UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

SIMONE ANDRE DA COSTA CAVALHEIRO

Relational Approach of Graph Grammars

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr2. Leila Ribeiro
Advisor

Prof. Dr. Antonio Carlos da Rocha Costa
Coadvisor

Porto Alegre, July 2010

CIP — CATALOGING-IN-PUBLICATION

Cavalheiro, Simone André da Costa

Relational Approach of Graph Grammars / Simone André da
Costa Cavalheiro. — Porto Alegre: PPGC da UFRGS, 2010.

137 1.1l

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduacdo em Computacédo, Porto Alegre, BR—
RS, 2010. Advisor: Leila Ribeiro; Coadvisor: Antonio Carida
Rocha Costa.

o

1. Graph grammar. 2. Theorem proving. 3. First-order logi
4. Formal specification. 5. Formal verification. |. Ribeit®jla.
[I. Costa, Anténio Carlos da Rocha. lll. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Pro-Reitor de Coordenagdo Académica: Vice-Reitor RuiMie®©ppermann
Pro-Reitor de P6s-Graduacéo: Prof. Aldo Bolten Lucion

Diretor do Instituto de Informatica: Prof. Flavio Rech Wagn
Coordenador do PPGC: Prof. Alvaro Freitas Moreira

Bibliotecéaria-chefe do Instituto de Informatica: BeafRegina Bastos Haro

ACKNOWLEDGEMENTS

| am very grateful to my supervisor, Leila Ribeiro, who adegjome under her super-
vision as a PhD student, and for her support and guidancagithis research. | would
like to thank her for the various revisions and suggestibrsughout this work. Without
her support, this work would not be the same.

I would like to express my thanks to my friend, teacher an@daisor Antonio Carlos
da Rocha Costa. He has given me great incentive since my rsasiarse. | would also
like to show my gratitude to my colleagues from the Departnoéimformatics at UFPel.
Their support makes possible the conclusion of this work.

Special thanks to my husband and son, for their love and aatesupport in difficult
moments. Thanks to all my family that was always looking fargvto seeing the success
of this work. Thanks also to my friends for the emotional supp Thanks to God, for
making me able to carry out this work.

CONTENTS

LISTOFFIGURES. e 6
LISTOF TABLES e 7
ABSTRACT . . . e e 8
RESUMO e 9
1 INTRODUCTION e e e e e 10
1.1 Motivation 10
1.2 GraphGrammar e 11
1.3 Model Checking and Theorem Proving. 12
1.4 GraphGrammar Analysis 13
1.5 Goalsand Structure ofthisThesis 16
1.6 RelatedWorks 16
1.6.1 Other Approaches for Analysing Infinite-State System. 16
1.6.2 Other Approaches that Adopt a Relational, Logical er Bheoretical
Representation for Graphs and Graph Grammars18

1.6.3 Other Approaches for Theorem Proving Concurrente®yst 19
1.7 ThesisOutline. 20
2 GRAPHGRAMMARS. 22
2.1 BasicDefinitions 22
2.2 Working Example: The Token Ring Protocol 24
3 RELATIONAL REPRESENTATION OF GRAPH GRAMMARS 28
3.1 Relational Structures. L 28
3.2 Rule Applications as First-Order Definable Transductios 33
3.3 \Verifying Properties 39
4 DEALING WITH ATTRIBUTED GRAPHS 44
4.1 Attributed Graph Grammars e 45
4.2 Relational Structures Representing Attributed Graph Gammars 50
4.3 Token Ring Example with Attributed Graphs 57
5 EXTENDING THE APPROACH TO GRAPH GRAMMARS WITH NEG-

ATIVE APPLICATION CONDITIONS 64
51 GraphGrammarwithNACs 64

5.2 Specifying the Token Ring Protocol withNACs 65

5.3 Relational Representation of Graph Grammars with NACs 66

5.4 Token Ring Protocol with NACs Verification. 72
6 PATTERNS FOR PROPERTIES OVER REACHABLE STATES IN GRAPH
GRAMMARS SPECIFICATIONS 74
6.1 The Standard Library of Functions 74
6.2 Property Patterns. 75
6.3 Specification of a Mobile System. 0oL 80
6.4 RelatedWork 80
7 THEOREM PROVING GRAPH GRAMMARS USING EVENT-B 87
7.1 Event-B 87
7.2 GraphGrammarsinEvent-B 88
8 CONCLUSION 95
REFERENCES 99
APPENDIX A ALGEBRAIC SPECIFICATIONS 115
A.1 Basic Concepts of Algebraic Specifications 115
APPENDIX B TOKEN RING SPECIFICATION 118
B.1 Event-B Contextof TokenRing. 118
B.2 Event-B Machineof TokenRing 128

APPENDIXC RESUMO ESTENDIDODATESE 133

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4.10:

Figure 5.1:
Figure 5.2:
Figure 5.3:

Figure 6.1:

Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:

LIST OF FIGURES

Token Ring Graph Grammar 24
Alternative Definition of the TokenRingGG 25
Application of the Rule1 to Initial Graph 26
Application of the Rule2 to Initial Graph 26
Rule Application using Attributed Graphs 44
Attributed Graph Lo L 45
Typed Attributed Graph L. 47
Typed Attributed Graph Graphical Notation 47
SIgNAtUMEIGTRing « « « « « v v e e 57
Final AlgebraFTng = (Fstatus, Fnat, activel | standby™ ,0F | succt, +F, —F modl") 58
Term AlgebraTTRing (X) = (Tstatuss Tvat, active™ | standby™ , 07, succ”, +T, =T mod™) 58
Value AlgebraATR’i"g = (Astatus, ANat, active?, standby?, 04, succ?, +4, =4 mod4) 59
Type Graph and Initial Graph 59
Rules 16
Token Ring Graph GrammarwithNACs 66
Alternative Definition of the Token Ring GG WlthSIs 67
Rule RS 68
Mobile System Graph Grammar 84
Example of Graph Grammar 89
Event-BType Graph 90
Auxiliary Functions 91
Event-BGrapty 91
Event-B Rule Structure L 92
Event-BRuleEvent 93
Stating Properties e 94

Table 3.1:
Table 4.1:
Table 5.1:

Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 6.8:

LIST OF TABLES

Formulas used in Definition 16
Formulas used éhspecifications
Construction of Constraints

Standard Library
Standard Library (Cont.)
Standard Library (Cont.)
A Pattern Taxonomy oo
Absence of Resources Pattern
Listof Properties
List of Another Properties
Properties Specification for the Mobile System

78
79
81

ABSTRACT

Graph grammars are a formal language well-suited to apitain which states
have a complex topology (involving not only many types ohedaits, but also different
types of relations between them) and in which behaviourssmgally data-driven, that
is, events are triggered basically by particular configaret of the state. Many reac-
tive systems are examples of this class of applications) as@rotocols for distributed
and mobile systems, simulation of biological systems, amdhyrothers. The verifica-
tion of graph grammar models through model-checking issnily supported by various
approaches. Although model-checking is an important amalyethod, it has as disad-
vantage the need to build the complete state space, whicleadro the state explosion
problem. Much progress has been made to deal with this diffjand many techniques
have increased the size of the systems that may be verifidter @pproaches propose
to over- and/or under-approximate the state-space, butisncase it is not possible to
check arbitrary properties. Besides model checking, #ragoroving is another well-
established approach for verification. Theorem proving ischnique where both the
system and its desired properties are expressed as formwdame mathematical logic.
A logical description defines the system, establishing afsaxioms and inference rules.
The process of verification consists of finding a proof of thguired property from the
axioms or intermediary lemmas of the system. Each veriiodgchnique has arguments
for and against its use, but we can say that model-checkitdi¢gheorem proving are com-
plementary. Most of the existing approaches use model ened¢k analyse properties
of computations, that is, properties over the sequencetep$ & system may engage in.
Properties about reachable states are handled, if at ailppesonly in very restricted
ways. In this work, our main aim is to provide a means to prawperties of reachable
graphs of graph grammar models using the theorem provirmigge. We propose an
encoding of (the Single-Pushout approach of) graph gransmecifications into a rela-
tional and logical approach which allows the applicatiortred mathematical induction
technique to analyse systems with infinite state-spaceshane defined graph grammars
using relational structures and used logical languagesddeirule applications. We
first consider the case of simple (typed) graphs, and thenxteme the approach to the
non-trivial case of attributed-graphs and grammars withatige application conditions.
Besides that, based on this relational encoding, we estapditterns for the presentation,
codification and reuse of property specifications. The pattas the goal of helping and
simplifying the task of stating precise requirements to éefied. Finally, we propose to
implement relational definitions of graph grammars in e@structures, such that it is
possible to use the event-B provers to demonstrate prepetia graph grammar.

Keywords: Graph grammar, theorem proving, first-order logic, fornpedafication, for-
mal verification.

Abordagem Relacional de Gramatica de Grafos

RESUMO

Gramatica de grafos € uma linguagem formal bastante adequed sistemas cu-
jos estados possuem uma topologia complexa (que envolveas \tgpos de elementos
e diferentes tipos de relacdes entre eles) e cujo compantardeessencialmente orien-
tado pelos dados, isto €, eventos sédo disparados por catiigas particulares do estado.
Varios sistemas reativos sdo exemplos desta classe dag@@&; como protocolos para
sistemas distribuidos e moveis, simulacéo de sistemasjgols, entre outros. A verifica-
céo de gramatica de grafos através da técnica de verificag@odelos ja é utilizada por
diversas abordagens. Embora esta técnica constitua undordg@nalise bastante impor-
tante, ela tem como desvantagem a necessidade de consispa@ de estados completo
do sistema, o0 que pode levar ao problema da exploséao de esBakiante progresso tem
sido feito para lidar com esta dificuldade, e diversas tésniém aumentado o tamanho
dos sistemas que podem ser verificados. Outras abordagg@epr aproximar o espaco
de estados, mas neste caso néo é possivel a verificacao degmdps arbitrarias. Além
da verificacdo de modelos, a prova de teoremas constitid tétnica consolidada para
verificacdo formal. Nesta técnica tanto o sistema quant® pugriedades sdo expressas
em alguma loégica matematica. O processo de prova consisémneomtrar uma prova a
partir dos axiomas e lemas intermediarios do sistema. @adéch tem argumentos pro e
contra 0 seu uso, mas é possivel dizer que a verificacdo ddon@da prova de teoremas
sdo complementares. A maioria das abordagens utilizarficaglores de modelos para
analisar propriedades de computacgdes, isto é, sobre awigyié passos de um sistema.
Propriedades sobre estados alcancaveis s6 séo verificadasrdh restrita. O objetivo
deste trabalho € prover uma abordagem para a prova de plagei® de grafos alcanca-
veis de uma gramatica de grafos através da técnica de pragargenas. Propfe-se uma
traducdo (da abordageB8ingle-Pushogtde gramatica de grafos para uma abordagem
l6gica e relacional, a qual permite a aplicagdo de induc&ematica para analise de sis-
temas com espaco de estados infinito. Definiu-se gramatgpaties utilizando estruturas
relacionais e aplicacdes de regras com linguagens lodicasalmente considerou-se o
caso de grafos (tipados) simples, e entédo se estendeu agborgara grafos com atri-
butos e graméticas com condi¢des negativas de aplicacd@m disso, baseado nesta
abordagem, foram estabelecidos padrdes para a definigiibc@gdo e reuso de especi-
ficagOes de propriedades. O sistema de padrdes tem o olgjetixoxiliar e simplificar
a tarefa de especificar requisitos de forma precisa. Fimaemeropde-se implementar
definicbes relacionais de gramatica de grafos em estrudemgent-B de forma que seja
possivel utilizar os provadores disponiveis parant-Bpara demonstrar propriedades de
gramatica de grafos.

Palavras-chave: Gramatica de Grafos, prova de teoremas, l6gica de primeiteng
especificagéo formal, verificagédo formal.

10

1 INTRODUCTION

1.1 Motivation

Hardware and software systems are everywhere: in comntionicdransportation,
financial, administration and in our homes. Everyday theywjn scale and scope, many
times having to interact with another complex and indepehdavironments. Together
with this increase in complexity, the possibility of sub#eors is intensified and can
lead to catastrophic losses (examples are found in (DAVI®52 and (HUTH; RYAN,
2000)). Facing this, techniques to aid the developmentlathie and correct systems
are becoming more and more needed (DWYER et al., 2007). Opefrachieving this
goal is through the use of formal methods, which are matheaigtbased techniques
that can offer rigorous and effective ways to model, desighanalyse computer systems
(CRAIGEN; GERHART; RALSTON, 1993).

During the past two decades, various case studies and iradagiplications (WOOD-
COCK et al., 2009; ALPUENTE; COOK; JOUBERT, 2009; CLARKE; MG, 1996;
HINCHEY; BOWEN, 1995; CRAIGEN; GERHART; RALSTON, 1993) haonfirmed
the significant importance of the use of formal methods torowe the quality of both
hardware and software designs. The description of a sysjeefbrmal specification
language has shown to provide a solid foundation to guid® dvelopment activities
and obtain through verification a high confidence that theéesyssatisfies its require-
ments. Well-formed specifications, validated with resgectritical properties, have
supplied a basis for generating correct and efficient socode. Notable examples can
be found in the most diverse domains (WOODCOCK et al., 2009NHBERG et al.,
2007; HOMMERSOM et al., 2007; HINCHEY; BOWEN, 1999; BOWEN|NMCHEY,
1997; HINCHEY; BOWEN, 1995): transportation, telecomnuation and information
systems, security, protocols and hardware. An impressideralatively recent exam-
ple is the traffic management system for line 14 (Tolbiac-8euhe) of the Paris metro
system (BEHM et al., 1999). The system is completely autanfatipporting driverless
trains) and had the safety-critical parts formally devebbjpy Matra Transport Interna-
tional using B (ABRIAL, 1996). According to (BEHM et al., 199 the abstract and
concrete model was specified with approximately 100,006sliof B code and 87,000
lines of ADA code. About 28,000 lemmas were automaticallyved by B tool. Errors
were found and corrected during the development. Afteryapgla conventional testing
process, not a single error was found.

Nevertheless, the employment of such methods is far fromalriit requires some
mathematical expertise, demands quality documentatidriraaneases the time spent in
the first stages of the development. Despite a significantreuiof successful stories, the
software engineering community has not been convinced arga kcale of the validity

11

of formal approaches (BOWEN; HINCHEY, 2005, 2006). The mm®hmon reasons
against the use of formal methods in practice are the extemgidevelopment cycle, the
need of extensive personnel training, the difficulties iwlifig suitable abstractions and
the mathematical knowledge required. Therefore, thougimgging, several improve-

ments are needed to turn the use of these methods and thpwrstigols a common

practice in software development process.

Experts in formal methods have analysed the situation aath&ed the issues con-
cerning the use of formal methods in industrial softwareettggment (ABRIAL, 2006;
ROSSI, 2005; KNIGHT, 1998; MICHAEL; W., 1996; ROSENBLUM, 98). One pon-
dered possibility is that present formal methods might lm®mplete or inadequate for
some applications. Heitmeyer (HEITMEYER, 2006) arguesttiamost popular model-
ing languages used in industry, like UML (JACOBSON; BOOCHINRBAUGH, 1999)
and Stateflow (The MathWorks, 2007), lack explicit formahsatics and produce large
specifications (including a lot of implementing detailsp tackle this situation he pro-
poses to enhance existing formal languages with featumsasisuitable graphical inter-
faces, encouraging thus their use by practitioners.

This scenario claims further research to provide suitgiéeigication and verification
techniques for the software development community. Ouedédgnce on software sys-
tems grows everyday. Clients and users demand that theersgsare delivered with a
high level of accuracy and trust. Software engineers shbale the tools upon which
this trust can be built. The present thesis contributes éodtwvelopment of such tools,
furnishing theoretical foundations for the analysis of @g&of systems.

1.2 Graph Grammar

Graph grammars (short GG) are a formal language suitabliaéospecification of a
wide range of computational systems (EHRIG et al., 1999)s Tdrmalism is specially
well-suited to applications in which states have a compigology (involving not only
many types of elements, but also different types of relatizgtween them) and in which
behaviour is essentially data-driven, that is, events riggdred basically by particular
configurations of the state. Many reactive systems are ebesngb this class of appli-
cations, such as protocols for distributed and mobile systesimulation of biological
systems, etc. Additionally to the complex states and reattehaviour, concurrency and
non-determinism play an essential role in this area of appbns: many events may hap-
pen concurrently, if they all are enabled, and the choiceofioence between conflicting
events is non-deterministic.

The basic idea of graph grammars is to model the states otensys graphs and de-
scribe the possible state changes as rules (where thendftight-hand sides are graphs).
The operational behaviour of the system is expressed viicapipns of these rules to
graphs depicting the actual states of the system. Rulesigplecally on the state-graph,
and therefore it is possible that many rules are appliedeasdme time.

In general, a graph grammar system is composedtgpegraph characterizing the
types of vertices and edges allowed in the systenmiéial graph, representing the initial
state of the system andsat of rulesdescribing the possible state changes that can occur.
Arule has a left-hand side and a right-hand side, which atledpaphs, and a partial graph
morphism that connect the graphs in some compatible way etedrdine what should be
modified by the rule application. Depending on the condgionposed by these rules,
they may be mutually exclusive or not. In the latter case, aninem will be chosen

12

non-deterministically to be executed. The initial state tiee function of restricting the
computation and the reachable states allowed in the systéirstate graphs are labeled
by the type graph via graph morphisms. This allows that soroerisistent states of the
system be ruled out by the typing compatibility.

Typically, the semantics of a system described using a ggagpinmar is a transi-
tion system where the states are graphs and the transiteswiloe the possible rule
applications. A rule is applicable in a state if there is aaghathat is, an occurrence
of the left-hand side of the rule in the state. This formalisas been used in very dis-
tinct applications such as image recognition and generétibADOS; SANCHEZ, 2003;
HUSSEIN; HASSANIEN, 1999; BUNKE, 1991), analysis of faukhaviours (DOTTI,
RIBEIRO; SANTOS, 2003), database models (SONG et al., 2004d¥5ic composition
(WANKMULLER, 1986), DNA computing (CERVO; RIBEIRO, 2002)nd visual pro-
gramming languages (ZHANG; ZHANG; ORGUN, 2001), among mathers (SAK-
SENA; WIBLING; JONSSON, 2008; CORRADINI et al., 2006; EHRK? al., 1999,
1987).

Graph grammars are appealing as specification formalisausedhey are formal and
based on simple, but powerful concepts to describe behavibthe same time they have
a nice graphical layout that helps even non-theoreticiaaerstand a specification. Due
to the declarative style (using rules), concurrency anmsssrally in a specification: if
rules do not conflict (do not try to update the same portiornefdtate), they may be ap-
plied in parallel (it is not necessary to say explicitly winiwles shall occur concurrently).
Consequently, graph grammars can be seen as a very sugahkdism to achieve a good
and understandable description of concurrent systems.

The verification of concurrent systems is much more comgiex sequential ones.
Concurrent systems usually consist of several autonomarpanents that run in par-
allel and interact with each other (for example, via messpg€he interaction between
these components affects the behaviour of the whole systiech, that is not enough to
know that each component works as expected to know that th&evglgstem will present
the expected behaviour. For that reason, the analysisokittil of systems demands the
verification of the system as a whole, and this is a difficdktathe high level of par-
allelism generates a number of possible computations. dh situations, the reasoning
is almost unfeasible without adopting formal techniquelser&fore, we can say that the
use of formal methods for verification purposes is manddimrgnsuring correctness of
concurrent systems.

1.3 Model Checking and Theorem Proving

Model Checking (EDMUND M. CLARKE; GRUMBERG; PELED, 1999) @ he-
orem Proving (ROBINSON; VORONKOV, 2001) are two well-edisitved approaches
used to analyse systems for critical and desired propeNledel checking takes as input
a finite model representing a concurrent system and a pyofzebe checked against the
system, and then exhaustively performs a state space s#suicling if the property holds
in that model. The process is automatic, in many cases eiffiaigd can also be used to
check partial specifications. In some cases, when propentéeviolated counterexamples
can be produced, providing important debugging infornmatio

Since the number of states of a system is typically expoakitithe size of its
description, the main disadvantage of model checking issthtge explosion problem.
Much progress has been made to deal with this difficulty, aadymechniques have in-

13

creased the size of the systems that may be verified: partlated reduction (LLUCH-
LAFUENTE; EDELKAMP; LEUE, 2002), abstraction (CLARKE et.a2001), symbolic
representation (BIERE et al., 1999; BURCH et al., 1992), mgnathers. However, these
approaches generally derive the model as an under- or ppeoxd@mation of system’s be-
haviour, which can result in inconclusive error reportsrmoinclusive verification reports
(DWYER et al., 2007).

Theorem proving (CLARKE; WING, 1996) is a technique wheréltbe system and
its desired properties are expressed as formulas in sonteematical logic. A formal
system defines the logic, establishing a set of axioms aedan€e rules. The verification
process consists in finding a proof of the required propedgnfthe axioms or interme-
diary lemmas of the system. In contrast to model checkingorgm proving can deal
directly with infinite state spaces and it relies on techagauch as structural induction
to prove over infinite domains. The use of this technique neayire interaction with a
human; however, by constructing the proof the user oftengyeery useful perceptions
into the system and/or the property being proved.

1.4 Graph Grammar Analysis

In this section we review methods and tools available fofahmalism of graph gram-
mars. First we present environments based on graph tramsfion proposed for the de-
velopment of software systems, considering in partictiarvailable analysis techniques
in each tool. Finally we discuss approaches designed to lhsbdek graph grammars.

There are at least two widespread graph transformatiorubayes, AGG (ERMEL,;
RUDOLF; TAENTZER, 1999) and PROGRES (SCHURR; WINTER; ZUNRI) 1999),
which offer a declarative and visual programming methodterdevelopment of software
systems. PROGRES (PROgrammed Graph REwriting System$G&R; WEINELL,
2008) is an environment for creating, analysing (type chmggkcompiling and debugging
graph transformation specifications.

The AGG (Attributed Graph Grammar) system (THE AGG SYSTENML@, ERMEL;
RUDOLF; TAENTZER, 1999), besides simulation, supportsdation of attributed graph
grammars. Attributed graph grammars extend the basic ggegghmar formalism with
attributed graphs, giving raise to a language to reasontabioibutes (data values). Com-
pared with AGG (FUSS et al., 2007), PROGRES provides thedsiglevel of maturity,
including a syntax-directed editor, an interpreter, and@ecgeneration mechanism. On
the other hand, AGG provides more analysis methods than FREE3G

An attributed graph grammar can be validated in AGG systawutfh two analy-
sis techniques, namely critical pair analysis (HECKEL; K&ER; TAENTZER, 2002)
and consistency checking (HECKEL; WAGNER, 1995). Critipalr analysis is used to
check if a system has a functional behaviour. Functionaabielr is required when the
specification has to be functional (i.e., terminating andflcent (HECKEL; KUSTER;
TAENTZER, 2002)) in order to ensure the existence of a unigsalt. For instance,
functional behaviour is specially important when we usggrgrammars for automated
translation of visual models into code or semantic domai#sUSMANN; HECKEL,;
TAENTZER, 2002), since the result of the translation mustiigue. The functional be-
haviour is also expected when using graph grammars formqgavssual languages (BOT-
TONI; TAENTZER; SCHURR, 2000), since it avoids the overhe&btacktracking nec-
essary for the parsing.

The AGG consistency control mechanism is able to check ifvarggraph satisfies

14

certain consistency conditions specified for a graph gramr@ansistency conditions
(HECKEL; WAGNER, 1995) describe basic properties of grafitet have to be pre-
served by the application of rules. AGG transforms globailststency conditions into
post application conditions for individual rules. A so-stmicted rule is applicable to a
consistent graph if and only if the derived graph is consistido. The post application
conditions generated from graphical consistency comggansure consistency of a graph
grammar during rule application. However, graphical cstesicy constraints just express
very basic graph conditions such as the existence or unégpsast certain nodes or edges.
They can not express structural conditions like the excsenf paths or circles of arbi-
trary length or global properties as e.g. connectivity.cAkhe translation of consistency
constraints into post conditions might cause problemsui@srwith attribute conditions.

The Tiger project (Transformation-based Generation of @lind Environments) ex-
tends (TIGER PROJECT, 2010) the AGG engine by a concretalgsuntax definition
for visual model representation. From the definition of tleeial language, the Tiger gen-
erator generates Java source code. The generated Javagbei@ments an Eclipse visual
editor plug-in based on Graphical Editing Framework (CORI@M, 2010; EHRIG
et al., 2005). The result is a generated environment for ikgal/ language simulation
(RENSINK et al., 2008; TAMaS MéSZaROS; MEZEI, 2008). Theusof Tiger is the
visualization power and not the graph transformation speddo, since it is an editor
generator, where graph rules are translated to paletterwextomenu entries, no means
to control rule application, and to apply more than one rulaeut user interaction are
supported.

Besides that, a simulation environment for a specific cldggaph grammars, Ob-
ject Based Graph Grammars (OBGG), was proposed in (DUARTE ,€2002). OBGG
(DOTTI; RIBEIRO, 2000) incorporate object-based conceptgeh as communication
through message passing and encapsulation, to describet-blajsed systems. The pro-
posed framework was used to simulate mobile applicatiansdfen environments (RODEL
et al., 2002), control systems (COPSTEIN; COSTA MORA; RIRB| 2000) and oth-
ers (RIBEIRO; COPSTEIN, 1998). The first step to simulate 8GG system con-
sists in translating the specification into a simulation elodThe environment uses a
defined algorithm to translate the specification to a Javgraro, that actually simulates
the behaviour of the specification. This process was shoviae teery useful in finding
specification errors (for example, missing rules or wronigav@urs) and estimating the
communication behaviour (for example, the number of exghdrmessages to complete
a service) (RIBEIRO; DOTTI; BARDOHL, 2005; KREOWSKI et a2005).

However, through simulation, it is not possible to make t¢asige assertions about
the behaviour of a system. Thus, many methods and tools wepoged to allow the
model checking of graph grammars. GROOVE (GRaphs for Olijeietnted Verifica-
tion) (RENSINK, 2004a) is a tool that generates the spaate-sif a graph grammar, in
the attempt that the resulting transition system can be hobéeked. But, as emphasized
in (KASTENBERG; RENSINK, 2006a), if we consider time-perftance, GROOVE can
not compete with SPIN (HOLZMANN, 1997a). For that reasonpmmon strategy that
has been applied is the translation of graph grammar moxel§armal languages that
are input languages of established model checkers. In sis&) the main steps for model
checking of graph grammars specifications are (RIBEIRO; DIDBARDOHL, 2005):

i) translate the specification to a verification model tha¢sgas input to a model checker;
i) define properties in some temporal logic; iii) check thregerties against the model
(model checking); iv) analyse results.

15

(FOSS; RIBEIRO, 2004) presents a translation of OBGG spatifins tor-calculus
(MILNER, 1999). Following this method, automatic checkés example, HAL (FER-
RARI et al., 1998) and Mobility Workbench (VICTOR; MOLLER9%4)) can be used
to verify a system. The semantic compatibility of the tratish is depicted in (FOSS,
2003). Nevertheless, as described in (RIBEIRO; DOTTI; BARL, 2005), some prob-
lems were encountered using this approach: models had tiselerably restricted such
that OBGG objects had no internal state and limitations vieeoeight by the use of ex-
isting model checkers (specially while supporting theiggtion operator ofr-calculus).
As a result, only small examples could be translated.

Another proposal (DOTTI et al., 2003) translated OBGG dpmations to PROMELA
(PROcess/PROtocol MEta LAnguage), allowing the verifmatf OBGG models using
the SPIN (Simple Promela INterpreter) model checker (HOIAMIN, 1997a). This ap-
proach provides a means to verify properties based on eveatsication of properties
based on states only works for specifications with a statmber of objects. For spec-
ifications with dynamic creation of objects, it would be nesary to create dynamically
new global variables - feature not supported by the tool. nTliee focus given in this
proposal was to prove properties about possible OBGG demsa

Compositional verification, using an assume-guaranteeoapp, is also provided
(DOTTI et al., 2006). This work improved the approach forpedy specification, en-
abling the proof of properties about the internal state wbived objects. Moreover, there
is an extension of graph grammars (MICHELON; COSTA; RIBE|RO06) that explic-
itly models time restrictions and allows the automatic fuesition of properties with the
UPPAAL model checker (BEHRMANN; DAVID; LARSEN, 2004). Inithcase, seman-
tics of real-time systems is defined in terms of Timed Autan(@l_UR; DILL, 1994),
the input language of UPPAAL. Besides, verification techemfor another kind of graph
transformation systems can be found in (RENSINK; SCHMIDARRO, 2004).

Although model checking is an important analysis metholkag as disadvantage the
need to build the complete state space, which can lead totdbe explosion problem.
In many cases, verification terminates because of insufticesources, such as mem-
ory. Consequently, the use of this approach can be very tidespace consuming, not
allowing the verification of properties of many systems.

Several works (MCNEW; KLAVINS, 2006; KORFF, 1991; DIXIT; MADOVAN,
1991) have been concerned on reducing the usually enornuolsar of states and tran-
sitions produced by a graph grammar system. Paolo Baldasre&rCorradini and Bar-
bara Konig propose a framework (BALDAN; CORRADINI; KONIGO@8; BALDAN;
KONIG, 2002) for the verification of infinite-state graphrisfiormation systems based
on the construction of finite structures approximatingrtbehaviour. Details about such
approach are described in Section 1.6.

Each verification technique has arguments for and agastsé, but we can say
that model-checking and theorem proving are complemenipst of the existing ap-
proaches use model checkers to analyse properties of catigms. Properties about
reachable states are handled, if at all possible, only ig westricted ways. Currently
there are no approaches that allow the use of theorem priwvpreve properties that in-
volve infinite states in the context of graph grammars. Oukwaas developed to provide
a means to prove properties about reachable graphs of at@rdate graph) grammar us-
ing the theorem proving technique.

16

1.5 Goals and Structure of this Thesis

The main aim of this thesis is to provide a relational appitoéar graph grammars
that allows the application of theorem proving techniquanalyse concurrent and reac-
tive systems that involve an infinite number of states

More specifically, the main contributions of this work arstdid below:

1. the description of a relational definition for graph graang

2. the extension of the approach to particular classes @hgggammars, named at-
tributed graph grammars and graph grammars with negatplecapion conditions;

3. the establishment of an strategy that can be applied tgsiafinite-state systems
specified as graph grammars;

4. the definition of patterns for the presentation, codiicatind reuse of property
specifications.

Besides that, we propose a translation of graph grammaifigp#ions in Event-B
structures, such that it is possible to use the theorem Eailable for Event-B (for
instance, through the Rodin platform) to demonstrate ptagseof a graph grammar. This
translation is based on the relational approach of grapmigrars.

Thestructure of the thesisan be divided in three main parts, Foundations, Techniques
and Applications, described as follows.

Part I: Foundations. The main aim of this part is to define a representation for lgrap
grammars that allows the use of theorem proving techniqyeedee properties of
systems specified in this formalism. We propose the defmitfograph grammars
using relational structures, where rule applications andeted as graph grammar
transformations using logical formulas. We have also shivat this approach
is equivalent to the Single-Pushout approach or simply &p@eoach (ROZEN-
BERG, 1997) to graph grammars. At last, we have extendedpgeach to other
classes of graph grammars, namely, attributed graph grasrand graph grammars
with negative application conditions.

Part Il: Techniques. In this part, we define a library of recursive functions anelgpec-
ification of patterns that can be used to specify propertes reachable states for
systems specified in graph grammars. The pattern has theoalping and sim-
plifying the task of stating precise requirements to befiezti

Part 1ll: Applications. In the last part, we use Event-B to analyse properties oftgrap
grammars. We translate graph grammar specifications intEB/atructures, such
that it is possible to use the Event-B provers to demonspatperties of a graph
grammar. This translation is based on the relational defindf graph grammars.

1.6 Related Works
1.6.1 Other Approaches for Analysing Infinite-State Systers

Nowadays, several software systems involve a range of eslilee dynamic creation
of objects and threads, data manipulation and others, weighire the reasoning about

17

infinite-state specifications. Many approaches have besrséul on this issue. One of
them is regular model checking (ABDULLA et al., 2004; BOUAMN]; HABERMEHL;
VOJINAR, 2004; KESTEN et al., 2001), an automata-based agprthat encodes sets of
states (or configurations) as regular sets of words andti@msas finite state transducers
(automata). A crucial problem to be faced in the use of suchrigue to verify graph
grammar models is the lack of expressivity of finite autonb@tapresent arbitrary graphs.
Another problem is the state space explosion in automataseptations of the sets of
configurations (or reachability relations) being examitteat could just be minimized
with some kind of abstraction or approximation.

Many other approaches deal with infinite-state verificatiéior instance, Delzanno
(DELZANNO, 2000) shows that symbolic model-checking carubed to verify a large
class of cache coherence protocols, while Fisher and hisagples (FISHER; KONEV;
LISITSA, 2005) apply temporal reasoning to analyse sinkiad of systems. It is impor-
tant to notice that in general systems analysed using sabhitues must be described by
simple action-reaction models, in which states must havenacomplex representation.

Paolo Baldan and Barbara Konig proposed (BALDAN; CORRADIKDNIG, 2008;
BALDAN; KONIG, 2002) to approximate the behaviour of (infieistate) graph transfor-
mation systems (GTSs) by a chain of finite under-approxionator by a chain of finite
over-approximations, at a levelof accuracy of the full unfolding of the system. A GTS
is a finite set of graph rules. Then, a graph grammar can beaseg!G TS with an initial
state. The unfolding semantics of a graph grammar (RIBEIREIG; BALDAN et al.,
2007) defines an operational model of computation that sgts all its possible sequen-
tial and concurrent derivations (i.e., all its computasipnit is generally infinite for non
trivial systems. The under-approximations of the behavaja graph grammar are ob-
tained by truncating the construction of the unfolding ahadidepthk (the k-truncation).
The over-approximations of the behaviour of a graph gramareachieved by construct-
ing a Petri graph (that is a Petri net with a (hyper)graphcstme over places) up to a
certain deptht (the k-covering). A covering represents all computations of thgioal
system (but possibly more).

The (under- and over-) approximations converge, in a caieg®ense, to the full un-
folding (BALDAN; KONIG, 2002): "the unfolding of a graph gnamar can be expressed
as the colimit of the chain of-truncations or as the limit of the chain ffcoverings".
These approximations are used to verify liveness and spfefyerties of a GTS. Under-
approximations for infinite-state systems don’t allow periing any computation of the
original system in the truncations. Therefore, they arel useverify some liveness prop-
erties like "eventually P" for a predicate P. Coverings pgewerifying deadlock-freedom
and safety properties like "always P" for a predicate P. Hexedue to the presence of
spurious runs, introduced by the abstraction, it is usuadlypossible to verify properties
of the kind "there exists a run" with particular propertiBALDAN; KONIG; RENSINK,
2005). These approaches are restricted to GTSs with simigg: rules can not preserve
edges (but can produce and delete edges), delete nodesreuhmedges with the same
label. Besides, the left-hand side of a rule must be condecte

In (BALDAN; KONIG; RENSINK, 2005) the unfolding approach lmver-approxi-
mations) is compared with another proposal, the partiigrapproach. This last one
approximates graphs according to their local structureekample, the local structure of
a node can be defined by the number of incident edges; anddhleskoucture of an edge
can be defined as the tuple of the local structure of its exdneodes. A similarity relation
over the elements of a graph is used to partition the graphs rEfation is originated

18

from any function that associates to each graph elemenbdt Istructure. A notion
of local structure proposed in (RENSINK, 2004b) gives rizem abstract function that
preserves a fragment of two-variable first-order logic wibinting quantifiers. However,
rule applications or rule effects are generally not preserv.e., if a rule is applicable to
a graph, the same rule or its abstraction must not be apj#italthe abstraction of the
graph. Actually, the partitioning approach is at a stagere/ieere are only preliminary
ideas on how to transform the graph abstractions (BALDANMNG; RENSINK, 2005).
There isn’t a theory to perform actual verifications.

Conversely, the unfolding approach (by over-approxinrejacan be used to execute
concrete analysis. In (BALDAN; KONIG; KONIG, 2003) a monadiecond-order logic
over graphs to characterize typical graph properties ipgsed. It shows an encoding
of such graph formulas into quantifier-free formulas overiReet markings. The work
identifies a subclass of formulas F such that the validity of/€r a GTS G is implied by
the validity of the encoding of F over the Petri net approxioraof G. This result allows
the use of verification techniques for Petri nets to analygeen GTS. l.e., the Petri net
produced by the approximated unfolding algorithm and tihentda itself can be analysed
by a model checker or a similar tool. Also, a tool for the asayf GTSs using this
approximation is under development (BALDAN; CORRADINI; KIG, 2008; KONIG;
KOZIOURA, 2008; KONIG; KOZIOURA, 2005).

1.6.2 Other Approaches that Adopt a Relational, Logical or 8t Theoretical Rep-
resentation for Graphs and Graph Grammars

The representation of graph grammar that we have proposgdnspired by Bruno
Courcelle’s research about logic and graphs (COURCELLEB02A997). Courcelle
investigates in various papers (BLUMENSATH; COURCELLE 080 COURCELLE,
2004, 1994a) the representation of graphs and hypergrgplesdhional structures as well
as the expressiveness of its properties by logical langudggdCOURCELLE, 1991) he
presents a comparison among various descriptions of getph(lsy characteristic prop-
erties expressed in monadic second-order logic, by cofftegtgraph grammars and by
forbidden minors) and in (COURCELLE; ENGELFRIET; ROZENBER1993; COUR-
CELLE, 1990) he shows that every set of graphs defined by deskfig (Hyperedge Re-
placement) or VR (Vertex Replacement) graph grammar hasidatde monadic theory.
The description of graph properties and transformationablgs in monadic second-order
logic is proposed at (COURCELLE, 1994b). However, theseka@re not particularly
interested in effectively verifying properties of graparisformation systems.

Other authors have investigated the analysis of GTSs baseelational logic or set
theory. Baresi and Spoletini (BARESI; SPOLETINI, 2006) kexp the formal language
Alloy to find instances and counterexamples for models an&sGTIn fact, with Al-
loy, they only analyse the system for a finite scope, whoseisizser-defined. Strecker
(STRECKER, 2008), aiming to verify structural propertiéssd'Ss, proposes a formal-
ization of graph transformations in a set-theoretic mo@lkbe approach replaces the match
occurrence (i.e., the applicability condition of a rule) @yormula over graph structure,
constructed over a fragment of first-order logic. Graphs gmagbhs transformations are
formalized with datatypes, predicates, functions, defing and transformations in a set-
theoretic model. The proposal has been carried out in Ikae¢lPKOW; PAULSON;
WENZEL, 2002) and the focus is given to prove structural prtips. His goal is to
obtain a language for writing graph transformation proggand reasoning about them.
Nevertheless, the language has only two statements, orpplty @ rule repeatedly to a

19

graph, and another to apply several rules in a specific ocdargraph. Until now, the
work just presents a glimpse of how to reason about grapkfsemations.

1.6.3 Other Approaches for Theorem Proving Concurrent Sysgms

CSP Prover (ISOBE; ROGGENBACH, 2008a) is an interactivetée prover for
the process algebra CSP (HOARE, 1978) based on the theomamrpsabelle (PAUL-
SON, 1994). CSP Prover allows the analysis of typical priigeiof scalable concur-
rent systems, such as scalability, parametrization, lac@ity, global result and others.
Examples of concurrent systems analysed in CSP Prover afdrtiiorm Candy Distri-
bution Puzzle (ISOBE; ROGGENBACH, 2008a), a systolic arfi@0OBE; ROGGEN-
BACH; GRUNER, 2005) and part of a standard of electronic paynsystem (ISOBE;
ROGGENBACH, 2008b). Other tools for theorem proving CSPeHasen presented: Tej
and Wolff propose another encoding of CSP in Isabelle/HOQLHCSP (TEJ; WOLFF,
1997); Schneider and Dutertre encode CSP traces in PVS (RURE; SCHNEIDER,
1997).

Based on general purpose theorem provers like Isabelle (BAN, 1994), HOL
(GORDON; MELHAM, 1993) or PVS (OWRE; RUSHBY; SHANKAR, 1992)nany
other tools for theorem proving process algebras (BASTEQOMWAN, 1999; GROEN-
BOOM et al., 1995; CAMILLERI; INVERARDI; NESI, 1991; ARCHER al., 1992;
GERBER; GUNTER; LEE, 1991) have been presented. In additiorange of other
formal languages designed for concurrent systems have éeeoded in proof assis-
tants. The formalization of Petri Nets was specified in HOARROS LUCENA, 1991),
Cog (CHOPPY; MAYERO; PETRUCCI, 2008; HAMID, 2008), IsalelLEHMANN;
LEUSCHEL, 2003), among others.

Circus (WOODCOCK; CAVALCANTI, 2001), another alternatil@nguage for the
development of reactive systems, is being mechanized iArtb@&Power-Z theorem prover
(LEMMA1-LTD., 2010). Circus (WOODCOCK; CAVALCANTI, 2002kan be seen as
a combination of Z (WOODCOCK; DAVIES, 1996) and CSP with arrefhent calcu-
lus. A branch of the Circus project (PROJECT, 2010) is devttethe mechanization of
the Circus semantics and on the proof of its refinement lai&s(@A; CAVALCANTI,
2009). The basis of this work is the mechanization of the UnE@ties (Unifying Theories
of Programming) of relations, designs, reactive procesaas CSP (ZEYDA; CAVAL-
CANTI, 2008; OLIVEIRA; CAVALCANTI; WOODCOCK, 2006).

In this thesis, we propose the use of Event-B (ABRIAL, 20031 the analysis of
graph grammar systems. Event-B has been used in the spgaifiaad analysis of many
systems: interaction protocols of multi-agent systemsM(NEBEN AYED; SIALA,
2008), bus protocols (FRANCA et al., 2009; CANSELL et al.02]) file systems (DAM-
CHOOM; BUTLER; ABRIAL, 2008; DAMCHOOM; BUTLER, 2009), airraffic infor-
mation system (REZAZADEH; EVANS; BUTLER, 2007), among athe

A graphical front end based on UML for Event-B, UML-B (SNOOBUTLER, 2008;
SAID; BUTLER; SNOOK, 2009), provides support for objectemted modelling con-
cepts. The tools available for UML-B include drawing toolsdaa translator that au-
tomatically generates Event-B models. Also, an encoding pfocess algebra into the
Event-B method can be found in (AIT-AMEUR et al., 2009). Ictfawhat the authors
propose is a (informal) translation of a BNF grammar to a $&went B models. The
translation is illustrated with a specific language desegla classical process algebra.

The main reason for theorem proving graph grammars is tleaidbs being formal,
its visual style, its powerful and expressive way of desngltomplex states (via graphs)

20

and its rule-based behaviour modelling provide a naturdirmiaitive means of describing
concurrent and reactive systems. These are advantagespbf grammars comparing to
other specification methods such as process algebras améll@st Although Petri Nets

is also a visual language, its representation of states tisyofe@okens is not well suited

for the specification of systems with complex topologies tates.

Besides that, the feature of providing asynchronous conicatian allows a natural
description of reactive systems, but has the drawback thanveynchronous commu-
nication is needed, the specifier has to explicitly intraelatate variables and messages
with corresponding rules to simulate a synchronous megsaggng scheme. The choice
of specification method shall always take into account thanlaaracteristics of the ap-
plication being modelled, and also the features offeredhgyspecification formalism.
For inherently synchronous systems, formalisms basedareps algebras may be more
adequate. For asynchronous systems, graph grammars offereanatural specification
means.

1.7 Thesis Outline

The rest of this text is organized as follows:

e Chapter 2: This chapter introduces the graph grammar spegaiin language ac-
cording to the SPO-approach (ROZENBERG, 1997). First, vesmt the main
definitions, which are considered to underlie the follommgrk. Next, we illus-
trate the use of graph grammars specifying the token-riogppol. This working
example is retaken in subsequent chapters to elucidate ef@witions.

e Chapter 3: In this chapter we propose a relational approadraph grammars
that allows the application of the mathematical inductechihique to analyse sys-
tems with infinite state-spaces. We have defined graph grasnaseng relational
structures and used first-order logic to model rule appboat We also check the
well-definedness of such definitions. At last, we use our@gr to verify proper-
ties of the token-ring protocol.

e Chapter 4: This chapter extends the approach to attributgghggrammars. At-
tributed graph grammars enrich the graph grammar formatisegrating data types
into graphs, by allowing assignment of values to verticed/@nedges. We first
establish the relational representation of attributeglgrgrammars and then we
modify and extend the token-ring protocol.

e Chapter 5: In this chapter we consider the case of graph geashnwith negative
application conditions. Negative application conditioastrict the application of a
rule by asserting that a specific structure must not be pt@sarstate-graph, before
applying the rule. We also show the use of graph grammarsmneigjative applica-
tion conditions for the specification and verification of tbken-ring protocol.

e Chapter 6: This chapter presents specification patternms dperties over reachable
states in the approach of graph grammars. The patterns sed ba functions that
describe typical characteristics or elements of grapks (he type of a vertex, the
set of all edges of some type, the cardinality of vertices)eWe show how these
functions can be defined in the framework of relational grgg@mmars.

21

e Chapter 7: In this chapter we use Event-B to analyse pr@sesfigraph grammars.
Due to the similarity between Event-B models and graph granspecifications,
specially concerning the rule-based behaviour, we profmsanslate graph gram-
mar specifications in Event-B structures, such that it isids to use the Event-B
provers to demonstrate properties of a graph grammar. fidnslation is based on
the relational definition of graph grammars.

e Chapter 8: Finally, we summarise the contributions of thests and list possible
developments for the work presented here.

22

2 GRAPH GRAMMARS

In this chapter, we review the basic definitions of graph grears used in this thesis.
It can be seen as a set-theoretical presentation of theralgedingle-pushout approach
(see, e.g., (ROZENBERG, 1997; BALDAN; KONIG; KONIG, 2003))

Graph grammars generalize Chomsky grammars from stringafuhs: it specifies a
system in terms of states, described by graphs, and statgetiadescribed by rules hav-
ing graphs at the left- and right-hand sides. Graph rulessed to capture the dynamical
aspects of the systems. That is, from the initial state o{fstem (the initial graph), the
application of rules successively changes the system state

2.1 Basic Definitions

Definition 1 (Graph, Graph morphismA graph G = (Vg, Eg, srcg, trgg) consists
of a set of verticed/;, a set of edged/;, a source and a target functiosrcg, trgg :
E¢ — Vg. A (partial) graph morphismg : G — H from a graphG to a graph H

is a tupleg = (gvert, 9rage) CONsisting of two partial functiongy.,, : Vo — Vi and
9Edge - E¢ — Ey which are weakly homomorphic, i.@yc,¢ 0 srcg > sreg © gpage and
Gvert ©trge > trgm o grage.> A morphismy is called total/ injective if both components
are total/ injective, respectively.

The weak commutativity used above means that everythirigsthaeserved (mapped)
by the morphism must be compatible, that is, every edge shratpped by z4,. must be
compatible with the mapping of its source and target vestimegy ... The term “weak”
is used because the compatibility is just required on pveskitems, not on all items. A
typed graph is a graph equipped with a morphisnto a fixed graph of types.

Definition 2 (Typed Graph, Typed Graph MorphisnA typed graphG? is a tupleG? =
(G,t%,T), where G and T are graphs anttl : G — T is a total graph morphism called
typing morphism Atyped graph morphisnbetween graph&” and H” with type graph
T is a morphisny : G — H such that® > t o g (that is,g may only map elements of
the same type).

A rule specifies a possible behaviour of the system. It ceeoika left-hand side,
describing items that must be present in a state to enablalféapplication and a right-
hand side, expressing items that will be present after tleeapplication. We require that
rules do not collapse vertices or edges (are injective) anubd delete vertices.

1> is the usual relation between partial functions meaningrémaefined than”. Considering;,.
dom(ggage) — Eq¢ andggage! : dom(grage) — En the ggqge domain inclusion and restriction, respec-
tively, we write gy e, © sreg > srep © gpage iff gvert © sreg o g), dge = STCH © JEdge!, @and we write
gvert © tTgG > t’f'gH © JEdge iff gvert © t’f‘gG © gédge = trgH © gEdge!-

23

The imposed restrictions do not represent a several limitdor many practical ap-
plications. The purpose of the graph grammars that we haweinidl in this thesis is
the specification of concurrent and reactive systems. Thgoaoents of a left rule-graph
must represent resources that shall not be identified byaftramation (rule application).
And the deletion of a node can be simulated by using extrasedgedepending on the
case, by leaving the node isolated (BALDAN; CORRADINI; KGBI2003). Then, it
must not affect the expressiveness of the formalism. Fortbee, it leads us to a more
simple theory: if we allowed deletion of nodes, extra caoiodis (such as the occurrence
of dangling edges) should be considered when applying aawdestate-graph.

Definition 3 (Rule) LetT be a graph. Arule with respect tdl’ is an injective typed
graph morphismy : L7 — R” from a typed graph.” to a typed graphk”, such that
avert : Vi — Vg is atotal function on the set of vertices.

A graph grammar is composed oftype graph characterizing the types of vertices
and edges allowed in a system, iaitial graph, representing the initial state of a system
and aset of rulesdescribing the possible state changes that can occur istansy

Definition 4 (Graph Grammar)A (typed) graph grammairs a tupleGG = (T, GO, R),
such thatT" is a type graph (the type of the gramma)) is a graph typed ovef” (the
initial graph of the grammar) and is a set of rules with respect to tyfié.

Given a rulex and a staté-, we say that this rule is applicable in this state if there is
a matchm, that is, an image of the left-hand side of the rule in theestéhe operational
behaviour of a graph grammar is defined in terms of rule aptdins. In what follows,
A4 B denotes the disjoint union of setsand B andrng(f) denotes the range of function
f, that is, the image of the domain §f

Definition 5 (Match, Rule Application)Given arulex : LT — R with respect to a type
graphT, amatchof a rule o in a typed graphG” is a total typed graph morphism :

LT — GT which s injective on edges. rAlle applicationG* em) HT, or the application
of o to a typed graphG” at matchm, generates a typed grapi” = (H,t",T), with
H = (Vy, Ey, srcy, trgy), as follows:

Vertices of H:
VH = VG W (VR - aVert(VL))

Edges of H:
Ey = (Eq —mpage(EL)) W ER

Source and target functions ofH:

s (6) _ { ST'CG(G) if e € (EG — mEdge(EL))
" m(srcgr(e)) ife€ Eg
trga(e) ife € (Eq — mpgage(EL))
trgn(e) = { mtran(e)) ffecbn

wherem : Vg — Vj is defined by

m(v) = Mmyert(V0) if v € rng(aye) andv = ayeq (v0)
L otherwise

24

Typing morphism: The morphism” = (t{/,,,, t1,,.) from H to T'is

tH (U) — t\G/ert<U) If v e VG

vert t{;m,t(’(]) If vE (VR - aVGTt(VL>>
tH (6) — t%dge(e) if e S (EG - mEdge<EL>>
Fdge tgdge(e) if ec ER

Intuitively, the application ofv to GG at the matchn first removes frontz the image of
the edges inL. Then, grapl is extended by adding the new nodediri.e., the nodes
in Vg — ayv.+(Vy)) and the edges ak. This construction can be described by a pushout
in a suitable category of typed graphs (LOWE, 1993).

2.2 Working Example: The Token Ring Protocol

We illustrate the use of graph grammars specifying the tokem protocol. This
protocol is used to control the access of various statioasstrared transmission medium
in a ring topology network (TANENBAUM, 2002). According tbe protocol, a special
bit pattern, called the token, is transmitted from statimstiation in only one direction.
When a station wants to send some content through the netwavkits for the token,
holds it, and sends the message (data frame) to the ring. Bssage circulates the
ring and all stations may copy its contents. When the messageletes the cycle, it is
received by the originating station, which then removesntessage from the ring and
sends the token to the next station, restarting the cyctanlif one token exists, only one
station may be transmitting at a given time. Here we will m@dken-ring protocol in
an environment in which new stations may be added at any time.

Token Token E -j
= /\
1@ enjy SmmmmN e
T - GO
Token Token : Token, Token,
v v K v K
.8 - wm . = .= - . .
=5 4 2 = > 1 2
' ¢ »:r Tl —2-
L1 R1 L2 Sto R2
: 4 : 2 Token, Token,
v v [y . v
. ..~ .u_.a —d | “=
S = tf 2 f 24 ST ol
£ e
L3 R3 = L4 St R4
ins i wd
L5 ol R5

Figure 2.1: Token Ring Graph Grammar

Figure 2.1 illustrates the graph grammar for the example. type graphl defines a
single type of nod¢®™ (Node) , and five types of edge— (Message), ™k (Token),

25

Tok Tok01 Stbo1
Nxt
@ Msg Nxt01 Nxt03
Act Stb Stb02 Stb03
T Go
Tok11 Tok12 Msg11 Tok21 Tok22
JI[[]
Nxt11 @ o N3 2 g Nxt21 @ o2 <) Nxt22 @
Stb11 L1 Acti1 R1 Stb21 L2 Stb22 R2
Msg31 Msg32 Tok41 Tok42
j [] [
Nxt31 @ o3 N33 Nxt32 N34 @ Nxt41 o4 » @ Nxt42 @
[]
Stb31 L3 Sto32 R3 Stba2 R4
@ Nxt51 @ o5
L5
(alye(N11) = N13 a2yer(N21) = N23
1) alven(N12) = N14 o) @2ven(N22) = N24
a1 page(Tok11) = Tok12 025440 (Sth21) = Stb22
alpgge(Nxt11l) = Nxt12 a2 p4ge(Nxt21) = Nxt22
a3vert(N31) = N33 oty (N4) = N43
a3ver(N32) = N34
o3 ad ¢ adye(N42) = N44
o3 page(Sth31) = Stb32 a4 pgge(Nxtdl) = Nxtd2
a3 page(Nxt31) = Nxt32 Bage -

< [aBve(N51) = N53
Y aByent(N52) = N54

Figure 2.2: Alternative Definition of the Token Ring GG

* (Next), (Active Station) ancE® (Standby Station). ™ represents a net-
work station anc== defines a frame of data. The stations are connected by edges of

type *™ . The Tk represents a special signal which enables the stationrtatista
transmission. Every station is either an active stat(§, meaning that the station is
transmitting a message on the network, or a standby ste&2)). (There can be only one
active station on a ring at a time. The initial gra@ defines a ring with three nodes.
Initially the Token is at a specific station and no statiomasmsmitting information on the
network (all stations have (&2 edge).

The behaviour of the protocol is modeled by the rules. In tia@lgical representation,
usually the morphism is not explicitly represented; we assthat items of a graph are
mapped to items with same names. A standby node with a tolggnrady retain this edge
and send a message, becoming an active stationdqi)leor pass the token to the next
node (rulea2). When a message is received by a standby node pitilgan be applied
and the message is passed to the next node. If the receivitegg:ian active station, then
rule a4 can be applied, removing the message from the ring and sgtitértoken to the

26

next station. Rulev5 is applied to insert a new station into the ring. This model Aa
infinite state-space and generates an infinite number oftges®mputations.

Although the graphical representation shown in Figure 2 faitural, to obtain a rela-
tional representation of a graph grammar we will assumdyowmitloss of generality, that
all items (vertices or edges) that appear in graph grammag tidferent names. Thus,
we need to explicitly show the morphisms when defining theswaf a grammar. In our
example, a grammar that is (behaviourally) equivalent éodhe shown in Figure 2.1 is
depicted in Figure 2.2 (morphisms are shown below the gcaphépresentation). Note
that, in the definition of morphism1, the edgestb11 of L1 is not mapped, this means
that it is deleted by this rule; edgdsgll is not in the image ofv1, and therefore is
created by this rule.

Tok11 Tok12 Msg11

] at | R
Stb11 .@ Nxt1 @ Act11 .@ Nxt12 @
L1

R1

m1 m1

Figure 2.3: Application of the Rule1 to Initial Graph

Tok21 Tok22

. a2 N .
Sto21 Stb22
L2 R2

m2 m2

Figure 2.4: Application of the Rule2 to Initial Graph

Examples of rule applications are presented in Figure 2Z3rakigure 2.4. In Figure
2.3 ruleal is applied to the initial grapliz0, modeling the situation where statiov01
sends a message through the network. In Figure 2.4u1le applied to the initial graph
G0. In this case statioV01 remains in standby and passes the token to the next station.

27

Both rulesal anda2 compete to update the same portion of the state. In this case,
of the rules is (non-deterministically) chosen to be aghliepresenting the fact that a
station may decide to hold the token and send a message,mwtartl the token.

28

3 RELATIONAL REPRESENTATION OF GRAPH GRAM-
MARS

Aiming to define a theory that allows the formulation of prdjes and the develop-
ment of proofs for systems specified as graph grammars, wepeoa representation of
graph grammars by relational structures (i.e., by strestwith relations only). Our ap-
proach is equivalent to the SPO-approach (ROZENBERG, 19@d)our choice for such
encoding relies on the possibility of using a theorem préoesemi-automate the proofs.

3.1 Relational Structures

A relational structure (COURCELLE, 1997) is a tuple formgdhlset and by a family
of relations over this set.

Definition 6 (Relational Structures)Let R be a finite set of relation symbols, where
eachR € R has an associated positive integer called its arity, dedditgy(R). AnR-
structureis a tupleS = (Dg, (Rs)rer) Such thatDg is a possibly empty set called
the domain ofS and eachRs is a p(R)-ary relation on Dg, i.e., a subset on;(R).
R(dy,...,d,) holdsinS if and only if (dy,...,d,) € Rs, whered,...,d, € Dg. The
class ofR-structures is denoted byI'R(R).

We start by defining a relational structure to model graphs, eéstablishing a rela-
tional representation for graph morphisms, typed graplasrales, which will later be
used to build the relational structure associated to a gyeginmar. A relational structure
representing a grapfi is a tuple composed of a set, the domain of the structuree+epr
senting all vertices and edges Gfand by two finite relations: a unary relation, i.e. a
setvertg, defining the set of vertices @f and a ternary relatiomcg representing the
incidence relation between vertices and edges.of

Definition 7 (Relational Structure Representing a Graftgt R, = {vert, inc} be a set
of relations, whereert is unary andinc is ternary. Given a graplt: = (Vg, Eg, srcg,
trgs), arelational structure representing- is a R, -structure|G| = (D¢, (Ra) rer,,)
where:

e Ds = V5 U Eg is the union of sets of vertices and edgeé&:of
o vertg = Vg, i.e.vertg(x) iff x € Vg;

o incg C EgxVgx Vg, Withincg(x,y, 2) iff © € EgA sreg(x) = yA trge(x) = z;

29

Example 1. The typed grapldz0 depicted in Figure 2.2 can be defined by the relational
structure|GO| = (Dgo, {vertco, incao}), Wwhere

Domain: D¢go = Vo U Ego With

Vo = {NO1,N02, N03}
Ego = {Tok01, Stb01, Stb02, Stb03, Nxt01, Nxt02, Nxt03}

Relations:

vertgo = {NO1, N02, NO3}

incco = {(Tok01, NO1, NO1), (Stb01, NO1, NO1), (Nxt01, NO1, N02), (Stb02,
N02, N02), (Nxt02, N02, NO3), (Stb03, N03, N03), (Nxt03, NO3, NO1)}.

Proposition 1. The relational structuréG| is well-defined.

Proof. By definition, the relational structuri€/| has the same set of vertices@f The
ternary relationncg specifies the set of directed edges. Each edgeG is related, by
incg, to (and only to) two vertices: its source and target vestiddothing else belongs to
incg. Then,|G| defines graplds. O

The relational representation of a graph morphisfrom a graphG to a graph is
obtained through two binary relations: one to relate vegig,) and other to relate edges
(9g)- Since these relations just map vertices and edges naredsawe to impose some
restrictions to ensure that they represent a morphism. tifjiee consistency conditions
state that if two vertices are related by then the first one must be a vertex@fand the
second one a vertex df, and if two edges are related y, then the first one must be
an edge of7 and the second one an edgefdf The(morphism) commutativity condition
assures that the mapping of edges preserves the mappingroésnd target vertices.

Definition 8 (Relational Graph Morphism)Let |G| = (Vo U Eg, {vertg,incg}) and
|H| = (Vg U Eg, {verty,incy}) be R, -structures representing graphs. rélational
graph morphism|g| from |G| to |H| is defined by a sey| = {gv, gr} Of binary relations
where:

e gy C Vi x Vy is a partial function that relates vertices {| to vertices of H|;
e gp C Eg x Ey is a partial function that relates edges [6f| to edges of H |;
such that the following conditions are satisfied:

e Type Consistency Condition¥z, x’,
lgv (z, 2")] = vertg(z) Nverty(x'); and
I:gE<:'U7 x/)] :> 3y7 y,7 Z7 Z/ I:ZnCG<:'U7 y7 Z) /\ /anH(x/7 y/7 Z,)];

e Morphism Commutativity ConditionVx, vy, z, 2", v/, 2/,
lgp(z,2") Nincg(x,y, 2) Nincu (2, Y, 2') = gv(y,y') A gv(z,2)].

g is called total/injective if relationg,, and gz are total/injective functions, respectively.

Proposition 2. A relational graph morphisng = {gv, gz} from |G| to |H]| is a well-
defined graph morphism from graghto graphH.

30

Proof. We havegy, andgz denoting partial functions. According to the type consiste
conditions, they relate vertices and edges-o0&nd H, respectively. Moreover, due to
the morphism commutativity condition, every edge that latesl bygx must be com-
patible with the relations established by. In other words, if an edge is related by
gr to an edger’/, then its source and target vertices must be relateg by.e., the weak
commutativity holds. O

A typing morphism is a graph morphism that has the role ofigll elements of a
graphG over a grapti’. Thus, its relational definition is the same as graph morpgijs
with the restriction that both relations must represeraltioinctions.

Definition 9 (Relational Typing Morphism)Let |G| and |T'| be R, -structures repre-
senting graphs. Aelational typing morphism from|G| over |T'| is defined by a total
relational graph morphisme“| = {t$, t¢} from |G| to |T'|.

Example 2. The relational typing morphism froft-0| over|T’| (see Figure 2.2) is defined
by [¢¢9) = {t$°, 190}, with t§° = {(NO1, Node), (N02, Node), (NO3, Node)} andt%’ =
{(Tok01, Tok), (Stb01, Stb), (Stb02, Stb), (Stb03, Stb), (Nxt01, Nxt), (Nxt02, Nxt),
(Nxt03, Nxt)}.

Proposition 3. A relational typing morphism is a well-defined typing mosgphi

Proof. Following Proposition 2 a relational typing morphism is diveeefined graph mor-
phism. Since both relations in a relational typing morphmmst be total functions, it is
a well-defined typing morphism. O

The relational representation of a typed gragh = (G,t“, T) is defined by two
R4.-structures representir@ and7” and by a relational typing morphism, which defines
exactly the typing morphisnf*.

Definition 10 (Relational Representation of a Typed GrapB)jven a typed grapls’” =
(G,t%,T) with t% = (t{/,,, 154,), @ relational representation ot is given by a tuple
GT| = (|G|, 1t°], |T) where:

e |G| and|T'| are R, -structures representing and1" respectively;
o [t9] = {t{,,;, 1%, } is arelational typing morphism frond:| over 7.
Proposition 4. The relational representation of a typed graph is well-dedin

Proof. By Proposition 1 the relational representation of graphaedi-defined and by

Proposition 3 the relational typing morphism is well-defin&ince the definition of the
relational typing morphism guarantees that it represérsame typing morphism given,
then the relational representatigi’ | defines the same typed grapf. O

A relational graph morphism is also the basis of the relaidefinition of a relational
typed graph morphism from a graghto a graphH. Since both graphs are typed over
the same grapff’, a (typed morphism) compatibility conditi@ssures that the mappings
of vertices and edges preserve types.

Definition 11 (Relational (Typed) Graph Morphism et |G|, |H| and |T| be R, -
structures representing graphs and| = {t,t%} and |ty| = {t!, ¢4} be relational
typing morphisms from| and |H| over |T'|, respectively. Aelational (typed) graph
morphism from|G”| to |H”| is defined by a relational graph morphisg| = {gv, gz}
from |G| to | H|, such that the typed morphism compatibility condition is$ied:

31

e (Typed Morphism) Compatibility Conditionvz, 2/, v,
lgv (2, 2") At (2, y) = ti} (2", y)]; and
g (2, 2') A tG(2,y) =t (2, y)].
Proposition 5. The relational representation of a typed graph morphisma#-gefined.

Proof. Following Proposition 2, a relational graph morphism is dladefined graph mor-
phism. The (typed morphism) compatibility condition gugees that the relational typed
graph morphism only maps elements of the same type. 0J

Given a rulea : LT — RT, its relational representation is given by the relational
representation of typed grapti€ and R”, together with a relational typed morphism
which must define the same morphism given. Note that, sinadeadoes not delete
vertices, the functiony ., must be total.

Definition 12 (Relational Representation of a Rule}iven a rulea : LT — RT,
a = (vert, OEage), @ relational representation ofy is given by a tuplé|L7|, |a|, | RT])
where:

o |LT| = (|L|,|t¥|,|T]) and |RT| = (|R|,|t?|,|T|) are relational representations of
typed graphd.” and R”, respectively;

o |a| = {avert, apage} is arelational typed graph morphism fromh”| to | RT.

Example 3. The relational typed graph morphism of rutd illustrated in Figure 2.2
is defined byla| = {1, a1, }, wherea;, = {(N11,N13),(N12,N14)} and oy, =
{(Tok11, Tok12), (Nxt11, Nxt12)}. The relational typing morphisms from1| and | R1]
over |T| are respectively given b = {(N11, Node), (N12, Node)}, t&' = {(Tokll,
Tok), (Stb11, Stb), (Nxt11, Nxt)} and#f' = {(N13, Node), (N14, Node)}, t& = {(Tok12,
Tok), (Actll, Act), (Nxt12, Nxt), (Msgll, Msg)}.

Proposition 6. A relational representation of a rule is well-defined.

Proof. By Proposition 4 the relational representation of typegbsas well defined and
by Proposition 5 the relational representation of a typeghlyrmorphism is well-defined.
Also, the definition of the relational typed graph morphisnaantees that it represents
the same morphism given. Then, the relational graph manplssinjective with the
component that relates vertices total. O

Given a graph grammatG = (7', GO0, R), we define a relational structuf&'G|
associated to it as a tuple composed of a set and a colledtielations. The set describes
the domain of the structure. The relations define the typpltgrine initial graph and the
rules. The type graph is defined by relations & a-structure representirif. The initial
graphGO0, and the left- and right-hand sides of rules are specifiedetations ofRR -
structures representing graphs, which are typed @viy relational typing morphisms.
Relational typed graph morphisms map the graphs of leftitsaahe and right-hand side
of rules.

Definition 13 (Relational Structure Associated to a Graph Grammag) Rqq =
{verty, incr, vertgy, incgo, t5°, t80, (vertr,, incri, tH, th vertp;, incg;, ti¥, t5

whereR has cardinalityn, the R gg-Structure associated t&'GG, denoted byG G|, is the
tuple (Dga, (1) reree)t Where

LIn order to simplify the reading we omit the subsciip® in relations.

32

e Daa = Vag U Egq is the set of vertices and edges of the graph grammar, where:
Voe € VrUVeoU(VEiUVii)ieqr,..ny aNd Egg € ErUEqoU(ELUER:)ic(i,...n}
with VTﬂV00 N (VLZ ﬁVRi)ie{l n} = = andETﬂEGO N (ELz ﬁERz)ze{l n} = = U,

e verty andincy model thetype graph They are the relations of & ,.-structure
|T| = (Vr U Er, {verty,incr}) representing grapf’.

e vertco, incao, t$° and ¥’ model theinitial graph typed overT, i.e., they are the
relations that compose the relational representatio:6f .

e Each collection(vertr;, incr;, t4, t5, vertg;, incg;, ti¥, th, «;,, a;,) defines
arule:

— wvertr;, incr;, t5 andty model theeft-hand sideof the rule, i. e., they are
the relations of the relational representationof’ .

— vertp;, incg;, t¥ andtf model theright-hand sideof the rule, i. e., they are
the relations of the relational representation ®f” .

- «;, anda;,, are relations of «;|, which defines &elational typed graph mor-
phism from | Li T, o), | RiT|) is a rela-
tional representation of rule;; : Li" — Ri”.

Example 4. The relational structure that represents the graph gramwfathe example
described in Section 2.2 is:

|GG| = (Vag U Ega, {vertr, incr, vertgo, incco, tcoy, tGogs
vertri, incri, t‘L/l, tél, vertry, iNCR1, t@l, tgl, a1y, g,
vertrs, incra, t‘L/Z, téz, vertra, 1NCR2, t@z, tgz, a9y, 02y,
vertrs, incrs, t‘L/?’, té?’, vertrs, iNCR3, t‘R;?’, tg?’, sy, O35,
vertrs, iNCr4, t‘L/4, té‘l, vertr4, 1MCR4, t€4, t§4, 4y, Oldpy,

. L5 L5 . R5 LR5
vertrs, incrs, ty”, tg, vertgs, incrs, ti°, tg”, a5y, 5.},
where:

(Domain) Vertex name$;c = { Node, NO1,...,NO3,N11,... ,N14 N21,... N24 N31,
.,N34,N41,... ,N44,N51,... N55};
Edges named/ce = { Nxt, Nxt01, Nxt02, Nxt03, Nxt11, Nxt12, Nxt21, Nxt22,

Nxt31, Nxt32, Nxt41, Nxt42, Nxt51, Nxt52, Nxt53, Tok,
Tok01, Tokl1l, Tok12, Tok21, Tok22, Tok41, Tok42, Msg,
Msgll, Msg31, Msg32, Msg41, Act, Actll, Act4l, Stb,
Stb01, Stb02, Stb03, Stb11, Stb21, Stb22, Stb31, Stb32,
Stb42, Stb51 }.

(Type GrapHI') Vertices,wertr = { Node };
Edges, incr = { (Nxt, Node, Node), (Tok, Node, Node),
(Msg, Node, Node), (Stb, Node, Node),
(Act, Node, Node) }.

(Initial Graph G0) Vertices, vertgo = { NO1,N02,NO3 };
Edges, incqo = { (Tok01,NO1,NO1), (Stb01,NO1, NO1),
(Nxt01, NO1,NO02), (Stb02, NO2, N02),

33

(Nxt02, N02, N03), (Stb03, N03, N03),
(Nxt03,N03,N01) };
Typing verticest$® = { (N01, Node), (N02, Node), (N03, Node) };
Typing edges, t%° = { (Tok01, Tok), (Stb01, Stb), (Nxt01, Nxt),
(Stb02, Stb), (Nxt02, Nxt), (S5tb03, Stb),
(Nxt03, Nxt) }.

(Rule 1) Left Graph L1:

Vertices, vertr; = {N11,N12 };
Edges, incp; = { (Tok11,N11,N11), (Stb11,N11,N11),
(Nxt11,N11,N12) };

Typing vertices, t£! = { (N11,Node), (N12, Node) };

Typing edges, tht = { (Tokl1, Tok), (Stb11, Stb), (Nxt11, Nxt) }.
Right Graph R1:

\ertices, vertry = { N13,N14 };

Edges, incrr = { (Tok12,N13,N13), (Act11,N13,N13),

(

(Nxt12,N13,N14), (Msgll, N14,N14) };
Typing vertices, ¢! = { (N13, Node), (N14, Node) };
Typing edges, i = { (Tok12, Tok), (Actll, Act), (Nxt12, Nxt),
(Msgll, Msg) }.
Relational Ruleal:

Mapping vertices, { (N11,N13),(N12,N14) };

Mapping edges, aj, = { (Tok1l, Tok12), (Nxt11, Nxt12) }.

o)
=
<

Il

(Rules 2 to 5 are analogous)

Proposition 7. The relational structuréGG| is well-defined.

Proof. Follows immediately from Propositions 1, 4 and 6. 0J

3.2 Rule Applications as First-Order Definable Transductions

In this section, inspired by the definition of monadic seconder definable transduc-
tion, introduced in (COURCELLE, 1997), we show how to defin&e rapplications as
graph grammar transformations. This approach will allowapl grammar theory to be
defined, which will be later used to verify properties of disited and reactive systems.

A monadic second-order definable transduction (COURCELLI®7) replaces for
graphs the notion of finite automaton used for transformatiof words or trees. It is
defined through a tuplép, ¥, (6,),c0) of monadic second-order formulas (GUREVICH,
1985) that specifies @-structureT = (Dr, (Rr)reo) based on amR-structureS =
(Dg, (Rs)rer)- The first formula of the tuplep, establishes a condition to be satisfied
in order to make the transduction possible. The followingrfola«) defines the domain
of the relation7’. Finally, for each relationy € Q, a formulad defines the elements
of the T" domain that belong to the relation. In the original defimtia is possible to
makek copies of the original structur€ before redefining the relations to obtain the
new structurd’. Next, we present the definition of first-order definabledrhrctions (via
first-order formulas) without copies of the original stuurgt, which is enough to represent
rule applications as graph-grammar transformations.

34

Definition 14 (First-Order Definable Transduction)et R and Q be two finite ranked
sets of relation symbols. L&V be a finite set of variables (parameters) aRd (R, W)
be the set of first-order formulas ov&, with free variables inV. A (Q, R)-definition
schemes a tupleA = (¢, ¥, (0,)4c0), Wherep € FO(R,W), ¢ € FO(R,W U {x1})
andf, € FOR,W U {x1,...,Tyq})-

These formulas are intended to define a structline ST R(Q) from a structureS
in STR(R) in the following way: letS € STR(R) and~ be a)V-assignment irt, a
Q-structureT" with domainDy C Dy is defined in(.S, v) by A if:

1. (S,v) E ¢. Formulay establishes a condition to be fulfilled so that the translati
is possible. l.e.T" is defined only ifp holds true inS for somey.

2. Dr ={d € Ds | (S,v,d) = ¥}. Assuming that 1. is satisfied, formuladefines
the domain ofl” as the set of elements in thedomain that satisfy for .

3. foreachq € Q, qr = {(dy,...,d;) € D% | (S,v,d,...,d;) E 6,}, wheret =
p(q). Formulasd, define the relatio, for eachg € Q.

SinceT is associated in a unique way witf)y and A whenever it is defined (whenever
(S,7) E ¢) we can use the functional notatidafa (.S, v) for 7. Atransduction defined
by A is the relationdefa := {(S,T) | T = defa(S,~) for someW-assignmenty in
S} CSTR(R) x STR(Q). f € STR(R) x STR(Q) is a FO-definable transduction

if itis equal tode f, for someQ, R)-definition schem@. In the case whergy = @ we
say thatf is definable without parameters.

A rule application may be described by a FO-definable tractsolu on relational
structures associated to graph grammars. The result offdheduction over a graph
grammar is another graph grammar whose initial state qooress to the result of the
application of a ruley; at a matchm to the initial state of the original grammar. The
other components of the grammar remain unchanged (i.eretiudting grammar has the
same type graph and rules of the original one). In order tndefile application as a
FO-definable transduction, we first introduce the relatiogresentation of a match.

Definition 15 (Relational Representation of a Matcl@iven a matchn : LT — G7,
m = (Mmver, MEdge), @ relational representation of matchn is given by a tuple| L7,
|m/|,|GT|) where:

o |LT| = (|L|,|t*],|T]) and|GT| = (|G|, |t|,|T|) are relational representations of
typed graphd.” andG7, respectively;

o |m| = {mve, mrag} is a relational typed graph morphism froph”| to |G7].

Example 5. The relational graph morphisim1| = {mly,mlg} from |L,| to |GO
(see Figure 2.3), where 1y, = {(N11,N01), (N12,N02)} andmlg = {(Nxt11, Nxt01),
(Tok11, Tok01), (Stb11, Stb01)} represents a relational match of rule,| in |G0|. Both
relations represent total functions amdl z is injective. Besides, the mapping respect the
typed morphism compatibility condition. We can also notfoe instance, that the pair
(Nxt11, Nxt01) preserves types, i.e, both claugés(Nxt11, Nxt) and ¢$°(Nxt01, Nxt)
hold (see Initial Graph and Left Graph definitions in Exam)e

Proposition 8. A relational representation of a match is well-defined.

35

Proof. By Proposition 4 the relational representation of typegbsas well defined and

by Proposition 5 the relational representation of a typeglgrmorphism is well-defined.

The definition of the relational typed graph morphism gutgas that it represents the
same morphism given. Then, the relational graph morphidotas, with the component

that relates edges injective. O

Now, a rule application is represented by a definable trastgmtu(i.e., by a tuple of
first-order formulas) that defines¢-structure|GG|’ (i.e., a graph grammar) based
on anotherR s-structure|GG|. Before applying the transduction, we must first fix a
relational representation of a rule and a relational representation of a matetof ai
in GOT. Then, theR c-definition scheme\ = (i, 1, (6,)4ere) defines the relational
structure|GG|' from |GG/, which corresponds to the same grammar, exceptedd@igt
(initial state of |GG|') represents the result of the application|oef| at match|m| in
|GO|. In A, ¢ ensures thatm| effectively defines a match) defines the domain of
the resulting grammar (the same of original grammar) anti éaenulad,, ¢ € Rae,
defines the elements that will be present in relatigns, ¢ € Rgg of the resulting
grammar. In fact, the collectiof¥,) defines the structure associated to graph grammar
|GG|'. Since the type graph and the rules remain unchanged, thrufas that define
these components are constructed in the obvious way (tleegedfimed by relations of
the original grammar). Formulage,:.,, Oinceos Oico, » Oico, that define the resulting
graph of the rule application are specified according to Miedfim5. Table 3.1 presents
the intuitive meaning and the notation used ispecifications.

Definition 16 (Rule Application as FO-Definable Transductiohpt GG = (T, GO, R)
be a graph grammar such that the sets of edges and verticesaphg/l’, GO, L: and
Ri are disjoint, and le{GG| be the relational structure associatedd~. Given a rule
«; : Li — Ri of GG and a corresponding match : L: — GO0, with the relational
representations respectively given fy| = {«a;,,®;,} from |Li| to |Ri| and |m| =
{my,mg} of |Li| in |GO|, A = (¢, 7, (0,)4eree), WithW = &, defines a transduction
that maps a graph grammafGG| to a graph grammar GG/, such thafGO|’ (initial
state of|GG|") corresponds to the result of the application of ridg| at match|m/| in
|GO| (initial state of|GG|), where:

¢ expresses thatn| = {my, mg} defines a total relational typed graph morphism, with
mpg injective. So, it must guarantee that the following cormulig are satisfied.

e |m| is a total relational graph morphism:
— my C Vi; x Vo IS a total function:

Va ((vertu(x)) = 3l (mv(x, ') A vertGo(x’)>>
— mgr C Er; X Eq is atotal function:
vz, y, Z((incu(x, v, z)) = 2’ 4y, <mE(:C, ') Aincgo(2', Y/, z’)))

— {my,mg} satisfies the Type Consistency and the Morphism Commuta-
tivity Conditions.

36

e |m| is a relational typed graph morphism withg injective:
— mg IS injective:

Vx,y((mE(x,y)> = (mE(x',y)>>

— {my,mg} satisfy the Typed Morphism Compatibility Condition.
1) is the Boolean constant true (same domain).
Overtrr Oine,. are, respectively, the formulasrir(x) andiner(z, y,) (same type graph).
Operts, 1S the formulaverteo(z) V nvertg;(z) (See next table).

Oinceo (%, Y, 2) IS the formulanincgo(z, y, 2) V nincg(x,y, 2).
Oic0 (2, 1) is the formulanvertco(z,t) V |nvertg;(z) A thi(z,t)].

Oico (2, t) is the formulant 3’ (x,t) v t (z,1).

Overty ;s Qincyis Htei, Qtféi, Overtpir Oincps Otfvh-, Otgi, 9%, 9% are respectively the formulas

vertr (), incri(w,y, 2), 4z,), t4(x,y), vert(x), incp(z,y, 2), 1 (z,y),
thi(z,y), iy, (z,y) and ;. (x,y), fori = 1 .. n (same rules).

Example 6. The graph grammar that results of the application of rjsle| at match|m1|
in |GO| (|GG initial state), has its initial graph defined by the relat®(see Figure 2.3):

VertGo qe = { NO1, N02, NO3 };

NeGo gey = { (Stb02, N02, N02), (Nxt02, N02,N03), (Stb03, NO3, N03),
Nxt03, NO3, NO1), (Tokl12, NO1, NO1), (Actll, NO1, NO1),
Nxt12, NO1, N02), (Msgll, N02, N02) }

(

(
e { (NO1, Node), (N02, Node), (N03, Node) };

{(

(

t 0
E\GG\’

Stb02, Stb), (Nxt02, Nxt), (Stb03, Stb), (Nxt03, Nxt),
Tok12, Tok), (Actll, Act), (Nxt12, Nxt), (Msgll, Msg) }.

The elements of these relations are thoséd|" domain (same domain a&/G|) that
satisfy the formulasl,c ., » Ginceo s et‘c/o, et%o, respectively.

Proposition 9. The rule application as a FO-definable transduction is vekdfined.

Proof. Let |GG/ be the result of the transduction applied to graph graméf corre-
sponding to the application of relational rite | at relational matchn|. Considering that
the given rulda;| = {«;,, a;, } and the given matchn| = {my, mg} are the relational
representations af; : Li’ — Ri” andm : LiT — G0T, respectively, and considering
HT = (H,t" T) to be the typed graph obtained by the application.ab graphG0? at
matchm (according to Definition 5) we have to show that

1. vert, andind, are the relations of & ;,-structure|T|" = (V. U EF,
{vertl., inc.}) representing graphi = (V, Er, srep, trgr).

2Each relationr of |GG/|" will be denoted by’ to avoid confusion with the relations ¢&G/| (denoted
by the unprimed names).

37

Table 3.1: Formulas used in Definition 16

Notation | Intuitive Meaning | Formula

vertg(x) x is a vertex of grapldz in GG. vertg(zx)

incg(x,y,z) | xisan edge of grapty with source|| incg(z,y, 2)
vertexy and target vertex in GG.

tS(z,y) z is a vertex of graphy of typey || t5(z,y)
in GG.

t%(z,y) x is an edge of graptv of typey in | t%(z,y)
GG.

a;y (z,y) x is a vertex of graplL: mapped to|| «a;, (z,y)
vertexy of Ri by rulea; in GG.

o, (z,y) x is an edge of graphi mapped to|| «;,(z,y)
edgey of Ri by rulea; in GG.

nvertg;(x) r is a vertex of graphRi that is not || vertg;(z) A fy (aiv (y, x))

image of the ruley; in GG.

’I’LZ"I’LCG() (l’, Y, Z)

x is an edge of graphGz0 with
sourcey and target: in GG that is
not image of the match.

incgo(z,y, 2) A fw (mE(w, :1:))

’I’LZ"I’LCRi (l‘, Y, Z)

x is an edge of graphRi with
source and target vertices given
binary relationm.

dr, s {incm(x, r, $)AT(r, y) ATI(s, Z)J
Dy

n(r,y)

Vertexr is related to some differen
vertex y if it is image of the rule
applied to some vertex. In this

caser is related with the image of

the match applied to. Vertexr is
related to itself if it is not image o
the rule.

t

Jv <ozl-v (v,7) A mv(v,y)) if r £y

o a;y, (v,7)

{

ifr=y

f

nvertgo(x,t)

x is a vertex of graplz0 of typet
in GG.

vertgo(x) A S0 (z,t)

ntS0(z,t)

x is an edge of grapld70 of type

t in GG that is not image of the

match.

Ty, z(mcGo(m,y, z))/\
A Pw <mE(w,x)) A9 (z,t)

o © € vertl iff x € Vi BY Oyere, definition,z € vert’, iff x € verty. Since
verty is the relation of & ,.-structure representirigj, then (following Defi-
nition 7) x € verty iff x € V.

o (z,y,2) €incyiff v € Ep Asrer(x) =y Atrgr(z) = 21 BY O, definition,
(x,y,2) € indpiff (x,y,2) € incp. Sinceincr is the relation of &R, -
structure representiri, then (following Definition 7)x, y, z) € incy iff = €
Er A srep(x) =y Ntrgr(z) = 2.

2. verty, andincy, are the relations of & ;,-structure|GO|" = (V. U Ef,
{verty, incy,}) representing grapH = (Vi, Ey, srcg, trgm).

o v € verty, iff v € Vi BY Oyer, definition, z € verty, iff z € vertgy or
(‘T € UertRi A ﬂyv (yv .CE') € aiv)‘

— Letz € vertgy. Since|GO| is a relational representation 60, we have

38

x € Vgo. Therefore, by Definition 5y € V.

— Letx € verty; such thatly, (y, z) € a,,. Since|Ri| is a relational rep-
resentation ofRi, x € Vi;. Also, as|«;| is a relational representation of
a; = (aiy,,,, iy,), by Definition 128y, ;. (y) = z. Consequently,
x € (Vri — ey, (V5i)), and by Definition 5 € V.

The proof in the other direction (only if case) is analogous.
o (1,y,2) € incyiffx € Ey A sreg(x) = y Atrgu(z) = 20 BY Gineg,
definition, (x,y,z) € incg,iff ((x,y,z) € incgy A Pw, (w,x) € mE> or

Ir, s((x,r, s) € incg N (r,y) ENA (s,2) € ﬁ)

— Let (z,y,2) € incgo, such thathw, (w,z) € mg. Since|GO| is the
relational representation @f0, we haver € Ego A srcgo(z) = y A
trgao(x) = z. Also, as|m| is a relational representation of = (my,,
Mpdge), DY Definition 15, 3w, mpgye(w) = z. As aresulty € Egy —
mpage(Eri) , i.e. by Definition 5,r € Ej. In this case, the source and
target vertices of in H are the same a0, i.e.,y andz respectively.

— Let (x,r,s) € incg;, Wheren(r,y) andn(s, z) hold. Considering that
|Ri| is a relational representation & we haver € Eg; A srcgi(x) =
r A trgr;(z) = s. Consequently, by Definition &% € Ey. Asn(r,y)
holds, we have two alternatives:

x Ju, <oziv(v,7") A mv(v,y)) with r # y. In this case, sincky;| is a
relational representation of rute and|m| is a relational representa-
tion of m, we havew;,,_ ,(v) = r andmy..+(v) = y. Hence, by Def-
inition 5, srcy (z) = M(sregi(z)) = M(r) = mye(v)(sincer €
rng(euy,,,) andr = a;,,,(v)) =y.

x Pv, a;, (v,7) with r = y. Thus,fv such thato;,,_,(v) = r. By
Definition 5, in this casesrcy () = m(srcg(x)) =m(r) =r = y.

Following a similar argument, ifi(s, z) holds, we can conclude in both
alternatives thatrgy (z) = z .

The only if proof is similar.

3. tG% andt%"’ are from the selt°|’ such that the tuplgGO', [t°°|',|T|') is a rela-
tional representation of the typed grapii’ = (H, ¢, 7).

o (x,t) € tGiff tfl,,,(x) = t: By 6,60 definition, (. t) € ¢§°" iff
(:c € vertgo N (x,t) € tgo) or (m cvertp; A By, (y,2) € iy A
A (z,t) € t{?i).

— Letz € vertgo and(xz,t) € t5°. Since(|GO|, [t<°], |T]), with [t¢°| =
{60,140, is a relational representation of the typed gréjtH’, we have
x € Vgo andt$ (x) = t. Then, by Definition 37 _ () =59 (x) =t.

— Letz € verty; and(z,t) € ¥, such thatlly, (y,z) € a;,. Since
(|Ri|, |t7%),]T]), with [¢t7| = {ti¥ &1 is a relational representation
of the typed graphri’ and|q;| is a relational representation of, we
haver € Vg, tl (2) = t andPy, ay,.,(y) = z. Then,z € (Vg —
.., (Vri)) and by Definition 5¢_ ,(z) = % ,(z) = t.

39

The only if proof is similar.
o (x,1) € 15 iff tf],,.(v) = t: By f,60 definition, (, t) € t5°" iff
(Ely, z,(1,y,2) €incgo N Pw, (w,z) € mp A (z,t) € tg()) or (z,t) € th.

— Let (z,t) € t9°, such thaBy, z, (z,y, 2) € incg andfw, (w,z) € mg.
Since|GO|, |m| and(|GO, [t°|,|T|) are relational representations@,
m and GOT, respectively, we have € FEqy, jﬂw,mEdge(w) = x and
t%0e(x) = t. le,x € (Ego — mpage(ELi)). Then, by Definition 5,
tgdge(x) = tggge'(x) =1. ‘ ' ' ‘

— Let (x,t) € t&. Since(|Ri|,|t®™|,|T]), with [t = {tI¥ B} is a
relational representation of the typed graRif, we haver € Ep; and
tihg.(x) = t. Thus, by Definition 5¢77, (z) =t (=) =t.

The only if proof is similar.

3.3 \Verifying Properties

In this section, we lay the foundation for the creation of apyr grammar theory,
which may be used to formulate properties and develop prodfss proposal of for-
malization was inspired by the standard procedure of I$alfBllPKOW; PAULSON;
WENZEL, 2002) to the development of proofs: working withbele means creating
theories. Nevertheless, the definitions here proposed guide the analysis of graph
grammar systems in any other proof assistant.

The relational definition of a graph grammar establisheg afssxioms to be used in
the proof process. That is, given a relational structt@| = (D¢e, (R)rerge), €ach
relation R of |GG| defines an axiomR(z1, ..., x,) = true iff (z1,...,2,) € R. The
theory defines a data type named reachable graph and a stdibdany of functions.

Definition 17 (Reachable Graph Data Typéljhedata type reachable grapf{reach_gr)
of a graph grammar is defined with two constructors, one ferititial graph GO and
another one for the operataip(ai, m) that applies the rulev: at matchm to a reachable
graph.

datatypeyg reach_gr= GO
| ap(ai, m) “ gg reach_gr”

GO is defined by relationsertqg, incgo, t5°, 130 of |GG|. Relations of the resulting
graph of a rule application are defined according to the trdnstion defined in Section
3.2.

The standard library provides a collection of (recursive) functions that can bedu
to state and prove desirable properties. Properties abaahable states may be proven
by induction, since this data type is recursively defined.

For instance, we define two functions: one to determine theswf edges of a reach-
able graph and another to indicate if a reachable graph hiag topology. Let|GG| be
the relational structure associated to a graph grammar.

3Again, in what follows, we omit the subscriptG' in relations, assuming that it is clear from context
which grammar is under consideration.

40

In the following we assume a fixed given gramniar = (7', GO, R).

[Library function tip: Types of Edges of a Reachable Graph]rhe types of edges of a
reachable graph are recursively defined by:

tipg GO = {(z,t) | 15 (2, 1)} (3.1a)
tipg ap(ai,m) G = {(z,t) | t¥(z,t) V [(x,t) € tipg G A Pwmg, (w,z)]} (3.1b)

That is, if we consider the initial graph (3.1a), typing isei by the relationt%’ of
the relational structure. If we consider a graph obtainechfepplying rulexn: at match
m = {my,,,mg,,} to graphG (3.1b), the type of an edge is either the type of edges of
the right-hand side of the rule or a type of edge of grépfin the latter case, the edge
can not be image of the matcHil.

[Library function Ring: Ring Topology in a Reachable Graph] Initially, we define
the transitive closure of edges of typa a graphG, denoted b)TCmcG, by:

va,z,y. = ([incc(a,.y) A1§(a1) = (2.y) € TCh] A

[(@,9) € TClyeg A (y,2) € TChy, — (2,2) € TCh,])

incg

Then, the function that indicates if a reachable graph hasgaopology of edges of
typet is defined by:

Ring, GO = Vz [vertgo(z) — (z,2) € TC},..] A (3.2a)
A Ya,b,z,y, 2 [incgo(a, 2,) A S (a,t) Aincgo(b, z, 2) A
AtGO(b,t) — a = b] A (3.2b)
A Y, z [vertgo(z) Averteo(z) — (x,2) € TCy,,.] (3.2c)
Ring, ap(ai, m) G = Ring, G A (3.2d)
A Na,z,y, z,w [inci(a, v, y) At (a,t) A ag, (2, 2)A
A (gw) — (5 0) ETCL, A (3:2)
A Ya,b,x,y, 2 [incri(a, z,y) At (a,t) Aincg (b, x, 2)A
AtH(b,t) — a = b] (3.2f)

That is,G0 has a ring topology if the following conditions are satisfied

(3.2a) There is a cycle, i.e., every vertex@d has a path with origin and destination in
itself;

(3.2b) There is no bifurcation of edges of typi@ G0, i.e., if there are two edges of type
with origin at the same vertex, these edges are equal. Topepy guarantees that
the paths of edges of tygen G0 are unique;

(3.2c) The graph is connected, i.e., from every vertex/inthere is a path to all other
vertices.

And, to have a graph with a ring topology resulting from thelagation of a rulea; =
{au,, i, } to areachable graph, it must be guaranteed that:

41

(3.2d) The reachable graph before applyiridhas a ring structure;

(3.2e) For every edge of typet going fromz to y in Li there is a corresponding path in
Ri starting at the image;,, of = and ending at the image,, of y;

(3.2f) There is no bifurcation of edges of typ&n Ri. This guarantees that the paths of
edges of type in Ri are unique.

|

Other functions could also be included in the library, susfuactions to define types
of vertices of a reachable graph, cardinality of edges,inalitly of vertices and many oth-
ers. Having established the theory, we describepthef strategy used to prove proper-
ties for a system specified in graph grammar. First, we mustelthe relational structure
associated to the grammar (according to Definition 13). €haions of this structure de-
fine axioms that are used in the proofs. Then we may state dgbalproven using logic
formulas. Considering that the property states some ddsicharacteristic of reachable
graphs, the proof must be performed in the following way1 {ibese case), the property
is verified for the initial graph@0) and then, at the inductive step, the property is verified
for every rule of the grammar applicable to a reachable gtaghe., for ap(ai, m) G),
considering that the property is valid f6f. This process may be semi-automated: it
may proceed until a separate property or lemma is requinesh we must establish the
property or prove the lemma, and then the proof of the origjoal can continue.

Now, we give twoexamplesof proofs of properties for the Token Ring protocol: one
about types of edges and another about the structure ofaiel@ctraphs.

Property 1. Any reachable graph has exactly one edge of the Tyjke

According to the definition ofip, previously established in the library, the property
to be proven can be stated by the formula:

dlz [(z, Tok) € tipg reach_gr].
Proof.

Basis: Here, the property is verified for the initial gragh.

31z [(z, Tok) € tips GO] "= Jx [t5°(x, Tok)] = true.

The last equivalences may be verified automatically. Sineedlational structure that
defines the grammar has a single pair with the second compdnkrbelonging to the
relationt$’ (see Example 2), the logical expression must be evaluated.to

Hypothesis: For any reachable gragh 3!z[(x, Tok) € tipgG]

Inductive Step: Assuming the hypothesis, the proof reduces to five casesndap on
the rule that is applicable:

1b
Rule al: Jlz [(z, Tok) € tipg ap(al, m) G)] G2

o [th (x, Tok) V [(x, Tok) € tipg G A fw mg,, (w,x)]].

42

Now it is necessary to inform if the edgeof type Tok of the reachable graph is an
image of the match or not, when rulé is applied. This can be done by stating:

Va (x, Tok) € tipg G, Iw mg,, (W, x) < 3w t5 (w, Tok) (3.3)

According to (3.3), the edge of typek of the reachable graph will be an image of
the match if and only if the left-hand side of the applied rabmtains an edge of
the typeTok. Then:

w
w

Il [t (z, Tok) V [(x, Tok) € tipg G A Bw mg,, (W, x)]] &
Iz [t (z, Tok) V [(x, Tok) € tipg G A Bw tr1, (W, Tok)]] = true.
There is a (single) pair at the relatiofi* that has the second compondik (see
Example 3). Besides it is assumed by hypothesis thatok) € tipg G. Since
expressioflw mp_, (w, z) is evaluated to false (there is a pair in relatighthat has

the second componefibtk), the complete formula may be automatically evaluated
to true.

Rulesa2 to a5: The proofs for rulesy2, a3, a4 andab are analogous. It is important
to notice that, since the property that informs if an edgeypéflok is the image
of a match has already been stated, the verification for thdes may proceed
automatically.

Property 2. Any reachable graph has a ring topology of edges of typie

Considering that the transitive closure of edges and thetiiomthat identifies a ring
topology are previously defined in the library, the propéotppe proven can be stated as:

Ringy,, reach_gr = true.

Proof.

Basis: We instantiate the equations (3.2a), (3.2b) and (3.2c)efimg definition with
G0 andNxt

Ringy,. GO v lertgo(z) — (z,2) € TCIE | A (egn 3.2a)
AVa,b, .y, 2 [incgo(a, ,y) At9°(a, Nxt) A incgo(b, x, z)A
At (b, Nxt) — a =b] A (egn 3.2b)
AV, z [vertgo(x) A vertao(z) — (x,2) € TCYE 1= (egn 3.2c¢)
= true

Considering that the result of the operatib@’ is the sef (N01, N02), (N02, N03),
(N03,NO1), (NO1,NO03), (N02, NO1), (N03, N02), (NO1, NO1), (N02, N02), (N03, N03)},
(egn 3.2a) and (eqn 3.2c) are satisfied. (eqn 3.2b) is alglisdtbecause there are no

two edges of the typBxt in G0 starting at the same vertex (see Examples 1 and 2).
Hypothesis: For any reachable gragh Ringy,, G = true =

Inductive Step: Again, here we have to prove for all rules to a5. We show the proof
for the first rule, the others are analogous.

43

Ringy,, ap(al,m) G 2 Ring,, G A (eqn 3.2d)
AVa,z,y, z,w [incpi (a, z,y) AtE (a, Nxt) A aq, (x,2) A
Aay, (y,w) — (z,w) € TCNE T A (eqn 3.2e)
AVa,b, x,y, z [incri (a, ,y) A i (a, Nxt) A incg; (b, x, 2)A
AtEL(b, Nxt) — a = b] = (egn 3.2f)
= true

This property may be verified automatically: (eqgn 3.2d) idvay the induction
hypothesis; (eqn 3.2e) is valid by the result of the opeﬂﬁ@zﬁlﬁzl; and (egn 3.2f) is

valid because there are no two edges of tise starting at the same node 1l (see
Example 3). O

44

4 DEALING WITH ATTRIBUTED GRAPHS

An attributed graph has two components: a graphical partaplg and a data part.
These components are linked by attribution functions oresdglepending on the ap-
proach). The data part allows the use of variables and temrtigeirules (as attributes),
giving the specifier a better level of abstraction with respe grammars using only non-
attributed graphs. Figure 4.1 shows an example of rule egdin using attributed graphs.
Inruler : L — R, instead of using concrete values, one typically uses biwsaand
terms. Equations restrict the situations in which the rubg/rne applied. To be able to
apply such a rule, we must find, besides the graph homomanghasn L to G, an assign-
ment of values to the variables of the rule that satisfy alia¢gns. If such an assignment
is found (like asg in the figure), the rule can be applied and the resulting grdpis
obtained as previously defined (as in Def. 5) with the valdestobutes of the vertices
changing as defined in the rules.

¢ oO|F| @ O

] /?\Qz P /?\Qz

@ @

G H

Figure 4.1: Rule Application using Attributed Graphs

In (EHRIG et al., 2006), an attributed graph is a graph in Wwhsome vertices are
actually data values, and some edges are attribution etthge$s, all data values are con-
sidered as vertices and there are special edges connerdipigical vertices to these data
vertices. This approach has a very nice theory but, for (aated) verification purposes,
it is not directly useful because typically data types imeoinfinite sets of values, and
thus each graph will be an infinite structure (because ddtesare vertices).

A different approach was presented by GROOVE in (KASTENBER@®G), in which
the data values were modeled as term graphs. In this appreaefiting takes place at
two different levels: normal graph rewriting for the gragddipart and term graph rewrit-

45

ing for the data part of the attributed graph. However, miodeilata types as terms has
some disadvantages: many data types can be more natunatbsserd as “textual” terms;
resolution for many of the most used equational systems fldural numbers, booleans,
strings, lists, ...) is already efficiently implemented,emas there are some limitations
for term graph rewriting. Moreover, this technique presdrfor GROOVE is for finite
state graph transformation systems.

A new approach to perform verification of attributed GTS weespnted in (KONIG;
KOZIOURA, 2008). This approach is based on (LOWE; KORFF; ViR, 1993), in
which there is an attribution function mapping elementsrfriine graphical part to the
data part of the graph. Here the data part is not seen asegdiedges of an attributed
part, but rather as a set of values. The disadvantage id ikatat possible to change the
value of the attribute of a vertex without deleting this e&r{because a simple change of
attribute would not be compatible with the original atttilon function, and this compati-
bility is a requirement for the definition of morphisms). KGNIG; KOZIOURA, 2008)
this drawback does not play a role since only edges arettdband all edges belonging
to the left-hand side of a rule must be deleted.

Our approach is inspired by both (EHRIG et al., 2006) and (KONKOZIOURA,
2008). On the one hand, we will have some special kind of edfyg® graph that will be
calledattribute edge®r simplyattributesand will be used actually to describe attribution
of vertices. But on the other hand, we will have a functiongrsag a data value to each
of these attribute edges. This way, we can model that thbwtie1 of a vertex changes
(by deleting the attribute edge corresponding tand creating a new one with the new
value) in a framework in which graphs are not infinite (beeadata values must not be
part of the graph).

For example, the left-hand side of the attributed rule shbefore would be actually
described by the graph depicted in Figure 4.2: dashed logpsedre placed onto the
vertices that will get attributed, and the attribute valaes actually connected to these
edges.

Figure 4.2: Attributed Graph

4.1 Attributed Graph Grammars

We use algebraic specifications to define data types, antralgyéo describe the val-
ues that can be used as attributes. Appendix A provides ldasititions of algebraic
specifications (these concepts will also be informallyadtrced as necessary).

A signatureSIG = (S,0P) consists of a sef of sorts and a seb P of constant
and operations symbols. Given a set of variabte®f sorts insS), theset of termver
SIG is denoted bylhrp(X) (this is defined inductively by stating that all variableslan
constants are terms, and then all possible applicationpefation symbols irOP to

46

existing terms are also terms). Agguationis a pair of termg¢1,¢2), and is usually
denoted bytl = ¢2. A specificationis a pairSPEC = (SIG, Eqns) consisting of a
signature and a set of equations over this signatureal@ebrafor specificationS PEC,
or SPEC-algebra, consists of one set for each sort symbd &f, calledcarrier set
and one function for each operation symbol$fG such that all equations igns
are satisfied (satisfaction of one equation is checked bgtguting all variables in the
equation by values of corresponding carrier sets and wegfiwhether the equality holds,
for all possible substitutions). Given tw®FP EC-algebras, a homomorphism between
them is a set of functions mapping corresponding carries thett are compatible with
all functions of the algebras. The set obtained by the disjanion of all carrier sets of
algebraA is denoted by/(A).

In the following, letloop(G) denote the subset of edges of a graph that are loops, that
is, edges that have the same source and target verticesradpla, gome of its loop edges
will be considered as special edges: they will be used to et vertex to an attribute
value.

Definition 18 (Attributed Graph) Given a specificatioy P £C, anattributed graphis a
tuple AG = (G, A, attrg) whereG = (Vg, Eg, srcg, trge) is a graph,Ais a SPEC-
algebra, and

attrg : AttrEg — U(A)

is a total function, withAttrE; C loop(G). Edges belonging toltir E are called
attribute edges

A (partial) attributed graph morphismy between attributed graphdG and AH is
a pair g = (garapn, 9aig) CONsisting of a graph morphisgt,opn = (gvert; Grdage) and an
algebra homomorphismy,,;, between the corresponding components that are compatible
with the attribution, i.e.

Ve € AttrEq [gag(attra(e)) = attry(grdge(e))]

An attributed graph morphism is called total/ injective if all components are total/ in-
jective, respectively.

The role of the type graph is to define the types of verticesedges of instance
graphs. Itis thus adequate that the part of the type graphites) data elements consists
of names of types. Therefore, we require that the algebraeotfyipe graph is a final one,
that is, an algebra in which all carrier sets are singletbmgractice, we will use the name
of the corresponding sort as the only element in a carrieing&tpreting it. With respect
to the attribute edges, there may be many different kindstobate edges for the same
vertex, and this is described by the existence of many of edgks in the type graph. The
two requirements that we impose on a typed attributed grepfi)eattribute uniqueness
there may be at most one attributed edge of each kind corthertbe same vertex (that
is, at most one value for this attribute is associated to ea&ctex), and (ii)attribute
completenessn an attributed graph, all attributes of each vertex mesiéfined (that is,
once an attribute edge exists in the type graph, there mwastbeesponding value in any
instance graph). These requirements make sense in pragtice when a list of attributes
is defined for a vertex, typically one wants that all vertioesach graph will have values
for those attributes (completeness), and these valuesaeai(uniqueness).

For example, Figure 4.3 shows a type graplin which we can see three types of
attributes, two natural numbers and one boolean. Géahtyped ovefl” (the morphism

a7

is given by the dashed arrows). To have a cleaner graphigadsentation, we will draw

a typed attributed graph as shown in Figure 4.4. Here we ndhedttribute edges to
make clear which is which in an instance graph. The morphisthe algebra component
is not shown, but it is obvious: The algebra®will have as carrier set8y,; = { Nat}

and Tz, = {Bool}, and the algebra fofz will have G, = {0,1,2,3,4,5,...} and

G oot = {true, false}. In this case, there is only one possible way to map betwezn th
algebras of7 andT, that is to map all natural numbers to the elem¥&at and¢rue and
false to Bool.

T Nat (ar)
r-"

:‘
Bool E -—
=T

LodJd
Nat (a2)

r
1
tmeL_

Figure 4.4: Typed Attributed Graph Graphical Notation

Definition 19 (Attributed Type Graph, Typed Attributed Graph§jiven a specification
SPEC, anattributed type graphs an attributed grapmAT = (7', A, attry) in which all
carrier sets ofA are singletons.

A typed attributed graphis a tuple AGAT = (AG,t4“, AT), where AG is an at-
tributed graph,AT is an attributed type graph and'® : AG — AT is a total attributed
graph morphism calledttributed typing morphisnsuch that

e Attribute Uniqueness Conditionvel, e2 € AttrEq
[sreg(el) = sreg(e2) = téffge(el) =+ tgnge(62)]

¢ Attribute Completeness ConditiotYe € AttrEp
[Je’ € AttrEg [t’égge(e’) =€

We denote byittrV the partial function that associates values to the vertiokan
attributed graph. This function is defined bytrV : Vi x AttrEr — U(A), for all
(v,at) € Vg x AttrEr

48

; _ AG _
attrV (v, at) attrg((?) if Je € _AttrEG [srea(e) = v A attrr (tgg,.(e)) = at]
unde fined otherwise
Atyped attributed graph morphisrbetween graphd G4” and A 4T with attributed
type graphAT is an attributed graph morphismbetweenAG and AH such thatt*¢ >
tAH o g (that is,g may only map between elements of the same type).

Note: The functiomttrV is well-defined because if there is an attribute edge at some
vertex, it will be the only one of its kind (due to the restiactimposed on typed attributed
graphs).

Since in the following we will be dealing only with typed altnted graphs, we will
omit the word “typed".

Rules specify patterns of behaviour of a system. Therefoienatural that variables
and expressions (terms) are used for the data part of thé.gvée will restrict possible
attributes in left- and right-hand sides to be variables, thie possible relations between
these variables will be expressed by equations associatach rule. When applying a
rule, all its equations will be required to be satisfied by thesen assignment of values
to variables. The following definition is a slight modifiaati of the usual descriptions of
rules using attributed graphs. Usually, a quotient terneladg satisfying all equations of
the specification plus the rule equations is used as attriblgebra. This gives rise to a
simple and elegant definition. However, since here our aito fgd a finite representa-
tion of attributed graph grammars in terms of relational&ures, this standard definition
is not suitable (in a quotient term algebra, each elementcafiaer set is an equivalence
class of terms, and this set is typically infinite for manyfukdata types). Therefore, we
just use terms as attributes, that is, we use the term algebrahe signature of the spec-
ification as attribute algebra (in the definition below, weigglently use the term algebra
over a specification without equations). In such an algetsah carrier set consists of
all terms that can be constructed using the operations defitmehe corresponding sort,
functions just represent the syntactical constructioeohs (for example for a termand
algebra operationp” corresponding to an operatop in the signature, we would have
op”(t) = op(t)). Consequently, all terms are considered to represemrdiff values in a
term algebra, since they are syntactically different. Taitesgaction of the equations will
be dealt with in the match construction, that is, in the aggion of a rule.

Definition 20 (Attributed Rule) Given a specificatio PEC = (SIG, Eqns). A rule
overSPEC with typeAT is a tupleatt Rule = (r, X, rule Eqns) where

e X is a set of variables over the sorts 8P FEC;

o 7: (L, Top(X),attr,)*T — (R, Top(X), attrg)*T is an injective attributed graph
morphism over the specificatidf /G, @) in whichry.,, : V;, — Vg is atotal func-
tion on the set of vertices, the algebra component is thetityeon the term algebra
Top(X), and all attributes used in the left- and right hand sides\aeables, i. e.

UeeAttrEL attry(e) U UeeAttrER attrr(e) € X.

e ruleFqns is a set of equations using termsf»(X) such that

— in all equationst1l = t2 € ruleEqgns, t1 € X andt2 involves only variables
that are attributes of;

49

— all variablesz used inR are either inL or there is an equation: = ¢2 in
ruleEgns.

An attributed graph grammar is composed ob#nibuted type graphaninitial graph
and aset of rules

Definition 21 (Attributed Graph Grammar)Given a specificatios PEC and aSPEC-
algebra A, a (typed) attributed graph grammais a tupleAGG = (AT, AGO, R), such
that AT (the type of the grammar) is an attributed type graph ovétEC, AGO (the
initial graph of the grammar) is an attributed graph typedeowv 1" using algebraA, and
Ris a set of rules ovef PEC with type AT .

To define a match, we have to relate, additionally to the grapiphism, the variables
of the left-hand side of the rule to the actual values offaftes in the graph in which the
rule shall be applied. Additionally, the match constructioust assure that all equations
of the specification and the rule equations are satisfieddyglibsen assignment of vari-
ables to values. This will be achieved by first, lifting théertio a corresponding one
having a quotient term algebra as attribute algebra. Thasstendard construction in al-
gebraic specification. Then, the actual match will includalgebra homomorphism from
this quotient term algebra to the actual algebra used inrdqehgo which the rule is being
applied. The existence of this homomorphism guarante¢sh@ecessary equations are
satisfied.

Definition 22 (Attributed Match) Let a specificatiolf PEC = (SIG, Eqns), a rule
overSPEC attRule = (r, X, ruleEqns), r : ALAT — ARAT, with AL = (L, Top(X),
attry), and aS P EC attributed graphAGAT be given. Amttributed matchm : ALAT —
AGAT is atotal attributed graph morphism = (mayapn, mai,) SUch thatm g, is injec-
tive, ALAT = (L, T.,(X),attrr), whereT,,(X) is the algebra obtained by constructing
the quotient term algebra of the specificatid/ G, Eqns U rule Eqns) using the set of
variablesX, and, for all termt € Top(X), attry(t) = [attry(t)].

Practically, given a set of variables and an algebra, if we define an evaluation
functioneval : X — U(A), there is a unique way to construct the algebra homomorphism
(in case it exists for this assignment). First, we check Wwheall equations iEgns U
ruleEgns are satisfied by this assignment. If not, this assignmenahfes to variables
can not lead to an algebra homomorphism, and thus no matcexistnusing thiseval
function. Otherwise, we build the extensioneot:/ to (equivalence classes of) terms, that
will be denoted byeval : T.,(X) — U(A). This is the homomorphism we are looking
for.

Definition 23 (Rule Application) Given a specificatio§ PEC, arule overS PEC with
type AT attRule = (r, X,ruleEqns) with v : (L, Top(X), attr;)*"T — (R, Top(X),
attrg)?, and a matchn : (L, T.,(X), attrp)4T — (G, Ag, attrg)? the application
of rule attRule at matchm results in the typed attributed grapp 47, with AH =
(H, Ay, attry), where

e H is the resulting graph of applying rule — R to graphG (as in Def. 5);

o Ay = Ag;

50

e Ve € AttrEy

| attrg(e) if e € Eq — mpage(EL)
attru(e) = { o, (@rR(e)) i e € En

e the typing morphism* is defined as in Def. 5 for vertices and edges, a@{y is
defined as follows:

tﬁg(a) if attr(;(e) =alee€e EG — mEdge(EL)

AH(N _
Va € rng(attry), ta,(a) = { tﬁf;(w) if w € rng(attrr) A mag(w) = a

Proposition 10. Rule application is well-defined (i.e. graphd is actually an attributed
graph).

Proof. Following Definition 5,H is a well-defined graph and by Definition 18;; = Ag

is a SPEC-algebra. Sinegtrq, attrp andm 4, define total functionsgttry is defined

for all loop edges of7, i.e.,attry is a total function betweedttr E; andi/(A). Then,
AH = (H, Ay, attry) is a well-defined attributed graph. The attribute complessn
condition is satisfied because, each verteXiafust be either irG or in R (or in both):

in any case, sincé& and G are attributed graphs, all attributes of this vertex must be
present and will be copied t& by construction (Def. 5). Attribute uniqueness is due
to the fact thatl,, R andG have at most one attribute of each kind and that the match
is total: in this case, either this value of this attributethe resulting graphf will be
given byG (if r preserves this attribute) or by (if » changes the value of this attribute).
Moreover, since the algebra component of the typing mormphssthe identity and the
other components are compatible with typing (due to Def. &YA7 is a well-defined
typed attributed graph. O

4.2 Relational Structures Representing Attributed Graph Gammars

In this section we describe the representation of attribgt@ph grammars by rela-
tional structures. The following definitions are proposeduaning a fixed specification
SPEC and a fixed algebra A over SPEC. The relational strustpresenting an attributed
graph is essentially Def. 7, including data values in the @iorand adding one relation to
represent the attribution. Note that only the used dateegaiere included in the domain,
not the whole algebra.

Definition 24 (Relational Structure Representing an Attributed GrapB) R, = {vert,
inc,attr} be a set of relations, whereert is unary,inc is ternary andattr is binary.
Given an attributed grapi\G = (G, A, attre), arelational structure representingdAG
is @R gr-structure| AG| = (Daga, (Rac) reR.,,)» Where:

o Dyg = Vg UEgUrng(attrg)

e vert, g andincyg are the relations defined in Def. 7 (relational structure nep
senting a graph);

o attrag C Eg X rng(attrg) with (e, a) € attrae <= attrg(e) = a

Proposition 11. The relational structur¢ AG| is well-defined.

51

Proof. By Proposition 1V U Eg, vertac, incag) is a well-defined graph. Since the
binary relatioruttr 4 is defined according tettrq, it specifies a value for each attribute
edge. Then|AG]| is well-defined. O

The definition of relational morphisms between attributeaptys only adds a rela-
tionship between the data values, and requires basicalgdime conditions as in Def.
8.

Definition 25 (Relational Attributed Graph Morphism)et |AG| = (Vo U Eg U
rng(attra), {vertag, incag, attrag}) and|AH| = (Vg U Ey U rng(attry), {vert am,
incam, attray }) beR,4--Structures representing attributed graphstefational attributed
graph morphismg from |AG| to |AH | is defined by a set = {gv, gr, g4} Of binary re-
lations where:

e gy and gy form a relational representation of a graph morphism betwée un-
derlying graphs (Def. 8);

e g4 C rng(attrg) x rng(attry) is a partial function that relates attributes pAG|
to attributes of AH |

such that the following conditions are satisfied:

e Attribute Consistency Conditionva, o/,
[ga(a,a’)] = Je, é'[attrac(e,a) A attrag (e, a’) |;

e Attributed Morphism Commutativity Conditionve, a, ¢/, a’,
[ga(a,a’) A attrag(e,a) A attrap(e’,a') = gp(e,e’)]

g is called total/injective if relationgy, gz and g4 are total/injective functions, respec-
tively.

Proposition 12. A relational attributed graph morphism = {gv, g, g4} from|AG| to
|AH| is well-defined.

Proof. By Proposition 2,{gv, gr} is a well-defined graph morphismg, is a partial
function that, according to the attribute consistency dom relates attributes giAG|
to attributes of AH |. Moreover, due to the attributed morphism commutativitydition,
the relations established ljyy must be compatible with the relations established; by
]

The relational representation of typed attributed graplptaces the relational repre-
sentations of typed graphs and graph morphism of Def. 10latioaal representation of
attributed typed graphs and attributed graph morphisrpeas/ely.

Definition 26 (Relational Representation of a Typed Attributed Graghiven a typed
attributed graphAG*" = (AG, 149, AT) with t1¢ = (1%, 135 ., t45), a relational
representation ofAG47 is given by a tupleAGAT | = (|AG], [tA€|, |AT|) where:

e |AG|and|AT| are R, -structures representingG and AT, respectively;

o [t19] = {t{, tug,. 27} is a total relational attributed graph morphism from
|AG| over|AT)|, with t4¢ corresponding tdg‘g restricted to the elements that are
in rng(attrg) andrng(attry);

52

Proposition 13. The relational representation of a typed attributed graplvell-defined.

Proof. By Proposition 11, the relational representation of atiteldl graphs is well-defined
and by Proposition 12, the relational representation oftaibated graph morphism is
well-defined. BesidegAG| defines the same set of edges4df (by Def. 22) and the
relational attributed graph morphism between the relaliattributed graphs represents
the same morphism given. Then, the attribute uniqueness@mgleteness conditions
are still valid. O

The definition of relational morphisms between attributeapls basically extends
the (typed morphism) compatibility condition of Def. 11 twithe relationship between
data values included in the graph morphism.

Definition 27 (Relational (Typed) Attributed Graph Morphism et |AG/|, |AH| and
|AT'| beR,,--sStructures representing attributed graphs, whet€'| is the relational rep-
resentation of an attributed type graph, and |et®]| = {+}¢ +4¢ +4¢} and [t1H| =
{31 +41 41} be total relational attributed graph morphisms frdmG| and |AH | to
|AT)|, respectively. Aelational attributed (typed) graph morphism frondG*| to | AHT |
is defined by a relational attributed graph morphisgt = {gv, g, g4} from |AG| to

|AH |, such that the attributed typed morphism compatibilityditan is satisfied:

e (Attributed Typed Morphism) Compatibility Conditionzzx, 2/, v,
lgv (z,2") N (2, y) = 7 (2, y));
lge(x,2") N9 (2, y) = t3" (', y)]; and
[ga(z, 2") NAS (2, y) = 14" (2, y)].

Proposition 14. The relational representation of a typed attributed grapbrphism is
well-defined.

Proof. Following Proposition 12, a relational graph morphism islsdefined. The (typed
morphism) compatibility condition guarantees that thatrehal attributed typed graph
morphism only maps elements of the same type. 0J

The relational representation of an attributed rule is wjileg a relational typed at-
tributed graph morphism between typed attributed grapdstter with two relations: a
unary relation to represent the set of variables su8# C' and a binary relation to model
the set of equations.

Definition 28 (Relational Representation of an Attributed Rul&jven a ruleatt Rule
= (r, X, ruleEqns) over SPEC with type AT, such that- = ((rvert, "Edge); Ta1g)), T
ALAT — ARAT, with AL = (L, TOP(X), Cl,tt’f’L) and AR = (R, TOP(X), attrR), are-
lational representation ofitt Rule is given by a tupléatt Rule| = (|ALAT], |r|, | ARAT|,
var, |rule Eqns|) where:

o |ALAT| and|ARAT| are relational representations of typed attributed graphis*”
and ARAT | respectively;

o |r| = {rvert, "Eage, 74 } IS @ relational typed attributed graph morphism frorZ A7 |
to |ARAT|, wherer, corresponds ta- 4, restricted to the elements that are in
rng(attry) andrng(attrg);

e var C X, withz € var < =z € X;

53

o |ruleEqns| C Top(X) x Top(X), with (t1,t2) € |ruleEqns| < (t1,12) €
rule Egns.

Proposition 15. A relational representation of an attributed rule is web4{thed.

Proof. According to Proposition 13 the relational representatioiyped attributed graphs
is well defined and according to Proposition 14 the relaliocgyaresentation of a typed at-
tributed graph morphism is well-defined. The definition o tklational typed attributed
graph morphism guarantees that it represents the morphiem.grhen, the morphism
is injective and the component that relates vertices is.t@&@sidespar is a set of vari-
ables over the sorts of PEC and|rule Eqns| defines the same setle Eqns (and thus,
satisfies the same conditionsrage Fqns). O

The definition of relational structure associated to artatted graph grammar is anal-
ogous to the case without attributes, we just have to addahmponents that correspond
to the values of attributes and map these attributes. Rethatdve assume a fixed speci-
ficationSPEC and an algebra overSPEC.

Definition 29 (Relational Structure Associated to an Attributed Graplar@nar) Let
Raca = {vertar, incar, attrar, vertaco, incaco, attraco, 1, 150, t4°°, (vert ap,
inCALia a'ttTALiv t\éLzy téle tﬁlevertARiaincARia attrARiv t\éRlv thzv tﬁsz Tivs Tigs Tias

.....

a corresponding algebral, and an attributed graph grammatGG = (AT, AGO, R)
overSPEC and A, whereR has cardinalityn, the R ogg-Structure associated td GG,
denoted byAGG|, is the tuple(D acq, (7)rer 40e) Where

e Do = Vaca U FEaca U Aaxqq is the set of vertices, edges and attribute values of
the graph grammar, wheré’scc N Eace N Aace = D, Vace = VrU Ve U (VU

.....

e vert,r , incar andattr 4o model theattributed type graph

e vertaco, inCaco, attraco, tHC0, ta¢° andt4“° model theinitial graph typed over
AT, i.e., they are the relations that compose the relationptesentation oG04 .

e Each collection(vert ap;, incar, attrap;, tikt, t450 45 vert spy, incari, attrap;,
e AR AR e 1, vary, [ruleEgns);) defines aule.

Proposition 16. The relational structur¢ AGG| is well-defined.
Proof. Follows immediately from Propositions 11, 13 and 15. 0J

The definition of the attributed match is also analogous ¢oaiie without attributes.
However here the match should also include the mapping legtwiee corresponding
algebras. Since an assignment of values to the variablesvaw in the rule uniquely
determines the corresponding algebra homomorphism, weresirict the mapping to
these variables in the relational representation of aibatad match. Note thak may
contain variables that are not iy and therefore the image of this assignment may not
be completely in the graph to which the rule is being appliBoat is why the relational
representation of an attributed match has 4 componentseldwgonal representations of
the left-hand side of a rule, the graph to which the rule sbalapplied, and the match
morphism; together with a relation representing the cotepéssignment of values to
variables described by the match.

54

Definition 30 (Relational Representation of an Attributed MatcGjven a specification
SPEC, arule overSPEC attRule = (r, X, ruleEqns) withr : ALAT — ARAT, and
a matchm = ((mvye,, Mpage), may) from ALAT to AGAT, with AG = (G, Ag, attrg),
a relational representation ofn is given by a tupléasg, | ALAT|, |m|, |AGAT|) where:

e asg C X x U(Ag) is a relation that corresponds to the algebra homomorphism
malg, restricted to the variables iX;

o |ALAT| and|AGAT| are relational representations of typed attributed graphis*”
and AGAT | respectively;

o |m| = {Mmyer, Mmpage, asgr} is a relational typed attributed graph morphism from
|ALAT | to | AGAT | where

— asgy, 1S a restriction ofasg to the variables appearing in
Proposition 17. A relational representation of an attributed match is wedifined.

Proof. According to Proposition 13 the relational representatioiyped attributed graphs
is well defined and according to Proposition 14 the relalicgyaresentation of a typed at-
tributed graph morphism is well-defined. The definition af tklational typed attributed
graph morphism guarantees that it represents the morphien.grhen, the morphism
is total, the component that relates edges is injectiveaidsatisfies all equations in
ruleEgns. O

For the definition of rule application as a transductionygteng of Def. 16 remains
the same. We have just to extend the condition of rule agmicand add formulas, which
will respectively specify the attribution function of gfag the data values component of
typing morphisms and the set of variables and equationdesg.rhat is, some formulas
must be added in the definition &f. Table 4.1 describes the intuitive meaning and the
notation used in the following definition.

Definition 31 (Rule Application as Definable Transduction for Attribut®daph Gram-
mars) Let AGG = (AT, AGO, R) be an attributed graph grammar over a specification
SPEC and an algebrd, such that the sets of edges and vertices of grajfisAG0, ALi
and ARi are disjoint, and lefAG G| be the relational structure associatedAd-G. Given
aruleattRule = (ai, X, ruleEqns), ai : ALi*T — ARi“T, of AGG and a correspond-
ing matchm = ((mvyer, Mgage), may,) from ALi4T to AG0AT, with the relational repre-
sentations respectively given byt Rule| = (JALiAT|, |il, |ARIAT|, var, |ruleEqns|)
and (asg, |ALiT|, Im|, [AGOAT]), A = (p,9, (0))qerice)s With W = &, defines a
transduction that maps an attributed graph grammarGG| to an attributed graph
grammar|AGG|’, such that AGO| (initial state of| AGG|") corresponds to the result of
the application of ruléatt Rule| at match|m| in |AGO| (initial state of| AGG]), where:

¢ expresses thatn| = {my, mg, asg;} defines a total relational typed attributed graph
morphism, withm g injective (as in Def.16) and thatsg satisfies all equations in
|rule Eqns

wu evertAT ’ eincAT) evertAGO) eincAGO ’ etéco) etgGO) evertALi) eincALi , etAL’i , etALi) evertARi ,

V.. 7
Oincapi» Opari, B,ari, 0, , 0,, are the same formulas specified in Def. 16.
g 1% E 1% E

Outtr . 1S the formulaattr 4z (x, y).

55

Oattr 100 (T, y) 1S the formulanattr aco(z, y) V nattrag(x, y).
0,400 (v, 1) is the formulant {9 (z, t) v nt 4" (x, t).

Outtr op:s Htﬁu, Oattr a s Htﬁm, 6%, Ovarys Opruieqns|, are respectively the formulas
a'tt/rALi(xv y), tﬁLi(xv y)’ attrARi (l’, y), tﬁRZ (l', y)’ aiA (..'lf) Ua’l“i(..'lf) and
|rule Eqns|;(z,y), fori =1 .. n.

Table 4.1: Formulas used éhspecifications

Notation | Intuitive Meaning | Formula

attrg(z,y) x is an attribute edge of grapfi || attrg(z,y)
with valuey.

tS(z,y) z is a value of graple: of typey. | tG(z,y)

vari(zx) x is a variable over the sorts of var;(z)
SPEC.

|ruleEqns|i(x,y)| = = yisanequation ove$ PEC. || |ruleEqns|;(x,y)

nattr aco(z,y) r is an attribute edge of graph attraco(z,y) A Pw (mE(w, x))
AGO with valuey that is not im-
age of the match.

nattrari(x,y) x is an attribute edge of graph Jw {attrARi(w,w) /\asg(w,y)J
ARi with value w, that is as-
signed, by the match component
asg, 0y

nt4G0 (z,t) x is a value of graphiGO of type || 3y <attrAG0(y, x)) A

t of an attribute edge that is ngt AGO

image of the match. N (mE(“” y)> AT (1)

ntARi(z, 1) x is avalue assigned lasg to the || Jy, w {attrARi(y, w) A asg(w,x) A
value of an attribute edge of typatARZ. ;]

t of graphARi . A (w,t)

The well-definedness of the rule application as a definahlestiuction is still valid
for the attributed version. The proof is analogous to thepod Proposition 9. We have
just to include the relations that define the attributediversf the graphs and morphisms.

Proposition 18. The rule application as a definable transduction for atttil graph
grammars is well-defined.

Proof. Assume a fixed specification SPEC and a fixed algébizet| AGG|’ be the result
of the transduction applied to attributed graph gramiva¥G| over SPEC correspond-
ing to the application of relational rulett Rule| at relational matciasg, | ALiAT|, |m],
|AG0AT|), with |m| = {my,mg,asg;} . Considering that the given rulett Rule| =
(|ALAT |, |, | ARAT |, var, |rule Eqns|), with |a;| = {ay,,, as,., i, } and the relational
match specified above are the relational representations Bfile = («;, X, ruleEqns)
over SPEC, withy; : ALiAT — ARiAT, andm : ALiAT — AG047, respectively, and
consideringA HAT with AH = (H, Ay, attry) to be the typed attributed graph obtained
by the application ofitt Rule to graphAG047 at matchm (according to Definition 23)
we have to show that

1Each relation of | AGG|" will be denoted by to avoid confusion with the relations GGG/ (de-
noted by the unprimed names).

56

1. verty;, incy, andattr’,, are the relations of ® ,,,-structurg AT = (V;, U EL.U
rng(attrr), {vert s, incyp, attr'y; }) representing grapAT = (T, A, attry), with
T = (VT, ET, srcr, t’f’gT).

o v c vert'y, iffx € Vp, and(z,y, z) € indypiff x € Er A srep(x) =y A
trgr(x) = z: Both are assured by Proposition 9.

o (z,y) € attr'y; iff (z,y) € Er x rng(attrr) A attrp(z) = y: BY Ouprur
definition, z € attr'y; iff (z,y) € attrar. Sinceattrar is the relation of
a R,g--structure representing?’, then (following Definition 24)(z,y) €
attrar iff (z,y) € Ep x rng(attry) A attry(x) = y.

!/

2. vert'yqo, incy o @ndattr’y -, are the relations of ® ,,-structure AGO|" = (V,, U
Efo Urng(attry,), {vert yqo, incace, attr'sqo b) representing grappH = (H, A,
attry), with H = (Vy, Ey, srcy, trgg).

o v € vertly,, iffx € Vg, and(z,y,2) € indyiff v € Ey A srep(x) =
y A trgu(x) = z: Follows from Proposition 9.

o (x,y) € attr'yq iff (z,y) € En x rng(attry) A attry(x) = y: BY Ouir oo
definition,z € attr!y, iff <(x, y) € attrago A Pw, (w,z) € mE) or 3w<(x,

w) € attrar; N (w,y) € asg)

— Let (x,y) € attraco, such thathw, (w,z) € mg. Since|AGO| is the
relational representation ofG0, we haver € Egy Ay € rng(attrge) A
attrgo(z) = y. Also, as|m| is a relational representation of =
((Myert, MEage), mayy), by Definition 30, Aw, mpgg(w) = z. As a re-
sult, z € Ego — mpdge(Eari) , i.e. by Definition 23,z € Ey. In this
case, the attribute of in H is the same of70, i.e., attry(z) = y and
y € rng(attry).

— Let (z,w) € attrag;, with (w,y) € asg. Considering thatARi| is
a relational representation &fi we haver € Er; A w € rng(attrg;) A
attrgr;(z) = w. Consequently, by Definition 23, Ey. In this case, the
attribute ofz in H is given by the result ofn 4, applied to the attribute
of z, i.e., the result ofn 4, (w). Sinceasg corresponds to the algebra
homomorphismn 4, restricted to the variables ik, we haven 4, (w) =
y. Then,attry(x) = ma,(w) =y andy € rng(attry).

The proof in the other direction (only if case) is analogous.

3. 46" 469" andt4Y" are from the seit“°|’ such that the tupl§ AGO|', [tA°)', |AT|")
is arelational representation of the typed attributedlgrdff 47 = (AH, 45 AT).

o (z,t) € t{CViff tll, (x) = t, and(z,t) € tACYiff ti, (x) = t: Follows
from Proposition 9.

o (,t) € t59%"iff t4), (x) = t: By Hac0 definition, (z, t) € t4°" iff
(Ely, (y,) € attraco A Pw, (w,y) € meA (z,t) € tﬁG(]) or (Ely,w, ((y,w) e
attrag; A (w,z) € asg A (w,t) € tﬁRi)).

— Let (x,t) € t49°, such thaBy, (y, z) € attrago andpw, (w,y) € mg.
Since| AGO|, |m| and(|AGO], [tA¢°|, |AT|) are relational representations

57

of AG0, m andAG04”, respectively, we havg € Eg, fw, mpaze(w) =
y, attreo(y) = x andt4°(x) = t. L.e.,x € (Ego — mpage(EL:)). Then,
by Definition 23,t%, (z) = t4{°(x) = t.

— Let(y,w) € attrap;, (w,t) € t4% and(w,) € asg. Since(|ARil, [tA7],
| AT is the relational representation of the attributed typeggri Ri17,
we havey € Eg;, w € rng(attrg;) andt/y/"(w) = t. Also, considering
thatasg corresponds to the algebra homomorphiam, restricted taX,
mag(w) = x. Thus, by Definition 23¢%{) (z) = tﬁfzi(w) =t.

The only if proof is similar.

4.3 Token Ring Example with Attributed Graphs

In this subsection we modify and extend the token-ring prottoT he basic idea of the
protocol remains the same: all stations are connected ngaarid each station can receive
transmissions only from its immediate neighbor. Permissmotransmit is granted by a
token that circulates around the ring. Now, we include aduts store received messages
in each station, and each station has its own buffer size.tH®example, we will use
the typed\at for natural numbers an8tatus, that can be either active or standby. These
data types can be described by the algebraic specificating= (51G+ring, £gns):
the signature is shown in Figure 4.5, we omitted the equafithrey are the usual ones for
the corresponding functions on natural numbers, there@egjnations for sorftatus).

TRing : sorts Status, Nat
opns
active : — Status
standby :— Status
0:— Nat
succ . Nat— Nat
+ . Nat x Nat— Nat
- . Nat x Nat — Nat
mod : Natx Nat — Nat

Figure 4.5: Signatur€1Grring

Models for algebraic specification are algebras, and theycanstructed by assign-
ing a set to each sort name (called carrier set) and a funtdieach operation symbol.
Moreover, functions shall be compatible with the equatiohthe specification. In our
approach, we will use three different models for each spati@in: a final model (to de-
fine the type graph), a term-algebra (to be used in rules)aasahcrete “value" algebra
(that is used to attribute the initial and all reachable ggdpFor the token ring example,
these algebras are shown in Figures 4.6, 4.7 and 4.8, rasggct

All these algebras are possible interpretations of the sysnn TRing. The carrier
sets define which elements may be used as attribute valuese ha unique homomor-
phism from any algebra t&'"#"9 (because there is only one possible way in which we
can map elements of the corresponding carrier sets). Mergiwve fix an assignment
from X to values inAT%"9, there is also only one possible way in which we can map
TTRing(X) to ATRing'

58

Fsiatus = {Status}

Fno = {Nat}

active® :— Fsiatus active?” () = Status

standby? :— Fsiatus standby® () = Status

0F :— Fya 0F'() = Nat

succt : Fnot — Fnat Vn € Fngt @ succt (n) = Nat

+F Fnat X Fynat — Fat vnl,n2 € Fng : +1(nl,n2) = Nat
—F Fnat X Fnat — Fyat Vnl,n2 € Fyq : —F(n1,n2) = Nat
modr : Fnat X Fnagt — FNat VYnl,n2 € Fyq : modt (nl,n2) = Nat

Figure 4 .6:Final AlgebraFTRi"O = (Fstatus, FNat, active® | standby® , 0F | succ?, + ¥ —F mod*")

X = (XStatusaXNat) with XStatus = {:L'ay} andXNat = {n,m,p}

Tstatus = {active, standby, x,y}

Tnat = {0,n,m,p, succ(0), succ(n), succ(m), suce(p), succ(suce(0)), suce(suce(n)),
suce(0) +n,n+m, ...}

active® :— Tsiarus active™ () = active

standby” — Tsiatus standby™ () = standby

07 :— Tnat 0'()=0

sucet : Tvat — TNat Vn € Tvat @ succ (n) = succ(n)

+T Tnat X Tvat — TNat VYnl,n2 € T : +1(nl,n2) = nl + n2

T Tnat X TNat — TNat VYnl,n2 € Tng : —1 (nl,n2) = nl — n2
mod®? : Tnvat X Tat — TNat VYnl,n2 € Tg : mod® (nl,n2) = nl mod n2

Figure 4.7:Term AIgebrarTRing (X) = (Tstatus Tvat, activeT | standby™, 0T, succ™, +T, =T mod™)

59

Astatus = {act, stb}
ANat = {0, 1,2,3,4,5,6, }

4 AStatus

active
A .
standby® :— Astatus
OA — ANat
A . A A
Succ” : ANat — ANat
A .
+ ANat X ANat — ANat

A .
— ANat X ANat — ANat

A .
mod** : ANat X ANat — ANat

active®() = act

standby?() = stb

04()=0

usual successor function for naturals

usual sum function for naturals

usual subtraction function, withl — n2 = 0, if n1 < n2

usual modulo function for naturals

Figure 4.8:Value AlgebraATRing = (AStatus, ANat, active? | standby?, 04, succ®, +4, =4 mod?)

Now that the data part is defined, we can construct the grantimamdescribes the
behaviour of the modified token ring. The type graph and th@imgraph are depicted in
Figure 4.9. The rules are illustrated in Figure 4.10. In tteggical representation of rules,
we only draw the attribute (edges) that are modified by the ¢abwever, formally, all
attributes are part of each graph). Also, for convenieneeiged same variable names in
different rules (but this specification can be translateaitequivalent one using different

variable names).

T (Sta02) (Lim03 (Cmsg03) g

sth (%ta 01)
" 77 10 (Limo1)

Ty
_/0(Cmsg01)

NXt03 | o (Sta 03)

> < %
N stb Y 0
(Cmsg02) " 20

Figure 4.9: Type Graph and Initial Graph

Type graph: We replaced théAct and Stb edges of the previous specification by an
attribute of typeStatus (Sta). Moreover, we included two attributes of typéut:
one to control how many messages are currently in a staiors{)) and other to
establish a limit to the buffer of received messages in eade i.im). Note that,
since the final algebra is used to construct the type graphvalues associated to
attributesCmsg, Lim and Sta are Nat, Nat and Status, respectively. Thus, this
attributed graph actually defines not only the types of giaglelements, but also
the types of (data) attributes that will be allowed in anytanse graph.

Initial graph: The values of attributes are taken from alge#if&9. Initially, no station
is transmitting through the network (the value of edges pé&f$ta is stb) and the
message buffers are empty (the value of e@afeg-typed edge i$). The values
of the Lim-typed edges specify the limit of received (and not treated}sages of

each station.

60

Rules: We use the term algebrB’#"9(X) to specify the rules. Rulesl, r2 andr4
keep, respectively, the same meaning of rulésa2 anda4 previously presented,
but now there is an attribute (edge) of typta, attributed with a variable name
Equations are used to ensure that each rule can only be applease the node
is in the required status: = standby for rulesr1 andr2 or x = active for rule
r4. The status of the node after the application of the rule terd@ned by the
variable in the right-hand side and the respective equatidhe rule. Rule3 (as
a3) also handles the receipt of a message byuadby node. This rule can only be
applied if the buffer of received messages has not achideetinit, i.e., ifm < p
(determined by the conditiopn modp) = m). In this case, the message is passed
to the next node and the counter of messages is incrementégh:-(Rsimulates the
treatment of the message by a station by decrementing theagesounter. Rule
r5 (asab) can be applied to insert a new node into the ring. The nodesiried
with a buffer that stores at most 10 messages.

Next, we describe the main steps involved in the proof of thewing property: the
buffer of each node never exceeds its limit. First of all, westrdefine two functions in
the standard library: one to determine pairs of edges of fixpds with source and tar-
get in the same vertex, and another to indicate the attslaftedges of a reachable graph.

[Library function Loop: Edges with source and target in the same vertex] This

function that returns pairs of edgés f), with e of typet; and f of typet2, with source
and target in the same vertex:

Loopy, 1, GO = {(e,) | 3z [incgo(e, z,) Aincao(f, z,x)] A t%o(e,tl) A t%o(f, tg)}

(4.1a)
Loopy, i, aplai,m) g = { (e, f) |3 lincrie, v,) Ainepi(f,@,2)] AL (e, t1)A
AtBi(f, t2)] v (4.1b)
(e, £) € Loopu, gy 9 7 Bw m, (w, €) A Bw i, (w,)] v
(4.1c)
[ax incg(e, z,x) At(e,t1) A Pwmp,, (w, e)A
A3y incri(f,y,y) AR (fota) A 3z [eip(z, y)A
Ay, (2, x)]] v (4.1d)
B2 iney(f, 2, 2) A (F,t2) A B m,, (1,)N
Jy incpi(e, y,y) At (e, t1)A
3z aip(z,y) A my, (2, g;)]} } (4.1¢)

For the initial graph, the pairs are determined by relations;, andt&° of |GG|
(4.1a). For the result of the application of rulé at matchm = {my,,, mg,_.,asgr} to
graphg, the pairs are either edges of the right-hand side of the(4uld), edges of graph
g with source and target in the same vertex that are not imatjeeahatch (4.1c), or pairs
of edges, one oRi and other of; (that is not image of the match), which have source and

61

Tok11 Tok12 Msg11 Tok21 Tok22
x = standby .
y = active Nxt12 x= Standby

Nxt11 N13 X N14 Nxt21 Nxt22
r r2
b T A
[P Lo_d vl
x (Stati) L1 v (Sta12) R1 x (Sta21) L2 x (Sta22
Msg31 n ngsgsz) Msg32 Tokd1 Tokd2

.~ p (Lim31) (x= S;a”;’by Ly ~p (Lim32)
4 \ m mod p) =m| < y
n=m+1 Vs
3 N33 ez
;

>
‘,
Nxt31

X = active
v = standby Nxt42
AN r4
/m (Cmsg31) x (Act41)

H il
__J
(Sta31) L3 x (Sta32) R3 Msg41 L4 Sta42)

N34

CmsgB1 n (Cmsgez)
x = standby
p=10
Nxt51 n=0 Nxt61 n=m-1 N Nxt62
r5 ré
L5 P (L|m61 P (L|m62)

Figure 4.10: Rules

target in the same vertex after the application of the rdlel{{) or (4.1e)). The guarantee
of having source and target in the same vertex after theagin of the rule is stated by
the last term of (4.1d) and (4.1dl

[Library function Attrg: Attributes of edges of a reachable graph] The set of pairs
(edge, attribute) of a reachable graph are recursively defined by:

Attp GO = {(e,a) | attrgo(e,a)} (4.2a)
Atty ap(ai,m) g = {(e,a) | attrri(e,a) V [(e,a) € Attp g A Pw mp,,(w,e)]} (4.2b)

If we take the initial graph (4.2a), the pairs are specifiedigyrelationattrq, of the
relational structure. If we consider the graph obtainedftbe application of rulev at
matchm = {my,,,mg_,, asg.} to graphg (4.2b), the attributes are either the attributes
of edges of the right-hand side of the rule or the attributexiges (that are not image of
the match) ofy. B

The proof strategy applied in verification of propertieshe same described before:
we use mathematical induction, considering that the aeiatof the relational structure
define axioms to be used during the proof. Now, since we usablas as attributes in the
left- and right-hand sides of rules, in many cases, at theatixe step the development of
the proof involves variables. In this case, in order to dighlthe property, we must regard
the equations of the applied rule as “local axioms". We sagél" because the equations
of each rule can only be regarded as axioms for the step ofrthad that involves the
application of that rule. This can be done because, to applieawe assume that there is
a match that makes these equations true, and the propertwisrponly for such matches
(because in other cases, it would not be possible to applsuteg Now we can state the
property to be proven.

Property 3. The attributes of edges of tygénsg are always less than the attributes of
edges of typé.im, if they both have source and target in the same vertex.

According to the definitions previously established in tisedry, the property to be
proven can be enunciated by the formula:

62

V(e1, e2) € LoopcmsgLimreach_gr.[(e1,ar) € Attg reach_gr A(es, az) € Attg reach_gr =
= aq S CLQ]

Proof.

Basis: We have to prove
\V/(61, 62) c LOOpCmsng;mGO.[(el, al) € AttE GO A (62, ag) € AttE GO = a; < ag]

Considering the result of the functidwopcmsg Lim GO (€quations (4.1)) and the definition
of Attr (equation (4.2a)), this formula reduces to

V(ep,e2) € {(Cmsg01,Lim01), (Cmsg02, Lim02), (Cmsg03, Lim03) .[attrgo(er,a1) A
attr(;o(eg, ag) = a; < ag]

Now the implication must be verified for each pair of edges.tRe first instance, con-
sulting the relational structure associated to the grapimgrar, the pair of edges/attributes
that satisfies the antecedent &€ensg01, 0) and(Lim01, 10). Since0 < 10 the conse-
quent is evaluated to true. The verification for other insgésns similar. Thus, the prop-
erty is valid for the initial graph.

Hypothesis: Assume that the property is valid for any reachable gi@ph
V(e1, e2) € Loopcmsg LimG-[(e1,a1) € Atty G A (e2,a2) € Attp G = a1 < ay

Inductive Step: We have to prove

V(e1, e2) € Loopcmsg Limap(ri, m)G.[(e1,a1) € Attg ap(ri,m)G A
A (eg,a9) € Attg ap(ri,m)G = a1 < ay]

Since we have 6 rules, we have 6 cases to consider (notelthaygh not depicted in
Figure 4.10, all attribute edges are part of each left- agidt+ihand side of the rules, due
to the attribute completeness requirement):

Rule r1: First, we have to construdioopcmsg Limap(rl, m)G and then check whether
these pairs satisfy the required property. Since the kih@slges we are consider-
ing are attribute edges and due to the attribute complesgmreperty required for
(typed) attributed graphs, the graghisL and R will have values for both attributes
Cmsg andLim. This means that we only have to consider the cases desdrjbed
equations (4.1b) and (4.1c) in the definition/afop:

(i) A pair (e, f) that satisfies (4.1b): In rule r1, such pairs ar¢Cmsgl13, Lim13)
and (Cmsgl4, Lim14). Assume that the names of variables associated to at-
tributesCmsg andLim in graph R1 are cmsgl13 and lim13 (connected to
node N13) and emsgl4 and lim14 (connected to nodéV14). Then, the
function Att g will return attr g, (Cmsgl3, cmsg13) andattrg; (Lim13,1im13),
plus all pairsattrs(Cmsgi, cmsgi) andattrg(Limi, limi), for each nodé of
G that is not in the image of matel. Thus, what we have to verify is if
emsgl3 < liml13 andemsgld < liml4. But, since these attributes were
not changed by the rule, this is the same as verifyingrikgll < lim11
andemsg12 < lim12 (the corresponding variables in the left-hand side of the

63

rule). But considering that there is a matelmapping the left-hand side (@,
there are corresponding valuegiifor these variables. By induction hypoth-
esis, all pairge®, f¢) that come fromG satisfy the property, and therefore
we conclude that the paje, f) also satisfies the property.

(i) A pair (e, f) that satisfies (4.1c): This pair is iNnLoopcmsg LimG, and therefore
by induction hypothesis satisfies the property.

Rulesr2 and r4: Analogous to rule-1.

Rule r3: We start analogously to the caseradf find out that we have to prove that< p
andcmsg34 < lim34. The latter is analogous to case To prove that: < p, we
have to consider the equationssgfas axioms. Then, considerimg= m + 1 and
m mod p = m as valid formulas, and using the pre-defined theories quoreting
to the used specification, it is possible to prove (using aréra prover in a semi-
automated way) that the property is satisfied for this case.

Rule r5: Here, we will have to prove for the newly created node that p (for the
other nodes, the proof is similar to the previous cases)umgsy the equation as
an axiom, we have = 0 andp = 10 (actually, the last equation js= succ'?(0)).
But any possible match: would need to assign the value zerort@and 10 to p
(otherwise, it would not be a match for this rule). Therefave can conclude that
n < p.

Rulesr6: Again, here we will have to prove that< p, assuming. = m—1 as true. But,
since the attributeim is preserved by the rule, it must be also in the left-hand, side
that is matched vian to a value, sayimG, in GG. Moreover, variablen must also
be mapped to a value, sayisgG in G. SinceG satisfies the property by induction
hypothesis, we have thatnsgG < limG, and therefore we can conclude that the
m < p. Together with the fact that = m — 1, this makes: < p true.

0

64

5 EXTENDING THE APPROACH TO GRAPH GRAMMARS
WITH NEGATIVE APPLICATION CONDITIONS

Application conditions specify conditions under whichasican be applied to a given
state-graph in order to obtain a new state-graph. Apptinatonditions generally com-
prise contextual conditionsspecifying the existence (in case of positive conditiaos)
non-existence (in case of negative ones) of nodes, edgesgraphs in the given graph
andembedding restrictiongegarding the match morphisms. Until now, we considered
only one restriction on matches: that they are injective d@ges. The main purpose of
the graph grammars that we have in mind in this thesis is theispation of concurrent
and reactive systems. In such systems, a non-injectivelnmaéans that the member of
needed resource is not relevant.

In this chapter, we propose to extend the relational apprémgraph grammars with
contextual conditions, particularly negative ones. Negatpplication conditions (NACSs)
restrict the application of a rule by asserting that a spestfucture must not be present
in a state-graph before applying the rule. We adopt the qurafeNACs introduced by
Habel, Heckel and Taentzer in (HABEL; HECKEL; TAENTZER, B)%ue to two main
reasons: first, because they propose this extension ingheefrork of the single-pushout
approach (the same one we have been applying) and secomdisedbeir approach has
a visual representation that does not affect the graphticaitsire of the specifications. In
their work, they also proved that rules defined with both fiesand negative application
conditions can be expressed (through context enlargetogngw rules with just negative
application conditions.

The extension of graph grammars by application conditioag maise our flexibil-
ity in the use of the relational approach for the specificattb systems in all kinds of
application areas. As emphasized in (HABEL; HECKEL; TAENER, 1996), applica-
tion conditions are a necessary component of every noatspiecification. If we do not
specify them formally, we will not be able to analyse thermiaHy.

5.1 Graph Grammar with NACs

Graph grammars with negative application conditions agplgrgrammars whose
rules are enriched with negative application conditionsg&tive application conditions
are expressed by sets of total morphisms starting from fhraded side of the rules.

Definition 32 (Rule with Negative Application ConditionsA rule with negative appli-
cation conditions (NACs)s a paira = (a : LT — RT, AN(«)) consisting of a rule
a : LT — RT with respect tol’ (Def. 3) and a set of negative application conditions

65

AN(a) € MOR(LT), where MOR(LT) denotes the set of all total typed graph mor-
phisms from the typed graph’ to graphs typed over.

Graph grammars with NACs allows the specification of a set&EbIfor each rule of
the grammar.

Definition 33 (Graph Grammar with NACs)A graph grammar with negative applica-
tion conditionsis a tupleGGN = (T, GO, R), such thafl" is a type graph(-0 is a graph
typed ovefl’ and R is a set of rules with NACs.

A rule with NACsa = (o : LT — RT, AN(«)) is applicable to a grap&™ if there
isamatchn : LT — GT that satisfies all NACs froml N («).

Definition 34 (Match Satisfaction, Rules with NACs Applicatiol)eta = (o : LT —
RT, AN(«)) be a rule with NACs and let» : LT — G be a match ofv in G*. Then
matchm satisfies a NAQ from AN («), with : L7 — LT [€ AN(«) if there is not a
total injectivé graph morphismm : L — G7 such thatu o [= m.

A
\\\
Xn "
\
AN
4
GT

Match m satisfies all NACs ofy, if it satisfies each NAC frod N («). Rule & is
applicable toG* viam, if m satisfies all NACs af. If & is applicable taG” viam therule

application with application conditionG” @) BT is the rule applicatiorG” o) gr
(see Def. 5).

5.2 Specifying the Token Ring Protocol with NACs

In this section we show the use of graph grammars with negagmplication condi-
tions for the specification of the token-ring protocol. Theent of the protocol is the same
and it follows the description detailed in Section 2.2.

The graphical representation of the graph grammar is ilitestl in Figure 5.1. The
adoption of NACs simplifies the type and the initial graphspmessing the Standby
edges. NACs in rulesl, a2, a3 andab restrict the application of the rules to non-active
stations. Rules1 anda2 specify the behaviour of the protocol when a non-activemtat
receives a token: it may hold the token and send a message nethnode, becoming an
active station (rulevl) or simply pass the token to the next station (rw. By rule a3
if a non-active station receives a message, it may pass thsage to the next node. Rule
a4 is not modified, detailing the receipt of a message by an edtiation: it removes
the message from the ring and sends the token to the nexdrstaACs in ruleab
restrict the insertion of new stations in the ring to occuly@mong non-active stations.
The concrete representation used in the relational appr(betailed in next section) is
depicted in Figure 5.2.

It is important to notice that we require two separate cemsts,/15 and(25, in rule
«b5. This means that afict edge in any of the stations is forbidden. A key feature cdsisis

We adopt injective satisfaction in order to express catijnaestrictions.

66

Token
—[W =
GO
Token _: Tokczn2
v v ¥
« | e 2 . .1
1 > N> (N
r 2 1
R1 R2

|} Token, Token,

J
J

\

v
H. .=m ©<.Hm.__.=a !>—>- “ .
= == S 2 == 2 == =5
h b

L3 R3 L4 R4

Figure 5.1: Token Ring Graph Grammar with NACs

in distinguishing this specification from rute5’ depicted in Figure 5.3. In that case, an
Act edge in both stations is forbidden, ileoth objects must not exist at the same time.
Given a graph consisting of just one of the two stations ey’ is applicable since there
is no anAct edge in one of the stations, while productiehis not applicable because of
the existing edge.

5.3 Relational Representation of Graph Grammars with NACs

Next we detail the relational representation of graph gransmnwith NACs. The def-
inition of relational rules with NACs just replaces the gnaporphisms from Definition
32 by relational ones.

Definition 35 (Relational Rule with Negative Application Conditiong) relational rule
with negative application conditions (NAC$3 a paira = («, AN («)) consisting of a re-
lational rule e = (|L*], |a|, |RT|) and a set of negative application conditioAsV (o) C
MOR(|LT]), where MOR(|L"]) denotes the set of all total relational typed graph mor-
phisms from the relational typed graph”| to relational typed graphs typed ovgF|.

Proposition 19. A relational rule with negative application conditions isagell-defined
rule with negative application conditions.

Proof. By Proposition 6 the relational rule is well defined and bygesition 5 the rela-
tional typed graph morphisms are well-defined. Also, altiehal graph morphisms that
define NACs are total. O

The extension of the relational representation of grapimgrars with negative ap-
plication conditions adds to the original definition (DeB) X tuple of relations for each
relational rule which allows the specification of a set of N¥Gr the corresponding rule.
Then, a relational graph grammar with negative applicatmmditions is composed by a

ad

67

TokO1 @

NxtO1 Nxt03

. Nxto2 @

Tok13

Act31

Nxt55
125

t

ActS%
L2

alVert

Tok11

<) Nxt11 @ ol

L1

Tok21

Msg31

GO

Tok12 Msgi1
Nxt12

Actl1 R1
Tok22

<) Nxt22
R2

Msg32

() Nxt32
R3

Tok42

R4

L5

alyers(N11) = N13
(N12) = N14

NXt52 g Nxt53

@ R5

Iyet(N11) = N15
Iyet(N12) = N16

= Tok13
= Nxtl13

Y 0l page(Tokl1) = Tok12 1\ 11 page (Tok11)
OzlEdge(Nthl) = Nxt12 llEdge Nthl)
a2Vert(N21) = N23 l2v€rt N22) — N26

a2{ a2y (N22) = N24 20 e o)
2pdge(Nxt21) = Nxt22 Bdge

a3yert(N31) = N33

a3yert(N32) = N34

a3 gdge (Nxt31) = Nxt32

of abyert(N51) = N53
By ert(N52) = N54

12 page (Nxt21)

13vert(N31) = N35

(
(
(
(
12vert (N21) = N25
(
(
(

= Tok23
= Nxt23

(J—

Z3Vert(N32) = N36 a4Vert(N41) = N43

ad a4V€rt(N42) - N44
[31ge (Msg31) = Msg33 ad (Nxt41) = Nxt42
13 Bage(Nxt31) = Nxt33 Edge =
115vert (N51) = N56 125ver¢(N51) = N58
[15veri (N52) = N57 1253 125veri(N52) = N59

(

115 ggge (Nxt51) = Nxt54

125 page (Nxt51) = Nxt55

Figure 5.2: Alternative Definition of the Token Ring GG witiANs

68

ﬁ-ﬁ
__________ o5' r o
s e
' ||
L5' (> R5

Nxt54 Nxt51
115' o5'
< _

A
L15" L5'

! J—
a5y, (N52) = N54 115/,,,,(N52) = N57

1154 N51) = N56
0651{ a5§/e’r‘t(N51) = N53 115/ VeTt()
115544¢(Nxt51) = Nxt54

Figure 5.3: Rule R%’

relational type graphcharacterizing the types of vertices and edges allowedystem,
an initial relational graph, representing the initial state of a system andet of rela-
tional rules (possibly with negative application condits) describing the possible state
changes that can occur in a system.

Definition 36 (Relational Graph Grammar with NACd)etR oo = {vertr, incr, vertqo,
incao, t90, 1G9, (vertu, incri, tH t4 vert gy, incgy, Y ay, (vert ., incj
t ljiv,ljiE)je{l,__,m})iE{l n}} be a set of relation symbols. rlational graph
grammar with negative application conditionis a R n-structure| GGN| = (Dgan,
(7)rereey) Where

e Doy = Voen U Egey is the set of vertices and edges of the graph grammarr,
Where:VGGNﬂEGGN =, VGGN = VTUVGOU(VLZ'UVRZ'U(Vﬁji)je{l,...,m})ie{l’m’n}

andEggy = Er U EgoU(Er; U Eg; U (Eﬁji)je{l,...,m}))Z-E{17___7n}-

o |T| = (Vr U Ep,{vertr,incy}) defines a relational grapfthe type of the gram-
mar).

o |GOT| = {|GO, [t9°|, |T]), with |GO| = (Vigo U Ego, {vertgo, incgo}) and [t90] =
{160,155}, defines a relational typed gragthe initial graph of the grammar)

e Each COIIGCtiOF(vertLZ-, incpi, Y, ty, vertgy, incp, 1, tE, iy, i, (vert; .,
incp 07, 1 lj,-E)je{l,___m}) defines aule with negative application con-

E Uiy
ditions;

— |Li"| = (|Lil, [¢"], |T]), with | Li| = (Vi U Ep;, {vertp;, incr,; }) and [t"] =
{t7 tki}, defines a relational typed gragthe left-hand side of the rule)

69

— |Ri"| = ([Ril, [t"], |T), with | Ri| = (ViU B, {vertps, incr;}) and|t™] =
{t 15}, defines a relational typed gragthe right-hand side of the rule)

- <|L'LT|7 |ai|7 |RZT

), with |a;| = {«y,,, @i, }, defines a relational rule.

. . Lji Lji
— each collectior{vert; ;;, inc; i, t/", 7", 1, ,

application condition)
« | LgiT| = <|ﬁﬂ\3 |97, |T]), with |Lji| = (Vi U Epp, {vert s, incp ;. 3)
and |t = {t[7" %"}, defines a relational typed graph.

+ |lji| = {ljiv,ljip} defines atotal relational graph morphism fraii” |
to | LjiT|.

l;i,,) defines a NAGa negative

In case that variablen is set to null, no negative application condition is assteih
to rule «vi.

Proposition 20. The relational structuréGG N| is well-defined.
Proof. Follows immediately from Propositions 1, 4, 6 and 19. 0J

A relational rule with negative application conditions gpéicable to a state-graph if
there is a relational match which satisfies all negativeiegipbn conditions of the applied
rule.

Definition 37 (Relational Match Satisfaction) et (|L”|, |a|,|R”|) be a relational rule,
and let|GT| = (|G|, |t¢], |T|) be a relational typed graph.

Arelational match|m| = {my, mg} of the given rule in|G” | satisfies a NAGLj| =
{ljy,ljg} from |LT] to |EjT|, if there is not a total injective relational graph morphism
n = {ny,ng} from|L;”| to |G| that satisfies the following condition:

e NAC Satisfaction Conditiomy o l;, = my andng o l;, = mg.

A relational match satisfies all NACs of a ruld it satisfies each individual NAC of the
rule.

The graph grammar obtained after a rule (with NACs) appbcetan be also defined
as a definable transduction withformulas as described in Definition 16. We have just
to extend ther formula to include the satisfaction of the relational méetwhall NACs of
the applied rule. That is; must also express that for each NAG:| = {ljiv, ljig} from
|L7| to | Lji”| of the selected rule, there is no total injective relatiogrph morphism
In| = {ny,ng} from|Lji”| to |GO”| which satisfies the following conditions:

Yo € verty; [ljiv(v,z) Amy(v,y) = ny(z,y)]

Ve € incp; [ljig(e,x) Amg(e,y) = ne(z,y)].

Next, for each NAQji| = {ljiv,ljig} from |L7| to |LjiT| of a selected rule, we
describe one way of finding total relational graph morphigrom | L;j:*| to |G0T| that
satisfy the NAC satisfaction condition. This can be donena main steps:

1. We must find total injective relational graph morphisnusifi L ji” | to |GO”

2. We must attest the NAC satisfaction condition for eachphmm found in the first
step.

70

If at least one relational graph morphism is obtained aftergecond step, then the se-
lected rule can not be applied to the selected match.

STEP 1: Defining total (injective) relational graph morphisms

Let |Ij] = {ljiy,ljir} be a NAC from|L:”| to | LijT| of the selected rulei and let
m = {my,mg} be the given match dfZ:”| in |G0”|. We have to find an embedding,
of |Lji™| to the initial graph/G07|. This is a widely explored problem, known as the
subgraph homomorphism probler®ome works like (SCHFURR, 1997; EDELKAMP;
JABBAR; LLUCH-LAFUENTE, 2006; GEISS et al., 2006) have shothat it is possible
to reduce its average-case complexity.

Our approach makes use of the representation and solutipoged in (RUDOLF,
2000). In this work, Rudolf proposes to represent and sdiggtoblem of graph match-
ing as a constraint satisfaction problem (CSP). The adganté such choice relays on
the possibility of applying optimized solution algorithff@UMAR, 1992; LECOUTRE,
2009) that have already been proposed for CSPs. Such refatse has also been
successfully applied in the implementation of the matclangsystem of the Attributed
Graph Grammar System (ERMEL; RUDOLF; TAENTZER, 1999).

A constraint satisfaction problem (CSBE9nsists of:

e afinite set of variableX = {xzy,...,z,};
¢ afinite and discrete domain, of possible values for every variablg € X;

e afinite set of constraints on the variables\gfaconstraintCs onS = (x4, ..., ;)
isarelationCy C Dy x ... x D,.

Anytuplel’ = (ay,...,a,),ar € Dy denotes aimstantiationof a CSP. We writé'(x;) =
ay, for the value ofr, underI’. A constraintCs on 'S = (z1,...,x,) is satisfiedby an
instantiationl” if (I'(z1),...,I'(z,)) € Cs. An instantiation is aolutionfor a CSP if it
satisfies all constraints of the problem.

Given two graphsLji”| = (|Ljil, [t!|,|T|), with |Lji| = (V;;, U By, {vert;,,
incg;;}) and|G0T| = (|GO|, [t<°|, |T), with |GOT| = (Vo U Ego, {vertao, incao}), we
construct a CSP as follows:

° szﬁjiUEﬁji: {xl,...,xn},n: ‘X|,

° Dk:{ Voo, 1Ty € Vi, kel,....n

Eqo, otherwise ’

e The set of constraints is built according to Table 5.1: wkena condition listed
in the left column of the table holds for a given pair of vatesi =y, ;), the corre-
sponding constraint is to be included in the set of condisain

Any solutionI’ = (ay, ..., anA) of the resulting CSP defines a total relational graph
morphism|n| = {ny,ng} from|Lji"| to |GOT| as follows:

ny = {(xk,ak)|xk c Vﬁji A F(.Tk) = CLk}

ng = {(zg, ap)|rr € Eg i A D(xg) = ar}

Proposition ?1. Setn = {ny,ng} specified above defines a total relational graph mor-
phism from|LjiT | to |GOT .

71

Proof. Since each variable is attributed with only one element efréspective domain,
both relations define partial functions. They are total heeaa value is instantiated to

each variable (and all vertices and edgesjfojz’ﬂ are considered as variables)),,
Cytvre and C¢givve specifications guarantee the type consistency conditidfiscphism

commutativity conditions hold due 6;7"5 andC(;""" constraints. O

(:Ek ,ZB[)

If we restrict ourselves only to solutions that attributiéedent values to each variable,
we have total injective relational graph morphisms.

Table 5.1: Construction of Constraints

Condition

Constraint

Intuitive Mean-
ing

T = Iy,
T € Vﬁjz’

cvvre = {d € Dy, |
[t (xn, 1) AGO(d,)]}

Values instantiated
to a vertex-
variable z;, must
be of the same type
of the variable.
l.e., vertices types
must be preserved.

T = Iy,
T € Ef,ji

Cere = {d € Dy |
Jt[tH (o, t) AGO(d, 1))}

Values instantiated
to an edge-variable
r, must be of
the same type of
the variable. l.e.,
edges types must
be preserved.

T € Eijiv
xr € Vﬁji?

3y[2n0£]2 (xkv Xy, y)]

Cimes = {(dw, di) € Dy % D]

xkvxl)

Jy[incgo(dr, di,)]}

If z; is source of
., the value of
x; must be source
of the value ofz,.
l.e., sources must
be preserved.

T € Eijiv
xr € Vﬁjiv

EIy[ZnC£JZ($k, Y, l’l)]

Ctarget = {(dk,dl) € Dy x Dl‘

CIE

Jylincao(dy, y, di)]}

If x;, is target of
., the value of
r; must be target
of the value ofzy,.

l.e., targets must
be preserved.

NAC satisfaction

T = Xy, C;}:alue = {dk - Dk‘

z € Vi, v, dg[ljiv (v, xx) Amy(v,dg)} | condition must
be satisfied for
vertices.

T = I, Ccevalve — {dy € Dyl NAC satisfaction

x € Ej Fv, di[ljig(v, xx) Amg(v,dg)} | condition must be

satisfied for edges.

72

STEP 2: Attesting the NAC satisfaction condition

Although the restrictions’2"*“* andC**"* discard values of variables that would not
satisfy the NAC satisfaction condition, they do not guagarits satisfaction. For instance,
if the NAC maps two vertices to the same vertex and if the givetich maps them to
different ones, the total injective relational graph masph can be defined, satisfying
the constraints, but not respecting the commutativity ireguin the NAC satisfaction
condition. Thus, after defining a total injective relatibgeaph morphisnin| = {ny,ng}
from |Lji”| to |GOT|, we still have to verify the following conditions:

Yo € 'UertLi [ZJZV(va) A mV('Uv y) = nv(x,y)]

Ve € incp; [ljig(e,x) Amg(e,y) = ne(z,y)].

5.4 Token Ring Protocol with NACs Verification

In the verification step, the existence of NACs determindsaesonditions that can
be used during the proofs. As an illustration, we prove tloperty that establishes that
any reachable graph has at most one active station. Firdlt feahave to include in the
standard library, a function that returns the number of s@jespecific type in a reachable
graph.

[Library function card.: Cardinality of Specific Edges] The number of edges of type
t in a reachable graph is recursively defined by:

carde; GO = #{x|3y, z[incgo(z,y, 2)] NG (z, 1)} (5.1a)
carde; ap®' G = carde,G — #{z|Jy, z[incri(x,y, 2)] A tE (z,)} +
+ #t{z|Fy, z[incri(z,y, 2)] AR (z,1)} (5.1b)
The number of edges of type(or the number of edges) for the initial graph is deter-
mined by the number of elements of typéspecified using%’) that belong to relation
incgo. The number of edges of a graph resulting from a rule application to graphk

designated by the numberbédges of7, less the number gfedges of the left-hand side
of the rule plus the number efedges of the right-hand side of the rull.

Now, we can state the following.

Property 4. Any reachable graph has at most one edge of the Aype

According to the definition ofard., previously defined, the property to be proven can
be stated by the formula:
cardeacG < 1.

Proof.

Basis: The property is verified for the initial graph: functiearde,., of the stated prop-
erty is instantiated fof70. Then, just by consulting the relations of the relationalcure
that defines the initial graph the property is trivially evatied to true.

Hypothesis=- Inductive Step: Assuming that the property is valid for any reachable
graphG, the proof requires 5 cases, depending on the considered Thkese cases can
be grouped into 3 classes:

73

Case Class 1 (rulesv1, a2): A non-active station must hold the tokén.this case, just
applying the function definition, the property can be viethbecause (by induction
hypothesis) we consider the possibility of existing anvacstation inG. However,
we would not have such case in this class. In fact, togethier Rrioperty 1 (previ-
ously demonstrated for the case without NACs, which coulsifsélarly proved for
current specification) which establishes that "any realehgtaph has exactly one
edge of type Token", we can also establish a property thessthat "the token is
always in the active station, if there is one". And then, gshmese pre-established
properties together with the condition determined by theCNWhich determines
that we must have a token in an non-active station for thesriadoe applied, it is
possible to deduce that we do not have an active statiah iAnd then, just con-
sulting the relations of left-hand side and right-hand sitidne considered rule, the
property is validated.

Case Class 2 (rulex4): An active station must hold the tokdfor this proof we can use
the following statement: there is an image using the matchlfatems that are in
the left-hand side. That is, we have one active statiofy.inThen, consulting the
relations of the relational structure, the property isdatied.

Case Class 3 (rules3, o5): Other casesln this class, consulting the relations of left-
hand side and right-hand side of the considered rules, @gsiple to identify that
there are no deleted, created or presevededges. Then, the proof is completed
by using the induction hypothesis.

0

74

6 PATTERNS FOR PROPERTIES OVER REACHABLE STATES
IN GRAPH GRAMMARS SPECIFICATIONS

Independently of the verification technique chosen to bdieghp(semi-) automated
verification involves the description of both the system asdesired properties in some
formal specification language. The level of maturity andezignce required to write
these specifications is one of the first obstacles to the smopkt such techniques. Partic-
ularly, the specification of system requirements must beipeeenough to support (semi-
)automated validation and accessible enough to be statprhbtitioners.

Until now, we focused on the (relational) description ofteyss. In this chapter, we
propose patterns for the presentation, codification angeref property specifications.
The patterns have the goal of helping and simplifying th& tdsstating precise require-
ments to be verified. Besides, it must prevent ambiguiti@siaaccuracies during the
validation stage. Differently from most existing approesiDWYER; AVRUNIN; COR-
BETT, 1999; CHECHIK; PAUN, 1999; SALAMAH et al., 2007) we fos on properties
about reachable states for (infinite-)state verificatiomsMbf existing patterns for prop-
erty specification describe properties about traces fdefstiate verification tools. These
two approaches are complementary.

The patterns are based on functions that describe typieahcteristics or elements
of graphs (like the type of a vertex, the set of all edges ofestype, the cardinality of
vertices, etc.). In this chapter we will show how these fiomg can be defined in the
framework of relational graph grammars. Since the relali@pproach is actually an
encoding of algebraic (Single-Pushout - SPO) graph graseaiRIG et al., 1997), the
property patterns presented are suitable for this classapiggrammars. To generalize
to other classes, it would be necessary to provide correpgrencodings for the basic
operation of rule application (this is what differentiatesst graph grammar approaches).

Section 6.1 defines a standard library of functions to be uséde specifications.
Section 6.2 describes our taxonomy and explain the patt&aestion 6.3 illustrates the
use of the pattern system instantiating properties forasienple mobile system. Section
6.4 discusses related works.

6.1 The Standard Library of Functions

The relational approach previously defined allowed the @iskeeotechnique of math-
ematical induction to prove properties about the intertatles of systems specified as
graph grammars.The properties were stated using pre-ddtinetions.

To create specification patterns for the characterizatiosystems requirements in
this approach, we firstly define a standard library of thegedafined functions. Most

75

functions are specified for the reachable graph data typis. déta type must be defined
with two constructors, one for the initial graph GO and aeottne for the operatarp
that applies the ruléwi| at match|m| = {m{,m%} to a reachable graph. Auxiliary
functions are defined to operate on graphs.

Table 6.1, Table 6.2 and Table 6.3 present some library fumet The library is
not complete and must grow over as new specifications ardreelqu Each function
is recursively defined. Functions defined over the reachgitaph data type are spec-
ified for the initial graph in the base case and for the graulteg of a rule appli-
cation in the inductive step. Depending on the descriptfanctions return a set (as
(1) to (4), (9) to (22) and (24) to (25)), a natural number @pst6 (8)) or a Boolean
(as (23) and (26)). Relations used in definitions are fromrétational structure that
characterizes the graph grammar. They are considered as@xthat is, considering
|GG| = (Dga, (R)rere) the relational structure associated to the grammar, we have
R(x1,...,x,) = trueiff (z1,...,2,) € R.

This collection must help the developer not only in the prtps specification but
also in the construction of proofs. For instance, functi®puert,;, returns the vertices
of typet, of a reachable graph. Such vertices of the initial graph, @e-t;, G0) are
determined by relatiot{° of the relational structure. The vertices of typef the graph
obtained from applying rulgvi| at matchm| to a graph G| (i.e.,vert,, ap®'G) are either
vertices of graphG| or vertices of the right-hand side of the rule that are nogenaf the
rule.

The cardinality of edges function (6) returns the numbewdgies of a reachable graph.
The number of edges of gragho is determined by the number of elements of relation
incgo. The number of edges of a graph resulting from a rule appbicad graphG is
designated by the number of edgesffless the number of edges of the left-hand side
of the rule plus the number of edges of the right-hand sidéefrtile. This function is
well-defined because according to the definition of rule ipfibn (see’ specifications
in Definition 16). The edges of the resulting graph are theesdy the right-hand side of
the applied rule together with the edges of grapthat are not image of the match. Since
the match is total and injective in the edge component, timebau of decreased edges is
the number of edges of the left-hand side of the applied rule.

6.2 Property Patterns

Now we define a collection of patterns for state propertiecgigations. Instead of
specifying state properties just as forbidden or desiragdiys as frequently done, we adopt
logical formulas to describe them. As emphasized in (STRERK2008), formulas over
graph structure are more expressive than pattern graphs.

Patterns were developed to capture recurrent solutionssigiland coding problems.
According to Dwyer et al. (DWYER; AVRUNIN; CORBETT, 1999hrough a pattern
system, the specifier can identify similar requirement&ectgatterns that fit to those
requirements and instantiate solutions that incorporeg@atterns. In our approach, a set
of relations characterizes the initial state and the pésbighaviours of the system, and a
definable transduction (that can be seen as an inferengedeseribes the possible next
states of the system. A state property specification pageargeneralized description of
a frequently occurring requirement on the admissible stata system. It describes the
essential arrangement of some aspect of the states of tteersgad provides expression
of this arrangement.

We attempt to give a collection of independent patterns findnich a set of interesting

76

Table 6.1: Standard Library

Ref. Description Function Definition
(1) Edges of edg, GO = {z | t90%(z,t1)}
specific type edgs, ap®iG = {z | thi(z,t1) V [z € edgi, G N Pw m$¥ (w,z)]}
(2) \ertices of vert;, GO ={z | t$%x, t1)}
specifictype wvert,, ap®*G = {z| tH(z,t1) A Pw aiv(w,z)] V x € vert;, G}
(3) Edgeswith edg GO ={(z,y,2) | incgo(x,y,2)}
source and edg ap®iG = {(a:, y,2) | [(2,y,2) € inc G A Fw mY (w, x)]V
target vertices V [3r, s incgi(x, 7, s) A Jwy, w [aiy (w1, 7)A
A aiy (w2, s) A mE(wy,y) A mE (ws, 2)]]V
V [incri(z,y, 2) A Pwy, w [aiy (wr, y)A
A aiy (we, 2)]] V 3r [incgi(z, T, 2)A
A Fwy [edy (wy,) AmE(r,y)]A
A Fwg iy (wa, 2)] V 3s [incri(z,y, 8)A
A Bwy aiy (w1, y) A Sws iy (wa, 8) Am(s, 2)]]}
(4) Vertices vert GO = {x | vertgo(x)}
vert apXG ={z |z €vert GV [vertr;(x) A Pw aiy (w,z)]}
(5) Cardinality cardy GO = fvertgo
of vertices cardy ap®iG = cardy G + fvertg; — fvertr;
(6) Cardinality cardg GO = fincgo
of edges cardg ap™'G = cardgG — fincr; + fincg;
(7) Cardinality cardvy, GO = t{zlvertgo(z) ANt$O(z,t1)}
of specific cardvy, ap®G = cardvy, G + t{z|vertg;(z) At (z,t1)}—
vertices —t{z|vertp;(x) A tLi(z,t1)}}
(8) Cardinality cardes, GO = t{z|Jy, z[incco(z, y, 2)] AN tE0(x, 1)}
of specific carde;, apiG = carde;, G—
edges —t{z|Jy, z[incri(z,y, 2)] AL (z, t1)}+
+ﬁ{:c|5|y, Z[incRi(xv Y, Z)] A tgi(xa tl)}
(9) Pairsofloop ploopy, ., GO ={(e, f) | Fx [incgo(e, z, x) N inceo(f, z, z)]A
edges of A tG0(e, t1) AEO(f,t2)}
specific types ploopy, 1, apXiG = {(e, f) |[3x [incri(e, x, x) Aincr;(f,x, z)]A
with source Atgi (e tr) AR, tg)] [(e, f) € ploopy, 1, GA
and targetin A Fw m@ (w,e) A Pw m@ (w,)]V
the same vertex V [z mcG(e x,x) A tG(e t1)A
A Fw m (w,e) A 3y incri(f, v, Y)A
tRZ(f, to) A 3z[aig(z,y) Am$(z, z)]]V
V [Fz zncG(f,x x) AtG(f, t2)A
A Fw m (w, f) A 3y incri(e, y,y) A
A tEi(e, t1) A3z [aig(z,y) A mi (z,)]
(10) Edges with edgst, GO = {z|3y, z[incgo(x,y, 2)] A t_go(y, t1)}
specific edgsy, apXG = {z|[z € edgsi, G N Pw m¥ (w, 2)]V
source V 3y, z[incri(z,y, 2)] A tRZ(y,tl)]}
(11) Edges with edgty, GO = {z|3y, z[incgo(x,y, 2)] A t(’o(z t1)}
specific edgty, apiG = {z|[r € edgt;,G N Fw mY (w, z)]V
target V 3y, z[incri(z,y, 2)] A tRZ(z t1)]}
(12) Edges with edgly, 1, GO = {z|3y, z[incgo(@, y, 2)] AN tG0(y, t1) A t§0(2, 12) }
specific source edgly, 1, apX'G = {z|[z € edgly, 1,G A Pw mY (w, z)]V
and target V [Jy, z[incri(z, y, 2)] At (y, t1) At (2, 62)]}
(13) Loop loop GO = {z|Fy incgo(z,y,y)}
edges loop ap®iG = {x|3y incri(z,y,y) V [z € loop GA

A Bw mg (w,)]}

Table 6.2: Standard Library (Cont.)

77

Ref.

Description

Function Definition

(14)

Attributes
of edges

attE GO
attp ap®iG

(x,a) | attrgo(z,a)}
(z,a)| attrRzgx, a) v

[(z,a) € attp GA

(15)

Attributes
of specific
type

(x,a) | attrgo(z, a) A t(’o(:ﬂ t1)}

(z,a) | [attrri(z,a) A (90 t1)]v

[(x a) € atty, G A ﬂw m%' (w,)]}

atttl GO
atty, apiG

{
{
A Fw mg(}
{
{
V

(16)

Source vertices verto GO

{z |vertgo(z) A Jy, 2 zncGo(y, x,2)A\

A Py, z incgo(y, z,2)}

verto ap’G = {x | [vertr;(z) A Jy, z [incri(y, T, 2)]A

A Pw iy (w, 2) A By, 2 [incri(y, 2,)]V

Y {vertg() A [Burm$(wy, x) —

— [3y, z incg (y, 7, 2) A Pw mY (w, y)A

A [Fy, z inca(y, 2, 2) — Jw mY (w, y)]A

A Fwy [aidy (wy, wa) A Py, z incri(y, 2, we)]]V
V [Fws aiy (wy, wa) A Jy, z incg; (y, wa, 2)A

A Py, 2z incrily, 2, ws) A By, zincg(y, z,) —

— FJw m%l(w,y)]]]] V vertg(z) A [Pw m@ (w, z) —

— Jy, zincg(y, r, 2) A By, z inca(y, 2, x)]]

(17)

Sink vertices

verti GO = {z |vertgo(z) A Jy, z incgoly, z,) A
A Py, 2z incgo(y, z, 2)}
verti apXG = {z | [vertg;(x) Ay, z [incri(y, z,)|\
A Pw iy (w, z) A By, 2 [incri(y, =, 2)]]V
% {vertg(:c) A [Elwlm?,i(wl,) —
— [Fy, 2z incg(y, 2,) A Fw mP (w, y)A
A [y, z inca(y, x, z) — Jw mf (w Y)IA
A Fwy [aidy (wy,wa) A Py, 2 incRi(y, wa, 2)]]V
V [Fws aiy (wy,wa) Ay, z incr; (y, 2, wa) A
A Py, 2 incgi(y, wo, 2) A By, zincg(y, z, 2) —

— Jw m% (w, y)]]]} V [vertg(z) A [Bw m$ (w, z) —

(18)

Isolated
vertices

ivert GO = {z | vertgo(z) A ﬂy, z [incgo(y, , 2)V
Vincgo(y, z, z)|}
ivert apXG = {z | [vertri(x) A Py, z [incri(y, z, ©)V
Vincgi(y, x, 2)] A Pw aiy (w,)]V
[verta(z) A By, z [inca(y, z,)V
Vineg (y, z, 2)] — Jw m¥ (w,y)]A
A [Fw m§ (w x) — Jwy [aiy (w, wy)

(19)

\ertices
that are
source of
specific
edges

A Py, 2 [incri(y, z,w1) Vincgi(y, wi, 2)]]]]
vertsy, GO = {x | vertgo(z) A Jy, z incgo(y, z, 2) ANtE(y,t1)}
vertsy, apG = {x | [vertr;(z) A Pw aiy (w, z)A

A 3y, z incri(y, @, 2) A B (y, t1)]V

v [vertg(YA Ty, z incG(y, x, 2)A

A tS(y, t1) A Pw m@ (w YV

V [verta(z) A le, wa [mV (w1, 2)A

A aiy (wi, we) Ay, 2 incpi(y, wa, 2) At (y, t1)]]

78

Table 6.3: Standard Library (Cont.)

Ref. Description Function Definition
(20) Vertices vertty, GO = {z | vertgo(z) A Jy, z incco(y, z,2) AN tG0(y, 1)}
that are vertty, ap'G = {x | [vertr;(z) A Pw aiy (w, z)A
target of Ay, z incri(y, 2, z) AtE (y, t1)]V
specific V [vertg(z) A Jy, z inca(y, z, ©)A
edges A tG(y, t1) A Bw mS (w,y)]V
V [vertg(z) A Jwi, wa [mF (wr, x)A
A ady (w1, we) A Jy, z incri(y, 2, wa)A
A tgi(yv tl)]]
(21) \Vertices that rvert, GO {z | [x =v Avertgo(v)] V Iy, z [y € rvert, GOA
are reachable Nincgo(z,y,)]}
from a specific rvert, ap2iG {z|[xr =v Az € vert apG|V
vertex V Jy, 2 [y € rvert, apXiG A (z,y,x) € edg ap®iG|}
(22) Transitive closure tranc, G {(z,y) | [incc(a, z,y) AN tS(a,t1)]V
of ¢, edges in& V [(z, 2) € tranc, G A (z,y) € tranc, G]
(23) Ring topology ring, GO YV [vertgo(z) — tranc, GO(z, z)]A
AVa,b,z,y, 2 [incgo(a, z,y) AtG0(a, t1)A
Aincgo(b,z,2) At€0(b,t1) — a = b]A
AV, z [vertgo(z) A vertgo(z) —
— tranc:, GO(x, z)]
ring;, ap®iG ring,, GA
AVa,z,y, z,w [incpi(a,z,y) At (a, t1)A
A aiy(z,2) A aiy (y, w) — trancy, Ri(z, w)]A
AVa,b,z,y, 2 [incri(a, z,y) At (a,t1)A
incri(b,x,z) ANtEi(bt1) — a =]
(24) Root vertices root G {z |vertg(x) A By, z incg(y, 2, 2)A
inG Ay, zincg(y, z, 2)}
(25) Reachable verticesreach, G {v}U{z |3y, z [y € reach, GA
fromvin G Nincg(z,y,)]}
(26) Tree topology tree GO Az root GO(z) A Ya [-root GO(x) —

tree apiG

- El'yv z iTLCGO(y, Z, I)] A ﬂxa) inCGO(Ia Y, y)/\
AVz, Y, z,w [incgo(z,y, 2) A incgo(w,y,z) —
— x = w| AVa,y [vertgo(z) A root GO(y) —
— reachy GO(z)]

Ja1, y1, 21 [incri(zr,y1, 21) A fw aig(zr,w)] —
— Jxo,y2, 22 [inCRi(T2, Y2, 22) A 22 = iy (21)A
A Fv reachaiv(v)Ri(yg)]} A

[Ela:l, Y1, z1[incri(x1, 91, 21) A Pw cip(w, 21)] —
— [[ﬂw aiy (w, z1) A Fv reachq, () Ri(y1)]V

V [Tz, y2, welaiv (wa, 21) Aincri(za, y2, wa)A
A Pwy aig(xe, w)] A Jv reachqi, (v)Ri(y1)]V

V [Fwi, we [ady (wr, 21) AmG (wr, wa) A

A root G(ws)] A Pw aiy (w, yl)]ﬂ A

[[Hxl vertpi(z1) A fw aiy (w, z1)] — [Hyl, 21|
incri(y1, 21, 21) A Pw aipg(w, y1)A

A Fv reachq, () Ri(21)] V [By2, 22

incri(ya, 1, 22) A Pw aip(w, y2) A Jw, wa
iy (w, 22) A m (w, ws) A root G(wg)]]]”

79

specifications about the internal state of the systems caonrstructed. We do not intend

to provide the smallest set of patterns that can generatgsaflul specifications nor a

complete list of specifications. We indeed try to specifytgrais, which must commonly

appear as state property specifications and expect thaollestion be expanded, as new
property specifications do not match with the existing page

Table 6.4: A Pattern Taxonomy

1. Functional 2. Structural
1.1 Resources 2.1 Topology
1.1.1 Absence 2.1.1 Absence
1.1.2 Existence 2.1.2 Existence
1.1.3 Universality 2.2 Adjacency

1.1.4 Cardinality
1.1.5 Dependence

2.2.1 Absence
2.2.2 Existence

1.2 Data 2.2.3 Universality
1.2.1 Absence

1.2.2 Existence

1.2.3 Universality
1.2.4 Comparison
1.2.5 Dependence

The patterns must assist developers into the process ofingagpscriptions of the
states of the system into the formalism, allowing the speatifon of state properties with-
out much expertise. To help the user in finding the approppattern for each situation,
we organized the patterns using the taxonomy in Table 6.4.d¥flee three levels of
hierarchy. The first level differentiates properties thgtressfunctionalaspects of the
system from properties that spectfiructuralcharacteristics of the states. The functional
pattern is divided in the second level according to the kindformation that it describes:
the patterrresourcegleal with relations between vertices, edges (that do nafritbesat-
tributes) and their types; the pattedlata handle attribute edges. The structural pattern
consider the arrangement between vertices and edges: sadtsd level, théopology
pattern depicts the physical configuration of the stategragning how the vertices are
connected, while thadjacencypattern treats the neighboring between vertices, edges
and their types. The third level distinguishes, for eacltsjody, if the properties occur,
do not occur or occur for all items of definite characterssti@he resource pattern still
discriminates properties that deal with cardinality andetelence of specific items. The
data pattern, besides dependence, also identifies pregptdrét compare attributes. In the
following, we briefly describe the formulas of the third l€eéthe taxonomy:

Absence: state formulas specifying the non-occurrence of partiatharacteristics in all
reachable states.

Existence: state formulas specifying the occurrence of particularattaristics in all
reachable states.

Universality: state formulas specifying characteristics of all vertioesdges (possibly
of some specific type) occurring in all reachable states.

80

Cardinality: state formulas specifying characteristics about the nurabeertices or
edges (possibly of some specific type) occurring in all rebtdstates.

Dependence:conditional state formulas occurring in all reachableestat

Comparison: state formulas specifying relations between attributesgjbly of specific
types) in all reachable graphs.

Table 6.5 depicts (part of) the absence of resources pafigoattern consists of a name,
a brief explanation of the pattern’s intent, a list of prdjgs mappings and descriptions of
uses and purposes. For each stated property, we list thednsof the standard library
used in the pattern. We do not express all patterns in fulliddhstead, in Table 6.6 we
list the statement of some properties together with itssdfiaation. Also, in Table 6.7 we
list another properties with its classification and the eesipe functions of the standard
library that must be used in its assertion.

6.3 Specification of a Mobile System

We describe the use of the pattern system specifying a verglsimobile system.
The system consists of a network of interconnected anteandsmobile users. Each
user, connected to a single antenna, may start/finish a camation with another user.
The user may be switched to another antenna. New antennassargican be added to
the system at any time.

Figure 6.1 illustrates the graph grammar for the example.type graphl’ describes
two types of nodeént (Antenna) andJsr (User) and three types of edgasn (connec-
tion between antennad)cn (connection between users and antennas)@h@gcommu-
nication between users). The initial gra@b, in Figure 6.1, specifies a system with two
antennas and two users.

Rule a1 models the establishment of a communication between.uBerg o2 de-
scribes the introduction of a new antenna into the netwothe R3 specifies the situation
in which a user is switched to another antenna. Rdlexpress the end of communication
between users. The inclusion of new users is depicted byvukend the introduction of
new links between existing antennas is delineated by«éle

The pattern system and the standard library previouslyeptes can assist, for exam-
ple, in the statement of the properties detailed in Table SiBce the example does not
involve attributes, properties of the Data pattern wereemoinciated.

It is important to notice that in many cases the property tsthted will not be exactly
the same property listed in the pattern, but instead it vallbcomposition of some de-
scribed properties. For instance, the last two properties@ated in Table 6.8 fit in this
case. Nevertheless, as well as the other cases both theustditary and the patterns
are very helpful to assist the developer in these specifieatiln fact, the description of
such properties must use functions of the standard libradyia most cases they must be
instantiated through some inclusion, deletion or varratibthe Boolean operators of one
of the detailed patterns.

6.4 Related Work

Dwyer, Avrunin and Corbett (DWYER; AVRUNIN; CORBETT, 1998999) intro-
duced a specification pattern system for finite-state vatitia. The system is designed

Table 6.5: Absence of Resources Pattern

Absence of Resources Pattern

Express characteristics that are not allowed in all redetsthtes of the system.

Properties Mappings
Property

There are no edges of type and
to simultaneously.

There are no vertices of type and
to simultaneously.

There are no edges of type and
vertices of type, simultaneously.

There are no pairs of loop edges of
typest,; andt, with source and tar-
get in the same vertex.

There are no edges with source in
a vertex of typet and edges with
target in a vertex of type simulta-
neously.

There are no two edges with source
and target of the same type.

There are no loop edges of types
andt, simultaneously.

There are no source vertices.

There are no source vertices of
type t.

There are no sink vertices.

There are no sink vertices of type
t.

There are no isolated vertices.

There are no isolated vertices of
typet.

There are no edges of tygeand
isolated vertices simultaneously.

Uses and Purposes

Functions of
Std. Library

1)

()

(1.2)

(9)

(10, 11)

(12)

(1, 13)

(16)

(2, 16)

17)

2, 17)

(18)

(2, 18)

(1,18)

Pattern

B,y [z € edgi, gy € edgr,g]
o,y [x € wverty,g Ny €

verts, g]

fo,y [v € edgng Ny €
vert, g

ﬂ(x,y) [(l‘,y) € plooptl,tzg]

dr,y [z € edgsig Ny €
edgt.g]

thth [ﬁxay [x € edgltl,b A
ye edglthtz]]

B,y [z € loop gAy € loop g
xr e edgtlg Ny € edgt2g]

B[z € verto g

Ba[x € verto g Az € vert,g]

B[z € verti g]

Ba[x € verti g A x € vertg]

B[z € dvert g]

Bafx € ivert g A x € vertg]

Pz, y [z € edgig Ay € ivert g]

This pattern can be applied to describe the impossibility of
specific actions and the inexistence of physical connestiophysical resources.

81

Table 6.6: List of Properties

Property Functions Pattern Classif.
of Std. Lib.

There is an edge of type (@) Jz [z € edgsg] (1.1.2)

There is a vertex of typg that is (2,19,20) 3Fx [x € verty, g A (1.1.2)

source of an edge of type and Az € vertsy,g A

target of an edge of typg. A x € vertt,g]

All vertices of typet; are source of (2,19) Vo [z € verty,g — (1.1.3)

edges of type-. — € vertsy, g|

All vertices of typet are not isolated. (1,18) Vz [z € vertiyg — (1.1.3)
— x ¢ ivert g]

There are at least vertices of type. (8) cardvig > n (1.1.4)

There is only one source vertex of (2,16) 3Flxfz € vertig A (1.1.4)

typet. A x € verto ¢

If there is an edge with source in a (10,11) 3Fz[x € edgst, g] — (1.1.5)

vertex of typet,, then there is an edge — Jyly € edgts, 9]

with target in a vertex of typé,.

There are no attributes of type that (15) Vo, y,a,b[(x,a) € atty,g (1.2.1)

are equal to attributes of type. Ay, b) € atti,g — a # D]

There is an attribute of type (15) Az, a[(x, a) € attrg] (1.2.2)

All attributes of typet are less thamn. (15) YV, al(z,a) € attiyg — (1.2.3)

—a < nj

All attributes of edges of typg are (9,14) Vo, y,a,b[(x,y) € (1.2.4)

always great than attributes of edges ploopy, 1,9 N (z,a) €

of typets, if they both have source attpg A\ (y,b) € attpg —

and target in the same vertex. —a > b

If there is an attribute of typg then (15) Jz[z € atty, g] — (1.2.5)

there is an attribute of type. — Jyly € atty,g]

There is a tree topology. (26) tree g = true (2.1.2)

There is a vertex of typg that is not (2,21) x|z € verty, g ANVyly € (2.2.1)

reachable from any vertex of type. verty,g — x ¢ rvert,g|]

There is a vertex that is target of an (19,20) Fz[x € vertty, g A (2.2.2)

edge of type; and source of an edge A x € vertst,g|

of typets.

All vertices of typet; are reachable (2,21) Va,ylx €verty,g Nye (2.2.3)

from vertices of type-.

verty,g — x € rverty,g|

82

Table 6.7: List of Another Properties

Property Functions Classif.

of Std.

Library
There is a vertex of type (2) (1.1.2)
There is an edge of type and a vertex of typé,. (1,2) (1.1.2)
All vertices of typet are not sink. (1,17) (1.1.3)
There is only one edge of typge () (1.1.4)
There is only one vertex of type @) (1.1.4)
There is only one vertex of type that is source of an edge of typge (2,19) (1.1.49)
The number of edges is odd. (6) (1.1.4)
The number of edges is less than (6) (1.1.49)
The number of edges of typds even. (8) (1.1.49)
There are at least vertices. (5) (1.1.4)
If there is no edge of typ#& , then there is no edge of type. Q) (1.1.5)
If there is an edge with source in a vertex of tygeand targetina (1,12,13) (1.1.5)
vertex of typeto, then there is a loop edge of type
If there is an edge of typh, then there is a vertex of type. (1,2) (1.1.5)
If there is no vertex of typé;, then there is no vertex of type. (2) (2.1.5)
There is no attribute of typethat is great than. (15) (1.2.2)
All attributes of typet; are less than attributes of typge (15) (1.2.4)
There is not a ring topology of edges of type (22,23) (2.1.2)
There is not a tree topology. (24,25,26) (2.1.1)
There is a ring topology of edges of type (22,23) (2.1.2)
There is one or more isolated vertices. (18) (2.2.1)
There is an isolated vertex of type (2,18) (2.2.2)
There is a vertex of typg that is reachable from a vertex of type (2,21) (2.2.2)
All isolated vertices are of type (2,18) (2.2.3)
All vertices that are target of edges of typeare source of edges of (19,20) (2.2.3)

typets.

83

84

Acn / ca [7 Acn03 [7
cnl
g = - Ferd D ey
Ant Usr Usr01 Ai%n Ant02 Usr02
T GO
/}\ chﬂ% N /I\ Ucn13
/&11 Usrt Aﬁ:} Usr13 Usr41 Usrd3
lAcnﬂ ol > Acn12¢ Ca|11l iCaIM a4 >
/}\ :gcmz% (/]\ Ucn14% % %
A{,T}z Usri2 Aﬁ“ Usri4 Usra2 Usrd4
L1 R1 L4 R4
/N (/N enze /N /N
\‘}f \Jﬂ ‘\} Acn27 \/I’{ \'LV
&8 v LY &
Ant21 Ant23 Acn25 /\ Ant51 Ant52
Acn21 L2 5 lacn2d & o
n: cn: -
l i Acn23 b4 o Ucn51
Ant25
Aﬁz Aéutl24 Usr51
L2 R2| Ls| RS|
/N) Uenat /N /N A
\'Z:l;‘c_% %f/ \L’ Acn61 \Jﬁ Acn63
Ant31 Usr31 ANt33 Ant61 Ant64
lAC"“ “ > lAC"” | 4\ “ > lAcnes \<u]>
)\ /N) _uonse /N s /N s
g v&% Nt Ansz N’ K Acnes
" & Usr32
Ant32 L Ant34 Ra Ant62 L6 Ant65 R
(Antl1, Ant13)
1 (Ant12, Ant14)
AV (Usrll, Usrl3)) (Ant21, Ant23) 5 (Ant31, Ant33)
al (Usr12, Usr14) a2{ VO (Ant22, Ant24) a3{ YV (Ant32,Ant34)
(Acnll, Acn12) a2g { (Acn21,Acn22) a3p { (Acn3l,Acn32)

alg { (Uenll, Ucnl3)
((Uen12, Ucnl4)

(Ant61, Ant64)

aby ¢ (Ant62, Ant65)

ad faay, { (Usrdl, Usra3) a5 {a5y { (Ant51,Ant52) ab (Ant63, Ant66)
(Usrd2, Usr44) (Acn61, Acn63)

abp { (Acn62, Acn64)

Figure 6.1: Mobile System Graph Grammar

to describe a portion (a scope) of a system’s execution $hi@é€é or contains instances
of certain events or states. It is organized in a hierarctsetban the kind of system
behaviour they describe. Inside each pattern the propatedivided by scope and it is
provided mappings to five formalisms - LTL, CTL, Graphicaldrval Logic, Quantified
Regular Expressions and INCA query language - which aretlapguages of finite-state
verification tools, such as SPIN (HOLZMANN, 1997b), SMV (M@MLAN, 1992) and
many others. Their intent has been to capture the knowleidgygerts in formal methods
to assist practitioners in the task of writing their propest

Many other researchers have used patterns to the speoificdtproperties for finite-
state verification. For instance, in (SMITH etal., 2002; Q®B5H; AVRUNIN; CLARKE,
2006), Cobleigh and her co-authors have proposed tempisiteg disciplined natural lan-
guage, finite state automata and question tree to consteupttiterns described in Dwyer
et al. Corbett and his colleagues (CORBETT et al., 2000) tisedame pattern system

Table 6.8: Properties Specification for the Mobile System

Description | Property | Formula | Class.
There are no an} There are no isolated vef- Az[x € ivert g A x € vertang] 1.1.1
tennas outside of tices of typeAnt.
the network.
There are no dis{ There are no isolated vet- Bz[z € ivert g A x € vertysg] 1.1.1
connected users.| tices of typeUsr.
Users are always All vertices of type Usr | Va [z € wvertys ¢ — 2« €| 1.1.3
connected to ant are source of edges of typevertsyc, g]
tennas. Ucn.
Itis always possi- There is an edge of type Jx [z € edgacn ¢] 1.1.2
ble to make a call Acn.
into the network.
There are at least The number of vertices of cardvan: g > 2 1.1.4
two antennas inta type Ant is great or equa
the network. to 2.
It is possible to| Each vertex of typént is | Vo, ylz € wvertamg Ay € | 2.2.3
establish a coni reachable from any othervertang — y € rvert,g]
nection betweern vertex of typeAnt.
each pair of an-
tennas.
Each antenna alt For each vertex of type Vz[x € vertanty — | 1.1.3
lows the start of @ Ant, there is at least one 3y, w[(y,x,w) € edg g Ny €
communication. | edge of type Acn with | edgacng]]

source in this vertex.
If there are users Ifthereis anedge oftype | Jy,y1,42 [y € edgcag N | 1.1.5
in communica-| Cal with source in a vertex y1 € wvertysg N Y2 S
tion, then there yl of type Usr and target| vertysg] — 321,22, wl, w2, w
is a connection in a vertexy2 of typeUsr, | [(z1,yl,wl) € edg g A 21 €
between thein then there is an edgel of | edgucng A (22,42, w2) € edg g A
antennas. typeUcn with source inyl | 22 € edgyamg A (w,wl,w2) €

and target inwl, an edge| edg g A w € edgacn 9]

22 of typeUcn with source

in y2 and target inw2 and

an edgew of typeAcn with

sourcewl and targetv?2.

85

to provide a structured-English specification languag€YANG; EVANS, 2004) , Yang

and Evans also used pattern templates to infer temporaggrep. Alternatively, the work
of Jorges et al. (JORGES; MARGARIA; STEFFEN, 2006) combioesiula graphs with
the pattern system for the specification of temporal pragertBitsch (BITSCH, 2001)
created a catalogue for the specification of safety prageerti

Other researchers combine specification languages tocextenproperty patterns.
Chechick and Paun (CHECHIK; PAUN, 1999; PAUN; CHECHIK, 1%@8tend the pat-
tern system of Dwyer et al. to reason about events. DrusiiBRUSINSKY, 2004)
combine LTL with Harel statecharts to enable visual, logaral non-deterministic spec-
ifications. The Property Specification Tool (Prospec) (MOMIEON; GATES, 2004;
MONDRAGON et al., 2007) introduce composite propositiomsdpecifying properties
that include multiple events or conditions. And the work afénah et al. (SALAMAH
et al., 2007) provide general templates for generatingipattons in LTL for all pat-
tern, scope and composite propositions combinations. Yal.efYU et al., 2006) also
extend the Dwyer et al.’s pattern system with a logical cositpmn of patterns to allow

86

the specification of complex requirements.

Specification patterns for probabilistic and real-time mlechave also been delin-
eated. The ProProST (GRUNSKE, 2008) pattern system can dxktasformulate re-
quirements in probabilistic logics and the real-time speaiion patterns described in
(KONRAD; CHENG, 2005) support the formalization of propestin terms of real-time
temporal logics. A similar system for the specification aflreme requirements can also
be found in (GRUHN; LAUE, 2006). Letier et al. (LETIER; LAMSBERDE, 2002)
introduced operationalization patterns to specify tylacaurring goals that include real-
time information. Besides, Flake et al. (FLAKE; MUELLER, @@ have developed
structured English sentences to help in the formal desontf real-time properties.

A number of other works have investigated the processingtifral language speci-
fications into formal logics. In (ALI, 1994) is proposed ailcg) language designated for
natural language processing. The Attempto project (FUCHIHIWERTEL; SCHWIT-
TER, 1998) translates a subset of standard English langanége syntactic variant of
first-order logic and offers a tool to support automatic oedsg. Similarly, the Circe
project (AMBRIOLA; GERVASI, 2006) leads with the translati of natural language
properties into propositional logic. Furthermore, a tanidentify and analyse logical
inconsistencies in natural language requirements is gepn (GERVASI; ZOWGHI,
2005).

Differently from previous pattern systems, our proposakesause of the theorem
proving technique (RUSHBY, 2001), which allows us to dealhwthe verification of
both finite and infinite systems. The focus of the work, unthwnhas been to treat in-
ternal properties that are valid for all reachable statdméhite-state) systems specified
as graph grammars. Our intent has been to provide a simpleofvsiating properties
about the arrangement of the internal states. For this neasgether with the definition
of the standard library of functions, the pattern has th@pse of offering several pos-
sible direct instantiations of properties over states mpsy of guiding the developer of
which functions must be used in the specifications. We haed fisst-order logic as the
underlying language of specification, whereas naturallagg has been used to describe
informally what the property is designated to assert. Weelelthat our pattern system
complements the existing approaches and provides the tiggs $n the direction of a
pattern for infinite-state verification through graph graansn

87

7/ THEOREM PROVING GRAPH GRAMMARS USING EVENT-
B

In this chapter we use Event-B to analyse properties of ggmpmmars. Event-B
(DEPLOQY, 2010) is a state-based formal method closelyedltd Classical B (ABRIAL,
1996). It has been successfully used in several applicgtiaaving available tool support
for both model specification and analysis. Due to the siityldretween Event-B mod-
els and graph grammar specifications, specially concethimgule-based behaviour, we
propose to translate graph grammar specifications in BBesttuctures, such that it is
possible to use the Event-B provers to demonstrate pregesfia graph grammar. This
translation is based on the relational definition of gramngnars. Up to now, we restrict
ourselves only to graph grammars without attributes or tiegapplication conditions.

The chapter is organized as follows. Section 7.1 brieflyonhtices the Event-B for-
malism and Section 7.2 shows how a graph grammar can bedatedshto an Event-B
program.

7.1 Event-B

Event-B (DEPLOY, 2010) is a state-based formalism closelgted to Classical B
(ABRIAL, 1996) and Action Systems (BACK; SERE, 1989).

Definition 38 (Event-B Model, Event)An Event-B Model is defined by a tulé3 M odel =
(¢,s,P,v, I, R;, E) wherec are constants and are sets known in the model;are the
model variable§ P(c, s) is a collection of axioms constrainingand s; I(c, s,v) is a
model invariant limiting the possible statesw0$.t. 3¢, s, v - P(c,s) A I(c, s,v) - i.e. P
and/ characterise a non-empty set of model stafegc, s, v) is an initialization action
computing initial values for the model variables; afAds a set of modedvents

Given states), v’ an event is a tuple = (H, S) whereH (c, s,v) is the guard and
S(c, s,v,v’) is the before-after predicate that defines a relation betwaerent and next
states. We also denote an event guardiiy), the before-after predicate (v, v') and
the initialization action byr, (v').

An Event-B model is assembled from two partscantextwhich defines the triple
(¢, s, P) and amachinewhich defines the other elemernits I, R;, E).

Model correctness is demonstrated by generating and dgiolya collection of proof
obligations. The modeionsistencygondition states that whenever an event or an initial-
ization action is attempted, there exists a suitable nete stasuch that the model in-

For convenience, as in (ABRIAL, 1996), no distinction is radmktween a set of variables and a state
of a system.

88

variant is maintained /(v’). This is usually stated as two separate proof obligations:
a feasibility ((v) A H(v) = ' - S(v,v’)) and an invariant satisfaction obligation
(I(v) AN H(v) A S(v,0") = I(v')). The behaviour of an Event-B model is the transi-
tion system defined as follows.

Definition 39 (Event-B Model Behaviour)Given EBModel = (¢, s, P,v, I, Ry, F), its
behaviour is given by a transition systdp$T" = (BState, BSy, —) where: BState =
{{(v)|vis astate} UUndef, BSy = Undef,and—C BState x BState is the transition
relation given by the rules:
R (W) NI(V')
[sten] Undef — (V')

___3(H,S)e E-I(v) NH(v)AS(v,0v") ANI(V)
[venston Wy = ()

According to rulestart the model is initialized to a state satisfyiig A I and then,
as long as there is an enabled event (tulevsition), the model may evolve by firing an
enabled event and computing the next state according tovémt'e before-after predicate.
Events are atomic. In case there is more than one enabled &varcertain state, the
choice is non-deterministic. The semantics of an Event-Blehts given in the form of
proof semantics, based on Dijkstra’s work on weakest prditions (DIJKSTRA, 1976).

An extensive tool support through the Rodin Platform makesnEB especially at-
tractive (DEPLOY, 2010; ABRIAL et al., 2010). An integratéatlipse-based develop-
ment environment is actively developed, and open to thadypextensions in the form
of Eclipse plug-ins. The main verification technique is tte@o proving supported by a
collection of theorem provers, but there is also some sugpomodel checking. The
support offered for theorem proving through the platforiovas one to: browse the proof
structure; select hypotheses and lemmas to be used; invtdeedt provers integrated to
the platform; define and select tactics to be used; amongtABRIAL et al., 2010).

7.2 Graph Grammars in Event-B

The behaviour of an Event-B model is similar to a graph gramih&re is a notion of
state (given by a set of variables in Event-B, and by a graplgiaph grammar) and a step
is defined by an atomic operation on the current state (an ¢évehupdates variables in
Event-B and a rule application in a graph grammar). Eachstiepld preserve properties
of the state. In Event-B, these properties are stated asamig. In a graph grammar,
the properties that are guaranteed to be preserved aredétathe graph structure (only
well-formed graphs can be generated).

Now, we first present an overview of the translation of a grg@mmarGG in an
event-B model, and then explain in more details how each oot is transformed. The
translation is based on the relational graph gramjd@éf| corresponding t6/G. Assume
that GG hasn rules, namedy; to o, andi € {1,...,n}. The event-B components
describing this graph grammar are:

e Thesetsknown in the model areertr, edger (the sets of vertices and edges of the
type graphl’), verty;, edger;, vertr; andedger; (the sets of vertices and edges of
the left and right-hand side of each ru)e

e The constantdnclude vertices and edges of the type graph and rules, dsawel
(names of) typing functiong?, t%, i andt %, source and target functiorsurcer,

89

targety, sourcer;, targety;, sourcegr; andtargetr; and relational rulesy;, and

Qe

e Theaxiomsdefine explicitly all sets and functions of the model (whoames were
declared above). The types of functions are also declaragiams.

e Themodel variablesare specified by relationsertc, edgeq, sourceg, targets?,
tS andt%. They define a state of the system as a reachable grayped overT’
(see Def. 10).

e Theinvariantsare used to define the types of variables.

e Theinitialization actiondefines the initial values for the variablesrt, edgeg,
sourceg, targetg, t$ andt%. It specifies the initial grapt0.

e The set ofeventanodels rule applications. An event is defined for each rulef
grammar. Theguardguarantees the existence of a match of the left-hand sidheof t
corresponding rule in a state-graph of the grammar. Géfere-afterpredicate is
defined by a parallel assignment (to the variables that ntbdelurrent state graph)
and implements the formulas in Def. 16.

Now, we present this translation in more details. We will asgmple example, de-
picted in Figure 7.1, to illustrate how graphs, typed gragind rules can be translated to
Event-B components.

(a) Type Graph’ (b) Start GraphG”

el L1
~ @

(c) Ruleal

Figure 7.1: Example of Graph Grammar

Graphs: According to Def. 7 and Def. 13, séts andEg contain all possible vertices
and edge names that may appear in graphs of this relationedste. We will define
these sets as:

2Relationsedgeq (unary),sourceq (binary) andtarget (binary) are an alternative representation for
incg (ternary). We havéz, y, z) € incg iff © € edgea A (x,y) € sourceg A (z,2) € targete.

90

Vaa = vertr UN, wherevertr is the set of names used as vertex type&'
(we assume thatertr NN = 2);

Eqq = edger UN, whereedger is the set of names used as edge typ&sdh(we
assume thatdger NN =).

Moreover, we assume thatrtr N edger = @.

The type grapiT is defined in an event-B context as described in Figure 7.2revh
we define all vertex and edge types as constants, as well ascidence relation
relating them. In the axioms, we define these sets explifitlyexample, axiom
axml means thatertT = {Vertexl, Vertex2}). Text after a// is a comment.

CONTEXT ctx_ GG
SETS
vertT // (Type Graph) Vertices
edgeT /[(Type Graph) Edges
CONSTANTS
Vertexl Vertex2
Edgel Edge2
incT
AXIOMS
axmi : partition(vertT,{ Vertex1},{ Vertex2})
axm?2 : partition(edgeT,{Edgel},{Edge2})
axm3: incT C (edgeT x vertT x vertT)
axmé : partition(incT,{FEdgel +— Vertexl +— Vertexl},{Edge2 +— Vertexl +—
Vertex2})
END

Figure 7.2: Event-B Type Graph

Instances of vertices and edges that appear in graphs eapiresstates will be de-
scribed by natural numbers. It is not necessary to havendistumbers for vertices
and edges: a graph may have a vertex with identeg well as an edge with iden-
tity 1, these elements will be different because one will be mappadrertex type
and the other to an edge type. To be able to manipulate iretaasily, we define
the functionssource, target andedge Name (see Figure 7.3).

A graph typed over a type graph (Def. 10) is modelled by a set of variables
describing its set of vertices, incidence relation, andnypunctions. It is possible
to state the type consistency and morphism commutativitgitions (stated in Def.
8) as invariants. However, since we will always generatd-feetned graphs (the
start graph is well-formed and events implement the sipglghout construction),
we will skip these invariants (each invariant that is usedkgates proof obligations
and therefore it is advisable to use only the necessary ones)

Figure 7.4 shows the definition of a graphtyped over7'. Invariants are used to
define the types of the variables (for exampi&, V' is a total function fromvertG
tovertT andtG_FE is a partial function from the set of natural numbersdgeT).

There is a special event in an event-B model that is execugfmtdany other. This
is the initialization event. In our encoding, this eventlw# used to create the start
graph of a graph grammar. This is done by assigning initiklasin the variables

91

CONSTANTS

source
target

edgeName

AXIOMS

axmb :
axmo6 :
axm7 :
axms :
axm9 :

source € (N x N xN)—-N

Va,b,cca e NAbeNAceN= source(a+—b+—c)=1>
target € (N x Nx N) - N

Va,b,cca e NAb e NAceN= target(a—b—c)=c
edgeNameG(NxNxN)HN

axml0: Va,b,cca e NAb e NAceN= edgeName(a +— b+ c)=a

END

Figure 7.3: Auxiliary Functions

MACHINE mch_GG

SEES ctx_GG

VARIABLES
vertG // (Graph) Vertices
incG // (Graph) Edges
tG_V [/l Typing of vertices
tG_E // Typing of edges

INVARIANTS

inv_vertG: vertG € P(N)
inv_incG: incG € P(N x N x N)
inv_tG V: tG_V € vertG — vertT
inv_tG E: tG_FE € N+ edgeT

EVENTS

Initialisation
begin

actl: vertG := {1}

act2: incG:={1— 1~ 1}
act3: tG_V = {1 Vertexl}
actd: tG_E := {1 — Edgel}

end

Figure 7.4: Event-B Grapt¥

that correspond to grapf¥ (see Figure 7.4) depicted in Figure 7.1. In an event,
there is no notion of order in the attributions belongingtte same event. A triple
(a,b,c) € N x N x Nis denoted by, — b — ¢ in event-B.

Rules: Left- and right-hand sides of rules are graphs, and thus lvelle representa-
tions as defined previously. Additionally, we have to defime partial morphism
(av, ag) that maps elements from the left- to the right-hand side efrtihe (Def.
12). The Event-B enconding of rulel depicted in Figure 7.1 is shown in Fig-
ure 7.5. Since rules do not change during execution, theictsires are defined as
constants.

It is important to notice that some axioms and invariantetisn an event-B spec-
ification guarantee the logical conditions imposed in thati@nal definitions. For

92

SETS
vertLl
edgell
vertR1
edgeR1
CONSTANTS
vi L1 [/l vertex of LHS
el L1 /[edge of LHS
vl R1 [/l vertex of RHS
v2_ R1 [/l vertex of RHS
el R1 //edge of RHS
sourcell
targetll
edgeNameL1
incL1
tL1 V // (Rule 1) Typing vertices of LHS
tL1 E /[(Rule 1) Typing edges of LHS
incR1
tR1_V /[(Rule 1) Typing vertices of RHS
tR1_E //(Rule 1) Typing edges of RHS
alphailV // (Rule 1) Rule morphism: mapping vertices
alphalE // (Rule 1) Rule morphism: mapping edges
AXIOMS
axmll : partition(vertL1,{vi_L1})
axml2 : partition(edgeL1,{el_L1})
axml3: incLl C (edgeL1 X vertLl x vertLl)
axmld : partition(incL1,{el_L1 — vi_L1 — vl_L1})
axmlb5: tL1_V € vertL1 — vertT
axml6 : partition(tL1_V , {vi_L1 — Vertexl})
axml7: tL1_F € edgelLl — edgeT
axml8 : partition(tL1_E,{el_LI1 — FEdgel})
axml9 : partition(vertR1,{vi_R1},{v2_R1})
axm?20 : partition(edgeR1,{el_R1})
axm21 : incR1 C (edgeR1 X vertR1 X vertR1)
axm22 : partition(incR1,{el_R1 — vl_RI1 +— v2_R1})
axm23: tR1_V € vertR1 — vertT
axm24 : partition(tR1_V ,{vl_RI — Vertexl}, {v2_R1 — Vertex2})
axm25: tR1_F € edgeR1 — edgeT
axm26 : partition(tR1_FE,{el_R1 — Edge2})
axm27 : sourceLl € (edgeL1 x vertL1 x vertL1) — vertL1
axm28 : Va,b,c-a € edgeLl Nb € vertL1 A ¢ € vertL1 = sourceLl(a v b+ c)=1b
axm29 : targetL! € (edgeL1 x vertL1 X vertL1) — vertLl
axm30 : Va,b,c-a € edgeLl Nb € vertLl A ¢ € vertL1 = targetL1(a— b— c)=c
axm31 : edgeNameL1 € (edgeL1 x vertLl X vertL1) — edgeL1
axm32: Ya,b,c-a € edgeLl Nb € vertL1 A ¢ € vertL1 = edgeNameL1(a — b+ ¢c) =a
axm33 : alphalV € vertL1 — vertR1
axm34 : partition(alphal V ,{vl_L1 — vl_R1})
axm35 : alphalE € edgeLl -+ edgeR1
axm36 : alphalE = &
axm37 : dom(edgeNameLl) = incL1
axm38 : ran(edgeNameL1) = dom(tL1_F)
END

Figure 7.5: Event-B Rule Structure

instancefR1_V (respecttR1_F) defines a total function that relates vertices (re-

93

spect. edges) ak1 to vertices (respect. edges)Bf Axioms axm37 andaxm38
are included for well-definedness of the edge type compi&ygithhat must be guar-
anteed when finding a match (see guardR in Figure 7.6).

The behaviour of a rule (Def. 16) is described by an event fffier example,

by eventrulel in Figure 7.6). Whenever there are concrete values for biasa
mV, mE, newV,newE that satisfies the guard conditions, the event may occur.
Guard conditiongrdl, grd2 andgrd7 to grd9 assure that this pair is actually a
match from the left-hand side of the rule to graph(see Def. 15). Guard con-
ditionsgrd3 andgrd4 ensure thahewV andnewE are new fresh elements in the
graph. Remaining guard conditiong{5 andgrd6) guarantee the well-definedness
of the action that update the g6t _F. The actions update the state graph (graph
(7) according to the rule. In this example one loop edge is ddlahd a vertex and

a new edge are created. A vertexovV' is created with typé ertex2, and an edge
new E with type Edge2 is also created. The source of this new edge is the image
of the only vertex in the left-hand side of the ruleGhand the target is the newly
created vertex.

EVENTS
Event rulel=
any
mV
mE
newV
newk
where
grdl: mV € wvertL1 — vertG [/ total on vertices
grd2: mkFE € incLl — incG /l total and injective on edges
grd3: newV € N\ vertG /I newV is a fresh vertex name
grdd: newE € (N\ {z|]z € NA (Ty,z2y e NAz e NA(z — y — 2) € incG)}) \
dom(¢tG_E) I/l newE is a fresh edge name
grd5: ran(mFE) C dom(edgeName) I/ well-definedness afct6
grd6 : ran(edgeName o mE) C dom(¢tG_E) Il well-definedness afct6
grd7: Yv-v € vertLl = tL1_V(v) = tG_V(mV(v))
[/l vertex type compatibility
grd8: Ve-e € incLl = tL1_F(edgeNameL1(e)) = tG_E(edgeName(mkE((e)))
/I edge type compatibility
grd9: Ve-e € incLl = mV(sourceLl(e)) = source(mE(e)) A mV (targetL1(e)) =
target(mE(e))
/I source/target compatibility
then
act3: wvertG := vertG U {newV}
actd: incG = {newE — source(mE (el _L1 — vl_LI1 — v1_L1)) — newV}U(incG\
{mE(el_L1 v+~ vl_LI1 — vi_L1)})
acts: tG_V :=tG_V U {newV — Vertex2}
act6: tG_E := (tG_E \ {edgeName(mE(el_L1 +— vi_L1 — vl_L1)) — Edgel}) U
{newE — Edge2}
end
END

Figure 7.6: Event-B Rule Event

Preservation of semantics:According to Def. 39, the semantics of Event-B, the first

event that occurs must be the initialization event. Thisneweecurs only once in

94

INVARIANTS
propl: finite(incQ@)
prop2: card(incG) < 2

Figure 7.7: Stating Properties

any computation. In our translation, the occurrence of ¢éviesnt will generate a
state that represents the start graph of the grammar. Fismdimt on, any enabled
event may happen. Each of the other events represents era the grammar: the
guard describes the existence of a match, and the actionslethe effect of the
rule application. Whenever there is a match for a rule agogri Def. 15 the guard
of the corresponding event will be true and this event wilelbabled (and also, if
the event is enabled, there must be a match for the corresgpnde). Among all
enabled events, the choice of the one that will happen isdederministic, exactly
as defined in the semantics of a graph grammar. The effeceaidburrence of an
event is a parallel assignment to the variables that comiesdescription of the
state graph. These assignments were defined according ta®ehat was proven
to be equivalent to a SPO derivation step. Thus, the transstystem of the event-B
model generated from a graph grammar corresponds exadtig toehavior of the
grammar.

Proving Properties: Once the start graph and all rules are represented in the&-Bven
model, the property to be proved can be stated as an invarframtexample, we
could add the invariantginite(incG) andcard(incG) < 2, meaning respectively
that any reachable graph has a finite number of edges andahetiohable graph
can have more than 2 edges (see Figure 7.7). For the giverpéxahrese properties
are true, and this can be easily proven by the Rodin platform.

The example described above generated 24 proof obligatith2 of them proved
automatically. The event-B specification of the Token Rirgraple is detailed in Ap-
pendix B.

95

8 CONCLUSION

In this thesis we introduced a relational and logical appina® graph grammars to
allow the analysis of asynchronous distributed systemis inftnite state space. We have
used relational structures to characterize graph gramamarslefined rule applications as
definable transductions. We have first considered graphrgeamdefined over simple
(typed) graphs, and then we extended the representatidtritiuted graphs and gram-
mars with negative application conditions. We have shovat tur approach offers a
faithful encoding for SPO graph grammars and can thus beassbdsis to enable the use
of the theorem proving techniques to prove properties withis approach, complement-
ing the existing approaches based on model checking tasgsidur main contribution
should not be seen as a new approach to describe graph granbutrather as a way
to allow theorem proving techniques (and tools) to be useekisting approaches (we
modelled SPO here, but the theory could be used as basis dtehather approaches as
well). This is relevant since graph grammars offer an irstiéng specification technique
for a variety of application areas and up to now theorem mi@w#chniques could not be
used to analyse properties of graph grammars. The mainioatidns of this work are:

e Therelational and logical representation of graph grammdhapter 3) estab-
lishes the theoretical foundations for the analysis of grgammars through the-
orem proving. We represent graph grammars and their belvauging relational
and logical structures because they are the basis of thgmemrars. Related works
(STRECKER, 2008; BARESI; SPOLETINI, 2006) that adopt a digsion of graph
grammars based on logical or set theoretical represensaéither are not effec-
tively verifying properties of graph grammars or are lindite analyse a system for
a finite scope, whose size is user-defined. Approaches fdysang infinite-state
graph grammars (BALDAN; CORRADINI; KONIG, 2008; BALDAN; KNIG;
RENSINK, 2005) derive the model as approximations, whiah result in incon-
clusive verification reports.

The definition of graph grammars as relational structures.(D3) allows the asso-
ciation of a graph grammar to a tuple composed of a set andextioh of relations
over this set. The set describes the domain of the strudiueesét of vertices and
edges of the graph grammar) and the relations define the tguh gthe initial
graph and the rules. A series of logical conditions impostrictions to the ele-
ments of these relations such that they really represerddimponents of a graph
grammar (graphs, typed graphs, graph morphisms and rulés).application of
a rule is described by a definable transduction (Def. 16}, ¢ha be seen as an
inference rule on the relational structure associated t@plhggrammar. The result
of the transduction is another graph grammar whose inti#@ésorresponds to the

96

result of the application of a rule at a given match to theahgtate of the origi-

nal grammar. The other components of the grammar remainamgeh (i.e., the

resulting grammar has the same type graph and rules of thmalrione). Propo-

sitions 7 and 9 assure that the adopted encoding is welletefifror verification

purposes, the relations of the relational structure defunenas that are used in the
proofs and properties about reachable states are provemdigtion: first (base

case) the property is verified for the initial graph and tharihe inductive step, the
property is verified for every rule of the grammar applicaiole@ reachable graph
G, considering that the property is valid 6.

Therelational approach for attributed graph grammaiShapter 4) is an extension
of the basic formalism integrating the use of data typesgraphs. Attributed graph
grammars are very interesting from a practical point of yigwce it is possible to
use variables and terms when specifying the behaviour sgedeby rules. These
values (or terms) come from algebras specified as abstrectygees. The use of at-
tributed graphs gives the specifier a language that is matabéeifor specification,
merging the advantages of the graphical representatidntiagt standard represen-
tation of classical data types. From a practical perspectttributed graphs are
needed, since it is not feasible to encode data types likeadatumbers or strings,
etc. into graphs. For verification, the presence of attebytoses additional prob-
lems, since data types are often infinite sets. In fact, essticting to only finite
sets, specifications using attributed graphs often gieetason-verifiable systems
due to state-explosion. There are few approaches to védtifppeted graph gram-
mars, like (KASTENBERG, 2006) and (KONIG; KOZIOURA, 2008hd they
work for limited classes of grammars. We show that attrisudan be smoothly
integrated in our representation of graph grammars. Oumagp provides a basis
for a framework to reason about a large class of graph grasnrauding those
grammars that specify systems with infinite state-spadiowt using any kind of
approximation.

Definitions 29 and 31 express the relational representatian attributed graph

grammar. Propositions 16 and 18 assure that the relatigteaigon is well-defined.

The proof strategy applied in verification step is the sansewdleed before: we use
mathematical induction, considering that the relationthefrelational structure de-
fine axioms to be used during the proof. The difference isribatwe use variables
as attributes in the left- and right-hand sides of rules, thed, in many cases, at
the inductive step the development of the proof involvesaldes. In this case, in

order to establish the property, we must regard the equatbthe applied rule as
axioms.

Theextension to graph grammars with negative application @oraks (Chapter 5)
allows the specification that a certain structure is forbrdd/hen performing a rule
application, enhancing the expressiveness of the transtoon. Particularly, nega-
tive application conditions restrict the application ofigerby expressing that a spe-
cific structure (e.g. nodes, edges or subgraphs) must natekemt before applying
the rule to a certain state-graph. Application conditiosammmonly used in non-
trivial specifications. As emphasized in (HABEL; HECKEL; ENTZER, 1996),
they are frequently expressed informally by assuming a &fr@bntrol mechanism
that is not specified. Nevertheless such strategy proHiitsal specification and
verification. The expression of NACs is currently possiblgiaph grammar tools

97

(ERMEL; RUDOLF; TAENTZER, 1999; SCHURR; WINTER; ZUNDORR99)
that focus on the analysis of conflicts and functional behavi NACs can also
be specified in GROOVE (KASTENBERG; RENSINK, 2006b) for tmakysis of
infinite-state graph grammars in case that the state-spgatée computed on a
finitely representable fragment .

Definition 36 associates a relational structure to a grapmgrar with negative ap-
plication conditions. Proposition 20 shows the well-dedimess of our relational
definition. In this approach, extra conditions must be ckddbefore a rule applica-
tion assuming that the forbidden elements are not in the-ggatph. In verification

step, the existence of NACs determines extra conditioristrabe used during the
proofs.

The property patterngChapter 6) proposal contains 15 pattern classes in which
functional and structural requirements of reachable stea@® be formulated. The
patterns have the goal of helping and simplifying the tasitating precise require-
ments to be verified. It must provides enough help for theipation of properties
over reachable states of graph grammars. We believe thptdpesed patterns rep-
resent the first step towards a specification pattern foretgs over states in the
context of graph grammars. Differently from most existipgpeaches (DWYER,;
AVRUNIN; CORBETT, 1999; CHECHIK; PAUN, 1999; SALAMAH et 312007),
we focus on properties about reachable states for (inf)stte verification. Most
of existing patterns for property specification describeperties about traces for
finite-state verification tools. These two approaches angpbementary.

Tables 6.1, 6.2 and 6.3 describe a standard library of fanstihat describe typical
characteristics or elements of graphs (like the set ofaestof some type, the set of
edges of some type, the cardinality of vertices, etc.). &Hiesctions were defined
in the framework of relational graph grammars. Table 6.ppses a pattern taxon-
omy and Tables 6.6 and 6.7 list a collection of patterns fopprty specifications.

The modelling of graph grammar specifications in event-B suitet(Chapter 7)

enables the use of event-B provers (for instance, througtRtbdin platform) to
demonstrate properties of a graph grammar. Event-B (DERI20Y0) has been
successfully used in several other applications, haviraglae tool support for
both model specification and analysis. Event-B was chosentathe similarity

between event-B models and graph grammar specificatiorsjadly concerning
the rule-based behaviour. Many other works have been coimceon theorem
proving concurrent systems (ZEYDA; CAVALCANTI, 2009; ISEBROGGEN-

BACH, 2008a; LEHMANN; LEUSCHEL, 2003), but for asynchrorsogsystems,
graph grammars have the advantage because of its visual@shalan style.

To define the event-B model, we used the relational definiograph grammars.
The type graph is defined in an event-B context, where veege types and the
incidence relation relating them are constants. A set afragidefine these sets ex-
plicitly. A graph typed over a type graph is modelled by a $etoiables describing
its set of vertices, incidence relation, and typing funtsioThe compatibility con-
ditions of types and source and target of edges can be statedariants. The
initialization event is used to create the start graph. Thecgire of a rule is de-
fined by sets, constants and axioms. The behaviour of a ridessribed by an

98

event with guard conditions. A set of actions update theesgeiph according to
the rule.

Finally, we can say that the research field in theorem prognagh grammars is just
in its first stages. There are a number of open issues that enaytiject of future works.

e Besides implementation, case studies are necessary toagvand improve the
proposed approach. Up to now, the extensions of the graphngaa basic for-
malism were not specified in Rodin platform. We could als@stigate to which
extent the theory of refinement, that is very well-developedvent-B, could be
used to validate a stepwise development based on graph guamAnother plan is
the implementation of the data type reachable graph to b&ingbe specification
and verification of graph grammar models. This strategy rbastompared and
evaluated with relation to the adopted implementation.

e Other classes of graph grammars not considered in thisstbesiprise many prac-
tical applications. For instance, object-based graph grara (DOTTI et al., 2003),
timed object-based graph grammars (MICHELON; COSTA; RIBg) 2007, 2006),
object-oriented graph grammars (FERREIRA; FOSS; RIBEIR@)7) and many
others (SCHFURR, 1997) possibly with other kind of grapbdtires, like hyper-
graphs, labelled and attributed hypergraphs, have thairapplication fields. So it
should be appealing to investigate a general descriptidheofelational approach
such that many kinds of graphs and/or grammars become aestanf this general
framework.

e The approach here proposed may be defined for Double-Pu$b®@) graph
grammars (EHRIG et al., 1997) without any mayor problems$h&SPO approach
it is just necessary to find an image of the left-hand side afl@into a reachable
graph in order that a rule could be applied. In the DPO appreame extra restric-
tions must be checked, namghlliing condition before a rule can be applied. This
means that some extra logic formulas (or extra guard camditin case of event B
structures) must be included to be verified before a ruleiegipdn.

e The property patterns may also be incorporated in a proofdreork. It would be
helpful, as far as possible, to detail for each stated requent the properties or
lemmas that must be claimed for the conclusion of the proaiuding strategies
of proofs that can be adopted in each case. Simultaneoustyuetured English
grammar could be developed to assist the formulation ofgntas. Besides that, a
natural extension of the stated patterns would be the ilgagin of requirements
described with higher-order logics. We should, at last, gle@ment and evaluate
our pattern system surveying an appropriate number ofwedd specifications.

e Another topic of investigation is the use of theorem proviechnique to analyse
other kind of properties, like safety and liveness propsrtFor instance, controlla-
bility, or the property of reaching a particular (set of)te{a) of the system whatever
be the current one, is an important subject of analysis. Sraterty can not be ver-
ified through mathematical induction, since it is not finytalt should be defined
over all future behaviours of the system.

99

REFERENCES

ABDULLA, P. A.; JONSSON, B.; NILSSON, M.; D'ORSO, J.; SAKSE\M. Regular
Model Checking for LTL(MSO). In: CAV, 2004Proceedings. . .Springer, 2004. p.348—
360. (Lecture Notes in Computer Science, v.3114).

ABRIAL, J.-R. The B-book assigning programs to meanings. New York, NY, USA:
Cambridge University Press, 1996.

ABRIAL, J.-R. Formal methods in industry: achievementghpems, future. In: ICSE
'06: PROCEEDING OF THE 28TH INTERNATIONAL CONFERENCE ON SOF
WARE ENGINEERING, 2006, New York, NY, USAProceedings. . ACM Press, 2006.
p.761-768.

ABRIAL, J.-R. A System Development Process with Event-B #mel Rodin Platform.
In: ICFEM, 2007.Proceedings...Springer, 2007. p.1-3. (Lecture Notes in Computer
Science, v.4789).

ABRIAL, J.-R.; BUTLER, M.; HALLERSTEDE, S.; HOANG, T. S.; MHTA, F,
VOISIN, L. Rodin: an open toolset for modelling and reasgrimevent-binternational
Journal on Software Tools for Technology Transfer (STTT) [S.1.], April 2010.

AIT-AMEUR, Y.; BARON, M.; KAMEL, N.; MOTA, J.-M. Encoding a pocess algebra
using the Event B method: application to the validation ofman–computer
interactionsint. J. Softw. Tools Technol. Transf, Berlin, Heidelberg, v.11, n.3, p.239—
253, 2009.

ALI, S. S.ANALOG : a logical language for natural language processing. 1994.

ALUR, R.; DILL, D. L. A Theory of Timed AutomataTheoretical Computer Science
[S.1], v.126, n.2, p.183-235, 1994.

AMBRIOLA, V.; GERVASI, V. On the Systematic Analysis of Naal Language Re-
quirements with CIRCEAutomated Software Engg, Hingham, MA, USA, v.13, n.1,
p.107-167, 2006.

BACK, R.-J.; SERE, K. Stepwise Refinement of Action SystelmsProceedings of the
International Conference on Mathematics of Program Caoostm, 375th Anniversary
of the Groningen University, 1989, London, URroceedings. . .Springer-Verlag, 1989.
p.115-138.

100

BALDAN, P.; CORRADINI, A.; KONIG, B. Unfolding-Based Verifiation for Graph
Transformation Systems. In: UNIGRA '03: UNIFORM APPROACHHO GRAPHI-
CAL SPECIFICATION TECHNIQUES (WARSAW), 200®roceedings...[S.l.: s.n.],
2003.

BALDAN, P.; CORRADINI, A.; K&NIG, B. A framework for the vefication of infinite-
state graph transformation systerms. Comput., Duluth, MN, USA, v.206, n.7, p.869—
907, 2008.

BALDAN, P.; CORRADINI, A.; KONIG, B. A Framework for the Vefication of Infinite-
State Graph Transformation Systenhisformation and Computation, [S.l.], v.206,
p.869-907, 2008.

BALDAN, P.; CORRADINI, A.; MONTANARI, U.; RIBEIRO, L. Unfolding semantics
of graph transformatiorinf. Comput., Duluth, MN, USA, v.205, n.5, p.733-782, 2007.

BALDAN, P.; KONIG, B. Approximating the behaviour of graptahsformation systems.
In: ICGT 02 (INTERNATIONAL CONFERENCE ON GRAPH TRANSFORMRAON),
2002.Proceedings. . .Springer, 2002. p.14-29. (LNCS, v.2505).

BALDAN, P.; KONIG, B.; KONIG, B. A Logic for Analyzing Abstrations of Graph
Transformation Systems. In: SAS '03 (INTERNATIONAL STATIENALYSIS SYM-
POSIUM), 2003 Proceedings. . .Springer, 2003. p.255-272. (LNCS, v.2694).

BALDAN, P.; KONIG, B.; RENSINK, A. Graph Grammar Verificatiothrough Ab-
straction. In: ABSTRACTS COLLECTION — GRAPH TRANSFORMATNB AND
PROCESS ALGEBRAS FOR MODELING DISTRIBUTED AND MOBILE SYSNES,
2005.Proceedings.. [S.l.: s.n.], 2005. (Dagstuhl Seminar Proceedings 04241).

BARESI, L.; SPOLETINI, P. On the Use of Alloy to Analyze Grafinansformation
Systems. In: ICGT, 200@roceedings. . .Springer, 2006. p.306—-320. (LNCS, v.4178).

BARROS LUCENA, E. de. Reasoning about Petri Nets in HOL. IiPHDLS, 1991.
Proceedings. . IEEE Computer Society, 1991. p.384-394.

BASTEN, T.; HOOMAN, J. Process Algebra in PVS. In: TACAS "PROCEEDINGS
OF THE 5TH INTERNATIONAL CONFERENCE ON TOOLS AND ALGORITHMS
FOR CONSTRUCTION AND ANALYSIS OF SYSTEMS, 1999, London, URroceed-

ings. .. Springer-Verlag, 1999. p.270-284.

BEHM, P.; BENOIT, P.; FAIVRE, A.; MEYNADIER, J.-M. Météor: successful applica-
tion of B in a large project. In: FM '99: PROCEEDINGS OF THE WDICONGRESS
ON FORMAL METHODS IN THE DEVELOPMENT OF COMPUTING SYSTEMS-
VOLUME I, 1999, London, UK Proceedings. . .Springer-Verlag, 1999. p.369-387.

BEHRMANN, G.; DAVID, A.; LARSEN, K. G. Tutorial on WPAAL. In: Formal Meth-
ods for the Design of Real-Time SystemgdS.l.]: Springer, 2004. p.200-236. (LNCS,
v.3185).

BIERE, A.; CIMATTI, A.; CLARKE, E. M.; ZHU, Y. Symbolic ModelChecking without
BDDs. In: TACAS '99: PROCEEDINGS OF THE 5TH INTERNATIONAL COFER-

ENCE ON TOOLS AND ALGORITHMS FOR CONSTRUCTION AND ANALYSIS
OF SYSTEMS, 1999, London, UKroceedings. . .Springer-Verlag, 1999. p.193-207.

101

BITSCH, F. Safety Patterns - The Key to Formal SpecificatibBafety Requirements.
In: SAFECOMP '01: PROCEEDINGS OF THE 20TH INTERNATIONAL COM&R-
ENCE ON COMPUTER SAFETY, RELIABILITY AND SECURITY, 2001, Ladon,
UK. Proceedings. . .Springer-Verlag, 2001. p.176-189.

BLUMENSATH, B.; COURCELLE, B. Recognizability, hypergiapperations, and log-
ical types.Information and Computation, [S.l.], v.204, n.6, p.853-919, 2006.

BOTTONI, P.; TAENTZER, G.; SCHURR, A. Efficient Parsing ofsdial Languages
based on Critical Pair Analysis and Contextual Layered Graansformation. In: VL
'00: PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL SYMPOSIUMNDVI-
SUAL LANGUAGES (VL'00), 2000, Washington, DC, USARProceedings...|EEE
Computer Society, 2000. p.59.

BOUAJJANI, A.; HABERMEHL, P.; VOJNAR, T. Abstract Regular d&del Checking.
In: CAV, 2004.Proceedings. . .Springer, 2004. p.372-386. (Lecture Notes in Computer
Science, v.3114).

BOWEN, J. P.; HINCHEY, M. G. The use of industrial-strengtirrhal methods. In:
COMPSAC '97: PROCEEDINGS OF THE 21ST INTERNATIONAL COMPURE
SOFTWARE AND APPLICATIONS CONFERENCE, 1997, WashingtonC DUSA.
Proceedings. . IEEE Computer Society, 1997. p.332-337.

BOWEN, J. P.; HINCHEY, M. G. Ten commandments revisited: rajtear perspective
on the industrial application of formal methods. In: FMIQE! PROCEEDINGS OF
THE 10TH INTERNATIONAL WORKSHOP ON FORMAL METHODS FOR INDUS

TRIAL CRITICAL SYSTEMS, 2005, New York, NY, USAProceedings. . ACM Press,

2005. p.8-16.

BOWEN, J. P.; HINCHEY, M. G. Ten Commandments of Formal Meha.Ten Years
Later.Computer, Los Alamitos, CA, USA, v.39, n.1, p.40-48, 2006.

BUNKE, H. Graph Grammars - a Useful Tool for Pattern Recagn® In: INTERNA-
TIONAL WORKSHOP ON GRAPH-GRAMMARS AND THEIR APPLICATION TO
COMPUTER SCIENCE, 4., 1991, London, URroceedings. . .Springer-Verlag, 1991.
p.43-46.

BURCH, J. R.; CLARKE, E. M.; MCMILLAN, K. L.; DILL, D. L.; HWANG, L. J.
Symbolic model checking: 1020 states and beydntbrmation and Computation,
Duluth, MN, USA, v.98, n.2, p.142-170, 1992.

CAMILLERI, A.; INVERARDI, P.; NESI, M. Combining interactn and automation
in process algebra verification. In: TAPSOFT '91: PROCEEGBIOF THE INTER-
NATIONAL JOINT CONFERENCE ON THEORY AND PRACTICE OF SOFTWAR
DEVELOPMENT ON ADVANCES IN DISTRIBUTED COMPUTING (ADC) AND
COLLOQUIUM ON COMBINING PARADIGMS FOR SOFTWARE DEVELOPMEN

(CCPSD): VOL. 2, 1991, New York, NY, USAProceedings. ..Springer-Verlag New
York: Inc., 1991. p.283-296.

CANSELL, D.; GOPALAKRISHNAN, G.; JONES, M.; MéRY, D.; WEIN@QEPFLEN,
A. Incremental Proof of the Producer/Consumer PropertyttierPCI Protocol. In: ZB
'02: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE OF B ANZ

102

USERS ON FORMAL SPECIFICATION AND DEVELOPMENT IN Z AND B, 2@)
London, UK.Proceedings. . .Springer-Verlag, 2002. p.22—-41.

CERVO, L. V,; RIBEIRO, L. DNA-Based Modelling of Parallel gbrithms. In: WOB,
2002.Proceedings. . [S.l.: s.n.], 2002. p.16-23.

CHECHIK, M.; PAUN, D. O. Events in Property Patterns. In: INKRNATIONAL SPIN
WORKSHOPS ON THEORETICAL AND PRACTICAL ASPECTS OF SPIN MODE
CHECKING, 5., 1999, London, UKProceedings. . .Springer-Verlag, 1999. p.154-167.

CHOPPY, C.; MAYERO, M.; PETRUCCI, L. Experimenting FormabBfs of Petri Nets
RefinementsElectron. Notes Theor. Comput. Sci. Amsterdam, The Netherlands, The
Netherlands, v.214, p.231-254, 2008.

CLARKE, E. M.; GRUMBERG, O.; JHA, S.; LU, Y.; VEITH, H. Progss on the State
Explosion Problem in Model Checking. In: INFORMATICS - 10 XRS BACK. 10
YEARS AHEAD., 2001, London, UKProceedings...Springer-Verlag, 2001. p.176—
194.

CLARKE, E. M.; WING, J. M. Formal methods: state of the art datlire directions.
ACM Computing Surveys, New York, NY, USA, v.28, n.4, p.626—643, 1996.

COBLEIGH, R. L.; AVRUNIN, G. S.; CLARKE, L. A. User guidancef creating precise
and accessible property specifications. In: SIGSOFT '06/E&. PROCEEDINGS OF
THE 14TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIOS
OF SOFTWARE ENGINEERING, 2006, New York, NY, USARroceedings...ACM,
2006. p.208-218.

COMPUTER AIDED VERIFICATION, 16TH INTERNATIONAL CONFERERE,
CAV 2004, BOSTON, MA, USA, JULY 13-17, 2004, PROCEEDINGS020Proceed-
ings. .. Springer, 2004. (Lecture Notes in Computer Science, v.3114

CONSORTIUM, E Eclipse Graphical Editing Framework (GEF) Version 3.5.2 2010.

COPSTEIN, B.; COSTA MORA, M. da; RIBEIRO, L. An EnvironmermirfFormal Mod-
eling and Simulation of Control Systems. In: SS '00: PROCHEBS OF THE 33RD
ANNUAL SIMULATION SYMPOSIUM, 2000, Washington, DC, USARroceedings. . .
IEEE Computer Society, 2000. p.74.

CORBETT, J. C.; DWYER, M. B.; HATCLIFF, J.; ROBBY. A Languadg&amework
for Expressing Checkable Properties of Dynamic SoftwarelNTERNATIONAL SPIN
WORKSHOP ON SPIN MODEL CHECKING AND SOFTWARE VERIFICATION,.,
2000, LondonProceedings. . .Springer, 2000. p.205-223.

COURCELLE, B. The Monadic Second-Order Logic of Graphs tognizable sets of
finite graphsinformation and Computation, [S.l.], v.85, n.1, p.12-75, 1990.

COURCELLE, B. Graph grammars, monadic second-order logit theory of graph
minors. In: GRAPH STRUCTURE THEORY, 199Proceedings. ..American Mathe-
matical Society, 1991. p.565-590. (Contemporary Mathesat.147).

103

COURCELLE, B. The Monadic Second order Logic of Graphs VI:seneral represen-
tations of graphs by relational structur&iscrete Applied Mathematics [S.l.], v.54,
n.2-3, p.117-149, 1994.

COURCELLE, B. Monadic Second-Order Definable Graph Traosdos: a survey.
Theoretical Computer Science[S.l.], v.126, n.1, p.53-75, 1994.

COURCELLE, B. The Expression of Graph Properties and Gragtmsformations in
Monadic Second-Order Logic. In: HANDBOOK OF GRAPH GRAMMAR$997,
River Edge, NJ, USAProceedings...World Scientific Publishing Co.: Inc., 1997.
p.313-400.

COURCELLE, B. Graph Operations and Monadic Second-Ordeid-oa survey. In:
LPAR, 2000.Proceedings. . .Springer, 2000. p.20-24. (LNCS, v.1955).

COURCELLE, B. Recognizable Sets of Graphs, Hypergraphs Reldtional Struc-
tures: asurvey. In: DEVELOPMENTS IN LANGUAGE THEORY, 200roceedings. . .
Springer, 2004. p.1-11. (LNCS, v.3340).

COURCELLE, B.; ENGELFRIET, J.; ROZENBERG, G. Handle-Reimg Hypergraph
GrammarsJournal of Computer and System Sciences (JCSJS.1.], v.46, n.2, p.218—
270, 1993.

CRAIGEN, D.; GERHART, S.; RALSTON, TAn International Survey of Industrial
Applications of Formal Methods (Volume 1 purpose, approach, analysis and conclu-
sions, volume 2: case studies). National Technical InfoioneService, 5285 Port Royal
Road, Springfield, VA 22161, USA: [s.n.], 1993. (NIST GCR@&33-V1 & NIST GCR
93-626-V2 (Order numbers: PB93-178556/AS & PB93-1785&3)A

DAMCHOOM, K.; BUTLER, M. Applying Event and Machine Decomgition to a
Flash-Based Filestore in Event-B. In: SBMF 2009, 20®@ceedings. . .Springer, 2009.
v.5902, p.134-152. Springer LNCS 5902.

DAMCHOOM, K.; BUTLER, M.; ABRIAL, J.-R. Modelling and Proobf a Tree-
Structured File System in Event-B and Rodin. In: ICFEM '0OR@CEEDINGS OF THE
10TH INTERNATIONAL CONFERENCE ON FORMAL METHODS AND SOFT-
WARE ENGINEERING, 2008, Berlin, Heidelberdg?roceedings... Springer-Verlag,
2008. p.25-44.

DAVIS, J. F. The affordable application of formal methodsstdtware engineering. In:
SIGADA '05: PROCEEDINGS OF THE 2005 ANNUAL ACM SIGADA INTERA-
TIONAL CONFERENCE ON ADA, 2005, New York, NY, USAProceedings. . . ACM
Press, 2005. p.57-62.

DELZANNO, G. Automatic Verification of Parameterized Cadbeherence Protocols.
In: CAV '00: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFEREDBE ON
COMPUTER AIDED VERIFICATION, 2000, London, UKProceedings...Springer-
Verlag, 2000. p.53-68.

DEPLOY. Event-B and the Rodin Platform. http://www.event-b.org/ (last accessed Jan-
uary 2010). Rodin Development is supported by Europeantiid Projects DEPLOY
(2008 to 2012) and RODIN (2004 to 2007).

104

DIJKSTRA, E.A Discipline of Programming. [S.l.]: Prentice-Hall International, 1976.

DIXIT, V. V.; MOLDOVAN, D. I. Minimal State Space Search in Rdlel Production
SystemslEEE Trans. on Knowl. and Data Eng., Piscataway, NJ, USA, v.3, n.4, p.435—
443, 1991.

DOTTI, F. L.; FOSS, L.; RIBEIRO, L.; SANTOS, O. M. Verificatioof distributed
object-based systems. In: INTERNATIONAL CONFERENCE ON AM&R. METH-

ODS FOR OPEN OBJECT-BASED DISTRIBUTED SYSTEMS, 6., 2003oceed-
ings. .. Springer, 2003. p.261-275. (LNCS, v.2884).

DOTTI, F. L.; RIBEIRO, L. Specification of Mobile Code Systemsing Graph Gram-
mars. In: Formal Methods for Open Object-Based Distributed Systems [S.l.]:
Kluwer, 2000. p.45-64.

DOTTI, F. L.; RIBEIRO, L.; SANTOS, O. M. dos. SpecificationcaAnalysis of Fault
Behaviours Using Graph Grammars. In: AGTIVE, 20P8&ceedings. . .Springer, 2003.
p.120-133. (Lecture Notes in Computer Science, v.3062).

DOTTI, F. L.; RIBEIRO, L.; SANTOS, O. M. dos; PASINI, F. Veyiing Object-based
Graph Grammars: an assume-guarantee appré&uaftware and System Modeling
[S.l], v.5, n.3, p.289-311, 2006.

DRUSINSKY, D. Visual formal specification using (N)TLChsrt statechart automata
with temporal logic and natural language conditioned fiteorss. In: PARALLEL AND
DISTRIBUTED PROCESSING SYMPOSIUM, 2004. PROCEEDINGS. HINTER-
NATIONAL, 2004. Proceedings. . [S.l.: s.n.], 2004. p.268—.

DUARTE, L. M.; DOTTI, F. L.; COPSTEIN, B.; RIBEIRO, L. Simuteon of Mobile
Applications. In: COMMUNICATION NETWORKS AND DISTRIBUTECSYSTEMS
MODELING AND SIMULATION CONFERENCE, 2002Proceedings...[S.l.: s.n.],
2002. v.1, p.1-15.

DUTERTRE, B.; SCHNEIDER, S. Using a PVS Embedding of CSP tofyyéuthenti-
cation Protocols. In: TPHOLS '97: PROCEEDINGS OF THE 10TH BRNATIONAL
CONFERENCE ON THEOREM PROVING IN HIGHER ORDER LOGICS, 198dn-
don, UK.Proceedings. . .Springer-Verlag, 1997. p.121-136.

DWYER, M. B.; AVRUNIN, G. S.; CORBETT, J. C. Property spec#tmon patterns for
finite-state verification. In: FMSP '98: PROCEEDINGS OF THEGOND WORK-
SHOP ON FORMAL METHODS IN SOFTWARE PRACTICE, 1998, New YoiXY,
USA. Proceedings. . . ACM, 1998. p.7-15.

DWYER, M. B.; AVRUNIN, G. S.; CORBETT, J. C. Patterns in praofyespecifica-
tions for finite-state verification. In: ICSE '99: PROCEEDHS$ OF THE 21ST INTER-
NATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 1999, New Yo\,
USA. Proceedings. . .ACM, 1999. p.411-420.

DWYER, M. B.; HATCLIFF, J.; ROBBY, R.; PASAREANU, C. S.; VISR, W. Formal
Software Analysis Emerging Trends in Software Model Chegkin: FOSE '07: 2007
FUTURE OF SOFTWARE ENGINEERING, 200Proceedings. . |EEE Computer So-
ciety, 2007. p.120-136.

105

EDELKAMP, S.; JABBAR, S.; LLUCH-LAFUENTE, A. Heuristic Seeh for the Analy-
sis of Graph Transition Systems. In: ICGT, 2088oceedings. . .Springer, 2006. p.414—
429. (LNCS, v.4178).

EDMUND M. CLARKE, J.; GRUMBERG, O.; PELED, D. AModel checking Cam-
bridge, MA, USA: MIT Press, 1999.

EHRIG, H.; EHRIG, K.; PRANGE, U.; TAENTZER, G. Fundamentdidory for Typed
Attributed Graphs and Graph Transformation based on Adbd4$iR Categories-un-

damta Informaticae, Amsterdam, The Netherlands, The Netherlands, v.74, 18161,
2006.

EHRIG, H.; ENGELS, G.; KREOWSKI, H.-J.; ROZENBERG, G. (Eddandbook of
graph grammars and computing by graph transformation: vol. 2: applications, lan-
guages, and tools. River Edge, NJ, USA: World Scientific Babig Co., Inc., 1999.

EHRIG, H.; HECKEL, R.; KORFF, M.; LOWE, M.; RIBEIRO, L.; WAGHER, A.; COR-
RADINI, A. Algebraic approaches to graph transformatioartRI: single pushout ap-
proach and comparison with double pushout approdeimdbook of graph grammars
and computing by graph transformation: volume I. foundations, River Edge, NJ,
USA, p.247-312, 1997.

EHRIG, K.; ERMEL, C.; HANSGEN, S.; TAENTZER, G. Generatidnvisual editors
as eclipse plug-ins. In: ASE '05: PROCEEDINGS OF THE 20TH EZACM INTER-
NATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, 25,
New York, NY, USA.Proceedings. . ACM, 2005. p.134-143.

ERMEL, C.; RUDOLF, M.; TAENTZER, G. The AGG approach: langesand environ-
ment.Handbook of graph grammars and computing by graph transformation: vol.
2: applications, languages, and toolsRiver Edge, NJ, USA, p.551-603, 1999.

FERRARI, G.; GNESI, S.; MONTANARI, U.; PISTORE, M.; RISTORG. Verifying
Mobile Processes in the HAL Environment. In: CAV '98: PROTHRGS OF THE
10TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED VERIFICADN,
1998, London, UKProceedings. . .Springer-Verlag, 1998. p.511-515.

FERREIRA, A. P. L.; FOSS, L.; RIBEIRO, L. Formal Verificatiaf Object-Oriented
Graph Grammars Specificatiortslectr. Notes Theor. Comput. Sci, [S.l.], v.175, n.4,
p.101-114, 2007.

FISHER, M.; KONEYV, B.; LISITSA, A. Practical Infinite-Stadéerification with Tempo-
ral Reasoning. In: VISSAS, 200Proceedings...IOS Press, 2005. p.91-100. (NATO
Security through Science Series D: Information and Compaiitn Security, v.1).

FLAKE, S.; MUELLER, W. Structured English for model checgiapecifications, Proc.
Methoden u. Beschreibungssprachen zur Modellierung ufikégron von Schaltungen u.
Systemen, VDE Verlag 2000B. In: TRANS. AMER. MATH. SOC, 2080oceedings. ..
VDE Verlag, 2000. p.2547-2552.

FORMAL METHODS FOR INDUSTRIAL CRITICAL SYSTEMS, 14TH INTERA-
TIONAL WORKSHOP, FMICS 2009, EINDHOVEN, THE NETHERLANDS,®OVEM-
BER 2-3, 2009. PROCEEDINGS, 200Rroceedings. ..Springer, 2009. (Lecture Notes
in Computer Science, v.5825).

106

FORMAL METHODS IN SOFTWARE AND SYSTEMS MODELING, ESSAYS DED
ICATED TO HARTMUT EHRIG, ON THE OCCASION OF HIS 60TH BIRTHDAY
2005.Proceedings. . .Springer, 2005. (Lecture Notes in Computer Science, v.3393

FOSS, LA Translation from Object-Based Hypergraph Grammars into pi-Calculus
(in Portuguese) 2003. Dissertacdo (Mestrado em Ciéncia da Computacédo) GCPP
UFRGS.

FOSS, L.; RIBEIRO, L. A Translation from Object-Based Hygraph Grammars into
pi-Calculus Electr. Notes Theor. Comput. Sci, [S.l.], v.95, p.245-267, 2004.

FRANCA, R. B.; BECKER, L. B.; BODEVEIX, J.-P.; FARINES, J.-MFILALI, M.
Towards Safe Design of Synchronous Bus Protocols in Evett:BSBMF, 2009.Pro-
ceedings. . .Springer, 2009. p.170-185. (Lecture Notes in Computem8eigv.5902).

FUCHS, N. E.; SCHWERTEL, U.; SCHWITTER, R. Attempto Conteal English -
Not Just Another Logic Specification Language. In: LOPST& 'BROCEEDINGS OF
THE 8TH INTERNATIONAL WORKSHOP ON LOGIC PROGRAMMING SYNTHE
SIS AND TRANSFORMATION, 1998, LondorRroceedings. . .Springer, 1998. p.1-20.

FUSS, C.; MOSLER, C.; RANGER, U.; SCHULTCHEN, E. The Jury idl sut: a
comparison of agg, fujaba, and progre€EASST, [S.l.], v.6, 2007.

GEISS, R.; BATZ, G. V.; GRUND, D.; HACK, S.; SZALKOWSKI, A. Gen: a fast spo-
based graph rewriting tool. In: ICGT, 200Broceedings. . .Springer, 2006. p.383-397.
(LNCS, v.4178).

GERBER, R.; GUNTER, E. L.; LEE, I. Implementing a Real-Timee€ess Algebra in
HOL. In: TPHOLS, 1991Proceedings. ..IEEE Computer Society, 1991. p.144-154.

GERVASI, V.; ZOWGHI, D. Reasoning about inconsistenciesatural language require-
ments ACM Trans. Softw. Eng. Methodol., New York, NY, USA, v.14, n.3, p.277-330,
2005.

GORDON, M. J. C.; MELHAM, T. F. (Ed.)Introduction to HOL : a theorem proving
environment for higher order logic. New York, NY, USA: Candge University Press,
1993.

GRAPH-GRAMMARS AND THEIR APPLICATION TO COMPUTER SCIENCBRD
INTERNATIONAL WORKSHOP, WARRENTON, VIRGINIA, USA, DECEMER 2-6,
1986, 1987Proceedings. . .Springer, 1987. (Lecture Notes in Computer Science, v.291)

GRAPH TRANSFORMATIONS, THIRD INTERNATIONAL CONFERENCE,QGT
2006, NATAL, RIO GRANDE DO NORTE, BRAZIL, SEPTEMBER 17-230@6, PRO-
CEEDINGS, 2006Proceedings. . .Springer, 2006. (LNCS, v.4178).

GROENBOOM, R.; HENDRIKS, C.; POLAK, |.; TERLOUW, J.; UDDING. T. Alge-
braic Proof Assistants in HOL. In: MPC '95: MATHEMATICS OF BRERAM CON-
STRUCTION, 1995, London, UKProceedings. . .Springer-Verlag, 1995. p.304-321.

GRUHN, V,; LAUE, R. Patterns for Timed Property SpecificascElectr. Notes Theor.
Comput. Sci, [S.I.], v.153, n.2, p.117-133, 2006.

107

GRUNSKE, L. Specification patterns for probabilistic gtiaproperties. In: ICSE '08:
PROCEEDINGS OF THE 30TH INTERNATIONAL CONFERENCE ON SOFT\RE
ENGINEERING, 2008, New York, NY, USAProceedings. . .ACM, 2008. p.31-40.

GUREVICH, Y. Monadic Second-Order Theories. In. BARWISE, BEFERMAN,
S. (Ed.).Model-Theoretic Logics [S.l.]: Springer, 1985. p.479-506.

HABEL, A.; HECKEL, R.; TAENTZER, G. Graph grammars with neéya application
conditions.Fundam. Inf., Amsterdam, The Netherlands, The Netherlands, v.26, n.3-4
p.287-313, 1996.

HAMID, N. A. Theorem proving with the COQ proof assistanttdral presentation].
Comput. Small Coll.,, , USA, v.24, n.2, p.230-230, 2008.

HANEBERG, D.; SCHELLHORN, G.; GRANDY, H.; REIF, W. Verificain of Mondex
electronic purses with KIV: from transactions to a secupitgtocol.Form. Asp. Com-
put., London, UK, v.20, n.1, p.41-59, 2007.

HAUSMANN, J. H.; HECKEL, R.; TAENTZER, G. Detection of congting functional
requirements in a use case-driven approach: a static ana&bghnique based on graph
transformation. In: ICSE '02: PROCEEDINGS OF THE 24TH INTRATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 2002, New York, NY, USAro-
ceedings...ACM, 2002. p.105-115.

HECKEL, R.; KUSTER, J. M.; TAENTZER, G. Confluence of Typedrmiiuted Graph
Transformation Systems. In: ICGT '02: PROCEEDINGS OF THR&T INTERNA-
TIONAL CONFERENCE ON GRAPH TRANSFORMATION, 2002, LondonKUPro-

ceedings. . .Springer-Verlag, 2002. p.161-176.

HECKEL, R.; WAGNER, A. Ensuring Consistency of Conditio@aph Grammars - A
Constructive Approach Electronic Notes in Theoretical Computer SciencgS.l.], v.2,
p.118 — 126, 1995. SEGRAGRA 1995, Joint COMPUGRAPH/SEMA®RIANorkshop
on Graph Rewriting and Computation.

HEITMEYER, C. Developing safety-critical systems: theeraf formal methods and
tools. In: SCS '05: PROCEEDINGS OF THE 10TH AUSTRALIAN WORKS®SP ON
SAFETY CRITICAL SYSTEMS AND SOFTWARE, 2006, Darlinghurgtystralia, Aus-
tralia. Proceedings. . .Australian Computer Society: Inc., 2006. p.95-99.

HINCHEY, M. G.; BOWEN, J. P. (Ed.)Applications of Formal Methods. [S.l.]: Pren-
tice Hall, 1995.

HINCHEY, M. G.; BOWEN, J. P. (Ed.)Industrial-Strength Formal Methods in Prac-
tice. [S.l.]: Springer, 1999.

HOARE, C. A. R. Communicating sequential procesgasmmun. ACM, New York,
NY, USA, v.21, n.8, p.666-677, 1978.

HOLZMANN, G. J. The model checker SpifEEE Transactions on Software Engi-
neering, Los Alamitos, CA, USA, v.23, n.5, p.279-295, 1997.

HOLZMANN, G. J. The Model Checker SPINEEE Trans. Softw. Eng., Piscataway,
NJ, USA, v.23, n.5, p.279-295, 1997.

108

HOMMERSOM, A.; GROOT, P.; LUCAS, P. J. F.; BALSER, M.; SCHMITJ. Veri-
fication of Medical Guidelines Using Background KnowledgeTask NetworkslIEEE
Trans. on Knowl. and Data Eng, Piscataway, NJ, USA, v.19, n.6, p.832-846, 2007.

HUSSEIN, H. K.; HASSANIEN, A. E. Graph Grammar Algebraic Appch For Gen-
erating Fractal Pattern. In: WSCG’99 CONFERENCE PROCEEB#N1999Proceed-
ings...[S.l.: s.n.], 1999.

HUTH, M. R. A.; RYAN, M. Logic in computer science modelling and reasoning about
systems. New York, NY, USA: Cambridge University Press,®200

INTERNATIONAL WORKSHOP ON THE HOL THEOREM PROVING SYSTEM
AND ITS APPLICATIONS, AUGUST 1991, DAVIS, CALIFORNIA, USA1991., 1992.
Proceedings. . [EEE Computer Society, 1992.

ISOBE, Y.; ROGGENBACH, M. CSP-Prover - A Proof Tool for therWfeation of Scal-
able Concurrent SystemSSST (Japan Society for Software Science and Technology)
Computer Software, [S.l.], v.25, 2008.

ISOBE, Y.; ROGGENBACH, M. Proof Principles of CSP — CSP-Rxmoin Practice. In:
LDIC 2007, 2008Proceedings. . .Springer, 2008.

ISOBE, Y.; ROGGENBACH, M.; GRUNER, S. Extending CSP-Probgr deadlock-
analysis: towards the verification of systolic arrays. I©.SE 2005, 2003roceedings. ..
Kindai-kagaku-sha, 2005. (Japanese Lecture Notes Seres 3

JACOBSON, I.; BOOCH, G.; RUMBAUGH, Jhe unified software development pro-
cessBoston, MA, USA: Addison-Wesley Longman Publishing Cag.| 1999.

JEMNIBEN AYED, L.; SIALA, F. Specification and Verificatiorf dulti-agent Systems
Interaction Protocols Using a Combination of AUML and EvBntnteractive Systems.
Design, Specification, and Verification: 15th Internationd Workshop, DSV-IS 2008
Kingston, Canada, July 16-18, 2008 Revised PaperBerlin, Heidelberg, p.102-107,
2008.

JORGES, S.; MARGARIA, T.; STEFFEN, B. FormulaBuilder: altdor graph-based
modelling and generation of formulae. In: ICSE '06: PROCHEGS OF THE 28TH IN-
TERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2006, Nexark,
NY, USA. Proceedings...ACM, 2006. p.815-818.

KASTENBERG, H. Towards Attributed Graphs in Groove: workpimgressElectronic
Notes in Theoretical Computer Sciencg[S.l.], v.154, n.2, p.47 — 54, 2006. Proceed-
ings of the Workshop on Graph Transformation for Verificattamd Concurrency (GT-VC
2005).

KASTENBERG, H.; RENSINK, A. Model Checking Dynamic States GROOVE.
In: MODEL CHECKING SOFTWARE (SPIN), 200&roceedings. . .Springer-Verlag,
2006. p.299-305. (Lecture Notes in Computer Science, 8)392

KASTENBERG, H.; RENSINK, A. Model Checking Dynamic StatesGROOVE. In:
SPIN, 2006Proceedings. . .Springer, 2006. p.299-305. (Lecture Notes in Computer Sci-
ence, v.3925).

109

KESTEN, Y.; MALER, O.; MARCUS, M.; PNUELI, A.; SHAHAR, E. Syivolic model
checking with rich assertional languag@&bseor. Comput. Sci, Essex, UK, v.256, n.1-2,
p.93-112, 2001.

KNIGHT, J. C. Challenges in the Utilization of Formal Metlsdh: FTRTFT '98: PRO-
CEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON FORMAL TECH-
NIQUES IN REAL-TIME AND FAULT-TOLERANT SYSTEMS, 1998, Lonon, UK.
Proceedings. . .Springer-Verlag, 1998. p.1-17.

KONIG, B.; KOZIOURA, V. Augur—A Tool for the Analysis of GrapTransformation
SystemsEATCS Bulletin, [S.l.], v.87, p.125-137, November 2005. Appeared in The
Formal Specification Column.

KONIG, B.; KOZIOURA, V. Augur 2 — A New Version of a Tool for thA&nalysis of
Graph Transformation Systentsectron. Notes Theor. Comput. Sci. Amsterdam, The
Netherlands, The Netherlands, v.211, p.201-210, 2008.

KONIG, B.; KOZIOURA, V. Towards the Verification of Attribed Graph Transfor-
mation Systems. In: GRAPH TRANSFORMATIONS, 4TH INT. CONHERCE, ICGT
2008, 2008Proceedings. . .Springer, 2008. p.305-320. (Lecture Notes in Computer Sci-
ence, v.5214).

KONRAD, S.; CHENG, B. H. C. Real-time specification patterims SOFTWARE EN-
GINEERING, 27., 2005, New YorkProceedings. . . ACM, 2005. p.372-381.

KORFF, M. Application of Graph Grammars to Rule-Based Systeln: INTERNA-
TIONAL WORKSHOP ON GRAPH-GRAMMARS AND THEIR APPLICATION TO
COMPUTER SCIENCE, 4., 1991, London, URroceedings. . .Springer-Verlag, 1991.
p.505-519.

KUMAR, V. Algorithms for Constraint Satisfaction Problema survey Al Magazine,
[S.l], v.13, p.32—44, 1992.

LECOUTRE, C.Constraint Networks: techniques and algorithms. 592 pages: Interna-
tional Scientific and Technical Encyclopedia (ISTE Ltd) hddViley Inc., 2009. ISBN:
9781848211063.

LEHMANN, H.; LEUSCHEL, M. Inductive Theorem Proving by Pn@gn Specialisation:
generating proofs for isabelle using ecce. In: LOPSTR, 2608ceedings. . .Springer,
2003. p.1-19. (Lecture Notes in Computer Science, v.3018).

LEMMAL-LTD. The Proof Power Webpages2010.

LETIER, E.; LAMSWEERDE, A. van. Deriving operational sofive specifications from
system goalsSIGSOFT Softw. Eng. NotesNew York, NY, USA, v.27, n.6, p.119-128,
2002.

LLADOS, J.; SANCHEZ, G. Symbol recognition using graphs. Ii@IP (2), 2003.Pro-
ceedings.. [S.l.: s.n.], 2003. p.49-52.

LLUCH-LAFUENTE, A.; EDELKAMP, S.; LEUE, S. Partial Order Rleiction in Di-
rected Model Checking. In: INTERNATIONAL SPIN WORKSHOP ON QDEL
CHECKING OF SOFTWARE, 9., 2002, London, URroceedings. . .Springer-Verlag,
2002. p.112-127.

110

LOWE, M. Algebraic approach to single-pushout graph tramagtion.Theor. Comput.
Sci, Essex, UK, v.109, n.1-2, p.181-224, 1993.

LOWE, M.; KORFF, M.; WAGNER, A. An algebraic framework foreghransformation of
attributed graphs. InTerm graph rewriting : theory and practice. Chichester, UK, UK:
John Wiley and Sons Ltd., 1993. p.185-199.

MCMILLAN, K. L. Symbolic model checking an approach to the state explosion prob-
lem. 1992. Tese (Doutorado em Ciéncia da Computacdo) —spRitih, PA, USA.

MCNEW, J.-M.; KLAVINS, E. Model-Checking and Control of $&ssembly. In:
AMERICAN CONTROL CONFERENCE, 2006., 200&roceedings...[S.l.: s.n.],
2006. p.14-21.

MICHAEL, H. C.; W., B. R. Impediments to Industrial Use of Formal Methods
[S.l.: s.n.], 1996.

MICHELON, L.; COSTA, S. A. da; RIBEIRO, L. Formal Specificati and Verification
of Real-Time Systems using Graph Grammaisurnal of The Brazilian Computer
Society (JBCS) [S.1.], v.13, n.4, p.51-68, 2007.

MICHELON, L.; COSTA, S. A.; RIBEIRO, L. Specification of Redime Systems with
Graph Grammars. In: BRAZILIAN SYMPOSIUM ON SOFTWARE ENGIRRING,
2006.Proceedings. . [S.l.: s.n.], 2006. p.97-112.

MILNER, R. Communicating and mobile systems the w-calculus. New York, NY,
USA: Cambridge University Press, 1999.

MONDRAGON, O.; GATES, A. Q. Supporting Elicitation And Spkcation Of Soft-
ware Properties Through Patterns And Composite Propasitioternational Journal
of Software Engineering and Knowledge Engineering[S.l.], v.14, n.1, p.21-41, 2004.

MONDRAGON, O.; GATES, A. Q.; ROACH, S.; MENDOZA, H.; SOKOLSKO. Gen-
erating Properties for Runtime Monitoring from Softwaree8ification Patterndnter-

national Journal of Software Engineering and Knowledge Engneering, [S.l.], v.17,
n.1, p.107-126, 2007.

NIPKOW, T.; PAULSON, L. C.; WENZEL, MIsabelle/HOL — A Proof Assistant for
Higher-Order Logic. [S.I.]: Springer, 2002. (LNCS, v.2283).

OLIVEIRA, M. V. M.; CAVALCANTI, A. L. C.; WOODCOCK, J. C. P. Urfying theo-
ries in ProofPower-Z. In: UTP 2006: First International $yosium on Unifying Theo-
ries of Programming, 200&roceedings. . .Springer-Verlag, 2006. p.123-140. (LNCS,
v.4010.

OWRE, S.; RUSHBY, J. M.; SHANKAR, N. PVS: a prototype verifica system. In:
CADE, 1992.Proceedings...Springer, 1992. p.748-752. (Lecture Notes in Computer
Science, v.607).

PAULSON, L. C.Isabelle - A Generic Theorem Prover (with a contribution by T.
Nipkow). [S.I.]: Springer, 1994. (Lecture Notes in Computer Scegnve828).

111

PAUN, D. O.; CHECHIK, M. Events in Linear-Time Properties: RE '99: PROCEED-
INGS OF THE 4TH IEEE INTERNATIONAL SYMPOSIUM ON REQUIREMENS
ENGINEERING, 1999, Washington, DC, USRroceedings. ..I[EEE Computer Soci-
ety, 1999. p.123-132.

PROJECT, CCircus. 2010.

RANGER, U.; WEINELL, E. The Graph Rewriting Language and iEowment PRO-
GRES. Applications of Graph Transformations with Industrial Rel evance: Third
International Symposium, AGTIVE 2007, Kassel, Germany, Otober 10-12, 2007,
Revised Selected and Invited Paper®erlin, Heidelberg, p.575-576, 2008.

RENSINK, A. The GROOVE Simulator: a tool for state space gatien. In: APPLICA-
TIONS OF GRAPH TRANSFORMATIONS WITH INDUSTRIAL RELEVANCEAG-
TIVE), 2004.Proceedings. . .Springer-Verlag, 2004. p.479-485. (Lecture Notes in Com-
puter Science, v.3062).

RENSINK, A. Canonical Graph Shapes. In: PROGRAMMING LANGGES AND
SYSTEMS — EUROPEAN SYMPOSIUM ON PROGRAMMING (ESOP), 206%0-
ceedings. .. Springer-Verlag, 2004. p.401-415. (Lecture Notes in Camwp&cience,
v.2986).

RENSINK, A.; DOTOR, A.; ERMEL, C.; JURACK, S.; KNIEMEYER, Qde Lara, J.;
MAIER, S.; STAIJEN, T.; ZUNDOREF, A. Ludo: a case study for ghatransformation
tools. In: APPLICATIONS OF GRAPH TRANSFORMATION WITH INDUBRIAL
RELEVANCE, PROCEEDINGS OF THE THIRD INTERNATIONAL AGTIVE @07
SYMPOSIUM, 2008, Heidelberd?roceedings. . .[S.l.: s.n.], 2008. p.493-513. (LNCS,
v.5088).

RENSINK, A.; SCHMIDT, A.; VARRO, D. Model Checking Graph Traformations:
a comparison of two approaches. In: ICGT 2004: SECOND INTER®NAL CON-
FERENCE ON GRAPH TRANSFORMATION, 200#roceedings...Springer, 2004.
p.226—241. (LNCS, v.3256).

REZAZADEH, A.; EVANS, N.; BUTLER, M. Redevelopment of an lastrial Case
Study Using Event-B and Rodin. In: BCS-FACS CHRISTMAS 200EBTING - FOR-
MAL METHODS IN INDUSTRY, 2007.Proceedings. . [S.l.: s.n.], 2007.

RIBEIRO, L. Parallel Composition and Unfolding Semantics of Graph Granmars.
1996. Tese (Doutorado em Ciéncia da Computacao) — Teclenidolversit/"at Berlin.

RIBEIRO, L.; COPSTEIN, B. Specifying simulation models ngigraph grammars.
In: ESS98: EUROPEAN SIMULATION SYMOPSIUM, 1998, Nottinhgim. Proceed-
ings...[S.l.: s.n.], 1998. p.60—64.

RIBEIRO, L.; DOTTI, F. L.; BARDOHL, R. A Formal Framework fathe Develop-
ment of Concurrent Object-Based Systems. In: FORMAL METHON SOFTWARE
AND SYSTEMS MODELING, 2005Proceedings. . .Springer, 2005. p.385-401. (Lec-
ture Notes in Computer Science, v.3393).

ROBINSON, J. A.; VORONKOQV, A. (Ed.)Handbook of Automated Reasoning (in 2
volumes) [S.L]: Elsevier and MIT Press, 2001.

112

RODEL, E. T.; DUARTE, L. M.; SANTOS, O. M. dos; , F. L. D. . Sinatlon of Mo-
bile Applications in Open Environments. In: ANAIS DO IV WORKIOP DE CO-
MUNICACAO SEM FIO E COMPUTACAO MOVEL, 2002, S&o PaulBroceedings. ..
[S.l.: s.n.], 2002. p.246-256.

ROSENBLUM, D. S. Formal methods and testing: why the st&tw®art is not the state-
of-the practiceSIGSOFT Softw. Eng. Notes New York, NY, USA, v.21, n.4, p.64-66,
1996.

ROSSI, U. Can we really do without the support of formal medtghm the verification
of large designs? In: DAC '05: PROCEEDINGS OF THE 42ND ANNUAIONFER-
ENCE ON DESIGN AUTOMATION, 2005, New York, NY, USAProceedings. . ACM
Press, 2005. p.672—-673.

ROZENBERG, G. (Ed.)Handbook of graph grammars and computing by graph
transformation: volume |. Foundations. River Edge, NJ, USA: World Scieatfublish-
ing Co., Inc., 1997.

RUDOLF, M. Utilizing Constraint Satisfaction Techniques fEfficient Graph Pattern
Matching. In: TAGT'98: SELECTED PAPERS FROM THE 6TH INTERNAONAL
WORKSHOP ON THEORY AND APPLICATION OF GRAPH TRANSFORMATIOB|
2000, London, UKProceedings. . .Springer-Verlag, 2000. p.238-251.

RUSHBY, J. Theorem proving for verificatiodModeling and verification of parallel
processesNew York, NY, USA, p.39-57, 2001.

SAID, M. yah; BUTLER, M.; SNOOK, C. Language and Tool SupgortClass and State
Machine Refinement in UML-B. In: FM2009 - 16TH INTERNATIONARYMPOSIUM
ON FORMAL METHODS, 2009Proceedings. . Springer, 2009. n.LNCS 5, p.579-595.

SAKSENA, M.; WIBLING, O.; JONSSON, B. Graph Grammar Modgjiand Verifica-
tion of Ad Hoc Routing Protocols. In: TACAS, 2008roceedings...Springer, 2008.
p.18-32. (Lecture Notes in Computer Science, v.4963).

SALAMAH, S.; GATES, A. Q.; KREINOVICH, V.; ROACH, S. Verificégon of Auto-
matically Generated Pattern-Based LTL SpecificationsHASE '07: PROCEEDINGS
OF THE 10TH IEEE HIGH ASSURANCE SYSTEMS ENGINEERING SYMPQ,
2007, Washington, USARroceedings. . .|IEEE Comp. Soc., 2007. p.341-348.

SCHFURR, A. Programmed graph replacement systeliausdbook of graph grammars
and computing by graph transformation: volume I. foundations, River Edge, NJ,
USA, p.479-546, 1997.

SCHURR, A.; WINTER, A. J.; ZUNDORF, A. The PROGRES approdamguage and
environmentHandbook of graph grammars and computing by graph transforma-
tion: vol. 2: applications, languages, and toolsRiver Edge, NJ, USA, p.487-550,
1999.

SMITH, R. L.; AVRUNIN, G. S.; CLARKE, L. A.; OSTERWEIL, L. J. ROPEL: an
approach supporting property elucidati@oftware Engineering, International Con-
ference on Los Alamitos, CA, USA, v.0, p.11, 2002.

113

SNOOK, C.; BUTLER, M. UML-B and Event-B: an integration ohiguages and tools.
In: THE IASTED INTERNATIONAL CONFERENCE ON SOFTWARE ENGINER-
ING - SE2008, 2008Proceedings.. [S.l.: s.n.], 2008.

SONG, G.; ZHANG, K.; WONG, R. K.; KONG, J. Management of Webt®&1od-
els Based on Graph Transformation. In: WI '04: PROCEEDINGBE THE 2004
IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENE,
2004, Washington, DC, USAroceedings. . IEEE Computer Society, 2004. p.398—-404.

STRECKER, M. Modeling and Verifying Graph TransformatiansProof Assistants.
Electronic Notes in Theoretical Computer ScienceAmsterdam, The Netherlands, The
Netherlands, v.203, n.1, p.135-148, 2008.

TAMaS MéSZaRos, |. M.; MEZEI, G. AntWorld Simulation Caseu®y Modeled by
Tiger. In: INTERNATIONAL WORKSHOP ON GRAPH-BASED TOOLS: TEHCON-
TEST, 4., 2008Proceedings. . [S.l.: s.n.], 2008.

TANENBAUM, A. Computer Networks. [S.1.]: Prentice Hall, 2002.

TEJ, H.; WOLFF, B. A Corrected Failure Divergence Model f@Fin Isabelle/HOL. In:
FME '97: PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM OFOR-

MAL METHODS EUROPE ON INDUSTRIAL APPLICATIONS AND STRENGTH
ENED FOUNDATIONS OF FORMAL METHODS, 1997, London, URroceedings. ..
Springer-Verlag, 1997. p.318-337.

THE AGG System. Last accessed March 2010, Available at /higer.cs.tu-
berlin.de/ gragra/agg/.

The MathWorks. Stateflow and stateflow coder, user's guide Available at
http://mww.mathworks.com/products/stateflow!/.

TIGER Project. Last accessed March 2010, Available at Miger.cs.tu-berlin.de/ tiger-
prj/.

VICTOR, B.; MOLLER, F. The Mobility Workbench - A Tool for thei-Calculus.
In: CAV '94: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENEON
COMPUTER AIDED VERIFICATION, 1994, London, UKProceedings...Springer-
Verlag, 1994. p.428-440.

WANKMULLER, F. Application of Graph Grammars in Music Comging Systems.
In: GRAPH-GRAMMARS AND THEIR APPLICATION TO COMPUTER SCIEQE,
1986.Proceedings. . .Springer, 1986. p.580-592. (Lecture Notes in Computernfseie
v.291).

WOODCOCK, J. C. P.; CAVALCANTI, A. L. C. A Concurrent Languadpr Refinement.
In: IWFM’01: 5TH IRISH WORKSHOP IN FORMAL METHODS, 2001, Duin, Ire-
land.Proceedings.. [S.l.: s.n.], 2001. (BCS Electronic Workshops in Compu}ing

WOODCOCK, J.; CAVALCANTI, A. The Semantics of Circus. In: ZB2: PROCEED-
INGS OF THE 2ND INTERNATIONAL CONFERENCE OF B AND Z USERS ON
FORMAL SPECIFICATION AND DEVELOPMENT IN Z AND B, 2002, Londwn, UK.
Proceedings. . .Springer-Verlag, 2002. p.184-203.

114

WOODCOCK, J.; DAVIES, JUsing Z: specification, refinement, and proof. Upper Sad-
dle River, NJ, USA: Prentice-Hall, Inc., 1996.

WOODCOCK, J.; LARSEN, P. G.; BICARREGUI, J.; FITZGERALD, Bormal meth-
ods: practice and experiencBCM Comput. Surv., New York, NY, USA, v.41, n.4,
p.1-36, 2009.

YANG, J.; EVANS, D. Dynamically inferring temporal propess. In: PASTE '04: PRO-
CEEDINGS OF THE 5TH ACM SIGPLAN-SIGSOFT WORKSHOP ON PROGRAM
ANALYSIS FOR SOFTWARE TOOLS AND ENGINEERING, 2004, New YqriKY,
USA. Proceedings. . . ACM, 2004. p.23-28.

YU, J.; MANH, T. P.; HAN, J.; JIN, Y.; HAN, Y.; WANG, J. PatterBased Property Spec-
ification and Verification for Service Composition. In: INRRCEEDINGS OF 7TH IN-
TERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS ENGINBE
ING (WISE, 2006 Proceedings. . .[S.l.: s.n.], 2006. p.156-168.

ZEYDA, F.; CAVALCANTI, A. Mechanical Reasoning about Fames of UTP Theo-
ries. In: SBMF 2008, Brazilian Symposium on Formal Methd2l3)8.Proceedings. ..
[S.l.: s.n.], 2008. p.145-160. Best paper award.

ZEYDA, F.; CAVALCANTI, A. Encoding Circus Programs in Prd@bwerZ. In: 2009.
Proceedings. . .Springer, 2009. (Lecture Notes in Computer Science). Aagpublica-
tion.

ZHANG, K.-B.; ZHANG, K.; ORGUN, M. A. Using graph grammar tanplement
global layout for a visual programming language generasigstem. In: VIP '01: PRO-
CEEDINGS OF THE PAN-SYDNEY AREA WORKSHOP ON VISUAL INFORMA-
TION PROCESSING, 2001, Darlinghurst, Australia, AusaalProceedings...Aus-
tralian Computer Society: Inc., 2001. p.115-121.

115

APPENDIX A ALGEBRAIC SPECIFICATIONS

A.1 Basic Concepts of Algebraic Specifications

Definition 40 (Signature) A signatureS/G = (S, OP) consists of a sef of sorts and a
setO P of constant and operations symbols. The@étis the union of pairwise disjoint
subsets:

- K, set of constant symbols of sostg S.

- OP, ;, set of operation symbols with argument serts S+ and range sort € S,
forall s € Sandw € S*.

Definition 41 (Algebra) An algebraA = (Sa,OP,4) of a signatureSIG = (S,0OP),
also called SIG-Algebra, is given by two famili€s = (A;)ses andOP = (Na)necor
where

1. A, are sets for alls € S, called base sets or carrier sets af

2. N, are elementsV, € A, for all constant symbold/ € K,i.e. N :— ses € S,
called constants of A.

3. Ny : Ay X Ay x --- X A,,, — A, are functions for all operation symbol§ <
OP; sns(i.€.N:sl...sn—s)andsl...sn e ST, s € S, called operations of
A, where “x” denotes the cartesian product of sets.

Definition 42 (Variables and Terms) et SIG = (.S, OP) be a signature and; for each
s € S a set, called set of variables of sart We assume that these s&isare pairwise
disjoint and also disjoint wittO P. The unionX = | J, ¢ X, is calledset of variables
with respect to SIG

The setdHp(X) of terms of sort §s inductively defined by:

1. X; UK, C Tops(X) whereK; is the set of constant symbols of sart

2. N(ty,...,t,) € Tops(X) for all operation symbolsv € OP with N : s, ..., —
sand alltermsty € Tops,, .., tn € Tops,-

3. There are no further terms of sortc Tpp (X).

The sefl, p ; of terms without variables of sorts s, also calp@und termsof sorts,
is defined for the empty s&t = @ of variables by Tops = Top (D)

The set of term%, (X)) and the set of terms without variablés » are defined by:
Top(X) = Uses Tors(X) andTop = U,cs Top,s

116

Definition 43 (Evaluation of Terms)Let Ty p be the set of terms for a signatusgd G =
(S,0P) and A a SIG-algebra. Thevaluationeval : Top — A is recursively defined by:
(1) eval(N) = Ny for all constant symbols N € K
(17) eval(N(ty,...,t,)) =
Na(eval(ty), ..., eval(t,)) for all N(tq,...,t,) € Top.

Given a set of variableX for SIG = (S,0P) and anassignmentusg : X — A
with asg(z) € Aforz € X, ands € S. Theextended assignmefitsg : Top(X) — A
of the assignmentsg : X — A is recursively defined by:

(1) asg(x) = asg(x) for all variables x € X

asg(N) = Ny for all constant symbols N € K
(1) a@sg(N(tq,...,t,)) =

NA(CL—Sg(tl), Ce ,@(tn)) for all N(tl, Ce ,tn) c TOP(X)

Definition 44 (Equations and Validity)Given a signatur& /G = (.S, O P) and variables
X with respect toSIG. Atriplee = (X, L, R) with L, R € Tpp+(X) for somes € S is
called anequationof sorts with respect toS/G. The equatiore = (X, L, R) is called
valid in a SIG-algebraA if for all assignmentasg : X — A we haveisg(L) = asg(R)
whereasg is the extended assignmenugf;. If e is valid in A we also say tha# satisfies
c.

Ground equationsare equations = (X, L, R) with X = @. In this caseL and R
are ground terms.

Definition 45 (Derivation of Terms) Given a sett’ of equations for a signatur8 /G =
(S, OP) with a fixed set of variableX’ = X, for each equatior. (L, R) € E defines
two substitution Trules

(1) L=R (R—L-—rule)

(2) R=L (L—R—rule)

ATrule t; = t, is applicableto a termt € Ty p(X) if there is an assignmentsg :
X — Top(X) with extensiorusg : Top(X) — Top(X) such that we have far =
asg(t1) andt, = asg(ty): t; is a subterm of.

The replacement af by, in ¢ yields a term’ and is denoted by = (¢, /¢5). In this
case we write = ¢/, calleddirect derivation fromt to ¢’ via E, using Trulet1 = ¢, and
assignmentsg.

A sequence of > 0 direct derivationsty = t; = --- = t, witht = t, and
t' = t, written ast = t', is calledderivation from¢ to #' via £ ande’ = (¢,) is called
derived equatiorfrom E with fixedX. The derivatiort = ¢’ is correctwith respect to a
SIG-algebraA if we have for each assignmemnty : X — A, asg(t) = asg(t’).

Definition 46 (Specification and SPEC-algebra specificationSPEC = (S,0OP, E)
consists of a signatur8/G = (S, OP) and a setE of equations: with respect toS7G.
An algebra A of the specificatior PEC, short SPEC-algebrais an algebraA of the
signatureS /G which satisfies all equations if.

Definition 47 (Homomorphism) Let A and B be algebras of the same signatuféGG =
(S,0P) or specificationSPEC = (S,0OP, E). Ahomomorphismf : A — B, also
calledSIG- or SPEC-homomorphisnis a family of functions

fs: Ay — B, forse S
such that for each constant symb¥l:— sin OP ands € S

fs(Na) = N

117

and for each operation symbol : s, ...s, — sinOPandalla; € A;,,fori =1,...,n

fs(Na(as, .. an)) = Np(fo, (a1), ., fs, (an))

Alg(SIG) denotes the category of all SIG-algebras and SIG-homonmsmph/ de-
notes the forgetful functor fromlg(SIG) to Setyielding the disjoint union of carrier sets
(and homomorphisms).

Definition 48 (Congruence on Ground Term&jiven a specificatio§ PEC = (S,OP, E)
the relation= on ground terms defined for all, ¢, € Top by

t1 =ty if and only if evala(t;) = evala(ty) for all SPEC — algebras A

is calledcongruence on ground terms

It satisfies the following conditions for ali, 5, t3 € Top:

1.t =t. (reflexivity)
2. t; =ty implies ty = t;. (symmetry)
3. t1 =ty and ty = t5 implies t; = ts. (transitivity)
4. t1 =1t),...,t, =t implies N(tl, oo ty) =N, ..., 1) (congruence)
for all operatlon symbols N : sy...s, — sin OP with n > 1 and all ground
terms t;, t; of sort s; fori =1,... n.

5. Each derivation t; = t, via F between ground terms tq,ty € Tpp implies
tl = t2.

6. If there is a SPEC — algebra A with eval4(t1) # eval a(ts) for some
ground terms t1,ts € Tpp then we have t; # t5.

Definition 49 (Algebra of Terms) The algebra S, O Pr) with
(i) St = (Tops)ses as the family of base sets.
(i) Ny = N as constant fotV :— s.
(i) Np:Tops,(X) x -+ x Tops, (X) — Tops(X)defined by
Np(ty, ... tp) = N(t1,. .., tn)
for N:sy...s, = sandt; € Tpp,,(X),i =1,...,n, as the operations.
is called thealgebra of terms with respect to SIG and, ¥r simply theterm algebra

Definition 50 (Quotient Term Algebra)Given a specificatiod PEC = (S,OP, F) the
quotient term algebral'sprc = ((Qs)ses', (Ng)neor) is defined by:

1. Foreachs € S we have a base set
= {[t]/t € Tor.s}
where the congruence clag$is defined by:
[t] = {t'/t =t}.

2. For each constant symbol :— s in OP the constantV, is the congruence class
generated byV: Ny = [N]

3. Foreach operation symbd\ : s, ...s,, — sin OP the operationVg : Q, X - - - X
Qs, — @, is defined by

NQ([tl]v : ">[tn]) = [N(tla---atn)]
for all termst; of sorts; andalli = 1,...,n

118

APPENDIX B TOKEN RING SPECIFICATION

Next we describe the Event-B specification of the Token Rirajgzol. This model
was based on the relational structure depicted in Exampl€h& model generated 86
proof obligations with 57 of them proved automatically.dtlso important to notice that
the great majority of proof obligations discharged by iat¢tve proof involved just the
direct execution of an event-b prover, the simple additiidmypothesis or the instantiation
of universal quantifiers.

B.1 Event-B Context of Token Ring

An Event-B Specification of ctx_trAll
Creation Date: 8 Mar 2010 @ 08:23:33 PM

CONTEXT ctx_trAll

SETS
V_GG /I (Domain) Vertices names —V_GG N
E GG //(Domain) Edges names — E_ GGN
vertT [/ (Type Graph T) Vertices
edgeT /I (Type Graph T) Types of edges
vertL1 // (Rule 1) Left Graph L1 — Vertices
edgelLl /I (Rule 1) Left Graph L1 — Edges
vertRl // (Rule 1) Right Graph R1 — Vertices
edgeR1 /I (Rule 1) Right Graph R1 — Edges
vertL2 /I (Rule 2) Left Graph L2 — Vertices
edgelL2 /I (Rule 2) Left Graph L2 — Edges
vertR2 /I (Rule 2) Right Graph R2 — Vertices
edgeR2 /I (Rule 2) Right Graph R2 — Edges
vertL3 /I (Rule 3) Left Graph L3 — Vertices
edgelL3 /I (Rule 3) Left Graph L3 — Edges
vertR3 /I (Rule 3) Right Graph R3 — Vertices
edgeR3 // (Rule 3) Right Graph R3 — Edges
vertL4 [/l (Rule 4) Left Graph L4 — Vertices
edgel4d // (Rule 4) Left Graph L4 — Edges
vertR4 /I (Rule 4) Right Graph R4 — Vertices

edgeR4 /I (Rule 4) Right Graph R4 — Edges
vertL5 /I (Rule 5) Left Graph L5 — Vertices
edgelL5 /I (Rule 5) Left Graph L5 — Edges
vertR5 /I (Rule 5) Right Graph R5 — Vertices
edgeR5 /I (Rule 5) Right Graph R5 — Edges

CONSTANTS
Node /I Type of node
Nxt /] Type of edge
Tok /I Type of edge
Msg // Type of edge
Stb /l Type of edge
Act [/l Type of edge
Ni1 // (Rule 1) Vertex name — N14& vertL1
N12 // (Rule 1) Vertex name — N12 vertL1
N13 /I (Rule 1) Vertex name — N18 vertR1
N14 // (Rule 1) Vertex name — N14 vertR1
N21 /[(Rule 2) Vertex name — N2& vertL2
N22 /[(Rule 2) Vertex name — N22 vertL2
N23 /[(Rule 2) Vertex name — N23 vertR2
N24 // (Rule 2) Vertex name — N24 vertR2
N31 // (Rule 3) Vertex name — N34 vertL3
N32 // (Rule 3) Vertex name — N32 vertL3
N33 /[(Rule 3) Vertex name — N33 vertR3
N34 /[(Rule 3) Vertex name — N34 vertR3
N41 /[(Rule 4) Vertex name — N44& vertL4
N42 [/ (Rule 4) Vertex name — N42 vertL4
N43 // (Rule 4) Vertex name — N43 vertR4
N44 /[(Rule 4) Vertex name — N44 vertR4
N51 // (Rule 5) Vertex name — N5& vertL5
N52 /[(Rule 5) Vertex name — N52 vertL5
N53 // (Rule 5) Vertex name — N58 vertR5
N54 /[(Rule 5) Vertex name — N54 vertR5
N55 // (Rule 5) Vertex name — N55 vertR5
Tok11 // (Rule 1) Edge name — Tokld edgelL1
Stb11 // (Rule 1) Edge name — StbEXledgelL1
Nxt11 // (Rule 1) Edge name — Nxtld edgelL1
Tok12 // (Rule 1) Edge name — Tokk2edgeR1
Nxt12 // (Rule 1) Edge name — Nxt12 edgeR1
Act11 // (Rule 1) Edge name — Actld edgeR1
Msgil /[(Rule 1) Edge name — MsgkledgeR1
Tok21 // (Rule 2) Edge name — Tok2d edgelL?2
Stb21 // (Rule 2) Edge name — StbZledgelL2

119

120

Nxt21 // (Rule 2) Edge name — Nxt24 edgelL2

Tok22 // (Rule 2) Edge name — Tok22edgeR2

Stb22 /I (Rule 2) Edge name — Sth22edgeR2

Nxt22 // (Rule 2) Edge name — Nxt22 edgeR2

Stb31 /I (Rule 3) Edge name — Stb3ledgelL3

Nxt31 // (Rule 3) Edge name — Nxt34 edgelL3

Msg31 /[(Rule 3) Edge name — Msg3ledgelL3

Nxt32 // (Rule 3) Edge name — Nxt32 edgeR3

Stb32 // (Rule 3) Edge name — Stb32edgeR3

Msg32 /I (Rule 3) Edge name — Msg32edgeR3

Msg41l /I (Rule 4) Edge name — Msg4dedgelL4

Nxt41 // (Rule 4) Edge name — Nxt4d edgelL4

Act41l /I (Rule 4) Edge name — Act4d edgelL 4

Tok41 // (Rule 4) Edge name — Tok4d edgelL4

Tok42 // (Rule 4) Edge name — Tok42 edgeR4

Nxt42 // (Rule 4) Edge name — Nxt42 edgeR4

Stb42 /I (Rule 4) Edge name — Stb42edgeR4

Stb51 /I (Rule 5) Edge name — Stb&ledgel5

Nxt51 // (Rule 5) Edge name — Nxt54 edgeR5

Nxt52 // (Rule 5) Edge name — Nxt52 edgeR5

Nxt53 // (Rule 5) Edge name — Nxt53 edgeR5

sourceLl /[(Rule 1) function sourceLl — returns the source of an edd¢éd o
targetL1 // (Rule 1) function targetL1 — returns the target of an edgelo
tL1 VvV // (Rule 1) Typing left vertices, tL1_V

tL1 E /I (Rule 1) Typing left edges, tL1_E

sourceR1 // (Rule 1) function sourceR1 — returns the source of an efid.o
targetR1 // (Rule 1) function targetR1 — returns the target of an eddelo
tR1_V // (Rule 1) Typing right vertices, tR1_V

tR1_E //(Rule 1) Typing right edges, tR1_E

alphalV // (Rule 1) Relational Rule alphal: mapping vertices

alphalE // (Rule 1) Relational Rule alphal: mapping edges

sourceL2 /[(Rule 2) function sourcelL2 — returns the source of an ed¢ o
targetL2 // (Rule 2) function targetL2 — returns the target of an edge?o
tL2_V /[(Rule 2) Typing left vertices, tL2_V

tL2_E /I (Rule 2) Typing left edges, tL2_E

sourceR2 /[(Rule 2) function sourceR2 — returns the source of an efig20
targetR2 // (Rule 2) function targetL2 — returns the target of an edged
tR2_V /I (Rule 2) Typing right vertices, tR2_V

tR2_E // (Rule 2) Typing right edges, tR2_E

alpha2V // (Rule 2) Relational Rule alpha2: mapping vertices

alpha2E // (Rule 2) Relational Rule alpha2: mapping edges

sourceL3 // (Rule 3) function sourcelL3 — returns the source of an ed¢&o

121

targetL3 // (Rule 3) function targetL3 — returns the target of an edge3o
tL3_V // (Rule 3) Typing left vertices, tL3_V
tL3_E /I (Rule 3) Typing left edges, tL3_E
sourceR3 /[(Rule 3) function sourceR3 — returns the source of an efig8o
targetR3 // (Rule 3) function targetR3 — returns the target of an edde3o
tR3_V // (Rule 3) Typing right vertices, tR3_V
tR3_E /I (Rule 3) Typing right edges, tR3_E
alpha3V // (Rule 3) Relational Rule alpha3: mapping vertices
alpha3E // (Rule 3) Relational Rule alpha3: mapping edges
sourcelL4 /[(Rule 4) function sourcelL4 — returns the source of an edd¢d o
targetlL4 // (Rule 4) function targetL4 — returns the target of an edgedo
tL4 V. // (Rule 4) Typing left vertices, tL4_V
tL4 E /I (Rule 4) Typing left edges, tL
sourceR4 /[(Rule 4) function sourceR4 — returns the source of an et o
targetR4 // (Rule 4) function targetR4 — returns the target of an edde4o
tR4_V /I (Rule 4) Typing right vertices, tR4_V
tR4 E /I (Rule 4) Typing right edges, tR4_E
alphad4V // (Rule 4) Relational Rule alpha4: mapping vertices
alphadE // (Rule 4) Relational Rule alpha4: mapping edges
sourceL5 /[(Rule 5) function sourceL5 — returns the source of an edd® o
targetL5 /I (Rule 5) function targetL5 — returns the target of an edgebo
tL5_V /[(Rule 5) Typing left vertices, tL5_V
tL5_E /I (Rule 5) Typing left edges, tL5_E
sourceR5 /[(Rule 5) function sourceR5 — returns the source of an efiggo
targetR5 /I (Rule 5) function targetR5 — returns the target of an eddeco
tR5_V /[(Rule 5) Typing right vertices, tR5_V
tR5_E // (Rule 5) Typing right edges, tR5_E
alpha5V // (Rule 5) Relational Rule alpha5: mapping vertices
alpha5E // (Rule 5) Relational Rule alpha5: mapping edges
sourceT // function sourceT — returns the source of an edge of T
targetT //function targetT — returns the target of an edge of T

AXIOMS

axm_vertT : partition(vertT,{Node})
Il (Type Graph T) vertT = { Node}
axm_edgeT : partition(edgeT,{Nxt}, { Tok},{ Msg},{Stb}, {Act})
Il (Type Graph T) edgeT = { Nxt, Tok, Msg, Stb, Act} inc
axm_srcTtype : sourceT € edgel — vertT
Il (Type Graph T) function sourceT
axn_srcTdef : partition(sourceT,{ Nzt — Node},{ Tok — Node},
{Msg — Node}, {Stb — Node}, {Act — Node})
Il (Type Graph T) function sourceT
axm_tgtTtype : targetT € edgeT — vertT
Il (Type Graph T) function targetT

122

axn_tgtTdef : partition(targetT,{ Nzt — Node}, { Tok — Node},
{Msg — Node},{Sthb — Node},{Act — Node})
Il (Type Graph T) function targetT

axm_vertLl : partition(vertL1,{N11},{N12})
/I (Rule 1) Left Graph L1 — Vertices

axm_edgell : partition(edgelL1,{Tok11},{Stb11}, {Nxzti1})
/I (Rule 1) Left Graph L1 — Edges names

axm_srcLltype : sourceLl € edgelL1 — vertL1
/I (Rule 1) function sourcelL1

axn_srcLidef : partition(sourceL1,{Tok11 — N11},{Stb11 — NI11},
{Nzt11 — NI11})
/l (Rule 1) function sourcelL1

axm_tgtLltype : targetLl € edgelLl — vertLl
/Il (Rule 1) function targetL1

axn_tgtLldef : partition(targetL1,{ Tok11 — N11},{Stb11 — N11},
{Nzt1l — N12})
/l (Rule 1) function targetL1

axm tLl V: tL1_V € vertLl — vertT
/Il (Rule 1) Typing left vertices, tL1_V

axm_tL1_V_def : partition(tL1_V {N11 — Node},{N12 — Node})
/I (Rule 1) Typing left vertices, tL1_V

axm tLl1 E: tL1_FE € edgell — edgeT
/I (Rule 1) Typing left edges, tL1_E

axm_tL1 E def : partition(tL1_E,{Tokl11 — Tok},{Stb11 — Stb},
{Nzt11 — Nzt})
/I (Rule 1) Typing left edges, tL1_E

axm_vertR1 : partition(vertR1,{N13},{N14})
/l (Rule 1) Right Graph R1 — Vertices

axm_edgeR1 : partition(edgeR1,{Tok12},{Act11},{Nat12},{ Msg11})
(Rule 1) Right Graph R1 — Edges names

axm_srcRltype : sourceR1 € edgeR1 — vertR1
/l (Rule 1) function sourceR1

axn_srcRldef : partition(sourceR1,{Tok12 — N13},{Act1l — N13},
{Nzt12 — N13},{Msgll — N1j})
// (Rule 1) function sourceR1

axm_tgtRltype : targetR1 € edgeR1 — vertR1
/l (Rule 1) function targetR1

axn_tgtRldef : partition(targetR1,{Tok12 — N13} {Actll — N13},
{Nzt12 — N14},{Msgll — N1j})
// (Rule 1) function targetR1

axm tR1 V: tR1_V € vertR1 — vertT
/I (Rule 1) Typing right vertices, tR1_V

axm_tR1_V_def : partition(tR1_V ,{N13 — Node},{N1j — Node})
/I (Rule 1) Typing right vertices, tR1_V

axm tR1 E: tR1_FE € edgeR1 — edgeT
/I (Rule 1) Typing right edges, tR1_E

123

axm_tR1 _E def : partition(tR1_E, {Tok12 — Tok},{Actll — Act},
{Nzt12 — Nuzt}, {Msgl1 — Msg})
/l (Rule 1) Typing right edges, tR1_E
axm_alphalV : alphalV € vertL1 - vertR1
/l (Rule 1) Relational Rule alphal: mapping vertices
axm_alphalV_def : partition(alphalV ,{N11 +— N13},{N12 — N1}})
/I (Rule 1) Relational Rule alphal: mapping vertices
axm_alphalE : alphalE € edgell + edgeR1
/l (Rule 1) Relational Rule alphal: mapping edges
axm_alphalE_def : partition(alphalE,{Tok11 — Tok12},{Nxt1l — Nxt12})

/I (Rule 1) Relational Rule alphal: mapping edges
axm_vertL2 : partition(vertL2,{N21},{N22})
Il (Rule 2) Left Graph L2 — Vertices
axm_edgel2 : partition(edgeL2,{Tok21},{Stb21}, { Nxt21})
/Il (Rule 2) Left Graph L2 — Edges names
axm_srcL2type : sourceL? € edgeL?2 — vertL2
/Il (Rule 2) function sourcelL2
axn_srclL2def : partition(sourceL2,{Tok21 — N21},{Stb21 — N21},
{Nzt21 — N21})
/Il (Rule 2) function sourcelL2
axm_tgtL2type : targetL2 € edgelL?2 — vertL?2
/I (Rule 2) function targetL2
axn_tgtl2def : partition(targetL2,{Tok21 — N21},{Stb21 — N21},
{Nzt21 — N22})
/I (Rule 2) function targetL2
axm tL2 V: tL2_V € vertL2 — vertT
/Il (Rule 2) Typing left vertices, tL2_V
axm_tL2 V_def : partition(tL2_V ,{N21 — Node},{N22 — Node})
/Il (Rule 2) Typing left vertices, tL2_V
axm tL2 E: tL2_FE € edgelL2 — edgeT
/Il (Rule 2) Typing left edges, tL2_E
axm_tL2_E def : partition(tL2_FE,{Tok21 — Tok},{Stb21 — Stb},
{Nzt21 — Nzt})
/Il (Rule 2) Typing left edges, tL2_E
axm_vertR2 : partition(vertR2,{N23},{N24})
/I (Rule 2) Right Graph R2 — Vertices
axm_edgeR2 : partition(edgeR2,{ Tok22},{Stb22}, { Nxt22})
/Il (Rule 2) Right Graph R2 — Edges names
axm_srcR2type : sourceR2 € edgeR2 — vertR2
/Il (Rule 2) function sourceR2
axn_srcR2def : partition(sourceR2, { Tok22 — N24},{Stb22 — N23},
{Nzt22 — N23})
/Il (Rule 2) function sourcelL2
axm_tgtR2type : targetR2 € edgeR2 — vertR2
/Il (Rule 2) function targetR2

124

axn_tgtR2def : partition(targetR2,{Tok22 — N2/}, {Sth22 — N23},
{Nzt22 — N2/ })
/I (Rule 2) function targetR2
axm tR2 V: tR2_V € vertR2 — vertT
/Il (Rule 2) Typing right vertices, tR2_V
axm_tR2_V_def : partition(tR2_V {N23 — Node},{N24 — Node})
/Il (Rule 2) Typing right vertices, tR2_V
axm tR2 E: tR2_FE € edgeR2 — edgeT
/Il (Rule 2) Typing right edges, tR2_E
axm_tR2_E def : partition(tR2_FE,{Stb22 — Stb}, { Tok22 — Tok},
{Nzt22 — Nzt})
/Il (Rule 2) Typing right edges, tR2_E
axm_alpha2V : alphalV € vertL2 - vertR2
/Il (Rule 2) Relational Rule alpha2: mapping vertices
axm_alpha2V_def : partition(alpha2V ,{N21 — N23},{N22 — N24})
/I (Rule 2) Relational Rule alpha2: mapping vertices
axm_alpha2E : alphalF € edgeL?2 + edgeR2
/Il (Rule 2) Relational Rule alpha2: mapping edges
axm_alpha2FE_def : partition(alpha2E, {Stb21 — Stb22},{ Nxt21 — Nxt22})

/Il (Rule 2) Relational Rule alpha2: mapping edges
axm_vertL3 : partition(vertL3,{N31},{N32})
/I (Rule 3) Left Graph L3 — Vertices
axm_edgel3 : partition(edgeL3,{Stb31},{ Msg31},{ Nzt31})
/Il (Rule 3) Left Graph L3 — Edges names
axm_srcL3type : sourceL3 € edgeL3 — vertL3
/l (Rule 3) function sourcelL3
axn_srcL3def : partition(sourceL3,{Msg31 — N31},{Stb31 — N31},
{Nzt31 — N31})
/l (Rule 3) function sourcelL3
axm_tgtL3type : targetL3 € edgelL3 — vertL3
/Il (Rule 3) function targetL3
axn_tgtlL3def : partition(targetL3, { Msg31 — N31},{Stb31 — N31},
{Nzt31 — N32})
/l (Rule 3) function targetL3
axm tL3 V: tL3_V € vertL3 — vertT
/Il (Rule 3) Typing left vertices, tL3_V
axm_tL3 V_def : partition(tL3_V ,{N31 — Node},{N32 — Node})
/I (Rule 3) Typing left vertices, tL3_V
axm tL3 E: tL3_FE € edgel3 — edgeT
/Il (Rule 3) Typing left edges, tL3 _E
axm_tL3_E def : partition(tL3_FE,{Stb31 — Stb}, {Msg31 — Msg},
{Nzt31 — Nzt})
/Il (Rule 3) Typing left edges, tL3 _E
axm_vertR3 : partition(vertR3,{N33},{N34})
/I (Rule 3) Right Graph R3 — Vertices

axm_edgeR3 : partition(edgeR3,{Stb32},{ Nxt32},{ Msg32})
/Il (Rule 3) Right Graph R3 — Edges names
axm_srcR3type : sourceR3 € edgeR3 — vertR3
/I (Rule 3) function sourceR3
axn_srcR3def : partition(sourceR3,{ Msg32 — N3j},{Stb32 — N33},
{Nzt32 — N33Y})
/Il (Rule 3) function sourceR3
axm_tgtR3type : targetR3 € edgeR3 — vertR3
/Il (Rule 3) function targetR3
axn_tgtR3def : partition(targetR3,{ Msg32 — N34}, {Sth32 — N33},
{Nzt32 — N34})
/Il (Rule 3) function targetR3
axm tR3 V: tR3_V € vertR3 — vertT
/Il (Rule 3) Typing right vertices, tR3_V
axm_tR3 V_def : partition(tR3_V ,{ N33 — Node},{N34 — Node})
/I (Rule 3) Typing right vertices, tR3_V
axm tR3 E: tR3_FE € edgeR3 — edgeT
/I (Rule 3) Typing right edges, tR3_E
axm_tR3_E def : partition(tR3_E,{Sth32 — Stb}, {Msg32 — Msg},
{Nzt32 — Nzt})
(Rule 3) Typing right edges, tR3_E
axm_alpha3V : alpha3V € vertL3 -+ vertRS3
(Rule 3) Relational Rule alpha3: mapping vertices
axm_alpha3V_def : partition(alpha3V ,{N31 — N33}, {N32 — N34})
/I (Rule 3) Relational Rule alpha3: mapping vertices
axm_alpha3E : alpha3FE € edgeL3 + edgeRS3
/Il (Rule 3) Relational Rule alpha3: mapping edges

125

axm_alpha3E_def : partition(alpha3E, {Stb31 — Stb32},{ Nxt31 — Nxt32})

Il (Rule 3) Relational Rule alpha3: mapping edges
axm_vertL4 : partition(vertL4,{N/1},{N42})
/Il (Rule 4) Left Graph L4 — Vertices
axm_edgel4 : partition(edgel4,{ Tokj1},{Act41},{Msgj1},{Nztf1})
/Il (Rule 4) Left Graph L4 — Edges names
axm_srcL4type : sourcelj € edgel4 — vertL)
/I (Rule 4) function sourcelL4
axn_srcl4def : partition(sourcelj,{Tok41 — N41},{Msg41 — N1},
{Actf1 — N41},{Nztj1 — N41})
/Il (Rule 4) function sourcelL4
axm_tgtL4type : targetlLs € edgelj — vertl4
/Il (Rule 4) function targetL4
axn_tgtL4def : partition(targetL),{ Tokj1 — Nj1},{Msg41 — N41},
{Actf1 — N41},{Nxtj1 — N42})
/Il (Rule 4) function targetL4
axm tL4d V: tL4_V € vertlL} — vertT
/Il (Rule 4) Typing left vertices, tL4_V

126

axm_tL4 V_def : partition(tLj_V ,{Nj1 — Node},{N/2 — Node})
/Il (Rule 4) Typing left vertices, tL4_V
axm tL4d E: tL} FE € edgel4 — edgeT
/I (Rule 4) Typing left edges, tL4 E
axm_tL4 E def : partition(tLj_FE,{Tokj1 — Tok}, {Msgj1 — Msg},
{Act41 — Act}, {Nztj1 — Nat})
/Il (Rule 4) Typing left edges, tL4 E
axm_vertR4 : partition(vertR4,{N43},{N44})
/I (Rule 4) Right Graph R4 — Vertices
axm_edgeR4 : partition(edgeR4,{ Tokj2},{Stb42}, { Nzt42})
/Il (Rule 4) Right Graph R4 — Edges names
axm_srcR4type : sourceRj € edgeR4 — vertR4
/Il (Rule 4) function sourceR4
axn_srcR4def : partition(sourceR4 ,{ Tok42 — N44},{Stb42 — N43},
{Nzt/2 — N43})
/I (Rule 4) function sourceR4
axm_tgtR4type : targetR4 € edgeRj — vertR/
/l (Rule 4) function targetR4
axn_tgtR4def : partition(targetR4,{Tok}2 — N44},{Stb42 — N43},
{Nat}2 — Nj43})
/Il (Rule 4) function targetR4
axm tR4 V: tR}_V € vertR4 — vertT
/Il (Rule 4) Typing right vertices, tR4_V
axm_tR4 V_def : partition(tR}_V ,{N43 — Node},{Nj}4 — Node})
/Il (Rule 4) Typing right vertices, tR4_V
axm tR4 E: tR/ FE € edgeR4 — edgeT
/I (Rule 4) Typing right edges, tR4_E
axm_tR4_E def : partition(tR4_E,{Stb42 — Stb},{ Tok}2 — Tok},
{Nzt}2 — Nzt})
/I (Rule 4) Typing right edges, tR4_E
axm_alphadV : alpha4V € vertLs - vertR4
/Il (Rule 4) Relational Rule alpha4: mapping vertices
axm_alphadV_def : partition(alphafV ,{N41 — N43},{Nj2 — Nj4}})
/Il (Rule 4) Relational Rule alpha4: mapping vertices
axm_alphadk : alpha4F € edgelj + edgeR/
/Il (Rule 4) Relational Rule alpha4: mapping edges
axm_alphadE def : partition(alphafE, { Nxt/1 — Nxt42})
/I (Rule 4) Relational Rule alpha4: mapping edges
axm_vertL5 : partition(vertL5, {N51},{N52})
/I (Rule 5) Left Graph L5 — Vertices
axm_edgel5 : partition(edgeL5, { Nxt51})
/Il (Rule 5) Left Graph L5 — Edges names
axm tL5 V: tL5_V € vertL5 — vertT
/Il (Rule 5) Typing left vertices, tL5_V
axm_srcL5type : sourceLd € edgeL5 — vertL5
/I (Rule 5) function sourcelL5

127

axn_srcLbdef : partition(sourceLd, { Nzt51 — N51})
/I (Rule 5) function sourcelL5
axm_tgtLbtype : targetLd € edgeLd — vertL5
/I (Rule 5) function targetL5
axn_tgtLbdef : partition(targetL5,{ Nxt51 — N52})
/Il (Rule 5) function targetL5
axm_tL5 V_def : partition(tL5_V ,{N51 — Node},{N52 — Node})
/Il (Rule 5) Typing left vertices, tL5_V
axm tL5 E: tL5_FE € edgelLd — edgeT
/I (Rule 5) Typing left edges, tL5 E
axm_tL5 E def : partition(tL5_E, {Nat51 — Naxt})
/Il (Rule 5) Typing left edges, tL5_E
axm_vertR5 : partition(vertR5,{N53},{N5}},{N55})
/I (Rule 5) Right Graph R5 — Vertices
axm_edgeR5 : partition(edgeR5, {Stb51}, { Nxt52}, { Nxt53})
/Il (Rule 5) Right Graph R5 — Edges names
axm_srcR5type : sourceR5 € edgeR5 — vertR5
/I (Rule 5) function sourceR5
axn_srcRbdef : partition(sourceR5, {Stb51 — N55}, { Nxt52 — N53},
{Nzt53 — N55})
/I (Rule 5) function sourceR5
axm_tgtRbtype : targetR5 € edgeR5 — vertR5
/Il (Rule 5) function targetR5
axn_tgtRbdef : partition(targetR5,{Stb51 — N55}, { Nxt52 — N55},
{Nzt58 — N54})
/I (Rule 5) function targetR5
axm tR5 V: tR5_V € vertR5 — vertT
/Il (Rule 5) Typing right vertices, tR5_V
axm_tR5_V_def : partition(tR5_V ,{N53 — Node},{N54 — Node},
{N55 — Node})
/I (Rule 5) Typing right vertices, tR5_V
axm_tR5_E: tRS_E € edgeR5 — edgeT
/I (Rule 5) Typing right vertices, tR5_V
axm_tR5_E def : partition(tR5_E, {Stb51 — Stb}, { Nxts2 — Nut},
{Nzt53 — Nzxt})
/I (Rule 5) Typing right edges, tR5_E
axm_alphabV : alphabV € vertL5 - vertRS
/I (Rule 5) Relational Rule alpha5: mapping vertices
axm_alphabV_def : partition(alpha5V {N51 — N53},{N52 — N5} })
/I (Rule 5) Relational Rule alpha5: mapping vertices
axm_alphabE : alphabE € edgelLd + edgeR5
I/l (Rule 5) Relational Rule alpha5: mapping edges
axm_alphabE def : alphadFE = @
/I (Rule 5) Relational Rule alpha5: mapping edges

axmNxtTok : Nat # Tok

axmNxtMsg :
axmNxtStb :
axmNxtAct :
axmTokMsg :
axmTokStb :
axmTokAct :
axmMsgStb :
axmMsgAct :
axmStbAct :

Nzt # Msg
Nzt # Stb
Nzt # Act
Tok # Msg
Tok # Stb
Tok # Act
Msg # Stb
Msg # Act
Stb # Act

128

END

B.2 Event-B Machine of Token Ring

An Event-B Specification of mch_trAll
Creation Date: 8 Mar 2010 @ 09:59:48 PM

MACHINE mch_trAll
SEES ctx_trAll
VARIABLES
vertG // (Graph) Vertices
edgeG // (Graph) Edges
sourceG // (Graph) function sourceG
targetG /[(Graph) function targetG
tG_V /[(Graph) Typing vertices, tG_V
tG_E // (Graph) Typing edges, tG_E
INVARIANTS

inv_vertG : wvertG € P(N)
Il (Graph) Vertices are natural numbers.
inv_edgeG : edgeG € P(N)
/Il (Graph) Edges are natural numbers.
inv_srcGtype : sourceG € edgeG — vertG
Il (Graph) function sourceG
inv_tgtGtype : targetG € edgeG — vertG
Il (Graph) function targetG
inv_tG V: tG_V € vertG — vertT
/I (Graph) function tG_V
inv_tG_E: tG_F € edgeG — edgeT
Il (Graph) function tG_E
proplfin: finite(dom(tG_E > {Tok}))
I/ Property O: The set of edges of type Tok of a reachable gsafahite.
propl : card(dom(tG_E > {Tok})) = 1
Il Property 1. Any reachable graph has exactly one edge efTgg.
EVENTS

129

Initialisation

begin
act_vertG : vertG :={1,2,3}
Il (G = GO) Vertices
act_edgeG : edgeG :={1,2,3,4,5,6,7}
/I (G = GO) Edges
act_srcG: sourceG == {1 +— 1,2 — 1,3+ 1,4 — 2,5+ 2.6 —
3,7+ 3}
Il (G = GO) function sourceG
act_tgtG: targetG = {1 — 1,2 — 1,8 — 2,4 — 2,5 — 3,6 —
3,7— 1}
/I (G = GO) function targetG
act_tG_V: tG_V :={1 — Node, 2 — Node, 3 — Node}
/Il (G = GO) Typing vertices
act_tG E: tG_E := {1 — Tok,2 — Stb,8 — Nuzt, 4 — Stb,5 —
Nzxt, 6 — Stb, 7 — Nt}
/I (G = GO) Typing edges
end
Event rulel=

any
mV [l mV component of a match
mkE /I mE component of a match
newEmsg /I new fresh name for an edge
newFact /I new fresh name for an edge
where
grd_ mV: mV € vertLl — vertG
/' mV is total
grd mE: mF € edgelLl — edgeG
/l mE is total and injective
grd_newEmsg : newEmsg € N\ edgeG
/I newEmsg is a fresh name
grd_newEact : newFact € N\ edgeG
/I newEact is a fresh name
grd_E1E2 : newEmsg # newFact
grd_vertices : Yv-v € vertLl1 = tL1_V(v) =tG_V(mV(v))
vertex compatibility
grd_edges : Ve-e € edgeLl1 = tL1_E(e) = tG_E(mE(e))
edge compatibility
grd_srctgt : Ve-e € edgeLl = mV (sourceL1(e)) = sourceG(mE(e)) A
mV (targetL1(e)) = targetG(mE(e))
source/target compatibility
then
act_E: edgeG := (edgeG \ {mE(Stb11)}) U {newEmsg, newEact}
act_src: sourceG := ({mE(Sth11)}<sourceG)U{newFact — mV (N11),
newEmsg — mV (N12)}
act_tgt : targetG := ({mE(Stb11)}<targetG)U{newFact — mV (N11),
newEmsg — mV (N12)}

130

act_tE: tG_E := ({mE(Stb11)}<tG_E)U{newFact — Act, newEmsg —
Msg}
end

Event rule2=

any
mV /[l mV component of a match
mkE /I mE component of a match
newFEtok Il new fresh name for an edge
where
grd_ mV: mV € vertL2 — vertG
/' mV is total
grd mE: mF € edgeL?2 — edgeG
/l mE is total and injective
grd_newEl : newEtok € N\ edgeG
/I newEtok is a fresh name
grd_vertices : Yv-v € vertL2 = tL2_V(v) = tG_V(mV(v))
vertex compatibility
grd_edges : Ve-e € edgel2 = tL2_E(e) = tG_E(mE(e))
edge compatibility
grd_srctgt : Ve-e € edgeL2 = mV (sourceL2(e)) = sourceG(mE(e)) A
mV (targetL2(e)) = targetG(mE(e))
source/target compatibility
then
act_E: edgeG := (edgeG \ {mE(Tok21)}) U {newEtok}
act_src: sourceG := ({mE(Tok21)}<bsourceG)U{newEtok — mV (N22)}
act_tgt : targetG := ({mE(Tok21)}<targetG)U{newEtok — mV (N22)}
act_tE: tG_FE := ({mE(Tok21)} 9 tG_F) U {newEtok — Tok}
end

Event rule3=

any
mV /[l mV component of a match
mE /I mE component of a match
newEmsg Il new fresh name for an edge
where
grd mV: mV € vertL3 — vertG
/I mV is total
grd mE: mFE € edgeL3 — edgeG
/I mE is total and injective
grd_newE : newEmsg € N\ edgeG
/[newEmsg is a fresh name
grd_vertices : Yv-v € vertL8 = tL3_V (v) = tG_V(mV(v))
vertex compatibility
grd_edges : Ve-e € edgelL3 = tL3_FE(e) = tG_E(mE(e))
edge compatibility
grd_srctgt : Ve-e € edgeL3 = mV (sourceL3(e)) = sourceG(mE(e)) A
mV (targetL3(e)) = targetG(mE(e))
source/target compatibility

131

then
act_E: edgeG = (edgeG \ {mE(Msg31)}) U {newEmsg}
act_src: sourceG := ({mE(Msg31)}<sourceG)U{newEmsg — mV (N32)}
act_tgt : targetG := ({mE(Msg31)}<targetG)U{newEmsg — mV (N32)}
act_tE: tG_E := ({mE(Msg31)} € tG_E) U {newEmsg — Msqg}
end
Event rule4 =

any
mV [l mV component of a match
mE /I mE component of a match
newFstb I/ new fresh name for an edge
newFEtok Il new fresh name for an edge
where
grd mV: mV € vertL{ — vertG
[mV is total
grd mE: mFE € edgel4 — edgeG
/Il mE is total and injective
grd_newEstb : newFEstb € N\ edgeG
Il newEstb is a fresh name
grd_newEtok : newEtok € N\ edgeG
/I newEtok is a fresh name
grd_newE1E2 : newFstb # newFtok
grd_vertices : Yv-v € vertL} = tL4_V(v) =tG_V(mV(v))
vertex compatibility
grd_edges : Ve-e € edgel = tL4_FE(e) = tG_E(mE(e))
edge compatibility
grd_srctgt : Ve-e € edgeL4 = mV (sourceL](e)) = sourceG(mE(e)) A
mV (targetL] (e)) = targetG(mE(e))
source/target compatibility
then
act_E: edgeG = (edgeG \ {mE(Tok41), mE(Actfl), mE(Msg41)}) U
{newEsth, newktok}
act_src: sourceG = ({mE(Tok41), mE(Actf1), mE(Msg41)}<bsourceG)U
{newFEstb — mV (N41), newEtok — mV (N42)}
act_tgt : targetG := ({mE(Tok41), mE(Actf1), mE(Msg41)}<targetG)U
{newEstb — mV (N41), newEtok — mV (N/2)}
act_tE: tG_E = ({mE(Tok{1), mE(Actj1), mE(Msg4l)} < tG_E) U
{newFEstb — Stb, newEtok — Tok}
end

Event rule5=

any
mV /[l mV component of a match
mE /I mE component of a match
newV [l new fresh name for a vertex
newFE1 /I new fresh name for an edge
newk?2 Il new fresh name for an edge
newEstb I/ new fresh name for an edge

END

132

where

then

end

grd mV: mV € vertL5 — vertG
I mV is total
grd mE: mFE € edgeL5 — edgeG
/I mE is total and injective
grd_newV : newV € N\ vertG
/I newV is a fresh name
grd_newEstb : newFstb € N\ edgeG
/I newEstb is a fresh name
grd_newEl : newFEl1 € N\ edgeG
I newE1l is a fresh name
grd_newE2 : newkE?2 € N\ edgeG
I newE2 is a fresh name
grd_newE1E2 : newFl1 # newkE?2
grd_newE2stb : newkE2 # newFsth
grd_newElstb : newE1 # newFsth
grd_vertices : Yv-v € vertLd = tL5_V(v) = tG_V(mV(v))
vertex compatibility
grd_edges : Ve-e € edgel5 = tL5_E(e) = tG_E(mE(e))
edge compatibility
grd_srctgt : Ve-e € edgeL5 = mV (sourceL5(e)) = sourceG(mE(e)) A
mV (targetL5(e)) = targetG(mE(e))
source/target compatibility

act_vertG : vertG := vertG U {newV}

act_tG_V: tG_V :=tG_V U{newV — Node}

act_E: edgeG = (edgeG \ {mE(Nzt51)}) U {newE1, newE2, newEstb}

act_src: sourceG := ({mE(Nxt51)}<sourceG)U{newEkl — mV (N51), newE2 —
newV, newEsth — newV'}

act_tgt : targetG := ({mE(Nzt51)}<targetG)U{newE1 — newV, newk?2 —
mV (N52), newEsth — newV'}

act_tE: tG_E = ({mE(Nzt51)} 9tG_E) U {newEl — Nzt, newE2 —
Nzt, newEstb — Stb}

133

APPENDIX C RESUMO ESTENDIDO DA TESE

Nesta tese, introduziu-se uma abordagem logica e reldaiengramatica de grafos
para permitir a analise de sistemas distribuidos e assiosm@m espaco de estados in-
finito. Utilizou-se estruturas relacionais para caraztergramatica de grafos e definiu-se
aplicacdes de regras como transduc¢des definiveis. Prim@isiderou-se gramatica de
grafos definidas sobre grafos (tipados) simples, e entasteedeu a representacao para
grafos com atributos e para gramaticas com condi¢des wagake aplicacdo. Mostrou-
se que a abordagem proposta oferece uma codificacdo adguprada definicasingle
pushout(SPO) de gramatica de grafos, podendo ser utilizada conea 0 uso de
técnicas de prova de teoremas para prova de propriedadepleznentando as aborda-
gens existentes baseadas em técnicas de verificacdo agtong&tmodelos. A maior
contribuicdo deste trabalho n&o deve ser vista como umaatmralagem para descrever
gramatica de grafos, mas como uma forma de permitir o usccdets (e ferramentas)
de prova de teoremas para as abordagens existentes (msdedqui a abordagem SPO,
mas a teoria proposta pode também ser utilizada como basenaaipular outras abor-
dagens). Este é um resultado relevante desde que gran&tcafds oferece umatécnica
de especificacdo interessante para diversas areas dea@ptieg até o momento, técnicas
de prova de teoremas néo podiam ser utilizadas para anailcgaredades de gramaticas
de grafos. As principais contribuicdes deste trabalho séo:

e A representacao logica e relacional de gramatica de grgfapitulo 3) estabelece
as fundamentacdes teoricas para a analise de gramaticeefale afravés de prova
de teoremas. Representou-se gramatica de grafos e seurtamgato utilizando
estruturas l6gicas e relacionais porgue elas constitueasede provadores de teo-
remas. Trabalhos relacionados (STRECKER, 2008; BARESDLEH INI, 2006)
que adotam uma descri¢cdo de gramatica de grafos baseadpresergacoes I6gi-
cas ou em teoria dos conjuntos, ou nao estéao verificandoedaples de gramaticas
de grafos ou estéo limitadas para analisar sistemas dentnmescopo finito, cujo
tamanho é definido pelo usuario. Abordagens para analisanagica de grafos
com ndmero infinito de estados (BALDAN; CORRADINI; KONIG, @8; BAL-
DAN; KONIG; RENSINK, 2005) derivam o modelo como aproximasfas quais
podem resultar em relatérios inconclusivos de verificacao.

A definicdo de gramatica de grafos como estruturas relasi¢baf. 13) permite a
associagdo de uma gramatica de grafos com uma tupla cong@osta conjunto e
uma colecao de relagfes sobre este conjunto. O conjunteedescdominio da es-
trutura (o0 conjunto de vértices e arcos da gramatica degrafas relacdes definem
o grafo tipo, o grafo inicial e as regras. Uma série de coradi¢dgicas impde re-
stricbes aos elementos destas relacdes para garantirguea&imente representem

134

0s componentes de uma gramatica de grafos (grafos, grpémos, morfismos de
grafos e regras). A aplicacao de uma regra € descrita porramsducao definivel
(Def. 16), que pode ser vista como uma regra de inferénciatnatera relacional
associada a gramatica de grafos. O resultado da transdumitoaggramatica de
grafos cujo estado inicial corresponde ao resultado daagéo de uma regra a
um dadomatchao estado inicial da gramatica original. Os outros compiaseta
gramatica permanece inalterados (isto €, a gramaticaaasaitem o mesmo grafo
tipo e regras da gramatica original). Proposicfes 7 e 9 taragque a codificacédo
adotada esta bem-definida. Para uso em verificacdo, asegldadstrutura rela-
cional definem axiomas que podem ser utilizados nas provespeigdades sobre
estados alcancgaveis sao provadas por inducéo: primeso (ese) a propriedade é
verificada para o grafo inicial e entéo, no passo indutivopanedade é verificada
para cada regra da gramatica aplicavel a um grafo alcanGaweinsiderando que
a propriedade é valida pata

A abordagem relacional para gramaticas de grafos com atokCapitulo 4) é
uma extensdo do formalismo basico que integra o uso de tgpdadbs em grafos.
Gramatica de grafos com atributos é bastante interessapiendo de vista pratico,
desde que é possivel utilizar variaveis e termos quandopseiisa 0 comporta-
mento expresso por regras. Estes valores (ou termos) vélpedeas especificadas
como tipos abstratos de dados. O uso de grafos com atrilanoece ao especifi-
cador uma linguagem que é mais adequada para especificagémnando as van-
tagens da representacao grafica com uma representacao padidipos de dados
classicos. Partindo de uma perspectiva pratica, grafosatdbutos sdo necessarios
desde que nao é viavel codificar tipos de dados como nUmetarsisaou strings,
etc. em grafos. Para verificagdo formal, a presenca de tasilsere proble-
mas adicionais, desde que tipos de dados séo frequentecosu@tos infinitos.
Na verdade, mesmo restringindo apenas para conjuntossfiespecificacdes que
usam grafos com atributos frequentemente levam a sisteaagenificaveis dev-
ido a explosédo de estados. Existem algumas abordagensequidieav gramaticas
de grafos com atributos, como (KASTENBERG, 2006) e (KONI®ZHOURA,
2008) e elas funcionam para classes limitadas de gramativbsstrou-se que
atributos podem ser integrados de forma adequada na refaede proposta de
gramatica de grafos. A abordagem proposta prové uma baselper ferramenta
para argumentar sobre uma classe maior de gramatica ds,grefloindo gramati-
cas que especificam sistemas com espaco de estados inénitaitiizar nenhum
tipo de aproximacéao.

As DefinicBes 29 e 31 expressam a representacao relacionahagramatica de

grafos com atributos. As Proposicdes 16 e 18 garantem quieasao relacional

esta bem-definida. A estratégia de prova aplicada na etapaifleacéo € a mesma
descrita anteriormente: utilizou-se indu¢cdo matematioasiderando que as re-
lagOes da estrutura relacional definem axiomas a sererpadiis nas provas. A
diferenca é que agora utilizou-se varidveis como atribibdado direito e esquerdo
das regras, e entdo, em diversas situacdes, no passo indutdsenvolvimento de
provas envolve variaveis. Neste caso, para estabelecapaqutade, devem-se
considerar as equacdes da regra que esta sendo aplicadaxiomas.

135

e A extensdo para gramatica de grafos com condi¢des negatevaplitacaoCapi-
tulo 5) permite a especificacdo de que uma certa estrutul@da ao se executar
uma aplicacdo de regra, aumentando a expressividade déotraacdo. Particu-
larmente, condicbes negativas de aplicacdo (NACSs) rgstmina aplicacdo de uma
regra expressando que uma estrutura especifica (por exangis, arcos ou sub-
grafos) ndo devem estar presentes num grafo-estado ardgesagéicar uma regra.
Condicdes de aplicacdo sdo comumente utilizadas em espe6iis ndo triviais.
Como enfatizado em (HABEL; HECKEL; TAENTZER, 1996) elas skpressas
frequentemente de maneira informal assumindo algum tipoetanismo de con-
trole que ndo é especificado. No entanto, tal estratégiadenpspecificacéo e
verificagdo formal. A expressdo de NACs é atualmente pdssivderramentas
(ERMEL; RUDOLF; TAENTZER, 1999; SCHURR; WINTER; ZUNDORR99)
de gramatica de grafos que focam em analise de conflitos eartangento fun-
cional. NACs também podem ser especificadas em GROOVE (KABHRG;
RENSINK, 2006b) para a analise de graméticas de grafos cauassinfinitos, no
caso em que o espaco de estados possa ser representadaldantrdragmento
finito.

A Definicdo 36 associa uma estrutura relacional a uma greaég grafos com
condi¢cbes negativas de aplicacdo. A Proposi¢cdo 20 mostra glefinicdo rela-
cional esta bem-definida. Nesta abordagem, condicOesaldx@m ser checadas
antes de uma aplicacéo de regra para garantir que os elenpeaiioidos ndo estao
no grafo-estado. Na etapa de verificacdo, a existéncia desMAermina condi¢cdes
extras que podem ser utilizadas durante as provas.

e Ospadrbes de propriedadd€apitulo 6) propostos contém 15 classes de padrées,
dentro das quais requisitos funcionais e estruturais @delestalcancaveis podem
ser formulados. Os padrGes tem o objetivo de auxiliar e siicgrl a tarefa de
descrever requisitos precisos a serem verificados. Elesrdprover o auxilio su-
ficiente para a especificacdo de propriedades sobre estadngséveis de gramati-
cas de grafos. Acredita-se que os padrdes propostos refaese primeiro passo
na direcdo de um padrao de especificacao para proprieddatesestados no con-
texto de gramaticas de grafos. Diferentemente da maiosialdardagens propostas
(DWYER; AVRUNIN; CORBETT, 1999; CHECHIK; PAUN, 1999; SALAMH
et al., 2007), o foco foi dado em propriedades sobre estadmscaveis para verifi-
cacao de estados (infinitos). A maioria dos padrbes exedgatra especificacédo de
propriedades descrevem propriedades sobre tragos paraégitas de verificagéo
de estados finitos. Estas duas abordagens sao complersentare

As Tabelas 6.1, 6.2 e 6.3 descrevem uma biblioteca padraordds que de-
screvem caracteristicas tipicas ou elementos de grafoso(uértices de determi-
nado tipo, o conjunto de todos os arcos de algum tipo, a cdrdiame de vértices,
etc.). Estas funcdes foram definidas dentro do escopo détjcasn de grafos rela-
cionais. A Tabela 6.4 propde uma taxonomia de padrées etmaafabelas 6.6 e
6.7 listam uma colecao de padrbes para especificacao deculaqbes.

e A modelagem de especificacdes de gramatica de grafos emueatute event-
B (Capitulo 7) permitiu o uso de provadores de event-B (asralg plataforma
Rodin) para demonstrar propriedades de uma gramatica fesgfavent-B (DE-
PLOY, 2010) tem sido utilizado com sucesso em diversas aphcacdes e pos-

136

sui ferramentas de suporte disponiveis tanto para esp@ébiquanto para analise.
Event-B foi escolhida devido a similaridade entre modeleneB e especificacdes
em gramaticas de grafos, especialmente o comportamergadmsm regras. Di-
versos outros trabalhos (ZEYDA; CAVALCANTI, 2009; ISOBEQREGENBACH,
2008a; LEHMANN; LEUSCHEL, 2003) tém focado na prova de tetwas de sis-
temas concorrentes, mas para sistemas assincronos, igeadggrafos tem van-
tagem devido ao seu estilo visual e modular.

Para definir um modelo event-B, utilizou-se a definicdo fefead de gramatica
de grafos. O grafo tipo é definido em um contexto de um modetote8, onde
tipos de vértices, arcos e relacdes de incidéncia relactmales sédo definidos
como constantes. Um conjunto de axiomas define estes cosjarplicitamente.
Um grafo tipado sobre um grafo tipo € modelado por um conjaetwvariaveis
descrevendo seu conjunto de vértices, relacao de incalérfangdes de tipagem.
As condi¢des de compatibilidade de tipos e origem e desenarcos podem ser
declaradas como invariantes. O evento de inicializacaiiZagio para criar o grafo
inicial. A estrutura de uma regra é definida por conjuntosstamtes e invariantes.
O comportamento de uma regra é descrito por um evento congéascie guarda.
Um conjunto de ac¢des atualiza o grafo estado de acordo cognaa re

Finalmente, é possivel dizer que o campo de pesquisa saiwa e teoremas para
gramatica de grafos esta nos seus primeiros estagiosefxikbtersas questdes em aberto
gue devem ser objeto de trabalhos futuros.

e Além de implementacao, estudos de casos sdo necessamoavpdiar e melho-
rar a abordagem proposta. Até o momento, as extensdes dalimm basico de
gramatica de grafos n&o foram especificados na plataforrdia R possivel tam-
bém investigar até que ponto a teoria do refinamento, que é&bsenvolvida em
event-B, pode ser utilizada para validar um desenvolvimpasso-a-passo baseado
em gramatica de grafos. Outro objetivo € a implementacagdade dado grafo
alcancavel a ser usado na especificacéo e verificacdo deanateframatica de
grafos. Esta estratégia deve ser comparada e avaliada coplerientacao ado-
tada.

e Outras classes de gramaticas de grafos ndo consideradagesEsenglobam di-
versas aplicacdes praticas. Em particular, gramatica afeggbaseada em obje-
tos (DOTTI et al., 2003), gramatica de grafos baseada entasbjemporizadas
(MICHELON; COSTA; RIBEIRO, 2007, 2006), gramatica de gsafwrientada a
objetos (FERREIRA; FOSS; RIBEIRO, 2007) e muitas outrasHBURR, 1997)
possivelmente com outros tipos de estrutura de grafos, ¢opss-grafos, hiper-
grafos atribuidos e rotulados, tém seu proprio campo deagdlo. Desta forma,
seria interessante investigar uma descricao geral daadpamdrelacional de forma
que diversos tipos de grafos e/ou gramaticas se tornenmaiasédesta ferramenta
mais geral.

e A abordagem aqui proposta deve ser definida para gramaticdsndagerdouble-
pushout(DPO) sem maiores problemas. Na abordagem SPO é apenasar&ces
encontrar uma imagem do lado esquerdo da regra num grafocalea para que
a regra possa ser aplicada. Na abordagem DPO algumasdestexgtras devem
ser verificadas, denominadguing condition antes que uma regra seja aplicada.

137

Isto significa que algumas formulas logicas adicionas (owigdes de guarda adi-
cionais no caso de estruturas event-B) devem ser incluatasser checadas antes
de uma aplicacédo de regra.

Os padrdes de propriedades também devem ser incorporadesraxaenta de
prova. Seria de grande auxilio detalhar para cada requiaitto quanto possivel,
as propriedades ou lemas que devem ser exigidos para a séoaa prova, in-
cluindo estratégias de provas que podem ser adotadas encasmla Simultane-
amente, uma gramatica estruturada pode ser desenvolvigaypdliar na formu-
lacdo de propriedades. Além disso, uma extensao naturglatvées declarados
seria a investigacéo dos requisitos descritos com logiedta@rdem. Deve-se, por
fim, complementar e avaliar o sistema de padrfes proposlisam#o um numero
apropriado de especificacdes do mundo real.

Outro topico de trabalho futuro € o uso da técnica de provaatemas para anal-
isar outros tipos de propriedades, como propriedades dessegn diveness Em
particular, controlabilidade, ou a propriedade de se ghlaom particular (con-
junto de) estado(s) do sistema qualquer que seja o atual, inpartante topico
de andlise. Tal propriedade nao pode ser verificada por &ndongtematica desde
que nao é finitaria. Ela deve ser definida sobre todos os caampentos futuros do
sistema.

