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ABSTRACT 

 
In this contribution we present progress on research concerning dispersion of tritium around the Angra Nuclear 

Power Plant (Angra dos Reis, Rio de Janeiro state, Brazil). In particular, we are interested in studying how 

dispersion behaves in scenarios with complex orography. Our proposal is to transform a problem with 

curvilinear boundaries into an equivalent problem with plane parallel boundaries. We modify the coordinate 

system through a diffeomorph conformal transformation. Consequently, the operators of the dynamical 

equations change according to the additional terms from the affine connection. To define the transformation it is 

necessary to satisfy strong constraints, i.e., boundaries shall be “smooth”. Even with restrictions, our model can 

be implemented in several situations. A flat region is a particular case of a curvilinear domain and can be 

studied, where the height of the boundary layer above rivers, lakes, basins is typically smaller and thus implies a 

varying boundary layer height, for example. Thus, even in flat regions variations in the boundary layer occur, 

which characterizes a case of a curvilinear domain. There are several nuclear power plants worldwide, that are 

located in mountainous regions, as for example in Japan and Brazil. We present a simulation of tritium 

dispersion specifically in the area where the Angra 2 Nuclear Power Plant is located and where the relief is 

characterized by a considerable complexity. With the intention of showing that the methodology is consistent, we 

will consider only the variation of the relief. 

 
Keywords: tritium, dispersion, diffeomorph, conformal, transformation. 
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1. INTRODUCTION 

 

The objective of our research is to study flow problems in domains with curvilinear boundaries. 

The proposal consists of modifying the coordinate system. To this end, we construct a function 

𝑇: Ω ⊆ ℝ3 ⟶ ℝ3that transforms the domain Ω, our curvilinear domain, into a domain whose 

boundaries are plane-parallel. The transformation of the coordinate system changes not only the 

domain but also the partial differential equation that models the problem. Unlike conventional 

methodologies, which do not change the domain, we propose to transfer the difficulty found in the 

non-planar boundaries to the differential equation. If we initially have traditional partial differential 

equations (such as the Navier-Stokes equations, continuity equation and advection-diffusion 

equation) that model a problem on a domain whose boundaries are curvilinear, after transformation 

we have transformed partial differential equations modeling the problem on a domain that has 

plane-parallel boundaries.  

This proposal for solving problems of flows was motivated in particular by classical theories 

such as Differential Geometry and Tensorial Calculus. As we can see in [1,2], these are well 

developed theories and, under certain domain conditions guarantee that the proposed methodology 

is valid. Once transformed, the partial differential equation can be solved by known methods.  

In this work, supported mainly by [2,3], we use numerical resolution techniques. Coordinate 

transformation together with numerical resolution methods allow for robust modeling that can be 

applied to multiple scenarios. An application of relevance for the nuclear community, see references 

[4-6], is to calculate the tritium dispersion around the region of Angra dos Reis, Rio de Janeiro, 

Brazil. In this paper we describe part of this study. Although, some simplifications were used, the 

methodology proved effective, as can be seen in the following sections. 

 

2. TRANSFORMATION OF THE COORDINATE SYSTEM 

 

Let 𝑥1 × 𝑥2 × 𝑥3 be the Cartesian coordinate system and 𝜉1 × 𝜉2 × 𝜉3 the generalized 

coordinate system. We define the general transformation 𝑇 by conformal equation (1). 
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𝑇: 𝜉𝛼
= 𝜉𝛼

(𝑥𝑖)  (1) 

 

In equation (1),  𝑖, 𝛼 ∈ {1,2,3}, 𝑥𝑖 = {𝑥1, 𝑥2, 𝑥3} ∈ Ω ⊆ ℝ3, where Ω is an open set. The 

transformation T must satisfy the property of being a diffeomorph conformal transformation. In 

addition to the mathematical characteristics, this property ensures that conservation laws are 

preserved. According to [7], 𝑇 is  a conformal diffeomorph transformation if and only if the 

functions ξα are of class 𝐶1(Ω) and |𝐽| ≠ 0 in Ω , where J is the Jacobian determinant of 

transformation T . See equation (2). 

 

𝐽 = |
𝜕𝜉𝛼

𝜕𝑥𝑖
| ≠ 0 (2) 

 

While  𝑥1, 𝑥2, 𝑥3 are generic, the transformation transforms the system of Cartesian 

coordinates into the generalized coordinate system. After defining the functions 𝑥1, 𝑥2, 𝑥3, we say 

that 𝑇 transforms the Cartesian coordinate system into a curvilinear coordinate system. 

 

3. THE ADVECTION-DIFFUSION EQUATION  

 

A dispersion problem can be modeled by the advection-diffusion equation. Using the simplified 

equation and Einstein summation convention, with 𝑖 ∈ {1,2,3}, we obtain the equation (3). 

 

𝜕 𝐶

𝜕 𝑡
+ 𝑢𝑖

𝜕𝐶

𝜕𝑥𝑖
=

𝜕𝐾𝑥𝑖

𝜕𝑥𝑖

𝜕𝐶

𝜕𝑥𝑖
+ 𝐾𝑥𝑖

𝜕2𝐶

𝜕(𝑥𝑖)2
 (3) 

 

Here, the function 𝐶 is the average concentration of a contaminant [𝑔/𝑚3]. The scalar functions 

𝑢𝑖 are the wind speeds [𝑚/𝑠] in the direction of the 𝑥1, 𝑥2, 𝑥3 axes of the Cartesian coordinate 

system, respectively. The coefficients 𝐾𝑥1 , 𝐾𝑥2 , 𝐾𝑥3  are the turbulent diffusion coefficients [𝑚2/𝑠], 

respectively, in the directions 𝑥1, 𝑥2, 𝑥3. 
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4. THE TRANSFORMED ADVECTION-DIFFUSION EQUATION 

 

The variables of both coordinate systems are connected using the chain rule. Equations (4) and 

(5) show the first derivative already transformed the functions 𝐶 and 𝐾𝑥𝑖. 

 

𝜕𝐶

𝜕𝑥𝑖
=

𝜕𝐶

𝜕𝜉𝛼

𝜕𝜉𝛼

𝜕𝑥𝑖
 (4) 

 

𝜕𝐾𝑥𝑖

𝜕𝑥𝑖
=

𝜕𝐾𝑥𝑖

𝜕𝜉𝛼

𝜕𝜉𝛼

𝜕𝑥𝑖
 (5) 

 

In these equations, 𝑖, 𝛼 ∈ {1,2,3}. The second derivatives, in the transformed form, are described 

by equation (6), where 𝑖, 𝑗, 𝛼, 𝛽 ∈ {1,2,3} and the Kronecker symbol 𝛿𝑗
𝑖 = 1 for 𝑖 = 𝑗 and zero 

otherwise. 

 

𝜕2𝐶

𝜕(𝑥𝑖)2
= 𝛿𝑗

𝑖 𝜕𝐶

𝜕𝜉𝛼

𝜕𝜉𝛼

𝜕𝑥𝑖
+

𝜕2𝐶

𝜕𝜉𝛼𝜕𝜉𝛽

𝜕𝜉𝛼

𝜕𝑥𝑖

𝜕𝜉𝛽

𝜕𝑥𝑖
 (6) 

 

Replacing (4), (5) and (6) in (3), we obtain the advection-diffusion equation in generalized 

coordinates, conformal equation (7). 

 

𝜕𝐶

𝜕𝑡
+ 𝑢𝑖

𝜕𝐶

𝜕𝜉𝛼

𝜕𝜉𝛼

𝜕𝑥𝑖
=

𝜕𝐾𝑥𝑖

𝜕𝜉𝛼

𝜕𝜉𝛼

𝜕𝑥𝑖

𝜕𝐶

𝜕𝜉𝛽

𝜕𝜉𝛽

𝜕𝑥𝑖
+ 𝐾𝑥𝑖 (𝛿𝑗

𝑖 𝜕𝐶

𝜕𝜉𝛼

𝜕𝜉𝛼

𝜕𝑥𝑖
+

𝜕2𝐶

𝜕𝜉𝛼𝜕𝜉𝛽

𝜕𝜉𝛼

𝜕𝑥𝑖

𝜕𝜉𝛽

𝜕𝑥𝑖
) (7) 

  

5. NUMERICAL RESOLUTION 

 

We solve a problem that has velocities 𝑢𝑖 and diffusion coefficients 𝐾𝑥𝑖 varying only in space. 

The solution of equation (7) can be estimated using a numerical resolution. In the present approach 

we use the finite difference method. Before starting, we simplify the equation. The coefficients in 𝐶 

are put in evidence, thus, we obtain the equation (8). 
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𝜕𝐶

𝜕𝑡
= 𝐷1

𝜕𝐶

𝜕𝜉1
+ 𝐷2

𝜕𝐶

𝜕𝜉2
+ 𝐷3

𝜕𝐶

𝜕𝜉3
+ 𝐷4

𝜕𝐶

𝜕(𝜉1)2
+ 𝐷5

𝜕𝐶

𝜕(𝜉2)2
+ 𝐷6

𝜕𝐶

𝜕(𝜉3)2
+ 

𝐷7

𝜕2𝐶

𝜕𝜉1𝜕𝜉2
+ 𝐷8

𝜕2𝐶

𝜕𝜉1𝜕𝜉3
+ 𝐷9

𝜕2𝐶

𝜕𝜉2𝜕𝜉3
 

(8) 

 

We highlight the dependence of the coefficients 𝐷𝑖 = 𝐷𝑖(𝑥1, 𝑥2, 𝑥3, 𝐾𝑥1 , 𝐾𝑥2 , 𝐾𝑥3 , 𝑢1, 𝑢2, 𝑢3), 

where 𝑖 ∈ {1,2, … ,9}. The derivative with respect to time is discretized using ascending finite 

differences, while the derivatives with respect to space are discretized using central finite 

differences. Thus, equation (8) can be approximated by a matrix equation (9). 

        

𝐸 𝐶𝑛+1 = 𝐶𝑛 + �⃗⃗� (9) 

 

Let 𝑁𝜉𝑖 ∈ ℕ where 𝑁𝜉𝑖 + 2 is the number of nodes with respect to the axis 𝜉𝑖, for 𝑖 ∈ {1,2,3}. 

In equation (9), 𝐸 is a matrix of dimension (𝑁𝜉1𝑁𝜉2𝑁𝜉3) × (𝑁𝜉1𝑁𝜉2𝑁𝜉3). The elements 𝐶𝑛+1, 𝐶𝑛 

and �⃗⃗� are vectors of dimension (𝑁𝜉1𝑁𝜉2𝑁𝜉3) × 1. 

The matrix 𝐸 is formed by the dynamic coefficients, all evaluated at time 𝑛. Therefore, the 

matrix 𝐸 is known. The vector 𝐶𝑛 = [𝐶𝑖,𝑗,𝑙,𝑛]
𝑖,𝑗,𝑙

 is also known. The vector �⃗⃗� is formed by values 

obtained at the boundaries and evaluated at time 𝑛 + 1, whereas the vector 𝐶𝑛+1 = [𝐶𝑖,𝑗,𝑙,𝑛+1]
𝑖,𝑗,𝑙

 is 

to be determined for each iteration step. To solve the matrix equation (9) we use an approximation 

for the vector �⃗⃗�, more precisely, we use �⃗⃗� at time 𝑛 which is known. 

  

6. RELIEF APPROACH FROM DATA TAKEN FROM GOOGLE EARTH 
 

The domain that will be used for the construction of the mesh has parallel planes in its 

boundaries, except the lower boundary. For the inferior boundary we construct a function that 

approximates the relief located in the region of interest, which is the region around the Angra 2 

nuclear power plant. 
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Google-Earth was used to obtain an approximation of the surface around of Angra 2 power 

plant. The region of interest was covered with a grid in the more frequent direction of wind. Data on 

wind speed and direction frequency were obtained from [8]. With this grid it was possible to obtain 

strategic points with information about relative height. This information was obtained using the 

“elevation profile” feature available on Google-Earth. The Figure 1, obtained by Google Earth, 

illustrates the region of Angra 2 power plant. In the center of the circle, a chimney of approximately 

160𝑚 high releases effluents. The red line shows one of the most frequent direction of the wind. 

 

Figure 1: Illustration of the Angra 2 region. 

 

Source: Google Earth Linux version 

 

The red dots in Figure 2 were obtained by Google-Earth. Using interpolation we obtain a 

surface that approximates the region of interest. 
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Figure 2: Interpolation around the Angra 2 power plant region. 

 

Interpolation provides the function that approximates the region. We use this function to define 

the nodes we need. Once the lower mesh is obtained, we define the upper mesh. The upper mesh is 

rectangular and thus does not cause difficulties in its definition. From the lower and upper meshes, 

we define the inner nodes. 

 

7. SIMULATION 

 

Our methodology was tested using a region around the Angra 2 nuclear power plant. The 

physically relevant domain resides in a volume of a parallelepiped with 𝑥 ∈ [0,3400𝑚], 𝑦 ∈

[0,800𝑚] and 𝑧 ∈ [0,800𝑚]. The chimney output is identified by the coordinates(0,400𝑚, 160𝑚).  

The choice of the domain dimensions is related to data comparison and the parametrisation used 

for the diffusion coefficients. In micro-meteorology these properties refer to domains that have 

approximately the same dimensions. We solved equation (3) with the following initial and 

boundaries conditions, equation (10). 

Here 𝑧𝑖 is the height, in meters, of the relief relative to sea level at the coordinate point (𝑥1, 𝑥2), 

𝐷 = 8 × 10−8𝑔/𝑚3 𝛿(𝑥2 − 400)𝛿(𝑥3 − 160) where 𝛿 is the Dirac's delta function. The wind 

speed as well as the diffusive coefficients was defined as constants. We considered 𝑢 = 3.8𝑚/𝑠, 

𝑣 = 0, 𝑤 = 0,  𝐾𝑥1 = 10𝑚2/𝑠 ,  𝐾𝑥2 = 10𝑚2/𝑠,  𝐾𝑥3 = 10𝑚2/𝑠. 
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𝐶(𝑥1, 𝑥2, 𝑥3, 0) = 0, ∀ 𝑥1 ∈ [0,3400𝑚], ∀ 𝑥2 ∈ [0,800𝑚] 𝑎𝑛𝑑 ∀ 𝑥3 ∈ [𝑧𝑖, 800𝑚];  

𝜕𝐶

𝜕𝑥2|
𝑥2=0

= 0, 
∀ 𝑥1 ∈ [0,3400𝑚], ∀ 𝑥3 ∈ [𝑧𝑖 , 800𝑚] 𝑎𝑛𝑑 ∀ 𝑡 ∈ [0, ∞);  

𝜕𝐶

𝜕𝑥2|
𝑥2=800𝑚

=0, ∀ 𝑥1 ∈ [0,3400𝑚], ∀ 𝑥3 ∈ [𝑧𝑖 , 800𝑚] 𝑎𝑛𝑑 ∀ 𝑡 ∈ [0, ∞);  

𝜕𝐶

𝜕𝑥2|
𝑥3=𝑧𝑖

= 0, 
∀ 𝑥1 ∈ [0,3400𝑚], ∀ 𝑥2 ∈ [0, 800𝑚] 𝑎𝑛𝑑 ∀ 𝑡 ∈ [0, ∞); (10) 

𝜕𝐶

𝜕𝑥2|
𝑥3=𝑧𝑖

= 0, 
∀ 𝑥1 ∈ [0,3400𝑚], ∀ 𝑥2 ∈ [0, 800𝑚] 𝑎𝑛𝑑 ∀ 𝑡 ∈ [0, ∞);  

𝜕𝐶

𝜕𝑥2|
𝑥1=0

= 0, 
∀ 𝑥2 ∈ [0,800𝑚] 𝑎𝑛𝑑 ∀ 𝑥3 ∈ [𝑧𝑖, 800𝑚] 𝑎𝑛𝑑 ∀ 𝑡 ∈ [0, ∞);  

𝐶|𝑥1=0 = 𝐷, ∀ 𝑥2 ∈ [0,800𝑚] 𝑎𝑛𝑑 ∀ 𝑥3 ∈ [𝑧𝑖, 800𝑚] 𝑎𝑛𝑑 ∀ 𝑡 ∈ [0, ∞).  

 

 Note, that Gaussian models are the simplest ones and usually use constant diffusive 

coefficients. In this application, 131 partitions were used in the direction of the 𝑥1-axis, 31 

partitions in the 𝑥2-axis direction and 31 partitions in the  𝑥3-axis direction. 

 

7.1 RESULTS 

 

To illustrate the results we present the Figure 3 and Figure 4. The Figure 2 shows the region of 

Angra dos Reis that was parametrised. We highlight the slice that contains the chimney that releases 

the effluent. In Figure 4, the same slice is shown as profile. The concentration of tritium released as 

effluent was determined at each node of the mesh, in which we plotted on a scale from 0 to 

10−9𝑔/𝑚3. 

We use the increment in time being Δ𝑡 = 0.1𝑠. To obtain that maximum error between two 

iterations was less than 10−6𝑔/𝑚3, 9600 iterations were required. This represents approximately 16 

minutes of simulation in a desktop computer with a simple quad core processor with 3.2GHz clock. 

The time taken to generate the result was 11 minutes approximately. We used the C programming 

language. 

 

Figure 3: Tritium dispersion for 𝑥2 = 400𝑚, 𝑥1 ∈ (,3400𝑚) and 𝑥3 ∈ (𝑧𝑖, 800𝑚). 
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Figure 4: Profile of Figure 3. 

 

 

7.2 ERROR – RESIDUE 

 

In order to verify the consistency of the obtained solution we use the residue technique. From 

the advection-diffusion equation, equation (3), we define the operator (11). 

 

Ω(𝑢𝑖) =
𝜕 𝐶

𝜕 𝑡
+ 𝑢𝑖

𝜕𝐶

𝜕𝑥𝑖
−

𝜕𝐾𝑥𝑖

𝜕𝑥𝑖

𝜕𝐶

𝜕𝑥𝑖
− 𝐾𝑥𝑖

𝜕2𝐶

𝜕(𝑥𝑖)2
 (11) 

 

We use the solution  𝐶 in the operator (11). In replacing, we expect to find as zero solution or, 

more precisely, a solution very close to zero which is known in classical theory as residue. 
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If we call 𝑛 + 1 the last iteration performed, then we can say that 𝑛 + 1 and 𝑛 iterations will be 

used. This will be necessary, since in order to test the obtained solution we will again use the 

implicit finite difference method.  The operator (11) can be approximated using the implicit finite 

difference method.  We present the same plane (𝑥1, 400𝑚, 𝑥3). To see the error it is necessary to 

reduce the order of magnitude, as shown in Figure 5. 

 

Figure 5: Residue of the region 

 

8. CONCLUSION 

 

This work shows an application where a dispersion process in an environment with complex 

orography was simulated. Here we implemented tritium dispersion around the Angra dos Reis 

nuclear power plant. This plant is located in a mountainous region, which may invalidate dispersion 

models 

that are developed to work in parallel flat domains. We present an efficient way to parametrise 

mountain regions using basically Google-Earth software. In addition, we show the main idea about 

the methodology needed to transform a problem that has a domain with curvilinear boundaries in an 

equivalent problem with parallel plane boundaries by a diffeomorph conformal coordinate 

transformation. The authors are aware of the fact that there are many problems that cannot be 

solved using this technique, nevertheless there is still a wide range of applications. To this end the 

original problem was transformed into a plane parallel problem by the use of the afore mentioned 

transformation, 
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which are well established formalisms in differential geometry. Another point to highlight is that 

such types of coordinate transformations preserve conservation laws. The presented results are in 

agreement with expectations presented in the literature, reference [5], but will be further validated 

against experimental data from a future campaign which is still to be implemented. In order to make 

further progress, we have two proposals for the continuation of our research on this topic. The first 

one will be to improve the numerical resolution, introducing techniques that will make the code 

more robust and consequently we will obtain more precise results.  

The other proposal, already under development, is to present a semi-analytical solution. 

Numerical solutions accept more complex models, but with high computational cost and often time 

consuming results. On the other hand, currently, semi-analytical solutions solve more simplified 

models, however with the advantage of fast answers and with low computational cost. While there 

is no miraculous universal solver method, we will analyze and compare the relevance and 

effectiveness of both cited resolution techniques. 
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