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Resumo

Nesta tese está a classi�cação de todas as 47 possíveis representações irredutíveis
do duplo quântico de uma álgebra de Hopf associada a álgebra de Nichols da álgebra
de tipo não identi�cado de menor dimensão (144).

Abstract

In this thesis we classify all 47 possible irreducible representations of the quantum
double of a pointed Hopf algebras attached to the Nichols algebra of the unidenti�ed
algebra of smallest dimension (144).
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Chapter 1

Introduction

Finite-dimensional Nichols algebras were classi�ed by Heckenberger in [H2] and we
can consider three families: standard braidings, (that were introduced in [AA]);
braidings of super type, ([AAY]) and a �nite list of braidings whose connected
components have rank less than eight that are called unidenti�ed. A Nichols algebra
of a braided vector space (V, c) is a quotient of its tensor algebra by a suitable ideal
I(V) then a important question about Nichols algebras is to obtain a minimal set
of relations generating I(V). For the �rst family this is in [A4] and for the second
family the problem is solved for the generic case in [Y], and for the non-generic case,
except by some considerations for small orders on the entries of the braiding matrix,
in [AAY]. A complete list of relations satis�ed by the generators of the Nichols
algebras, depending on the matrix entries can be found in [A4]. Angiono in [A3]
gave a complete list of relations generating the de�ning ideal for the Nichols algebra
of each braiding of this kind and also the list of positive roots for each case and the
dimension for the small ranks.

In this thesis we compute and describe all the irreducible representations (and
their dimensions) of a �nite-dimensional pointed Hopf algebra, which is the Drinfeld
double of a Nichols algebra of unidenti�ed type of smallest dimension (144). There
are 47 di�erent cases according with the sets of factors of the Shapovalov determinant
who are annhilated. For that purpose, we compute the lattices of submodules of the
Verma modules. The parametrization of the simple modules of the mentioned Hopf
algebras is deduced from a result of Radford and Schneider ([RS]) which generalizes
the method employed in the representation theory of �nite-dimensional semisimple
Lie algebras and comes from the consideration of the generalized version of the
Shapovalov determinant, introduced by Heckenberger and Yamane for these Drinfeld
doubles of Nichols algebras ([HY]). This determinant has a factorization, and the
Verma module is irreducible if no one of these factors is zero. This factorization
also helps to describe the other 46 cases, when either one or two of the factors are
0, generating on most cases explicit relations on the module. We describe explicitly
the submodules on each case. Cases 2-10 has one of the factors equal to 0 and
the other cases have exactly two factors equal to 0, and we compute the results of
the relations obtaining the basis to the module, but this is not always simple and
easy. Therefore, we also related the Cases 11-47, with each other in two possible
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ways, using a morphism between submodules as in Lemma 5.2.5 and this provides
relations between the diagrams of the module that we exemplify in Appendix B.
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Chapter 2

Preliminaries

2.1 Notation

The base �eld k is algebraically closed of characteristic zero; we set k× = k−0. For
each integer N > 1, GN denotes the group of N -roots of unity in k, and G′N is the
corresponding subset of primitive roots of order N . If G is a group, then we denote
by Ĝ the group of multiplicative characters (i. e., one-dimensional representations)
of G; and by Z(G) the center of G.

We shall use the notation for q-factorial numbers: for each q ∈ k×, n ∈ N,
0 ≤ k ≤ n,

(n)q = 1 + q + . . .+ qn−1, (n)q! = (1)q(2)q · · · (n)q.

A braided monoidal category is a collection (C,⊗,1, a, r, l, c) where C is a category,
⊗ : C × C → C is a functor called tensor product; 1 is an object in C; aX,Y,Z :
(X⊗Y )⊗Z → X⊗(Y ⊗Z), rX : X → X⊗1, lX : X → 1⊗X, cX,Y : X⊗Y → Y ⊗X
are natural families of isomorphisms that satis�es some suitable coherence diagrams
[M, page 252]. In particular, for X ∈ C, the map c = cX,X is called a braiding and
satis�es the braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c). (2.1)

2.2 Hopf algebras

De�nition 2.2.1. Let (H,m, u,∆, ε) be a bialgebra. Then H is a Hopf algebra if
there exists an element S ∈ Homk(H,H) which is an inverse to idH under convolu-
tion. S is called an antipode for H.

Note that S satis�es∑
(Sh(1))h(2) = ε(h)(1)H =

∑
h(1)(Sh(2))

We use the Heyneman-Sweedler notation ∆(x) =
∑
x(1) ⊗ x(2); the summation

sign will be often omitted. The composition inverse of S is denoted by S.
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Let H be a Hopf algebra. There are a left and a right action of H∗ on H given
by

f ⇀ h = h(1)f(h(2)), h ↼ f = f(h(1))h(2), h ∈ H, f ∈ H∗. (2.2)

We denote by G(H) the set of grouplike elements of H. The tensor category of
�nite-dimensional representations of H is denoted RepH.

A left integral in H is an element Υ ∈ H such that hΥ = ε(h)Υ for all h ∈ H;
a right integral in H is an element Λ ∈ H such that Λh = ε(h)Λ for all h ∈ H.
The space of left, respectively right, integrals is denoted Il(H), respectively Ir(H).
Assume that H is �nite-dimensional. Then dim Il(H) = 1 = dim Ir(H). The
distinguished grouplike elements of H and H∗ are the (unique) αH ∈ G(H∗), gH ∈
G(H) such that

Υa = αH(a)Υ, pυ = p(gH)υ, for all a ∈ H, p ∈ H∗, (2.3)

where Υ, respectively υ, is an arbitrary non-zero left integral in H, respectively
non-zero right integral in H∗.

Example 2.2.2. Let G be a �nite group and kG its group algebra, with basis
(h)h∈G. Then (kG)∗ ' kG, with basis (δh)h∈G, δh being the function that is 1 in h,
0 elsewhere. Then

∫G =
∑
h∈G

h ∈ Il(kG) = Ir(kG), δe ∈ Il(kG) = Ir(k
G). (2.4)

Hence the distinguished grouplike elements are trivial. Alternatively, if G = Γ is
abelian, then δe = |Γ|−1

∑
χ∈Γ̂ χ.

2.3 Yetter-Drinfeld modules

De�nition 2.3.1. Let G be a �nite group. A Yetter-Drinfeld module over kG is a
G-graded vector space M =

⊕
t∈GMt provided with a linear action of G such that

t ·Mh = Mtht−1 for any t, h ∈ G; morphisms of Yetter-Drinfeld modules are linear
maps preserving the action and the grading.

The category kG
kGYD of Yetter-Drinfeld modules over G is semisimple. Moreover,

let M ∈ kG
kGYD, t ∈ G and v ∈Mt. If there exists χ ∈ Ĝ such that h · v = χ(h)v, for

all h ∈ G, then we say that v ∈ Mχ
t ; necessarily, t ∈ Z(G). Furthermore, if G = Γ

is abelian, then any M ∈ kG
kGYD satis�es M =

⊕
t∈Γ,χ∈Γ̂M

χ
t .

The category kG
kGYD is a braided tensor category with the usual tensor product

of gradings and actions, and where cX,Y : X ⊗ Y → Y ⊗X is given by

c(x⊗ y) = t · y ⊗ x, x ∈ Xt, t ∈ G, y ∈ Y. (2.5)
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2.4 Braided Hopf algebras

De�nition 2.4.1. Let G be a �nite group. A braided Hopf algebra in kG
kGYD is a

collection (R, ·,∆), where

• R ∈ kG
kGYD;

• (R, ·) is an algebra such that · and the unit are morphisms in kG
kGYD;

• (R,∆) is a coalgebra such that ∆ and the counit ε are morphisms in kG
kGYD;

• ∆ is an algebra map in the sense ∆ ◦m = (m⊗m)(id⊗cR,R ⊗ id)(∆⊗∆);

• R has an antipode SR, i. e. a convolution inverse of the identity of R.

Let A, H be Hopf Algebras and π : A → H and ι : H → A Hopf algebra
homomorphisms. Assume that πι = idH , so that π is surjective, and ι is injective.
Then

R := Acoπ = {a ∈ A : (id⊗ π)∆(a) = a⊗ 1}

is a braided Hopf algebra in kG
kGYD with the following structure:

• The action · of H on R is the restriction of the adjoint action composed with
ι.

• The coaction is (π ⊗ id)∆.

• R is a subalgebra of A.

• The comultiplication is ∆R(r) = r(1)ιπS(r(2))⊗ r(3), for all r ∈ R.

De�nition 2.4.2. Let R be braided Hopf algebra in kG
kGYD. The vector space R⊗kG

whose multiplication and comultiplication are given by

(r#h)(s#f) = r(h(1) · s)#h(2)f,

∆(r#h) = r(1)#(r(2))(−1)h(1) ⊗ (r(2))(0)#h(2),

is a Hopf algebra, called the bosonization, or bicrossproduct, of R by kG, and denoted
R#kG,

Let R be a �nite-dimensional braided Hopf algebra in kG
kGYD. A left integral in R

is a Υ ∈ R such that rΥ = ε(r)Υ for all r ∈ R. Right integrals are de�ned similarly.
The space of left integrals, respectively right, is denoted Il(R), respectively Ir(R).
Then Il(R) ∈ kG

kGYD and Ir(R∗) ∈ kG

kGYD have dimension 1; hence

Il(R) = Il(R)γz , for some z ∈ Z(G), γ ∈ Ĝ; (2.6)

Ir(R
∗) = Ir(R

∗)`µ, for some ` ∈ G, µ ∈ Ĝ. (2.7)

See [T] for more details.
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Let Υ ∈ Il(R), υ ∈ Ir(R∗). The relation with the integrals of the bosonization is
given by the following result. Recall ∫G, δe from (2.4).

Lemma 2.4.3. [R1, Bu] (i) Υ#(∫G ↼ γ) = ∫G Υ ∈ Il(R#kG).

(ii) υ#δe ∈ Ir((R#kG)∗).

The distinguished grouplike elements of R and R∗ are the (unique) αR ∈ G(R∗),
gR ∈ G(R) such that Υr = αR(r)Υ, pυ = p(gR)υ, for all r ∈ R, p ∈ R∗. We give
next the distinguished grouplike elements of the bosonization R#kG.

Theorem 2.4.4. [Bu, 4.8, 4.10] Let R be a �nite-dimensional braided Hopf algebra
in kG

kGYD, the distinguished grouplike elements of H = R#kG are αH = αR#γ−1

and gH = gR`.

Remark 2.4.5. [AG] Let R =
∑N

i=0 Ri be a �nite-dimensional graded braided Hopf
algebra in kG

kGYD, with R0 = k and RN 6= 0. Then RN = Il(R) = Ir(R). Thus R,
and similarly R∗, are unimodular. Hence αH = γ−1 and gH = `, by Theorem 2.4.4.

2.5 Braidings of diagonal type

Let θ ∈ N and I = {1, 2, . . . , θ}.
Let q = (qij)i,j∈I ∈ kI×I such that

qij are roots of 1 for all i, j ∈ I, (2.8)

qii 6= 1 for all i ∈ I. (2.9)

Let q̃ij := qijqji. The generalized Dynkin diagram of the matrix q is a graph with
θ vertices, the vertex i labeled with qii, and an arrow between the vertices i and j
only if q̃ij 6= 1, labeled with q̃ij. For instance, given ζ ∈ G′12 and η a square root of

ζ, the matrices

(
ζ4 1
ζ11 −1

)
,

(
ζ4 η11

η11 −1

)
have the diagram:

◦ζ4 ζ11 •−1 . (2.10)

where we indicate the vertices 1, 2 by ◦, •, respectively.
Let V be a vector space with a basis X = {xi : i ∈ I}. De�ne c : V ⊗V → V ⊗V

by c(xi ⊗ xj) = qij xj ⊗ xi, i, j ∈ I. Then c is a solution of the braid equation (2.1).
The pair (V, c) is called a braided vector space of diagonal type; such braided vector
spaces are related with Yetter-Drinfeld modules over group algebras of �nite abelian
groups.

2.6 Nichols algebras

De�nition 2.6.1. Let (V, c) be a braided vector space of diagonal type attached
to a matrix q as in the previous subsection. A braided graded Hopf algebra R =
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⊗
n≥0R(n) ∈ kG

kGYD is called a Nichols algebra of V and denoted by B(V ) if k ' R(0)

and V ' R(1) ∈ kG
kGYD, P (R) = R(1) and R is generated as an algebra by R(1).

See [AS3] for various precise alternative de�nitions and its rol in the classi�cation
of pointed Hopf algebras.

Let (αi)i∈I be the canonical basis of ZI. Since c is of diagonal type, T (V ) admits
a unique ZI-graduation such that deg xi = αi; then I(V ) is a ZI-homogeneous ideal
and B(V ) is ZI-graded, see [AS3, Proposition 2.10], [L, Proposition 1.2.3].

Remark 2.6.2. Two braided vector spaces of diagonal type with the same generalized
Dynkin diagram are called twist equivalent ; if this is the case, then the corresponding
Nichols algebras are isomorphic as graded vector spaces [AS3, Proposition 3.9].

We now list some notation for elements in T (V ) or B(V ).

• [x, y]c := product ◦ (id−c) (x⊗ y), for x, y in T (V ) or B(V ).

• adc x(y) := [x, y]c, in case x ∈ V and y in T (V ) or B(V ).

• xi1i2···ik = (adc xi1) · · · (adc xik−1
) (xik), i1, i2, · · · , ik ∈ I.

Let ∆V
+ be the set of degrees of PBW generators of B(V ), counted with their

multiplicities [H1]. We can see that it does not depend on the PBW basis, [H1, AA].

2.7 The Drinfeld double

A quasitriangular (QT for short) Hopf algebra is a pair (A,R), where A is a Hopf
algebra and R =

∑
i ai⊗ bi is an invertible element in A⊗A such that for all h ∈ A,

∆cop(h) = R∆(h)R−1, (∆⊗ id)R = R13R23, (id⊗∆)R = R13R12. (2.11)

Here R12 = R ⊗ 1, R23 = 1 ⊗ R, R13 =
∑

i ai ⊗ 1 ⊗ bi. The Drinfeld element of
(A,R) is u =

∑
i S(bi)ai; it is invertible with u−1 =

∑
i biS2(ai). Then

w : = uS(u)−1 = S(u)−1u ∈ G(A), uS(u) ∈ Z(A);

S2(h) = uhu−1, S4(h) = whw−1, h ∈ A.

Let Q = R21R; then ∆(u) = Q−1(u⊗ u) = (u⊗ u)Q−1.

De�nition 2.7.1. [RT1] A QT Hopf algebra (H,R) is ribbon if there exists v ∈
Z(H), called the ribbon element, such that

v2 = uS(u), S(v) = v, ∆(v) = Q−1(v ⊗ v).

Then ω = uv−1 ∈ G(H) and S2(h) = ωhω−1 for all h ∈ H.

Remark 2.7.2. If (A,R) is a QT Hopf algebra and π : A → B is a surjective
morphism of Hopf algebras, then (B, (π⊗π)(R)) is a QT Hopf algebra. Clearly, the
Drinfeld element of B is π(u). Hence, if A has a ribbon element v, then (B, (π ⊗
π)(R)) is ribbon with ribbon element π(v).
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By a celebrated construction of Drinfeld, every �nite-dimensional Hopf algebra
H gives rise to a QT Hopf algebra. For this, we �rst recall the left and right coadjoint
actions of H on H∗ given by

h� f = h(1) ⇀ f ↼ Sh(2), f � h = Sh(1) ⇀ f ↼ h(2), h ∈ H, f ∈ H∗. (2.12)

If H is �nite-dimensional, consider the left coadjoint action of H on H∗, respectively
the right coadjoint action ofH∗ onH; these actions makeH∗ cop into a leftH-module
coalgebra, and respectively H into a right H∗ cop-module coalgebra.

De�nition 2.7.3. The Drinfeld double D(H) := H∗ cop ./ H is the following Hopf
algebra: as a coalgebra, this is H∗ cop ⊗ H; the algebra structure and antipode are
given by

(f ./ h)(f ′ ./ h′) = f(h(1) � f ′(2)) ./ (h(2) � f ′(1))h
′ (2.13)

1D(A) = 1A∗ ./ 1A = εA ./ 1A (2.14)

S(f ./ h) = S(h(2)) ⇀ S(f(1)) ./ f(2) ⇀ S(h(1)) (2.15)

for all f, f ′ ∈ A∗, h, h′ ∈ A.

Let {hi} be a basis ofH, {fi} its dual basis ofH∗ andR :=
∑

i(ε ./ hi)⊗(fi ./ 1).

Theorem 2.7.4. [Dr] If H is a �nite-dimensional Hopf algebra, then (D(H),R) is
a QT Hopf algebra.

We now give an alternative description of the Drinfeld double as a cocycle de-
formation. Let B be a bialgebra. An invertible bilinear form σ : B ⊗ B → k is a
2-cocycle if

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)), ∀x, y, z ∈ B. (2.16)

Then the cocycle deformation of B by σ is the bialgebra Bσ, where Bσ = B as
coalgebra, with product de�ned by x ·y = σ(x(1), y(1))x(2)y(2)σ

−1(x(3), y(3)), for x, y ∈
B, and with the same identity as B [D]. If B is a Hopf algebra, then so is Bσ, with
antipode

Sσ(x) = σ(x(1),S(x(2)))S(x(3))σ
−1(S(x(4)), x(5)), x ∈ B.

Theorem 2.7.5. [DT, Remark 2.3] If H is a �nite-dimensional Hopf algebra, then
its Drinfeld double is a cocycle deformation of H∗ cop ⊗H by σ, where

σ(f ⊗ h, f ′ ⊗ h′) = ε(f) 〈h, f ′〉 ε(h′), h, h′ ∈ H, f, f ′ ∈ H∗. (2.17)

We state a criterium from [KR] to decide whether a Drinfeld double is ribbon.

Theorem 2.7.6. [KR, Theorem 3] The Drinfeld double (D(H),R) is ribbon i� there
exist k ∈ G(H), β ∈ G(H∗) such that

k2 = gH , β2 = αH , S2(h) = k (β ⇀ h ↼ β−1) k−1 ∀h ∈ H. (2.18)
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2.8 Spherical Hopf algebras

De�nition 2.8.1. A spherical Hopf algebra is a pair (H,ω), where H is a Hopf
algebra and ω ∈ G(H), called the pivot, such that
(i) S2(x) = ωxω−1, x ∈ H,
(ii) trV (ϑω) = trV (ϑω−1), ϑ ∈ EndH(V ), for all V ∈ RepH.

Let (H,ω) be a spherical Hopf algebra. The quantum dimension of M ∈ RepH
is

qdimM = trM(ω) = trM(ω−1). (2.19)

Theorem 2.8.2. [BaW1] If (H,R) is a ribbon Hopf algebra then (H,ω) is spherical
with pivot given by ω = uv−1 where u,v are the ribbon and Drinfeld elements.
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Chapter 3

Doubles of Nichols algebras

3.1 Hopf algebras attached to reduced data

Let q = (qij)i,j∈I be a matrix of elements in k× satisfying (2.8), (2.9) and

dimB(V ) <∞. (3.1)

De�nition 3.1.1. [ARS] Let Γ be a �nite abelian group. A reduced YD-datum (for
q over Γ) is a collection Dred = ((Li)i∈I, (Ki)i∈I, (χi)i∈I) where Ki, Li ∈ Γ, χi ∈ Γ̂
for i ∈ I, such that

qij = χj(Ki) = χi(Lj) for all i, j ∈ I, (3.2)

KiLi 6= 1 for all i ∈ I. (3.3)

We attach Yetter-Drinfeld modules V and W to the reduced datum Dred by

V = ⊕i∈Ikvi ∈ kΓ
kΓYD, with basis vi ∈ V χi

Ki
, i ∈ I, (3.4)

W = ⊕i∈Ikwi ∈ kΓ
kΓYD, with basis wi ∈ W

χ−1
i

Li
, i ∈ I. (3.5)

De�nition 3.1.2. [ARS] Let Dred = ((Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced YD-
datum. We de�ne U(Dred) as the quotient of the biproduct T (V ⊕W )#kΓ modulo
the ideal generated by

I(V ), (3.6)

I(W ), (3.7)

viwj − χ−1
j (Ki)wjvi − δij(KiLi − 1) for all 1 ≤ i, j ≤ θ. (3.8)

it is clear that U(Dred) is a Hopf algebra quotient of T (V ⊕W )#kΓ.

The structure of Hopf algebra is given by

∆(vi) = vi ⊗ 1 +Ki ⊗ vi, ∆(wi) = wi ⊗ 1 + Li ⊗ wi, ∆(g) = g ⊗ g, g ∈ Γ,

S(vi) = −K−1
i vi, S(wi) = −L−1

i wi, S(g) = g−1, g ∈ Γ.
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Example 3.1.3. Let Λ be a �nite abelian group and (gi)i∈I, (σi)i∈I where gi ∈ Λ,
σi ∈ Λ̂, i ∈ I, such that qij = σi(gj) for i, j ∈ I. Then we have a reduced datum Dred
for Γ = Λ× Λ̂ given by

Ki = gi, Li = σi, χi = (σi, gi), i ∈ I.

Theorem 3.1.4. In the context of Example 3.1.3, U(Dred) is isomorphic to , there-
fore it is a QT Hopf algebra.

Proof. We argue as in [ARS, Theorem 3.7]. First, the V in (3.4) also belongs to
kΛ
kΛYD by vi ∈ V σi

gi
, i ∈ I. Similarly the W in (3.5) belongs to kΛ̂

kΛ̂
YD by wi ∈ W

g−1
i

σi ,
i ∈ I.

Let H = B(V )#kΛ and U = B(W )#kΛ̂. The coproduct and the antipode are
determined by

∆(vi) = vi ⊗ 1 + gi ⊗ vi, ∆(zi) = zi ⊗ σ−1
i + 1⊗ zi, S(vi) = −g−1

i vi, S(zi) = −ziσi.

De�ne ( | ) : H ⊗ U → k the bilinear form

(vi|zj) = δij, (vi|χ) = 0, (g|zj) = 0, (g|χ) = χ(g), g ∈ Λ, χ ∈ Λ̂, i, j ∈ I.

It is a non-degenerate skew-Hopf bilinear form since (for example)

(Svi|zj) = −(g−1
i vi|zj)

= −(g−1
i |zj)(vi|σ−1

j )− (g−1
i |1)(vi|zj)

= −(g−1
i |1)(vi|zj)

= −δij
= −(vi|zj)(1|σj)
= −(vi|zjσj) = (vi|Szj).

This imply that H∗ cop ' U as Hopf algebras.
By [ARS, Theorem 3.7] there exist a unique 2-cocycle σ : (H∗ cop⊗H)⊗ (H∗ cop⊗

H)→ k such that U(Dred) ' (H∗ cop⊗H)σ given by σ(f⊗h, f ′⊗h′) = ε(f)(h|f ′)ε(h′)
for f, f ′ ∈ H∗ and h, h′ ∈ H. Therefore U(Dred) is a cocycle deformation of H. By
Theorem 2.7.5 U(Dred) is the Drinfeld double of H, hence U(Dred) is QT by Theorem
2.7.4 and Remark 2.7.2.

Let g ∈ Λ and α ∈ Λ̂ be the distinguished grouplike elements of H and H∗.

Corollary 3.1.5. If there exist k ∈ Λ, β ∈ Λ̂ such that

k2 = g, β2 = α, S2(h) = k (β ⇀ h ↼ β−1) k−1 ∀h ∈ H, (3.9)

then U(Dred) is ribbon.

Proof. This follows from Theorem 2.7.6 and Remark 2.7.2.
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We look for conditions on Λ for the existence of (k, β) ∈ Λ× Λ̂ satis�ng equation
(3.9). Continue in the context of example 3.1.3, let V =

⊕
i∈I kvi and suppose that

∆V
+ = {β1, . . . , βM} is �nite, following [A2, Th 3.9] we have that

{vnMβM · · · v
n1
β1
|0 ≤ nj < Nβj} (3.10)

is a basis of B(V ) where Nβ = ord(qβ) = h(vβ) for β ∈ ∆V
+. The fact that B(V ) is a

�nite-dimensional graded braided Hopf algebra implies that Υ = v
NβM−1

βM
· · · vNβ1−1

β1
∈

Il(B(V )) = Ir(B(V )) and υ = w
NβM−1

βM
· · ·wNβ1−1

β1
∈ Il(B(W )) = Ir(B(W )). Remem-

ber that B(W ) ' B(V )∗ as braided Hopf algebras.
Let λβ ∈ Λ̂ and µβ ∈ Λ such that g · vβ = λβ(g)vβ and f · wβ = f(µβ)wβ for

g ∈ Λ, f ∈ Λ̂ and β ∈ ∆V
+.

Remark 3.1.6. Let {αi}i∈I be the canonical basis of ZI. If β = pαi +mαj ∈ ∆V
+ for

i, j ∈ I then λβ = σpi σ
m
j and µβ = gpi g

m
j .

Lemma 3.1.7. γ and ` of equations (2.6) and (2.7) are given by

γ = λ
NβM−1

βM
· · ·λNβ1−1

β1
` = µ

NβM−1

βM
· · ·µNβ1−1

β1
. (3.11)

In particular, the distinguished grouplike elements of H are α = λ
−NβM+1

βM
· · ·λ−Nβ1+1

β1

and g = µ
NβM−1

βM
· · ·µNβ1−1

β1
.

Proof. Let g ∈ Λ, from the graduation of B(V ) we have that Υ = v
NβM−1

βM
· · · vNβ1−1

β1

so g·Υ = (g·vβM )NβM−1 · · · (g·vβ1)Nβ1−1 = λβM (g)NβM−1 · · ·λβ1(g)Nβ1−1Υ, this implies

that γ = λ
NβM−1

βM
· · ·λNβ1−1

β1
. In a similar way we obtain that ` = µ

NβM−1

βM
· · ·µNβ1−1

β1
.

Last part of the statement follows by Remark 2.4.5.
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Chapter 4

Unidenti�ed Nichols algebras

We now consider a matrix q = (qij)1≤i,j≤2 ∈ k2×2 such that its associated generalized

Dynkin diagram is given by (2.10), that is ◦ζ4 ζ11 •−1 where ζ ∈ G′12; here we
indicate the vertices 1, 2 by ◦, •, respectively. Let V be the associated braided vec-
tor space of diagonal type, with basis E1, E2. According to [H2] the corresponding
Nichols algebra is �nite-dimensional; this is the smallest Nichols algebra of uniden-
ti�ed type (up to Weyl equivalence) in the sense of [A3]. Recall the notation in page
12. By [A3], a consequence of [A1, A2], we know that the Nichols algebra B(V ) has
a presentation by generators E1, E2 and relations

E3
1 = E2

2 = [E11212, E12]c = 0, (4.1)

where E11212 = [E112, E12]c.
The set of positive roots is ∆V

+ = {α1, 2α1 + α2, 3α1 + 2α2, α1 + α2, α2} , and the
corresponding PBW-basis is{

Ea2
2 E

a12
12 E

a11212
11212 E

a112
112 E

a1
1 | 0 ≤ a2, a11212 ≤ 1; 0 ≤ a12 ≤ 3; 0 ≤ a112, a1 ≤ 2

}
.

(4.2)

We obtain a new PBW-basis by reordering the PBW-generators:{
Ea1

1 E
a112
112 E

a11212
11212 E

a12
12 E

a2
2 | 0 ≤ a2, a11212 ≤ 1; 0 ≤ a12 ≤ 3; 0 ≤ a112, a1 ≤ 2

}
.

(4.3)

Thus dimB(V ) = 2432 = 144 and Υ = E2E
3
12E11212E

2
112E

2
1 ∈ Il(B(V )).

18



Lemma 4.0.1. The following relations are valid in B(V )

E1E2 = E12 + q12E2E1, E1E12 = E112 + q12ζ
4E12E1,

E1E112 = q12ζ
8E112E1, E1E11212 = q2

12E11212E1 + q12ζ
7(1 + ζ)E2

112,

E1E
2
12 = E11212 + q12ζ(1 + ζ3)E12E112+ E1E

3
12 = q12ζ

10E12E11212 + q2
12ζ

5E2
12E112+

q2
12ζ

8E2
12E1, q3

12E
3
12E1,

E2
1E2 = E112 + q2

12ζ
2E12E1 + q2

12E2E
2
1 , E2

1E12 = −q2
12E112E1 + q2

12ζ
8E12E

2
1 ,

E112E2 = −q2
12E2E112 + q12ζ

8E2
12, E112E12 = E11212 + q12ζE12E112,

E112E
2
12 = −q12ζ

4(1 + ζ3)E12E11212+ E112E
3
12 = q2

12ζ
11E2

12E11212+

q2
12ζ

2E2
12E112, q3

12ζ
3E3

12E112,

E11212E12 = q12ζ
10E12E11212, E112E11212 = q12ζ

9E11212E112,

E11212E2 = q3
12E2E11212 + q2

12ζ
2(1 + ζ)E3

12, E12E2 = −q12E2E12.

Proof. It follows from the de�ning relations of B(V ) that

E12 = [E1, E2] = E1E2 + σ1(g2)E2E1,

E112 = [E1, E12] = E1E12 + σ1(g1g2)E12E1

E11212 = [E112, E12] = E112E12 + σ2
1(g1g2)σ2(g1g2)E12E112

[E2, E12] = [E12, E11212] = [E11212, E112] = [E112, E1] = 0

so, applying repeatedly Ei, i = 1, 2 to these relations we obtain all the enunciated
relations.

Remark 4.0.2. By [A1, Theorem 4.9], we also have E3
112 = E2

11212 = E4
12 = 0.

4.1 Ribbon structure

We now consider the Hopf algebra U := U(Dred) within the context of Example
3.1.3. Thus Λ is a �nite abelian group provided with g1, g2 ∈ Λ, σ1, σ2 ∈ Λ̂ such

that

(
σ1(g1) σ2(g1)
σ1(g2) σ2(g2)

)
=

(
ζ4 q12

q21 −1

)
; recall that ζ ∈ G′12. Then U ' D(H) where

H = B(V )#kΛ. We need the explicit relations in U . As in [ARS, H3, HY] we set

Ei = vi, Fi = wiσ
−1
i in U for i = 1, 2. (4.4)

Let U− (respectively U+) be the subalgebra of U generated by F1, F2 (respectively
E1, E2). Recall the notation listed in the Subsection 2.6.

Lemma 4.1.1. The following equalities hold:

F12 = q21w12σ
−1
1 σ−1

2 , F112 = ζ4q2
21w112σ

−2
1 σ−1

2 ,

F11212 = ζ5q4
21w11212σ

−3
1 σ−2

2 , [F11212, F12] = 0.
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Proof. By (4.1), w2
2 = 0 = w3

1 = [w11212, w12]c. Also gjwi = q−1
ji wigj, σjwi = q−1

ij wiσj,
1 ≤ i, j ≤ 2, hence F 2

2 = F 3
1 = 0. For the remaining equality, we �rst compute

F12 = F1F2 − q21F2F1

= w1σ
−1
1 w2σ

−1
2 − q21w2σ

−1
2 w1σ

−1
1

= w1q21w2σ
−1
1 σ−1

2 − q21w2w1σ
−1
1 σ−1

2

= q21w12σ
−1
1 σ−1

2 .

In the same way we prove that F112 = F1F12 − ζ4q21F12F1 = ζ4q2
21w112σ

−2
1 σ−1

2 and
F11212 = F112F12 − ζq21F12F112 = ζ5q4

21w11212σ
−3
1 σ−2

2 . Finally

[F11212, F12] = F11212F12 − ζ4q21F12F11212

= (ζ5q5
21w11212w12 − ζ9q5

21w12w11212)σ−4
1 σ−3

2 = 0.

Theorem 4.1.2. [ARS, Section 3.2] [H3, Proposition 5.6] The Hopf algebra U is

presented by generators g ∈ Λ, σ ∈ Λ̂, E1, E2, F1, F2 and relations for 1 ≤ i, j, k ≤ 2

E2
1 = E2

2 = [E11212, E12] = 0, gEi = χi(g)Eig, σEi = σ(gi)Eiσ,

F 2
1 = F 2

2 = [F11212, F12] = 0, gFi = χ−1
i (g)Fig, σFi = σ(g−1

i )Fiσ,

EkFi − FiEk = δki(gi − σ−1
i ), gσ = σg,

and the relations de�ning Λ, Λ̂.

Lemma 4.1.3. The following equalities hold:

F1E12 = E12F1 + q12(ζ − 1)E2σ
−1
1 , F2E12 = E12F2 + (ζ11 − 1)E1g2,

F1E112 = E112F1 + q12ζ
8(1 + ζ3)E12σ

−1
1 , F2E112 = E112F2 − (3)ζ7E

2
1g2,

F1E11212 = E11212F1 + q2
12(ζ5 − 1)E2

12σ
−1
1 , F2E11212 = E11212F2 − E112E1g2,

F1E
2
112 = E2

112F1 − q12(1 + ζ3)(E11212σ
−1
1 + F2E

2
12 = E2

12F2 + q21(1 + ζ5)E112g2−
ζ4E112E12σ

−1
1 ), (3)ζ7E12E1g2,

F1E
2
12 = E2

12F1 + q2
12(3)ζ5E2E12σ

−1
1 , F2E

2
112 = E2

112F2 + (3)ζ7ζ
4E112E

2
1g2,

F1E
3
12 = E2

12F1 + q3
12ζ

3(ζ − 1)E2E
2
12σ
−1
1 , F2E

3
12 = E3

12F2 + ζ8(1− ζ)(E2
12E1g2−

F11212E11212 = E11212F11212 + σ−3
1 σ−2

2 − g3
1g

2
2, q21ζ

3E12E112g2 + q2
21ζ

3E11212g2),

F12E2 = E2F12 + (1− ζ11)F1σ
−1
2 , F12E1 = E1F12 + q21(1− ζ)F2g1,

F12E12 = E12F12 + σ−1
1 σ−1

2 − g1g2, F12E11212 = E11212F12 + ζ11E112g1g2,

F12E112 = E112F12 + ζ3(3)ζ7E1g1g2, F112E112 = E112F112 + σ−2
1 σ−1

2 − g2
1g2,

F12E
2
112 = E2

112F12 + ζ11(3)ζ7E112E1g1g2, F112E2 = E2F112 + (ζ − 1)F 2
1 σ
−1
2 .
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Proof. Using Theorem 4.1.2 and Lemma 4.0.1, we have that

F1E12 = F1(E1E2 − q12E2E1) = F1E1E2 − q12F1E2E1

= (E1F1 − (g1 − σ−1
1 )E2 − q12E2F1E1

= E1E2F1 − q12E2g1 + q−1
21 E2σ

−1
1 − q12E2(E1F1 − (g1 − σ−1

1 )

= E1E2F1 − q12E2g1 + q−1
21 E2σ

−1
1 − q12E2E1F1 + q12E2g1 − q12E2σ

−1
1

= E12F1 + (q−1
21 − q12)E2σ

−1
1 = E12F1 + q12(ζ − 1)E1σ

−1
1 .

The other relations come from analogue computation.

By Theorem 2.7.6, U would be ribbon if and only if there exist k ∈ G(H),
β ∈ G(H∗) related to the distinguished grouplike elements αH and gH of H by
(3.9), that is

k2 = gH , β2 = αH , S2(h) = k(β ⇀ h ↼ β−1)k−1, ∀h ∈ H.

By Lemma 3.1.7, αH = σ−12
1 σ−8

2 and gH = g12
1 g

8
2, only depending on g1, g2, σ1, σ2.

So, given Γ abelian group, g1, g2 ∈ Γ and σ1, σ2 ∈ Γ̂ such that σi(gj) = qij, we
choose

β = σ−6
1 σ−4

2 , k = g6
1g

4
2

and we get β2 = σ−12
1 σ−8

2 , k2 = g12
1 g

8
2. Moreover, to verify the third equality it is

enough to check it on the generators gi, Ej: S2(gi) = gi = k(β ⇀ gi ↼ β−1)k−1 and
S2(Ei) = g−1

i Eigi = q−1
ii Ei.

Now

k(β ⇀ Ei ↼ β−1)k−1 = σi(k)β(gi)Ei = q6
1iq

4
2iq
−6
i1 q

−4
i2 Ei,

k(β ⇀ E1 ↼ β−1)k−1 = ζ8Ei = (ζ4)−1E1,

k(β ⇀ E2 ↼ β−1)k−1 = ζ6E2 = −E2.

So, by Theorem 2.7.6 U is ribbon.

Example 4.1.4. We take Λ = Z12 = 〈g2〉 and de�ne g1 = g8
2 and σ1, σ2 ∈ Λ̂ such

that

σ1(g2) = ζ11, σ2(g2) = −1; hence σ1(g1) = ζ4, σ2(g1) = 1. (4.5)

In particular ord(g1) = 3, ord(σ1) = 12, ord(σ2) = 2 and σ2 = σ6
1. It satis�es the

conditions of Example 3.1.3. In such a case, αH = ε and gH = g8
2 = g1.
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Chapter 5

Representations of U

We construct and classify the irreducible representations of the Drinfeld double of
previous section. They are quotient of Verma modules and depend on the values on
giσi, i = 1, 2.

5.1 Verma modules

We keep the setting from the previous Section; recall that Γ = Λ× Λ̂. The algebra
U has a triangular decomposition U ' U+⊗kΓ⊗U−. Let λ ∈ Γ̂ and extend it to an
algebra map kΓ ⊗ U− → k by annihilating the elements of U−; the corresponding
module is denoted by kλ. The Verma module M(λ) associated to λ is the induced
module

M(λ) = IndUkΓ⊗U−kλ ' U/
(
UF1 + UF2 +

∑
g∈Γ

U(g − λ(g))
)
. (5.1)

Let vλ be the residue class of 1 in M(λ); then 1 7→ vλ extends to an isomorphism of
U+-modules U+ 'M(λ) by using the triangular decomposition. In what follows

m(a, b, c, d, e) := Ea
2E

b
12E

c
11212E

d
112E

e
1 · vλ, n(a, b, c, d, e) := Ee

1E
d
112E

c
11212E

b
12E

a
2 · vλ

for a, b, c, d, e ∈ Z. Then m(a, b, c, d, e), n(a, b, c, d, e) 6= 0 if and only if a, c ∈
{0, 1}, b ∈ {0, 1, 2, 3}, d, e ∈ {0, 1, 2}, vλ = m(0, 0, 0, 0, 0) = n(0, 0, 0, 0, 0) and
m(a, b, c, d, e), n(a, b, c, d, e) are bases of M(λ).

Lemma 5.1.1. SetW1(λ) = span{m(a, b, c, d, e) | e 6= 0},W2(λ) = span{m(a, b, c, d, 2)},
W (λ) = span{n(1, b, c, d, e)}. Then

a) F2 ·Wi(λ) ⊆ Wi(λ),

F1 ·m(a, b, c, d, i) ∈ λ(σ−1
1 )(i)ζ4(ζ

i−8 − λ(g1σ1))m(a, b, c, d, i− 1) +Wi(λ).

b) F1 ·W (λ) ⊆ W (λ),

F2 · n(1, b, c, d, e) ∈ λ(σ−1
2 )(1− λ(g2σ2))n(0, b, c, d, e) +W (λ).
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In particular,

• W1(λ) is a U-submodule if and only if λ(g1σ1) = 1;

• W2(λ) is a U-submodule if and only if λ(g1σ1) = ζ8;

• W (λ) is a U-submodule if and only if λ(g2σ2) = 1.

Proof. It follows by direct computation.

5.2 Irreducible modules

Now we consider quotients of Verma modules as in [HY, Section 5], [RS, Section 2].
The Z2-grading on U induce a Z2-grading on M(λ) such that

M(λ)β = Uβ · vλ, β ∈ Z2.

Thus M(λ)0 = kvλ, Uβ ·M(λ)γ ⊂M(λ)β+γ for all β, γ ∈ Z2.

Remark 5.2.1. Let v ∈ M(λ) be such that Fi · v = 0 for i = 1, 2. By the triangular
decomposition of U , U · v = U+ · v. In particular, if v ∈M(λ)α, α 6= 0, then U · v is
a submodule such that U · v ∩ kvλ = 0.

The family of U -submodules of M(λ) contained in
∑

β 6=0 M(λ)β has a unique
maximal element N(λ). The highest weight module of weight λ is the quotient

L(λ) = M(λ)/N(λ).

The maximality of N(λ) guaranties that it is Z2-homogeneous, so the quotient L(λ)
inherits the Z2-grading ofM(λ). Moreover, as U is �nite-dimensional, a U -module L
is irreducible if and only if it is irreducible in the category of Z2-graded U -modules.

Remark 5.2.2. Let M be a �nite dimensional simple U -module. By [RS, Corollary
2.6] M is irreducible if and only if M ' L(λ) for some λ ∈ Γ̂.

A general diagram with the homogeneous component of a �nite dimensional
simple U -module on each rank (a, b) = aα1 + bα2 is given in B.1
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Figure 5.1:

Let A be an associative algebra, V an A-module, and φ : A → A an algebra
automorphism. Then we consider the A-module V φ, where V φ = V as vector space
and the A-action is given by a B v = φ(a) · v, v ∈ V , a ∈ A. Then W ⊂ V is an
A-submodule if and only if Wϕ ⊂ V ϕ is an A-submodule.

Example 5.2.3. There exists an algebra automorphism ϕ : U → U , such that
ϕ(Ki) = K−1

i , ϕ(Li) = L−1
i , ϕ(Ei) = FiL

−1
i , ϕ(Fi) = K−1

i Ei [H3, Proposition 4.9
(4)]. Therefore, if v ∈ V has weight λ, then v ∈ V ϕ has weight λ−1.

As application we have the following results.

Lemma 5.2.4. Let X(λ) := {x ∈ L(λ) : Eix = 0 for all i}. Then X(λ) is a one-

dimensional subspace and there exists µ ∈ Γ̂ such that X(λ) ⊂ L(λ)µ, L(λ)ϕ '
L(µ−1).

Proof. X(λ) is a non-trivial subspace since there exists β ∈ N2
0 maximal such that

L(λ)β 6= 0. Let x ∈ X(λ)β, x 6= 0, so the action of Γ is given by some µ ∈ Γ̂. Thus
there exists a U -module map π : (Ux)φ � L(µ−1), x 7→ vµ−1 . But Ux = L(λ) and π
is an isomorphism since L(λ) is irreducible. Finally, π(X(λ)) ⊆ {x ∈ L(λ) : Fix =
0 for all i} = kvλ.

24



Lemma 5.2.5. Let v ∈ V , with V a U-module, be such that Eiv = 0, i = 1, 2,
v ∈ V µ. If m(a, b, c, d, e) 6= 0 in L(µ−1) then F a

2 F
b
12F

c
11212F

d
112F

e
1 v 6= 0 in V .

Proof. Let W = Uv ⊆ V . Then Wϕ is a highet weight U -module since

Fi B v = ϕ(EiL
−1
i )B v = EiL

−1
i v = µ(L−1

i )Eiv = 0.

Thus there exists a unique U -module map π : Wϕ → L(µ−1) such that π(v) = vλ.
Now π(F a

2 F
b
12F

c
11212F

d
112F

e
1 v) is, up to a non-zero scalar,

Ea
2E

b
12E

c
11212E

d
112E

e
1π(v) = m(a, b, c, d, e) 6= 0,

so F a
2 F

b
12F

c
11212F

d
112F

e
1 v 6= 0 in V .

Remark 5.2.6. There is an analogue result for n(a, b, c, d, e).

5.3 The case dimV = 1

We consider for a moment the algebra corresponding to a braided vector space of
dimension 1. In this case the reduced datum consists of elements g ∈ Λ, σ ∈ Λ̂. Set
q = σ(g), and N ∈ N its order. The algebra U := U(Dred) is close to uq(sl2). It has
a presentation by generators g ∈ Λ, σ ∈ Λ̂, E, F with relations

EN = FN = 0, gE = χ(g)Eg, σE = σ(g)Eσ,

EF − FE = g − σ−1, hF = χ−1(h)Fh, τF = τ(g−1)Fτ,

and hτ = τh for h ∈ Λ, τ ∈ Λ̂, and the relations de�ning Λ, Λ̂. Thus

EjF − FEj = (j)qE
j−1(g − q1−jσ−1), j ∈ N. (5.2)

Lemma 5.3.1. Let λ ∈ Γ̂, n = dimL(λ).

1. If λ(gσ) = q1−j for some j ∈ {1, . . . , n− 1}, then N = j.

2. If λ(gσ) /∈ {qj|j = 0, 1, . . . , n− 2}, then n = N .

Moreover L(λ) has a basis v0, . . . , vn−1 such that

Evi = vi+1, Fvi = (i)q(q
1−iλ(σ−1

1 )− λ(g1))vi−1, hτvi = λ(hτ)σi(h)τ(gi)vi. (5.3)

Proof. Same argument as for uq(sl2).

Corollary 5.3.2. Let M be an U-module, λ ∈ Γ̂. If v ∈ Mλ − 0 satis�es Fv = 0,
then there exists n such that v, Ev, . . . , En−1v are linearly independent, where

1. either n = j if λ(gσ) = q1−j for some j ∈ {1, . . . , N − 1},

2. or else n = N − 1 if λ(gσ) /∈ {qj|j = 0, 1, . . . , n− 2}.

Moreover F iEiv = aiv for some ai ∈ k×.

Proof. Set v0 = v, vi = E · vi−1. Then vN = 0, and the submodule M ′ generated by
v is spanned by {vi}. Moreover there exists a surjective U -linear map M(λ)�M ′,
vλ 7→ v0. Therefore it induces a surjective U -linear map M ′ � L(λ).
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5.4 Irreducible modules

We use the following notation: λi = λ(giσi), i = 1, 2.

De�nition 5.4.1. We set the following subsets of Γ̂:

I1 = {λ ∈ Γ̂ | λ1 6= 1, ζ8, λ2
1λ2 6= −1, ζ10, λ3

1λ
2
2 6= −1, λ1λ2 6= ζ, ζ4, ζ7, λ2 6= 1},

I2 = {λ ∈ Γ̂ | λ1 = 1, λ2 6= 1, ζ, ζ4, ζ7, ζ3, ζ9,−1, ζ10},
I3 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 6= 1, ζ5, ζ8, ζ11, ζ3, ζ9, ζ2,−1},
I4 = {λ ∈ Γ̂ | λ2

1λ2 = −1, λ1 6= ±1, ζ8, ζ10, ζ4, ζ2},
I5 = {λ ∈ Γ̂ | λ2

1λ2 = ζ10, λ1 6= ±1, ζ8, ζ10, ζ4, ζ2},
I6 = {λ ∈ Γ̂ | λ3

1λ
2
2 = −1, λ1 6= ±1, ζ8, ζ10, ζ4, ζ2},

I7 = {λ ∈ Γ̂ | λ1λ2 = ζ, λ1 6= 1, ζ8, ζ, ζ4, ζ9},
I8 = {λ ∈ Γ̂ | λ1λ2 = ζ4, λ1 6= 1, ζ8, ζ4, ζ2,−1, ζ10},
I9 = {λ ∈ Γ̂ | λ1λ2 = ζ7, λ1 6= 1, ζ8, ζ7, ζ4, ζ11},
I10 = {λ ∈ Γ̂ | λ1 /∈ G12, λ2 = 1},

I11 = {λ ∈ Γ̂ | λ1 = 1, λ2 = ζ}, I12 = {λ ∈ Γ̂ | λ1 = 1, λ2 = ζ4},
I13 = {λ ∈ Γ̂ | λ1 = 1, λ2 = ζ7}, I14 = {λ ∈ Γ̂ | λ1 = 1, λ2 = ζ3},
I15 = {λ ∈ Γ̂ | λ1 = 1, λ2 = ζ9}, I16 = {λ ∈ Γ̂ | λ1 = 1, λ2 = −1},
I17 = {λ ∈ Γ̂ | λ1 = 1, λ2 = ζ10}, I18 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = ζ5},
I19 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = ζ8}, I20 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = ζ11},
I21 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = ζ3}, I22 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = ζ9},
I23 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = ζ2}, I24 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = −1},

I25 = {λ ∈ Γ̂ | λ1 = ζ11, λ2 = ζ8}, I26 = {λ ∈ Γ̂ | λ1 = ζ5, λ2 = ζ8},
I27 = {λ ∈ Γ̂ | λ1 = ζ4, λ2 = ζ9}, I28 = {λ ∈ Γ̂ | λ1 = ζ9, λ2 = ζ4},
I29 = {λ ∈ Γ̂ | λ1 = −1, λ2 = −1}, I30 = {λ ∈ Γ̂ | λ1 = ζ2, λ2 = ζ2},
I31 = {λ ∈ Γ̂ | λ1 = −1, λ2 = ζ10}, I32 = {λ ∈ Γ̂ | λ1 = ζ10, λ2 = −1},
I33 = {λ ∈ Γ̂ | λ1 = ζ2, λ2 = −1}, I34 = {λ ∈ Γ̂ | λ1 = ζ4, λ2 = ζ3},
I35 = {λ ∈ Γ̂ | λ1 = ζ3, λ2 = ζ4},
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I36 = {λ ∈ Γ̂ | λ1 = ζ, λ2 = 1}, I37 = {λ ∈ Γ̂ | λ1 = ζ2, λ2 = 1},
I38 = {λ ∈ Γ̂ | λ1 = ζ3, λ2 = 1}, I39 = {λ ∈ Γ̂ | λ1 = ζ4, λ2 = 1},
I40 = {λ ∈ Γ̂ | λ1 = ζ5, λ2 = 1}, I41 = {λ ∈ Γ̂ | λ1 = −1, λ2 = 1},
I42 = {λ ∈ Γ̂ | λ1 = ζ7, λ2 = 1}, I43 = {λ ∈ Γ̂ | λ1 = ζ8, λ2 = 1},
I44 = {λ ∈ Γ̂ | λ1 = ζ9, λ2 = 1}, I45 = {λ ∈ Γ̂ | λ1 = ζ10, λ2 = 1},
I46 = {λ ∈ Γ̂ | λ1 = ζ11, λ2 = 1}, I47 = {λ ∈ Γ̂ | λ1 = 1, λ2 = 1}.

Now we describe the modules L(λ) for λ on each subset as above.

Lemma 5.4.2. If λ ∈ I1, then M(λ) is simple.

Proof. This is a consequence of [HY, Proposition 5.16] since if

(ζ4λ−1
1 − ζ4)(ζ4λ−1

1 − ζ8)(ζ2λ−2
1 λ−1

2 − ζ8)(ζ2λ−2
1 λ−1

2 − ζ4)(λ−3
1 λ−2

2 + 1)

(ζ10λ−1
1 λ−1

2 − ζ9)(ζ10λ−1
1 λ−1

2 + 1)(ζ10λ−1
1 λ−1

2 − ζ3)(λ−1
2 − 1) 6= 0

then M(λ) is a simple U -module.

This comes by the generalized version of the Shapovalov determinant, introduced
by Heckenberger and Yamane for these Drinfeld doubles of Nichols algebras. This
determinant has a factorization, and the Verma module is irreducible if no one of
these factors is zero. It also helped on the work of the other cases. Cases 2-10 has
one of the factors equal to 0 and the resulting relation are explained in Remarks
5.4.5 -5.4.15, so the simple modules are self-dual and the maximal submodules of the
Verma module are cyclic. The other cases have exactly two factors equal to 0, and
we compute the results of the relations from the Remarks obtaining what elements
are null in the module and what cannot be null. This computation give us basis
to the module, but this is not always simple and easy. Therefore, we also related
the Cases 11-47, with each other in two possible ways, using a morphism between
submodules as in Lemma 5.2.5 and this provides relations between the diagrams of
the module that we explain in Appendix B. We observe that the su�cient condition
on [HY, Proposition 5.16] for the irreducibility of M(λ) is indeed necessary.

Lemma 5.4.3. If λ ∈ I2, then dimL(λ) = 48. A basis of L(λ) is given by

B2 = {m(a, b, c, d, 0)}.

Proof. De�ne L′(λ) = M(λ)/U+m(0, 0, 0, 0, 1). Notice that U+m(0, 0, 0, 0, 1) =
W1(λ) is a proper submodule of M(λ) by Lemma 5.1.1(a), and {m(a, b, c, d, 0)}
is a basis for L′(λ). We claim that L′(λ) is simple, so L(λ) = L′(λ) and we �nish
the proof. Let W be a non-zero submodule of L′(λ). Then set w ∈ W − 0, which
is a linear combination of {m(a, b, c, d, 0)}. Fix a minimal element m(a, b, c, d, 0)
with non-zero coe�cient. Here we take the lexicographical order: m(a, b, c, d, 0) <
m(a′, b′, c′, d′, 0) i� a < a′, or a = a′, b < b′, etc. Then E2−d

112 E
1−c
11212E

3−b
12 E1−a

2 w is
equal to m(1, 3, 1, 2, 0), up to a non-zero scalar, so m(1, 3, 1, 2, 0) ∈ W .
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As λ(g2σ2) 6= 1, we have that m(1, 0, 0, 0, 0) 6= 0. Now E12, F12 and g, σ spam a
subalgebra as in Subsection 5.3 and

F12m(1, 0, 0, 0, 0) = 0, g1g2σ1σ2m(1, 0, 0, 0, 0) = λ(g2σ2)ζ11m(1, 0, 0, 0, 0),

E3
12m(1, 0, 0, 0, 0) = χ3

1χ
3
2(g−1

2 )m(1, 3, 0, 0, 0).

By Corollary 5.3.2, m(1, 3, 0, 0, 0) 6= 0 since λ(g2σ2)ζ11 6= ±1, ζ3 (that is, λ(g2σ2) 6=
ζ, ζ4, ζ7). Similarly, as

F11212m(1, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2m(1, 3, 0, 0, 0) = −λ(g2σ2)2m(1, 3, 0, 0, 0),

E11212m(1, 3, 0, 0, 0) = χ3
1χ

2
2(g−3

1 g−4
2 )m(1, 3, 1, 0, 0),

and −λ(g2σ2)2 6= 1 (since λ(g2σ2) 6= ζ3, ζ9), we have that m(1, 3, 1, 0, 0) 6= 0. Again,
as

F112m(1, 3, 1, 0, 0) = 0, g2
1g2σ

2
1σ2m(1, 3, 1, 0, 0) = −λ(g2σ2)m(1, 3, 1, 0, 0),

E2
112m(1, 3, 1, 0, 0) = χ4

1χ
2
2(g−6

1 g−6
2 )m(1, 3, 1, 2, 0),

and −λ(g2σ2) 6= 1, ζ4 (since λ(g2σ2) 6= −1, ζ10), we have that m(1, 3, 1, 2, 0) 6= 0.
Moreover Corollary 5.3.2 also implies that F2F

3
12F11212F

3
112m(1, 3, 1, 2, 0) is vλ, up

to a non-zero scalar. Therefore vλ ∈ W , so W = L′(λ) and L′(λ) is irreducible.

Lemma 5.4.4. If λ ∈ I3, then dimL(λ) = 96. A basis of L(λ) is given by

B3 = {m(a, b, c, d, e)|e = 0, 1}.

Proof. De�ne L′(λ) = M(λ)/U+m(0, 0, 0, 0, 2), so {m(a, b, c, d, e)|e = 0, 1} is a basis
for L′(λ). We claim that L′(λ) is simple. Let W be a non-zero submodule of L′(λ);
we have that m(1, 3, 1, 2, 1) ∈ W .

We apply now Corollary 5.3.2 repeatedly. Firstm(1, 0, 0, 0, 0) 6= 0, since λ(g2σ2) 6=
1. Now E12, F12 and g, σ spam a subalgebra as in Subsection 5.3 and

F12m(1, 0, 0, 0, 0) = 0, g1g2σ1σ2m(1, 0, 0, 0, 0) = λ(g2σ2)ζ7m(1, 0, 0, 0, 0),

E3
12m(1, 0, 0, 0, 0) = χ3

1χ
3
2(g−1

2 )m(1, 3, 0, 0, 0).

Then m(1, 3, 0, 0, 0) 6= 0 since λ(g2σ2)ζ7 6= ±1, ζ3 (that is, λ(g2σ2) 6= ζ5, ζ8, ζ11). As

F11212m(1, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2m(1, 3, 0, 0, 0) = −λ(g2σ2)2m(1, 3, 0, 0, 0),

E11212m(1, 3, 0, 0, 0) = χ3
1χ

2
2(g−3

1 g−4
2 )m(1, 3, 1, 0, 0),

and −λ(g2σ2)2 6= 1 (since λ(g2σ2) 6= ζ3, ζ9), we have that m(1, 3, 1, 0, 0) 6= 0. Again,
as

F112m(1, 3, 1, 0, 0) = 0, g2
1g2σ

2
1σ2m(1, 3, 1, 0, 0) = ζ10λ(g2σ2)m(1, 3, 1, 0, 0),

E2
112m(1, 3, 1, 0, 0) = χ4

1χ
2
2(g−6

1 g−6
2 )m(1, 3, 1, 2, 0),
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and ζ10λ(g2σ2) 6= 1, ζ4 (since λ(g2σ2) 6= ζ2,−1), we have that m(1, 3, 1, 2, 0) 6= 0. Fi-
nally F1m(1, 3, 1, 2, 0) = 0, g1σ1m(1, 3, 1, 2, 0) = ζ8m(1, 3, 1, 2, 0), som(1, 3, 1, 2, 1) 6=
0. Moreover Corollary 5.3.2 also implies that F2F

3
12F11212F

2
112F1m(1, 3, 1, 2, 1) is vλ,

up to a non-zero scalar. Therefore vλ ∈ W , so W = L′(λ) and L′(λ) is irre-
ducible.

Remark 5.4.5. Set w = m(0, 0, 0, 1, 2), if λ2
1λ2 = −1, then F1w = F2w = 0.

Proof. According to the Lemma 4.1.3, F112E112 = E112F112 + σ−2
1 σ−1

2 − g2
1g2, so

F112E112E
2
1vλ = (σ−2

1 σ−1
2 − g2

1g2)E2
1vλ = λ(σ−2

1 σ−1
2 )q2

21ζ
4(λ2

1λ2 + 1)E2
1vλ.

As M(λ)4α1 = M(λ)3α1 = 0, we have that F2E112E
2
1vλ = F1E112E

2
1vλ = 0, so

0 = F112E112E
2
1vλ = ζ8q2

12F2F
2
1E112E

2
1vλ.

Lemma 5.4.6. If λ ∈ I4, then dimL(λ) = 48. A basis of L(λ) is given by

B4 = {m(a, b, c, 0, e)}.

Proof. Let w = F 2
1E112E

2
1vλ. Explicitly,

w = (ζ8 − λ1)(1− λ1)E112vλ +
q2

21ζ
2(3)ζ
2

E2E
2
1vλ −

q21ζ
8(ζ8 − λ1)(1 + ζ3)

2
E12E1vλ.

By Remark 5.4.5 w generates a proper submodule. Let L′(λ) = M(λ)/Uw: we claim
that it is irreducible. Note that kE2−e

1 E1−c
11212E

3−b
12 E1−a

2 m(a, b, c, 0, e) = km(1, 3, 1, 0, 2),
Eim(1, 3, 1, 0, 2) = 0, i = 1, 2, and then {m(a, b, c, 0, e)} is a basis of L′(λ). From
the hypothesis on λ1, λ2 and

F12n(1, 0, 0, 0, 0) = 0, g1g2σ1σ2n(1, 0, 0, 0, 0) = ζ5λ−1
1 n(1, 0, 0, 0, 0),

F11212n(1, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(1, 3, 0, 0, 0) = −λ−1

1 n(1, 3, 0, 0, 0),

F1n(1, 3, 1, 0, 0) = 0, g1σ1n(1, 3, 1, 0, 0) = −λ1n(1, 3, 1, 0, 0),

we deduce successively that n(1, 3, 0, 0, 0) 6= 0, n(1, 3, 1, 0, 0) 6= 0, n(1, 3, 1, 0, 2) 6= 0,
using Corollary 5.3.2.

Notice that km(1, 3, 1, 0, 2) = kn(1, 3, 1, 0, 2), so m(1, 3, 1, 0, 2) 6= 0 and there
exists F ∈ U such that Fm(1, 3, 1, 0, 2) = vλ. Then we argue as in previous Lemmas
and the claim follows.

Remark 5.4.7. Set w = m(0, 0, 0, 2, 2), if λ2
1λ2 = ζ10, then F1w = F2w = 0.

Proof.

F112E
2
112E

2
1vλ = λ(σ−2

1 σ−1
2 )q2

21ζ
8(λ2

1λ2 − ζ10)E2
1vλ.

As M(λ)6α1+α2 = M(λ)5α1+α2 = 0, we have that F2E
2
112E

2
1vλ = F2F1E

2
112E

2
1vλ = 0,

so

0 = F112E
2
112E

2
1vλ = ζ8q2

12F2F
2
1E

2
112E

2
1vλ.
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Lemma 5.4.8. If λ ∈ I5, then dimL(λ) = 96. A basis of L(λ) is given by

B5 = {m(a, b, c, d, e)|d 6= 2}.

Proof. Let w = F 2
1E

2
112E

2
1vλ. Explicitly,

w = m(0, 0, 0, 2, 0)− q3
12ζ

8(1 + ζ3)

(1− λ1)(ζ8 − λ1)
n(0, 2, 0, 0, 2)− q2

12ζ
5(1 + ζ3)

1− λ1

n(0, 1, 0, 1, 1)

+
q12ζ

2(1 + ζ3)

1− λ1

n(0, 0, 1, 0, 1)−
q3

12ζ
4(3)ζ7

(1− λ1)(ζ8 − λ1)
n(1, 0, 0, 1, 2).

By Remark 5.4.7 Uw is a proper submodule. Let L′(λ) = M(λ)/Uw: we claim that it
is irreducible. Note that kE2−e

1 E1−d
112 E

1−c
11212E

3−b
12 E1−a

2 m(a, b, c, d, e) = km(1, 3, 1, 1, 2),
Ein(1, 3, 1, 1, 2) = 0, i = 1, 2, and then {m(a, b, c, d, e)|d 6= 2} is a basis of L′(λ).
From the hypothesis on λ1, λ2 and

F12n(1, 0, 0, 0, 0) = 0, g1g2σ1σ2n(1, 0, 0, 0, 0) = ζ9λ−1
1 n(1, 0, 0, 0, 0),

F11212n(1, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(1, 3, 0, 0, 0) = ζ2λ−1

1 n(1, 3, 0, 0, 0),

F112n(1, 3, 1, 0, 0) = 0, g2
1g2σ

2
1σ2n(1, 3, 1, 0, 0) = ζ4n(1, 3, 1, 0, 0),

F1n(1, 3, 1, 1, 0) = 0, g1σ1n(1, 3, 1, 1, 0) = ζ9λ1n(1, 3, 1, 1, 0),

we deduce successively that n(1, 3, 0, 0, 0) 6= 0, n(1, 3, 1, 0, 0) 6= 0, n(1, 3, 1, 1, 0) 6= 0,
n(1, 3, 1, 1, 2) 6= 0, using Corollary 5.3.2.

Notice that km(1, 3, 1, 1, 2) = kn(1, 3, 1, 1, 2), so m(1, 3, 1, 1, 2) 6= 0 and there
exists F ∈ U such that Fm(1, 3, 1, 1, 2) = vλ. Then we argue as in previous Lemmas
and the claim follows.

Remark 5.4.9. Notice that F2w = F12w = 0 since U9α1+3α2 = U8α1+3α2 = 0. As

F2F
2
1F

2
112 = q4

12ζ
4F1F112F11212 + q4

12ζ
8F1F

2
112F12 + q3

12ζ
7F 2

1F112F
2
12 + q4

12ζ
4F 2

1F
2
112F2,

we have that

λ(σ6
1σ

3
2)F2w = λ(σ6

1σ
3
2)q4

12ζ
4F1F112F11212E11212E

2
112E

2
1vλ

= q4
21(1 + λ3

1λ
2
2)(ζ10 − λ2

1λ2)
(
q12ζ

2(1 + ζ3)E12E
2
1vλ + (1− ζ4λ1)E112E1vλ

)
= 0,

so F2w = 0. As F 3
1 = 0, we have that F1w = 0.

Thus w = F 2
1F

2
112E11212E

2
112E

2
1vλ satis�es that F2w = 0, F1w = 0 if λ3

1λ
2
2 = −1.

Lemma 5.4.10. If λ ∈ I6, then dimL(λ) = 72. A basis of L(λ) is given by

B6 = {m(a, b, 0, d, e)}.

Proof. Set w as in Remark 5.4.9, so it generates a proper submodule. Let L′(λ) =
M(λ)/Uw: we claim that it is irreducible.
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Notice that L′(λ) is spanned by {m(a, b, 0, d, e)}, Eim(1, 3, 0, 2, 2) = 0, i = 1, 2,
and kE2−e

1 E2−d
112 E

3−b
12 E1−a

2 m(a, b, c, d, e) = km(1, 3, 0, 2, 2). From the hypothesis on
λ1, λ2 and

F12m(1, 0, 0, 0, 0) = 0, g1g2σ1σ2m(1, 0, 0, 0, 0) = ζ11λ1λ2m(1, 0, 0, 0, 0),

F112m(1, 3, 0, 0, 0) = 0, g2
1g2σ

2
1σ2m(1, 3, 0, 0, 0) = ζλ2

1λ2m(1, 3, 0, 0, 0),

F1m(1, 3, 0, 2, 0) = 0, g1σ1m(1, 3, 0, 2, 0) = ζ2λ1m(1, 3, 0, 2, 0),

we deduce successively that m(1, 3, 0, 0, 0) 6= 0, m(1, 3, 0, 2, 0) 6= 0, m(1, 3, 0, 2, 2) 6=
0, using Corollary 5.3.2. Moreover there exists F ∈ U such that Fm(1, 3, 0, 2, 2) =
vλ. Then we argue as in previous Lemmas and the claim follows.

Remark 5.4.11. Set w = n(1, 1, 0, 0, 0), if λ1λ2 = ζ, then F1w = F2w = 0.

Proof.

F12E2E12vλ = λ(σ−1
1 σ−1

2 )q12(λ1λ2 − ζ)E2vλ.

As M(λ)2α2 = 0, we have that F1E2E12vλ = 0, so

F12E2E12vλ = F1F2E2E12vλ.

Lemma 5.4.12. If λ ∈ I7, then dimL(λ) = 36. A basis of L(λ) is given by

B7 = {n(a, 0, c, d, e)}.

Proof. Let w = F2E2E12vλ = (λ−1
2 − 1)E12 − (ζ11 − 1)E1E2. By Remark 5.4.11,

Uw ( M(λ). Let L′(λ) = M(λ)/Uw: we claim that it is irreducible. First no-
tice that {n(a, 0, c, d, e)} is a basis of L′(λ), Ein(1, 0, 1, 2, 2) = 0, i = 1, 2, and
kE2−e

1 E2−d
112 E

1−c
11212E

1−a
2 n(a, 0, c, d, e) = kn(1, 0, 1, 2, 2). Moreover

F112m(0, 0, 0, 0, 2) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 2) = ζ7λ1m(0, 0, 0, 0, 2),

F11212m(0, 0, 0, 2, 2) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 2) = ζ8λ1m(0, 0, 0, 2, 2),

F2m(0, 0, 1, 2, 2) = 0, g2σ2m(0, 0, 1, 2, 2) = ζ3λ2m(0, 0, 1, 2, 2),

so successively we prove thatm(0, 0, 0, 2, 2) 6= 0, m(0, 0, 1, 2, 2) 6= 0, m(1, 0, 1, 2, 2) 6=
0, using Corollary 5.3.2.

Notice that km(1, 0, 1, 2, 2) = kn(1, 0, 1, 2, 2), so n(1, 0, 1, 2, 2) 6= 0 and there
exists F ∈ U such that Fn(1, 0, 1, 2, 2) = vλ. Then we argue as in previous Lemmas
and the claim follows.

Remark 5.4.13. Set w = n(1, 2, 0, 0, 0), if λ1λ2 = ζ4, then F1w = F2w = 0.
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Proof.

F12E2E
2
12vλ = (2)ζ9λ(σ−1

1 σ−1
2 )q12(λ1λ2 − ζ4)E2E12vλ.

As M(λ)α1+3α2 = 0, we have that F1E2E
2
12vλ = 0, so

F12E2E
2
12vλ = F1F2E2E

2
12vλ.

Lemma 5.4.14. If λ ∈ I8, then dimL(λ) = 72. A basis of L(λ) is given by

B8 = {n(a, b, c, d, e)|b ≤ 1}.

Proof. Let w = F2E2E
2
12vλ. Explicitly,

w =(λ−1
2 − 1)E2

12 − q21ζ
2(1− ζ)E112E2 + q21ζ

3(3)ζ7E1E12E2.

By Remark 5.4.13, Uw ( M(λ). Let L′(λ) = M(λ)/Uw: we claim that it is
irreducible. First notice that {n(a, b, c, d, e)|b = 0, 1} is a basis of L′(λ).

Then Ein(1, 0, 1, 2, 2) = 0, i = 1, 2, and kE2−e
1 E2−d

112 E
1−c
11212E

1−b
12 E1−a

2 n(a, b, c, d, e) =
kn(1, 1, 1, 2, 2). From the hypothesis on λ1, λ2 and

F112m(0, 0, 0, 0, 2) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 2) = ζ10λ1m(0, 0, 0, 0, 2),

F11212m(0, 0, 0, 2, 2) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 2) = ζ2λ1m(0, 0, 0, 2, 2),

F12m(0, 0, 1, 2, 2) = 0, g1g2σ1σ2m(0, 0, 1, 2, 2) = ζ3m(0, 0, 1, 2, 2),

F2m(0, 1, 1, 2, 2) = 0, g2σ2m(0, 1, 1, 2, 2) = ζ2λ2m(0, 1, 1, 2, 2),

we deduce successively that m(0, 0, 0, 2, 2) 6= 0, m(0, 0, 1, 2, 2) 6= 0, m(0, 1, 1, 2, 2) 6=
0, and �nally m(1, 1, 1, 2, 2) 6= 0, using Corollary 5.3.2.

Notice that km(1, 1, 1, 2, 2) = kn(1, 1, 1, 2, 2), so n(1, 1, 1, 2, 2) 6= 0 and there
exists F ∈ U such that Fn(1, 1, 1, 2, 2) = vλ. Then we argue as in previous Lemmas
and the claim follows.

Remark 5.4.15. Set w = n(1, 3, 0, 0, 0), if λ1λ2 = ζ7, then F1w = F2w = 0.

Proof.

F12E2E
3
12vλ = (3)ζ9λ(σ−1

1 σ−1
2 )q12(λ1λ2 − ζ7)E2E

2
12vλ.

As M(λ)2α1+4α2 = 0, we have that F1E2E
3
12vλ = 0, so

F12E2E
3
12vλ = F1F2E2E

3
12vλ.

Lemma 5.4.16. If λ ∈ I9, then dimL(λ) = 108. A basis of L(λ) is given by

B9 = {n(a, b, c, d, e)|b 6= 3}.
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Proof. Let w = F2E2E
3
12vλ. Explicitly,

w =(λ−1
2 − 1)E3

12 − q2
21ζ

2(1− ζ)E1E
2
12E2 − q2

21(ζ11 − 1)E112E12E2

+ q2
21ζ

2(1− ζ)E11212E2.

By Remark 5.4.15, Uw ( M(λ). Let L′(λ) = M(λ)/Uw: we claim that it is
irreducible. Note that kE2−e

1 E2−d
112 E

1−c
11212E

2−b
12 E1−a

2 n(a, b, c, d, e) = kn(1, 2, 1, 2, 2),
Ein(1, 2, 1, 2, 2) = 0, i = 1, 2, and then {n(a, b, c, d, e)|b 6= 3} is a basis of L′(λ).
From the hypothesis on λ1, λ2 and

F112m(0, 0, 0, 0, 2) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 2) = ζλ1m(0, 0, 0, 0, 2),

F11212m(0, 0, 0, 2, 2) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 2) = ζ8λ1m(0, 0, 0, 2, 2),

F12m(0, 0, 1, 2, 2) = 0, g1g2σ1σ2m(0, 0, 1, 2, 2) = −m(0, 0, 1, 2, 2),

F2m(0, 2, 1, 2, 2) = 0, g2σ2m(0, 2, 1, 2, 2) = ζλ2m(0, 2, 1, 2, 2),

we deduce successively that m(0, 0, 0, 2, 2) 6= 0, m(0, 0, 1, 2, 2) 6= 0, m(0, 2, 1, 2, 2) 6=
0, and �nally m(1, 2, 1, 2, 2) 6= 0, using Corollary 5.3.2.

Notice that km(1, 2, 1, 2, 2) = kn(1, 2, 1, 2, 2), so n(1, 2, 1, 2, 2) 6= 0 and there
exists F ∈ U such that Fn(1, 2, 1, 2, 2) = vλ. Then we argue as in previous Lemmas
and the claim follows.

Lemma 5.4.17. If λ ∈ I10, then dimL(λ) = 72. A basis of L(λ) is given by

B10 = {n(0, b, c, d, e)}.

Proof. Note that W (λ) = U+n(1, 0, 0, 0, 0) is a proper submodule of M(λ) by
Lemma 5.1.1(b). De�ne L′(λ) = M(λ)/W (λ). Then {n(0, b, c, d, e)} is a ba-
sis for L′(λ). We claim that L′(λ) is simple, so L(λ) = L′(λ) and we �nish the
proof. Let W be a non-zero submodule of L′(λ); we may assume it is Z2-graded.
Then set w ∈ W − 0, which is a linear combination of {n(0, b, c, d, e)}'s. Fix a
minimal element n(0, b, c, d, e) with non-zero coe�cient. Here we take the lexico-
graphical order: n(0, b, c, d, e) < n(0, b′, c′, d′, e′) i� e < e′, or e = e′, d < d′, etc.
Then E3−b

12 E1−c
11212E

2−d
112 E

2−e
1 w is equal to n(0, 3, 1, 2, 2), up to a non-zero scalar, so

n(0, 3, 1, 2, 2) ∈ W . From the hypothesis on λ1, λ2 and

F112n(0, 0, 0, 0, 2) = 0, g2
1g2σ

2
1σ2n(0, 0, 0, 0, 2) = −λ(g1σ1)2n(0, 0, 0, 0, 2),

F11212n(0, 0, 0, 2, 2) = 0, g3
1g

2
2σ

3
1σ

2
2n(0, 0, 0, 2, 2) = −λ(g1σ1)3n(0, 0, 0, 2, 2),

F12n(0, 0, 1, 2, 2) = 0, g1g2σ1σ2n(0, 0, 1, 2, 2) = λ(g1σ1)ζ11n(0, 0, 1, 2, 2),

we deduce successively that m(0, 0, 0, 2, 2) 6= 0, m(0, 0, 1, 2, 2) 6= 0, m(0, 3, 1, 2, 2) 6=
0 by Corollary 5.3.2, and there exists F ∈ U such that Fn(1, 2, 1, 2, 2) = vλ. Then
we argue as in previous Lemmas and the claim follows.

In some of next Lemmas we will describe explicitly the action of U on a �xed
basis. Elements vi,j are homogeneous of degree iα1 + jα2.
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Lemma 5.4.18. If λ ∈ I11, then dimL(λ) = 11. A basis of L(λ) is given by

B11 = {m(a, b, 0, d, 0)|b ≤ 1} − {m(1, 1, 0, 0, 0)}.

The action of Ei, Fi, i = 1, 2 is described in Table A.1.

Proof. Um(0, 0, 0, 0, 1) = W1(λ) is a U -submodule by Lemma 5.1.1(a) 1. We claim
that L′(λ) = M(λ)/(Um(1, 1, 0, 0, 0) +W1(λ)) is simple. Note that

F1m(1, 1, 0, 0, 0) = 0, F2m(1, 1, 0, 0, 0) = (ζ11 − 1)λ(g2)m(1, 0, 0, 0, 1) ∈ W1(λ).

From here we have that Um(1, 1, 0, 0, 0) + W1(λ) ⊆
∑

β 6=0M(λ)β by Remark 5.2.1,
and therefore Um(1, 1, 0, 0, 0) + W1(λ) ⊆ N(λ). The canonical projection M(λ) �
L(λ) induces a surjective map L′(λ) � L(λ) of U -modules, but if L′(λ) is simple,
then this projection has a trivial kernel. Set the following elements of L′(λ):

v0,0 = m(0, 0, 0, 0, 0), v0,1 = m(1, 0, 0, 0, 0), v1,1 = m(0, 1, 0, 0, 0),

v2,1 = m(0, 0, 0, 1, 0), v2,2 = m(1, 0, 0, 1, 0), v3,2 = m(0, 1, 0, 1, 0),

v4,2 = m(0, 0, 0, 2, 0), v3,3 = m(1, 1, 0, 1, 0), v4,3 = m(1, 0, 0, 2, 0),

v5,3 = m(0, 1, 0, 2, 0), v5,4 = m(1, 1, 0, 2, 0).

Notice that vi,j ∈ L′(λ)iα1+jα2 . Those vectors satisfy the relations in Table A.1 by
direct computation. The formulae prove that the quotient is spanned by these 11
vectors since they are obtained by applying repeatedly E1, E2 over vλ = v0,0 and
E1v5,4 = E2v5,4 = 0.

From Table A.1 there exist elements Ei,j ∈ U+
(5−i)α1+(4−j)α2

, F5,4 ∈ U−−5α1−4α2
such

that Ei,jvi,j = v5,4, F5,4v5,4 = vλ. Assume now that V is non-zero submodule of
L′(λ). Then take v ∈ V , v 6= 0. As L′(λ) is spanned by the vectors vi,j (in fact, this
set of vectors is a basis), there exists E ∈ U+ such that Ev = v5,4. But Uv5,4 = L′(λ)
since vλ ∈ Uv5,4. Then V = L′(λ) and L′(λ) is irreducible.

Lemma 5.4.19. If λ ∈ I12, then dimL(λ) = 11. A basis of L(λ) is given by

B12 = {m(a, b, 0, d, 0) : b, d ≤ 1} ∪ {m(0, 1, 1, 0, 0),m(1, 0, 1, 1, 0),m(0, 0, 1, 1, 0)}.

The action of Ei, Fi, i = 1, 2 is described in Table A.2.

Proof. Again Um(0, 0, 0, 0, 1) = W1(λ) is a U -submodule by Lemma 5.1.1(a). By
Remark 5.4.13 w = F2E2E

2
12vλ satis�es the equations F1w = F2w = 0, so Uw +

W1(λ) is a proper submodule of M(λ) by Remark 5.2.1. We claim that L′(λ) =
M(λ)/Uw+W1(λ); it is enough to prove that L′(λ) is simple. We label the elements
of B12 as follows:

v0,0 = m(0, 0, 0, 0, 0), v0,1 = m(1, 0, 0, 0, 0), v1,1 = m(0, 1, 0, 0, 0),

v2,1 = m(0, 0, 0, 1, 0), v2,2 = m(1, 0, 0, 1, 0), v1,2 = m(1, 1, 0, 0, 0),

v3,2 = m(0, 1, 0, 1, 0), v3,3 = m(1, 1, 0, 1, 0), v4,3 = m(0, 1, 1, 0, 0),

v5,3 = m(0, 0, 1, 1, 0), v5,4 = m(1, 0, 1, 1, 0).

1Here λ1λ2 = ζ, but the relation in Remark 5.4.11 becomes trivial.
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Those vectors satisfy the relations in the Table A.2 by direct computation. We claim
that B12 is a basis of L′(λ). Applying repeatedly E1, E2 over w we obtain

m(0, 2, 0, 0, 0) = q12ζ
4(1− ζ)m(1, 0, 0, 1, 0), m(0, 1, 0, 1, 0) = ζ10q21m(0, 0, 1, 0, 0),

m(0, 2, 1, 0, 0) = ζ11q2
12(1 + ζ2)m(1, 0, 1, 1, 0), m(0, 0, 0, 2, 0) = m(1, 1, 1, 0, 0) = 0.

Notice thatm(a, b, c, 2, 0) = m(a, b+ 1, 1, 1, 0) = 0 for all a, b, c, sincem(0, 1, 1, 0, 0) =
m(0, 0, 0, 2, 0) = 0. As also 0 = m(1, 2, 1, 0, 0) = m(1, 2, 0, 1, 0) = m(0, 3, 1, 0, 0), we
conclude that L′(λ) is spanned by B12.

By Corollary 5.3.2 we have that m(1, 0, 1, 1, 0), m(0, 0, 1, 1, 0), m(0, 0, 0, 1, 0) 6= 0,
since

F112m(0, 0, 0, 0, 0) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 0) = ζ4m(0, 0, 0, 0, 0),

F11212m(0, 0, 0, 1, 0) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 1, 0) = ζm(0, 0, 0, 1, 0)

F2m(0, 0, 1, 1, 0) = 0, g2σ2m(0, 0, 1, 1, 0) = ζ11m(0, 0, 1, 1, 0).

Moreover there exists F ∈ U− such that Fm(1, 0, 1, 1, 0) = vλ.
Also, Eim(1, 0, 1, 1, 0) = 0, i = 1, 2. Indeed, the case i = 1 follows from the

previous relations, and the case i = 2 is direct.
Now suppose that B is not linearly independent. Fix a non-trivial linear combi-

nation S which is zero. Between the elements of minimal N0-degree with non-trivial
coe�cient, take the element m = m(a, b, c, d, 0) minimal for the lexicographical or-
der. If b = 0, then E1−a

2 E1−c
11212E

1−d
112 m gives m(1, 0, 1, 1, 0) up to a non-zero scalar.

If b = 1, then E1−a
2 E1−c

11212E1m is also m(1, 0, 1, 1, 0) up to a non-zero scalar. By the
minimality of m, we have that ES = m(1, 0, 1, 1, 0) up to a non-zero scalar, where E
is either E1−a

2 E1−c
11212E

1−d
112 or else E1−a

2 E1−c
11212E1, which is a contradiction. Therefore

B is a basis of L′(λ).
Let W be a non-zero submodule of L′(λ), w ∈ W − 0. By a similar argument

there exists E ∈ U+ such that Ew = m(1, 0, 1, 1, 0), so m(1, 0, 1, 1, 0) ∈ W , but then
vλ ∈ W , so W = L′(λ) and L′(λ) is irreducible.

Lemma 5.4.20. If λ ∈ I13, then dimL(λ) = 23. A basis of L(λ) is given by

B13 = {m(a, b, 0, d, 0)|b ≤ 2} ∪ {m(a, 0, 1, 0, 0),m(0, 3, 0, d, 0),m(1, 3, 0, 1, 0)|d ≥ 1}.

Proof. W1(λ) is a is a U -submodule by Lemma 5.1.1(a). Also w = F2E2E
3
12vλ

satis�es F1w = F2w = 0 by Remark 4.22, so w generates a proper submodule of
M(λ) by Remark 5.2.1. We have that N(λ) = Uw+W1(λ) and L′(λ) = M(λ)/(Uw+
W1(λ)) is simple and B13 is a basis of L′(λ).

Consider W = M(λ)/W1(λ) and v = m(1, 3, 1, 2, 0) then Eiv = 0, i = 1, 2,
g1σ1v = v and g2σ2v = ζ9v, so, using Lemma 5.2.4, (Uv)ϕ projects over a sim-
ple module L(µ) with µ corresponding to Case 14; in particular there exists F ∈
U−7α1−5α2 such that Fv 6= 0. Also g1σ1w = ζ9w, g2σ2w = ζ4w, so, using Lemma
5.2.4, Uw projects over a simple module L(ν) with ν as in case 28. In particular
there exists E ∈ U7α1+5α2 such that Ew 6= 0, so we may assume that Ew = v since
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W10α1+8α2 = kv. Thus Uv ⊆ Uw, and then Fv ∈ (Uv)3α1+3α2 ⊆ (Uw)3α1+3α2 = kw.
As Fv 6= 0, we conclude that Uv = Uw. For any v′ ∈ W , v′ 6= 0, there ex-
ists E ′ ∈ U such that E ′v′ = v. Thus we conclude that Uw is simple, and then
dimL′(λ) = 48− 25 = 23.

From w and applying repeatedly E1, E2 over w we obtain

m(0, 3, 0, 0, 0) =
q2

12ζ
5(4)ζ7

3
m(1, 1, 0, 1, 0) +

q12ζ(1 + ζ2)(3)ζ5

3
m(1, 0, 1, 0, 0),

m(0, 1, 1, 0, 0) = q12(1 + ζ3)m(0, 2, 0, 1, 0) + q2
12m(1, 0, 0, 2, 0),

m(0, 0, 1, 1, 0) = q12ζ
7(1 + ζ2)m(0, 1, 0, 2, 0),

m(0, 2, 1, 0, 0) = q3
12ζ

10(1− ζ)m(1, 1, 0, 2, 0),

m(0, 3, 1, 0, 0) = ζ4q4
12(1− ζ)m(1, 2, 0, 2, 0),

m(0, 2, 1, 1, 0) = q12ζ
7(1 + ζ2)m(0, 3, 0, 2, 0).

Now we apply Corollary 5.3.2 to prove that m(0, 3, 0, 2, 0), m(0, 0, 0, 2, 0) 6= 0,
since

F112m(0, 0, 0, 0, 0) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 0) = ζ7m(0, 0, 0, 0, 0),

F12m(0, 0, 0, 2, 0) = 0, g1g2σ1σ2m(0, 0, 0, 2, 0) = ζ9m(0, 0, 0, 2, 0).

Moreover there exists F ∈ U− such that Fm(0, 3, 0, 2, 0) = vλ. Note that

E2m(0, 3, 0, 2, 0) = m(1, 3, 0, 2, 0) = 0

since 0 = E12m(0, 3, 1, 0, 0) and km(1, 2, 1, 1, 0) = km(1, 3, 0, 2, 0).
Also E1m(0, 3, 0, 2, 0) is a non-zero scalar multiple of m(0, 1, 1, 2, 0) = 0 since

0 = m(0, 0, 1, 2, 0). Using this fact and the previous relations, B13 spans L′(λ), but
as B13 has 23 elements, it is a basis.

Let W be a non-zero submodule of L′(λ), w ∈ W − 0. Arguing as in previous
cases, there exists E ∈ U+ such that Ew = m(0, 3, 0, 2, 0), so m(0, 3, 0, 2, 0) ∈ W ,
but then vλ ∈ W , so W = L′(λ); and L′(λ) is irreducible.

Lemma 5.4.21. If λ ∈ I14, then dimL(λ) = 25. A basis of L(λ) is given by

B14 = {m(a, b, 0, d, 0)} ∪ {m(0, 0, 1, 0, 0),m(0, 0, 1, 2, 0)} − {m(1, 3, 0, 2, 0)}.

Proof. W1(λ) is a submodule of M(λ) by Lemma 5.1.1(a) 2. Notice that

w = (1 + ζ3)m(1, 0, 1, 0, 0) + q12ζ
3(1 + ζ)m(1, 1, 0, 1, 0)

satis�es the equations F1w = F2w = 0 by direct computation, so w generates a
proper submodule of M(λ) by Remark 5.2.1. We claim that L′(λ) = M(λ)/Uw +
W1(λ) is simple.

2Here λ3
1λ

2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.
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Applying repeatedly E1, E2 over w we obtain

m(0, 1, 1, 0, 0) =
q2

12(1− ζ3)ζ2

2
m(1, 0, 0, 2, 0) +

q12ζ
7(3)ζ
2

m(0, 2, 0, 1, 0),

m(0, 0, 1, 1, 0) = q12ζm(0, 1, 0, 2, 0),

m(1, 2, 1, 0, 0) = q12ζ
7(3)ζm(0, 2, 0, 2, 0),

m(1, 0, 1, 2, 0) = ζq21m(0, 3, 0, 2, 0),

m(1, 3, 1, 0, 0) = m(0, 1, 1, 2, 0) = m(0, 3, 1, 1, 0) = 0.

These relations imply that L′(λ) is spanned by B14. Now we apply Corollary 5.3.2
to prove that m(1, 0, 1, 2, 0) 6= 0, since

F112m(0, 0, 0, 0, 0) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 0) = ζ3m(0, 0, 0, 0, 0),

F11212m(0, 0, 0, 2, 0) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 0) = ζ4m(0, 0, 0, 2, 0),

F2m(0, 0, 1, 2, 0) = 0, g2σ2m(0, 0, 1, 2, 0) = ζ8m(0, 0, 1, 2, 0).

Moreover there exists F ∈ U− such that Fm(1, 0, 1, 2, 0) = vλ.
Now E2m(1, 0, 1, 2, 0) = 0, and E1m(1, 0, 1, 2, 0) is a non-zero scalar multiple of

m(0, 1, 1, 2, 0) = 0.
Suppose that B14 is not linearly independent. Fix a non-trivial linear combi-

nation S which is zero. Between the elements of minimal N0-degree with non-
trivial coe�cient, take the element m = m(a, b, c, d, 0) minimal for the lexicograph-
ical order; we may assume that m has coe�cient 1. If a = 1, then b 6= 3 and
E2−b

12 E2−d
112 E1m gives m(0, 3, 0, 2, 0) up to a non-zero scalar. If a = c = 0, then

E3−b
12 E2−d

112 m gives m(0, 3, 0, 2, 0) up to a non-zero scalar. If a = 0, c = 1, E2E
2−d
112 m

gives m(1, 0, 1, 2, 0) up to a non-zero scalar. In any case we obtain m(1, 0, 1, 2, 0) up
to a non-zero scalar, using the relation above. In any case there exists E ∈ U such
that 0 = ES = m(1, 0, 1, 2, 0), which is a contradiction. Therefore B14 is a basis of
L′(λ).

Let W 6= 0 be a submodule of L′(λ). Given w ∈ W −0, there exists E ∈ U+ such
that Ew = m(1, 0, 1, 2, 0), so m(1, 0, 1, 2, 0) ∈ W . Then vλ ∈ W , so W = L′(λ).

Lemma 5.4.22. If λ ∈ I15, then dimL(λ) = 37. A basis of L(λ) is given by

B15 = {m(a, b, c, d, 0)} − {m(a, b, 1, d, 0)|b ≥ 2, (a, b, d) 6= (0, 2, 2)}.

Proof. W1(λ) is a submodule of M(λ) by Lemma 5.1.1(a) 3. Let W = M(λ)/UE1vλ
then w′ = m(1, 3, 1, 2, 0) satis�es Eiw′ = 0, i = 1, 2, g1σ1w

′ = w′ g2σ2w
′ = ζ11w′,

so, using Lemma 5.2.4, (Uw′)ϕ projects over an irreducible module L(ν) as in case
11. Thus w = F2F12F

2
112w

′ 6= 0 in W , by Lemma 5.2.5. Now F2w = 0 and by direct
computation

F1w = F 2
12F

2
112w

′ = λ(g2
1g2)ζ4(1 + ζ)F 2

12F112m(1, 3, 1, 1, 0)

= λ(g4
1g

2
2)ζ4(1 + ζ)(ζ3 − 1)F 2

12m(1, 3, 1, 0, 0) = 0.

3Here λ3
1λ

2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.
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Thus w satis�es

F1w = F2w = 0, g1σ1w = 1, g2σ2w = ζ4,

so Uw projects over an irreducible module L(µ), for µ as in case 12.
As w = Fw′ for some F ∈ U , Uw ⊂ Uw′. For any 0 6= v ∈ W , there exist Ev ∈ U

such that Evv = w′, so in particular Eww = w′. In other words, Uw = Uw′. If
W ′ ⊂ W is a non-trivial submodule of Uw, then w′ ∈ Uw and W ′ = Uw. Thus
Uw = L(µ).

Let L′(λ) = M(λ)/W1(λ) + Uw ' W/Uw. Then dimL′(λ) = 37, B15 is a basis
of L′(λ) since it is the image of a basis of a complement of Uw in W . Notice that

F112m(0, 0, 0, , 0) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 0) = ζ9m(0, 0, 0, 0, 0),

F11212m(0, 0, 0, 2, 0) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 0) = ζ4m(0, 0, 0, 2, 0),

F12m(0, 0, 1, 2, 0) = 0, g1g2σ1σ2m(0, 0, 1, 2, 0) = ζ6m(0, 0, 1, 2, 0),

so by Corollary 5.3.2,m(0, 2, 1, 2, 0) 6= 0 and there exist F such that Fm(0, 2, 1, 2, 0) =
vλ. Now for any b ∈ B15 there exist Eb ∈ U such that Ebb = m(0, 2, 1, 2, 0); as in
the previous cases, L′(λ) is irreducible.

Lemma 5.4.23. If λ ∈ I16, then dimL(λ) = 37. A basis of L(λ) is given by

B16 = {m(a, b, c, d, 0)} −
(
{m(a, 3, c, d, 0)|d ≥ 1}

∪ {m(1, 2, 1, 2, 0),m(0, 2, 1, 2, 0),m(1, 2, 0, 2, 0)}
)
.

Proof. W1(λ) is a submodule of M(λ) by Lemma 5.1.1(a)4. Set W = M(λ)/UE1vλ,
then w′ = m(1, 3, 1, 2, 0) satis�es Eiw′ = 0, i = 1, 2, g1σ1w

′ = w′, g2σ2w
′ = ζ8w′.

By Lemma 5.2.4, (Uw′)ϕ projects over a simple module L(µ), µ as in case 12. Thus
w = F2F11212F112w

′ 6= 0 by Lemma 5.2.5. By direct computation

F2w = 0, F1w = F12F11212F112m(1, 3, 1, 2, 0) = 0,

so Uw projects over an irreducible module L(µ), µ as in case 11.
Notice that Uw ⊆ Uw′. For any v ∈ W , v 6= 0, there exists Ev such that

Evv = w′; in particular Eww = w′, and then Uw = Uw′. If W ′ ⊆ W is a nontrivial
submodule of Uw, then w′ ∈ Uw implies thatW ′ = Uw. Thus Uw is simple, so Uw '
L(µ). Let L′(λ) = M(λ)/(UE1vλ + Uw) ∼= W/Uw. Then dimL′(λ) = dimW −
dimUw = 37, and B16 is a basis of L′(λ), since B16 spans a linear complement of
Uw in W . From case 11, Uw has nontrivial components of dimension 1 in degrees
(5, 4), (5, 5), (6, 5), (7, 5), (7, 6), (8, 6), (9, 6), (8, 7), (9, 7), (10, 7) and (10, 8). Thus
m(1, 1, 1, 2, 0) 6= 0 and Eim(1, 1, 1, 2, 0) = 0, i = 1, 2. For each b ∈ B16 there exists
Eb such that Ebb = m(1, 1, 1, 2, 0) by direct computation. Arguing as in the previous
cases, we conclude that L′(λ) is irreducible.

4Here λ2
1λ2 = −1, but the relation in Remark 5.4.5 becomes trivial.
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Lemma 5.4.24. If λ ∈ I17, then dimL(λ) = 47. A basis of L(λ) is given by

B17 = {m(a, b, c, d, 0)|(a, b, c, d) 6= (1, 3, 1, 2)}.

Proof. W1(λ) is a submodule of M(λ) by Lemma 5.1.1(a)5.
Let w = E2E

3
12E11212E

2
112vλ; as F1w ∈ M(λ)9α1+8α2 we have F1w = 0. Now we

compute

F2w =(σ−1
2 − g2)m(0, 3, 1, 2, 0)− E2E

3
12(E112E1g2)E2

112vλ+

E2E
3
12E11212(3)ζ7ζ

4E112E
2
1g2vλ + E2

(
(ζ11 − 1)(3)ζ9E

2
12E1g2

+ q21(ζ11 − 1)ζ3E12E112g2 + q2
21(ζ11 − 1)E11212g2

)
E11212E

2
112vλ ∈ W1(λ).

Therefore W1(λ) + Uw = N ′(λ) is a proper submodule. We claim that L′(λ) =
M(λ)/N ′(λ) is irreducible. Notice that B17 is a basis of L′(λ). As

F112m(0, 0, 0, 0, 0) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 0) = ζ10m(0, 0, 0, 0, 0),

F11212m(0, 0, 0, 2, 0) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 0) = ζ10m(0, 0, 0, 2, 0),

F12m(0, 0, 1, 2, 0) = 0, g1g2σ1σ2m(0, 0, 1, 2, 0) = ζ11m(0, 0, 1, 2, 0),

we have thatm(0, 3, 1, 2, 0) 6= 0 and there exists F ∈ U− such that Fm(0, 3, 1, 2, 0) =
vλ, by Corollary 5.3.2. Moreover,

E2−d
112 E

1−c
11212E

3−b
12 m(0, b, c, d, 0),

E2−d
112 E

1−c
11212E

2−b
12 E1m(1, b, c, d, 0), for b < 3,

E1−d
112 E

2
1m(1, 3, 1, d, 0), for d < 2,

gives m(0, 3, 1, 2, 0) up to non-zero scalar. From here, every w ∈ L′(λ), w 6= 0
generates L′(λ), so L′(λ) is irreducible.

Lemma 5.4.25. If λ ∈ I18, then dimL(λ) = 11. A basis of L(λ) is given by given
by

B18 = {m(a, b′, 1, 0, 1),m(0, b, 0, 0, e)|e, b′ ≤ 1} ∪ {m(1, 0, 0, 0, 0)}
− {m(1, 1, 1, 0, 1),m(0, 3, 0, 0, 1)}.

The action of Ei, Fi, i = 1, 2 is described in Table A.3.

Proof. W2(λ) is a submodule of M(λ) by Lemma 5.1.1(a). Set w = F2E2E12 then
it satis�es the equations F1w = F2w = 0 by Remark 5.4.11, and Uw + W2(λ) is a
proper submodule. We claim that L′(λ) = M(λ)/Uw+W2(λ) is irreducible. We �x
the following notation for the elements of B18:

v0,0 = m(0, 0, 0, 0, 0), v1,0 = m(0, 0, 0, 0, 1), v0,1 = m(1, 0, 0, 0, 0),

v1,1 = m(0, 1, 0, 0, 0), v2,1 = m(0, 1, 0, 0, 1), v2,2 = m(0, 2, 0, 0, 0),

v3,2 = m(0, 2, 0, 0, 1), v4,2 = m(0, 0, 1, 0, 1), v3,3 = m(0, 3, 0, 0, 0),

v4,3 = m(1, 0, 1, 0, 1), v5,3 = m(0, 1, 1, 0, 1).

5Here λ2
1λ2 = ζ10, but the relation in Remark 5.4.7 becomes trivial.
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Notice that vi,j ∈ L′(λ)iα1+jα2 . From w = E1w = E2E1w = E12w = E2
1w = 0 we

have

m(1, 0, 0, 0, 1) = −q21(4)ζv1,1, m(0, 0, 0, 1, 0) =
q12ζ

8(1 + ζ3)(1 + ζ2)

3
v2,1,

m(1, 0, 0, 1, 0) =
q12ζ

8(1 + ζ3)(1 + ζ2)

3
v2,2, m(1, 1, 0, 0, 1) = q2

21ζ
4(4)ζv2,2,

m(0, 0, 0, 1, 1) = 0.

From U2α1+α2w = 0 we obtain

m(1, 0, 0, 1, 1) = m(0, 0, 1, 0, 0) = 0, m(0, 1, 0, 1, 0) =
q12ζ

8(1 + ζ3)(1 + ζ2)

3
v3,2.

And the following relations also hold:

m(0, 3, 0, 0, 1) = q12(ζ11 − 1)ζ7v4,3, m(1, 2, 0, 0, 1) = q12(4)ζζ
10v3,3

m(0, 2, 0, 1, 0) =
q12ζ

11(1 + ζ2)(3)ζ7

3
v4,3.

By Corollary 5.3.2 there exists F ∈ U− such that Fm(0, 1, 1, 0, 1) = vλ, since

F11212m(0, 0, 0, 0, 1) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 0, 1) = ζ8m(0, 0, 0, 0, 1),

F12m(0, 0, 1, 0, 1) = 0, g1g2σ1σ2m(0, 0, 1, 0, 1) = ζ3m(0, 0, 1, 0, 1).

Notice that m(0, 0, 0, 1, 1) = 0, so E1m(0, 1, 1, 0, 1) = 0. As E12E11212w = 0, we
also have E2m(0, 1, 1, 0, 1) = m(1, 1, 1, 0, 1) = 0.

We claim that B18 is a basis of L′(λ). Using the relations above we prove that
L′(λ) is spanned by B18. From Table A.3 there exist Ei,j ∈ U+

(5−i)α1+(3−j)α2
, F5,3 ∈

U−−5α1−3α2
such that Ei,jvi,j = v5,3, F5,3v5,3 = vλ. Assume that there exists a non-

trivial linear combination S which is zero. If vi,j is of minimal degree with non-trivial
coe�cient, then Ei,jS = v5,3, a contradiction. Finally L′(λ) is irreducible by a similar
argument.

Lemma 5.4.26. If λ ∈ I19, then dimL(λ) = 35. A basis of L(λ) is given by

B19 ={m(0, b, 0, d, e)|e ≤ 1} ∪ {m(1, b, 0, 0, e)| b, e ≤ 1} ∪ {m(0, b, 1, 0, 0)| b ≥ 1}
∪ {m(1, b, 0, 0, 1) | b ≥ 2, 3} ∪ {m(1, 0, 0, 1, 1),m(0, 0, 1, 1, 0)}.

Proof. W2(λ) is a submodule of M(λ) by Lemma 5.1.1(a). Set W = M(λ)/W2(λ).
By Remark 5.4.13 w = F2E2E

2
12vλ satis�es the equations F1w = F2w = 0. As also

g1σ1w = ζ10w, g2σ2w = −w, so Uw projects over L(µ) for µ as in case 32. Thus
E2E

3
12E

2
112E

2
1w 6= 0 by Lemma 5.2.5, but this vector ism(1, 3, 1, 2, 1) up to a non-zero

scalar since W11α1+8α2 = km(1, 3, 1, 2, 1), and then Uw = Um(1, 3, 1, 2, 1). More-
over, there exists F ∈ U such that Fm(1, 3, 1, 2, 1) = w, so Uw ⊆ Um(1, 3, 1, 2, 1).
Moreover, for any v ∈ W , v 6= 0, there exists Ev ∈ U such that Evv = m(1, 3, 1, 2, 1),
so if V ⊂ Uw is a submodule, V 6= 0, then m(1, 3, 1, 2, 1) ∈ V and this implies that
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V = Uw. That is, Uw is irreducible, so Uw ' L(µ). Set L′(λ) = W/Uw =
M(λ)/Uw + W2(λ), so dimL′(λ) = 96 − 61 = 35 and B19 is a basis of L′(λ), since
it spans a complement of Uw in W .

Notice that Eim(0, 3, 0, 2, 1) = 0, i = 1, 2, and for any b ∈ B19 there exists Eb ∈ U
such that Ebb = m(0, 3, 0, 2, 1) up to a non-zero scalar., so arguing as in the previous
cases, L′(λ) is irreducible.

Lemma 5.4.27. If λ ∈ I20, then dimL(λ) = 71. A basis of L(λ) is given by

B20 ={m(a, b, c, d, e)|e ≤ 1} −
(
{m(1, b, 1, d, e)|e ≤ 1, (b, d, e) 6= (2, 2, 1)}

∪ {m(1, 0, 0, 2, 1),m(1, 3, 0, 0, 0)}
)
.

Proof. W2(λ) is a submodule of M(λ) by Lemma 5.1.1(a). Set w = F2E
3
12E2vλ, so

F1w = F2w = 0 by Remark 5.4.15 and N ′(λ) = W2(λ) +Uw is a proper submodule.
Set L′(λ) = M(λ)/N ′(λ). We claim that L′(λ) is irreducible. First we prove that
B20 generates the module. From Ee

1w = 0, e = 0, 1, 2, respectively, we obtain

m(1, 0, 1, 0, 0) =q2
12ζ

5m(1, 2, 0, 0, 1) + q12ζ
10m(1, 1, 0, 1, 0) + q21ζ

9(4)ζm(0, 3, 0, 0, 0)

m(1, 0, 1, 0, 1) =q12ζ
9m(1, 1, 0, 1, 1) + q21ζ

8(1 + ζ)m(0, 3, 0, 0, 1) + q21ζ
2m(1, 0, 0, 2, 0)

+ q2
21ζ

2(1 + ζ)m(0, 2, 0, 1, 0) + q3
21ζ(1 + 2ζ3)m(0, 1, 1, 0, 0)

m(1, 0, 0, 2, 1) =q21ζ
7m(0, 2, 0, 1, 1) + q2

21(ζ2 + ζ5 + 2)m(0, 1, 1, 0, 1)

+ q3
21ζ(ζ9 + 2ζ10 + 2)m(0, 1, 0, 2, 0) + q4

21ζ
9(ζ + ζ2 + 2)m(0, 0, 1, 1, 0).

We apply Eb
12E

d
112E

e
1, with (b, d, e) 6= (2, 2, 1) to w and obtain m(1, b, 1, d, e) as a lin-

ear combination of elements of B20; and applying E2 to w we see thatm(1, 3, 0, 0, 0) =
0.

By Corollary 5.3.2 there exists F ∈ U− such that Fm(0, 3, 1, 2, 1) = vλ, since

F112m(0, 0, 0, 0, 1) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 1) = −m(0, 0, 0, 0, 1),

F11212m(0, 0, 0, 2, 1) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 1) = −m(0, 0, 0, 2, 1),

F12m(0, 0, 1, 2, 1) = 0, g1g2σ1σ2m(0, 0, 1, 2, 1) = ζ11m(0, 0, 1, 2, 1).

Note that E1m(0, 3, 1, 2, 1) = 0, and m(1, 3, 1, 2, 1) = 0 by computing E3
12E

2
112E1w,

so E2m(0, 3, 1, 2, 1) = m(1, 3, 1, 2, 1) = 0. Suppose that B20 is not linearly indepen-
dent. Fix S = 0 a non-trivial linear combination, and consider the minimal element
m(a, b, c, d, e) among those with non trivial coe�cient and minimal N0-degree. If it
is m(1, 2, 1, 2, 1), applying E1 to S we obtain m(0, 3, 1, 2, 1). If a = 1, c = 0, then
E2−b

12 E2−d
112 E

1−e
1 E1E112S gives m(0, 3, 1, 2, 1) up to a non-zero scalar; for the other

cases we use E3−b
12 Ee

11212E
2−d
112 E

1−e
1 S to obtain the same conclusion. In any case we

have m(0, 3, 1, 2, 1) = 0, which is a contradiction. Therefore B20 is a basis of L′(λ).
Let W 6= 0 be a submodule of L′(λ), w ∈ W −0. By a similar argument there exists
E ∈ U+ such that Ew = m(0, 3, 1, 2, 1), so m(0, 3, 1, 2, 1) ∈ W . Then vλ ∈ W and
W = L′(λ) and L′(λ) is irreducible.

41



Lemma 5.4.28. If λ ∈ I21, then dimL(λ) = 61. A basis of L(λ) is given by

B21 ={m(a, b, c, d, e) | b, e ≤ 1} ∪ {m(a, 2, c, 0, e), | e ≤ 1}
∪ {m(1, 3, 0, 0, e) | e ≤ 1} ∪ {m(a, 3, 1, 0, 1),m(0, 2, 0, 1, 0)}.

Proof. If µ is in case 19, then v = m(0, 3, 0, 2, 1) satis�es Eiv = 0, i = 1, 2, g1σ1v =
ζ7v, g2σ2v = 1 so L(µ)ϕ ' L(λ) by Lemma 5.2.5. In particular dimL(λ) = 61.

W2(λ) is a submodule of M(λ) by Lemma 5.1.1(a) 6. Set W = M(λ)/W2(λ),
w′ = m(1, 3, 1, 2, 1). Notice that Eiw′ = 0, i = 1, 2, g1σ1w

′ = ζ4w′, g2σ2w
′ = ζ4w′,

so (Uw′)ϕ projects over an irreducible L(ν) for ν as in Case 19 by Lemma 5.2.4.
We claim that Uw′ is a proper submodule. Assume on the contrary that Uw′ = W .
For any v ∈ W , v 6= 0, there exists Ev ∈ U such that Evv = w′, so if V ⊂ W is
a non-zero submodule, then w′ ∈ V and thus V = W . Then W is irreducible and
Wϕ � L(ν), so Wϕ ' L(ν), but they have di�erent dimension, a contradiction. Let
L′(λ) = W/Uw′. Then

dimL(λ) ≤ dimL′(λ) = dimW − dimUw′ ≤ dimW − dimL(ν) = 96− 35 = 61,

so L′(λ) = L(λ) and Uw′ ' L(ν). Moreover Uw′ = Uw for w = F1F11212F12w
′.

By Corollary 5.3.2 there exists F ∈ U− such that Fm(1, 1, 1, 2, 1) = vλ, since

F112m(0, 0, 0, 0, 1) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 1) = ζ10m(0, 0, 0, 0, 1),

F11212m(0, 0, 0, 2, 1) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 2, 1) = ζ2m(0, 0, 0, 2, 1),

F12m(0, 0, 1, 2, 1) = 0, g2
1g2σ

2
1σ2m(0, 0, 1, 2, 1) = ζ3m(0, 0, 1, 2, 1),

F2m(0, 1, 1, 2, 1) = 0, g2σ2m(0, 1, 1, 2, 1) = −m(0, 1, 1, 2, 1).

Note that E2m(1, 1, 1, 2, 1) = 0. From E11212E112E
2
1w = 0 we get m(0, 2, 1, 2, 1) = 0,

so E1m(1, 1, 1, 2, 1) = m(0, 2, 1, 2, 1) = 0. Suppose that B21 is not linearly indepen-
dent. Take a non-trivial linear combination S which is zero, and take the minimal
elementm(a, b, c, d, e) among those with non trivial coe�cient, between the elements
of minimal N0-degree. If b = 3, then d = 0 and E1−e

1 E1−c
11212E

1−a
2 E2

1m(a, 3, c, 0, e) gives
m(1, 1, 1, 2, 1) up to a non-zero scalar, since

E2
1E

2
12 = ζ4q4

12E
2
12E

2
1 + q2

12E11212E1 − q12E
2
112 + q3

12ζ(1 + ζ3)E12E112E1.

If b = 2, then either d = 0 and E112E
2−e
1 E1−c

11212E
1−a
2 m(a, 2, c, 0, e) givesm(1, 1, 1, 2, 1)

up to a non-zero scalar, or else E2E1E11212E1m(0, 2, 0, 1, 0) also gives m(1, 1, 1, 2, 1)
up to a non-zero scalar. Otherwise E1−a

2 E1−b
12 E1−c

11212E
2−d
112 E

1−e
1 m(a, b, c, d, e) gives

m(1, 1, 1, 2, 1) up to a non-zero scalar. In any case we conclude that m(1, 1, 1, 2, 1) =
0 up to multiply S by an appropriate element of U+, a contradiction. Therefore B21

is a basis of L′(λ).

Lemma 5.4.29. If λ ∈ I22, then dimL(λ) = 49. A basis of L(λ) is given by

B22 ={m(a, b, c, d, e)| d, e 6= 2} − {m(a, b′, 1, 0, 0),m(1, 3, 1, 1, 1),m(a, b, 1, 1, 0) | b 6= 0}.
6Here λ3

1λ
2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.
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Proof. W2(λ) is a submodule ofM(λ) by Lemma 5.1.1(a) 7. Set W = M(λ)/W2(λ),
then {m(a, b, c, d, e) | e 6= 2} is a basis of W . Let w = F 2

1E
2
112E1vλ, now F1w = 0,

F2w =q−1
11 q

−2
12 F112E

2
112E1vλ = ζ10q2

21(1 + ζ8)E112(ζ4σ−1
112 − g112)E1vλ

+ q2
21ζ

10λ(σ−1
112)(ζ4q−2

11 q
−1
12 − λ2

1λ2q
2
11q21)E112E1vλ = 0,

so Uw is a proper submodule. Consider L′(λ) = W/Uw.
From Ea

2E
b
12E

c
11212E

e
1w with e 6= 0, Ea

1E
b
12w, E

a
2E

b
12w, with b 6= 3 and E3

12E11212w,
we write m(a, b, c, 2, e− 1), m(a, b, 1, 0, 0), m(a, b+ 1, 1, 1, 0) and m(1, 3, 1, 1, 1) as a
linear combination of elements of B22.

Now there exists F ∈ U− such that Fm(0, 3, 1, 1, 1) = vλ by Corollary 5.3.2, since

F112m(0, 0, 0, 0, 1) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 1) = ζ4m(0, 0, 0, 0, 1),

F11212m(0, 0, 0, 1, 1) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 1, 1) = ζ9m(0, 0, 0, 1, 1),

F12m(0, 0, 1, 1, 1) = 0, g2
1g2σ

2
1σ2m(0, 0, 1, 1, 1) = ζ8m(0, 0, 1, 1, 1).

As m(0, 2, 1, 2, 1) = m(1, 3, 1, 1, 1) = 0 by applying E3
12E11212 and E2

12E11212E
2
1 to w,

respectively, we have that

E1m(0, 3, 1, 1, 1) = q3
12ζ

2m(0, 2, 1, 2, 1) = 0, E2m(0, 3, 1, 1, 1) = m(1, 3, 1, 1, 1) = 0.

Suppose that B22 is not linearly independent. Let S be a non-trivial linear com-
bination which is zero, and take the minimal element m(a, b, c, d, e) among those
with non-zero coe�cient and minimal N0-degree. If it is m(1, b, c, d, e), b ≤ 2, then
E1−e

1 E1−d
112 E

1−c
11212E

2−b
12 E1S ism(0, 3, 1, 1, 1). If it ism(1, 3, 0, 0, e), then E2−e

1 E12E112E1S

gives m(0, 3, 1, 1, 1) up to a non-zero scalar, since

E1m(1, 3, 0, 0, e) = q2
12ζ

10m(1, 1, 1, 0, e) + q3
12ζ

5m(1, 2, 0, 1, e) + q4
12m(1, 3, 0, 0, e+ 1).

Otherwise E3−b
12 E1−c

11212E
1−d
112 E

1−e
1 S gives again m(0, 3, 1, 1, 1) up to a non-zero scalar

In any case we have that m(0, 3, 1, 1, 1) = 0, which is a contradiction. Therefore B22

is a basis of L′(λ). Moreover L′(λ) is irreducible by an argument as in the previous
cases.

Lemma 5.4.30. If λ ∈ I23, then dimL(λ) = 47. A basis of L(λ) is given by

B23 =
(
{m(a, b, 0, d, e)|e ≤ 1} ∪ {m(a, b, 1, 0, 0) | b ≤ 1}

∪ {m(0, 2, 1, 0, 0),m(1, 3, 1, 0, 0)}
)

−
(
{m(1, b, 0, 1, e)|b ≤ 2, e ≤ 1} ∪ {m(0, 2, 0, 2, 0)}

)
.

Proof. W2(λ) is a submodule ofM(λ) by Lemma 5.1.1(a). Set w = F2E2E
2
12vλ, then

F1w = F2w = 0, by Remark 5.4.13, so N ′(λ) = W2(λ) +Uw is a proper submodule.
Let L′(λ) = M(λ)/N ′(λ). We claim that L′(λ) is irreducible and B23 is a basis of

7Here λ2
1λ2 = −1, but the relation in Remark 5.4.5 becomes trivial.
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L′(λ). First we prove that L′(λ) is spanned by B23. From Ee
1w = 0, e = 0, 1, 2,

E12E1w = 0 and U4α1+2α2w = 0 we obtain the relations

m(1, 0, 0, 1, 0) =
q12ζ

2(1 + ζ3)(ζ4 − 1)

3
m(1, 1, 0, 0, 1),

m(1, 0, 0, 1, 1) = q2
21(4)ζm(0, 1, 0, 1, 0) + q21ζ

2(3)ζm(0, 2, 0, 0, 1),

m(0, 0, 1, 0, 1) =
q12(ζ9 − 1)

2
m(0, 1, 0, 1, 1) +

q21(ζ8 − 1)(1 + ζ3)ζ8

2
m(0, 0, 0, 2, 0),

m(1, 1, 0, 1, 1) = q3
21ζ

7(4)ζm(0, 1, 0, 1, 0) + q2
21ζ

9(3)ζm(0, 2, 0, 0, 1),

m(0, 2, 0, 2, 0) = 2q2
12ζ

10m(0, 3, 0, 1, 1).

We write m(a, b, 1, d, 1), m(a, b, 1, 1, 0), m(a, b, 1, 2, 0) and m(1, b, 0, 1, e), b ≥ 2,
as a linear combination of elements of B23 by applying Ea

2E
b
12E

d
112 to the third

relation, Ea
2E

b
12E112 to the fourth relation, Ea

2E
b−1
12 E11212E112E1 to the �rst relation

and Eb
12E112E

e
1 to w, respectively.

By Corollary 5.3.2 there exists F ∈ U− such that Fm(1, 3, 0, 2, 1) = vλ since

F112m(0, 0, 0, 0, 1) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 1) = ζ9m(0, 0, 0, 0, 1),

F12m(0, 0, 0, 2, 1) = 0, g1g2σ1σ2m(0, 0, 0, 2, 1) = ζ7m(0, 0, 0, 2, 1),

F2m(0, 3, 0, 2, 1) = 0, g2σ2m(0, 3, 0, 2, 1) = −m(0, 3, 0, 2, 1).

Note that E1m(1, 3, 0, 2, 1) = q12m(1, 3, 0, 2, 2) = 0 and E2m(1, 3, 0, 2, 1) = 0.
Suppose that B23 is not linearly independent. Fix S = 0 a non-trivial linear com-
bination, and consider the minimal element m(a, b, c, d, e) among those with non
trivial coe�cient and minimal N0-degree. If c = 1, then E1−a

2 E3−b
12 E1−e

1 m(a, b, 1, d, e)
gives m(1, 3, 0, 2, 1) up to a non-zero scalar by using the third relation. For the other
cases Ea

2E
3−b
12 E2−d

112 E
1−e
1 m(a, b, 0, d, e) gives the same conclusion. In any case we have

m(1, 3, 0, 2, 1) = 0, which is a contradiction, so B23 is a basis of L′(λ). Let W be
a non-zero submodule of L′(λ), w ∈ W − 0. By a similar argument there exists
E ∈ U+ such that Ew = m(1, 3, 0, 2, 1), so m(1, 3, 0, 2, 1) ∈ W , but then vλ ∈ W
and W = L′(λ) and L′(λ) is irreducible.

Lemma 5.4.31. If λ ∈ I24, then dimL(λ) = 85. A basis of L(λ) is given by

B24 ={m(a, b, c, d, e)|e ≤ 1} − {m(a, 3, c, 2, e),m(1, 3, c, 1, 1),m(0, 3, 1, 1, 1)}.

Proof. If µ ∈ I35, then w′ = n(1, 2, 1, 2, 1) satis�es Eiw′ = 0, i = 1, 2, g1σ1w
′ = ζ4w′,

g2σ2w
′ = −w′, so L(µ)ϕ is isomorphic to L(λ) by Lemma 5.2.4. In particular

dimL(λ) = 85.
Note that W2(λ) is a submodule of M(λ) by Lemma 5.1.1(a) 8. Set W =

M(λ)/W2(λ) and w′ = m(1, 3, 1, 2, 1). Then Eiw
′ = 0, i = 1, 2, g1σ1w

′ = ζ4w′,
g2σ2w

′ = ζ7w′, so by Lemma 5.2.4 (Uw′)ϕ projects over an irreducible module L(ν),
ν ∈ I18.

8Here λ2
1λ2 = ζ10, but the relation in Remark 5.4.7 becomes trivial.
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Uw′ is a proper submodule; otherwise Uw′ = W is irreducible, so L(ν) '
(Uw′)ϕ = W , a contradiction since they have di�erent dimension. Set L′(λ) =
M(λ)/W2(λ) + Uw. Then

85 = dimL(λ) ≤ dimL(λ) ≤ dimW − dimL(ν) = 96− 11 = 85,

so L′(λ) = L(λ) and L(ν) ' (Uw′)ϕ. In particular w = F12F11212F1m(1, 3, 1, 2, 1)
satis�es that F1w = F2w = 0.

We claim that B24 is a basis of L′(λ). From w = E1w = 0, E12E1w = 0 and
U4α1+2α2w = 0 we obtain the relations

m(1, 3, 0, 1, 1) =q21ζ
4m(1, 2, 1, 0, 1) +

q2
21(1 + ζ2)(1 + ζ3)

2
m(1, 2, 0, 2, 0),

m(0, 3, 0, 2, 0) =
q5

12ζ(4)ζ(ζ + 1)

3
m(1, 2, 0, 2, 1)− q12m(1, 0, 1, 2, 0)

− q4
12(1 + ζ2)(3)ζ

3
m(1, 1, 1, 1, 1).

Then we can use Ea
2E

c
11212E

e+1
1 w = 0, E112E1w and E11212w = 0 to writem(a, 3, c, 2, e),

m(0, 3, 1, 1, 1) and m(1, 3, 1, 1, 1) as a linear combination of elements of B24. Thus
L′(λ) is spanned by B24, and then B24 is a basis of L′(λ) since it has 85 elements.

Lemma 5.4.32. If λ ∈ I25, then dimL(λ) = 37. A basis of L(λ) is given by

B25 = {m(a, b, c, 0, e)} −
(
{m(0, 3, 0, 0, e) | e ≤ 1} ∪ {m(1, 3, c, 0, e),m(1, 2, 1, 0, e)}

)
.

Proof. Let w1 = F 2
1E112E

2
1vλ. By Remark 5.4.5, Fiw1 = 0, i = 1, 2. Set W =

M(λ)/Uw1, so B′ = {m(a, b, c, 0, e)} is a basis of W . In particular, Waα1+bα2 = 0
if either a ≥ 9 or else b ≥ 7, and W8α1+6α2 = k{m(1, 3, 1, 0, 2)}. By Lemma 5.2.4
w2 = E2E

3
12vλ satis�es Fiw2 = 0, i, j = 1, 2. As g1σ1w2 = ζ8w2, g2σ2w2 = ζ5w2, Uw2

projects over L(ν), where ν is as in case 38. By Lemma 5.2.5 E12E11212E1w2 6= 0,
and this vector is {m(1, 3, 1, 0, 2)} up to non-zero scalar. Moreover, there exists
F such that Fm(1, 3, 1, 0, 2) = w2, and then Uw2 = Um(1, 3, 1, 0, 2). For each
v ∈ W , v 6= 0, there exists Ev ∈ U such that Evv = m(1, 3, 1, 0, 2). From here we
conclude that Uw2 is simple, so Uw2

∼= L(ν). Thus L′(λ) = W/Uw2 has dimension
48− 11 = 37 and B25 is a basis of L′(λ) since it spans a linear complement of Uw2

in W .
By Corollary 5.3.2 there exists F ∈ U− such that Fm(0, 3, 1, 0, 2) = vλ, since

F11212m(0, 0, 0, 0, 2) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 0, 2) = ζ9m(0, 0, 0, 0, 2),

F12m(0, 0, 1, 0, 2) = 0, g1g2σ1σ2m(0, 0, 1, 0, 2) = ζ4m(0, 0, 1, 0, 2).

Notice that Eim(0, 3, 1, 0, 2) = 0, for i = 1, 2 since L′(λ)8α1+5α2+αi = 0.
For each v = m(a, b, c, 0, e) ∈ B25 there existsEv ∈ U such that Evv = m(0, 3, 1, 0, 2).

Indeed, if a = 1, then b ≤ 2 and E2−e
1 E1−c

11212E
2−b
12 E1v gives m(0, 3, 1, 0, 2) up to a

non-zero scalar. Otherwise E2−e
1 E1−c

11212E
3−b
12 v gives the same conclusion. Arguing as

above, L′(λ) is irreducible.
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Lemma 5.4.33. If λ ∈ I26, then dimL(λ) = 25. A basis of L(λ) is given by

B26 = {m(0, b, c, 0, e)} ∪ {m(1, 0, 0, 0, 0),m(1, 0, 0, 0, 2)} − {m(0, 3, 1, 0, 0)}.

Proof. Set w1 = F2E2E12vλ, w2 = F 2
1E112E

2
1vλ. By Remarks 5.4.11 and 5.4.5,

Fiwj = 0, i, j = 1, 2, so Uw1 + Uw2 is a proper submodule. We claim that L′(λ) =
M(λ)/Uw1 + Uw2 is irreducible. First we prove that L′(λ) is spanned by B26. As
w1 = w2 = 0,

m(1, 0, 0, 0, 1) = q21(1 + ζ)2ζ8m(0, 1, 0, 0, 0),

m(0, 0, 0, 1, 0) = q12(3)ζ7m(0, 1, 0, 0, 1).

As E2
12E11212w1 = E2E12E11212E1w1 = 0, we have m(0, 3, 1, 0, 0) = m(1, 2, 1, 0, 1) =

0. We write m(a, b, c, d, e), d ≥ 1, and m(1, b, c, d, e), e ≥ 1, as a linear combi-
nation of elements of B26 by applying Ea

2E
b
12E

c
11212E

d−1
112 E

e
1 to the second relation

and Eb
12E

c
11212E

d
112E

e−1
1 to the �rst relation, respectively. We express m(1, b, c, 0, 0),

b ≥ 1, and m(1, b, c, 0, 0), c ≥ 1, as a linear combination of the elements of B by
applying E2E

b−1
12 Ec

11212E1 and E2E
b
12E112 to w1, respectively. Then L′(λ) is spanned

by B26. By Corollary 5.3.2 there exists F ∈ U− such that Fm(0, 3, 1, 0, 2) = vλ,
since

F11212m(0, 0, 0, 0, 2) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 0, 2) = ζm(0, 0, 0, 0, 2),

F12m(0, 0, 1, 0, 2) = 0, g1g2σ1σ2m(0, 0, 1, 0, 2) = ζ10m(0, 0, 1, 0, 2).

As U7α1+4α2w2 = 0, we have that E1m(0, 3, 1, 0, 2) = 0, and from E3
12E11212E1w1 = 0,

E2m(0, 3, 1, 0, 2) = m(1, 3, 1, 0, 2) = 0.
Suppose that B26 is not linearly independent. Fix S = 0 a non-trivial linear

combination, and consider the minimal element m(a, b, c, 0, e) among those with
non trivial coe�cient and minimal N0-degree. If a = 0, then E2−e

1 E1−c
11212E

3−b
12 S is

equal to m(0, 3, 1, 0, 2) up to a non-zero scalar. Otherwise E2−e
1 E1−c

11212E
2−b
12 E1S gives

the same conclusion. This is a contradiction, since m(0, 3, 1, 0, 2) 6= 0. Thus B26 is
a basis of L′(λ). By a similar argument L′(λ) is irreducible.

Lemma 5.4.34. If λ ∈ I27, then dimL(λ) = 35. A basis of L(λ) is given by

B27 = {n(a, 0, c, d, e) | (a, c, d, e) 6= (0, 1, 2, 2)}.

Proof. Set w1 = F2E12E2vλ, w2 = n(0, 0, 1, 2, 2) 9. By Remark 5.4.11, Fiw = 0,
i = 1, 2. Then Uw1 is a proper submodule and {n(a, 0, c, d, e)} is a basis of W =

M(λ)/Uw1, since w1 = n(0, 1, 0, 0, 0) − ζ3(3)ζ7

2
n(1, 0, 0, 0, 1). Now F2w2 = 0 since

U9α1+3α2 = 0, and

F1w2 =E2
1(−q12ζ

4(1 + ζ3)E112E12σ
−1
1 )E11212vλ + E2

1E
2
112q

2
12(ζ5 − 1)E2

12σ
−1
1 vλ

∈ U7α1+3α2n(1, 0, 0, 0, 1) ⊆ U8α1+3α2n(1, 0, 0, 0, 0),

9Here λ3
1λ

2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.
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so F1w2 = 0, since U8α1+3α2 = 0. Also, E1w2 = 0 and

E2w2 = (q2
21ζ

2E2
1E2 − q2

21E1E12)E2
112E11212vλ

= q2
21ζ

2E2
1(q3

21ζ
7E112E

2
12 + q4

21ζ
4E2

112E2)E11212vλ − q2
21E1(q2

21E
2
112E12)E11212vλ

= q7
21ζ

3n(0, 2, 1, 1, 2)− q5
21ζ

3n(1, 0, 1, 2, 2) + q7
21ζ

3(ζ + 1)n(0, 3, 0, 2, 2)

=
ζ3(3)ζ7

2

(
q7

21ζ
3E2

1E112E11212E12E1E2 + q3
21ζ

9E1E
2
112E11212E1E2

+ q7
21ζ

3(1 + ζ)E2
1E

2
112E

2
12E1E2

)
vλ + q9

21ζ
9n(1, 0, 1, 2, 2)

= q9
21

(ζ3(3)ζ7

2
(ζ10 + ζ11 + 1) + ζ9

)
n(1, 0, 1, 2, 2) = 0.

Set L′(λ) = W/Uw2 = M(λ)/Uw1 +Uw2, so B27 is a basis of L′(λ) and dimL′(λ) =
27. By Corollary 5.3.2 there exists F ∈ U such that Fn(1, 0, 1, 2, 2) = vλ since

F11212n(1, 0, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(1, 0, 0, 0, 0) = −n(1, 0, 0, 0, 0),

F112n(1, 0, 1, 0, 0) = 0, g2
1g2σ

2
1σ2n(1, 0, 1, 0, 0) = ζ8n(1, 0, 1, 0, 0),

F1n(1, 0, 1, 2, 0) = 0, g1σ1n(1, 0, 1, 2, 0) = ζ7n(1, 0, 1, 2, 0).

For each b = n(a, 0, c, d, e) ∈ B27, E
1−a
2 E1−c

11212E
2−d
112 E

2−e
1 b gives n(1, 0, 1, 2, 2) up to a

non-zero scalar. Arguing as in the previous cases, L′(λ) is irreducible.

Lemma 5.4.35. If λ ∈ I28, then dimL(λ) = 25. A basis of L(λ) is given by

B28 = {n(a, 0, c, d, e)} −
(
{n(0, 0, 1, 1, e), n(0, 0, c, 2, e)} ∪ {n(1, 0, 1, 2, e) | e 6= 0}

)
.

Proof. If µ ∈ I14, then w′ = m(1, 0, 1, 2, 0) satis�es Eiw′ = 0, i = 1, 2, g1σ1w
′ =

ζ3w′, g2σ2w
′ = ζ8w′, so L(µ)ϕ is isomorphic to L(λ) by Lemma 5.2.4. In particular

dimL(λ) = 25.
Set w1 = F2E2E12vλ, w2 = F 2

1E
2
1E

2
112vλ. By Remark 5.4.11, Fiw1 = 0, i = 1, 2, so

Uw1 is a proper submodule. By a direct computation, B = {n(a, 0, c, d, e)} is a basis
of W = M(λ)/Uw1. By Remark 5.4.7, Fiw2 = 0, i = 1, 2 and as g1σ1w2 = ζ3w2,
g2σ2w2 = w2, Uw2 projects over L(ν), ν as in Case 38. If L′(λ) = M(λ)/Uw1+Uw2 '
W/Uw2, then

25 = dimL(λ) ≤ dimL′(λ) = 36− dimUw2 ≤ 36− dimL(ν) = 25,

so L′(λ) = L(λ), Uw2 = L(ν). Now B28 is a basis of L′(λ) since B28 spans a linear
complement of Uw2 in W . Here we use the basis B38 of L(ν) in Lemma 5.4.45 to
compute a basis of Uw2.

Lemma 5.4.36. If λ ∈ I29, then dimL(λ) = 47. A basis of L(λ) is given by

B29 ={m(a, b, c, 0, e)|(a, b, c, e) 6= (1, 3, 1, 0)}.
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Proof. Set w1 = F 2
1E112E

2
1vλ, w2 = m(1, 3, 1, 0, 0) 10. By Remark 5.4.5 F1w =

F2w = 0, so Uw1 is a proper submodule. Notice that {m(a, b, c, 0, e)} is basis of
W = M(λ)/Uw1. Now F1w2 = 0 since M(λ)5α1+6α2 = 0 and

F2w2 = E2

(
(1− ζ)ζ8E2

12E1g2 + q21(ζ11 − 1)ζ3E12E112g2

)
E11212vλ − E2E

3
12E112E1g2vλ

= λ(g2)E2E12((ζ − 1)q21m(0, 1, 1, 0, 1)) + q2
21m(0, 1, 0, 2, 0)

+ q3
21ζ

10(1− ζ)m(0, 0, 1, 1, 0)−m(0, 2, 0, 1, 1) = 0,

by direct computation. Also E2w2 = 0 since M(λ)6α1+7α2 = 0 and

E1w2 = q12E2E1E
3
12E11212vλ

= q12E2(q2
12ζ

5E2
12E112 + q3

12E
3
12E1)E11212vλ

= q4
12E2E

2
12

(
ζ2m(0, 0, 1, 1, 0) + q2

12m(0, 1, 1, 0, 1)− q12ζ(1 + ζ)m(0, 1, 0, 2, 0)
)

= 0,

again by direct computation. Set L′(λ) = M(λ)/Uw1 +Uw2, so B29 is basis of L′(λ).
By Corollary 5.3.2 there exists F ∈ U− such that Fm(1, 3, 1, 0, 2) = vλ since

F11212m(0, 0, 0, 0, 2) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 0, 2) = ζ2m(0, 0, 0, 0, 2),

F12m(0, 0, 1, 0, 2) = 0, g1g2σ1σ2m(0, 0, 1, 0, 2) = ζ9m(0, 0, 1, 0, 2),

F2m(0, 3, 1, 0, 2) = 0, g2σ2m(0, 3, 1, 0, 2) = ζ10m(0, 3, 1, 0, 2).

Set w0 = m(1, 3, 1, 0, 2). Note that E2w0 = 0, and E1w0 = 0 since L′(λ)9α1+6α2 = 0.
Thus there exist a map π : (Uw0)φ � L(ν) for ν as in case 23, see Lemma 5.2.4.
Then dimL′(λ)α ≥ dim(Uw0)φα ≥ dimL(ν)8α1+6α2−α but we have an equality for

α ∈ P29 := {aα1+6α2|a = 7, 8}∪{bα1+5α2|b = 5, 6, 7, 8}∪{cα1+4α2|c = 3, 4, 5, 6, 7},

since dimL′(λ)α =


1, α = 8α1 + 6α2, 7α1 + 6α2, 8α1 + 5α2, 5α1 + 5α2,
2, α = 7α1 + 5α2, 6α1 + 5α2, 6α1 + 4α2, 4α1 + 4α2,
3, α = 7α1 + 5α2.

Thus

for each 0 6= v ∈ L′(λ)α, α ∈ P29, there exist E ∈ U such that Ev = w0. For
each b ∈ B of degree α /∈ P29 there exist E ′b ∈ U such that E ′bb 6= 0 and has a degree
aα1 + 4α2, so �nally there exist Eb ∈ U such that Ebb = w0. Arguing as in previous
cases, L′(λ) is irreducible.

Lemma 5.4.37. If λ ∈ I30, then dimL(λ) = 37. A basis of L(λ) is given by

B30 = {m(a, b, c, 0, e)} − {m(1, b, c, 0, e) | b ≥ 2, (b, c, e) 6= (3, 1, 2)}.

Proof. By Lemma 5.4.23, if ν is as in Case 16, then w̃ = m(1, 1, 1, 2, 0) in L(ν)
satis�es Ei = 0, i = 1, 2, g1σ1w̃ = ζ10w̃, g2σ2w̃ = ζ10w̃. Thus L(µ)ϕ is an irreducible
module as in Case 30 by Lemma 5.2.4. In particular, dimL(λ) = dimL(ν) = 37.

Set w1 = F 2
1E112E

2
1vλ, w2 = E2E

2
12vλ

11. By Remark 5.4.5, Fiw1 = 0, i =
1, 2, so Uw1 is a proper submodule. Let W = M(λ)/Uw1, then {m(a, b, c, 0, e)}

10Here λ3
1λ

2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.

11Here λ1λ2 = ζ4, but the relation in Remark 5.4.13 becomes trivial.
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is a basis of W . By direct computation, Fiw2 = 0 , i = 1, 2, g1σ1w2 = ζ3w2,
g2σ2w2 = w2, so Uw2 projects over a simple module L(µ), µ as in Case 38. Let
L′(λ) = M(λ)/Uw1 + Uw2 ' W/Uw2, so

37 = dimL(λ) ≤ dimL′(λ) = dimW − dimUw2 ≤ dimW − dimL(µ) = 48− 11 = 37,

so L′(λ) = L(λ) and Uw2 ' L(µ). Then B30 is a basis of L(λ) since the subspace
spanned by B30 is a complement of Uw2 in W . Here we use the basis B38 of L(µ)
given in Lemma 5.4.45 to compute Uw2.

Lemma 5.4.38. If λ ∈ I31, then dimL(λ) = 61. A basis of L(λ) is given by

B31 ={n(a, b, c, d, e) | b ≤ 1} −
(
{n(0, 0, 0, 2, e) | e ≤ 1}

∪ {n(0, 0, 1, 1, e), n(0, 0, 1, 2, e), n(0, 1, 1, 2, e)}
)
.

Proof. Set w1 = F2E2E
2
12vλ

12. By Remark 5.4.13, Fiw1 = 0, i = 1, 2, so Uw1 is a
proper submodule. Set W = M(λ)/Uw1, thus {n(a, b, c, d, e)|b ≤ 1} is a basis of W .
Let

w2 = n(0, 0, 0, 2, 1) +
q21

3
ζ(1 + ζ3)(1 + ζ2)

(
n(0, 0, 1, 0, 2) + ζ4n(0, 1, 0, 1, 2)

)
.

By direct computation Fiw2 = 0, i = 1, 2, g1σ1w2 = ζ8w, g2σ2w2 = ζ5w2, so Uw
projects over L(ν) for ν as in case 18. In particular, E12E11212E1w2 6= 0 by Lemma
5.2.5, so it is n(0, 1, 1, 2, 2) up to non-zero scalar since W10α1+5α2 = kn(0, 1, 1, 2, 2).
By the same result there exists F ∈ U such that Fn(0, 1, 1, 2, 2) = w2, so Uw2 ⊆
Un(0, 1, 1, 2, 2). Given v ∈ W , v 6= 0, there exists Ev ∈ U such that Evv =
n(0, 1, 1, 2, 2); from here Uw2 = Un(0, 1, 1, 2, 2) and Uw2 is irreducible, by the same
argument of the previous cases. Thus Uw2 ' L(ν). Then L′(λ) = W/Uw2 =
M(λ)/Uw1 + Uw2 has dimension 72 − 11 = 61 and B31 is a basis of L′(λ) since it
spans a complement of Uw2 in W . Here we use the basis B18 of L(ν) from Lemma
5.4.25 to compute Uw2.

By Corollary 5.3.2 there exists F ∈ U− such that Fn(1, 1, 1, 2, 2) = vλ, since

F12n(1, 0, 0, 0, 0) = 0, g1g2σ1σ2n(1, 0, 0, 0, 0) = ζ3n(1, 0, 0, 0, 0),

F11212n(1, 1, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(1, 1, 0, 0, 0) = −n(1, 1, 0, 0, 0),

F112n(1, 1, 1, 0, 0) = 0, g2
1g2σ

2
1σ2n(1, 1, 1, 0, 0) = ζ2n(1, 1, 1, 0, 0),

F1n(1, 1, 1, 2, 0) = 0, g1σ1n(1, 1, 1, 2, 0) = ζ4n(1, 1, 1, 2, 2).

Notice that Ein(1, 1, 1, 2, 2) = 0, i = 1, 2, and if v = n(a, b, c, d, e) ∈ B31, then
E1−a

2 E1−b
12 E1−c

11212E
2−d
112 E

2−e
1 v gives n(1, 1, 1, 2, 2) up to a non-zero scalar. Let W 6= 0

be a submodule of L′(λ), w ∈ W − 0. Then there exists E ∈ U+ such that Ew =
n(1, 1, 1, 2, 2), so n(1, 1, 1, 2, 2) ∈ W , but then vλ ∈ W and W = L′(λ). Therefore
L′(λ) is irreducible.

12Here λ2
1λ2 = −1, but the relation in Remark 5.4.7 becomes trivial.
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Lemma 5.4.39. If λ ∈ I32, then dimL(λ) = 61. A basis of L(λ) is given by

B32 ={n(a, b, c, d, e)|b ≤ 1} −
(
{n(a, b, 1, d, 2) | b ≥ 1, d 6= 0}

∪ {n(a, 0, 1, 0, 2)n(1, 0, 0, 2, 2)}
)
.

Proof. If µ ∈ I21, then w′ = m(1, 1, 1, 2, 1) satis�es Eiw′ = 0, i = 1, 2, g1σ1w
′ =

ζ2w′, g2σ2w
′ = −w′, so L(µ)ϕ is isomorphic to L(λ) by Lemma 5.2.4. In particular

dimL(λ) = 61.
Set w1 = F2E2E

2
12vλ

13. Then Fiw1 = 0, i = 1, 2 by Remark 5.4.13, and B =
{n(a, b, c, d, e)|b ≤ 1} is a basis of W = M(λ)/Uw1. Moreover w = n(1, 1, 1, 2, 2) ∈
V10α1+6α2 satis�es that E1w = E2w = 0, g1σ1w = w, g2σ2w = ζ8w. By Lemma 5.2.4
(Uw)ϕ projects over L(ν), ν ∈ I12. Arguing as in some previous cases we conclude
that Uw is a proper submodule. Then set L′(λ) = M(λ)/Uw1 + Uw. Notice that

61 = dimL(λ) ≤ dimL′(λ) = dimW − dimUw ≤ dimW − dimL(ν) = 61,

so L(λ) = L′(λ) and Uw ' L(ν)ϕ. In particular w2 := F2F11212F112w 6= 0, Fiw2 = 0
and Uw2 = Uw. Moreover B32 is a basis of L(λ) since it spans a linear complement
of Uw inW . Here we use the basis B12 of L(ν) in Lemma 5.4.19 to compute Uw.

Lemma 5.4.40. If λ ∈ I33, then dimL(λ) = 71. A basis of L(λ) is given by

B33 = {m(a, b, c, d, e),m(1, 3, 0, 0, 0) | b 6= 3, d 6= 2} − {m(0, 0, 1, 0, 0),m(1, 2, 0, 1, 2)}.

Proof. Let w1 = F 2
1E

2
112E

2
1vλ. By Remark 5.4.7, F1w1 = F2w1 = 0. As also

g1σ1w1 = ζ9w1, g2σ2w1 = ζ2w1, Uw1 projects over L(µ), for µ as in Case 23.
We claim that B′ = {m(a, b, c, d, e) | d 6= 2} ∪ {m(0, 0, 0, 2, 2)} is a basis of W ′ =
M(λ)/Uw1. Indeedm(a, b, c, 2, e) appears with non-zero coe�cient inEe

1E11212E
b
12E

a
2w1

if (a, b, c, e) 6= (0, 0, 0, 2), but E2
1w1 = 0 by direct computation, so B′ is linearly inde-

pendent in W ′. It is a basis since dimW ′ = 144− dimUw1 ≥ 144− dimL(µ) = 97.
Now F2m(0, 0, 0, 2, 2) = E1m(0, 0, 0, 2, 2) = 0, since U6α1+3α2 = U7α1+4α2 = 0 and

F1m(0, 0, 0, 2, 2), E2m(0, 0, 0, 2, 2) ∈ Uw1 by direct computation, so Um(0, 0, 0, 2, 2) =
km(0, 0, 0, 2, 2) in W ′. Let W = W ′/km(0, 0, 0, 2, 2); B = {m(a, b, c, d, e) | d 6= 2} is
a basis of W .

Set w2 = F 2
1F

2
112E11212E

2
112E

2
1vλ. By Remark 5.4.9, Fiw2 = 0, i = 1, 2, and as

g1σ1w2 = w2, g2σ2w2 = ζ3w2, Uw2 projects over L(ν), for ν as in Case 14. Set
L′(λ) = M(λ)/Uw1 +Um(0, 0, 0, 2, 2) +Uw2 ' W/Uw2. From Ea

2E
e
1E

d
112E

c
11212E2w2

we write m(a, 3, c, d, e) as a linear combination of elements of B33; from w2 = 0 we
writem(0, 0, 1, 0, 0) as a linear combination of elements of B33, and the same happens
for m(1, 2, 0, 1, 2), since U3α1+2α2w2 = U2α1+2α2w1 = 0. Thus B33 spans L′(λ). As
Uw2 projects over L(µ), we have that dim(Uw2)α ≥ 1 if α ∈ {9α1 + 6α2, 10α1 +
6α2, 8α1 + 7α2, 9α1 + 7α2, 10α1 + 7α2}, so L′(λ)α = 0 for each α 6= 9α1 + 6α2 in this

13Here λ3
1λ

2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.
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set, and dimL′(λ)9α1+6α2 ≤ 1. By Corollary 5.3.2 there exists F ∈ U− such that
Fm(1, 2, 1, 1, 2) = vλ since

F112m(0, 0, 0, 0, 2) = 0, g2
1g2σ

2
1σ2m(0, 0, 0, 0, 2) = ζ4m(0, 0, 0, 0, 2),

F12112m(0, 0, 0, 1, 2) = 0, g3
1g

2
2σ

3
1σ

2
2m(0, 0, 0, 1, 2) = ζ7m(0, 0, 0, 1, 2),

F12m(0, 0, 1, 1, 2) = 0, g1g2σ1σ2m(0, 0, 1, 1, 2) = −m(0, 0, 1, 1, 2),

F2m(0, 2, 1, 1, 2) = 0, g2σ2m(0, 2, 1, 1, 2) = ζ9m(0, 2, 1, 1, 2),

so m(1, 2, 1, 1, 2) 6= 0 and then dimL′(λ)9α1+6α2 = 1. By an argument as in the
previous cases we prove that B33 is linearly independent, and L′(λ) is irreducible.

Lemma 5.4.41. If λ ∈ I34, then dimL(λ) = 71. A basis of L(λ) is given by

B34 ={n(a, b, c, d, e), n(0, 0, 0, 2, e) | b 6= 3, d 6= 2} − {n(0, 0, 1, 0, e), n(0, 1, 1, 1, 0)}.

Proof. Let µ ∈ I33. By Lemma 5.4.40 Eim(1, 2, 1, 1, 2) = 0, i = 1, 2, g1σ1m(1, 2, 1, 1, 2) =
ζ10m(1, 2, 1, 1, 2), g2σ2m(1, 2, 1, 1, 2) = −m(1, 2, 1, 1, 2) in L(µ), so L(µ)ϕ is isomor-
phic to L(λ) by Lemma 5.2.4. In particular, dimL(λ) = 71.

Set w1 = F2E
3
12E2vλ. By Remark 5.4.15, Fiw1 = 0, i = 1, 2 and as g1σ1w1 = ζw1,

g2σ2w1 = w1, Uw1 projects over L(ν), for ν as in Case 36. Notice that

• n(0, 3, c, d, e) has non-zero coe�cient in Ee
1E

d
112E

c
11212w1;

• n(1, 3, c, d, e) has non-zero coe�cient in E2E
e
1E

d
112E

c
11212w1, if c+ d+ e 6= 0;

• at least one vector n(a, 3, c, d, e) has non-zero coe�cient inEa
2E

e
1E

d
112E

c
11212E

b
12w1

for any (a, b, c, d, e) 6= (1, 0, 0, 0, 0), but E2w1 = 0;

• {Ea
2E

e
1E

d
112E

c
11212E

b
12} is a basis of B(V ) (Equation 2.14, in [HY]).

Thus B′ = {n(a, b, c, d, e) | b 6= 3} ∪ {n(1, 3, 0, 0, 0)} is a basis of W ′ = M(λ)/Uw1.
By direct computation, Fin(1, 3, 0, 0, 0) = 0 = E2n(1, 3, 0, 0, 0), and E1n(1, 3, 0, 0, 0) ∈
Uw1, so Uw1 + kn(1, 3, 0, 0, 0) is a proper U -submodule, and B = {n(a, b, c, d, e) |
b 6= 3} is a basis of W = M(λ)/Uw1 + Un(1, 3, 0, 0, 0) ' W ′/kn(1, 3, 0, 0, 0).

Set w2 = F 2
1F

2
112E11212E

2
112E

2
1vλ. By Remark 5.4.9, Fiw2 = 0, i = 1, 2 and

as g1σ1w2 = ζ2w2, g2σ2w2 = w2, Uw2 projects over L(ν ′), ν ′ as in Case 37. Let
L′(λ) = W/Uw2, then

71 = dimL(λ) ≤ dimL′(λ) = 108− dimUw2 ≤ 108− dimL(ν ′) = 71,

so Uw2 ' L(ν ′) and L′(λ) is irreducible. Now B34 is a basis of L′(λ) = L(λ) since
it spans a linear complement of Uw2 in W . Here we use the basis B37 of L(ν ′) in
Lemma 5.4.44 to compute Uw2.

Lemma 5.4.42. If λ ∈ I35, then dimL(λ) = 85. A basis of L(λ) is given by

B35 ={n(a, b, c, d, e) | b 6= 3}

−
(
{n(0, b, c, 2, e) | b 6= 3} ∪ {n(1, 2, 1, 2, 2), n(1, 0, 0, 2, 2), n(1, 0, 1, 2, e)}

)
.
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Proof. Set w1 = F2E2E
3
12vλ, w2 = F 2

1E
2
112E

2
1vλ. Then Fiwj = 0, i, j = 1, 2, by

Remarks 5.4.15 and 5.4.7. Let W = M(λ)/Uw1. Then B = {n(a, b, c, d, e) | b 6= 3}
is a basis ofW . As g1σ1w2 = ζ9w1, g2σ2w2 = w2, Uw2 projects over a simple module
L(µ), µ ∈ I44 and then E2

112E
3
12w2 6= 0. Thus E2

112E
3
12w2 is n(1, 2, 1, 2, 2) up to non-

zero scalar and there exists F ∈ U such that Fn(1, 2, 1, 2, 2) = w2. For each v ∈ W ,
v 6= 0, there exists Ev ∈ U such that Evv = n(1, 2, 1, 2, 2). As in the previous cases
we prove that Uw2 = Un(1, 2, 1, 2, 2), and this submodule is irreducible.

Set L′(λ) = M(λ)/N ′(λ). We claim that L′(λ) is irreducible. Notice that B35 is
a basis of L′(λ). Here we use the basis B44 of L(µ) in Lemma 5.4.51 to compute a
basis of Uw2.

By Corollary 5.3.2 there exists F ∈ U− such that Fn(1, 2, 1, 2, 1) = vλ, since

F12n(1, 0, 0, 0, 0) = 0, g1g2σ1σ2n(1, 0, 0, 0, 0) = −n(1, 0, 0, 0, 0),

F11212n(1, 2, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(1, 2, 0, 0, 0) = ζ4n(1, 2, 0, 0, 0),

F112n(1, 2, 1, 0, 0) = 0, g2
1g2σ

2
1σ2n(1, 2, 1, 0, 0) = ζ3n(1, 2, 1, 0, 0),

F1n(1, 2, 1, 2, 0) = 0, g1σ1n(1, 2, 1, 2, 0) = ζ8n(1, 2, 1, 2, 0).

Suppose that B35 is not linearly independent. Fix S = 0 a non-trivial linear combi-
nation, and consider the minimal element n(a, b, c, d, e) among those with non trivial
coe�cient and minimal N0-degree. Then if e = 2, then E1−a

2 E1−b
12 E1−c

11212E
2−d
112 E2 gives

n(1, 2, 1, 2, 1) up to a non-zero scalar.
Otherwise, E1−a

2 E2−b
12 E1−c

11212E
2−d
112 E

1−e
1 n(a, b, c, d, e), gives the same conclusion. But

this is a contradiction, so B35 is a basis of L′(λ). Arguing as in the other cases, L′(λ)
is irreducible.

Lemma 5.4.43. If λ ∈ I36, then dimL(λ) = 35. A basis of L(λ) is given by

B36 ={n(0, b, 0, d, e), n(0, 0, 1, 2, e), n(0, 0, 1, 0, e)}
− {n(0, 1, 0, 1, e), n(0, 2, 0, 2, e), n(0, 1, 0, 0, 2)}.

Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b) 14. Let W = M(λ)/W (λ),
w = n(0, 1, 0, 0, 2). Notice that Fiw = 0, i = 1, 2, g1σ1w = w, g2σ2 = ζ9w, so Uw
projects over an irreducible module L(µ), µ ∈ I15. Thus E2

12E11212E
2
112w 6= 0, so it

is n(0, 3, 1, 2, 2) up to non-zero scalar, and moreover there exist F ∈ U such that
Fn(0, 3, 1, 2, 2) = w. It implies that Uw = Un(0, 3, 1, 2, 2). For any v 6= 0 there
exist Ev such that Evv = n(0, 3, 1, 2, 2), so Uw is irreducible, and then Uw ' L(µ).

Let L′(λ) = M(λ)/UE2vλ +Uw ' W/Uw, so dim(L′(λ)) = 35 and B36 is a basis
of L′(λ), since it spans a complement of Uw in W . Here we use the basis B15 of
L(µ) in Lemma 5.4.22 to compute Uw.

By Corollary 5.3.2 there exist F ∈ U such that Fn(0, 3, 0, 2, 2) = vλ since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζn(0, 0, 0, 0, 0),

F112n(0, 3, 0, 0, 0) = 0, g2
1g2σ

2
1σ2n(0, 3, 0, 0, 0) = ζ11n(0, 3, 0, 0, 0),

F1n(0, 3, 0, 2, 0) = 0, g1σ1n(0, 3, 0, 2, 0) = ζ4n(0, 3, 0, 2, 0).

14Here λ1λ2 = ζ, but the relation in Remark 5.4.11 becomes trivial.
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As Ein(0, 3, 0, 2, 2) = 0 for i = 1, 2, we prove that for each v 6= 0, there exists Ev such
that Evv = n(0, 3, 0, 2, 2). Arguing as in the previous cases, L′(λ) is irreducible.

Lemma 5.4.44. If λ ∈ I37, then dimL(λ) = 37. A basis of L(λ) is given by

B37 = {n(0, b, 0, d, e), n(0, 0, 1, 0, 0), n(0, 3, 1, 0, e)} − {n(0, 3, 0, 2, e)}.

Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b) 15. Set

w = n(0, 1, 0, 1, 1)− ζn(0, 2, 0, 0, 2)− ζ10(1− ζ)2n(0, 0, 1, 0, 1).

Then Fiw = 0 inM(λ)/W (λ), so Uw+W (λ) is a proper submodule. We claim that
L′(λ) = M(λ)/W (λ) + Uw is simple. First we prove that L′(λ) is spanned by B37.
This follows from the following relations, obtained from E2w = E12w = E1E

3
12w = 0:

n(0, 1, 1, 0, 0) = (1 + ζ)ζ5n(0, 3, 0, 0, 1) + (1 + ζ)n(0, 2, 0, 1, 0),

n(0, 0, 1, 1, 0) = (1 + ζ)2
(
q21ζ

2n(0, 2, 0, 1, 1)− n(0, 1, 0, 2, 0)− q21(1 + ζ)n(0, 3, 0, 0, 2)
)
,

n(0, 3, 0, 2, 0) = ζ2(1− ζ)n(0, 3, 1, 0, 1).

By Corollary 5.3.2 there exists F ∈ U− such that Fm(0, 3, 1, 0, 2) = vλ, since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζ2n(0, 0, 0, 0, 0),

F11212n(0, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(0, 3, 0, 0, 0) = ζ3n(0, 3, 0, 0, 0),

F1n(0, 3, 1, 0, 0) = 0, g1σ1n(0, 3, 1, 0, 0) = ζ9n(0, 3, 1, 0, 0).

Using the previous relations and Lemma 4.0.1,

E2n(0, 3, 1, 0, 2) = q2
21ζ

4E112E11212E
3
12vλ = q4

21ζ
10E112E

2
12n(0, 1, 1, 0, 0) = 0,

and also E1n(0, 3, 1, 0, 2) = 0. Suppose that B37 is not linearly independent. Fix
S = 0 a non-trivial linear combination, let n(0, b, c, d, e) be the element with not zero
coe�cient minimal for the lexicographical order between the elements of minimal
N0-degree. By multiplying S either by E1−e

1 E2−d
112 E

3−b
12 if c = 0, or else by E2−e

1 E3−b
12

if c = 1, we obtain n(0, 3, 1, 0, 2) up to a non-zero scalar, a contradiction. Therefore
B37 is a basis of L′(λ).

Let W be a non-zero submodule of L′(λ), w ∈ W − 0. By a similar argument
there exists E ∈ U+ such that Ew = n(0, 3, 1, 0, 2), so n(0, 3, 1, 0, 2) ∈ W , but then
vλ ∈ W , so W = L′(λ) and L′(λ) is irreducible.

Lemma 5.4.45. If λ ∈ I38, then dimL(λ) = 11. A basis of L(λ) is given by

B38 ={n(0, b, c, 0, d)|b ≤ 1} − {n(0, 1, 1, 0, 2)}.

The action of Ei, Fi, i = 1, 2 is described in Table A.4.

15Here λ3
1λ

2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.
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Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b). Set w = F 2
1E112E

2
1vλ, so

F1w = F2w = 0 by Remark 5.4.5. Then Uw + W (λ) is a proper submodule. We
claim that L′(λ) = M(λ)/(Uw + W (λ)) is simple. We label the elements of B38 as
follows:

v0,0 = n(0, 0, 0, 0, 0), v1,0 = n(0, 0, 0, 0, 1), v2,0 = n(0, 0, 0, 0, 2), v1,1 = n(0, 1, 0, 0, 0),

v2,1 = n(0, 1, 0, 0, 1), v3,2 = n(0, 0, 1, 0, 0), v3,1 = n(0, 1, 0, 0, 2), v4,2 = n(0, 0, 1, 0, 1),

v4,3 = n(0, 1, 1, 0, 0), v5,2 = n(0, 0, 1, 0, 2), v5,3 = n(0, 1, 1, 0, 1).

Notice that vi,j ∈ L′(λ)iα1+jα2 . The following relations hold in L′(λ):

n(0, 0, 0, 1, 0) = (1− ζ3)v2,1, n(0, 1, 0, 1, 0) = ζ3v3,2

n(0, 0, 0, 2, 0) = ζ8q21(1− ζ3)v4,2, n(0, 2, 0, 0, 0) = n(0, 1, 1, 0, 2) = 0.

Then we prove that the vi,j satisfy equations in Table A.4 and L′(λ) is spanned by
B38. By Corollary 5.3.2 there exists F ∈ U− such that Fv5,3 = vλ, since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζ3n(0, 0, 0, 0, 0),

F11212n(0, 1, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(0, 1, 0, 0, 0) = ζ4n(0, 1, 0, 0, 0),

F1n(0, 1, 1, 0, 0) = 0, g1σ1n(0, 1, 1, 0, 0) = ζ8n(0, 1, 1, 0, 0).

Notice thatEiv5,3 = 0, i = 1, 2, and for (i, j) 6= (5, 3) there existsEi,j ∈ U(5−i)α1+(3−j)α2

such that Ei,jvi,j = v5,3. Now suppose that B38 is not linearly independent. Fix a
non-trivial linear combination S = 0. If (i, j) is a minimal element with non-trivial
coe�cient, then we may assume that this coe�cient is 1, so Ei,jS = v5,3, which is a
contradiction. Then B38 is a basis of L′(λ).

Let W 6= 0 be a submodule of L′(λ), w ∈ W − 0. By a similar argument there
exists E ∈ U+ such that Ew = v5,3. Then v5,3 ∈ W , so W = L′(λ) and L′(λ) is
irreducible.

Lemma 5.4.46. If λ ∈ I39, then dimL(λ) = 61. A basis of L(λ) is given by

B39 ={n(0, b, c, d, e)} −
(
{n(0, 3, c, 2, e), n(0, 2, 1, 2, e)} ∪ {n(0, 2, 0, 2, e) | e ≥ 1}

)
.

Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b) 16. Set W = M(λ)/W (λ)
and w′ = n(0, 3, 1, 2, 2). Notice that Eiw′ = 0, i = 1, 2, g1σ1w

′ = ζ9w′, g2σ2w
′ = w′,

so (Uw′)ϕ projects over an irreducible L(ν), ν ∈ I38. We claim that Uw′ is a proper
submodule. Otherwise Uw′ = W is irreducible since for any v ∈ W , v 6= 0, there
exists Ev ∈ U such that Evv = w′. If V ⊂ W is non-zero submodule, then w′ ∈ V
and Uv = W . But then Wϕ ' L(ν), a contradiction since they have di�erent
dimension.

16Here λ1λ2 = ζ4, but the relation in Remark 5.4.13 becomes trivial.
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If µ ∈ I31, then v = n(1, 1, 1, 2, 2) satis�es Eiv = 0, i = 1, 2, g1σ1v = ζ9v, g2σ2v =
1 so L(µ)ϕ ' L(λ) by Lemma 5.2.5, and then dimL(λ) = 61. Let L′(λ) = W/Uw′.
Then

61 = dimL(λ) ≤ dimL′(λ) ≤ dimW − dimL(ν) = 61,

so L′(λ) = L(λ) and Uw′ ' L(ν)ϕ. Thus Uw′ = Uw for w = F1F11212F12w
′ and B39

is a basis of L′(λ) since it spans a complement of Uw in W . Here we use the basis
B38 of L(ν) in Lemma 5.4.45 to compute (Uw′)ϕ.

Lemma 5.4.47. If λ ∈ I40, then dimL(λ) = 35. A basis of L(λ) is given by

B40 ={n(0, b, c, 0, e)} ∪ {n(0, b, c, 1, e) | b ≤ 1} ∪ {n(0, 3, 0, 2, e) | e ≤ 1}
− {n(0, 3, 1, 0, e)}.

Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b). Set W = M(λ)/W (λ).
By Remark 5.4.7, w = F 2

1E
2
112E

2
1vλ satis�es Fiw = 0, i = 1, 2. As g1σ1w = ζ11w,

g2σ2w = ζ8w, Uw projects over L(µ), µ ∈ I25. Thus E3
12E11212E

2
1w 6= 0, but this vec-

tor is n(0, 3, 1, 2, 2) up to a non-zero scalar since W12α1+7α2 = kn(0, 3, 1, 2, 2). More-
over, there exists F ∈ U such that Fn(0, 3, 1, 2, 2) = w, so Uw ⊆ Un(0, 3, 1, 2, 2).
As also E2E

3
12E11212E

2
1w = ζ8q4

12n(0, 3, 1, 2, 2), we have that Uw = Un(0, 3, 1, 2, 2).
For any v ∈ W , v 6= 0, there exists Ev ∈ U such that Evv = n(0, 3, 1, 2, 2), so if
V ⊂ Uw is a submodule, V 6= 0, then n(0, 3, 1, 2, 2) ∈ V and then V = Uw. Thus
Uw ' L(µ).

Set L′(λ) = W/Uw = M(λ)/Uw + W (λ), so dimL′(λ) = 72 − 37 = 35. Notice
B40 is a basis of L′(λ), since it spans a complement of Uw in W . Here we use the
basis B25 of L(ν) in Lemma 5.4.32 to compute Uw.

By Corollary 5.3.2 there exists F ∈ U− such that Fn(0, 3, 0, 2, 1) = vλ, since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζ5n(0, 0, 0, 0, 0),

F112n(0, 3, 0, 0, 0) = 0, g2
1g2σ

2
1σ2n(0, 3, 0, 0, 0) = ζn(0, 3, 0, 0, 0),

F1n(0, 3, 0, 2, 0) = 0, g1σ1n(0, 3, 0, 2, 0) = ζ8n(0, 3, 0, 2, 0).

Note that Ein(0, 3, 0, 2, 1) = 0, i = 1, 2. For any b ∈ B40 there exists Eb ∈ U
such that Ebb = n(0, 3, 0, 2, 1). Indeed we choose Eb = E1−e

1 if b = n(0, 3, 0, 2, e);
Eb = E3−b

12 E1−c
11212E

2−e
1 if b = n(0, b, c, 0, e) and use that n(0, 3, 1, 0, 2) is n(0, 3, 0, 2, 1)

up to a non-zero scalar; Eb = E1−b
12 E1−c

11212E2E
2−e
1 if b = n(0, b, c, 1, e) and use that

n(0, 1, 1, 2, 0) is n(0, 3, 0, 2, 1) up to a non-zero scalar. Arguing as in previous cases,
L′(λ) is irreducible.

Lemma 5.4.48. If λ ∈ I41, then dimL(λ) = 37. A basis of L(λ) is given by

B41 = {n(0, b, c, d, 0)|b ≤ 2} ∪ {n(0, b, c, d, e)| b ≤ 1, e 6= 0}
− {n(0, 1, c, d, 2), n(0, 0, 1, 2, 2)|d 6= 0}.

Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b).
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Set w = F 2
1F

2
112E11212E

2
112E

2
1vλ, so it satis�es the equations F1w = F2w = 0 by

Remark 5.4.9. Then Uw + W (λ) is a proper submodule. We claim that L′(λ) =
M(λ)/Uw +W (λ) is irreducible. From w = E2w = E2

1w = E12E11212E
2
1w = 0:

n(0, 2, 0, 0, 1) = n(0, 0, 1, 0, 0) + ζ3n(0, 1, 0, 1, 0), n(0, 3, 0, 0, 0) = 0,

n(0, 1, 0, 1, 0) = ζ3n(0, 0, 1, 0, 2), n(0, 0, 1, 2, 2) = 0.

From the �rst relation we write n(0, b, c, d, e), b ≥ 2, e 6= 0, as a linear combina-
tion of elements of B41. From the second and the fourth relations we know that
n(0, 3, c, d, e) = n(0, 0, 1, 2, 2) = 0. From the third relation we write n(0, 1, c, d, 2),
d 6= 0, as a linear combination of elements of B41. Then L′(λ) is spanned by B41.

By Corollary 5.3.2 there exists F ∈ U− such that Fn(0, 2, 1, 2, 0) = vλ, since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = −n(0, 0, 0, 0, 0),

F11212n(0, 2, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(0, 2, 0, 0, 0) = ζ8n(0, 2, 0, 0, 0),

F112n(0, 2, 1, 0, 0) = 0, g2
1g2σ

2
1σ2n(0, 2, 1, 0, 0) = ζ7n(0, 2, 1, 0, 0).

Notice that

E1n(0, 2, 1, 2, 0) = n(0, 2, 1, 2, 1) = q4
12ζ

4E12n(0, 1, 1, 2, 1) = 0,

E2n(0, 2, 1, 2, 0) = q9
21ζ

9n(1, 2, 1, 2, 0) = 0.

so Ein(0, 2, 1, 2, 0) = 0, i = 1, 2. Now suppose that B41 is not linearly independent.
Fix a non-trivial linear combination S which is zero. Between the elements of min-
imal N0-degree with non-trivial coe�cient, take the element n(0, b, c, d, e) minimal
for the lexicographical order. If e = 2 and c = 1, then d ≤ 1 and E1−d

112 E
2−b
12 E2S

gives n(0, 2, 1, 2, 0) up to a non-zero scalar. If e = 2 and c = 0, then E2−d
112 E

2−b
12 E2S

gives n(0, 2, 1, 2, 0) up to a non-zero scalar. If e = 1, then E2−d
112 E

1−c
11212E

1−b
12 E2S

gives n(0, 2, 1, 2, 0) up to a non-zero scalar. If e = 0, then E2−d
112 E

1−c
11212E

2−b
12 S gives

n(0, 2, 1, 2, 0) up to a non-zero scalar. In any case we obtain a contradiction. There-
fore B41 is a basis of L′(λ).

Let W 6= 0 be a submodule of L′(λ), w ∈ W − 0. By a similar argument there
exists E ∈ U+ such that Ew = n(0, 2, 1, 2, 0). Then n(0, 2, 1, 2, 0) ∈ W , so vλ ∈ W
and W = L′(λ). Therefore L′(λ) is irreducible.

Lemma 5.4.49. If λ ∈ I42, then dimL(λ) = 71. A basis of L(λ) is given by

B42 ={n(0, b, c, d, e)|(b, c, d, e) 6= (3, 1, 2, 2)}.

Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b)17. Let w = n(0, 3, 1, 2, 2),
then E1w = 0, E2w ∈ W (λ), F2w = 0 and

F1w = (1 + ζ4)E1(ζ8σ−1
1 − g1)n(0, 3, 1, 2, 0)

= ζ2λ(σ1)q−7
21 (ζ8q−10

11 − q10
11q

7
12q

7
21λ1)n(0, 3, 1, 2, 1) = 0,

17Here λ1λ2 = ζ7, but the relation in Remark 5.4.15 becomes trivial.

56



so Uw = kw. Thus W (λ) + Uw is a proper submodule. We claim that L′(λ) =
M(λ)/W (λ) + Uw is irreducible. Note that B42 is a basis of L′(λ). By Corollary
5.3.2 there exists F ∈ U− such that Fn(0, 3, 1, 2, 1) = vλ, since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζ7n(0, 0, 0, 0, 0),

F11212n(0, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(0, 3, 0, 0, 0) = −n(0, 3, 0, 0, 0),

F112n(0, 3, 1, 0, 0) = 0, g2
1g2σ

2
1σ2n(0, 3, 1, 0, 0) = ζ10n(0, 3, 1, 0, 0),

F1n(0, 3, 1, 2, 0) = 0, g1σ1n(0, 3, 1, 2, 0) = ζ8n(0, 3, 1, 2, 0),

Also, for any n(0, b, c, d, e) ∈ B42, if e 6= 2, we have thatE1−e
1 E2−d

112 E
1−c
11212E

3−b
12 n(0, b, c, d, e)

gives n(0, 3, 1, 2, 1) up to non-zero scalar. And if e = 2 we have that:

E2−d
112 E

1−c
11212E

2−b
12 E2n(0, b, c, d, 2)ifb 6= 3

E1−d
112 E

1−c
11212E

3−b
12 E12n(0, b, c, d, 2)ifd 6= 2

E1E
2−d
112 E

3−b
12 E112n(0, b, c, d, 2)ifc 6= 1

gives n(0, 3, 1, 2, 1) up to non-zero scalar. From here, every w ∈ L′(λ), w 6= 0
generates L′(λ), so L′(λ) is irreducible.

Lemma 5.4.50. If λ ∈ I43, then dimL(λ) = 25. A basis of L(λ) is given by

B43 = {(n(0, b, c, d, e)|e 6= 2)} −
(
{n(0, 2, 1, 2, 0)}

∪ {n(0, b, c, d, 1)|b ≥ 1} ∪ {n(0, 3, c, d, 0)|d ≥ 1}
)
.

Proof. W (λ) is a submodule ofM(λ) by Lemma 5.1.1(b). Note that w = n(0, 0, 0, 0, 2)
satis�es Fiw = 0, i = 1, 2, g1σ1w = w, g2σ2w = ζ10w, so Uw projects over a mod-
ule L(ν), where ν corresponds to the case 17. Then w′ := E3

12E11212E
2
112w 6= 0 by

Lemma 5.2.5, so w′ is n(0, 3, 1, 2, 2) up to a non-zero scalar and there exists F ∈ U
such that Fw′ = w. For any 0 6= v ∈ W there exists Ev ∈ U such that Evv = w′.
Therefore, if 0 6= V ⊂ Uw is a submodule then w′ ∈ Uw. This implies V = Uw, and
Uw ' L(ν).

Let L′(λ) = M(λ)/W (λ)+W2(λ). Thus B43 is a basis of L′(λ) since it spans a lin-
ear complement of Uw inW ; here we use the basis B17 from Lemma 5.4.24 to describe
a basis of Uw. By Corollary 5.3.2 there exists F ∈ U such that Fn(0, 3, 1, 0, 2) = vλ
since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζ3n(0, 0, 0, 0, 0),

F11212n(0, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(0, 3, 0, 0, 0) = ζ9n(0, 3, 0, 0, 0),

F1n(0, 3, 1, 0, 0) = 0, g1σ1n(0, 3, 1, 0, 0) = ζ3n(0, 3, 1, 0, 0).

Notice that n(0, 3, 1, 0, 2) is n(0, 1, 1, 2, 0) up to a non-zero scalar, and for each b ∈ B
there exists Eb ∈ U such that Ebb = n(0, 1, 1, 2, 0). Arguing as in the previous cases,
L′(λ) is irreducible.
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Lemma 5.4.51. If λ ∈ I44, then dimL(λ) = 23. A basis of L(λ) is given by

B44 ={n(0, b, 0, d, e), n(0, 0, 0, 0, 2)|e ≤ 1} − {n(0, 3, 0, 1, 1), n(0, 3, 0, 2, 1)}.

Proof. W (λ) is a submodule ofM(λ) by Lemma 5.1.1(b) 18. Set w = ζ4n(0, 0, 0, 1, 1)+
n(0, 1, 0, 0, 2). Then F2w = 0 and F1w ∈ W (λ) by direct computation, so Uw+W (λ)
is a proper submodule. We claim that L′(λ) = M(λ)/W (λ) +Uw is simple and B44

is a basis of L′(λ). Applying repeatedly E1, E2 over w we obtain

n(0, 0, 1, 0, 0) = (1 + ζ11)n(0, 1, 0, 1, 0) + ζ5n(0, 2, 0, 0, 1)),

n(0, 0, 0, 1, 2) = n(0, 2, 1, 0, 2) = n(0, 3, 0, 1, 2) = 0,

n(0, 2, 0, 0, 2) = −n(0, 1, 0, 1, 1),

n(0, 1, 1, 0, 0) = (1− ζ)ζ4n(0, 3, 0, 0, 1)− ζ4n(0, 2, 0, 1, 0)

n(0, 0, 1, 1, 0) = q21ζ
10n(0, 2, 0, 1, 1) + (1 + ζ11)n(0, 1, 0, 2, 0),

n(0, 3, 0, 0, 2) = q12(ζ − 1)n(0, 1, 0, 2, 0) + q12ζ
11(3)ζ7n(0, 2, 0, 1, 1),

n(0, 2, 1, 0, 0) = ζ9n(0, 3, 0, 1, 0),

n(0, 1, 1, 1, 1) = ζ10n(0, 2, 0, 2, 1).

Using these relations we prove that L′(λ) is spanned by B44. By Corollary 5.3.2 and

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζ9n(0, 0, 0, 0, 0),

F112n(0, 3, 0, 0, 0) = 0, g2
1g2σ

2
1σ2n(0, 3, 0, 0, 0) = ζ9n(0, 3, 0, 0, 0),

there exists F ∈ U− such that Fn(0, 3, 0, 2, 0) = vλ. From U5α1+4α2w = 0 we have
that E1n(0, 3, 0, 2, 0) = n(0, 3, 0, 2, 1) = 0, and by Lemma 4.0.1 E2n(0, 3, 0, 2, 0) =
0. Now suppose that B44 is not linearly independent. Take a non-trivial linear
combination S which is zero, and take the minimal element n(0, b, 0, d, e) among
those with non trivial coe�cient, between the elements of minimal N0-degree. If
this element is n(0, 0, 0, 0, 2), then compute E1−d

112 E
3−b
12 E2S. If it is n(0, b, 0, d, 1), then

compute E1−d
112 E

3−b
12 E2E1S. Finally if it is n(0, b, 0, d, 0), then compute E2−d

112 E
3−b
12 S. In

any case we obtain n(0, 3, 0, 2, 0) up to a non-zero scalar, so we have a contradiction.
Therefore B44 is a basis of L′(λ).

Let W 6= 0 be a submodule of L′(λ), w ∈ W − 0. By a similar argument,
Ew = n(0, 3, 0, 2, 0) for some E ∈ U+, so n(0, 3, 0, 2, 0) ∈ W , but then vλ ∈ W , so
W = L′(λ); then L(λ) is irreducible.

Lemma 5.4.52. If λ ∈ I45, then dimL(λ) = 49. A basis of L(λ) is given by

B45 ={n(0, b, c, d, e)} − {n(0, b, c, 2, e), n(0, 0, 1, 2, e), n(0, 0, 1, 0, 2), n(0, 3, 1, 1, 2) | b 6= 0}.

Proof. Let ν ∈ I22. By Lemma 5.4.29, w̃ = m(0, 3, 1, 1, 1) ∈ L(ν) satis�es Eiw̃ = 0,
i = 1, 2, g1σ1w̃ = ζ2w̃, g2σ2w̃ = w̃; by Lemma 5.2.4, L(ν)ϕ = L(λ). In particular,
dimL(λ) = 49.

18Here λ2
1λ2 = −1, but the relation in Remark 5.4.5 becomes trivial.
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W (λ) is a submodule of M(λ) by Lemma 5.1.1(b) 19. Set W = M(λ)/W (λ),
so dimW = 72 since {n(0, b, c, d, e)} is a basis of W . Set w = n(0, 1, 0, 1, 2) −
ζ11(3)ζ7n(0, 0, 1, 0, 2). As Fiw = 0, i = 1, 2, g1σ1w = w, g2σ2w = ζ7w, Uw projects
over L(µ), µ ∈ I13. Set L′(λ) = W/U . Note that 49 = dimL(λ) ≤ dimL′(λ) =
dimW − dimUw ≤ dimW − dimL(µ) = 49, so L(λ) = L(λ′) is irreducible, and
Uw ' L(µ). Now B45 is a basis of L′(λ) since it spans a linear complement of Uw
in W . Here we use the basis B13 of L(µ) in Lemma 5.4.20 to compute Uw.

Lemma 5.4.53. If λ ∈ I46, then dimL(λ) = 47. A basis of L(λ) is

B46 = {n(0, b, c, d, e), n(0, 1, 0, 2, 0), n(0, 3, 1, 2, 0)|d ≤ 1}
− {n(0, 1, 1, 0, 2), n(0, 3, 0, 0, 1), n(0, 1, 1, 0, 1)}.

Proof. W (λ) is a submodule of M(λ) by Lemma 5.1.1(b). By Remark 5.4.7, w =
F 2

1E
2
112E

2
1vλ satis�es that F1w = F2w = 0. Then Uw+W (λ) is a proper submodule.

We claim that L′(λ) = M(λ)/Uw +W (λ) is irreducible.
Applying repeteadly E1, E2 over w we obtain:

n(0, 0, 0, 2, 0) = q21ζ
5n(0, 0, 1, 0, 1) + q21ζ

9n(0, 1, 0, 1, 1) + q21(1 + ζ5)n(0, 2, 0, 0, 2),

n(0, 3, 0, 0, 1) = ζ10(ζ2 + 1)n(0, 1, 1, 0, 0) + ζ(ζ2 + 1)n(0, 2, 0, 1, 0),

n(0, 1, 1, 0, 1) = ζ9n(0, 2, 0, 1, 1) + ζ7n(0, 3, 0, 0, 2),

n(0, 2, 0, 2, 0) = q21
(ζ2 + 1)ζ2

3
n(0, 3, 0, 1, 1)− ζ9n(0, 1, 1, 1, 0),

n(0, 1, 0, 2, 2) = ζ2n(0, 0, 1, 1, 2),

n(0, 0, 1, 2, 0) = q3
21(ζ − 1)n(0, 2, 1, 0, 2)− q3

21

(ζ2 + 1)

3
n(0, 3, 0, 1, 2),

n(0, 3, 0, 2, 0) = ζ11(4)ζ7n(0, 2, 1, 1, 0)− q21ζ
2(1− ζ)n(0, 3, 1, 0, 1),

n(0, 1, 1, 2, 0) = q2
21(ζ11 − 1)n(0, 2, 1, 1, 1)−

q3
21(4)ζ7

3
n(0, 3, 0, 2, 1),

n(0, 2, 1, 2, 0) =
q2

21(ζ8 − 1)

3
n(0, 3, 1, 1, 1).

Thus L′(λ) is spanned by B46, and then dimL′(λ) ≤ 47.
By Corollary 5.3.2 there exists F ∈ U− such that Fn(0, 3, 1, 2, 0) = vλ, since

F12n(0, 0, 0, 0, 0) = 0, g1g2σ1σ2n(0, 0, 0, 0, 0) = ζ11n(0, 0, 0, 0, 0),

F11212n(0, 3, 0, 0, 0) = 0, g3
1g

2
2σ

3
1σ

2
2n(0, 3, 0, 0, 0) = −n(0, 3, 0, 0, 0),

F112n(0, 3, 1, 0, 0) = 0, g2
1g2σ

2
1σ2n(0, 3, 1, 0, 0) = −n(0, 3, 1, 0, 0).

Notice that w′ = n(0, 3, 1, 2, 0) satis�es E1w
′ = E2w

′ = 0, g1σ1w
′ = w′, g2σ2w

′ =
ζ2w′, so (Uw′)φ projects over a simple module L(ν), ν ∈ I17. Then dimL′(µ) ≥
dimUw′ ≥ dimL(ν) = 47. Thus dimL(λ) = 47 and B46 is a basis of L′(λ). Let

19Here λ3
1λ

2
2 = −1, but the relation in Remark 5.4.9 becomes trivial.
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W 6= 0 be a submodule of L′(λ), v ∈ W − 0. Arguing as in previous cases, there
exists E ∈ U+ such that Ev = m(0, 3, 1, 2, 0), so m(0, 3, 1, 2, 0) ∈ W . Then vλ ∈ W
and W = L′(λ), so L′(λ) is irreducible.

Lemma 5.4.54. If λ ∈ I47, then dimL(λ) = 1 and Eivλ = 0, Fivλ = 0, gσvλ =
λ(gσ)vλ.

Proof. Let N ′(λ) = W (λ) + W1(λ). By Corollary 5.1.1 N ′(λ) is a proper U -
submodule. By direct computation, N ′(λ) =

∑
β 6=0 M(λ)β. Therefore L′(λ) =

M(λ)/N ′(λ) is one-dimensional and irreducible.

We recall that λi = λ(giσi), i = 1, 2.
This way we enunciate the main result of this work:

Theorem 5.4.55. 1. The map Λ 7→ L(Λ) gives a bijective correspondence be-

tween Γ̂ and the irreducible representations of U .

2. The structure of L(λ) depends on the values of λi, i = 1, 2. The dimension
and the maximal degree of L(λ) appear in Table 5.1 and a basis description is
given in Lemmas 5.4.2-5.4.54.
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Table 5.1: Dimensions and highest degrees of irreducible modules

Case Conditions on λi dimL(λ) max. degree L(λ)ϕ

1 λ1 6= 1, ζ8, λ2
1λ2 6= −1, ζ10, λ3

1λ
2
2 6= −1, 144 (12, 8) Case 1

λ1λ2 6= ζ, ζ4, ζ7, λ2 6= 1
2 λ1 = 1, λ2 6= 1, ζ, ζ4, ζ7, ζ3, ζ9,−1, ζ10 48 (10, 8) Case 2
3 λ1 = ζ8, λ2 6= 1, ζ5, ζ8, ζ11, ζ3, ζ9, ζ2,−1 96 (11, 8) Case 3
4 λ2

1λ2 = −1, λ1 6= ±1, ζ8, ζ10, ζ4, ζ2 48 (8, 6) Case 4
5 λ2

1λ2 = ζ10, λ1 6= ±1, ζ8, ζ10, ζ4, ζ2 96 (10, 7) Case 5
6 λ3

1λ
2
2 = −1, λ1 6= ±1, ζ8, ζ10, ζ4, ζ2 72 (9, 6) Case 6

7 λ1λ2 = ζ, λ1 6= 1, ζ8, ζ, ζ4, ζ9 36 (9, 5) Case 7
8 λ1λ2 = ζ4, λ1 6= 1, ζ8, ζ4, ζ2,−1, ζ10 72 (10, 6) Case 8
9 λ1λ2 = ζ7, λ1 6= 1, ζ8, ζ7, ζ4, ζ11 108 (11, 7) Case 9
10 λ1 /∈ G12, λ2 = 1 72 (12, 7) Case 10
11 λ1 = 1, λ2 = ζ 11 (5, 4) Case 12
12 λ1 = 1, λ2 = ζ4 11 (5, 4) Case 11
13 λ1 = 1, λ2 = ζ7 23 (7, 5) Case 44
14 λ1 = 1, λ2 = ζ3 25 (7, 5) Case 28
15 λ1 = 1, λ2 = ζ9 37 (9, 6) Case 41
16 λ1 = 1, λ2 = −1 37 (8, 6) Case 30
17 λ1 = 1, λ2 = ζ10 47 (10, 7) Case 46
18 λ1 = ζ8, λ2 = ζ5 11 (5, 3) Case 38
19 λ1 = ζ8, λ2 = ζ8 35 (8, 5) Case 40
20 λ1 = ζ8, λ2 = ζ11 71 (11, 7) Case 42
21 λ1 = ζ8, λ2 = ζ3 61 (9, 6) Case 32
22 λ1 = ζ8, λ2 = ζ9 49 (9, 6) Case 45
23 λ1 = ζ8, λ2 = ζ2 47 (8, 6) Case 29
24 λ1 = ζ8, λ2 = −1 85 (10, 7) Case 35
25 λ1 = ζ11, λ2 = ζ8 37 (8, 5) Case 37
26 λ1 = ζ5, λ2 = ζ8 25 (8, 5) Case 43
27 λ1 = ζ4, λ2 = ζ9 35 (9, 5) Case 36
28 λ1 = ζ9, λ2 = ζ4 25 (7, 5) Case 14
29 λ1 = −1, λ2 = −1 47 (8, 6) Case 23
30 λ1 = ζ2, λ2 = ζ2 37 (8, 6) Case 16
31 λ1 = −1, λ2 = ζ10 61 (10, 6) Case 39
32 λ1 = ζ10, λ2 = −1 61 (9, 6) Case 21
33 λ1 = ζ2, λ2 = −1 71 (9, 6) Case 34
34 λ1 = ζ4, λ2 = ζ3 71 (9, 6) Case 33
35 λ1 = ζ3, λ2 = ζ4 85 (10, 7) Case 24
36 λ1 = ζ, λ2 = 1 35 (9, 5) Case 27
37 λ1 = ζ2, λ2 = 1 37 (8, 5) Case 25
38 λ1 = ζ3, λ2 = 1 11 (5, 3) Case 18
39 λ1 = ζ4, λ2 = 1 61 (10, 6) Case 31
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Case Conditions on λi dimL(λ) max. degree L(λ)ϕ

40 λ1 = ζ5, λ2 = 1 35 (8, 5) Case 19
41 λ1 = −1, λ2 = 1 37 (9, 6) Case 15
42 λ1 = ζ7, λ2 = 1 71 (11, 7) Case 20
43 λ1 = ζ8, λ2 = 1 25 (8, 5) Case 26
44 λ1 = ζ9, λ2 = 1 23 (7, 5) Case 13
45 λ1 = ζ10, λ2 = 1 49 (9, 6) Case 22
46 λ1 = ζ11, λ2 = 1 47 (10, 7) Case 17
47 λ1 = 1, λ2 = 1 1 (0, 0) Case 47

Proof. The algebra U satis�es the conditions on [RS, Section 2], so [RS, Corollary
2.6] applies and (1) follows since all the modules L(λ), λ ∈ Γ̂, are �nite-dimensional.
For (2) we use Lemmas 5.4.2-5.4.54.

Example 5.4.56. Applying Theorem 5.4.55 to the Example 4.1.4 we get that:

• There are 67 simple modules of dimension 144.

• There are 7 simple modules of dimension 108.

• There are 10 simple modules of dimension 96.

• There are 2 simple modules of dimension 85.

• There are 6 simple modules of dimension 72.

• There are 4 simple modules of dimension 71.

• There are 4 simple modules of dimension 61.

• There are 2 simple modules of dimension 49.

• There are 10 simple modules of dimension 48.

• There are 4 simple modules of dimension 47.

• There are 6 simple modules of dimension 37.

• There are 7 simple modules of dimension 36.

• There are 4 simple modules of dimension 35.

• There are 4 simple modules of dimension 25.

• There are 2 simple modules of dimension 23.

• There are 4 simple modules of dimension 11.

• There is one simple module of dimension 1.

Note that I6 and I10 are empty.
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Appendix A

Explicit formulas for some

irreducible U-modules

Table A.1: Irreducible modules for λ ∈ I11

w E1 · w E2 · w λ(g−1
1 )F1 · w λ(g−1

2 )F2 · w
v0,0 0 v0,1 0 0
v0,1 v1,1 0 0 (ζ11 − 1)v0,0

v1,1 v2,1 0 q12(ζ − 1)v0,1 0
v2,1 0 v2,2 q12ζ

8(1 + ζ3)v1,1 0
v2,2 v3,2 0 0 q2

21(1− ζ)v2,1

v3,2 v4,2 v3,3 q2
12(ζ2 − 1)v2,2 0

v4,2 0 v4,3 2q2
12(ζ2 − 1)v3,2 0

v3,3 q12
ζ8(ζ3−1)

2
v4,3 0 0 q3

21(ζ2 − 1)v3,2

v4,3 v5,3 0 2q2
12(ζ2 − 1)v3,3 q4

21(ζ3 − 1)v4,2

v5,3 0 v5,4 q3
12ζ

8(1− ζ11)v4,3 0
v5,4 0 0 0 q5

21(ζ11 + 1)v5,3
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Table A.2: Irreducible modules for λ ∈ I12

w E1 · w E2 · w λ(g−1
1 )F1 · w λ(g−1

2 )F2 · w
v0,0 0 v0,1 0 0
v0,1 v1,1 0 0 (ζ10 + 1)v0,0

v1,1 v2,1 v1,2 q12(ζ − 1)v0,1 0
v2,1 0 v2,2 q12ζ

8(1 + ζ3)v1,1 0
v1,2 ζ11(1 + ζ3)q12v2,2 0 0 q21(1 + ζ3)ζ4v1,1

v2,2 v3,2 0 q12(ζ3 + 1)ζ8v1,2 −q2
2,1v2,1

v3,2 0 v3,3 q2
12ζ

10v2,2 0
v3,3 0 0 0 q3

21ζ
3(1− ζ)v3,2

v4,3 ζ9q12v5,3 0 q4
12ζ(3)ζ11v3,3 0

v5,3 0 v5,4 −q2
12(1 + ζ3)v4,3 0

v5,4 0 0 0 q5
21(1− ζ)ζ4v5,3

Table A.3: Irreducible modules for λ ∈ I18

w E1 · w E2 · w λ(σ1)F1 · w λ(g2)−1F2 · w
v0,0 v1,0 v0,1 0 0
v1,0 0 q21ζ

9(4)ζv1,1 (1 + ζ2)v0,0 0
v0,1 ζ8(4)ζv1,1 0 0 (ζ7 − 1)v0,0

v1,1
q12ζ4(4)ζ7

3
v2,1 0 q12(ζ − 1)v0,1 (ζ11 − 1)v1,0

v2,1 0 q2
21ζ

10(4)ζv2,2 (1− ζ4)v1,1 0

v2,2 (1− ζ4)v3,2 0 0
−(1+ζ2)(3)ζ7

3
v2,1

v3,2 v4,2 q12ζ
10(4)ζv3,3 ζ10(4)ζv2,2 0

v4,2 0 v4,3 q2
12ζ(ζ + 1)v3,2 0

v3,3
q412ζ

7(4)ζ
3

v4,3 0 0 ζ8−1
3
v3,2

v4,3 v5,3 0 q3
12(ζ11 + 1)(4)2

ζv3,3 q4
21(ζ11 − 1)v4,2

v5,3 0 0 q3
12ζ

4v4,3 0
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Table A.4: Irreducible modules for λ ∈ I38

w E1 · w E2 · w λ(g−1
1 )F1 · w λ(g−1

2 )F2 · w
v0,0 v1,0 0 0 0
v1,0 v2,0 ζ7q21v1,1 (1− ζ3)v0,0 0
v2,0 0 ζ8q2

21(1 + ζ3)v2,1 ζ7(1 + ζ)v1,0 0
v1,1 v2,1 0 0 (ζ11 − 1)v1,0

v2,1 v3,1 0 q12ζ
8v1,1 (ζ11 − 1)v2,0

v3,1 0 q2
21ζv3,2 q12ζ

2v2,1 0
v3,2 v4,3 0 0 q21ζ

11(1− ζ3)v3,1

v4,2 v5,2 q2
21ζ

10v4,3 q2
12(ζ11 − 1)v3,2 0

v5,2 0 q3
21(3)ζv5,3 q2

12ζ
8(1 + ζ)v4,2 0

v4,3 v5,3 0 0 q2
21ζ

10(3)ζ11v4,2

v5,3 0 0 q3
12ζ

8(1 + ζ2)v4,3 q2
21ζ

10(3)ζ11v5,2
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Appendix B

Diagrams for some irreducible

U-modules

B.1

We give some diagrams that refer to the rank lattice of homogeneous elements
for some irreducible U -modules to explicit the relations between dual modules and
understand the action of ϕ on the homogeneous elements on each rank (a, b) =
aα1 + bα2. The basic diagram of possible rank distribution is given in B.1
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Figure B.1:

By Lemma 5.2.5, the modules U and Uϕ have the same maximal element and
their rank lattice are a 180◦ rotation of each other, as we can see in next example.

Example B.1.1. If λ ∈ I11, then dimL(λ) = 11 and L(λ)ϕ is as in Case 12. The
rank diagram of Cases 11 and 12 are given below.
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Case 11, λ1 = 1, λ2 = ζ

×
4

•

×
3

• • •

×
2

• • •

•
1

• •

•
0

×
1

×
2

×
3

×
4

×
5

Case 12, λ1 = 1, λ2 = ζ4

×
4

•

×
3

• • •

×
2

• • •

•
1

• •

•
0

×
1

×
2

×
3

×
4

×
5

There is another relation we can identify on lattices, given by next example.

Example B.1.2. If λ ∈ I15, we have that M(λ)/UE1vλ = W , because λ1 = 1.
Besides that, we can see in 5.4.22, using Lemma 5.2.4, that (Uw′)ϕ projects over an

71



irreducible module L(ν) as in case 11, with w′ = m(1, 3, 1, 2, 0). Therefore we can
have the rank lattice of this Case in the following way: B.2 shows the basic rank
lattice for W = M(λ)/UE1vλ and using the diagram from Case 11 it annihilates
elements from the top, using a 180◦ rotation of Case 11's rank lattice as we can see
in B.3.

Figure B.2:
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Figure B.3:
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Appendix C

Glossary

Symbol Description

k Algebraically closed �eld of characteristic zero
GN Group of N -roots of unity in k
G′N Subset of GN of primitive roots of order N
Ĝ Group of multiplicative characters of a group G
Z(G) Center of G
S Antipode for a Hopf Algebra
G(H) Set of grouplike elements of H
RepH Tensor category of �nite-dimensional representations of H
kG
kGYD Category of Yetter-Drinfeld modules over G
B(V ) Nichols algebra of V
D(H) Drinfeld double of H
U = U(Dred) Drinfeld double of B(V )#kΛ
M(λ) Verma module associated to λ
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