de teoremas de sis-
temas concorrentes, mas para sistemas assíncronos, gramática de grafos tem van-
tagem devido ao seu estilo visual e modular.

Para definir um modelo event-B, utilizou-se a definição relacional de gramática
de grafos. O grafo tipo é definido em um contexto de um modelo event-B, onde
tipos de vértices, arcos e relações de incidência relacionando eles são definidos
como constantes. Um conjunto de axiomas define estes conjuntos explicitamente.
Um grafo tipado sobre um grafo tipo é modelado por um conjuntode variáveis
descrevendo seu conjunto de vértices, relação de incidência e funções de tipagem.
As condições de compatibilidade de tipos e origem e destino de arcos podem ser
declaradas como invariantes. O evento de inicialização é utilizado para criar o grafo
inicial. A estrutura de uma regra é definida por conjuntos, constantes e invariantes.
O comportamento de uma regra é descrito por um evento com condições de guarda.
Um conjunto de ações atualiza o grafo estado de acordo com a regra.

Finalmente, é possível dizer que o campo de pesquisa sobre prova de teoremas para
gramática de grafos está nos seus primeiros estágios. Existem diversas questões em aberto
que devem ser objeto de trabalhos futuros.

• Além de implementação, estudos de casos são necessários para avaliar e melho-
rar a abordagem proposta. Até o momento, as extensões do formalismo básico de
gramática de grafos não foram especificados na plataforma Rodin. É possível tam-
bém investigar até que ponto a teoria do refinamento, que é bemdesenvolvida em
event-B, pode ser utilizada para validar um desenvolvimento passo-a-passo baseado
em gramática de grafos. Outro objetivo é a implementação do tipo de dado grafo
alcançável a ser usado na especificação e verificação de modelos de gramática de
grafos. Esta estratégia deve ser comparada e avaliada com a implementação ado-
tada.

• Outras classes de gramáticas de grafos não consideradas nesta tese englobam di-
versas aplicações práticas. Em particular, gramática de grafos baseada em obje-
tos (DOTTI et al., 2003), gramática de grafos baseada em objetos temporizadas
(MICHELON; COSTA; RIBEIRO, 2007, 2006), gramática de grafos orientada a
objetos (FERREIRA; FOSS; RIBEIRO, 2007) e muitas outras (SCHFüRR, 1997)
possivelmente com outros tipos de estrutura de grafos, comohiper-grafos, hiper-
grafos atribuídos e rotulados, têm seu próprio campo de aplicação. Desta forma,
seria interessante investigar uma descrição geral da abordagem relacional de forma
que diversos tipos de grafos e/ou gramáticas se tornem instâncias desta ferramenta
mais geral.

• A abordagem aqui proposta deve ser definida para gramáticas na abordagemdouble-
pushout(DPO) sem maiores problemas. Na abordagem SPO é apenas necessário
encontrar uma imagem do lado esquerdo da regra num grafo alcançável para que
a regra possa ser aplicada. Na abordagem DPO algumas restrições extras devem
ser verificadas, denominadagluing condition, antes que uma regra seja aplicada.



137

Isto significa que algumas fórmulas lógicas adicionas (ou condições de guarda adi-
cionais no caso de estruturas event-B) devem ser incluídas para ser checadas antes
de uma aplicação de regra.

• Os padrões de propriedades também devem ser incorporados naferramenta de
prova. Seria de grande auxílio detalhar para cada requisito, tanto quanto possível,
as propriedades ou lemas que devem ser exigidos para a conclusão da prova, in-
cluindo estratégias de provas que podem ser adotadas em cadacaso. Simultane-
amente, uma gramática estruturada pode ser desenvolvida para auxiliar na formu-
lação de propriedades. Além disso, uma extensão natural dospadrões declarados
seria a investigação dos requisitos descritos com lógica dealta-ordem. Deve-se, por
fim, complementar e avaliar o sistema de padrões proposto analisando um número
apropriado de especificações do mundo real.

• Outro tópico de trabalho futuro é o uso da técnica de prova de teoremas para anal-
isar outros tipos de propriedades, como propriedades de segurança eliveness. Em
particular, controlabilidade, ou a propriedade de se alcançar um particular (con-
junto de) estado(s) do sistema qualquer que seja o atual, é umimportante tópico
de análise. Tal propriedade não pode ser verificada por indução matemática desde
que não é finitária. Ela deve ser definida sobre todos os comportamentos futuros do
sistema.


