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Abstract: Understanding the exchange of energy between the surface and the atmosphere is important
in view of the climate scenario. However, it becomes a challenging task due to a sparse network of
observations. This study aims to improve the energy balance estimates for the Amazon, Cerrado, and
Pampa biomes located in South America using the radiation and precipitation forcing obtained from
the Clouds and the Earth’s Radiant Energy System (CERES) and the precipitation CPTEC/MERGE
datasets. We employed three surface models—Noah-MP, Community Land Model (CLSM), and
Integrated Biosphere Simulator (IBIS)—and conducted modeling experiments, termed South America
Land Data Assimilation System (SALDAS-2). The results showed that SALDAS-2 radiation estimates
had the smallest errors. Moreover, SALDAS-2 precipitation estimates were better than the Global
Land Data Assimilation System (GLDAS) in the Cerrado (MBE = −0.16) and Pampa (MBE = −0.19).
Noah-MP presented improvements compared with CLSM and IBIS in 100% of towers located in the
Amazon. CLSM tends to overestimate the latent heat flux and underestimate the sensible heat flux in
the Amazon. Noah-MP and Ensemble outperformed GLDAS in terms latent and sensible heat fluxes.
The potential of SALDAS-2 should be emphasized to provide more accurate estimates of surface
energy balance.

Keywords: modeling; surface; energy; balance; precipitation

1. Introduction

Over the years, the impact of the surface on atmospheric energy fluxes has been
strongly observed, through changes either in vegetation or by soil and topography con-
ditions. In recent years, it has been widely noted that variations in vegetation, soil, and
topography conditions can significantly impact atmospheric energy fluxes. Climate change
studies underscore the necessity of observing and monitoring present atmospheric con-
ditions, particularly in underdeveloped countries, to better comprehend the impact of
land on future climate. Due to the under-representation of critical land surface processes,
modeling has become increasingly necessary in understanding the climate in those regions.
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This modeling task has been of extreme necessity, and has been addressed over the past
two decades [1,2]. In South America (SA), the lack of observational data on the water
and energy balance components on a temporal and spatial scale can cause logistical and
economic damage to society, as much of the economy in developing countries depends on
this information. Therefore, the use of land surface models and remote sensing informa-
tion has been crucial in improving long-duration studies with high temporal and spatial
resolution about land surface interactions in the atmosphere, hydrology, and ecological
applications [3].

Currently, scientists worldwide are observing extreme events that are directly linked
to climate change [4]. To aid governments and decision makers in times of need, creating
a monitoring network of hydrology and energy variables is essential, and this is where
physical modeling of the surface becomes extremely necessary. Brazil, for example, has
experienced increasingly extreme events of droughts and fires. In such cases, the use of
surface modeling as a monitoring product is one way to follow the developments of each
case and detect, in advance, possible events of these magnitudes [5–7].

To address the challenge of obtaining accurate fields of land surface states and fluxes,
Land Data Assimilation Systems (LDAS) have been developed. These systems aim to
combine satellite products and ground-based observational data using advanced land
surface modeling and data assimilation techniques to produce high-quality fields of land
surface states (e.g., soil moisture, 2 m air temperature) and fluxes (e.g., latent and sensible
heat fluxes). The Hydrological Sciences Laboratory at NASA’s Goddard Space Flight Center
(GSFC) has developed an LDAS initiative based on the Land Information System (LIS)
software framework [8].

One such LDAS is the Global Land Data Assimilation System (GLDAS), developed by
NASA, which simulates the variables of the energy and water balance globally, obtaining
data close to the reality observed in situ [9]. Other similar products have been developed
around the world, such as the North American Land Data Assimilation System (NLDAS)
and Canadian Land Data Assimilation System (CaLDAS) [10–15].

Empirical hydrological models, such as the MGB-IPH model [16], have been developed
and applied to South America to better understand the water balance at the continental scale.
However, these models do not incorporate the physics of the environment and rely solely
on mathematical equations. To address this limitation, physical-based parameterizations
are used in surface models, which incorporate the physical–chemical conditions of the
environment in the calculation of transport, sources, or sinks of water and energy [17,18].

The use of physical models is crucial to fill the gap in South America regarding the
lack of observational data on a spatial and temporal scale, as well as to create monitoring
products for extreme events generated by deforestation and climate change. Moreover,
these models enable the assimilation of various data to bring the outputs closer to the
observational values.

Although LIS applications in South America can be found in the literature [19–21],
LDAS using customized meteorological forcings at relatively fine resolutions (i.e., 5 km at
the continental scale) is currently missing. In order to develop a product that accurately
represents the energy and water balances in South America, this study aims to refine the
spatial and temporal resolution of the models used in GLDAS. In addition, new radiation
and precipitation forcing, which is regionalized and validated for South America, will
be incorporated. The primary objective of this study is to evaluate the energy budget
components of the surface modeling using in situ measurements that represent the majority
of the climatic and land cover areas, as well as using GLDAS as a reference model product
over South America. The paper is structured as follows: Section 2 introduces the in situ
observation and describes SALDAS-2, GLDAS, and the evaluation method used. Section 3
presents the assessment of atmospheric forcing uncertainties and the evaluation of the
energy balance variables against flux towers. Finally, Section 4 summarizes the results and
provides concluding remarks.
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2. Materials and Methods
2.1. Observational In Situ Measurements

The energy balance components of the SALDAS-2 and GLDAS models’ output were
evaluated using 21 eddy covariance (EC) measurement sites, representing three of the
most frequent biomes in the continent: Amazon (AM), Cerrado (CE), and Pampa (PA).
The EC sites’ locations and the land cover type are presented in Figure 1. The selected EC
sites are part of the Large-Scale Biosphere and Atmosphere Experiment in the Amazon
(LBA) [22–25] and Sulflux [26]. Both LBA and Sulflux are interinstitutional, cooperative
initiatives with the goal of establishing networks for the continuous and extended-period
measurement of water, energy, and carbon dioxide flux among other quantities relevant
to studies of terrestrial ecosystems and atmosphere interaction, described in detail by
Davidson et al. [27] and Roberti et al. [26], respectively. Eddy covariance measurements
comprise a ground-based system of in situ sensors that estimate vertical fluxes of sensible
heat (H) and latent heat (LE). The fluxes were measured at high frequency and processed
for 30 min in LBA and in daily scales in Sulflux networks. For the analysis presented in this
study, these flux data were monthly averaged. More details about the description of the
postprocessing and filter quality control for the preparation of the datasets for this study
are described by Moreira et al. [28].
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Figure 1. The location of EC sites classified by climatic and land cover types: Amazon (AM), Cerrado
(CE), and Pampa (PA) biomes.

A description and references for each individual site used in this study, along with
the site location, period of measurements, and land cover characteristics, are presented in
Table 1. In the current work, we used the EC data of the stations whose temporal continuity
was present for more than 75% of the days of the month, ensuring a greater data sampling.
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Table 1. Geographic localization and data series from sites.

Site Latitude Longitude Period Land Cover Reference Biome

FNS −10.76 −62.35 2000–2003 Grassland/pasture [29] Amazon

K34 −2.60 −60.20 2000–2005 Tropical forest [30] Amazon

K67 −2.85 −54.95 2002–2004 Tropical forest [31] Amazon

K77 −3.02 −54.89 2001–2005 Cropland/pasture [32] Amazon

K83 −3.01 −54.97 2000–2004 Tropical forest [33] Amazon

RJA −10.07 −61.93 2000–2002 Tropical forest [29] Amazon

SIN −11.41 −55.32 2005–2008 Woodland savanna [34] Amazon

BAN −9.82 −50.16 2003–2006 Woodland savanna [35] Cerrado

BRA −15.93 −47.87 2011–2012 Savanna [36] Cerrado

FEX −15.65 −56.07 2009–2010 Grassland/pasture [34] Cerrado

FMI −15.53 −56.07 2009–2013 Savanna [34] Cerrado

FSN −11.5 −58.56 2002–2003 Grassland/pasture [37] Cerrado

PDG −21.62 −47.62 2001–2003 Savanna [38] Cerrado

USE −21.22 −48.11 2001–2002 Cropland (rainfed) [39] Cerrado

CAS −30.27 −53.14 2009–2014 Cropland (irrigated) [40] Pampa

CRA −28.59 −53.67 2009–2014 Cropland (rainfed) [41] Pampa

PAS −31.72 −53.53 2013–2016 Grassland [42] Pampa

PRS −29.74 −53.15 2003–2004 Cropland (irrigated) [43] Pampa

SMA −29.72 −53.76 2014–2015 Grassland [44] Pampa

In previous studies, energy balance is calculated from the difference between the net
radiation (Rn) and the sum of latent heat flux (LE), and sensible heat flux (H) and ground heat
flux (G). The energy balance components (LE+H+G) are compared against the land surface
model simulations from SALDAS-2 and GLDAS products (see Sections 2.3 and 2.4). Flux
tower measurements typically present an unbalance between Rn, LE, and H components, as
pointed out in detail by some authors who emphasize the necessity of correcting the energy
balance closure in H and LE values [40,43–47]. Consequently, the Bowen ratio technique
( β) is frequently used in EC data postprocessing as an alternative for the energy balance
adjustment. This method is defined as the fraction between the LE and hand consisting of
using the residues obtained in the equation RAE = Rn-LE-H-G. Thereafter, a new value for the
latent and sensible fluxes is applied [47]. To obtain the new LE and H values for each tower,
we used Equation (1) to represent the Bowen ratio values:

β =
H
LE

(1)

With the Bowen ratio values, the new values of LE and H are calculated by
Equations (2) and (3), respectively [47]:

H =
β(Rn−G)

1 + β
(2)

and
LE =

Rn−G
1 + β

(3)

where Rn is the net radiation and G the ground heat flux from tower data.

2.2. Study Region Description and Climatology

This study was performed over three major South American biomes: Amazon (AM),
Cerrado (CE), and Pampa (PA). These biomes were selected based on their percentage of
the continental coverage area, climatological impact in SA, and the availability of fluxes
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towers, as shown in Figure 1. The biomes with the EC towers correspond to 37.43% AM,
11.52% CE, and 4.77% PA of South America’s total area (17.8 mi km2).

The AM biome represents the tropical rainforest situated in the northern region of
Brazil, south of Venezuela, center of Colombia, and Bolivia. The AM region consists mainly
of dense leaf vegetation and evergreen trees. In this tropical forest, only 2–3% of direct
solar radiation incident on top of trees reaches the surface [48]. The mean precipitation in
the AM biome is near 270–280 mm month−1, and the lower precipitation rates are observed
during the winter season [49]. The surface fluxes have a direct impact on the planetary
boundary layer (PBL) height. In the Amazon region, the daily variability of PBL height
during the drier months is strongly associated with the sensible heat flux [50]. During
wetter months, PBL is mainly modulated by the latent heat flux and incident solar radiation.
The release of latent heat flux supports diabatic heating, and consequently, water vapor
condensation becomes an important mechanism of energy transport, which is strongly
related to the dynamic of the tropical atmosphere [51], to better understand and continue
assessing these patterns in the Amazon if of great relevance, since in the past 40 years, a
temperature increase between 0.6 and 0.7 ◦C is being observed [52].

Regarding the CE region, the average annual rainfall can reach just over 1500 mm and
is concentrated in the summer season, when evapotranspiration measurements can reach
900 mm [38]. During the wet season, the summer (December to March), the mean monthly
precipitation is near 250 mm. In this biome, latent heat flux variations are more strongly
linked to precipitation, which occurs due to the influence of synoptic-scale atmospheric
phenomena, such as the Bolivian high (BH), South Atlantic convergence zone (SACZ),
intertropical convergence zone (ITCZ), and low-level jets (LLJ) and, the variation of the
energy as a function of solar radiation incident on the surface [53]. The predominant
climate in the region is seasonal tropical, where rainfall values in the winter are lower than
50 mm and are considered a dry period. The average annual EC temperature ranges from
22 to 23 ◦C, the highest measurements can reach over 40 ◦C during the summer, and lower
temperature near 0 ◦C may be observed in the winter [54].

The Brazilian Pampa corresponds to the northern portion of the Rio de la Plata grass-
land region [55], also known as Uruguayan savanna ecoregion [56], and encompasses an
area of 193,383 km2 [57]. In Brazil, the Pampa is located between latitudes 28◦ S and 34◦ S
and longitudes 49◦ W and 58◦ W, occupying 63% of the Rio Grande do Sul State. The Brazil-
ian Pampa has both subtropical and temperate climates, showing four well-characterized
seasons. The average annual precipitation in the Pampa region is ranging from 1200 to
1600 mm [58] with an average temperature of 18 ◦C [4]. The landscape consists of a mosaic
of grasslands, different types of shrublands, low forests, and gallery forests along rivers.
Although many landscapes, especially when dominated by grassland, might appear simple
and homogeneous at first glance, the Pampa harbor has a remarkable biodiversity [59].

2.3. SALDAS-2 Description

The South America Land Data Assimilation System (SALDAS) is derived from the
Land Data Assimilation System (LDAS). It was mainly developed to understand and
determine the variables of energy and water balance focusing on the South American
continent [9,60]. Currently, SALDAS has a 5 × 5 km resolution under the continental
surface and a 3-h temporal resolution, and the atmospheric forcing comes from the Global
Data Assimilation System (GDAS).

With the aim of using variables that are closer to observations, which can lead to
an improvement in surface simulations of the models, we propose an enhancement of
SALDAS (henceforth named South American Land Data Assimilation System Version 2
or SALDAS-2) as a way of contributing to the estimation of energy flows, in order to
obtain a high-resolution data mesh for South America. Following the same methodology
as Gonçalves et al. [24], this enhancement proposes the use of spatially distributed precipi-
tation and downward shortwave radiation data over the South American continent. The
forcings were introduced into the Land Information System (LIS), which is a framework
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used to more accurately describe topography, texture, soil transport, among other sur-
face parameters. The LIS platform integrates observations and models, and through data
assimilation, it allows the intercomparison of different surface models, as the boundary
conditions in any given run remain the same [8,61].

The construction of SALDAS-2 was carried out using three of the models available
in LIS: Noah-MP, CLSM, and IBIS. These models were chosen due to their great global
use. Currently, the Noah-MP model is used as a boundary condition of the Global Forecast
System [62], while the CLSM model can be used as one of the surface contour options on
the regional WRF and the National Centers for Environmental Prediction (NCEP). IBIS is
currently the surface model of the Brazilian Global Atmospheric Model (BAM) [63].

Current studies aim to use regional remote sensing products to acquire precipitation
and radiation forcings, approaching observational measurements [64]. As a difference,
SALDAS uses as forcing variables precipitation, shortwave radiation, longwave radiation,
air temperature (2 m), specific humidity, surface pressure, and u and v wind compo-
nents from GDAS [24]. In this version, the models used by SALDAS-2 (Noah-MP, CLSM,
and IBIS) were configured with a resolution of 5 km under the South American domain
(80◦ E at 31◦ W and 56◦ S at 12◦ N), likely SALDAS. The time period ranges from 2000
to 2020, with a temporal resolution of 3 h, daily and monthly outputs. For model runs, a
5-year spin-up was performed, as suggested by Kalnay and Yang [65]. This model con-
figuration proposes a modification that involves incorporating spatially distributed data
on precipitation and downward shortwave radiation that was used from Multi-Source
Weighted-Ensemble Precipitation (MERGE) [66] and the Clouds and the Earth’s Radiant
Energy System (CERES) [67], respectively. The other forcing variables of the models, long-
wave radiation, pressure, air temperature (2 m), specific humidity (2 m), and wind u and v
components, were used from the Global Data Assimilation System (GDAS) [68]. Figure 2
summarizes the inputs used during the construction of SALDAS-2. For all these runs,
the models consider a 2-m soil profile divided into four layers, 0–10, 10–40, 40–100, and
100–200 cm of depth.
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2.3.1. Models and Configurations

The Noah-MP model incorporates various biological and physicochemical processes
to improve surface flux estimates. It consists of 42 user-defined parameters, 30 of which
are related to vegetation and 12 to soil. These parameters are divided into three layers
of snow and four layers of soil depth. The Noah-MP model has the ability to compute
surface temperature and estimate the energy balance of shortwave and longwave radiation,
latent and sensible heat fluxes, and ground heat storage. The model includes dynamic
vegetation and groundwater processes [69], and to do so, it parameterizes vegetation
processes, stomatal resistance, US factor, runoff, surface drag coefficient, super frozen
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liquid water, frozen soil permeability, snow albedo, frozen/liquid partition, and radiative
transfer [70].

In SALDAS-2, in addition to Noah-MP, the CLSM-Fortuna 2.5 model was incorpo-
rated, which is employed by NASA GEOS-5 for surface boundary parameterization in
atmospheric modeling coupling [71]. The CLSM model is characterized by a soil temper-
ature, with a depth range of 0 to 100 cm [72]. The soil moisture variable is not explicit;
therefore, an equilibrium profile extending from the surface to the water table needs to
be determined. To establish such a profile, the contribution of the surface balance zone
(0–2 cm) and the root zone (0–100 cm) discretized by the model is required. Additionally,
the snow cover parameterization of the model presents three layers considering phenomena
such as melting, freezing, and changes in snow density [73].

The third model utilized in SALDAS-2 is the Integrated Biosphere Simulator (IBIS) [74],
which is presently one of the models employed in the Brazilian Atmospheric Model (BAM),
a general circulation model of the atmosphere (GCMA) developed by CPTEC/INPE (Centro
de Previsão de Tempo e Estudos Climáticos/Instituto Nacional de Pesquisas Espaciais).
IBIS has the largest number of below-ground layers among the three SALDAS-2 models,
with 12 depth levels used to better parameterize the root system [75]. IBIS is a surface model
that represents surface processes, such as environmental physics, canopy physiological
processes, plant phenology, energy fluxes, carbon, and nutrient cycles. The model also
features dynamic vegetation, similar to Noah-MP, including undergrowth and the tallest
trees [74,76]. IBIS includes three layers describing snow cover and a module responsible
for soil carbon stock and changes in vegetation on a timescale of months to years.

As previously mentioned, the LIS platform requires certain variables, known as
forcings. This work divides the forcings into two categories. The first ones are derived
from observation-based atmospheric data that are the closest to the regions of interest,
such as radiation and precipitation (CERES and MERGE). The second set includes those
derived from modeling-based atmospheric data, such as other forcings that originate from
NCEP/GDAS.

2.3.2. Observation-Based Atmospheric Forcing

Radiation forcing—CERES: The observation-based shortwave radiation forcing used in
SALDAS-2 was obtained from the Clouds and the Earth’s Radiant Energy System. CERES
has a goal of developing ideal energy balance datasets and clouds using the Aqua and Terra
satellites as bases for observations [77]. CERES prescribes height, thickness, particle size,
cloud phase, and other cloud properties through the satellite observations, using the Earth
Observation System (EOS), Joint Polar Satellite System (JPSS), Moderate Resolution Imaging
Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) [77].
CERES data are available at: https://ceres.larc.nasa.gov/data/ accessed on 5 April 2023,
and the product used was “SYN1deg”.

Precipitation forcing—MERGE: Similar to downward radiation, the precipitation data
used by SALDAS-2 is also observation based. MERGE is derived from a merge of rain
gauge estimation and satellite-based information. The result combines precipitation from
observational data from the Global Telecommunication System (GTS), automated stations,
and remote sensing precipitation derived from the Tropical Rainfall Measuring Mission
(TRMM), Tropical Multisatellite Precipitation Analysis (TMPA), and Global Precipitation
Measurement (GPM) [66]. MERGE data are available monthly over South America (90◦ W
to 26◦ W, 57◦ S to 13◦ N) and daily over the Brazilian territory (75◦ W to 34◦ W, 35◦ S
to 06◦ N) at a 5 km spatial resolution [66]. The MERGE data are initially provided as a
quick estimate (called Early) and later as a more accurate estimate that includes more
data (called Late). However, the in situ precipitation measurement network in South
America is limited, which poses a challenge in obtaining accurate precipitation data. In
such circumstances, the use of a MERGE product is beneficial as it helps mitigate the issue
of sparse observational data, thereby reducing interpolation errors between the available
measurement stations [78].

https://ceres.larc.nasa.gov/data/
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2.4. Reference Modelling Data

GDAS is a numerical data assimilation system developed by the National Oceanic
and Atmospheric Administration (NOAA) that assimilates a wide range of observed
atmospheric data to generate global analyses of the state of the atmosphere on a global
scale (90◦ S to 90◦ N and 180◦ E to 180◦ W) and for the synoptic times (0000, 0006, 0012,
0018), which are available daily since January 2001 to the present [79]. These analyses are
then used as operational initial conditions for the Global Forecast System (GFS) model. The
system incorporates data from a variety of sources, including satellites, radiosondes, and
surface observations, and then produces forecasts for up to 10 days in advance. The GDAS
analyses support a wide range of applications, including weather forecasting, climate
monitoring, and atmospheric research.

As a reference of global surface modeling, GLDAS is a system that uses advanced
surface data assimilation techniques to generate information on the current state of sur-
face fields [9]. The system integrates a large database of observation and model-derived
base forcing with a spatial resolution of 0.25◦. GLDAS is available at https://ldas.gsfc.
nasa.gov/gldas, accessed on 5 April 2023. The necessary forcing variables, including air
temperature and humidity, wind, surface pressure, and longwave radiation, are obtained
from GDAS, as described previously. The radiative fluxes are derived from the Air Force
Weather Agency’s (AFWA) Agricultural Meteorology modeling system (AGRMET), while
precipitation is obtained from the near-real-time satellite-derived data from the U.S. Naval
Research Laboratory (NRL).

2.5. Statistical Methods

To evaluate the performance of SALDAS-2 compared with GLDAS in relation to the
flux towers, the normalized contribution information (NIC) was used. In this paper, model
outputs were compared with the EC observations in terms of the RMSE, MBE, and r2.

The RMSE and MBE analyses were conducted to assess the contribution of radiation
and precipitation forcing variables in the mean estimates of the EC towers in each of
the studied biomes. The aim of this analysis is to identify the errors associated with the
variables used by each of the SALDAS-2 and GLDAS models.

The RMSE denotes how errors related to observations and modeling are distributed;
thus it is possible to observe how close the simulation is from the observations [80]. The
RMSE is obtained based on Equation (4) below:

RMSE =

√
∑(P−O)2

n
(4)

where O is the observational values, P is the simulations, and n is the number of samples.
The mean bias error (MBE), presented in Equation (5), aims to better understand the

simulations’ tendency to underestimate (if MBE < 0) or overestimate (if MBE > 0) the EC
values [80].

MBE =
1
n∑(P−O) (5)

To compose the NIC evaluation, we also used the determination coefficient (r2) statis-
tical method (Equation (6)), which represents the dependence between the sample and the
observations. When r2 values are lower, the dependency is not expected. Therefore, higher
r2 values indicate that the simulation is closer to observations [80];

r2 =
[∑n

i=1 (P− P′)(O−O′)]2

∑n
i=(P− P′)2∑n

i=(O−O′)2 (6)

where P′ is the mean of the simulations and O′ is the mean of the observations.
Aiming to analyze which SALDAS-2 models outperformed GLDAS for each EC

tower over the SA biomes, the RMSE and r2 were used to calculate the NIC, denominated

https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
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RMSEnic, and Rnic. The models with lower errors indicate those that better represent
the observations [81]. RMSEnic is derived from Equation (7), and Rnic from Equation (8)
below [82]:

RMSEnic =
RMSEOL − RMSEDA

RMSEOL
(7)

RMSEOL represents the RMSE from SALDAS-2 models and the observation, and
RMSEDA is the RMSE between GLDAS and the observations.

Similarly, to analyze the contribution of the models in terms of their correlation with
the observations, Rnic was used, according to the equation below:

Rnic =
r2

DA − r2
OL

1− r2
OL

(8)

Broadly, we compared all the models with each other. Hereafter, SALDAS-2 run using
the Noah model will be referred as SN, SALDAS-2 with CLSM as SC, SALDAS-2 with IBIS
as SI, and SALDAS-2 with the Ensemble as SE. A similar approach was used for GLDAS
models, however, only for GLDAS-Noah (GN) and GLDAS-CLSM (GC).

3. Results and Discussion
3.1. Precipitation and Radiation Forcings

In the Amazon biome, the net radiation values obtained from CERES exhibit a closer
agreement with the observations during the summer and early winter months, whereas
GLDAS provides better results in the months of August to October. MERGE precipitation
estimates tend to be superior to those used by GLDAS in most months of the year, as shown
in Figure 3a and Table 2.

Table 2. Root mean square error (RMSE) and mean bias error (MBE) of the variables of net radiation
and precipitation forcings of the GLDAS and SALDAS-2 models. The numbers in bold represent
those that obtained better statistical results.

Models

Variables Net Radiation Precipitation
BiomesRMBE

(W m−2)
MBE

(W m−2)
RMSE

(mm month−1)
MBE

(mm month−1)

GLDAS 8.44 7.07 0.99 0.53 AMSALDAS-2 7.11 −2.64 0.85 −0.74
GLDAS 8.31 6.57 1.12 0.56

SALDAS-2 10.14 −3.02 0.72 −0.16 CE
GLDAS 28.56 27.26 1.00 0.55

SALDAS-2 8.76 6.26 0.83 −0.19 PA

The variability of net radiation and precipitation in the Cerrado biome is represented
by the forcings of SALDAS-2 and GLDAS (Figure 3b). During the transition months from
winter to summer (September, October, and November), GLDAS tends to overestimate the
net radiation by 5 W m−2, while SALDAS-2 presents an underestimate of about 10 W m−2

from May to November. In the summer months (December to February), both products
yield values closer to the observations. With respect to precipitation, SALDAS-2 agrees
more closely with the observations mainly during the summer months. Rozante et al. [83]
report that good MERGE estimates are observed for Brazil during the summer months. The
shortwave radiation used in SALDAS-2 tends to be lower than those observed at EC towers
by ~15 W m−2 monthly. As demonstrated by Duveiller et al. [84], changes in vegetation
cover alter the radiative and nonradiative properties of the surface, affecting the accuracy
of CERES shortwave radiation estimates over biomes similar to the Cerrado.

In the Pampa biome, net radiation values obtained from CERES are closer to the in situ
measurements compared with GLDAS throughout the year (Figure 3c). Moreira et al. [28]
state that the remote sensing product performs well in representing the radiation over
that region. Generally, SALDAS-2 and GLDAS exhibit oscillations, where, in the winter
months, the models show values closer to the observations by around 1 mm month−1.
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However, in the transition months and summer, there is a significant difference of about
2.5 mm month−1 between the observed and modeled forcing, as shown in Figure 3c. It is
noteworthy that the precipitation estimates obtained from SALDAS-2 tend to be closer to
the tower observations in all biomes compared with GLDAS, and both forcings provide
satisfactory representation of the seasonality in each region.
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Figure 3. Monthly averages of descending shortwave radiation forcings for the Amazon (a),
Cerrado (b), and Pampa (c) biomes. The lines refer to the net radiation, and the bars represent
the monthly average of precipitation for the regions. The Rn-GLDAS subtitle represents the net radia-
tion from GLDAS, Rn-SALDAS represents the net radiation from SALDAS, and Rn-OBS represents
the net radiation from EC flux towers.
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In general, it was observed that the SALDAS-2 precipitation presents the most favor-
able MBE results in all biomes, except for the Amazon (Table 2), where the MBE values for
GLDAS precipitation showed an improvement of 0.21 mm month−1. These findings sug-
gest that precipitation estimates derived solely from remote sensing may lead to errors in
the Amazon region, given its cloudy conditions. SALDAS-2 tends to underestimate the net
radiation for the region, while GLDAS overestimates it by about 7.07 W m−2. The Cerrado
presented the smallest precipitation errors for the SALDAS-2 forcing when compared with
the observed data. It should also be noted that in situations where the GLDAS precipitation
is better than the SALDAS-2 precipitation in terms of MBE, the differences between the
two are less than 1.3 mm month−1. In the Pampa biome, the GLDAS forcing tends to
overestimate solar radiation, showing a bigger error than that of SALDAS-2. Furthermore,
in the Pampa biome, CERES performs better than the AFWA radiation product in both
RMSE and MBE indicators. The same is observed in terms of MERGE precipitation in
relation to GPCP (Global Precipitation Climatology Project); the good performance of the
products has already been demonstrated by [28,83].

3.2. SALDAS-2 Model

First, to assess the performance of SALDAS-2, an intercomparison of energy balance
variables was conducted between all SALDAS-2 models (SN, SC, SI, and EN) for the Ama-
zon, Cerrado, and Pampa biomes. Figure 4 depicts a scatterplot showing the normalized
root mean square error values of energy balance (RMSEnic) plotted against the percentage
of flux towers that exhibited improved median errors or not for each model comparison.
The figure compares the median errors from the reference model (model on the right in the
legend) with the average errors from a second model (model on the left in the legend). The
models were compared in pairs, and the icons with negative values on the X-axis indicate
that the model on the left in the legend has greater relative errors than the model on the
right in the legend. When comparing models with similar error averages, the median
RMSEnic is close to zero. Conversely, the relationship between models was observed to
have higher differences in errors when the values were located closer to the extremes of the
graph in relation to the X-axis. In Figure 4, it is also possible to notice that the icon located
in the upper-right quadrant represents a measure of greater median errors by the model
on the right in the legend. The average errors of this model were more significant when
analyzing a higher percentage of towers. The opposite was observed for the icons located
in the lower-left quadrant.

Figure 4 shows a comparison between the SALDAS-2 models for RMSEnic, and
Figure 5 represents a comparison for Rnic. The icons in both figures refer to the mod-
els being compared with each other; for example, the star icon represents a comparison
between the SN and SI models, and the triangle icon represents a comparison between the
SN and SC models, and so on. For the Amazon biome, the SN model stands out from the
others in the measurements of latent and sensible heat flux. It also obtained lower average
error values and showed improvement in a large number of towers (Figure 4b,c). The SC
model is capable of representing the net radiation in the Amazon area similar to the SI and
EN models. However, it has the worst performance when compared with the CE and PA
biomes. Despite this, the SC model performs well in representing net radiation in the AM
biome. This is due to the fact that the shortwave radiation in the model comes from CERES,
which, according to Nascimento et al. [85], has less than 10% errors in relation to obser-
vations and more than 70% correlation for the region. Nonetheless, CLSM has difficulty
in representing soil moisture and the amount of water that would be needed to saturate
the soil in tropical forest regions [86]. Additionally, a study by Maertens et al. [87] found
that the performance of the CLSM model was reasonable in describing surface variables,
but inferior to other models tested, such as Noah-MP, in terms of simulating surface water
fluxes and soil moisture. The authors highlighted that the inappropriate choice of soil
and vegetation parameters, including soil water content and hydraulic conductivity, may
have affected the model’s performance. Similarly, issues may have arisen with SALDAS-2,
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which, although improved precipitation estimates from MERGE, may still require careful
consideration of vegetation parameters.
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Figure 4. Intercomparison of RMSEnic of SALDAS-2 models, where the green icons are the flux towers
located in the Amazon biome, the brown icons are the tower from the Cerrado, and the blue icons are
the towers from the Pampa, where SN SI is the RMSEnic between SALDAS-NOAH and SALDAS-IBIS
(star), SN SC with SALDAS-NOAH and SALDAS-CLSM (triangle), SN EN with SALDAS-NOAH
and SALDAS-Ensemble (dot), SC SI with SALDAS-CLSM and SALDAS-IBIS (right triangle), SC
EN with SALDAS-CLSM and SALDAS-Ensemble (left triangle), and SI EN with SALDAS-IBIS and
SALDAS-Ensemble (plus).

In the AM biome, the SN and SC models stand out for the obtained lower errors
compared with the others, with the error being lower for a higher number of towers
compared with SI and EN. Meanwhile, in the CE biome, there is a greater distribution of
net radiation errors among the models. Specifically, the SC model presents larger errors in
about 45% of the towers when compared with SI and EN models, which is the opposite
of what happened in the AM biome. However, when compared with the SN model, the
SC model shows higher average errors in 100% of the biome towers. The SN model also
shows lower average errors in relation to SI and EN models. However, the improvement
was distributed among a smaller number of towers, approximately 30%. For the Pampa
biome, the SN model provides better results when compared with all the other models (SC,
SI, and EN). Most of the towers showed better results, especially in comparison with the SI
model (100% of the towers) and the SC model (80%).



Atmosphere 2023, 14, 959 13 of 24
Atmosphere 2023, 14, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 5. Intercomparison of 𝑅   of SALDAS-2 models, where the green icons are the flux towers 
located in the Amazon biome, the brown icons are the tower from the Cerrado, and the blue icons 
are the towers from the Pampa biome, where SN SI is the 𝑅𝑀𝑆𝐸   between SALDAS-NOAH and 
SALDAS-IBIS (star), SN SC with SALDAS-NOAH and SALDAS-CLSM (triangle), SN EN with SAL-
DAS-NOAH and SALDAS-Ensemble (dot), SC SI with SALDAS-CLSM and SALDAS-IBIS (right tri-
angle), SC EN with SALDAS-CLSM and SALDAS-Ensemble (left triangle), and SI EN with SAL-
DAS-IBIS and SALDAS-Ensemble (plus). 

3.3. The Performance of SALDAS-2 in Relation to GLDAS 
In this section, we compare SALDAS-2 surface models with GLDAS references in terms 

of their performance (Figures 6 and 7). Generally, SALDAS-2 models show better perfor-
mance than GLDAS models when simulating energy balance variables, with SN performing 
the best. For net radiation, EN generally has lower errors than GLDAS references, with SN 
being better than GN in approximately 71.43% of the flux towers in the Amazon region. 
However, in some flux towers, SN errors are significantly large, leading to a negative mean 
error. Similar observations are seen when comparing SI versus GN and EN versus GN mod-
els. According to Bohm et al. [93], the Noah-MP model presents errors in the estimation of 
energy fluxes due to failures in the parametrization of vegetation or soil, which can impact 
the hydrological distribution simulated by the model. Another factor to be considered is the 
input data of the model, which can also impact the estimation errors. The positive perfor-
mance of Noah-MP in SALDAS-2 compared with GLDAS in the region may be because the 
South American model uses the regional precipitation from CPTEC/MERGE as input forc-
ing, which makes the water availability closer to reality [87,90]. 

The use of regional forcings significantly improves the performance of SC in terms of 
net radiation in the AM biome, where it performs better than GN in approximately 71.43% 
of the flux towers and approximately 60% when compared with GC. Observations in the 
Amazon rainforest presented results opposite to those found by Jung et al. [95] in their 
research. The authors emphasized that uncertainties in simulating evapotranspiration 
(ET) are higher for the CLSM model than for the Noah model in forested regions in West 

Figure 5. Intercomparison of Rnic of SALDAS-2 models, where the green icons are the flux towers
located in the Amazon biome, the brown icons are the tower from the Cerrado, and the blue icons
are the towers from the Pampa biome, where SN SI is the RMSEnic between SALDAS-NOAH and
SALDAS-IBIS (star), SN SC with SALDAS-NOAH and SALDAS-CLSM (triangle), SN EN with
SALDAS-NOAH and SALDAS-Ensemble (dot), SC SI with SALDAS-CLSM and SALDAS-IBIS (right
triangle), SC EN with SALDAS-CLSM and SALDAS-Ensemble (left triangle), and SI EN with SALDAS-
IBIS and SALDAS-Ensemble (plus).

The SC model is capable of representing the net radiation in the Amazon near SI and
EN, but it has the worst performance when compared with the CE and PA biomes. The
good performance of SC in representing the net radiation in the Amazon may be due to the
fact that the shortwave radiation in the model comes from CERES, in which, according to
Nascimento et al. [85], there are less than 10% errors in relation to observations and more
than 70% correlation for the region. However, CLSM has difficulty in representing soil
moisture and the amount of water that would be needed to saturate the soil in tropical
forest regions [86].

In Figure 4a, it can be seen that for the Amazon biome (green icons), the SN model has
errors close to 0 in net radiation in relation to EN and SI. In about 60% of the towers, the
SN model had lower median errors. The same is valid for SC, where the model presented
results very close to its SI and EN pairs, and obtained smaller average errors in about 60%
of the analyzed towers. Comparing SN and SC, it is possible to observe that SN had higher
median errors in relation to SC, and about 40% of the analyzed towers in the biome had
lower errors for the model.

In the Amazon biome, SN and SC stand out as being models that obtained lower errors
compared with the others, since, when compared with SI and EN, the errors are lower for a



Atmosphere 2023, 14, 959 14 of 24

higher number of towers. CERES uses cloud discriminations and provides greater forcing
of shortwave radiation to assist the models. In contrast, the discrimination of net radiation
by CLSM and NOAH as well as IBIS is dependent on albedo and vegetation parameters,
and is independent of water fluxes [72].

In the Cerrado, there is a greater distribution of net radiation errors among the models.
SC shows larger errors in about 45% of the towers when compared with SI and EN, which is
the opposite of what happened in the Amazon biome. However, when compared with SN,
SC presents higher average errors in 100% of the biome towers. The SN model also presents
lower average errors in relation to SI and EN; however, the improvement was distributed
in a smaller number of towers, about 30%. For the Pampa, the SN model presents better
results when compared with all the other models (SC, SI, and EN), where in most of the
towers, the model presented better results, highlighting the comparison with SI (100% of
the towers) and SC (80%).

When the simulations of latent heat flux were observed, SC is the model that performs
worse than the SI and EN models in all studied biomes in a large percentage of towers.
There is a difficulty for CLSM in solving latent heat flux over tropical forest regions, where
the model has a tendency to overestimate [88]. According to Lei et al. [89], the CLSM
evapotranspiration is the one with the greatest errors in the annual average under several
regions of China, because the model tends to overestimate evapotranspiration in humid
regions. Other authors have also shown that the use of CLSM can increase inherent
errors in evapotranspiration estimates. Xia et al. [90] studied water storage estimates over
regions of the United States of America and demonstrated that the model uses the leaf area
index (LAI) to represent vegetation and estimate evapotranspiration processes. During
the summer, in regions of open and heterogeneous vegetation, the model may tend to
overestimate evapotranspiration.

It Is possible to observe that SN presents smaller errors than the other models of
SALDAS-2, and when compared with SC, these smaller average errors were observed in
100% of the flux towers. Compared with SI and EN, Noah showed improvement in about
70% of the towers. The result below SN obtained by EN, in this case, is directly influenced
by the overestimations from SC. The SN model is also better than the others in the Cerrado
and in the Pampa when compared with SC (Figure 4b). Similar to Xia et al. [90], the Noah-
MP model performed better in regions with a temperate climate, while arid and semiarid
regions presented more challenges for simulating terrestrial water storage components.

In the sensible heat flux, the SN model also has smaller errors than SC (in 100% of the
towers) and EN (in 60%) in the Amazon. Higher errors are observed by SN in 70% of the
towers when compared with SI, which makes the errors between SN and EN very close to 0.
The results corroborate an analyses by Li et al. [91], who evaluated NOAH-MP for different
regions of the globe and demonstrated that the model tends to produce good results for
fluxes in regions with dense vegetation cover, such as tropical forests.

In addition, for the Pampa biome, net radiation is better represented by SN compared
with the others (Figure 4a). The good Noah-MP performance in the Amazon was demon-
strated by Brunsnell et al. [92], where the Noah-MP model is more sensitive in representing
ET in broadleaf forest regions than the MOD17A2 and MOD16A2 products. However, for
the grassland and open shrubland regions, Noah has less accurate results than MODIS.
Regarding tropical forests, Noah-MP performs well in representing surface moisture, and
according to Bohm et al. [93], there is a slight tendency to overestimate the amount of latent
heat flux and underestimate the sensible heat flux in grassland and forest regions.

In the Cerrado, the SN model also has the lowest mean errors, while SC has the highest
mean error values when compared with all other models. However, for the Pampa, SN
presents worse results when compared with the other models, but the average errors were
distributed in 60%, 40%, and 20% of the towers in relation to SC, EN, and SI, respectively.
According to Zhang et al. [10], Noah-MP tends to overestimate evapotranspiration during the
summer period and underestimate other surface models in grassland and needleleaf regions.
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The models exhibit diversity in the representation of the heat flux in the soil. For the
Amazon, the SI model outperforms the others with better values of RMSEnic observed in
about 50% of the towers on average. SC is very close to SN and EN in most of the biomes’
flux towers. However, in the Pampa and Cerrado biomes, the SC and SN models fare better
than SI in representing the stored heat flux. SN is better than all other models in both
biomes, with errors smaller than 50% in several towers.

According to Rnic, the SN model has the best correlation values for net radiation
observed in the Pampa biome, in more than 70% of the towers, compared with the other
models. In the Amazon and Cerrado, the models have very close correlations with each
other. In the Amazon, SN is better than SI and SC in 55% of the towers, but it is worse than
the Ensemble in 70% of them. In the Cerrado, there is a variation in the number of towers
in which each model presents better performance compared with the other (Figure 5a).
It was observed that the average correlation between the models is higher for the other
components of the energy balance than for net radiation. For the latent heat flux, SN has a
better index than SC in 100% of the towers located in AM, and in approximately 70% of the
towers, the model is better than SI and EN.

In the Cerrado biome, SN performs better than SI and EN, and they have average Rnic
values close to 0 when compared with SC. However, in the Pampa biome, there are greater
variations, and while SN performs better than SC, it presents worse results compared with
SI and EN. The good performance of IBIS in PA is directly related to its ability to describe
the processes of evapotranspiration and exchanges between roots and soil in more detail
than SN. This is particularly relevant since three out of the five towers in the biome are
located over flooded regions [94]. There are differences between Noah and IBIS that weigh
when estimating latent heat flux; among them is the description of the phenology. IBIS
describes with greater parameters and detail the stomatal resistance [94]. IBIS also has
greater depth levels than the other models. The good performance of IBIS makes EN better
than SN in the same number of towers.

SN has the sensible heat flux better represented than SC in all towers in the Amazon
and Cerrado biomes, and it is also better than SI and EN in 70% of the Cerrado towers.
Additionally, it is approximately 60% better than EN in the Amazon biome. SC is better
than SN in 40% of the towers in the Pampa biome.

3.3. The Performance of SALDAS-2 in Relation to GLDAS

In this section, we compare SALDAS-2 surface models with GLDAS references in
terms of their performance (Figures 6 and 7). Generally, SALDAS-2 models show better
performance than GLDAS models when simulating energy balance variables, with SN
performing the best. For net radiation, EN generally has lower errors than GLDAS refer-
ences, with SN being better than GN in approximately 71.43% of the flux towers in the
Amazon region. However, in some flux towers, SN errors are significantly large, leading
to a negative mean error. Similar observations are seen when comparing SI versus GN
and EN versus GN models. According to Bohm et al. [93], the Noah-MP model presents
errors in the estimation of energy fluxes due to failures in the parametrization of vege-
tation or soil, which can impact the hydrological distribution simulated by the model.
Another factor to be considered is the input data of the model, which can also impact
the estimation errors. The positive performance of Noah-MP in SALDAS-2 compared
with GLDAS in the region may be because the South American model uses the regional
precipitation from CPTEC/MERGE as input forcing, which makes the water availability
closer to reality [87,90].

The use of regional forcings significantly improves the performance of SC in terms
of net radiation in the AM biome, where it performs better than GN in approximately
71.43% of the flux towers and approximately 60% when compared with GC. Observations
in the Amazon rainforest presented results opposite to those found by Jung et al. [95] in
their research. The authors emphasized that uncertainties in simulating evapotranspiration
(ET) are higher for the CLSM model than for the Noah model in forested regions in West
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Africa. However, the results obtained by the SALDAS model may be related to the use of
precipitation and radiation forcing that are more suitable for the Amazon rainforest region,
resulting in better flow estimates in this region.

Atmosphere 2023, 14, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 6. Intercomparison of 𝑅𝑀𝑆𝐸   of SALDAS-2 and GLDAS models, where the green icons 
are the flux towers located in the Amazon biome, the brown icons are the tower from the Cerrado, 
and the blue icons are the towers from the Pampa biome, where SN SI is the 𝑅𝑀𝑆𝐸   between 
SALDAS-2 NOAH and GLDAS NOAH (star), SN GC with SALDAS-2 NOAH and GLDAS CLSM 
(triangle), SI GN with SALDAS-2 IBIS and GLDAS NOAH (point), SI GC with SALDAS-2 IBIS and 
GLDAS CLSM (right triangle), SC GN with SALDAS-2 CLSM and GLDAS NOAH (left triangle), SC 
GC with SALDAS-2 CLSM and GLDAS CLSM (line triangle), EN GN with SALDAS-2 Ensamble 
and GLDAS NOAH (plus) and EN GC with SALDAS-2 Ensamble and GLDAS CLSM (ex). 

It is possible to notice that the SALDAS-2 models can be realistic for the seasonality 
of the net radiation during all the months of the year. The simulations from SALDAS-2 for 
net radiation over the Amazon biome have a worse correlation than GLDAS in 80% of flux 
towers. In almost all towers of the Amazon biome, the land cover is similar in both surface 
models (SALDAS-2 and GLDAS). However, in the SN and SC models, in most towers, the 
predominant vegetation in the 5 × 5 pixel is different from that described by GLDAS, 
which can lead to errors in the estimates of net radiation over the region [96]. In this case, 
the EN simulations are better than the individual use of each model (SN, SC, and SI), 
where the number of towers in which the models were worse was reduced from 80% to 
about 55%. The SALDAS-2 models are greater at estimating net radiation in the Cerrado 
and Pampa. In the Cerrado, the SN model outperforms the GN model in 80% of the flux 
towers, while in the Pampa biome, the same model displays superior correlation estimates 
in all of the towers examined, surpassing both GN and GC models.  

There is a significant difference between GLDAS and SALDAS-2 models in the PA 
biome when evaluating heat fluxes. The SN model exhibits a stronger correlation for latent 
heat flux in the AM biome, with over 80% of towers displaying superior estimates. How-
ever, the SN model encounters difficulties in representing the latent heat flux in the PA 
biome (Figure 7b). This can be attributed to the location of flux towers in heterogeneous 
land cover regions in the southern region, which complicates accurate modeling esti-
mates. The average flux is affected by adjacent fields, making correct tilling difficult [70]. 

Figure 6. Intercomparison of RMSEnic of SALDAS-2 and GLDAS models, where the green icons are
the flux towers located in the Amazon biome, the brown icons are the tower from the Cerrado, and
the blue icons are the towers from the Pampa biome, where SN SI is the RMSEnic between SALDAS-2
NOAH and GLDAS NOAH (star), SN GC with SALDAS-2 NOAH and GLDAS CLSM (triangle),
SI GN with SALDAS-2 IBIS and GLDAS NOAH (point), SI GC with SALDAS-2 IBIS and GLDAS
CLSM (right triangle), SC GN with SALDAS-2 CLSM and GLDAS NOAH (left triangle), SC GC with
SALDAS-2 CLSM and GLDAS CLSM (line triangle), EN GN with SALDAS-2 Ensamble and GLDAS
NOAH (plus) and EN GC with SALDAS-2 Ensamble and GLDAS CLSM (ex).

In terms of latent heat flux, the pattern of SN errors compared with GN was observed
in the Amazon and Pampa biomes, with SN having negative RMSEnic values, indicating
that its errors are greater than the reference. However, it performs better in most flux
towers, and in those where it performs worse, it presents much larger average errors. In the
Cerrado, the RMSEnic values of SN and GN are very close in about 50% of the towers. EN
outperforms GN in all biomes for latent heat flux, with SALDAS-2 showing improvements
of approximately 55% in the Cerrado, 75% in the Amazon, and 100% in the Pampa, when
compared with GC. GC has large errors when trying to represent the latent heat flux in
all biomes.

According to Zhang et al. [10], CLSM tends to overestimate ET values in forest regions
and has the ability to maintain average errors close to observation in grassland regions.
This overestimation was also observed in our study, with the model having a tendency
to overestimate the data observed by the towers in the winter months. However, in the
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summer, these overestimates are reduced, and the latent heat flux curve tends to stay
close to the observation. These errors are reflected in sensible heat flux due to the model’s
compensation for closing the energy balance. SALDAS-2 models have worse performance
in the Amazon biome and better in the Cerrado and Pampa. Using the CLSM model
with forcing variables closer to the observations resulted in a reduction of latent heat flux
overestimation, leading to an improvement in the model (Figure 6b).
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It is possible to notice that the SALDAS-2 models can be realistic for the seasonality
of the net radiation during all the months of the year. However, SALDAS-2 simulations
for net radiation over the Amazon biome have worse correlation than GLDAS in 80% of
tower fluxes. This may be due to differences in the predominant vegetation in the 5x5
pixel, leading to errors in the estimates of net radiation over the region. In this case, EN
simulations are better than the individual use of each model (SN, SC, and SI), reducing the
number of towers where the models perform worse from 80% to about 55%. The SALDAS-2
models exhibit superior capabilities in estimating net radiation in both the Cerrado and
Pampa biomes. Specifically, in the Cerrado, the SN model outperforms the GN model in
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80% of the towers examined, while in the Pampa biome, the SN model displays superior
correlation estimates in all of the towers examined, surpassing both GN and GC models.

In the case of evaluating heat fluxes, there is a significant difference between the
GLDAS and SALDAS-2 models in the Pampa biome. For the latent heat flux, the SN model
exhibits a stronger correlation in the Amazon biome, with over 80% of towers displaying
superior estimates. However, the SN model encounters difficulties in representing the
latent heat flux in the Pampa biome. This can be attributed to the location of the flux towers
in heterogeneous land cover regions in the southern region, which complicates accurate
modeling estimates.

The GLDAS models demonstrate greater correlations in both sensible and ground
heat fluxes across all biomes. This indicates that the low resolution of the models does not
necessarily improve the correlation of sensitive and latent fluxes.

Models that fail to adequately represent the characteristics of land cover at a given
tower location struggle to capture the seasonality of latent and sensible heat fluxes. The SC
model, in particular, has difficulty achieving good correlations with observed data due to
discrepancies in surface coverage as represented by the towers and GLDAS. This issue is
particularly pronounced in the Cerrado and Pampa biomes, where heterogeneity is more
significant. In contrast, the sensible heat flux tends to compensate for any overloading in
the latent heat flux, as the model seeks to close the energy balance by accounting for energy
gains or losses.

It is possible to notice that the SALDAS-2 models can be realistic for the seasonality
of the net radiation during all the months of the year. The simulations from SALDAS-2
for net radiation over the Amazon biome have a worse correlation than GLDAS in 80% of
flux towers. In almost all towers of the Amazon biome, the land cover is similar in both
surface models (SALDAS-2 and GLDAS). However, in the SN and SC models, in most
towers, the predominant vegetation in the 5 × 5 pixel is different from that described by
GLDAS, which can lead to errors in the estimates of net radiation over the region [96]. In
this case, the EN simulations are better than the individual use of each model (SN, SC, and
SI), where the number of towers in which the models were worse was reduced from 80% to
about 55%. The SALDAS-2 models are greater at estimating net radiation in the Cerrado
and Pampa. In the Cerrado, the SN model outperforms the GN model in 80% of the flux
towers, while in the Pampa biome, the same model displays superior correlation estimates
in all of the towers examined, surpassing both GN and GC models.

There is a significant difference between GLDAS and SALDAS-2 models in the PA
biome when evaluating heat fluxes. The SN model exhibits a stronger correlation for
latent heat flux in the AM biome, with over 80% of towers displaying superior estimates.
However, the SN model encounters difficulties in representing the latent heat flux in the
PA biome (Figure 7b). This can be attributed to the location of flux towers in heterogeneous
land cover regions in the southern region, which complicates accurate modeling estimates.
The average flux is affected by adjacent fields, making correct tilling difficult [70]. The
GLDAS models show greater correlations on sensible and ground heat fluxes in all biomes,
indicating that a low resolution of the models does not necessarily improve the correlation
of sensitive and latent fluxes.

Individually, the models whose representation of the land cover is not equal to the
characteristics of the tower at the point have greater difficulty in representing the season-
ality of latent and sensible heat fluxes. The SC has extreme difficulty in obtaining good
correlations with the observed data because, in general, the surface coverage is different
from that represented by the towers and GLDAS. This causes the model to perform poorly
in the Cerrado and Pampa, where heterogeneity is greater. The opposite is observed in
the sensible heat flux since, for the purpose of compensation to close the energy balance,
any overload in the latent heat flux is reflected in the sensible one, as the model tends to
compensate for energy gains or losses.
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3.4. Limitations and Uncertainties of the SALDAS-2 Models

Although SN yielded satisfactory results in simulating the energy balance variables,
it exhibits weaknesses in characterizing vegetation, which may lead to an inadequate
representation of the vegetation dynamics across different regions. Moreover, the accuracy
of precipitation data may vary by region, thereby affecting the hydrological simulations and
water processes. Furthermore, the model tends to exhibit errors in estimating the latent and
sensible heat fluxes in the PA biome, possibly due to difficulties in simulating vegetation
dynamics, as the surface cover in the region displays heterogeneous characteristics.

A study by Cuntz et al. [97] compared various parameter sets of the Noah-MP model,
and the authors describe that for better estimations of Noah-MP, it is crucial to conduct
calibration to improve the accuracy of hydrological simulations. Moreover, Noah-MP
exhibited problems in estimating ET and surface runoff under different surface conditions.
These errors were possibly attributed to imprecision in the parameters related to water
transfer on the soil surface.

Although the SC model is widely used for simulating energy fluxes and ET, it presents
limitations in representing vegetation dynamics in some regions. In particular, the model
tends to overestimate latent heat flux and underestimate sensible heat flux over the CE
biome. This can be explained by the fact that the Cerrado region is highly heterogeneous,
with great variation in vegetation cover over time and space. The SC model may have
difficulties in capturing this heterogeneity, resulting in imprecise estimates of energy fluxes.
Additionally, the seasonality of the Cerrado, with well-defined dry and rainy periods, can
also pose challenges for the model’s estimates.

It is quite plausible to assert that one of the main causes of errors in estimating energy
fluxes by the model is associated with vegetation dynamics. This is because vegetation
cover directly affects the LAI, which is an important variable for partitioning energy fluxes
in the model. A study by Lei et al. [89] demonstrated that the transition between wet and
dry climate regimes is characterized by large variability in soil moisture, which can impact
the CLSM model. It exhibits a tendency to overestimate the coupling strength between soil
moisture and latent heat in transitional climate regimes, such as in the Great Plains of North
America, Central Asia, and Central Australia. Similarly, the model presents challenges in
estimating energy fluxes over the CE biome.

While the SI model can be applied to various types of ecosystems, including tropical
forests, it may have some specific limitations in this type of environment. Some of these
difficulties may be associated with a low representation of canopy heterogeneity, which
can lead to an underestimation of spatial variation in energy and water exchange. Another
limitation is the difficulty in simulating evapotranspiration in hydromorphic soils, which
are common in tropical forest areas. In addition, the representation of nutrient cycling in
IBIS may not be as detailed as in other models, limiting the accuracy of the simulation in
this aspect.

The performance of SI depends on the quality and accuracy of input parameters, and
in forest ecosystems, there may be limitations in the availability of data to estimate these
parameters, which can affect the accuracy of the simulation. It is important to note that
these limitations do not invalidate the application of the IBIS model in tropical forests, but
rather emphasize the need to evaluate the model’s performance and adjust it to ensure
simulation accuracy.

4. Conclusions

This study demonstrates the promising potential of using regional variables to force
surface models to obtain more realistic simulations. The use of remote sensing products,
such as precipitation and shortwave radiation, proved effective in improving the accuracy
of flux tower observations. The MERGE and CERES models provided good estimates
of precipitation and shortwave radiation in much of South America, particularly in the
northern and southeastern regions.
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The SALDAS-2 model tends to overestimate evapotranspiration in these regions and,
to compensate for the energy balance, underestimate sensible heat flux values to balance
the net radiation, as the soil heat storage values are lower compared with other energy
balance variables. This is because the soil heat storage values are lower compared with
other energy balance variables. The use of remote sensing variables for radiation and
precipitation resulted in better estimates of latent heat flux in forested areas in the CLSM
model obtained by SALDAS-2. This outcome supports the aim of this study to improve
energy balance variables using regional radiation and precipitation forcings.

However, the SALDAS-2 model performed best in grassland regions, as its low resolu-
tion provided a better representation of vegetation and surrounding advective flows, thus
improving the estimates. For this region, RMSE values were reduced from 38.44 W m−2

for GC to 22.7 W m−2 for SC, while sensible heat was reduced from 17 W m−2 for GC to
10.41 W m−2 for SC.

In general, the Noah-MP and Ensemble models provided better results for flux es-
timates. However, using the EN model by SALDAS-2 improved the estimates of soil
heat flux in all biomes when compared with individual GLDAS models and their average
estimates. This is because when one SALDAS-2 model produces an error, the others tend
to compensate for it.

Finally, while presenting an improved framework for SALDAS called SALDAS-2,
with the aim of producing consistent land surface estimates for South America, this study
highlights the potential of using regional variables derived from remote sensing products
to improve the accuracy of surface models, especially in regions with heterogeneous land
cover. The results show that the use of precipitation and shortwave radiation data from
remote sensing products, coupled with the SALDAS-2 models, leads to better estimates of
latent heat flux under forest regions. Moreover, the low resolution of SALDAS-2 models
is beneficial for grassland regions due to their better representation of vegetation and
advective fluxes. The use of Ensemble methods, such as EN, improves the estimation
of ground heat flux across all biomes. The findings of this study can contribute to the
improvement of regional and global climate models. Future studies should continue to
explore the use of remote sensing products to better represent the complex energy balance
in different regions.
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