
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

ÁDRIA BARROS DE OLIVEIRA

Fault tolerance characterization of RISC-V
processors in SRAM-based FPGAs for

aerospace applications

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Microelectronics

Advisor: Profa. Dra. Fernanda Lima Kastensmidt

Porto Alegre
May 2023



CIP — CATALOGING-IN-PUBLICATION

Oliveira, Ádria Barros de

Fault tolerance characterization of RISC-V processors in
SRAM-based FPGAs for aerospace applications / Ádria Barros
de Oliveira. – Porto Alegre: PGMICRO da UFRGS, 2023.

194 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2023. Advisor: Fernanda Lima Kastensmidt.

1. RISC-V. 2. Rocket. 3. NOEL-V. 4. Soft processor.
5. SRAM-based FPGAs. 6. Fault tolerance. 7. Fault injection.
8. SEE. 9. Heavy ions. 10. Protons. I. Kastensmidt, Fernanda
Lima. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Coragem é seguir o coração mesmo com medo. É abraçar as vulnerabilidades

e saber que o resultado das nossas ações não nos define.”

— ELISAMA SANTOS





ACKNOWLEDGMENT

First, and more importantly, I thank Jeckson, my partner, friend, and love. Thank

you for all the support, care, and love. You held my hand during the most challenging

times and helped me to have the strength to complete this thesis.

All gratitude and love to my parents and grandmothers for believing in me since

always. I owe you everything.

Many thanks to my advisor for helping with the development of this thesis.

Thanks to CAPES, CNPq, and FAPERGS for supporting education in Brazil.

Thanks to PGMICRO/UFRGS, LAFN-USP, and RADNEXT for making this thesis pos-

sible. Thanks to Frontgrade Gaisler for supporting this thesis.

Many thanks to all the friends that I have made at UFRGS and Gaisler.





ABSTRACT

Aerospace applications, such as small satellites, demand a certain level of reliability due

to Single Event Effects (SEE). At the same time, Commercial Off-The-Shelf (COTS)

devices are frequently used in New Space missions. In this context, using soft proces-

sors implemented in COTS SRAM-based Field Programmable Gate Arrays (FPGAs) re-

quires design flexibility to apply the most suitable fault tolerance techniques for improv-

ing the system’s reliability. Upsets in the FPGA configuration memory can be persis-

tent. They may change the architectural implementation of the soft processor, which can

cause control-flow errors, leading to Single Event Functional Interrupt (SEFI), and wrong

computations, defined as Silent Data Corruptions (SDCs). This thesis aims to character-

ize the SEE susceptibility of RISC-V soft processors embedded in SRAM-based FPGAs

and understand how combining fault tolerance techniques can significantly reduce sys-

tem vulnerability. The investigation addresses the problems of using soft processors in

SEE-prone environments and the complexities and trade-offs behind mitigation methods.

The case studies are the open source RISC-V Rocket and NOEL-V soft processors and

the commercial fault tolerant RISC-V NOEL-VFT. The processors are embedded in the

Xilinx Zynq-7000 APSoC (28 nm CMOS), Zynq UltraScale+ MPSoC (16 nm FinFET),

and Kintex UltraScale (20 nm CMOS), respectively. Protection is applied at the design

level targeting the FPGA configuration memory, processor core, and embedded memo-

ries. Combined techniques such as Triple Modular Redundancy (TMR), scrubbing, peri-

odic reset, watchdog, and memory refresh are used during the investigation. An external

FPGA supervisor was also developed to increase fault coverage, reduce the chance of

soft errors in the scrubbing interface, and provide better visibility of upsets in the FPGA

configuration memory. The soft processors susceptibility to soft errors is assessed under

emulation fault injection - mainly targeting the FPGA configuration memory - and accel-

erated ground testing - targeting the entire device under heavy ion and proton irradiations.

The study on the Rocket’s and NOEL-V’s L1 cache proved that the application error rate is

reduced at a more frequent memory refresh, making the use of larger memories feasible to

reach better performance. The unprotected Rocket soft processor achieved about 88% of

correctness under single faults, and the processor susceptibility under irradiation could be

improved more than 51 times using a combination of fault tolerance techniques. Results

on the open source NOEL-V showed the effectiveness of distributed TMR, scrubbing, and

memory refresh to reduce the cross section by about 11 times. Applying triplication and



scrubbing to the commercial fault tolerance NOEL-VFT soft processor boosted the relia-

bility almost 85 times, and this combination reveals an in-orbit error rate of more than 45

years between SEFIs. Overall, results are promising for using RISC-V soft processors in

new generations of FPGAs and aerospace missions.

Keywords: RISC-V. Rocket. NOEL-V. soft processor. SRAM-based FPGAs. fault toler-

ance. fault injection. SEE. heavy ions. protons.



Caracterização de tolerância à falhas de processadores RISC-V em FPGAs

baseadas em SRAM com foco em missões aeroespaciais

RESUMO

Aplicações aeroespaciais, tais como pequenos satélites, exigem um certo nível de confia-

bilidade devido aos efeitos ionizantes de curto prazo ("Single Event Effects" (SEE)). Ao

mesmo tempo, dispositivos comerciais prontos para uso (COTS) são frequentemente usa-

dos em missões no "New Space". Nesse contexto, o uso de processadores configuráveis

implementados em COTS FPGAs (arranjo de porta programável em campo) baseados

em SRAM requerem flexibilidade de projeto para aplicar as técnicas de tolerância à fa-

lhas mais adequadas para melhorar a confiabilidade do sistema. Distúrbios na memória

de configuração do FPGA podem ser persistentes. Estes podem alterar a implementação

arquitetural do processador, o que pode causar erros de fluxo de controle e cálculos in-

corretos. Esta tese visa caracterizar a suscetibilidade a SEE em processadores RISC-V

embarcados em FPGAs baseados em SRAM e entender como a combinação de técnicas

de tolerância à falhas pode reduzir significativamente a vulnerabilidade do sistema. A

investigação aborda os problemas do uso de processadores configuráveis em ambientes

propensos a SEE e as complexidades e impactos por trás dos métodos de mitigação. Os

estudos de caso são os processadores RISC-V Rocket e NOEL-V de software livre e o

RISCV NOEL-VFT comercial e tolerante à falhas. Os processadores estão embarcados

no APSoC Zynq-7000 (28 nm CMOS), MPSoC Zynq UltraScale+ (16 nm FinFET) e

Kintex UltraScale (20 nm CMOS), respectivamente. A proteção é aplicada no nível do

projeto visando a memória de configuração do FPGA, núcleo do processador e memórias

incorporadas. Combinações de técnicas de proteção são usas durante a investigação, tais

como triplicação, varredura periódica ("scrubbing"), reiniciamento periódico, monitora-

mento de tempo e atualização de memória. Um supervisor de FPGA externo também foi

desenvolvido com a finalidade de aumentar a cobertura à falhas, reduzir a chance de errors

na interface de configuração e fornecer uma melhor visibilidade dos erros. A suscetibi-

lidade a erros é avaliada sob injeção de falha e teste acelerado em solo. O processador

Rocket alcançou 88% de corretude sob falhas simples, e a susceptibilidade sob radiação

foi reduzida mais de 51 vezes usando uma combinação de técnicas de tolerância. Resul-

tados do NOEL-V mostraram a eficácia em combinar métodos de proteção, reduzindo a

susceptibilidade em 11 vezes. Tais técnicas aplicadas ao processador NOEL-VFT comer-



cial melhoraram a confiabilidade em 85 vezes, alcançando uma taxa de erros em órbita de

mais de 45 anos entre falhas. De mode geral, os resultados são promissores para o uso de

processadores RISC-V em novas gerações de FPGAs e missões aeroespaciais.

Palavras-chave: RISC-V. Rocket. NOEL-V. processadores configuráveis. FPGAs ba-

seadas em SRAM. tolerância à falhas. injeção de falhas. SEE. ions pesados. prótons..



LIST OF ABBREVIATIONS AND ACRONYMS

AES Advanced Encryption Standard.

AHB AMBA High-performance Bus.

ALU Arithmetic-Logic Unit.

AMBA Advanced Microcontroller Bus Architecture.

APB Advanced Peripheral Bus.

APSoC All Programmable System-on-Chip.

ASIC Application Specific Integrated Circuit.

AVF Architectural Vulnerability Factor.

AXI Advanced Extensible Interface.

BCH Bose–Chaudhuri–Hocquenghem.

BGA Ball Grid Array.

BOOM Berkeley Out-of-Order Machine.

BRAM Block RAM.

CB Connection Block.

CE Correctable Error.

CGTMR Coarse Grain TMR.

CLB Configurable Logic Block.

CMOS Complementary Metal–Oxide–Semiconductor.

CMT Clock Management Tile.

COTS Commercial Off-The-Shelf.

CRAM Configuration memory RAM.

CRC Cyclic Redundancy Check.

CSR Control Status Register.

CVF Cache Vulnerability Factor.

DCCU Double-Cycle Corrected Upset.

DDR Double Data Rate.

DICE Dual Interlocked Cell.

DMR Dual Modular Redundancy.

DRAM Dynamic Random Access Memory.



DSP Digital Signal Processing.

DUT Device Under Test.

DWC Duplication With Comparison.

ECC Error Correction Code.

EDAC Error Detection And Correction.

EDDI Error Detection by Duplicated Instructions.

eFPGA embedded FPGA.

ESA European Space Agency.

FAR Frame Address Register.

FD-SOI Fully Depleted Silicon-On-Insulator.

FDTMR Fine Grain Distributed TMR.

FF Flip-Flop.

FFC Full Frame Check.

FFT Fast Fourier Transform.

FI Fault Injection.

FIFO First In First Out.

FinFET Fin Field-Effect Transistor.

FPGA Field Programmable Gate Array.

FPU Floating-Point Unit.

FT Fault Tolerance.

GEO Geostationary Orbit.

GPIO General Purpose Input/Output.

HDL Hardware Description Language.

HKMG High-K Metal Gate.

I/O Input/Output.

IC Integrated Circuit.

ICAP Internal Configuration Access Port.

IOD In-Orbit Demonstration.

IP Intellectual Property.

ISA Instruction Set Architecture.



IU Integer Unit.

KUS Kintex UltraScale.

LAB Logic Array Block.

LEO Low Earth Orbit.

LET Linear Energy Transfer.

LETeff Effective LET.

LIF Light Ion Facility.

LMB Local Memory Bus.

LTMR Fine Grain Local TMR.

LUT Look-Up Table.

MBU Multiple Bit Upset.

MCU Multiple Cell Upset.

MEBF Mean Executions Between Failures.

MFTF Mean Fluence to Failure.

MMC Memory Management Controller.

MMIO Memory-Mapped I/O (MMIO).

MMU Memory Management Unit.

MPSoC Multi-Processor System-on-Chip.

MTBF Mean Time Between Failures.

MTTF Mean Time to Failure.

MULXFx Wide-Function Multiplexes.

MWBF Mean Workload Between Failures.

MxM Matrix Multiplication.

NMR N-Modular Redundancy.

OBC On-Board Computer.

PC Program Counter.

PL Programmable Logic.

PLL Phase-Locked Loop.

PRNG Pseudo-Random Number Generator.



PS Processing System.

PULP Parallel Ultra-Low-Power.

Qsort Quicksort.

Rad-Hard Radiation Hardened.

RADNEXT RADiation facility Network for the EXploration of effects for indusTry and

research.

RPP rectangular parallelepiped.

RTC Real Time Clock.

RTL Register Transfer Level.

S-SETA Selective Software-only Error-detection Technique using Assertions.

SB Switch Block.

SCCU Single-Cycle Corrected Upset.

SDC Silent Data Corruption.

SECDED Single Error Correction and Double Error Detection.

SEE Single Event Effects.

SEFI Single Event Functional Interrupt.

SEL Single Event Latch-up.

SEM-IP Soft Error Mitigation Intellectual Property.

SET Single Event Transient.

SEU Single Event Upset.

SIHFT Software-Implemented Hardware Fault Tolerance.

SMAP SelectMap.

SMT Simultaneous Multithreading.

SoC System-on-Chip.

SONOS Silicon-Oxide-Nitride-Silicon.

SPI Serial Peripheral Interface.

SRAM Static Random-Access Memory.

SRL Shift Register Logic.

SV Sensitive Volume.

SWIFT Software Implemented Fault Tolerance.



TC Test Controller.

TCM Tightly Coupled Memory.

TID Total Ionizing Dose.

TLR Thread-Level Redundancy.

TMR Triple Modular Redundancy.

TRIM Transport of Ions in Matter.

TSMC Taiwan Semiconductor Manufacturing Company.

UART Universal Asynchronous Receiver-Transmitter.

UAV Unmanned Aerial Vehicle.

UCL Université Catholique de Louvain.

UE Uncorrectable Error.

UNACE Unnecessary for Architecturally Correct Execution.

VHDL Very High Speed Integrated Circuit Hardware Description Language.

ZUS+ Zynq UltraScale+.





LIST OF FIGURES

Figure 2.1 Description of nanosatellites launches by type over the years. ....................35
Figure 2.2 Island-style FPGA architecture overview. ....................................................37
Figure 2.3 Artix-7 FPGA architecture overview. ...........................................................38
Figure 2.4 Zynq-7000 APSoC functional blocks overview. ..........................................39
Figure 2.5 DSP48E1 slice overview. ..............................................................................43
Figure 2.6 FPGA power saving using clock gating. ......................................................47

Figure 3.1 Configuration memory RAM (CRAM) static cross section for Xilinx 28
nm CMOS Zynq-7000 and 16 nm FinFET Zynq UltraScale+ FPGAs under
proton testing. ........................................................................................................52

Figure 3.2 FPGA bits description by criticality. The essential bits are all bits used
in the design implementation, and critical bits are bits that will lead to errors
in case of upsets. ....................................................................................................53

Figure 3.3 Example of SEE in soft processors ...............................................................54

Figure 4.1 Power overhead on N-Modular Redundancy (NMR) systems as a func-
tion of the number of redundancies and ratio between FPGA dynamic and
static power. ...........................................................................................................61

Figure 4.2 Analytical reliability of nonredundant and TMR systems. The TMR
with repair plot is based on a theoretical Markov chain, considering an opti-
mal repair rate without common mode failures. ....................................................62

Figure 4.3 Coarse Grain TMR (CGTMR) implementation. ..........................................64
Figure 4.4 Fine Grain Distributed TMR (FDTMR) implementation with feedback

voters. .....................................................................................................................64
Figure 4.5 Cache data vulnerability related to different accesses: data read, data

write, and cache eviction. ......................................................................................72
Figure 4.6 Cache vulnerability for different topologies: (a) varying instruction cache

configuration with constant 16 KB data cache; (b) varying data cache config-
uration with constant 16 KB instruction cache. .....................................................74

Figure 6.1 Architecture description of the Rocket processor pipeline. ..........................86
Figure 6.2 LowRISC SoC description. ..........................................................................86
Figure 6.3 Evaluation setup of LowRISC SoC implementation into Zynq-7000 AP-

SoC. ........................................................................................................................88
Figure 6.4 Xilinx Zynq-7000 (XC7Z020-CLG484 part) microscopic view: (a) top

surface, and (b) transversal section. .......................................................................91
Figure 6.5 Heavy ion testing setup: (a) ZedBoard inside the vacuum chamber, and

(b) view of the irradiation room. ............................................................................92
Figure 6.6 Empiric reliability obtained by emulation fault injection for the unhard-

ened Rocket soft processor running MxM, AES, and Qsort benchmarks at 20
MHz. ......................................................................................................................94

Figure 6.7 Empiric reliability obtained from the Oxygen irradiation of the unhard-
ened Rocket soft processor running MxM benchmark at 20 MHz. .......................96

Figure 6.8 Empiric reliability obtained from the Oxygen irradiation of the unhard-
ened Rocket soft processor without and with scrubbing running MxM bench-
mark at 20 MHz. ....................................................................................................98



Figure 6.9 Empiric reliability obtained by emulation fault injection for the unhard-
ened and CGTMR Rocket soft processor running MxM, AES, and Qsort
benchmarks at 20 MHz. .......................................................................................101

Figure 6.10 Empiric reliability obtained from the heavy ion test campaign with
the unhardened, CGTMR, and FDTMR Rocket soft processor running MxM
benchmark at 20 MHz. ........................................................................................103

Figure 6.11 Total dynamic cross section and MWBF results from heavy ion testing
for unhardened and protected Rocket soft processor running MxM benchmark
at 20 MHz. ...........................................................................................................104

Figure 6.12 Empiric reliability obtained from the heavy ion testing for the unhard-
ened and protected Rocket soft processor running MxM benchmark at 20
MHz. ....................................................................................................................106

Figure 6.13 Total dynamic cross section and MWBF results from heavy-ions ex-
periments for the unhardened Rocket processor without and with scrubbing
running Matrix Multiplication (MxM) benchmark at 20 and 50 MHz. ...............107

Figure 6.14 I+D data memory error rate (bars related to the left axis) and applica-
tion execution time (line related to the right axis). ..............................................113

Figure 6.15 Error rate for the data memories per instruction and data cache over
the different configurations. .................................................................................115

Figure 6.16 Percentage of failures related to the application time window (in c.c.). ..115
Figure 6.17 I+D control memory error rate per cache configuration. ..........................117
Figure 6.18 Error rate for the control memories per instruction and data cache over

the different configurations. .................................................................................117
Figure 6.19 Total error rate for I+D data and control memories per cache configu-

ration. ...................................................................................................................118
Figure 6.20 Total error rate (bars related to the left axis) and execution time (lines

related to the right axis) per cache topology and flush period. ............................119
Figure 6.21 Error rate for the data memories per instruction and data cache over

the different configurations and flush periods. ....................................................121

Figure 7.1 NOEL-V processor 7-stage dual-issue integer pipeline. ............................126
Figure 7.2 NOEL-V SoC implemented into the Zynq UltraScale+ FPGA. .................127
Figure 7.3 Zynq UltraScale+ proton testing setup. ......................................................132
Figure 7.4 Reliability to failure as a function of accumulated injected faults. ............136
Figure 7.5 Weibull fit of the reliability to failure as a function of accumulated in-

jected faults. The Weibull parameters are described per design (shape; width).
...............................................................................................................................136

Figure 7.6 Events per application execution until a permanent failure or the end of
the test run. Results are presented per design and test board (BN1/BN2). .........139

Figure 7.7 Total cross section per device with 95% confidence interval for 53 MeV
proton testing. Results are presented per design and test board (BN1/BN2). .....140

Figure 7.8 MTBF and MEBF are presented in bars related to the left axis, with
the horizontal dashed lines highlighting the results for NV_1KB design as a
reference. The red line shows the execution time, in seconds, related to the
right axis. Results are presented per design integrated from both test boards. ...142

Figure 8.1 Example of a system including GRSCRUB. ..............................................147
Figure 8.2 NOEL-VFT SoC implemented into the Kintex UltraScale FPGA. ............150
Figure 8.3 NOEL-VFT test system. .............................................................................151
Figure 8.4 Kintex UltraScale proton testing setup. ......................................................154



Figure 8.5 CRAM cross section per bit for the Kintex UltraScale XCKU060: GRSCRUB
SCCU and DCCU, Bendel fit of GRSCRUB SCCU, and Bendel fit of the
XCKU060 reference data. ...................................................................................157

Figure 8.6 BRAM cross section per bit for the Kintex UltraScale XCKU060: L1
cache CE, L2 cache CE and UE, Bendel fit of L1 and L2 caches CE, and
Bendel fit of the XCKU060 reference data. .........................................................158

Figure 8.7 Total cross section per device with 95% confidence interval for different
proton energies. ....................................................................................................159





LIST OF TABLES

Table 2.1 Small satellite subcategories classified by mass (KULU, 2022).....................34
Table 2.2 CubeSat size and mass defined by type (CPCL, 2018). ..................................34
Table 2.3 Overview of ESA CubeSat missions (PEREZ, 2021). ...................................35
Table 2.4 Comparative between hard and soft core processors. .....................................40
Table 2.5 Soft processors architecture description..........................................................41
Table 2.6 Resource usage of soft processors implemented in the Artix-7 FPGA.1 ........45

Table 4.1 MTTF comparative between non-redundant, TMR, and TMR with repair
systems....................................................................................................................62

Table 6.1 Benchmark applications characteristics running on the Rocket soft processor.89
Table 6.2 Ions description. ..............................................................................................92
Table 6.3 Dynamic power and resource usage with the utilization percentage of the

unhardened Rocket soft processor core and lowRISC System-on-Chip (SoC)
implemented in the Zynq-7000 Programmable Logic (PL).1,2 ...............................93

Table 6.4 Emulation fault injection results for the unhardened Rocket soft proces-
sor per application benchmark at 20 MHz..............................................................94

Table 6.5 Dynamic cross section and Mean Workload Between Failures (MWBF)
results from heavy ion testing for the unhardened Rocket soft processor run-
ning MxM benchmark at 20 MHz. .........................................................................95

Table 6.6 Dynamic cross section and MWBF results from heavy ion testing for the
unhardened Rocket soft processor without and with scrubbing running MxM
benchmark at 20 MHz.............................................................................................98

Table 6.7 Dynamic power and resource usage with the utilization percentage of the
unhardened, CGTMR, and FDTMR Rocket soft processor core and lowRISC
SoC implemented in the Zynq-7000 PL.1,2 ............................................................99

Table 6.8 Emulation fault injection results for the CGTMR Rocket soft processor
per application benchmark at 20 MHz..................................................................101

Table 6.9 Dynamic cross section and MWBF results from the heavy ion testing for
the unhardened, CGTMR, and FDTMR Rocket soft processor running MxM
benchmark at 20 MHz...........................................................................................102

Table 6.10 Dynamic cross section and MWBF results from the heavy ion testing
for the unhardened and protected Rocket soft processor running MxM bench-
mark at 20 MHz. ...................................................................................................104

Table 6.11 Cross section comparison of soft processors implemented in SRAM-
based FPGAs from this thesis and literature.........................................................109

Table 6.12 Architecture of different Rocket L1 cache configurations implemented
in the Zynq-7000. ................................................................................................111

Table 6.13 Normalized memory area used for fault injection targeting all L1 cache
configurations. .....................................................................................................112

Table 6.14 Emulation fault injection on the Rocket L1 instruction and data cache:
targeting I+D data memories. ...............................................................................113

Table 6.15 Emulation fault injection on the Rocket L1 instruction and data cache:
targeting I+D control memories............................................................................116

Table 6.16 Emulation fault injection on the Rocket L1 instruction and data cache:
target data memories protected with periodic flush. .............................................119

Table 7.1 NOEL-V test designs description. ...............................................................129



Table 7.2 NOEL-V test designs information: resource usage per processor core
and entire SoC; number of essential bits (percentage of FPGA usage); and
application execution time (in seconds)................................................................133

Table 7.3 Fault injection result table describing the number of failures per design,
the error rate with 95% confidence interval, and the mean faults to failure. ........134

Table 7.4 Proton testing table describing actual flux and fluence by design per test
board. ...................................................................................................................137

Table 7.5 53 MeV proton testing result table describing the observed failures and
total cross section with 95% confidence interval (±10% fluence uncertainty). ....137

Table 8.1 NOEL-VFT test designs description. ...........................................................152
Table 8.2 NOEL-VFT test designs information: SoC resource usage and number

of essential bits (percentage of FPGA usage). .....................................................155
Table 8.3 Proton testing result table describing the proton energies and fluence,

observed failures, and total cross section. ...........................................................156
Table 8.4 Orbital SEFI rate and MTTF of NOEL-VFT test designs. ..........................161

Table 9.1 This thesis comparison against the state-of-the-art. .....................................164
Table 9.2 Resource usage and tested frequency for Rocket (Zynq-7000), NOEL-V

(Zynq UltraScale+), and NOEL-VFT (Kintex UltraScale). ................................166
Table 9.3 Fault injection results for Rocket (Zynq-7000) and NOEL-V (Zynq Ul-

traScale+). ............................................................................................................167
Table 9.4 Comparison between NOEL-V and NOEL-VFT dynamic failure cross

section. Zynq UltraScale+ (ZUS+) 53 MeV are results from chapter 7, Kintex
UltraScale (KUS) 62 MeV are results from chapter 8, and Kintex UltraScale
(KUS) estimated are the computed cross section values. ....................................169



CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS......................................................11
1 INTRODUCTION.......................................................................................................27
1.1 Objectives and contributions .................................................................................29
1.2 Structure of this thesis ............................................................................................32
2 USING SOFT PROCESSORS IN AEROSPACE MISSIONS................................33
2.1 Aerospace missions overview .................................................................................33
2.2 COTS SRAM-based FPGAs ..................................................................................36
2.3 Embedded soft processors ......................................................................................40
2.4 Soft processor implementation in FPGAs.............................................................42
2.4.1 Processor configurability .......................................................................................42
2.4.2 Arithmetic operations.............................................................................................43
2.4.3 Memories ...............................................................................................................43
2.4.4 Resource usage.......................................................................................................44
2.4.5 Optimizations.........................................................................................................45
2.4.6 Placement...............................................................................................................46
2.4.7 Power consumption................................................................................................46
3 SINGLE EVENT EFFECTS AND PROBLEM DEFINITION..............................49
3.1 Radiation-induced effects.......................................................................................49
3.1.1 Overview of SEE on integrated circuits.................................................................49
3.1.2 Soft errors in SRAM-based FPGAs.......................................................................50
3.1.3 Soft errors in soft processors..................................................................................53
3.2 Problem definition: the use of soft processors implemented into COTS

SRAM-based FPGAs in SEE-prone environments ........................................55
4 BACKGROUND AND RELATED WORKS............................................................59
4.1 Background of fault tolerance techniques ............................................................59
4.1.1 Configuration memory scrubbing ..........................................................................59
4.1.2 Redundancy-based techniques ...............................................................................60
4.1.2.1 Modular redundancy ...........................................................................................60
4.1.2.2 Error correction codes.........................................................................................63
4.1.2.3 Lockstep technique .............................................................................................65
4.1.3 Software-based techniques.....................................................................................66
4.1.4 Hardware monitors.................................................................................................66
4.1.5 Summary ................................................................................................................67
4.2 Related works ..........................................................................................................67
4.2.1 Fault tolerance solutions for soft processors..........................................................67
4.2.2 L1 cache vulnerability............................................................................................72
5 RADIATION CHARACTERIZATION METHODOLOGY..................................75
5.1 Single Event Effects testing ....................................................................................75
5.1.1 Accelerated ground testing ....................................................................................75
5.1.2 Emulation Fault injection.......................................................................................77
5.2 Evaluation metrics ..................................................................................................79
5.2.1 Cross section ..........................................................................................................79
5.2.2 Fault injection error rate.........................................................................................80
5.2.3 SEU error rate estimation.......................................................................................80
5.2.4 Mean time to failure and mean time between failures ...........................................80
5.2.5 Mean fluence to failure ..........................................................................................81
5.2.6 Mean executions and workload between failures ..................................................81
5.2.7 Empiric reliability ..................................................................................................82



5.3 SEE error prediction ..............................................................................................82
6 EXPLORING THE COTS RISC-V ROCKET SOFT PROCESSOR UNDER

RADIATION EFFECTS...................................................................................85
6.1 SEE characterization of the COTS Rocket soft processor ..................................85
6.1.1 COTS RISC-V Rocket soft processor....................................................................85
6.1.2 Investigation methodology.....................................................................................87
6.1.2.1 Platform setup .....................................................................................................87
6.1.2.2 Software benchmarks..........................................................................................88
6.1.2.3 Failure definition.................................................................................................89
6.1.2.4 Emulation fault injection.....................................................................................90
6.1.2.5 Heavy ion testing ................................................................................................91
6.1.3 Rocket soft processor under faults .........................................................................92
6.1.3.1 Unhardened Rocket soft processor .....................................................................92
6.1.3.2 Rocket soft processor protected by scrubbing ....................................................96
6.1.3.3 Rocket soft processor protected by TMR ...........................................................98
6.1.3.4 Rocket soft processor protected by combined fault tolerance techniques ........102
6.1.3.5 Influence of the processor frequency in the soft error susceptibility ................106
6.1.3.6 Discussion .........................................................................................................107
6.2 L1 cache susceptibility investigation ...................................................................109
6.2.1 Investigation methodology...................................................................................109
6.2.1.1 L1 cache configurations ....................................................................................110
6.2.1.2 Emulation fault injection...................................................................................110
6.2.2 Results..................................................................................................................112
6.2.2.1 Data memory error rate.....................................................................................112
6.2.2.2 Control memory error rate ................................................................................116
6.2.2.3 Total error rate...................................................................................................117
6.2.2.4 Instruction cache protected by periodic flush ...................................................118
6.3 Discussion ..............................................................................................................122
7 EXPLORING THE COTS RISC-V NOEL-V SOFT PROCESSOR UNDER

RADIATION EFFECTS.................................................................................125
7.1 COTS RISC-V NOEL-V soft processor..............................................................125
7.2 Investigation methodology ...................................................................................126
7.2.1 Platform setup ......................................................................................................126
7.2.2 Mitigating the COTS NOEL-V soft processor ....................................................127
7.2.2.1 Scrubbing ..........................................................................................................127
7.2.2.2 TMR for the central processing unit .................................................................128
7.2.2.3 L1 cache protection...........................................................................................128
7.2.2.4 Designs description overview ...........................................................................129
7.2.3 Software benchmark ............................................................................................130
7.2.4 Failure definition..................................................................................................130
7.2.5 Emulation fault injection......................................................................................131
7.2.6 Proton testing .......................................................................................................131
7.3 Results ....................................................................................................................132
7.3.1 FPGA resource usage and performance...............................................................132
7.3.2 Fault injection results ...........................................................................................133
7.3.3 Proton testing results............................................................................................135
7.3.3.1 Failure cross section..........................................................................................140
7.3.3.2 MTBF and MEBF results .................................................................................141
7.3.4 Discussion ............................................................................................................142



8 EXPLORING THE COMMERCIAL FAULT TOLERANT RISC-V NOEL-
VFT SOFT PROCESSOR COMBINED WITH EXTERNAL FPGA
SUPERVISOR UNDER RADIATION EFFECTS.......................................145

8.1 RISC-V NOEL-VFT soft processor ....................................................................145
8.2 External FPGA supervisor...................................................................................146
8.2.1 System integration ...............................................................................................147
8.2.2 Operational modes ...............................................................................................147
8.2.2.1 Scrubbing operation ..........................................................................................148
8.2.2.2 Configuration interface integrity check.............................................................148
8.3 Investigation methodology ...................................................................................149
8.3.1 Platform setup ......................................................................................................149
8.3.2 Additional fault tolerance ....................................................................................151
8.3.3 Designs description overview ..............................................................................152
8.3.4 Software benchmark ............................................................................................152
8.3.5 Failure definition..................................................................................................153
8.3.6 Proton testing .......................................................................................................154
8.4 Results ....................................................................................................................155
8.4.1 FPGA resource usage...........................................................................................155
8.4.2 Proton testing results............................................................................................155
8.4.2.1 Configuration memory cross section ................................................................156
8.4.2.2 User memory cross section ...............................................................................157
8.4.2.3 Failure cross section..........................................................................................158
8.4.2.4 MTTF and error rate in-orbit ............................................................................160
9 COMPARATIVE ANALYSIS BETWEEN SOFT PROCESSORS......................163
9.1 Comparison to the state-of-the-art ......................................................................163
9.2 Comparative results between processors ............................................................165
9.2.1 Resource usage comparison.................................................................................165
9.2.2 FI comparison: Rocket vs. NOEL-V...................................................................166
9.2.3 Cross section comparison: NOEL-V vs. NOEL-VFT.........................................167
10 CONCLUSIONS .....................................................................................................171
10.1 Contributions.......................................................................................................171
10.1.1 RISC-V Rocket soft processor investigation .....................................................171
10.1.2 RISC-V NOEL-V soft processor investigation..................................................172
10.1.3 RISC-V NOEL-VFT soft processor investigation .............................................173
10.1.4 Summary ............................................................................................................174
10.2 Future works .......................................................................................................174
REFERENCES.............................................................................................................177
APPENDIX A — PUBLICATIONS...........................................................................193





27

1 INTRODUCTION

Aerospace missions involve atmospheric, in-orbit, and outer space applications.

Satellites are expressive space applications with hundreds of launches yearly (UNOOSA,

2022). Small satellites, such as CubeSats, present a restricted area and power constraint

due to their size. This thesis is motivated by the ascending increase of small satellite

launches in the past few years and the frequent use of Commercial Off-The-Shelf (COTS)

components in such New Space missions.

In this scenario, processors are usually required to perform complex operations

while maintaining a low energy budget and restricted size, which sometimes need cus-

tomization of the processor. Soft processors are synthesizable hardware models of pro-

cessor cores. The primary benefits of using soft processors are the possibility of cus-

tomization to meet predefined requirements and the flexibility to address design changes

during development. Several soft processors have been developed over the last decades.

They implement different Instruction Set Architectures (ISAs) and differ in complexity,

ranging from simple microcontroller implementations to complex multi-core System-on-

Chips (SoCs). Some examples of soft processors currently available at the academic

level, i.e., free-of-charge, are: LEON line cores (SPARC ISA) from Frontgrade Gaisler

(FRONTGRADE GAISLER, 2022b); Cortex-M0, Cortex-M1, and Cortex-M3 (ARM

ISA) cores from ARM (YIU, 2019); MicroBlaze (RISC ISA) from Xilinx (XILINX,

2021a); and a plethora of soft processors that implement the RISC-V ISA, such as the

Rocket (ASANOVIĆ et al., 2016), NOEL-V (FRONTGRADE GAISLER, 2022b), and

PULP (PULLINI et al., 2019).

Soft processors can be synthesized to Field Programmable Gate Arrays (FPGAs)

or Application Specific Integrated Circuits (ASICs). The implementation in FPGAs offers

many advantages to aerospace systems compared to ASICs. Reconfiguration is a primary

benefit since the soft processor characteristics can change in-orbit. FPGAs are highly

used in satellites and a variety of space missions (GARDENYES, 2012; NASA, 2020;

HARDGROVE et al., 2020), which further motivates its use. Nonetheless, these devices

may require a high power consumption that needs to be considered during the device

selection to meet the mission’s power budget. Another advantage of soft processors in

FPGAs is allowing the evaluation of the mission requirements trade-offs such as resource

utilization, architecture, performance, and cost.



28

Aerospace systems are prone to radiation-induced errors. Soft processors synthe-

sized into COTS Static Random-Access Memory (SRAM)-based FPGAs are susceptible

to Single Event Effects (SEE) at device and design levels. At the device level, Single

Event Upsets (SEUs) may occur in the FPGA Configuration memory RAM (CRAM)

and its embedded memories (WIRTHLIN, 2015). SEUs in the CRAM can be persistent

and may change the architectural implementation of the soft processor, which can cause

control-flow errors, leading to Single Event Functional Interrupts (SEFIs), and wrong

computations, defined as Silent Data Corruptions (SDCs). These faults can be corrected

by reconfiguration. At the design level, SEUs and Single Event Transients (SETs) can

have complex effects on the processor architecture and its executing software (Quinn,

2014). Such effects impact processors by modifying values stored in memory elements,

leading to data-flow errors and SDCs or causing control-flow errors and SEFIs. In general,

these events can be cleared out by resetting the design.

The SEE sensitivity of SRAM-based FPGAs depends on the SRAM cells’ tech-

nology. The susceptibility to upsets is related to the intrinsic characteristics of the tran-

sistor’s physical structure. For instance, Complementary Metal–Oxide–Semiconductor

(CMOS) is known as having higher SEU sensitivity than Fin Field-Effect Transistor (Fin-

FET) (AZIMI et al., 2022). The fabrication process of the memory cells also impacts SEU

sensitiveness. Different cell processes on the FPGA CRAM and Block RAM (BRAM)

memories lead to distinct radiation sensitivity (TONFAT et al., 2017). In some FPGAs,

the BRAM cross section can be twice the CRAM cross section (MAILLARD et al., 2019).

Nevertheless, due to the expressive amount of bits, the CRAM has a higher probability of

upsets leading to design failures.

Aerospace applications demand a certain level of reliability due to the SEE. There-

fore, one must also evaluate the system’s behavior in the presence of faults. A typical

qualification methodology is performing accelerated ground testing and emulation fault

injection. Depending on the mission requirements, fault mitigation needs to be employed

to allow the correct operation in a SEE-prone environment. However, applying fault tol-

erance techniques may increase the system’s resource usage and power consumption, and

reduce performance. A system with area or power limitations may restrict the feasibility

of complete protection.

Due to the complexity of its components, each part of the soft processor requires

appropriate fault tolerance methods. Triple Modular Redundancy (TMR) is usually ap-

plied to the central processing unit for error masking, while the user memories can be



29

protected using Error Correction Codes (ECCs). However, system limitations in terms of

area usage and power consumption may interfere with the feasibility of fully protecting

the design. Applying fault tolerance techniques to a soft core processor synthesized into

SRAM-based FPGAs might be challenging due to the complexity of the design and the

FPGA characteristics. For instance, the number of FPGA available resources is a con-

straint when applying a TMR to the embedded system. Low-density FPGAs might not

have enough resources for triplicating the entire SoC. Additionally, TMR increases the

probability of faults in the design due to the increase in resource usage. Repair methods,

such as scrubbing the CRAM and adding TMR feedback voters, further enhance the error

masking capability. In this context, using soft processor-based SoCs might require design

flexibility to select suitable techniques for critical parts, which can lead to reduced area

and minimal power penalties.

1.1 Objectives and contributions

The goal of this thesis is to characterize the SEE susceptibility of RISC-V soft

processors embedded in SRAM-based FPGAs. Our mission is to understand how em-

ploying combined fault tolerance techniques can significantly improve system reliability

under soft errors. For that goal, this thesis aims at performing a deep investigation through

accelerated SEE ground testing, using heavy ion and proton particles, and emulation fault

injection to understand the radiation effects on RISC-V soft processors implemented in

SRAM-based FPGAs, focusing on the FPGA configuration memory, processor core, and

embedded memories. The work provides extensive novel data on these scenarios and

discusses their benefits and trade-offs.

The discussion addresses the following questions:

1. A high vulnerability of the FPGA configuration memory is expected, but will it be

the root of failures? Would well-known fault tolerance techniques be suitable for

such complex processor SoCs? Will the scrubbing method be enough to protect the

system? Besides scrubbing, is redundancy an appropriate choice?

2. How does the employment of fault tolerance techniques impact the system? Is it

feasible to protect the entire SoC? What are the limitations? Would applying fault

tolerance to only a few components be relevant to save resources while improving

reliability?



30

3. How does the L1 cache memory affect the overall SEE susceptibility? Would the

cache topology affect the reliability?

RISC-V soft processors have recently emerged as suitable for computing-intensive

applications due to their performance-enabler architecture and reduced instructions set

complexity, allowing designers to customize both processor cores and compilers. A more

customized soft processor facilitates the adjustments on resource usage and power con-

sumption if needed. Additionally, RISC-V soft processors are expected to be used in

future space applications (DI MASCIO et al., 2019; ROGENMOSER; TORTORELLA,

2022). As an example, the Trisat-R nanosatellite, launched in July 2022, includes a Sky-

Labs NANOhpm On-Board Computer (OBC) featuring a RISC-V NOEL-V processor

(ESA, 2022; COX, 2022). For those reasons, this thesis performs the investigation on

RISC-V soft processors. The selected RISC-V cores are the Rocket processor, well-

known in the literature, and the cutting-edge NOEL-V processor.

This thesis contributes to the community by addressing the problems and chal-

lenges of employing SEE protection on RISC-V soft processors embedded in SRAM-

based FPGAs implemented in different technologies, understanding the feasibility of us-

ing RISC-V-based processors in space, and performing the SEE characterization under

heavy ion and proton testing, which are the most relevant particles present in-orbit, such

as Low Earth Orbit (LEO) and Geostationary Orbit (GEO). The SEE characterization

data gathered on cutting-edge RISC-V soft processors on the latest generations of SRAM-

based FPGAs will provide guidance to the community for future aerospace missions.

Initially, we explore the FPGA configuration memory susceptibility to SEE through

emulation fault injection and heavy ion testing. The case study scenario consists of the

COTS open source Rocket processor embedded in a Xilinx Zynq-7000 All Programmable

System-on-Chip (APSoC), whose FPGA fabric is based on 28 nm CMOS technology.

Combined techniques such as TMR, scrubbing, periodic reset, and watchdog are used

during the investigation. Further analysis is performed on the processor’s L1 cache to

demonstrate its impact on the soft processor failure rate, evaluating different cache topolo-

gies (size and associativity) under emulation fault injection.

In sequence, this thesis performs the SEE characterization of the COTS open

source NOEL-V soft processor in the Xilinx Zynq UltraScale+ Multi-Processor System-

on-Chip (MPSoC), built on 16 nm FinFET technology. The qualification includes proton

testing and emulation fault injection to confirm that strategies such as cache refreshing,

scrubbing, TMR, and duplication with comparison are effective in mitigating soft errors.



31

This thesis also presents an investigation performed under proton testing on the

commercial fault tolerant NOEL-VFT soft processor embedded in a Xilinx Kintex Ultra-

Scale FPGA, fabricated on 20 nm CMOS technology. To our knowledge, this thesis is the

first work to publish the SEE characterization of the commercial fault tolerant NOEL-VFT

processor. An external FPGA supervisor targeting the Kintex UltraScale is developed to

program end scrub the FPGA through the SelectMap interface. The FPGA supervisor

aims to increase fault coverage, reduce the chance of soft errors in the scrubbing inter-

face, and provide better visibility of upsets in the FPGA configuration memory.

Finally, this thesis includes a roughly comparison of the COTS open source Rocket

and NOEL-V soft processors and the commercial fault tolerant NOEL-VFT soft proces-

sor. Results are compared to the state-of-the-art works. The assessment explores how

employing fault tolerance impacts the system and improves the SEE sensitiveness.

In summary, the main contributions of this thesis lie in the following:

• We demonstrate the vulnerability to permanent and transient faults and how miti-

gation techniques can be combined to improve the reliability of COTS RISC-V soft

processors – Rocket and NOEL-V – in COTS SRAM-based FPGAs built over dif-

ferent technologies – CMOS and FinFET. The investigation lies on the Rocket soft

processor embedded in the Zynq-7000 APSoC, based on 28 nm CMOS technology,

and the open source NOEL-V soft processor implemented in the Zynq UltraScale+

MPSoC at 16 nm FinFET node.

• We investigate how the L1 cache configuration (size and associativity) impacts

the Rocket soft processor reliability through emulation fault injection targeting the

BRAMs of the Zynq-7000 APSoC.

• An SEE characterization of the commercial fault tolerant NOEL-VFT is performed

in a Kintex UltraScale FPGA, built on 20 nm CMOS technology. An external FPGA

supervisor is also developed. The supervisor is responsible for FPGA programming

and scrubbing via the SelectMap interface to improve the CRAM fault coverage.

• An in-depth analysis and discussion on the scenarios above, exploring benefits and

trade-offs and helping guide future development in the field.

• Overall, we explore different combinations of fault tolerance techniques to improve

the soft processors’ reliability and assess their impact on the system by performing

SEE testing under heavy ion and proton beams, which are the most relevant particles

for in-orbit space missions.



32

1.2 Structure of this thesis

This thesis is organized as follows:

• Chapter 2: Presents the motivation of this thesis, describing aerospace mission char-

acteristics; introduces the concepts of SRAM-based FPGAs and soft processors;

and describes the steps for implementing soft processors in FPGAs.

• Chapter 3: Surveys the radiation-induced effects on devices, focusing on SRAM-

based FPGAs and soft processors; and overviews the problems of implementing

soft processors in SRAM-based FPGAs in SEE-prove environments.

• Chapter 4: Gives background of fault tolerance solutions; and overviews relevant

and state-of-the-art works related to this thesis.

• Chapter 5: Presents a qualification methodology for system evaluation, SEE ground

testing, evaluation metrics, and estimation of orbit error rate.

• Chapter 6: Investigates the SEE susceptibility of the RISC-V Rocket soft proces-

sor implemented in a Zynq-7000 APSoC; discusses the limitation on applying fault

tolerance solutions in the design; evaluates the system under emulation fault injec-

tion and heavy ion testing. Additionally, the influence of the L1 cache topology on

processor susceptibility is assessed by emulating faults in user memories.

• Chapter 7: Explores the SEE susceptibility of the RISC-V NOEL-V processor syn-

thesized into the SRAM-based Zynq UltraScale+ FPGAs under proton testing and

emulation fault injection.

• Chapter 8: Presents the SEE characterization under proton testing of the commer-

cial fault tolerant RISC-V NOEL-VFT soft processor implemented in a Kintex Ul-

traScale FPGA combined with the extra protection of an external FPGA supervisor.

• Chapter 9: Performs a comparison between this thesis and the state-of-the-art works;

presents a high-level comparison between the soft processors results.

• Chapter 10: Presents the conclusions of this thesis and final remarks.

• Appendix A: Presents the publications from the Ph.D. student.



33

2 USING SOFT PROCESSORS IN AEROSPACE MISSIONS

This chapter presents an overview of aerospace mission characteristics, primar-

ily focusing on small satellite exploration. The concepts of SRAM-based Field Pro-

grammable Gate Arrays (FPGAs) and soft processors are introduced in sequence. Fi-

nally, the steps for implementing soft processors in FPGAs are described, discussing the

configurability, resource usage, and power consumption.

2.1 Aerospace missions overview

Aerospace missions involve atmospheric, in-orbit, and outer space applications.

It covers a broad range of applications, such as interplanetary missions, satellites, Un-

manned Aerial Vehicles (UAVs), and tactic drones.

Satellites are one of the most expressive space applications. Hundreds of satellites

are launched every year, and the numbers tend to grow (UNOOSA, 2022). Nowadays,

small satellites are responsible for most of these launches. The miniaturization of con-

ventional satellites brought many advantages and made small satellites a good alternative

for space exploration. Being cost a primary concern, the size of small satellites make

them far more affordable, which has opened the market for new private and civilian ap-

plications. The launching costs are also directly affected by the satellite size, stimulating

the increase of constellations. At the same time, the use of Commercial Off-The-Shelf

(COTS) devices in space missions has gained popularity mainly due to performance re-

quirements (ESPOSITO et al., 2015), which has also helped to reduce the mission costs

(LAPPAS; KOSTOPOULOS, 2020). In 2019, about 20% of the components in European

Space Agency (ESA) satellites were COTS, and it is expected an increase in the usage for

future missions (NIKULAINEN, 2019).

Many opportunities emerge from small satellites exploration. Some examples are:

• Educational proposes.

• Validation and test of technologies - In-Orbit Demonstration (IOD).

• Space environment observation.

• Solar system explorations.



34

Small satellites are limited to 500 kg maximum, and can be classified in different

subcategories, as described in Table 2.1 (KULU, 2022). As a note, the mass definition

may vary depending on the source, as example, NASA (2017) defines a maximum weigh

of 300 kg for small satellites.

Nanosatellites are a dominant type of small satellites launches. The most well-

known subtype of nanosatellite is the CubeSat, which is defined by its standard size and

weight. CubeSats vary in size based on the standard 10 cm unit (defined by U ). 1U Cube-

Sat is an approximated cube with dimensions of 10 × 10 × 11.3 cm (CPCL, 2018). The

CubeSat type is defined by its length. Table 2.2 gives some examples of CubeSat types,

described by size and mass. Figure 2.1 shows the announced nanosatellites launches by

type over the years. Different CubeSat types are described from 0.25U to 16U , being 3U

the most predominant.

Table 2.1 – Small satellite subcategories classified by mass (KULU, 2022).

Small satellite type Mass
Minisatellite 100 kg to 500 kg
Microsatellite 10 kg to 100 kg
Nanosatellite 1 kg to 10 kg
Picosatellite 100 g to 1 kg

Femtosatellite 10 g to 100 g
Attosatellite 1 g to 10 g

Zeptosatellite 0.1 g to 1 g

Table 2.2 – CubeSat size and mass defined by type (CPCL, 2018).

CubeSat size Size (cm) Mass (kg)
1U 10 × 10 × 11.3 < 1.33

1.5U 10 × 10 × 17 < 2

2U 10 × 10 × 22.7 < 2.66

3U 10 × 10 × 34 < 4

Size is not the only restriction on those applications. The power source usually

relies on solar panels and limited batteries. Solar panels supply the satellite power and

charge the batteries while illuminated directly by the Sun. When the Earth shadows the

satellite, the batteries need to sustain the energy. The shadow interval varies depending

on the satellite’s orbit (ISMAIL et al., 2015). Due to the restricted size of the solar panels,

CubeSats are limited to a small power budget. Therefore, the solar panels’ power pro-

duction and battery capacity must be well stipulated based on the mission requirements.



35

Figure 2.1 – Description of nanosatellites launches by type over the years.

Source: (KULU, 2022).

Table 2.3 – Overview of ESA CubeSat missions (PEREZ, 2021).

Mission CubeSat size Power (max) Launch
XATCOBEO 1U 2 W 2012

GOMX-3 3U 6 W 2015

GOMX-4B 6U 12 W 2018

GOMX-5 12U 100 W 2022

SCOUT-1 3x12U 30 W 2023

MILANI 6U 60 W 2024

A common approach is periodically setting the satellite to power-saving mode to recover

the batteries (NIETO-PEROY; EMAMI, 2019). Another strategy is the limitation of the

payload’s power consumption, such as shutting down unused circuits and pre-defining an

execution sequence.

Table 2.3 depicts an overview of the ESA CubeSat missions with launching dates

from 2012 to 2024 (PEREZ, 2021). The presented data show the low-power requirements

of those missions, with maximum power ranging from 2 W (in a 1U ) to 100 W (in a

12U ). Although the maximum power consumption may be more flexible by increasing

the CubeSat size, the mission goal and available resources define the restrictions.

Size and power constraints in CubeSats make the employment of high-computing

processing systems challenging. The On-Board Computer (OBC) and payload are re-

stricted to a small power budget and area, which conditions the selection of components



36

and circuitry. In this context, the employment of FPGAs in those missions requires an

assessment of their power consumption and the energy availability of the system. The

study of Arnold, Nuzzaci and Gordon-Ross (2012) estimates the power reserve budget

related to the payload operational time in different orbits for CubeSats with integrated

FPGAs. The power budget depends on the CubeSat size (1U and 3U tested), the solar

panels’ production, the size of batteries, and the payload subsystem.

FPGA are highly used in satellites and a variety of space applications. Gardenyes

(2012) showed the percentage of usage of FPGA in different ESA missions, which could

reach up to 75% of programmable devices in a single mission. FPGAs can be part of

many workloads. For instance, in the Mars2020 mission Perseverance rover (NASA,

2020), FPGAs are used in the radar transceiver, navigation systems, motor controllers, and

computer vision applications. As another example, an FPGA is used to acquire data from

a photomultiplier tube and monitor time and temperature in a lunar exploration CubeSat

mission (HARDGROVE et al., 2020).

At the same time, the use of soft processors implemented in FPGAs is attractive

for such applications primarily due to flexibility and a short development process. The

following sections address the concepts of FPGAs, focusing on Static Random-Access

Memory (SRAM)-based devices, and soft processors. Aerospace applications are partic-

ularly susceptible to radiation effects or Single Event Effects (SEE), further described in

chapter 3. This thesis devotes its attention to SEE mitigation methods on soft processors

embedded in FPGAs and their possible limitations and impacts on the system.

2.2 COTS SRAM-based FPGAs

FPGAs are programmable devices that can be configured to implement differ-

ent circuitry. The designer can describe the hardware behavior via Hardware Description

Language (HDL), such as Very High Speed Integrated Circuit Hardware Description Lan-

guage (VHDL) and Verilog.

The FPGA programmability is provided through configurable elements that store

the user-defined configuration. Logic blocks, also described as Configurable Logic Blocks

(CLBs) - for Xilinx FPGAs (XILINX, 2021d) - or Logic Array Blocks (LABs) - for Intel

Altera FPGAs (ALTERA, 2011), are used to implement arbitrary digital logic. Most of

commercial FPGAs are based in Look-Up Tables (LUTs) to compute logical operations

and Flip-Flops (FFs) as storage elements (HAUCK; DEHON, 2008). The logic block



37

inputs and outputs are connected to routing tracks via Connection Blocks (CBs), while

the Switch Blocks (SBs) are programmable switches or multiplexes responsible for setting

the route. Figure 2.2 presents an overview of a generic island-style FPGA architecture. In

addition to the basic structure (i.e., CLBs, CBs, SBs, and routing tracks), FPGAs usually

include other resources such as Input/Output (I/O) blocks, clock management system –

clock control and Phase-Locked Loop (PLL), Block RAMs (BRAMs), and Digital Signal

Processing (DSP) blocks. Each FPGA vendor presents a specific architecture differing in

structure and available resources.

Figure 2.2 – Island-style FPGA architecture overview.

Source: (QIN et al., 2018).

The FPGA configuration is programmed using a bitstream – a bit file that con-

tains the mapping of all programmable bits in the FPGA fabric. The FPGA configuration

memory may be implemented in the following cell architectures: antifuse, flash mem-

ory, Silicon-Oxide-Nitride-Silicon (SONOS), and SRAM cells. Antifuse-based FPGAs

have write-once memory elements, flash-based and SONOS are reconfigurable and non-

volatile, and SRAM-based presents a Configuration memory RAM (CRAM), which is

reprogrammable but volatile. SRAM-based FPGAs are the most widely used due to the

high reconfiguration flexibility, competitiveness costs, and capability of integrating com-

plex systems on the same component (HAUCK; DEHON, 2008).

The Xilinx 7-series FPGA family (XILINX, 2020) is a set of SRAM-based FPGAs

built over 28 nm Complementary Metal–Oxide–Semiconductor (CMOS) technology, tar-

geting different application requirements, such as high-performance and low-power. The



38

7-series family includes Spartan-7, Virtex-7, Kintex-7, and Artix-7 FPGAs. In general,

these FPGAs differ in the logic resources density, memory availability, and performance.

Figure 2.3 shows the Artix-7 FPGA architecture. The Programmable Logic (PL) is com-

posed of CLB slices, 36 Kb dual-port BRAMs, DSPs, and Clock Management Tiles

(CMTs). The CLBs present two slices (XILINX, 2016a). Each slice comprises of four

6-input LUTs, eight FFs, Wide-Function Multiplexes (MULXFx), and carry logic. Some

slices also have memory capability and can be used as distributed RAM or Shift Register

Logic (SRL).

Figure 2.3 – Artix-7 FPGA architecture overview.

Source: (XILINX, 2013).

Over the years, FPGA devices increased in complexity, and even more System-on-

Chips (SoCs) based on heterogeneous architectures were introduced in the market. Het-

erogeneous systems include a PL combined with embedded hard core processors, mem-

ories, and high-speed peripherals. An example of All Programmable System-on-Chip

(APSoC) is the Xilinx Zynq-7000 (XILINX, 2021d) that combines the PL, same Artix-7

FPGA layer, with a Processing System (PS), SoC around a dual-core ARM Cortex-A9

processor. Figure 2.4 presents an overview of the Zynq-7000 functional blocks.

Modern SRAM-based FPGAs, such as the Xilinx UltraScale family, implemented

on 20 nm CMOS technology, include high-performance and high-density devices (XIL-

INX, 2022c). SRAM-based FPGAs are also fabricated using Fin Field-Effect Transistor

(FinFET) and Fully Depleted Silicon-On-Insulator (FD-SOI) technologies. The Xilinx



39

Figure 2.4 – Zynq-7000 APSoC functional blocks overview.

Source: (XILINX, 2021d).

UltraScale+ architecture includes FPGAs built over 16 nm FinFET technology (XIL-

INX, 2022c). The Lattice CertusPro-NX (LATTICE, 2021) is a low-power FPGA family

based on 28 nm FD-SOI technology.

When used in radiation-prone environments, FPGAs are susceptible to SEE (fur-

ther described in chapter 3). Radiation Hardened (Rad-Hard) FPGAs provide intrinsic

hardness to SEE, such as Dual Interlocked Cell (DICE); Error Detection And Correction

(EDAC); clock tree duplication; and a built-in scrubber. An example of Rad-Hard FPGA

is the NanoXplore NG-ULTRA based on 28 nm FD-SOI technology (NANOXPLORE,

2022). The primary drawbacks of Rad-Hard FPGAs are the excessive price and lower

performance compared to modern COTS FPGAs. COTS FPGAs may also be suitable

for aerospace applications when fault tolerance methods are applied (further described in

section 4). This thesis focuses its investigation on COTS SRAM-based FPGAs.



40

2.3 Embedded soft processors

Soft processors are synthesizable hardware models developed in HDL, such as

VHDL and Verilog. The customized processor Intellectual Property (IP) description may

be synthesized to either an FPGA or a dedicated Application Specific Integrated Circuit

(ASIC). In the ASIC version, the processor is hardwired physically into the chip, where all

the components are integrated and manufactured. In this case, the processor is called hard

core since it no longer can be customized. Table 2.4 presents a comparative overview be-

tween hard and soft core processors based on the works performed by Mondragón-Torres

and Christman (2012), and Jayakrishnan and Parikh (2019). The processor implemen-

tation in FPGA provides flexibility to address changing design requirements during the

development process. Other advantages of soft processors are a more straightforward

integration, portability, and low cost compared to buying or manufacturing an ASIC.

However, hard cores are usually more energy efficient and achieve better performance

(MONDRAGóN-TORRES; CHRISTMAN, 2012).

Table 2.4 – Comparative between hard and soft core processors.

Power consumption Performance Flexibility Time to market Cost
Hard core Low High Low High High
Soft core Middle / High Low High Low Low

Source: (MONDRAGóN-TORRES; CHRISTMAN, 2012; JAYAKRISHNAN; PARIKH, 2019).

During co-processing, a processor may use an FPGA custom logic as a hardware

accelerator to improve the system’s capabilities and performance. For a hard core proces-

sor (ASIC implementation), the co-processing can be performed with an FPGA chip on

the same PCB as the processor. Modern devices can have a hybrid architecture, includ-

ing an embedded FPGA (eFPGA) within the same chip as the hard core processor. The

co-processing can also be implemented internally to the FPGA with a soft processor and

hardware accelerators synthesized into the FPGA fabric.

Several soft processors have been developed in the last decades. They implement

different Instruction Set Architectures (ISAs) and differ in complexity, ranging from sim-

ple microcontroller implementations to complex multicore SoCs. Some examples of soft

processors available in the open community are: LEON3 (SPARC ISA) (FRONTGRADE

GAISLER, 2022b); Cortex-M3 (ARM ISA) (ARM, 2005); MicroBlaze (RISC ISA) (XIL-

INX, 2021a); and a plethora of soft processors implementing the RISC-V ISA, such as

the Rocket (ASANOVIĆ et al., 2016), NOEL-V (FRONTGRADE GAISLER, 2022b),



41

and Ibex (previously zero-riscy) (LowRISC, 2018) that is part of the Parallel Ultra-Low-

Power (PULP) platform (PULLINI et al., 2019). Table 2.5 gives an overview of the

architecture of those soft processors, describing the ISA, pipeline, on-chip memory, and

presence of Floating-Point Unit (FPU).

Table 2.5 – Soft processors architecture description.

Soft processor ISA Pipeline On-chip memory FPU
MicroBlaze1 32-bit RISC 3, 5, or 8-stage single issue LMB6 / Cache (opt.) Opt.
Cortex-M32 32-bit ARMv7-M 3-stage single issue TCM7 (opt.) No

LEON33 32-bit SPARC v8 7-stage single issue Cache (opt.) Opt.
NOEL-V3 32 or 64-bit RISC-V 7-stage single/dual issue Cache Opt.
Rocket4 32 or 64-bit RISC-V 5-stage single issue Cache Opt.

Ibex5 32-bit RISC-V 2, or 3-stage single issue Inst. cache (opt.) No

1. (XILINX, 2021a)
2. (ARM, 2005)
3. (FRONTGRADE GAISLER, 2022b)
4. (ASANOVIĆ et al., 2016)
5. (LowRISC, 2018)
6. Local Memory Bus (LMB) interface to optional 2 KB local memory (fixed size)
7. Tightly Coupled Memory (TCM)

Many applications have been using soft processors. Examples range from web

servers (AMIN et al., 2011), real-time video systems (ATITALLAH et al., 2005), and

avionic, defence, and space systems (ANDERSSON et al., 2017). RISC-V-based proces-

sors have been used in a wide variety of terrestrial applications, and there is an emerg-

ing interest in using those processors also in future space missions (DI MASCIO et al.,

2019; ROGENMOSER; TORTORELLA, 2022). For example, the Trisat-R nanosatellite,

launched in July 2022, includes a SkyLabs NANOhpm OBC featuring a RISC-V NOEL-

V processor (ESA, 2022; COX, 2022).

The RISC-V ISA is a standard open architecture, highly extensible, and flexible

that allows the development of general-purpose computing systems (WATERMAN et al.,

2014). The standard was established for the design implementation not to be architecture-

or technology-dependent. For those reasons, this thesis focuses its investigation on RISC-

V Rocket and NOEL-V soft processors.

To support the reader about the concepts and configurations exercised in this the-

sis, an overview of the implementation of soft processors in FPGAs is presented in the

following section.



42

2.4 Soft processor implementation in FPGAs

When a soft processor IP is synthesized to an FPGA logic, the components and

the netlist of signals and interconnections are mapped to the resources of the target FPGA.

Every FPGA vendor’s tool has its own implementation flow, which, in general, is defined

by the following (XILINX, 2021c):

• translating the incoming netlist and design constraints to internal primitives;

• mapping the logic into the FPGA elements; and

• placing and routing the design components and interconnections considering the

timing constraints.

After the implementation phase, the FPGA programming file is generated (i.e.,

bitstream generation), and the FPGA device can be configured.

The designer may customize and constrain the soft processor to achieve the re-

quirements of a target system or mission. This section further discusses the design possi-

bilities when implementing a soft processor in FPGAs.

2.4.1 Processor configurability

Configurability is the capability of adding, removing, or changing resources that

implement a specific feature in a processor (LEIBSON, 2006). The amount of config-

urable parameters varies depending on the soft processor. Examples of customized fea-

tures usually available are: cache size and configuration; enable/disable FPU; the use of

debug unit; memory management; allow exceptions and interruptions; and add or remove

peripherals. When the soft processor’s source is available, the designer may update the

code based on their needs. Such adaptability facilitates the employment of techniques

aiming for better performance, lower resource usage, or fault tolerance. However, adapt-

ing a processor source faces many challenges and complexities. LEON3, NOEL-V, and

Rocket are examples of open source soft processors. Although Cortex-M3 and MicroB-

laze are freely accessible, the source of these soft processors is unavailable, and the con-

figurability is limited to a few features.

Some soft processors can also provide internal configuration optimizations. For

instance, the MicroBlaze supports three different pipeline optimizations (XILINX, 2021a):



43

• Area: 3-stage pipeline with minimum execution units enabled.

• Performance: 5-stage pipeline for better performance.

• Frequency: 8-stage pipeline to reach higher frequencies.

LEON3, NOEL-V, Rocket, and Cortex-M3 do not support pipeline optimizations.

2.4.2 Arithmetic operations

Arithmetic operations, such as additions, subtractions, multiplications, divisions,

and accumulations, may be implemented in the FPGA logic, DSPs, or combined. The

designer may set constraints to the soft processor implementation to force or not use

DSPs for specific operations. Otherwise, the FPGA vendor’s tool freely infers DSP slices

based on default configurations. The DSP slices may also implement logic operations,

such as AND/NAND, OR/NOR, XOR/XNOR, and NOT. Figure 2.5 shows the dedicated

elements of a DSP48E1 slice in Xilinx FPGAs (XILINX, 2018).

Figure 2.5 – DSP48E1 slice overview.

Source: (XILINX, 2018).

Specifying the DSP usage directly in the design (i.e., direct instantiation) usu-

ally leads to reduced resource usage and higher operating frequency (RONAK; FAHMY,

2012). Another advantage of using DSPs instead of combinational implementation is the

higher robustness against SEE (OLIVEIRA et al., 2019).

2.4.3 Memories

Soft processors present several memory elements, including the main memory,

caches, register file, First In First Out (FIFO), and buffers. The main memory usually



44

requires a larger area and can be implemented externally in a Double Data Rate (DDR)

Dynamic Random Access Memory (DRAM), for instance, but it can also be featured as

an on-chip RAM, depending on the SoC requirements.

External memories present a high access latency, requiring many clock cycles

from the request until receiving the data, while the internal BRAMs have a great perfor-

mance advantage. Bansal et al. (2018) assessed the memory subsystem in a Xilinx Zynq

Ultrascale+ MPSoC, comparing the PL access latency to internal BRAM and external

DRAM. The authors found that the latency for the external memory can be up to 1.5 (i.e.,

75 ns) more than the internal BRAM.

Cache memories are much smaller and with faster access than the main memory

and are usually implemented in the internal BRAMs. The cache latency is about 3 ns in

the referenced work (BANSAL et al., 2018). Small memory elements such as register

files, FIFOs, and buffers can be inferred as BRAMs but also as FFs and distributed RAMs

(LUTRAMs).

2.4.4 Resource usage

Each FPGA has different available resources. High-density FPGAs, such as the

Xilinx Virtex UltraScale+ VU29P with more than 1.7M LUTs (XILINX, 2022c), can

implement large designs. Low-density FPGAs, such as the Xilinx Spartan-7 XC7S6 in-

cluding less than 4K LUTs (XILINX, 2020), have capacity for small designs only. The

designer must evaluate the area requirements of the system and select a suitable FPGA

with available resources. As recommended, the design should use a maximum of 75%

FPGA resources since a larger area increases the complexity of placement and timing

closure (XILINX, 2021b).

The resource usage of the soft processor IP is provided by the FPGA vendor’s

tool, and it is usually described in terms of LUTs, FFs, carry logic, BRAMs, and DSPs.

Moreover, I/Os, routing, clocking, and peripherals are essential resources to be verified.

High-density FPGAs are usually costly, and the designer might not have the flexibility

to select the target FPGA. Hence, if the target FPGA does not feature enough resource

availability, the design area may be reduced by removing components, reducing memory

size, and enabling optimizations. On the other hand, if the design requires just a small

area and most of the FPGA resources are not used, selecting a smaller device would avoid

wasting unnecessary power.



45

Table 2.6 – Resource usage of soft processors implemented in the Artix-7 FPGA.1

Soft

processor2

Resource usage5

FF LUT MUXFx Carry BRAM DSP

MicroBlaze3

Area 4, 109 4, 380 34 64 10 3

Perf. 4, 458 4, 772 110 76 10 3

Freq. 5, 914 6, 295 5 161 10 3

LEON3 2, 143 5, 211 68 69 13 4

NOEL-V 9, 927 24, 142 669 897 22 4

Rocket 8, 875 13, 279 257 462 13 4

Cortex-M3 5, 680 13, 757 220 258 6 3

1. FPGA vendor’s tool: Xilinx Vivado 2021.1; Target FPGA: Xilinx Artix-7 (xc7a100tcsg324-1).
2. Default configuration of soft processor IPs, except: 8 KB cache/TCM; no FPU; integer multiplier and divider enabled; 50 MHz.

The Rocket soft processor is the 64-bit version from the lowRISC implementation.
The NOEL-V soft processor is the single-issue 32-bit version with a lite configuration.

3. MicroBlaze internal optimizations (different pipeline): area (3-stage); performance (5-stage); and frequency (8-stage).
5. Estimated resource usage per soft processor.

Table 2.6 presents the resource usage of the MicroBlaze, Cortex-M3, LEON3,

NOEL-V, and Rocket soft processors implemented in the Xilinx Artix-7 FPGA. For gen-

erality, the soft processor IPs were synthesized with few adjusts from the default con-

figurations, such as: 8 KB cache/TCM enabled; no FPU; integer multiplier and divider

enabled; and 50 MHz clock frequency. The resource usage described in table 2.6 consid-

ers the soft processors’ default top-level module but does not include information of an

entire SoC.

2.4.5 Optimizations

Optimization is a design enhancement towards a specific goal, such as improving

performance, reducing area, or saving power. The designer may manually constraint the

design for particular optimizations during the synthesis or implementation phase. More-

over, the FPGA vendor’s tool usually provides automatic strategies for design optimiza-

tion. For instance, the Xilinx Vivado tool supports different strategies targeting power,

resource usage, placement, routing, or timing (XILINX, 2021c).



46

2.4.6 Placement

During the implementation phase, the placement stage is the distribution of the

defined logic blocks to the FPGA fabric. The FPGA vendor’s tool uses placement algo-

rithms to reduce the delay of critical paths and optimize the design routing (GROVER;

K.SONI, 2012).

The designer can condition the soft processor design to be placed in a specific

area of the FPGA. Partial blocks of the design can also be placed in different regions.

This approach is usually helpful to avoid mixing or reusing resources in the same area,

such as when implementing design replication. However, restricting the placement might

lead to timing issues or have lack of available resources in the area. If no placement

constraints are applied, the FPGA vendor’s tool will freely place the design in the FPGA

fabric, optimizing paths and resources as predefined.

2.4.7 Power consumption

The power consumption in devices is established by a result of static and dynamic

power. The static power is determined by transistors leakage, and the dynamic power

is a result of switching activity, operating frequency, capacitance charging, and supply

voltage (GROVER; K.SONI, 2012). The fabrication technology of the FPGA device af-

fects the leakage current and resources capacitance. FPGAs usually present higher power

consumption than ASICs due to the high number of programmable bits. The extra cir-

cuitry not used also significantly contributes to the static power consumption. Moreover,

the higher the junction temperature, the higher the transistor leakage and, therefore, the

higher the static power (KLEIN, 2005). The implemented design directly impacts the

dynamic power by resource usage and operating frequency, whereas it affects the static

power by the amount of unused circuitry.

Clock gating is an effective approach to reduce power consumption. The input

clock of inactive elements is temporarily turned off, avoiding unnecessary switching and

saving power. Figure 2.6 describes a clock gating implementation. The gating is con-

trolled by an additional logic that should present low power consumption. One should no-

tice that applying clock gating may affect the performance of the design. Enabling power

implementation optimizations from the FPGA vendor’s tool is a straightforward method

for automatic clock gating generation. For instance, the Power_ExploreArea strategy of



47

Figure 2.6 – FPGA power saving using clock gating.

Source: (XILINX, 2021c).

the Xilinx Vivado tool combines area optimization with clock gating (XILINX, 2021c).

Additional system level design techniques may also be applied to soft processors to reduce

dynamic power. Dimond, Mencer and Luk (2006) proposed a framework, combining in-

struction recording and power-aware scheduling methods, that achieved a mean dynamic

power reduction of 28.37% for VirtexIIPro and 9.31% for Spartan3 FPGA.



48



49

3 SINGLE EVENT EFFECTS AND PROBLEM DEFINITION

This chapter brings an overview of the radiation-induced effects on devices, fo-

cusing on SRAM-based FPGAs and soft processors, and discusses the problems of im-

plementing soft processors in SRAM-based FPGAs in SEE-prove environments.

3.1 Radiation-induced effects

Electronic devices in space missions are particularly susceptible to Single Event

Effects (SEE) caused by ionized particles from the space environment (NICOLAIDIS,

2011). Radiation particles mainly originate from solar activity, cosmic rays, and trapped

particles. Space mission devices are not the only systems affected by radiation. Ter-

restrial radiation is also a concern due to secondary particles generated by the collisions

of the primary particles with the air molecules in the atmosphere (NORMAND, 2001;

BAUMANN, 2005).

This section presents an overview of the radiation-induced effects on Integrated

Circuits (ICs) and further describes the soft error characteristics in SRAM-based FPGAs

and soft processors.

3.1.1 Overview of SEE on integrated circuits

Single Event Effects (SEE) are a consequence of the interaction of radiation par-

ticles with the IC’s material. The interaction of energetic ions with silicon can occur by

direct or indirect ionization, which can produce charge collection in the ion track (BAU-

MANN, 2005). The Linear Energy Transfer (LET) is characterized as ionization due to

the particle energy lost in the penetration path (VELAZCO; FAURE, 2007). The particle

LET increases with penetration and the maximum loss occurs at the Bragg peak (BUCH-

NER et al., 2011). The minimal charge affecting a Sensitive Volume (SV) is defined as a

critical charge. The charge deposition can be enough to disturb a circuit node and change

a logic state, leading to SEE. There are different subcategories of SEE. This thesis follows

the primary definitions established in the ESCC25100 standard (ESA, 2014).



50

Single Event Upset (SEU) is a single ion strike that flips a logic cell, also called

upset or bit-flip. Multiple Cell Upset (MCU) is classified when a single particle affects

multiple cells. If the cells are from the same word, it is define as Multiple Bit Upset

(MBU). SEUs, MCUs, MBUs are soft errors, which means non-destructive events that

can be recovered by rewriting or resetting the cell.

Single Event Transient (SET) is a transient pulse generated at a susceptible tran-

sistor node. For instance, this pulse may propagate through the logic and be captured by

a flip-flop. SET is a soft error that can be logical, electrical, or latch window masked

(BAUMANN, 2005).

Single Event Functional Interrupt (SEFI) occurs when a soft error leads to device

malfunction, usually only recovered by reset or power cycle. SEFIs are common in com-

plex systems since soft errors affecting control bits or state machines might lead to hangs

or crashes in the device.

Single Event Latch-up (SEL) is a potentially destructive state resulting from a

transistor parasitic effect that leads to a high draining current and, consequently, high

operating current consumption. A micro latch-up event is defined when there is a step-

wise increase instead of the high-current phenomena (TAUSCH et al., 2007). SEFIs might

also result in a step rise in the current consumption.

Radiation may also lead to degradation effects in the integrated circuits. The To-

tal Ionizing Dose (TID) refers to the amount of accumulated radiation-induced trapped

charge in the transistors gate oxides (OLDHAM; MCLEAN, 2003). TID degradation

effects may cause loss of functionality and higher current consumption, mainly due to

higher leakage currents. Particles may also lead to atomic displacement due to the kinetic

energy transferred via nonionizing events (WARNER et al., 2005). The total nonionizing

dose deposited in a material is defined as displacement damage.

3.1.2 Soft errors in SRAM-based FPGAs

SRAM-based FPGAs are particularly susceptible to soft errors due to the inherent

characteristic of SRAM cells. Soft errors in SRAM-based FPGAs can lead to transient or

permanent errors (KASTENSMIDT et al., 2004; ASADI; TAHOORI, 2005). Transient

errors result from soft errors on dynamic memory elements, such as FFs, BRAMs, and

LUTRAMs. A SET pulse on the combinational logic can propagate and be loaded by an

FF, or SEUs can directly flip bits in memory cells. The data stays temporarily erroneous



51

until the memory element is rewritten. This bit error might lead to a system failure, be

masked by design, or be corrected by fault tolerance techniques.

Permanent errors occur when soft errors affect the FPGA CRAM, changing the

RTL architectural implementation of the design. SEUs in LUTs can change the logic

function the LUT is implementing. Bit-flips in the routing system can enable or disable

switches, change paths, or create or destroy interconnections. The FPGA clock tree can

also be affected by soft errors, leading to failures. Additionally, some CRAM bits control

the functionality of other elements, for instance, whether a LUT is a logic function, a

shift register, or a LUTRAM (ASADI; TAHOORI, 2005). When a control bit is flipped,

the element under its control might change functionality, and multiple other bits can also

be inverted due to the newly defined function (BERG et al., 2008). CRAM errors are

persistent and can only be fixed by reconfiguration.

The soft error sensitivity of SRAM-based FPGAs is directly affected by the tech-

nology of the SRAM cells. For instance, a study performed by Azimi et al. (2022) using

proton testing showed that the Xilinx 28 nm CMOS Zynq-7000 is one order of magni-

tude more sensitive to SEUs than the 16 nm FinFET Zynq UltraScale+. The difference

in susceptibility to upsets is due to the intrinsic characteristics of the transistor’s physical

structure (i.e., planar bulk CMOS and 3D FinFET).

The static cross section1 evaluates the intrinsic radiation sensitiveness of the FPGA

resources. Figure 3.1 shows a comparative between the CRAM SEU static cross section in

the 28 nm CMOS Zynq-7000 and 16 nm FinFET Zynq UltraScale+ FPGAs under proton

testing (AZIMI et al., 2022).

The SEU sensitivity of the FPGA CRAM and BRAM bits can also be different.

Although the SRAM cells are implemented in the same technology, the fabrication pro-

cess of the memory cells may differ. The fabrication process can target high-performance

or low-power characteristics by varying parameters such as the SRAM cell area and tran-

sistor threshold voltage. Different cell processes on the FPGA CRAM and BRAM mem-

ories directly impact the radiation sensitivity (TONFAT et al., 2017). For instance, the

SEU static cross section of the BRAM bits is about twice the CRAM bits in the Xilinx

Kintex UltraScale FPGA under heavy ion testing (MAILLARD et al., 2019).

The static cross section of the FPGA resources is considered as the radiation sen-

sitivity worst-case scenario. Nevertheless, SEUs in the FPGA will not necessarily lead to

system failures due to the design’s inherent masking effects. The dynamic cross section

1The definition of cross section and the differences between static and dynamic tests will be further
addressed in this chapter.



52

Figure 3.1 – CRAM static cross section for Xilinx 28 nm CMOS Zynq-7000 and 16 nm FinFET
Zynq UltraScale+ FPGAs under proton testing.

Source: (AZIMI et al., 2022).

is design-dependent and considers the system failures experienced at the user level, such

as output data errors and functional interrupts.

The dynamic cross section is expected to be lowered from the static cross sec-

tion by the design’s inherent masking variable. Employing fault tolerance techniques can

increase the error masking effects and reduce the dynamic cross section of the design.

Chapter 4 describes examples of fault tolerance techniques. The design implementation

rules can also affect the dynamic cross section. For instance, implementing arithmetic op-

erations on DSP slices instead of the combination logic reduces the design susceptibility

since DSPs are more resilient to soft errors (SANCHEZ-ELEZ et al., 2016; TONFAT et

al., 2017; OLIVEIRA et al., 2019).

Figure 3.2 describes the soft error criticality of the FPGA bits to lead to design

failures. Upsets in the unused FPGA area have a reduced risk of leading to errors since

those bits are not expected to interfere with the design functionality. However, it is not

removed the possibility of the design being affected if unused elements get enabled due

to soft errors. All bits configured due to the design implementation (either zeros or ones)

are called essential bits. Single-bit upsets in essential bits do not have any effects, but

accumulated upsets might provoke errors since the design’s inherent masking effects can

be overcome. Critical bits are defined as bits that can cause errors if flipped. Therefore, a

single-bit upset in a critical bit can lead to a system failure. Typical unmitigated designs

implemented in Xilinx SRAM-based FPGAs are expected to present between 5% and 10%

of critical bits (XILINX, 2022a). In a worst-case scenario, one in ten upsets is expected



53

Figure 3.2 – FPGA bits description by criticality. The essential bits are all bits used in the design
implementation, and critical bits are bits that will lead to errors in case of upsets.

Source: From the author.

to lead to a system failure.

3.1.3 Soft errors in soft processors

Soft errors affecting processors may lead to data flow or control flow errors, result-

ing in incorrect application execution or system crashes. Figure 3.3 shows some examples

of the soft processor susceptible areas. SEUs and SETs in the embedded memories can

have complex effects on the processor architecture and its executing software (Quinn,

2014). The processor data flow is affected by modifying values stored in memory ele-

ments, leading to corrupted computations classified as Silent Data Corruptions (SDCs).

Soft errors in the processor control flow may lead to SEFIs and result in applica-

tion crashes or processor hangs. Examples of control flow errors are the branch errors,

such as the creation or deletion of a branch or incorrect branch decisions. The erroneous

branch creation occurs when a non-branch instruction is set into a valid branch instruc-

tion due to a bit-flip. This fail leads the program flow to a wrong address. On the other

hand, a faulty branch deletion occurs when a branch instruction is converted into a dif-

ferent instruction, and the original branch is not taken. A bit-flip in a conditional branch

may result in an incorrect decision (i.e., if the branch should be taken or not). Moreover,

a soft error can modify a branch instruction’s address, assigning a wrong address to the

program execution. If the Program Counter (PC) register is upset, the following executed

instruction changes, leading the program flow to an incorrect address.



54

Figure 3.3 – Example of SEE in soft processors

Source: Adapted from (TAMBARA, 2017).

SEE may result in different processor errors, depending on the hardware unit af-

fected. Some errors related to the affected processor element are described below (VE-

LAZCO; FAURE, 2007).

• Register File: Upsets may corrupt data, provoking SDCs. On the other hand, SEUs

affecting a control register can lead to errors in the execution flow and hangs in the

system.

• Integer Unit (IU), FPU: SEUs in the pipeline of the arithmetic units may result in

incorrect computations, leading to SDCs.

• Bus Unit: Bit-flips in the embedded registers, which latches address and data, can

lead to incorrect read or write operations.

• Control Unit: SEUs in the circuitry, which implements complex algorithms, may

provoke exceptions or losses of sequence.

• Debug Unit: SEUs can trigger debug execution modes leading to errors in the

program execution flow.

• Instruction Cache: Upsets may lead to SDCs or SEFIs. The instruction cache is

usually divided into memory elements that store the fetched instructions and the

tag array to validate or invalidate the fetched program. SEUs in the tag array can

invalidate an instruction, leading to a cache miss. This type of fail introduces a

delay in the program execution as the instruction has to be fetched again, but the



55

application would still finish the execution correctly. However, if an SEU validates

an incorrect instruction, the program flow will crash. Moreover, SEUs can directly

corrupt an instruction. Suppose the tag array validates an incorrect code. In that

case, a wrong instruction can be executed, or an exception can be generated if the

instruction is no longer in the processor instruction set. On the other hand, if the

tag array does not validate the corrupted instruction, the fault is masked, and no

incorrect behavior is observed.

• Data cache: SEUs may lead to SDCs or SEFIs. The data cache is divided into

data memory and tag array. Bit-flips in the tag array may validate out-of-date data,

leading to wrong outputs, or invalidate data, introducing a delay in the application

due to a cache miss. If an upset affects the data memory, this may lead to a corrupted

output. However, if the data is out-of-date, the fault is masked, and no effects

are observed. Bit-flips in the data cache may also lead to SEFI depending on the

application characteristics.

In addition to the effects described above, soft processors synthesized into COTS

SRAM-based FPGAs are susceptible to persistent faults at the device level. SEUs in the

FPGA configuration memory can lead to changes in the architectural implementation of

the soft processor. These faults can cause SEFIs, leading to control flow errors, and SDCs,

erroneous application output. Due to the large number of configuration bits required to

implement a soft processor design, CRAM upsets are the most relevant cause of failures.

However, soft errors in the embedded memories can also lead to different failures, as

previously described. Moreover, clock line or routing circuitry faults can cause incorrect

behavior in the soft processor.

3.2 Problem definition: the use of soft processors implemented into COTS SRAM-

based FPGAs in SEE-prone environments

The primary concern when using soft processors embedded into COTS SRAM-

based FPGAs is the processor’s vulnerability to persistent errors in the configuration

memory. The first step is to understand the mission requirements, which may have re-

strictions such as budget, hardware limitations, maximum allowed error rate susceptibil-

ity, and criticality. Based on those requirements, the most appropriate device shall be

selected, if not already pre-established in the mission.



56

In the case of SRAM-based FPGAs, the CRAM sensitivity is affected by the tech-

nology of the SRAM cells, which are commonly based on CMOS, FinFET, or FD-SOI.

The planar bulk CMOS is a technology more sensitive to soft errors due to the intrin-

sic characteristics of the transistor’s physical structure (AZIMI et al., 2022). The SEU

susceptibility of the implemented FPGA design can be estimated by combining the tech-

nology susceptibility information with the FPGA radiation sensitivity. The number of

upsets in the configuration and user memories during the mission’s lifetime can be esti-

mated based on the static response of the FPGA fabric to SEUs (i.e., static cross section

figures usually provided by the FPGA vendor). The dynamic response of FPGA design

(i.e., dynamic cross section) depends on the masking effects of the implemented system.

Larger designs use more FPGA resources and, therefore, present more sensitive bits. De-

pending on the system’s characteristics, the design can have more or less critical bits that

can lead to failures. The design susceptibility can be assessed through SEE ground test-

ing using accelerated particles. Emulation fault injection is also a powerful strategy for

reliability analysis.

Soft processors are complex designs that usually feature a complex state machine

with a multi-stage pipeline, user memories, and arithmetic units. Soft errors can affect all

these elements and lead to failures, such as SDCs and SEFIs. Additionally, soft processors

in SRAM-based FPGAs are prone to architectural errors due to the FPGA configuration

memory vulnerability. Protecting such a variety of elements is not straightforward and

requires multiple mitigation solutions.

In that context, this thesis investigates the following problems:

• Problem 1: Not always the entire soft processor-based SoC can be triplicated due

to restricted resources or due to the unfeasibility of triplication of connections and

interfaces. In low-density FPGAs, the triplicated design might exceed the FPGA

available resources and make it impossible to complete the placement and routing

phases. In some cases, the placement is successful, but the design fails to meet

timing with high connections slack in the critical path, or requires a reduction of

the clock speed. Even in a fully triplicated design, replicating hardwired inter-

faces is impractical, which will mandatorily narrow the connections to a single line,

increasing the chances of cross-domain faults. In those cases, high-level fault toler-

ance techniques can be employed combined with the Triple Modular Redundancy

(TMR) for a more robust system monitoring.

• Problem 2: Embedded processors make use of on-chip cache memories to re-



57

duce memory access time and boost performance. Nonetheless, SEUs in the caches

can also contribute to failures and increase the soft processor vulnerability (TAM-

BARA et al., 2015). The larger the cache size and the higher the number of cache

levels (e.g., L1 and L2), the larger the susceptible area. Therefore, an increase in

the soft processor susceptibility is expected. On the other hand, a soft processor

with a larger cache will present a better performance, speeding up the applica-

tion benchmark execution. A faster execution reduces the exposure vulnerability

in time. Some techniques can be applied to protect cache memories, such as Error

Correction Code (ECC), parity, and memory scrubbing. A periodic cache refresh

can also be used as a mitigation strategy at the expense of performance overhead.

• Problem 3: Scrubbing is a mandatory protection of the FPGA configuration mem-

ory. Internal scrubbers are also implemented in the FPGA fabric and, therefore,

are susceptible to the same effects as the FPGA design. Soft errors in the exposed

scrubbing interface can compromise the correction capabilities and, in the worst

case, lead to catastrophic impacts such as washing the entire configuration memory

with erroneous data. External scrubbers may provide higher robustness to deal with

soft errors since their hardware is not implemented in the FPGA fabric.

The fault tolerance techniques mentioned above are detailed in chapter 4. This

thesis addresses those problems through investigations described in chapters 6, 7, and 8.



58



59

4 BACKGROUND AND RELATED WORKS

This chapter provides an overview of different fault tolerance techniques that can

be applied to soft processors implemented in SRAM-based FPGAs. The following tech-

niques can also be combined for system enhancement. The related works section de-

scribes the relevant studies and the state of the art of mitigation methods on soft processors

and L1 cache vulnerability.

4.1 Background of fault tolerance techniques

4.1.1 Configuration memory scrubbing

SEUs in SRAM-based FPGAs may lead to persistent errors in the system, chang-

ing the architectural implementation of the design, as detailed in section 3.1.2. CRAM

scrubbing is a well-known technique for coping with upsets in the configuration memory

and avoiding fault accumulation. However, scrubbing does not prevent bit-flips from hap-

pening or error build-up due to faults on critical bits. Therefore, additional design-level

mitigation techniques are recommended to decrease the number of single points of failure

in the system and increase fault masking.

The literature presents several scrubbing implementations that mainly differ in

error detection, power consumption, resource usage, and correction speed (HEINER;

COLLINS; WIRTHLIN, 2008; BROSSER et al., 2014; TONFAT et al., 2015; STOD-

DARD et al., 2017). Scrubbing can be defined as internal when the scrubber engine is

embedded inside the FPGA being monitored and external when the scrubber controller

is located externally to the target FPGA in a different component. The Xilinx Soft Er-

ror Mitigation Intellectual Property (SEM-IP) (XILINX, 2022b) is an example of internal

scrubbing present in most Xilinx FPGAs.

The main advantage of internal scrubbers is the high speed for single error de-

tection and correction. However, internal scrubbers are also susceptible to soft errors

affecting the FPGA. Internal scrubbers can get locked and have the correction capability

compromised due to faults in the scrubber interface or multiple errors in the configuration

memory (BERG et al., 2008). In this context, external scrubbers usually provide higher

robustness and the ability to deal with multiple errors.



60

The CRAM scrubbing does not protect dynamic memory elements, such as BRAMs,

distributed memory (LUTRAMs), and FFs. SEUs affecting the dynamic elements can be

mitigated by fault tolerance techniques such as redundancy or ECC, as further described

later in this chapter. Moreover, a periodic reset may be required to reestablish the system

and restore the FFs initial state. A power cycle might be necessary in cases of SEFIs in

the FPGA internal control elements or configuration interface.

4.1.2 Redundancy-based techniques

Redundancy-based techniques are error mitigation strategies applied at informa-

tion, temporal or spatial levels (OSINSKI; LANGER; MOTTOK, 2017). Redundancy

at the information level consists of adding extra data to memory elements, such as ECC

or data replication on different memory spaces. The temporal redundancy directly im-

pacts performance since it requires additional execution time. For instance, multiple soft-

ware executions on the same processor for data check. The replication of components is

considered spatial redundancy. Some of those redundancy-based techniques are further

described below.

4.1.2.1 Modular redundancy

The most basic redundancy is the Dual Modular Redundancy (DMR), or Dupli-

cation With Comparison (DWC), which consists of duplicating a component or software

and adding a checker for error detection. In this case, the error is not masked or corrected

but flagged for an external monitor.

The Triple Modular Redundancy (TMR) is used for error detection and mitigation.

Three redundant modules and a voter for comparison are used to mask single faults. The

error build-up is avoided, but the faulty module is not corrected. Moreover, voters should

also be triplicated to prevent single points of failure.

To improve the fault masking capability, the modular redundancy concept can

be expanded to N replicas, N-Modular Redundancy (NMR). For instance, N software

replicas can run on different cores in multi-core systems, or N component replicas can

be instantiated in an FPGA design. These solutions offer higher fault detection and error

masking at the expense of larger area, reduced performance, and power overhead.

On FPGAs, the high resource usage of redundant designs might affect the routing



61

and placement, and the clock frequency might need to be reduced to meet the timing

requirements. Regarding power, Figure 4.1 shows the overhead for NMR systems as a

function of N replicas and the ratio (r) between the FPGA dynamic and static power

(TARRILLO et al., 2014). The overhead is given by the ratio between the power of

N modules (Pn) and the power of the non-redundant module (P1). As expected, the

higher the redundancies, the greater the power penalties. The overhead is steeper with the

increase of the ratio between the FPGA dynamic and static power. The FPGA dynamic

power is design-dependent and is expected to increase with more redundancies.

Figure 4.1 – Power overhead on NMR systems as a function of the number of redundancies and
ratio between FPGA dynamic and static power.

Source: (TARRILLO et al., 2014).

If upsets accumulate over time in the system, the masking effects of the modular

redundancy can be overcome due to multiple faulty modules. Since the area of a replicated

design is much higher than a non-redundant design, the former is more susceptible to

faults. In fact, the Mean Time to Failure (MTTF)1 in a TMR system without repair is

worse than a non-redundant system (SIEWIOREK; SWARZ, 1998). The TMR elements

should be frequently repaired for error correction. The higher the repair rate (µ), the more

effective the TMR design and the higher the MTTF.

Table 4.1 describes the MTTF on different systems related to the failure and re-

pair rates. Figure 4.2 shows the analytical reliability plot for non-redundant and TMR

systems (SIEWIOREK; SWARZ, 1998). The TMR with repair plot is based on a theoret-

ical Markov chain, considering an optimal repair rate and without common mode failures.

In SRAM-based FPGAs, scrubbing is essential to clean the CRAM upsets that

1The MTTF metric is described in section 5.2.4.



62

Table 4.1 – MTTF comparative between non-redundant, TMR, and TMR with repair systems.

Nonredundant TMR TMR with repair

MTTF1 1
λ

5
6λ

5
6λ +

µ
6λ2

1. MTTF defined in section 5.2.4.
(λ) failure rate defined per equation 5.7.
(µ) repair rate.

Figure 4.2 – Analytical reliability of nonredundant and TMR systems. The TMR with repair plot
is based on a theoretical Markov chain, considering an optimal repair rate without common mode

failures.

Source: (SIEWIOREK; SWARZ, 1998).



63

might compromise the TMR design. The scrubbing rate directly affects the TMR perfor-

mance in masking faults. A system reset may also be required to restore the FFs state in

the triplicated components. The scrubbing cycle and reset periodicity should be defined

based on the SEE rate in the target environment.

TMR is one of the most used mitigation techniques for SRAM-based FPGAs

(KASTENSMIDT et al., 2005; QUINN et al., 2007). Component triplication can be

applied at different granularity. Coarse Grain TMR (CGTMR), or block TMR, consists

of triplicating the entire component or module as a block and voting only the external

outputs, as shown in Figure 4.3. The CGTMR is the most straightforward TMR approach

and can be implemented using a tool or manually, depending on the design complexity.

In the Fine Grain Local TMR (LTMR), only the FFs are triplicated, and voters are added

after each TMRed FF. A Fine Grain Distributed TMR (FDTMR) consists of triplicating

all internal sub-modules. Feedback voters can be added to FFs with feedback logic for

error correction. Figure 4.4 presents an example of FDTMR implementation. LTMR

and FDTMR are more complex to implement and usually require an external tool for

the netlist triplication. Examples of commercial and open source tools are the Synopsys

Synplify Premier (SYNOPSYS, 2015a) and SpyDrNet TMR (BYU CONFIGURABLE

COMPUTING LAB., 2020), respectively.

As mentioned above, the drawbacks of redundant designs are the area, perfor-

mance, and power overheads. The LTMR leads to lower resource impact since only the

FFs are mitigated. However, the LTMR is not efficient when implemented in SRAM-

based FPGAs since the configuration memory is highly susceptible (OLIVEIRA et al.,

2019). The LTMR approach is more effective when applied to antifuse-based FPGAs be-

cause the configuration memory in those FPGAs is inherently radiation-tolerant (BERG

et al., 2006). The FDTMR requires the highest resource usage, with an overhead usually

more than three times higher since all internal sub-modules are triplicated with multiple

voters. The CGTMR is usually more area and power efficient than FDTMR (GROVER;

K.SONI, 2012). The target FPGA size is also a limitation, and applying a CGTMR or

FDTMR to the entire design is not always possible. Often, the triplication needs to be

restricted to a few components.

4.1.2.2 Error correction codes

EDAC codes are commonly used to protect user data and rely on the addition of

redundant bits. Detection codes, such as parity, can flag an inconsistency in the data and



64

Figure 4.3 – Coarse Grain TMR (CGTMR) implementation.

Source: From the author.

Figure 4.4 – Fine Grain Distributed TMR (FDTMR) implementation with feedback voters.

Source: From the author.



65

are often used in communication protocols. The Cyclic Redundancy Check (CRC) is an

error detection code based on redundancy and is usually used for a large amount of data.

In data memories, ECC are frequently used for Single Error Correction and Dou-

ble Error Detection (SECDED). The Hamming code is one of the most spread SECDED

codes (KUMAR; UMASHANKAR, 2007). The Bose–Chaudhuri–Hocquenghem (BCH)

is abstracted from the Hamming code for multiple error correction, and Reed–Solomon

codes are a sub-set of BCH codes (HUFFMAN; PLESS, 2003). The standard error code

algorithms can be computed for a variety range of bits. The higher the number of code

bits, the more error bits can be detected in the data group.

4.1.2.3 Lockstep technique

Lockstep is a hybrid fault tolerance technique applied to processors based on soft-

ware and hardware redundancy for error detection and correction (ABATE; STERPONE;

VIOLANTE, 2008; VIOLANTE et al., 2011; GOMEZ-CORNEJO et al., 2013; PHAM;

PILLEMENT; PIESTRAK, 2013; OLIVEIRA et al., 2018). Similar to DMR, two pro-

cessors execute the same software, and the outputs are compared for error detection, but

additional methods are used for error recovery. Checkpoint and rollback mechanisms are

used at the software level, and processor duplication and checker circuits are implemented

at the hardware level.

Typical lockstep works by executing the same application simultaneously and

symmetrically in two identical processors. At system start-up, the processors are ini-

tialized with the same state and inputs (code, bus operations, and asynchronous events).

In a fault-free execution, both processors are expected to perform the exact instructions

allowing the monitoring of the data, addressing, and controlling buses from clock to clock

(BOWEN; PRADHAM, 1993).

Verification points are inserted in the program code to lock the application exe-

cution and compare the system outputs. The addition of verification points is intrusive

and requires updating the software source. If the processors have the same status at a

verification point, the system is considered fault-free, and a checkpoint operation is per-

formed. The checkpoint consists of saving the processors’ context in a safe memory (e.g.,

a memory with ECC protection). The context is defined as all data resources used in the

application execution necessary to repair the system in case of errors, such as registers and

user data. When the results mismatch, the lockstep system restores the fault-free copy of

the context through a rollback mechanism. The processors are recovered to a previous



66

state without errors and restart the application execution from that point.

4.1.3 Software-based techniques

Software-Implemented Hardware Fault Tolerance (SIHFT) techniques deal with

faults on processors by protecting only the software, without hardware modification.

These methods usually rely on adding code redundancy and comparison for error de-

tection (GOLOUBEVA et al., 2006).

Software redundancy strategies can be applied at instruction and thread levels (OS-

INSKI; LANGER; MOTTOK, 2017). Mitigation at the instruction level frequently repli-

cates the program assembly code for fault detection, such as Error Detection by Dupli-

cated Instructions (EDDI) (OH; SHIRVANI; MCCLUSKEY, 2002) and Software Imple-

mented Fault Tolerance (SWIFT) (REIS et al., 2005). The approaches that operate at the

thread level are called Thread-Level Redundancy (TLR) and can implement Simultane-

ous Multithreading (SMT) to provide fault coverage on either single- or multi-core SoCs

(REINHARDT; MUKHERJEE, 2000; MUKHERJEE; KONTZ; REINHARDT, 2002).

SIHFT techniques can also be designed to detect SEFIs. For instance, the Selec-

tive Software-only Error-detection Technique using Assertions (S-SETA) can be used to

detect control-flow faults and put the system in a fail-safe state, allowing the implementa-

tion of a top-level recovery solution (CHIELLE et al., 2015). Multiple SIHFT techniques

can be combined to mitigate data- and control-flow errors and increase system reliabil-

ity. Schmidt, French and Flatley (2017) implemented multiple techniques at the software

level, including checkpoints, control-flow assertions, heartbeat monitoring, and watchdog

timers to protect a PowerPC processor in a flight mission.

4.1.4 Hardware monitors

Hardware monitors can detect errors by monitoring expected processor behavior

such as bus traffic, pipeline tree, and data patterns. Watchdog timers, checkers, or dedi-

cated IPs can be used to monitor the system (AZAMBUJA; KASTENSMIDT; BECKER,

2014). A watchdog processor is a module that detects errors by verifying the control-flow

and memory access of the target processor (MAHMOOD; MCCLUSKEY, 1988; BENSO

et al., 2003). Modern solutions use artificial intelligence and machine learning methods



67

to build watchdog circuits to detect SEUs in processors (VARAPRASAD et al., 2021).

Heartbeat monitoring can also be performed in hardware by checking a toggling General

Purpose Input/Output (GPIO), for instance.

Usually, hardware monitors require less area compared to replication techniques.

Since the error is only detected, correction techniques can be combined for protection

enhancement. Upadhyaya and Saluja (1986) proposed a watchdog processor for error

detection combined with a rollback scheme for recovery.

4.1.5 Summary

From the presented fault tolerance techniques, this thesis focuses on periodic

scrubbing of the FPGA configuration memory, triplication for the soft processor core,

watchdog approach to detect timeouts, and memory duplication and refresh of the L1

cache.

This thesis uses the Xilinx SEM-IP for CRAM scrubbing during the investigations

presented in chapters 6 and 7. In chapter 8, an external scrubbing is developed to improve

the fault coverage and visibility.

CGTMR and FDTMR are used during the Rocket case study verification in chap-

ter 6. For the NOEL-V and NOEL-VFT characterization, a distributed TMR is employed

with feedback voters.

In chapter 6, a periodic reset is used to restore the Rocket processor’s flip-flops

state, and a watchdog monitors timeouts.

The L1 cache of the NOEL-V is protected with duplication and comparison, and

periodic flush, as detailed in chapter 7. Chapter 8 describes the built-in EDAC methods

and BRAM scrubbing protection of the NOEL-VFT soft processor.

4.2 Related works

4.2.1 Fault tolerance solutions for soft processors

The literature presents different works investigating soft error mitigation methods

on processors. Kasap et al. (2020) revised a variety of techniques to protect the FPGA

configuration memory and the user memory of soft processors, focusing on the LEON3



68

core. The fault tolerance techniques targeting soft processors synthesized into SRAM-

based FPGAs usually consider redundant-based solutions such as TMR or DMR to protect

errors in the logic and flip-flops; ECC or time-based solutions like flushing or refreshing

in the user memories; and periodic scrubbing of the FPGA configuration memory.

The first step is to understand the sensitive parts of the soft processors. Cho (2018)

analyzed the soft error susceptibility affecting flip-flops of the RISC-V Rocket and Berke-

ley Out-of-Order Machine (BOOM) soft processors. Results demonstrated that the most

vulnerable parts of the RISC-V cores are the Control Status Register (CSR) and register

file. The authors also showed that, although the raw error rates from the two processor

cores are different, the error rates depending on the applications have strong correlations.

As described in section 3.1.3, SEUs in the processor register file are critical since

they have a high chance of causing SDCs or control flow errors. Various works have

proposed EDAC and SECDED approaches to protect the register file and other user mem-

ories, such as the caches. The same tendency is observed in commercial soft processors.

The Frontgrade Gaisler commercial fault tolerant LEONFT and NOEL-VFT processor

lines implement SECDED codes to all embedded memories (FRONTGRADE GAISLER,

2022b).

Ramos et al. (2018a) presented a method to protect the RISC-V Rocket soft pro-

cessor’s register file, which relies on parity error detection and inferred redundancy based

on a design tool. The authors showed the method’s effectiveness through emulation fault

injection in correcting single-bit errors at a considerably lower cost than a traditional TMR

approach. Dörflinger et al. (2020) designed an ECC controller with memory scrubbing

for Rocket and BOOM processors, which led to an overhead of about 5% for logic and

41% for BRAMs in a Xilinx Virtex UltraScale+ FPGA.

In Heida (2016) work, a hybrid fault tolerance architecture is implemented through

redundancy and ECC techniques with SECDED capabilities. Fault injection experiments

showed that bit-flips in the pipeline are more likely to lead to errors in the processor regis-

ter file. Although the system fault tolerance has been established, the design did not meet

the expected clock frequency efficiency and the maximum resource usage requirement.

These results are consequences of the long paths inherent to a redundant design.

Neri (2021) developed a fault tolerance design of the instruction decode stage in a

RISC-V processor using triplication and ECC. No errors were observed in the benchmarks

when the Fault Tolerance (FT) features were enabled. Li et al. (2022) refined a novelty

SECDED approach applied between the pipelines of a RISC-V processor combined with



69

rollback for error recovery. The authors show the processor can handle different error

conditions under simulation error injection.

Soft errors in the processor’s arithmetic unit are also a concern due to the possi-

bility of wrong computations. Gupta et al. (2015) proposed a fault tolerant RISC-V mi-

croprocessor architecture based on space and time redundancy to harden the Arithmetic-

Logic Unit (ALU), and ECC to protect the registers and memories. The reliability of the

system in the presence of single-bit faults was evaluated through fault injection. The pro-

posed scheme was able to harden the ALU and data path against soft and hard errors with

a penalty of 20% in area and 25% in performance.

Santos et al. (2020) propose a fault tolerance RISC-V processor implementation

based on the RV32I integer instruction-set in which the ALU and control unit are trip-

licated, and hamming code is applied to the instruction fetch unit (PC) and register file.

The initial version of the processor was validated under SEUs and SETs emulated in

a Xilinx Zynq-7000 FPGA (SANTOS et al., 2020). Results showed an error propaga-

tion reduction of about 16 times. In the continuation of the study, the authors enhanced

the proposed processor by adding SECDED to the data memory and a watchdog at the

SoC level, which triggers a reset when the processor is non-responsive (SANTOS et al.,

2022). Neutron irradiation on a Microchip flash-based Smartfusion2 FPGA demonstrated

97.73% correctness with complete protection on the processor.

Partial TMR has also been investigated for ALU protection in a Rocket processor,

in which only one of the ALU operations is triplicated (RAMOS et al., 2019). Emula-

tion fault injection results showed that the partial TMR differs up to 2% of correctness

compared to the full triplicated ALU. In the worst case, the difference in protection was

almost 5%.

An example of DMR approach for soft processors is presented by the Ferlini et

al. (2012) work, where two LEON3 processors run the same application in parallel in

two FPGA devices. This redundant implementation is part of the fault tolerance strategy

of an OBC. Another work proposed a fault tolerant architecture in a quad-core RV32IM

RISC-V processor that was implemented in an ASIC, 32 nm CMOS, and validated in a

Xilinx Artix-7 FPGA (SHUKLA; RAY, 2022). The FT mode implies that instructions

are executed in two pairs of DMR cores for error detection and re-execution for error

recovery. All single-bit injected faults were successfully mitigated.

Heterogeneous solutions also bring the opportunity to increase processor reliabil-

ity. For example, a lockstep architecture applied to a Rocket soft processor in the FPGA



70

fabric and a hard core Arm Cortex-A9 is implemented in a Xilinx Zynq-7000 FPGA for

system enhancement (RODRIGUES et al., 2019). However, the primary drawback of such

solutions is the synchronization complexity due to the distinct processors’ architectures

and the multiple clock domains.

A coarse-grain lockstep using MicroBlaze soft processors is proposed to protect

an OBC of a CubeSat (FUCHS et al., 2019). The system is also enhanced with ECC on

memories and CRAM scrubbing. The authors validated the proposed solution in Xilinx

Kintex UltraScale and UltraScale+ devices and observed 50% lower power consumption

on the UltraScale+ FPGA. The power variation is likely due to the technology fabrication

of the devices, with the 16 nm FinFET UltraScale+ requiring less power than the 20 nm

planar CMOS UltraScale. No soft error reliability data is provided in the reference.

Lindoso et al. (2017) added a hybrid fault tolerance to a LEON3 soft processor

by protecting the memories with SECDED codes, monitoring control-flow errors with a

hardware module, combining data-flow duplication and inverted branches techniques at

the software level, and performing CRAM scrubbing. Under neutron testing, the miti-

gated LEON3 could reduce more than four times the cross section compared to the un-

hardened version.

As discussed in previous sections, CRAM scrubbing is essential on SRAM-based

FPGAs. Applying the distributed TMR approach to soft processors can also be highly

efficient. Keller and Wirthlin (2017) showed that the distributed triplication reduced eight

times the neutron sensitiveness of a LEON3 processor. Moreover, combining TMR and

CRAM scrubbing boost improvement to 27 times. Aranda et al. (2020) work investi-

gated the critical bits and essential bits ratio for a Rocket processor in the Xilinx Kintex

UltraScale. The study injects single faults in the design’s essential bits and checks for

failures. The triplicated version of the Rocket processor reached 99.7% of correctness for

combined benchmarks, while the unhardened resulted in 90.3%. Walsemann et al. (2023)

developed a fault tolerant RISC-V processor based on triplication and SRAM memory

scrubbing. The processor was implemented in a custom ASIC, 65 nm CMOS technology.

Laser testing targeting the SRAM standard cells showed the high effectiveness of the FT

features in correcting all SEUs.

Wilson and Wirthlin (2021) evaluated triplicated versions of four RISC-V soft

processors (PicoRV32, Kronos, Taiga, and VexRiscv) in a Xilinx Artix-7 FPGA under

CRAM fault injection and more than 80 times reliability improvement. Under neutron

testing, a triplicated Taiga soft processor lowered 33 times the cross section (WILSON;



71

WIRTHLIN, 2019), and a triplicated VexRiscv performed ten times better Mean Fluence

to Failure (MFTF) (WILSON et al., 2021), with the drawback of 5.6 and 4 times more

area, respectively. In a continuation work, the authors characterized the RISC-V Taiga,

VexRisc, PicoRV32, and NOEL-V soft processors in a Xilinx Kintex UltraScale FPGA

under neutron beam (WILSON et al., 2023). The authors explored the triplication of

the entire SoC, including DSPs and BRAMs, combined with external CRAM scrubbing.

Results demonstrated a cross section reduction of up to 75 times, at the expense of 4.8

times more resource usage and 12.4% performance reduction.

The PULP platform’s RISC-V cores can also be enhanced for fault tolerance (RO-

GENMOSER; TORTORELLA, 2022). The authors propose an on-demand redundancy

to the processor cores that, when enabled, works as a usual TMR system. However, when

disabled, the three cores execute instructions independently toward high performance.

Additionally, ECC and scrubbing are employed on the user memories. No experimental

data on the soft error susceptibility has been provided in that reference.

This thesis fills many gaps not covered in past works. We investigate the use of

fault tolerance techniques on the RISC-V Rocket, NOEL-V, and NOEL-VFT soft proces-

sors implemented in SRAM-based FPGAs – Zynq-7000, Zynq UltraScale+, and Kintex

UltraScale, respectively– under different scenarios and deeply analyze the trade-offs be-

tween the reliability improvements and the system drawbacks. The impact of accumulated

faults on FPGA configuration memory implementing the Rocket and NOEL-V is inves-

tigated to understand the processors’ susceptibility under multiple upsets. The literature

works have primarily investigated the RISC-V processors under single-bit faults. We

study applying protection to specific elements of soft processors, such as the processor

core, the integer unit and cache controller, and the L1 cache, and we explore the FPGA

configuration memory susceptibility. We individually analyze the impact of each protec-

tion on the overall processor susceptibility. Additionally, an investigation is carried out

on the L1 cache of the Rocket processor to characterize different cache topologies under

faults in the user memories.

To our knowledge, this thesis is the first work to publish the SEE characteriza-

tion of the commercial fault tolerant NOEL-VFT processor. Further enhancement of the

NOEL-VFT is also investigated by adding an external CRAM scrubbing combined with

distributed TMR. An FPGA supervisor is developed to program and scrub the CRAM

externally through the SelectMap interface. We perform accelerated irradiation testing

using heavy ion and proton beams, which are the most relevant particles present in-orbit,



72

such as Low Earth Orbit (LEO) and Geostationary Orbit (GEO). The amount of generated

data with the various investigations makes this thesis a valuable guide for future imple-

mentations of RISC-V soft processors in SRAM-based FPGAs. The results of this thesis

compared to the state-of-the-art works are presented in chapter 9.

4.2.2 L1 cache vulnerability

Using the cache memories can significantly impact the soft processor vulnerability

(TAMBARA et al., 2015). However, the fact that the data is stored in the cache not

necessarily implies that it is susceptible to soft errors. The vulnerability time window of

the data is related to its usage by the processor. Figure 4.5 shows some examples of data

vulnerability related to different cache accesses, such as data read, data write, and cache

eviction (KO et al., 2017). An upset in the cache will only propagate through the system

if the processor reads the erroneous data or writes back to the main memory in a dirty

state.

Figure 4.5 – Cache data vulnerability related to different accesses: data read, data write, and
cache eviction.

Source: (KO et al., 2017).

Ozturk, Topcuoglu and Kandemir (2022) studied the error propagation on cache

memory through fault injection using the GEMFI simulator. The authors found a depen-

dency between the error propagation and the type of benchmark computations, order of



73

executions, and input vectors. This result is expected due to the different masking effects

of different applications.

Tselonis et al. (2016) performed fault injection simulation using a MARSSx86

microarchitectural x86-64 simulator to investigate transient faults in the processor caches.

The susceptibility results regarding the cache associativity may change between data and

instruction caches. An overall lower vulnerability is found in a 2-way data cache and

8-way instruction cache. Results shown that increasing the cache size increases the error

masking effect. However, this may be a test artifact related to a non-normalized fault

injection.

As shown by Yuanwen Huang and Mishra (2016), the vulnerability is expected to

increase with the cache size since the miss rate decreases. The authors computed the data

vulnerability based on the Architectural Vulnerability Factor (AVF) and the summation

of the vulnerable time of bytes in the cache (in byte cycles). Larger caches present lower

miss rate. A lower miss rate means that the valid data stays longer time in the cache,

leading to a higher vulnerability.

Livany, Salehi and Kargar (2020) investigated, via simulation on the GEM5, the

vulnerability of different cache topologies, varying the size from 1 to 32 KB with 1 to

8-way set associativity. The work evaluates the cache susceptibility by computing the

Cache Vulnerability Factor (CVF). Figure 4.6 depicts the relation between vulnerability

and cache topology. Similar to the Yuanwen Huang and Mishra (2016) work, results

from Livany, Salehi and Kargar (2020) show that increasing the cache size increases the

vulnerability. Results also demonstrate that the data cache presents higher vulnerability

than the instruction cache. As expected, the application execution time decreases by

increasing the cache size. The authors noticed that the execution time saturates on 8

KB cache size, and increasing more the cache did not improve performance. Similarly,

Eckert et al. (2017) demonstrated using an ARM soft processor embedded in an Artix-7

FPGA that increasing the cache associativity improves performance, but the gain is less

expressive at larger cache size (i.e., above 16 KB). Those results might also be related to

the execution flow characteristics of the evaluation benchmarks.

This thesis aims to confirm if those simulated results are also applicable to soft

processors embedded in FPGAs. Additionally, the cache size and performance tradeoff

against the overall vulnerability still needs to be determined. Although a larger cache im-

plies a higher data vulnerability, a reduced execution time also means a reduced exposure

time for the entire system. The boost in performance with larger cache sizes may lead to



74

Figure 4.6 – Cache vulnerability for different topologies: (a) varying instruction cache
configuration with constant 16 KB data cache; (b) varying data cache configuration with constant

16 KB instruction cache.

Source: (LIVANY; SALEHI; KARGAR, 2020).

more application workload correctly computed between failures, which can be attractive

depending on the mission requirements. This thesis performs emulation fault injection

on the FPGA’s user memories (BRAMs) to investigate the different cache topologies and

susceptibilities on the Rocket soft processor. Different cache sizes are also assessed on

the NOEL-V soft processor under proton testing.



75

5 RADIATION CHARACTERIZATION METHODOLOGY

This chapter gives an overview of the SEE ground testing, evaluation metrics,

and estimation of orbit error rate. System validation is a mandatory step for a successful

mission. Qualification methodology can be used to verify the system susceptibility, assess

the feasibility and reliability of the implemented fault tolerance methods, and prepare for

the expected error rate during the mission lifetime.

5.1 Single Event Effects testing

5.1.1 Accelerated ground testing

Accelerated ground testing can be used to simulate the conditions of a radiation

environment, either space or terrestrial. The simulated artificial condition is limited to

a single particle source with computed accelerated fluxes. The particle beam commonly

targets a specific component, defined as Device Under Test (DUT). On the other hand,

multiple particles are present in a natural radiation environment, with real particle rates,

and the entire system is affected, which might lead to combined fail effects. Ground

testing might not accurately replicate an existing radiation environment but is a reliable

way to assess the component behavior under radiation-induced effects.

There are plenty of standards that guide radiation testing in integrated circuits

(LAUENSTEIN, 2016). Examples of well spread SEE standards are JEDEC JESD57

(JEDEC, 1996) and ESA ESCC25100 (ESA, 2014). These standards establish instruc-

tions and requirements for preparation, execution, and post SEE testing.

Heavy ions, protons, and neutrons are common particles used for SEE testing.

During test preparation, one should simulate the particle range in the die layers to en-

sure the penetration through the Sensitive Volume (SV). The SRIM software (ZIEGLER,

2013) can be used for Transport of Ions in Matter (TRIM) calculations.

The neutron beam presents a significant depth penetration and usually does not

require any DUT sample preparation. Proton beam also gives a high projected range that

can penetrate hundreds of millimeters depending on the energy. Heavy ion testing, on

the other hand, may require sample preparation to guarantee the ions reach the sensitive

region. Different approaches can be used to reduce the device thickness based on the chip

packing, such as removing the lid, grinding, polishing, or chemically etching part of the



76

substrate or other package layers.

The particle Effective LET (LETeff) shall be considered as the LET value at the

active surface of the SV. In case the DUT is tilted during the heavy ions irradiation, the

LETeff is computed as equation 5.1, where θ is the DUT inclination angle (ESA, 2014).

LETeff =
LET (normal_incidence)

cos θ
(5.1)

The SEE test planning shall consider LETs and energies that will trigger different

effects in the device. The selected particle fluxes and fluences should be enough to gather

significant events. The flux is the number of particles strikes per unit area per unit time,

and the fluence is the total amount of particles strikes per unit area during the exposure

time. In summary, the relation fluence (φ) and flux can be evaluated by equation 5.2.

φ = flux× t (5.2)

The minimal number of failure events recommended in the JESD-57 standard is

100 events to ensure meaningful statistical calculations (JEDEC, 1996). However, gather-

ing many events is not always feasible. The ESCC25100 standard advises accumulating a

minimum fluence of 107 and 1011 p/cm2 for heavy ions and protons, respectively (ESA,

2014).

The DUT radiation sensitivity can be assessed by performing static and dynamic

tests. Ramos et al. (2018b) presents a relevant example of evaluating the static and dy-

namic radiation sensitivity of processors.

A static test is used to evaluate the intrinsic susceptibility of the component. The

static tests aim at the technology characterization of the DUT elements, such as mem-

ory cells, FFs, combinatorial cells, PLL, etc. Usually, the memory elements testing is

performed by writing a predefined pattern to the memory, starting the irradiation, and

periodically checking the values for upsets. The other elements can be more complex to

evaluate. For a soft processor implemented in an FPGA, the static sensitivity is related

to the FPGA device resources. Usually, the FPGA vendor provides a radiation report

describing the typical sensitivity for the configuration memory and BRAMs.

A dynamic test aims to assess a functional system under irradiation, focusing on

the DUT’s availability and responsiveness. For instance, the dynamic test of a soft pro-

cessor consists of executing a software application and verifying its outputs. Quinn et al.

(2015) propose a set of benchmarks for reliability analysis of dynamic radiation testing



77

on FPGAs and processors. The software benchmark suite includes algorithms such as

CoreMark, Fast Fourier Transform (FFT), Matrix Multiplication (MxM), Advanced En-

cryption Standard (AES), and Quicksort (Qsort). The system’s dynamic response depends

on the masking effects of the design and application, which can avoid error build-up. In

other words, not every upset will lead to a failure event due to the dynamic characteris-

tics of the system. For components with the SEE characterization data available (i.e., the

static sensitivity), one can estimate the expected error rate per application execution and

adjust the testing accordingly.

5.1.2 Emulation Fault injection

Fault Injection (FI) is a method used to reproduce the radiation-induced effects in

devices. It can be employed to characterize points of failure that require being hardened

and assessing mitigation techniques implementations. Faults can be injected at a tran-

sistor level, gate and register transfer level, or system level (ANGHEL et al., 2007). In

a soft processor implemented in an SRAM-based FPGA, bit-flips injected in the FPGA

configuration memory will affect the processor’s Register Transfer Level (RTL) design,

and faults injected in the BRAMs will affect the application execution at the user level.

Injectors can be based on hardware or software implementations. Hardware en-

gines are composed of an external module or component that usually does not interfere

with the dynamic system functionality for injecting faults. In a software-based injection,

the system functionality may be affected by the injection engine itself. For instance, in

processors, the execution of the application is usually paused, the fault is injected, and

then the application is released and checked for errors. The injector is desired to be the

least intrusive to the evaluated system. Velazco, Rezgui and Ecoffet (2000) developed an

algorithm using interruption mechanisms to inject faults with low intrusion in processors.

Upsets can be deterministic or random injected. In a deterministic approach, the

bit-flip location is predefined. Otherwise, the target bit can be selected randomly. Injec-

tions in memory elements are said to be exhaustive when all cells are exercised during

a deterministic bit-by-bit injection. For single-bit injections, one bit is upset, the system

functionality is verified, and the upset is cleaned before a new injection. The exhaus-

tive single-bit injection targeting the configuration memory of an SRAM-based FPGA is

helpful for identifying all critical bits in the design. On the other hand, in accumulative

injections, the bit-flips accumulate over time. In this case, the upsets are only cleaned



78

when the system experiences a failure. Accumulative injections are commonly random

and focus on evaluating the system’s reliability under multiple faults. Benevenuti and

Kastensmidt (2019) showed a qualitative comparison between single-bit exhaustive and

accumulative random injections.

Usually, injection approaches focus on the susceptible design area to inject faults,

not covering the time domain. The operational timing of the injected fault can widely

impact the fault effects (QUINN et al., 2013). For instance, injecting SETs requires that

the faults are distributed uniformly over the clock cycles since the timing affects the SET

latch. In processors, faults are also dependent on the software execution. Faults in archi-

tecture point that is no longer exercised will not trigger any error, or upsets in memory

elements are masked if these elements are overwritten in sequence. For the fault injec-

tion to better mimic the radiation-induced effects, the faults should statistically cover the

timing within a clock cycle and application execution (QUINN et al., 2013).

Fault injection can be performed by simulation using modeling tools or emula-

tion in a device. For deeper reading on the topic, surveys in the literature presents tech-

niques for both emulation and simulation fault injection in general (ZIADE; AYOUBI;

VELAZCO, 2004; QUINN et al., 2013). Sterpone and Violante (2007) developed a

methodology for static and dynamic SEU sensitivity on SRAM-based FPGAs. More-

over, Quinn and Wirthlin (2015) demonstrate several emulation methods to replicate the

SEU and SET effects on FPGAs. For the proposes of this thesis, emulation fault injection

is covered focusing on soft processors embedded into SRAM-based FPGAs.

There are plenty of fault injection tools available in the literature. In SRAM-based

FPGAs, faults are usually inserted by emulating faulty component models or using par-

tial reconfiguration to flip bits in the configuration memory. In the case of soft processors,

emulating SEE effects using faulty models in FPGAs is valuable for prototyping the hard-

ware before developing the final ASIC. For instance, the SET sensitivity of a LEON2 soft

processor targeting an ASIC technology can be instrumented through FF faulty models

at RTL and gate level in a Virtex-6 FPGA (ENTRENA et al., 2012). Using a similar ap-

proach, Mansour and Velazco (2012) performed an SEU fault injection targeting the FFs

of a LEON3 soft processor in a Virtex-5 FPGA using a modified register model.

The fault injection should focus on the FPGA resources for soft processors whose

final implementation targets an FPGA. Carlo et al. (2014) demonstrated a methodology to

inject upsets in the essential bits of a LEON3 soft processor in a Virtex-6 FPGA. Harward

et al. (2015) assessed the SEU sensitivity of five different soft processor architectures via



79

fault injection performed in the Virtex5 FPGA. Sari and Psarakis (2016) presented a fault

injection framework targeting the IU, Memory Management Unit (MMU), and arithmetic

units of a LEON3 soft processor implemented in a Virtex-5 FPGA. Ramos, Maestro and

Reviriego (2017) emulated upsets in the configuration memory of an Artix-7 FPGA to

characterize a Rocket soft processor. Cho (2018) performed an FF-level fault injection in

two RISC-V-based soft processors embedded into Zynq-7000 FPGA. Wilson and Wirthlin

(2021) implemented automatic test equipment using the Internal Configuration Access

Port (ICAP) to perform fault injection experiments on five soft processors embedded into

Artix-7 FPGA. These works are further discussed in Chapter 4.2.

5.2 Evaluation metrics

Many evaluation metrics are available to assess the system susceptibility to radiation-

induced errors and compare different design approaches. This section presents some of

the most used metrics.

5.2.1 Cross section

The cross section (σ) is a standard metric used to evaluate the DUT radiation-

sensitive area. It is computed by the relation between the number of errors and the exposed

fluence of particles (φ), as defined in equation 5.3. In case the DUT is tilted during the

irradiation, the fluence must be adjusted according to the inclination angle (ESA, 2014).

Most irradiation facilities already compute the final fluence based on the DUT tilting.

σ =
#errors

φ
(5.3)

The cross section unit can be expressed as cm2/device, for failures considering

the entire device. For errors per memory bit, the obtained cross section should be divided

by the total number of bits, and it is represented as cm2/bit.

The static cross section is obtained from the component static testing and defines

the intrinsic susceptibility per area unit. On the other hand, the dynamic cross section is

related to the number of functional failures per area unit.



80

5.2.2 Fault injection error rate

For emulated system failures, the fault injection error rate (or failure rate) can be

used as an alternative metric for the cross section. Instead of the fluence, this error rate is

based on the number of injected bit-flips. Therefore, the fault injection error rate (τinj) is

the relation of the number of errors divided by the number of injected bit-flips, as defined

in equation 5.4.

τinj =
#errors

#injected_bit-flips
(5.4)

5.2.3 SEU error rate estimation

In case of the unfeasibility of exposing the DUT under a beam of particles, the

dynamic SEU error rate can be estimated based on the static cross section for the spe-

cific technology and fault injection results, as per equation 5.5 (REZGUI et al., 2001)

(VELAZCO; FAURE, 2007).

τSEU = σSEU × τinj (5.5)

Although this standard formula is valid and easily applied to simple systems, find-

ing an accurate estimation based only on fault injection for complex systems is signifi-

cantly challenging. For example, the fault injection analysis of soft processors embedded

in SRAM-based FPGAs has a limited evaluation scope. As described in section 5.1.2,

faults are usually injected in the FPGA CRAM and BRAMs. Other resources are not

accessible such as DSP slices, clock tree, and other internal FPGA elements.

5.2.4 Mean time to failure and mean time between failures

Mean Time to Failure (MTTF) is the average time to a failure occurs in the system

and is usually attributed to non-repairable failures. On the other hand, the Mean Time

Between Failures (MTBF) measures the frequency of recoverable failures. Both concepts

can be easily mixed when testing components. Krasich (2009) gives an overview on how

to apply both MTTF and MTBF as reliability measurement to systems.



81

In summary, equation 5.6 expresses the mean distribution of MTTF as the reliabil-

ity at a time (R(t)), which gives the inverse of the failure rate (λ) (SIEWIOREK; SWARZ,

1998). The failure rate is defined per equation 5.7 as the total number of failures divided

by the test time.

MTTF =

∫ ∞
0

R(t)dt =

∫ ∞
0

e−λtdt =
1

λ
(5.6)

λ =
#failures

t
(5.7)

Equation 5.6 also applies to MTBF when the failure rate is related to recoverable

fails of a single component or system. Moreover, MTBF is usually presented as a function

of the cross section and the particle flux, as shown in equation 5.8, which is derived from

equations 5.2, 5.3, 5.6 and 5.7.

MTBF =
1

σ × flux
(5.8)

5.2.5 Mean fluence to failure

Berg et al. (2017) proposed a reliability analysis focused on radiation-induced

errors that is a function of fluence instead of using it from the time domain directly as

defined in the MTTF. The MFTF is the average fluence (φ) to experience a failure and

is expressed as the inverse of the cross section (σ), as per equation 5.9. The reliability

function, in this case, is defined as equation 5.10.

MFTF =
1

σ
(5.9)

R(φ) = e
−φ

MFTF (5.10)

5.2.6 Mean executions and workload between failures

The Mean Executions Between Failures (MEBF) and Mean Workload Between

Failures (MWBF) are metrics generally used to evaluate the system’s reliability consider-

ing its performance. Higher MEBF and MWBF means higher functional reliability.



82

MEBF method considers the relation of the number of successful application exe-

cutions until a failure occurs (RECH et al., 2014). MEBF relates the error rate and system

performance by the ratio between the MTBF and application execution time (in seconds),

as defined in equation 5.11.

MEBF =
MTBF

exec. time
(5.11)

On the other hand, the MWBF analyzes the trade-off between the error rate and

performance by the amount of data correctly computed until an output error occurs (RECH

et al., 2014) (SANTINI et al., 2014). Equation (5.12) relates the data workload with cross

section, beam flux of the accelerated ground testing, and the application execution time

(in seconds).

MWBF =
workload

(σ × flux× exec. time)
(5.12)

5.2.7 Empiric reliability

The empiric reliability is defined as the capability of the design to provide the

correct result in time. This thesis uses a similar approach as defined by Berg et al. (2017)

for the MFTF, but the reliability is represented using the experiments’ empirical data

results (i.e., number of failure events). Equation 5.13 represents the reliability function

R(φ), where F (φ) is the cumulative distribution function abstracted from the number

of accumulated faults, for emulation fault injection, or particle fluence, for accelerated

ground testing.

R(φ) = 1 − F (φ) (5.13)

5.3 SEE error prediction

The SEE error rate in-orbit is a failure prediction for a specific radiation environ-

ment based on accelerated ground testing. Standard models such as the CREME96 for

cosmic rays and APB8 for trapped protons are used to calculate the particles fluxes per

LET or energy in a defined orbit. Typically, the predictions target LEO and GEO orbits.



83

The device or system failure rate is estimated based on the SEE cross section

and the particles fluxes for the defined environment. Firstly, a statistical distribution of

the cross section data is computed, then the failure rate is estimated by combining the

particles fluxes for the defined environment and the distribution data. Additionally to the

cross section data, the rectangular parallelepiped (RPP) model of the SV directly impacts

the error rate due to the charge collection in the cell area (PETERSEN et al., 2005).

Several works in the literature have investigated effective ways of performing

the statistical calculation for bounding SEE rates (SRINIVASAN; TANG; MURLEY,

1994)(PETERSEN et al., 1992)(PETERSEN et al., 2005)(LADBURY, 2007). The Weibull

distribution (WEIBULL, 1951) is commonly used for fitting the cross section data. The

4-parameter Weibull fit consists of:

• LETth or LET0: minimal LET to trigger a failure event (LET threshold) in heavy

ion testing; for proton testing, the energy threshold shall be used;

• σlim or σsat: limiting or saturation cross section;

• W : Weibull width;

• S: Weibull shape.

The uncertainty in the rate calculation is reduced if many events are presented for

several LETs or energies data points. The lower the uncertainty in defining the Weibull

parameters, the better the resulting data fitting. Moreover, heavy ions and protons data

shall be input to the calculations to improve the SEE error rate accuracy. The Weibull

distribution can be used for fitting both heavy ion and proton data. The Bendel distribu-

tion is also a well-known method for fitting proton data (BENDEL; PETERSEN, 1983).

Models, such as SIMPA (DOUCIN et al., 1995), PROFIT (CALVEL et al., 1996), and

METIS (WEULERSSE et al., 2015), can be used to estimate the proton fit curve based on

the heavy ion cross section data in case of non-availability of the proton data.

SPENVIS (ESA, 2018) and OMERE (TRAD, 2022) are free software tools used

to compute the SEE error rate. The SEE results are given in events per day detailed for

cosmic rays, trapped and solar protons. The total error rate considers the total estimation

for heavy ions and protons based on the selected models and standards. The events are

defined per device or bit, depending on the specified input data. One should check the

correct number of SV cells and the RPP model being used in the calculations. Pessimistic

or conservative SEE predictions can lead to costly over-design protection. However, under

error rate estimation might result in mission failure.



84



85

6 EXPLORING THE COTS RISC-V ROCKET SOFT PROCESSOR UNDER RA-

DIATION EFFECTS

This chapter presents the SEE characterization of the COTS RISC-V Rocket soft

processor implemented in a Xilinx Zynq-7000 FPGA. The first section explores the pro-

cessor under a fault injection methodology emulating bit-flips in the FPGA configuration

memory and heavy ion accelerated ground testing. The fault injection targets only the

CRAM bits, while the heavy ion irradiation affects the whole FPGA device. The second

section investigates the influence of the L1 cache topology on processor susceptibility by

emulating faults in user memories.

6.1 SEE characterization of the COTS Rocket soft processor

6.1.1 COTS RISC-V Rocket soft processor

The Rocket processor is a customized general-purpose RISC-V soft processor

generated using the open source Rocket Chip SoC generator (ASANOVIĆ et al., 2016).

It can be implemented in the RISC-V 32-bit (RV32G) or 64-bit (RV64G) ISAs. Rocket

has a 5-stage single-issue in-order scalar pipeline, L1 data and instruction caches, integer

ALU, and optional FPU. Figure 6.1 depicts the internal architecture of the core pipeline

(SONG, 2015), showing the internal four stages: decode, execute, memory, and white

back. The instruction fetch stage is not described in the figure.

Rocket Chip SoC generator builds the RISC-V based platform using the Chisel

language. The Chisel is a Scala hardware description language that generates synthesiz-

able Verilog (BACHRACH et al., 2012). The generated Verilog SoC can be implemented

in ASICs or FPGAs.

This thesis is based on the lowRISC SoC implementation (SONG, 2015), which

contains the Rocket Chip generator; peripherals, such as Universal Asynchronous Receiver-

Transmitter (UART) and Memory Management Controller (MMC); and an Advanced Ex-

tensible Interface (AXI) compatible with the Xilinx DDR memory controller.



86

Figure 6.1 – Architecture description of the Rocket processor pipeline.

Source: (SONG, 2015).

Figure 6.2 – LowRISC SoC description.

Source: From the author.



87

A simplification of the lowRISC SoC design implemented is described in fig-

ure 6.2. The Rocket Tile is the block that encloses the RV64G Rocket core and the L1

caches. The system configuration used in this thesis consists of a single-core proces-

sor with 8 KB L1 instruction and data caches, FPU disabled, and no L2 cache. The L1

caches are implemented in BRAMs. The top-level module of the Rocket Chip contains

the Memory-Mapped I/O (MMIO) (MMIO) peripherals, BootROM, Real Time Clock

(RTC), and NASTI interface. The BootROM includes the first stage bootloader with the

first instructions to be executed by the processor. The NASTI interface is an adaption of

the AXI-Lite to access all IO devices. The lowRISC SoC also includes on-chip BRAM

memory, used as boot and user memory, and can be configured to access external memo-

ries.

6.1.2 Investigation methodology

The investigation methodology aims to characterize the SEE susceptibility of the

Rocket soft processor, with and without fault tolerance, implemented in an SRAM-based

FPGA. The processor is embedded in a Xilinx Zynq-7000 APSoC, and the reliability anal-

ysis is performed via emulation fault injection and heavy ion testing. The fault injection

experiments target the FPGA CRAM, while the entire FPGA device is irradiated during

the heavy ion testing. The efficiency of well-known fault tolerance methods is explored

to improve the overall system reliability.

6.1.2.1 Platform setup

The case study device adopted for the proposed analysis is the COTS Xilinx Zynq-

7000 (XC7Z020-CLG484 part) APSoC. The device is fabricated in a 28 nm CMOS pro-

cess. The Zynq-7000 is composed of two main hardware blocks: the PL, which consists

of an SRAM-based FPGA layer, and the PS, which is formed around an ARM Cortex-A9

processor (XILINX, 2016b).

Figure 6.3 presents the system evaluation setup based on a commercially available

ZedBoard Development Board. The lowRISC SoC test design is implemented into the

Zynq PL. The Rocket soft processor runs a benchmark and saves the resulting outputs in

the external DDR memory. The diagnosing is performed by the ARM Cortex-A9 proces-

sor that computes the golden output values, compares both results, and reports via UART.



88

Figure 6.3 – Evaluation setup of LowRISC SoC implementation into Zynq-7000 APSoC.

Source: From the author.

The ARM Cortex-A9 processor is only used for monitoring and is not under evaluation.

The system assessment is performed using unhardened (unprotected) and pro-

tected Rocket core versions. Different fault tolerance techniques are tested, such as scrub-

bing, TMR, and watchdog. All designs run at 20 MHz, which is the maximum frequency

achieved in the triplicated implementations. An investigation was also performed using

the unhardened core at higher frequency (50 MHz) to understand the impact on suscepti-

bility.

To prevent the processor from booting with corrupted instructions, the boot mem-

ory is triplicated in all designs, including the unhardened. Moreover, a processor reset

is performed in all designs to return the system to a known state after each benchmark

execution. The fault injection system, described later in this section, is only used during

the emulation experiments and is not present in the designs under heavy ion testing.

6.1.2.2 Software benchmarks

Three bare-metal benchmark applications are used for the evaluation:

• 32 × 32 Matrix Multiplication (MxM);

• Advanced Encryption Standard (AES) with 32 elements array; and

• Quicksort (Qsort) with 255 elements array.



89

Table 6.1 summarizes the characteristics of the benchmarks running on the Rocket

soft processor. These applications are standard benchmarks extensively used for testing

processors and FPGA designs (QUINN et al., 2015). All applications use 32-bit data en-

coded in fixed-point (Q16). The applications are written in C programming language and

are originally from the MiBench benchmark suite (GUTHAUS et al., 2001). The applica-

tions’ codes have been updated for a higher exercise of the data range, so the benchmarks

are initialized with data randomly generated through a Pseudo-Random Number Genera-

tor (PRNG) at every execution.

The PRNG computation is executed in software and is expected to have low inter-

ference in the execution of the benchmarks. Table 6.1 also describes the execution time

for the random numbers generation. A 16-bit checksum is computed for the resulting

output of MxM and AES applications to minimize the verification time, and the entire

array is compared in the Qsort. The total application execution time is computed for a

20 MHz clock frequency, and it is based on an average of multiple executions since the

timing measurement can vary a few milliseconds between executions.

Table 6.1 – Benchmark applications characteristics running on the Rocket soft processor.

Benchmark
Array length

(32-bit data)

Workload

(bits)

Total app. exec.

(ms)

PRNG exec.

(ms)

Verification

(data check)

MxM 32× 32 32, 768 745.87 17.77 16-bit checksum

AES 32 1, 024 61.58 1.81 16-bit checksum

Qsort 255 8, 160 555.48 12.40 full array

6.1.2.3 Failure definition

As discussed in chapter 3, bit-flips in the FPGA configuration memory may change

the soft processor’s circuitry functionality, leading to functional failures. For instance,

faults in the control flow may provoke processor exceptions or losses of sequence. Bit-

flips affecting the instruction cache or cache controller can also lead to hangs. Moreover,

timeouts may occur when the clock tree or the system reset is affected by a soft error.

Faults affecting data memory elements more likely cause the SDCs, and the processor

register file is implemented in LUTs, increasing susceptibility. The Rocket soft processor

is defined as fully functional when the resulting outputs from the application benchmarks

are correct and there is no interruption in its execution. Otherwise, a failure is counted.



90

For this investigation, the Rocket design events are defined as below:

• Unnecessary for Architecturally Correct Execution (UNACE): the application fin-

ishes its execution as expected with the correct output. It is not a failure.

• SDC: refers to wrong computations in the benchmark. The application finishes its

execution with an erroneous output, and the processor is responsive. It is a failure.

• Timeout: refers to the absence of benchmark outputs after a given time. The appli-

cation execution does not finish correctly, which can occur due to SEFIs or proces-

sor hangs. It is a failure.

6.1.2.4 Emulation fault injection

Figure 6.3 also shows the CRAM fault injection system implemented in the Zynq

PL. The control engine is based on previous work performed on Xilinx 7 Series FPGAs

(TONFAT et al., 2016). The Fault Injection (FI) engine explores the ICAP component to

read and write CRAM frames while XOR’ing the value of specific bits. Software running

on a host computer determines the position of each injected bit-flip. The software control

is performed via UART. The FI engine injects random bit-flips in a target area of the

FPGA in order to mimic SEUs caused by ionizing radiation.

Aiming to evaluate only the Rocket processor core under faults, the FI target area

is restricted to the Rocket Tile. Although it is feasible to define a restricted floorplan-

ning area to individual FPGA design blocks, isolating the Rocket core from the L1 cache

memory is not synthesizable. Therefore, the entire Rocket Tile area is affected by the

emulated bit-flips. Only the CRAM bits are upset via the performed fault injection, and

the BRAMs are not affected. The defined target area is the same for unhardened and

protected processors to normalize the FI among all designs.

One bit-flip is injected at a time. After each injection, the Rocket processor is

logically reset, and the application is re-executed. All three benchmarks (MxM, AES, and

Qsort) were evaluated during FI. Faults accumulate in the design until a functional failure

(i.e., SDC or timeout) is detected. The number of faults accumulated until the failure is

recorded, and the FPGA is reprogrammed with the fault-free design. This procedure is

repeated until 1, 000 functional failures are collected.



91

6.1.2.5 Heavy ion testing

The sensitive region of the Xilinx Zynq-7000 (XC7Z020-CLG484 part) can be

reached with heavy ions thanks to a sample preparation of the package. Figure 6.4

presents the microscopic view of the device, showing the (a) top surface and (b) transver-

sal section (TAMBARA et al., 2015). The total thickness of the Zynq PL passive layers

is 12.87 µm.

Figure 6.4 – Xilinx Zynq-7000 (XC7Z020-CLG484 part) microscopic view: (a) top surface, and
(b) transversal section.

Source: (TAMBARA et al., 2015).

The irradiation tests were conducted through accelerated heavy ions in the 8UD

Pelletron accelerator facility at Laboratório Aberto de Física Nuclear of the Universidade

de São Paulo (LAFN-USP), Brazil (AGUIAR et al., 2014). The beam line complies with

the ESA requirements for radiation tests in electronic devices. The heavy ion beam has

high uniformity, low-intensity flux, and large area, produced by scattering in a gold foil

and defocusing technique (AGUIAR et al., 2014). Figure 6.5 shows the irradiation setup.

Figure 6.5(a) is the view inside the vacuum chamber, where the ZedBoard is placed,

and the decapsulated Zynq-7000 (DUT) is aligned to the beam. Figure 6.5(b) shows the

irradiation room, where one can notice the closed chamber, beam line, and test laptop.

The DUT was irradiated in-vacuum using Oxygen (16O) and Carbon (12C) ions at

normal incidence and ambient temperature. The LET and the penetration of the particles

are described in table 6.2. The regular beam fluxes ranged from 2.85×102 up to 5.28×102

p/cm2/s, and the fluence was in the order of 106 p/cm2 per test run. The selected ion

fluxes lead to an average upset rate of 5 bit-flips/s in the Zynq PL. This estimation was



92

Figure 6.5 – Heavy ion testing setup: (a) ZedBoard inside the vacuum chamber, and (b) view of
the irradiation room.

Source: From the author.

Table 6.2 – Ions description.

Ion LET (MeV/mg/cm2) Penetration (µm)
16O 6.7 23

12C 3.7 36

performed using static readback tests at the beginning of the experiment. Due to the

limited beam time, only the MxM benchmark was executed during the heavy ion testing.

6.1.3 Rocket soft processor under faults

This section assesses the Rocket soft processor under emulation fault injection and

heavy ion-induced faults and verifies different fault tolerance methods. A deep discussion

is presented based on the analysis and comparison of the results with other relevant soft

processors.

6.1.3.1 Unhardened Rocket soft processor

Table 6.3 details the dynamic power and resource usage with the utilization per-

centage of the unhardened Rocket soft processor implemented in the Zynq PL. The table



93

Table 6.3 – Dynamic power and resource usage with the utilization percentage of the unhardened
Rocket soft processor core and lowRISC SoC implemented in the Zynq-7000 PL.1,2

Design FF LUT Carry BRAM DSP Power (mW )3

Unhard
Core 1, 701 (2%) 4, 457 (8%) 175 0 4 (2%) 7

SoC 12, 164 (11%) 17, 329 (32%) 544 68 (49%) 9 (4%) 37

1. FPGA vendor’s tool: Xilinx Vivado 2016.4; Default synthesis and implementation strategies with resource sharing disabled;

2. Target FPGA: Xilinx Zynq-7000 (xc7z020clg484-1) APSoC; Estimated static power (45◦C junction temperature): 167 mW.

3. Estimated dynamic power of lowRISC SoC and Rocket core: 8 KB L1 cache; no FPU; 20 MHz.

separately describes the required power and area for the processor core and lowRISC SoC.

The following sections present the evaluation results for the emulation fault injec-

tion and heavy ion testing.

6.1.3.1.1 Fault injection results

Table 6.4 describes the emulation fault injection results for the unhardened Rocket

soft processor running each benchmark at 20 MHz. Faults were injected in the FPGA

CRAM until accumulating a total of 1, 000 failures. On average, the functional failure

results are 21% SDCs and 79% timeouts. The overall error rate is about 0.16 failures

per injected bit-flip. The MxM benchmark presents fewer SDCs than AES and Qsort

and has the lowest error rate (0.14). The masking effects of each application contribute

to different susceptibility results. For example, MxM exercises more the arithmetic units,

and the dynamic response of the data can vary by changing the matrices size; the AES can

exercise the encryption instructions in the processor; and the Qsort is a type of algorithm

that makes control flow decisions based on the input data.

The mean faults to failure is above 6, which means that, on average, a failure oc-

curs at every 6 injected bit-flips. The target area of the injection is normalized by the most

oversized test design (triplicated versions presented in the following sections). There-

fore, many faults affect unused bits of the unhardened design, not leading to effects in

the system. However, the unhardened Rocket soft processor has an increased percentage

of failures due to a single bit-flip. About 14% of the failures are due to the first injected

fault, demonstrating the core’s high susceptibility to single-bit upsets.

Figure 6.6 presents the empiric reliability curves obtained for the unhardened

Rocket soft processor running each benchmark. The maximum reliability achieved by

the processor is lower than 88% for single bit-flips. Therefore, the application executions



94

Table 6.4 – Emulation fault injection results for the unhardened Rocket soft processor per
application benchmark at 20 MHz.

Benchmark
Total

inj. faults

Failures Error

rate1

Mean faults

to failure2

One fault

failure3#SDC #Timeouts #Total

MxM 7, 039 159 841 1, 000 0.14 7.04 12%

AES 6, 381 259 741 1, 000 0.16 6.38 14%

Qsort 5, 698 223 777 1, 000 0.18 5.70 17%

Total 19, 118 641 2, 359 3, 000 0.16 6.37 14%

1. FI error rate = total failures/total inj. faults, as defined in section 5.2.2.

2. Mean faults to failure = total inj. faults / total failures.

3. Percentage of failures that occurred due to the first injected fault (only one single bit-flip in the design).

are up to 88% correct under faults. This result is correlated to One fault failure column in

table 6.4. The reliability drops at more injected faults. The higher the number of bit-flips

accumulated in the design, the higher the probability of failure.

Figure 6.6 – Empiric reliability obtained by emulation fault injection for the unhardened Rocket
soft processor running MxM, AES, and Qsort benchmarks at 20 MHz.

Source: From the author.

Single-bit fault injection performed by Ramos, Maestro and Reviriego (2017) in

the lowRISC SoC showed that an average of 94.6% of results are correct. The hang rate

is around 2.6% among the benchmarks. Depending on the application execution time, the



95

SDCs can be as lower as 0.19% up to 3.07%. In another work, the Rocket processor pre-

sented an average of 3.5% of SDCs, 3.4% of hangs, and 8% of unexpected terminations

under single injected faults Cho (2018). The structural differences in the fault injection

methods preclude straightforward comparison. The results in this thesis align with the

literature by showing that the Rocket soft processor is more prone to faults that crash or

lock the core but also presents a high SDC rate. Because the fault injection methodology

adopted in this thesis affects only the Rocket Tile area, the results are considered pes-

simistic, estimating the worst-case scenario in which a single fault is likely to provoke a

failure in the execution flow.

6.1.3.1.2 Heavy ion testing results

Table 6.5 describes the dynamic cross section and MWBF results from the heavy

ion testing of the unhardened Rocket soft processor running MxM benchmark at 20

MHz. The cross section shows the processor susceptibility to SEE-induced faults, and the

MWBF demonstrates the amount of application data computed correctly between failures.

Table 6.5 – Dynamic cross section and MWBF results from heavy ion testing for the unhardened
Rocket soft processor running MxM benchmark at 20 MHz.

Beam
Fluence

(p/cm2)

Cross section (cm2) MWBF

(data)σSDC σTimeout σTotal

16O 1.76× 106 3.46× 10−5 3.57× 10−5 7.03× 10−5 1.24× 106

12C 1.31× 106 3.50× 10−5 2.13× 10−5 5.63× 10−5 2.30× 106

The SDC and timeout cross sections are similar for the Oxygen testing, and the

Carbon testing presented more SDCs than timeouts. These results diverge from the

CRAM fault injection, which shows the processor is more prone to timeouts. The fault

injection has the limitation of not affecting all circuitry, and only the Rocket Tile area is

the target of faults. Because the entire FPGA is irradiated, SEUs can occur in different

elements, as discussed in chapter 3. For instance, soft errors can happen in the entire

CRAM, BRAMs, DSPs, and SETs can occur in the logic. All these effects can affect the

data flow and lead to SDC failures.

Figure 6.7 presents the empiric reliability curve related to fluence for the unhard-

ened Rocket soft processor irradiated with Oxygen ions. The yellow rectangle highlights

the reliability percentage from 100% down to 90%. The static CRAM cross section per

device of the Zynq PL is 1.28 × 10−2 cm2 (TAMBARA et al., 2015). From the cross



96

Figure 6.7 – Empiric reliability obtained from the Oxygen irradiation of the unhardened Rocket
soft processor running MxM benchmark at 20 MHz.

Source: From the author.

section definition (section 5.2.1), the estimated number of upsets in the CRAM can be

obtained from the static cross section multiplied by the fluence. The top axis of figure 6.7

shows the estimated number of upsets in the FPGA CRAM for the defined fluence.

The unhardened Rocket soft processor maintained maximum reliability until flu-

ence of around 1.15 × 103 p/cm2, which is estimated to lead to about 15 bit-flips ac-

cumulated in the configuration memory. The reliability drops to 90% with a fluence of

3.98 × 103 p/cm2 (50 upsets estimated). The unhardened Rocket soft processor has not

reached maximum reliability in the FI tests. As previously discussed, the FI targeted a

more restricted processor area, leading to a more pessimistic analysis. During heavy ion

testing, many upsets can occur in unused elements, not causing any effects. Although the

irradiation testing presented better results than the FI, the unhardened Rocket soft pro-

cessor ensures the correct benchmark execution until low fluence only. The processor

implemented in the SRAM-based FPGA is highly susceptible to soft errors and must be

protected with fault tolerance techniques to increase the overall system reliability.

6.1.3.2 Rocket soft processor protected by scrubbing

As described in section 4.1.1, configuration memory scrubbing is essential in

SRAM-based FPGAs. This thesis uses the SEM-IP (XILINX, 2022b), a built-in scrubber



97

present in Xilinx FPGAs. The SEM-IP is an internal scrubber implemented in the FPGA

fabric and is used to clean bit-flips in the CRAM of the Zynq PL. Its usage resource is

not added to the utilization report of the implemented design. The Xilinx user manual

states that SEM-IP requires 838 LUTs, 682 FFs, 56 I/Os, and 6 BRAMs for Zynq-7000

XC7Z020 (XILINX, 2022b). The SEM-IP is set to run at 50 MHz. The estimated time

for scrubbing the entire CRAM is 16 ms, and the mitigation latency for a single upset

is about 19 ms (XILINX, 2022b). The design version with scrubbing enabled is labeled

with "_S". Since no protection is added to the Rocket core, the design is defined as an

unhardened core with scrubbing (Unhard_S).

The SEM-IP uses the ICAP configuration interface to monitor the CRAM frames.

The emulation fault injection also requires the ICAP interface to flip bits in the CRAM.

Because of the ICAP usage concurrence, it is not possible to simultaneously perform fault

injection and enable the SEM-IP. Therefore, this thesis does not perform FI in designs

with scrubbing enabled.

6.1.3.2.1 Heavy ion testing results

Table 6.6 presents the results for dynamic cross section and MWBF, and figure

6.8 shows the empiric reliability for the Rocket soft processor design without and with

scrubbing. Results from the unhardened core (Unhard) are repeated from figure 6.7 to

facilitate comparison.

One can notice that enabling the scrubbing reduces the cross section, increases the

MWBF, and improves the reliability. The correctness is ensured until a fluence of 1.74 ×

103 p/cm2, which is about 22 bit-flips in the CRAM. However, only enabling the CRAM

scrubbing does not significantly reduce the overall Rocket soft processor susceptibility.

For these results, the SDC cross section has a more significant reduction than the

timeout cross section when adding scrubbing. The scrubbing technique can cope with the

accumulation of bit-flips in the FPGA configuration memory, but SETs can still propagate

in the logic, and upsets in critical bits can still lead to failures. The error build-up occurs

when the upset effect propagates through the system, either when the affected circuitry is

used or by its reflection on dynamic elements. If the scrubber controller happens to inspect

the erroneous CRAM frame fast enough before the propagation, the error build-up may be

avoided. Data errors may be related to the temporal characteristics of the CRAM bit-flip.

For instance, if the scrubbing fixes the circuitry before the need to perform computations

or transfer data through the data path, the upset does not reflect in SDC. On the other



98

Table 6.6 – Dynamic cross section and MWBF results from heavy ion testing for the unhardened
Rocket soft processor without and with scrubbing running MxM benchmark at 20 MHz.

Beam Design
Fluence

(p/cm2)

Cross section (cm2) MWBF

(data)σSDC σTimeout σTotal

16O
Unhard 1.76× 106 3.46× 10−5 3.57× 10−5 7.03× 10−5 1.24× 106

Unhard_S 1.71× 106 2.34× 10−5 2.75× 10−5 5.09× 10−5 1.80× 106

12C
Unhard 1.31× 106 3.50× 10−5 2.13× 10−5 5.63× 10−5 2.30× 106

Unhard_S 1.38× 106 1.09× 10−5 1.09× 10−5 2.17× 10−5 5.27× 106

Figure 6.8 – Empiric reliability obtained from the Oxygen irradiation of the unhardened Rocket
soft processor without and with scrubbing running MxM benchmark at 20 MHz.

Source: From the author.

hand, if the error propagates and is caught by a flip-flop of the control state machine, a

SEFI may occur due to the loss of the control flow. Error masking techniques can be

applied in order to reduce the number of critical bits in the design and reduce the error

build-up. The following sections present the results of triplication strategies.

6.1.3.3 Rocket soft processor protected by TMR

Two TMR granularity strategies are tested on the Rocket soft processor: Coarse

Grain TMR (CGTMR) and Fine Grain Distributed TMR (FDTMR). The CGTMR in-

volves triplicating the Rocket core as a block and voting the outputs bit by bit. In the

FDTMR, the submodules Rocket core are triplicated. The hardened netlists are gener-



99

ated by an automated tool based on Cadence’s EDA flow (BENITES; KASTENSMIDT,

2018). The automatic tool is used to implement the TMR design of the Rocket core be-

cause of the complexity of its Verilog code, which is automatically generated from the

Chisel Scala language. A manual triplication would be time-consuming and prone to hu-

man implementation errors. The automated tool, however, presents the limitation of not

triplicating carry logic and DSPs. All arithmetic operations are implemented in triplicated

logic. Therefore, this can increase the LUT usage more than expected for TMR designs.

Only the Rocket core is triplicated due to the limited size of the Zynq PL, and

voters are also triplicated to avoid single points of failure. Xilinx recommends the imple-

mented design should use about 75% of theFPGA resources since a higher area increases

the complexity of placement and timing closure (XILINX, 2021b). The designs were built

targeting that recommendation. Table 6.7 describes the resource utilization and estimated

dynamic power of the CGTMR and FDTMR versions of the Rocket soft processor and

shows the unhardened version for comparison.

Table 6.7 – Dynamic power and resource usage with the utilization percentage of the unhardened,
CGTMR, and FDTMR Rocket soft processor core and lowRISC SoC implemented in the

Zynq-7000 PL.1,2

Design FF LUT Carry BRAM DSP Power (mW )3

Unhard
Core 1, 701 (2%) 4, 457 (8%) 175 0 4 (2%) 7

SoC 12, 164 (11%) 17, 329 (32%) 544 68 (49%) 9 (4%) 37

CGTMR
Core 11, 036 (10%) 26, 556 (49%) 0 0 0 51

SoC 21, 495 (20%) 39, 232 (74%) 369 68 (49%) 5 (2%) 82

FDTMR
Core 9, 756 (9%) 29, 706 (56%) 0 0 0 78

SoC 20, 215 (19%) 42, 382 (80%) 369 68 (49%) 5 (2%) 108

1. FPGA vendor’s tool: Xilinx Vivado 2016.4; Default synthesis and implementation strategies with resource sharing disabled;

2. Target FPGA: Xilinx Zynq-7000 (xc7z020clg484-1) APSoC; Estimated static power (45◦C junction temperature): 167 mW.

3. Estimated dynamic power of lowRISC SoC and Rocket core: 8 KB L1 cache; no FPU; 20 MHz.

The lowRISC SoC featuring the original FDTMR applied to the Rocket core re-

quired more slice LUT resources (i.e., 55, 041) than are available in the Zynq PL (i.e.,

53, 200). As a result, design optimization was enabled in the Vivado tool during the im-

plementation phase, leading to sharing of resources. The area of the FDTMR design

presented in table 6.7 is after the optimization. As described above, all the arithmetic and

logic operations are implemented in LUTs for the triplicated designs. Therefore, versions



100

with a TMR Rocket core do not use any DSP or carry chain.

One can notice in table 6.7 that the triplicated Rocket core requires about 6×

(CGTMR) and 6.7× (FDTMR) more LUTs than the unhardened core. The needed re-

sources are more than three times due to the automatic tool only inferring LUTs for

arithmetic and logic operations instead of carry and DSPs. Moreover, all voters are also

triplicated. The FDTMR without optimization would require much more resources.

Regarding dynamic power consumption, applying a TMR leads to an overhead

of 7× and 11× for the CGTMR and FDTMR core, respectively. However, it is worth

noticing that the power values are an estimation from the Xilinx Vivado tool, which might

not reflect the actual consumption figures. For a more appropriate power analysis, voltage

and current monitoring circuitry should be added to the test setup to measure consumption

accurately.

The best solution for a more robust system enhancement would be to triplicate

the entire lowRISC SoC, not using optimizations, and add synthesis primitives to avoid

shared resources. However, this would require a high-density FPGA device.

6.1.3.3.1 Fault injection results

The CGTMR Rocket core is tested under emulation fault injection running the

MxM, AES, and Qsort benchmarks at 20 MHz. The FDTMR Rocket soft processor was

not evaluated under fault injection because its version and the FI engine combined in the

design required more LUT resources than those available in the Zynq PL.

Table 6.8 describes the FI results per benchmark of the CGTMR Rocket soft pro-

cessor. The resulting failures are distributed at 92% of timeouts and 8% of SDCs in gen-

eral. SDCs are less frequent than in the unhardened core because of the masking effects

of the triplicated design. The CGTMR has a error rate of about 0.18 failures per upset,

requiring less than 6 faults to experience a failure. This failure performance is worst than

the unhardened Rocket core.

As demonstrated in section 4.1.2.1, the MTTF of a non-redundant system is better

than a TMR without repair. A triplicated design is more susceptible to upsets due to the

larger exposed area. Since upsets accumulate over time, the triplication masking effects

are overcome, and the TMR becomes more vulnerable. There needs to be more than the

triplication alone to cope with faults on a long time basis, and a repair method should be

applied, such as scrubbing.



101

Table 6.8 – Emulation fault injection results for the CGTMR Rocket soft processor per
application benchmark at 20 MHz.

Benchmark
Total

inj. faults

Failures Error

rate1

Mean faults

to failure2

One fault

failure3#SDC #Timeouts #Total

MxM 5, 691 49 951 1, 000 0.18 5.69 1.2%

AES 5, 722 86 914 1, 000 0.17 5.72 1.6%

Qsort 5, 071 112 888 1, 000 0.20 5.07 1.8%

Total 16, 484 247 2, 753 3, 000 0.18 5.49 1.5%

1. FI error rate = total failures/total inj. faults, as defined in section 5.2.2.

2. Mean faults to failure = total inj. faults / total failures.

3. Percentage of failures that occurred due to the first injected fault (only one single bit-flip in the design).

Figure 6.9 – Empiric reliability obtained by emulation fault injection for the unhardened and
CGTMR Rocket soft processor running MxM, AES, and Qsort benchmarks at 20 MHz.

Source: From the author.

Analyzing the One fault failure column in table 6.8, one can see that the CGTMR

is highly efficient in reducing the soft processor susceptibility to single faults. The re-

duction is about 10% compared to the unhardened Rocket core. This improvement is

demonstrated in the empiric reliability curve in figure 6.9, where the maximum reliabil-

ity is 98.8%. The CGTMR does not achieve maximum correctness for single-bit faults

because the emulation fault injection targets the entire Rocket Tile area and not only the



102

triplicated core. Moreover, cross-domain errors can also occur in the clocking and routing

system, for instance.

6.1.3.3.2 Heavy ion testing results

Table 6.9 describes the dynamic cross section and MWBF results from the heavy

ion testing of the CGTMR and FDTMR Rocket soft processor running MxM benchmark

at 20 MHz. The unhardened core results are added for comparison. A modest improve-

ment is noticed for the FDTMR processor core. However, the CGTMR presents worst

results than the unhardened core, as indicated in the FI analysis, since the design is with-

out scrubbing and faults accumulate over time.

Table 6.9 – Dynamic cross section and MWBF results from the heavy ion testing for the
unhardened, CGTMR, and FDTMR Rocket soft processor running MxM benchmark at 20 MHz.

Beam Design
Fluence

(p/cm2)

Cross section (cm2) MWBF

(data)σSDC σTimeout σTotal

16O

Unhard 1.76× 106 3.46× 10−5 3.57× 10−5 7.03× 10−5 1.24× 106

CGTMR 1.84× 106 2.88× 10−5 5.59× 10−5 8.47× 10−5 9.83× 105

FDTMR 1.83× 106 2.73× 10−5 3.33× 10−5 6.05× 10−5 1.40× 106

12C
Unhard 1.31× 106 3.50× 10−5 2.13× 10−5 5.63× 10−5 2.30× 106

FDTMR 1.20× 106 1.58× 10−5 1.91× 10−5 3.49× 10−5 3.77× 106

Figure 6.10 presents the empiric reliability curves for the designs tested using

Oxygen ions. The CGTMR and FDTMR Rocket cores improve about 3 times the reliabil-

ity compared to the unhardened version. The designs are able to maintain the correctness

for more bit-flips than in the FI tests due to the target area of faults. The FI focuses the

injections in an active area of the design, whereas the full FPGA is affected by the heavy

ions, and most of the upsets might occur in an unused area. Nonetheless, the higher the

fluence (i.e., the more accumulated faults), the least reliable the TMR.

6.1.3.4 Rocket soft processor protected by combined fault tolerance techniques

As shown in the previous sections, the scrubbing and TMR fault tolerance tech-

niques can improve the system reliability but, individually, are not highly efficient in

reducing the susceptibility in designs implemented in SRAM-based FPGAs. A combined

approach is expected to enhance the soft processor further.



103

Figure 6.10 – Empiric reliability obtained from the heavy ion test campaign with the unhardened,
CGTMR, and FDTMR Rocket soft processor running MxM benchmark at 20 MHz.

Source: From the author.

This section brings the results of the CGTMR and FDTMR Rocket soft proces-

sor with the CRAM scrubbing enabled. A watchdog timer is also evaluated for timeout

detection. The watchdog is controlled by the ARM Cortex-A9 in the Zynq PS and repro-

grams the PL whenever a timeout occurs. Rocket soft processor with watchdog enabled is

labeled with "_T". Designs with scrubbing and watchdog enabled are labeled with "_ST".

The resource usage of the designs is the same as in table 6.7. As previously de-

scribed, the FI is limited to designs without scrubbing. Therefore, the combined fault

tolerance techniques are evaluated under heavy ions only.

6.1.3.4.1 Heavy ion testing results

Table 6.10 describes the dynamic cross section and MWBF results for combined

fault tolerance techniques applied to the Rocket soft processor. Results from previous

sections are repeated for comparison. Figure 6.11 graphically shows the results in terms

of total dynamic cross section (left axis) and MWBF (right axis) with a 95% confidence

interval, as defined in the ESCC25100 (ESA, 2014). A reliable design should present a

lower cross section, and a higher MWBF.

The cross section can be reduced up to three times, and the MWBF is improved

more than two times when TMR and scrubbing are combined in a design. Surprisingly,

the FDTMR results are relatively less expressive than expected. That might be a con-



104

Table 6.10 – Dynamic cross section and MWBF results from the heavy ion testing for the
unhardened and protected Rocket soft processor running MxM benchmark at 20 MHz.

Beam Design
Fluence

(p/cm2)

Cross section (cm2) MWBF

(data)σSDC σTimeout σTotal

16O

Unhard 1.76× 106 3.46× 10−5 3.57× 10−5 7.03× 10−5 1.24× 106

CGTMR 1.84× 106 2.88× 10−5 5.59× 10−5 8.47× 10−5 9.83× 106

FDTMR 1.83× 106 2.73× 10−5 3.33× 10−5 6.05× 10−5 1.40× 106

Unhard_S 1.71× 106 2.34× 10−5 2.75× 10−5 5.09× 10−5 1.80× 106

CGTMR_S 1.56× 106 1.41× 10−5 2.31× 10−5 3.73× 10−5 2.68× 106

FDTMR_S 1.06× 106 2.27× 10−5 3.02× 10−5 5.29× 10−5 2.81× 106

Unhard_ST 1.56× 106 2.69× 10−5 1.92× 10−6 2.88× 10−5 3.52× 106

CGTMR_ST 1.44× 106 1.81× 10−5 6.96× 10−7 1.88× 10−5 5.93× 106

FDTMR_ST 1.18× 106 2.63× 10−5 1.70× 10−6 2.80× 10−5 4.79× 106

12C

Unhard 1.31× 106 3.50× 10−5 2.13× 10−5 5.63× 10−5 2.30× 106

FDTMR 1.20× 106 1.58× 10−5 1.91× 10−5 3.49× 10−5 3.77× 106

Unhard_S 1.38× 106 1.09× 10−5 1.09× 10−5 2.17× 10−5 5.27× 106

FDTMR_S 1.37× 106 1.09× 10−5 8.00× 10−6 1.89× 10−5 6.09× 106

Figure 6.11 – Total dynamic cross section and MWBF results from heavy ion testing for
unhardened and protected Rocket soft processor running MxM benchmark at 20 MHz.

Source: From the author.

sequence of the design oversimplification during the synthesis optimization phase. As

aforementioned, some of the optimization attributes were not disabled due to the limited

resources of the Zynq PL.



105

The improvement of scrubbing combined with TMR may be low due to the accel-

erated flux of particles used during heavy ion testing. Results are considered pessimistic

since the expected particle rate is much lower in a natural radiation environment, which

would give more time for the scrubbing to clean single-bit faults. In the case of multiple-

bit errors in the same CRAM frame, the SEM-IP halts due to an uncorrectable error, and

the system is left unprotected until FPGA reprogramming. Another characteristic of the

SEM-IP is resuming the scrubbing cycle from the top CRAM frame when any single-bit

upset is detected and corrected. A high upset rate may lead to the bottom frames of the

CRAM being less frequently scrubbed. Additionally, the scrubber engine is internal to the

FPGA and susceptible to soft errors. Therefore, in a natural environment, the improve-

ment from the combination of scrubbing and triplication is expected to be much higher

than the presented results.

The designs with scrubbing and watchdog presented a reduction of more than

one order of magnitude in the timeout cross section. The CGTMR_ST has a timeout

reduction of more than 51 times compared to the unhardened design, and the MWBF is

improved almost five times. The timeout monitoring is performed by the ARM Cortex-

A9 for validation purposes only. Instead of using a processor, a more suitable approach

would be implementing a low-resource monitor in a dedicated triplicated RTL module.

Figure 6.12 shows the empiric reliability curves for the unhardened and protected

Rocket soft processor. Designs with TMR and scrubbing presented a reliability three

times higher than the unhardened design. The CGTMR_S sustained a high level of relia-

bility until 3.24 × 103 p/cm2, which represents 41 estimated bit-flips in the configuration

memory. Nonetheless, these upsets are not accumulated since the scrubbing is enabled.

The CGTMR_S performs about the same as the CGTMR (no scrub version) under

single-bit faults. As previously discussed, scrubbing does not avoid the error build-up

for upsets on critical bits. In triplicated designs, the critical bits are those cross-domain

bits related, for instance, to clocking, routing, or shared resources due to optimizations.

The essential and most effective scrubbing impact is cleaning faults in time, avoiding

accumulation. One can notice the designs with scrubbing enabled are the most reliable at

high fluence.

It is essential to mention the penalty of the unhardened design for the MWBF

results. To execute the tests under the same conditions, the unhardened Rocket runs at

20 MHz frequency only because of the performance limitation of the triplicated designs.

The unhardened Rocket running at a higher frequency is expected to improve the MWBF.



106

Figure 6.12 – Empiric reliability obtained from the heavy ion testing for the unhardened and
protected Rocket soft processor running MxM benchmark at 20 MHz.

Source: From the author.

The following section investigates that hypothesis.

6.1.3.5 Influence of the processor frequency in the soft error susceptibility

This section assesses two different design frequencies under heavy ions aiming

to verify the impact of processor speed on the susceptibility. Results from the Rocket

processor running at 20 and 50 MHz are analyzed for unhardened Rocket core without

and with scrubbing. This analysis is not performed using triplicated designs because their

maximum frequency limit is 20 MHz.

6.1.3.5.1 Heavy ion testing results

Figure 6.13 shows the total dynamic cross section and MWBF for the unhardened

Rocket processor without and with scrubbing running MxM benchmark at 20 and 50

MHz. Results from 20 MHz are repeated from previous sections for comparison.

Increasing the clock frequency improves the MWBF up to 2.7 times while slightly

affecting the system cross section. The higher the processor speed, the faster the applica-

tion is executed, and consequently, more data is computed correctly before experiencing

a failure. However, higher clock frequencies might affect the cross section significantly.

Therefore, the trade-off cross section and performance must be considered.



107

Figure 6.13 – Total dynamic cross section and MWBF results from heavy-ions experiments for
the unhardened Rocket processor without and with scrubbing running MxM benchmark at 20 and

50 MHz.

Source: From the author.

One can notice that the gain in MWBF is higher than the frequency gain (i.e.,

2.7× vs. 2.5×). This difference can occur due to some factors. Although a pre-defined

flux is set per run, fluctuations are common in particle accelerators, and the average flux

of particles is expected to differ between runs, as mentioned in section 6.1.2.5. As shown

in equations 5.3 and 5.12 (chapter 5), the cross section computation uses the fluence,

which masks this effect, but the MWBF uses the average flux directly. The application

execution time is also computed as an average of multiple executions since the values can

vary some milliseconds during the time measurement. The MxM execution time for the

20 MHz is 745.87 ms (described in table 6.1), and the computed time for the 50 MHz is

283.43 ms. Round numbers can also add noise during calculations. All that justify the

more than expected increase in the MWBF for higher frequencies, and error bars are a

guide to cover the data uncertainty.

6.1.3.6 Discussion

As expected, fault injection and heavy ions results show that scrubbing is essen-

tial for SRAM-based FPGA designs. Scrubbing prevents the accumulation of upsets in

the CRAM by recovering the correct bitstream configuration. Additionally, the periodic

reset performed in all designs restores the system to a known state. Nonetheless, re-

sults demonstrated that the unhardened Rocket soft processor core is highly susceptible

to single bit-flips, and additional user-level mitigation techniques are required to mask or



108

correct faults.

Although combining TMR and scrubbing was expected to substantially increase

the system’s fault tolerance, only modest improvements were observed in the results. One

reason is the accelerated testing which presents a much higher upset rate than natural irra-

diation environments, leading to pessimistic results since the scrubbing fails to cope with

all CRAM bit-flips. Another reason may be that only the processor core was triplicated,

and essential parts of the SoC were still vulnerable to soft errors, such as the caches and

peripherals.

Cache memories are susceptible elements in processors. TAMBARA et al. (2015)

demonstrated that errors in unprotected L1 caches highly impact the processor cross sec-

tion. To increase reliability, caches can be protected with EDAC approaches. The pe-

ripherals and buses can also be triplicated to avoid single points of failure. Errors in the

unprotected caches and peripherals may have masked the real improvement of the trip-

licated Rocket core. Moreover, cross-domain single points of failures may have been

introduced due to the design simplification in the FPGA synthesis tool. One should check

the final design to ensure no simplification on the critical path.

Table 6.11 shows SEE testing results for soft processors embedded into SRAM-

based FPGAs. Despite the differences in testing methodology and processors’ config-

urations and architectures, one can observe the cross section improvements in adding

mitigation methods to the system. The heavy ions results show the Rocket with a lower

cross section than the Cortex-M0, which is the opposite expected from the sensitive re-

sults presented on the Harward et al. (2015) work. However, the benefits from TMR and

scrubbing are more visible in the Cortex-M0. The Cortex-M0 design has better improve-

ment because the core and all the external SoC elements are triplicated, which reinforces

the importance of protecting all resources (BENITES et al., 2019). The LEON3 has the

highest cross section reduction, in which the entire SoC is triplicated (KELLER; WIRTH-

LIN, 2017). Additionally, an improvement of 50× is achieved when a BRAM memory

scrubbing is used in the LEON3 soft processor. Due to the lower error rate of Neutrons

experiments, the scrubber can clean the configuration memory effectively while avoiding

many accumulated upsets simultaneously. When combined with the masking factor of

TMR, the scrubber leads to a high impact in the cross section reduction.



109

Table 6.11 – Cross section comparison of soft processors implemented in SRAM-based FPGAs
from this thesis and literature.

Soft processor SEE testing
Cross section (cm2)

Unhardened
TMRbest + Scrubbing

(Improvement)

Rocket (lowRISC)1 Heavy Ions - Zynq-7000 7.03× 10−5 1.89× 10−5 (3×)

Cortex-M02 Heavy Ions - Zynq-7000 1.14× 10−4 9.19× 10−5 (4.5×)

LEON33 Neutrons - Kintex-7 2.61× 10−9 9.68× 10−11 (27×)

1. Results from this thesis.
2. (BENITES et al., 2019).
3. (KELLER; WIRTHLIN, 2017).

6.2 L1 cache susceptibility investigation

Based on the observed results from the irradiation experiments of the Rocket soft

processor presented in the previous section, there was a need for further investigation

of the L1 cache influence on the processor error rate. This thesis investigates the SEU

sensitiveness of the processor based on the L1 cache topology, evaluating the impacts

related to memory size and associativity. The system assessment is performed on the

Rocket soft processor in the Zynq-7000 APSoC under emulation fault injection on the

BRAM memories. The analysis covers the failure distribution per L1 data and instruction

cache. Additionally, we evaluate the reliability improvement by the protection of periodic

scrubbing of the user memories.

6.2.1 Investigation methodology

The platform setup is the same as presented in section 6.1.2.1, except that the

injection engine was adapted to inject upsets in the BRAMs of the L1 instruction and data

cache. The investigation uses the unhardened Rocket core, and faults only affect the L1

cache memory.

The 32×32 MxM benchmark, described in section 6.1.2.2, is executed at 20 MHz.

The benchmark program instruction size is about 60 KB, and the computed data is roughly

12 KB (three 32× 32 matrices of 32-bit words). During fault injection, the Rocket events

are defined as in section 6.1.2.3: UNACE, SDC, and timeout.



110

6.2.1.1 L1 cache configurations

This thesis investigates different set-associative cache topologies on the Rocket

soft processor implemented in the Zynq-7000. The lowRISC SoC presented in section 6.1

has a 8 KB cache, with 4-way associativity and 32 sets of 64 bytes per block cache. For

this investigation, the L1 cache size varies from 1 KB to 16 KB, and the cache topology

is exercised through different sets and ways. The L1 cache size is computed per equation

6.1.

L1 cache size = #bytes_per_block × #sets× #ways (6.1)

Where:

• #bytes_per_block: length of each cache block in bytes;

• #sets: number of locations the cache is divided into, and in which blocks can be

mapped and stored;

• #ways: number of blocks each set can store.

The Rocket processor uses 64 bytes per block cache. The new configurations

were generated by updating the RocketChip Scala code and then re-generating the verilog

of the Rocket processor. Table 6.12 describes the architecture of the various L1 cache

configurations tested. The architecture of the L1 instruction and data (I+D) memories is

divided into memories that store data (e.g., application data or program instructions) and

memories that are part of the cache control (e.g., tag information).

To demonstrate the L1 cache architecture described in table 6.12, we can look

further at the 16k_s32w8 configuration. For this configuration, 16 KB of instruction cache

and 16 KB of data cache are instantiated using 32 sets and 8 ways each. The data memory

of the instruction and data caches (I+D data memory) is implemented in 8 BRAMs of

256 addresses, and each address includes a 64-bit word. Therefore, in total the I+D data

memory requires: (8×256×64)+(8×256×64) = 262, 144 bits. A similar logic applies

to the I+D control memory, which uses 19, 456 bits.

6.2.1.2 Emulation fault injection

The emulation fault injection engine is a hardware module similar to the FI pre-

viously described. The fault injection targets the BRAMs implementing the Rocket L1

cache. The BRAM elements were updated from the default single-port to true dual-port



111

Table 6.12 – Architecture of different Rocket L1 cache configurations implemented in the
Zynq-7000.

L1 config.
I+D size

(KB)
#Sets #Ways

I+D data memory I+D control memory

Architecture Size (bits) Architecture Size (bits)

16k_s32w8 16 + 16 32 8
8× 256 64-bit words +

8× 256 64-bit words
262, 144

8× 256 4-bit words +

1× 32 168-bit words +

1× 32 184-bit words

19, 456

16k_s64w4 16 + 16 64 4
4× 512 64-bit words +

4× 512 64-bit words
262, 144

4× 512 4-bit words +

1× 64 80-bit words +

1× 64 88-bit words

18, 944

8k_s32w4 8 + 8 32 4
4× 256 64-bit words +

4× 256 64-bit words
131, 072

4× 256 4-bit words +

1× 32 84-bit words +

1× 32 92-bit words

9, 600

8k_s64w2 8 + 8 64 2
2× 512 64-bit words +

2× 512 64-bit words
131, 072

2× 512 4-bit words +

1× 64 40-bit words +

1× 64 44-bit words

9, 472

4k_s16w4 4 + 4 16 4
4× 128 64-bit words +

4× 128 64-bit words
65, 536

4× 128 4-bit words +

1× 16 88-bit words +

1× 16 96-bit words

4, 992

4k_s32w2 4 + 4 32 2
2× 256 64-bit words +

2× 256 64-bit words
65, 536

2× 256 4-bit words +

1× 32 42-bit words +

1× 32 46-bit words

4, 864

2k_s8w4 2 + 2 8 4
4× 64 64-bit words +

4× 64 64-bit words
32, 768

4× 64 4-bit words +

1× 8 92-bit words +

1× 8 100-bit words

2, 560

2k_s16w2 2 + 2 16 2
2× 128 64-bit words +

2× 128 64-bit words
32, 768

2× 128 4-bit words +

1× 16 44-bit words +

1× 16 48-bit words

2, 496

1k_s4w4 1 + 1 4 4
4× 32 64-bit words +

4× 32 64-bit words
16, 384

4× 32 4-bit words +

1× 4 96-bit words +

1× 4 104-bit words

1, 312

1k_s8w2 1 + 1 8 2
2× 64 64-bit words +

2× 64 64-bit words
16, 384

2× 64 4-bit words +

1× 8 46-bit words +

1× 8 50-bit words

1, 280

memories (i.e., two independent access ports). The processor accesses one port, and the

injector engine accesses another. This strategy allows non-intrusive fault injection in the

BRAMs, without interfering with the application execution flow.

Bit-flips are randomly inserted during the application execution, considering the

number of clock cycles required to finish the application. The execution time is shorter

or longer depending on the L1 cache topology. The execution time per configuration is

reported later in the results section. To inject a fault at a random application clock cycle,

the FI engine reads a random memory word, flips the random bit, and writes back the word

with the inverted bit. A single-bit fault is injected per application execution, and faults do



112

not accumulate over time. The Rocket soft processor is reset between executions.

The injections are normalized by area. Table 6.13 shows the target BRAM area

used for all L1 cache configurations. The target area was inferred considering the highest

number of sets and ways between the topologies. One million faults were injected per L1

cache configuration. Due to the temporal characteristics of the user memories, in which

the application naturally refreshes the data, a large number of upsets need to be injected

to gather a significant number of failures. The injections were divided by affecting only

the I+D data memories or the I+D control memories. Therefore, it is possible to assess

their impact on reliability individually.

Table 6.13 – Normalized memory area used for fault injection targeting all L1 cache
configurations.

#Sets #Ways
I+D data memory I+D control memory

Architecture Size (bits) Architecture Size (bits)

64 8
8× 512 64-bit words +

8× 512 64-bit words
524, 288

8× 512 4-bit words +

2× 64 184-bit words
39, 936

6.2.2 Results

A preliminary fault injection targeting the FPGA configuration memory was per-

formed targeting the Rocket processor tile, similar to the one executed previously but

varying the L1 cache topology. The goal was to assess the susceptibility of the cache

controller depending on the configuration. It was observed that changing the L1 cache

topology has no or low impact on the design error rate, which was about 0.16. The CRAM

upsets have a high probability of leading to errors. The influence of the cache topology

is negligible since the size of the cache controller does not vary much. For those reasons,

the emulation fault injection presented in this analysis only targets the BRAMs.

6.2.2.1 Data memory error rate

Table 6.14 shows the results for the emulation fault injection targeting the BRAMs

of the L1 I+D data memories. This table describes the observed failures and the total error

rate for the data memories. Figure 6.14 details the SDC, timeout, and total error rate, and

shows the MxM application execution time per cache configuration.



113

Table 6.14 – Emulation fault injection on the Rocket L1 instruction and data cache: targeting I+D
data memories.

L1 config.
Total

inj. faults

Failures Total data

error rate#SDC #Timeout #Total

16k_s32w8 1× 106 2, 631 3, 681 6, 312 6.31× 10−3

16k_s64w4 1× 106 2, 766 3, 902 6, 668 6.67× 10−3

8k_s32w4 1× 106 2, 557 3, 752 6, 309 6.31× 10−3

8k_s64w2 1× 106 2, 785 3, 578 6, 363 6.36× 10−3

4k_s16w4 1× 106 2, 565 712 3, 277 3.28× 10−3

4k_s32w2 1× 106 2, 600 2, 138 4, 738 4.74× 10−3

2k_s8w4 1× 106 2, 472 348 2, 820 2.82× 10−3

2k_s16w2 1× 106 2, 526 440 2, 966 2.97× 10−3

1k_s4w4 1× 106 2, 493 359 2, 852 2.85× 10−3

1k_s8w2 1× 106 2, 472 312 2, 784 2.78× 10−3

Figure 6.14 – I+D data memory error rate (bars related to the left axis) and application execution
time (line related to the right axis).

Source: From the author.



114

As expected, a smaller L1 cache size leads to longer execution time, and larger

sizes improve performance. A more significant step is observed between 4 KB and 8 KB.

These performance results are related to the MxM benchmark running on the processor,

and different applications may vary the exercise of the L1 cache. Applications that process

more significant amounts of data are expected to lead to longer execution time differences

between cache sizes.

The methodology of the emulation fault injection leads to pessimistic results for

large cache sizes since it always injects one fault per application execution. The injection

methodology does not consider that larger caches execute the application faster, which

should reduce the probability of faults in time. The injections are normalized in the area

but not in time, which penalizes more resource-consuming configurations.

The SDC error rate is similar over the tested L1 cache configurations, which

demonstrates the high probability of application outputs errors caused by upsets in the

user memories. The timeout error rate is higher for larger caches. The 16k_s64w4 con-

figuration is 12.5 times worst than the 1k_s8w2. Since small caches have a high refresh

rate (high miss rate), the time window of a valid data/instruction is short, and the mem-

ory is more often re-written. On large caches, more memory positions are available and

the data/instruction can be re-used multiple times, which increases the valid time window

and, therefore, increases the vulnerability. Ko et al. (2017) demonstrated the data vulnera-

bility over the different cache accesses. Corrupted data can affect the processor execution

only at a reading operation or if the is written back to the main memory.

An unexpected timeout error rate is observed for 4k_s32w2 compared to a similar

configuration. The fault injection experiment was re-executed with similar results. This

outcome might be due to the 4 KB being an intermediate size using a high number of sets.

Figure 6.15 presents the error rate per instruction and data cache over the differ-

ent configurations. This error rate is computed by the number of failures (i.e., SDCs or

timeouts) originating from the instruction or data cache divided by the total injected bit-

flips (i.e., one million). The majority of the failures are due to upsets on the instruction

cache. Few timeouts and no SDCs were observed from data cache bit-flips, showing the

higher vulnerability of the instruction cache. As discussed in section 3.1.3, soft errors in

the instruction cache may lead to data or control flow errors. If a corrupted instruction is

validated, the processor can execute an incorrect instruction or generate a trap.



115

Figure 6.16 shows the distribution of failures related to the time window in which

the fault was injected during the application execution. The graph gives the percentage

of failures by injections on the application’s range of clock cycles (c.c.). Failures are

observed evenly throughout the application in all configurations, and there is no distin-

guished critical time window. The well-distributed failures in the application indicate no

dependency between faults.

Figure 6.15 – Error rate for the data memories per instruction and data cache over the different
configurations.

Source: From the author.

Figure 6.16 – Percentage of failures related to the application time window (in c.c.).

Source: From the author.



116

Similarly to the simulated results from the related works (Yuanwen Huang; Mishra,

2016; LIVANY; SALEHI; KARGAR, 2020), the emulation fault injection in BRAMs

shows that increasing the cache size of the Rocket soft processor increases the vulnerabil-

ity. However, contrary of the (LIVANY; SALEHI; KARGAR, 2020) study, the Rocket’s

instruction cache is more prone to errors. The differences between the vulnerability com-

putation and the actual error build-up during fault injection might lead to these different

results. The application benchmark characteristics also influence the way the cache is

exercised. Although about 12 KB of data is computed in total for the MxM, the data is

loaded on demand and processed in lines, so not all data is vulnerable at the same time.

6.2.2.2 Control memory error rate

Table 6.15 describes the failure events for the emulation fault injection targeting

the BRAMs of the L1 I+D control memories, and figure 6.17 presents the error rates

per cache configuration. Results show a low probability of failure due to upsets in the

control memories. Only a few events were observed, primarily timeouts. Most bit-flips

were masked due to the inherent characteristics of the control memories of defining data

location and status. As discussed in section 3.1.3, faults in the tag array can invalidate an

instruction/data, leading to a cache miss, or validate the erroneous instruction/data, which

could cause an error.

Table 6.15 – Emulation fault injection on the Rocket L1 instruction and data cache: targeting I+D
control memories.

L1 config.
Total

inj. faults

Failures Total control

error rate#SDC #Timeout #Total

16k_s32w8 1× 106 0 65 65 6.50× 10−5

16k_s64w4 1× 106 0 102 102 1.02× 10−4

8k_s32w4 1× 106 0 87 87 8.70× 10−5

8k_s64w2 1× 106 0 62 62 6.20× 10−5

4k_s16w4 1× 106 0 25 25 2.50× 10−5

4k_s32w2 1× 106 0 8 8 8.00× 10−6

2k_s8w4 1× 106 1 29 30 3.00× 10−5

2k_s16w2 1× 106 1 76 77 7.70× 10−5

1k_s4w4 1× 106 0 1 1 1.00× 10−6

1k_s8w2 1× 106 1 4 5 5.00× 10−6



117

Figure 6.17 – I+D control memory error rate per cache configuration.

Source: From the author.

Figure 6.18 – Error rate for the control memories per instruction and data cache over the different
configurations.

Source: From the author.

Similar to the data memory results from the previous section, the 1 KB cache also

presents fewer failures. Figure 6.18 shows the error rates per instruction and data cache.

Upsets in the instruction cache lead to more timeouts over the configurations, but bit-flips

in the data cache also present a similar timeout rate for some topologies.

6.2.2.3 Total error rate

Figure 6.19 shows the total error rate considering data and control memories of

the L1 instruction and data cache. The error rate for the data and control memories are

from the previous sections. The total error rate (Total ER) is computed by summing the



118

Figure 6.19 – Total error rate for I+D data and control memories per cache configuration.

Source: From the author.

number of failures on both tests and dividing by the total injected faults (i.e., two million

faults). The total error rate of the 16k_s64w4 is about 2.4 worst than the 1k_s8w2. The

difference in error rate between cache topologies of the same size is negligible for larger

caches. For smaller caches, it can be noticed that higher associativity (i.e., more ways)

presents a slightly better error rate.

6.2.2.4 Instruction cache protected by periodic flush

As described in previous sections, upsets in the instruction cache are more likely

to lead to failures, and data memories are more susceptible than control memories. This

thesis, therefore, investigates the use of periodic flush on data memories of the L1 instruc-

tion cache to reduce the soft error vulnerability. Different flush periods are tested, ranging

from 100 clock cycles delay between refreshes to 100, 000 clock cycles.

Table 6.16 describes the emulation fault injection results per cache configuration.

Due to the number of combinations, only three cache topologies are tested: 16k_s64w4,

4k_s16w4, and 1k_s4w4. The selected topologies exercise the corners and intermediate

sizes tested using 4-way associativity.

Figure 6.20 shows the total error rate per cache topology and flush period. The

execution time is also described in this figure. For comparison, results from the con-

figurations with no flush are repeated from section 6.2.2.1. As expected, increasing the

flush rate impacts the application performance in all topologies, and the more frequent the

refresh, the lower the error rate.



119

Table 6.16 – Emulation fault injection on the Rocket L1 instruction and data cache: target data
memories protected with periodic flush.

L1 config.
Flush Period

(c.c.)

Total

inj. faults

Failures Total

error rate#SDC #Timeout #Total

16k_s64w4

100, 000 1× 106 2, 481 76 2, 557 2.56× 10−3

10, 000 1× 106 2, 223 69 2, 292 2.29× 10−3

1, 000 1× 106 1, 137 39 1, 176 1.18× 10−3

500 1× 106 232 10 242 2.42× 10−4

100 1× 106 70 30 100 1.00× 10−4

4k_s16w4

100, 000 1× 106 2, 429 58 2, 487 2.49× 10−3

10, 000 1× 106 1, 159 39 1, 198 1.20× 10−3

1, 000 1× 106 406 32 438 4.38× 10−4

500 1× 106 231 22 253 2.53× 10−4

100 1× 106 57 32 89 8.90× 10−5

1k_s4w4

100, 000 1× 106 2, 430 55 2, 485 2.49× 10−3

10, 000 1× 106 2, 222 54 2, 276 2.28× 10−3

1, 000 1× 106 991 23 1, 014 1.01× 10−3

500 1× 106 181 14 195 1.95× 10−4

100 1× 106 47 39 86 8.60× 10−5

Figure 6.20 – Total error rate (bars related to the left axis) and execution time (lines related to the
right axis) per cache topology and flush period.

Source: From the author.

The 1 KB and 4 KB cache topologies with the flush period of 100 clock cycles

present a reduction in the error rate of more than 30 times compared to their versions

without refresh. The most significant improvement comes with the 16 KB L1 cache for a

flush period of 100 clock cycles that reaches almost 67 times of error rate reduction. The



120

16k_s64w4 presents the combined advantage of low vulnerability with faster application

execution.

Figure 6.21 presents the error rate per L1 instruction and data cache over the dif-

ferent configurations and flush periods. Despite the L1 data cache not being refreshed, the

periodic flush of the instruction cache impacts the timing of the input vectors that exercise

the data cache, leading to few or no failures originating from these memories.

The timeout error rate due to instruction cache upsets is similar for flushed vari-

ants. Additionally, SDCs are the most frequent failures. A hypothesis is the error latency

for SDCs is of few clock cycles and many cycles for timeouts. The refresh to be efficient

must occur during the error latency period (time from flipping the bit until a cache read,

for instance).

The error rate improvement of adding periodic flush is observed in all cache sizes

and shows an opportunity for using larger caches. The error rate of the 16 KB cache is

similar to 1KB at a more frequent refresh. The impact on performance is also lower for

larger caches. Therefore, one can take advantage of the faster application execution of a

larger cache with a similar error rate of a small memory. The next chapter investigates

that hypothesis in the NOEL-V soft processor under proton irradiation.



121

Figure 6.21 – Error rate for the data memories per instruction and data cache over the different
configurations and flush periods.

Source: From the author.



122

6.3 Discussion

Understanding the error distribution and how it affects the processor execution is

essential to implement the most suitable mitigation techniques. As demonstrated by Cho

(2018), the most critical faults are the ones affecting the register file, CSR, and the integer

pipeline of the Rocket processor. Therefore, the designer can apply mitigation focusing

on those elements, such as ECC on the register file and triplicating the pipeline. Alterna-

tively, a lockstep method can be implemented for the processor architecture enhancement,

similar to the lockstep mode of ARM Cortex R5 (ARM, 2011).

Nonetheless, as discussed in section 3.1.3 and demonstrated by experiments in

section 6.1.3, the core is not the only SEE-sensitive part in a soft processor. The Rocket

soft processor with only the core triplicated shows a limited improvement in fault toler-

ance. Results from section 6.2 show that the L1 cache is also vulnerable to errors, and

the instruction cache is highly susceptible. Increasing the L1 cache size also increases the

vulnerability, but adding periodic flush can be an alternative to reduce the error rate.

Fault mitigation and correction methods should be extensively applied to all SoC

elements, and the more heterogeneous they are, the better. Therefore, a heterogeneous

hybrid solution that mixes hardware and software protection may be a better approach

for SoCs with complex soft processors. At the hardware level, a dedicated RTL watch-

dog module can be used to monitor timeouts and trigger an FPGA reprogramming when

required. The processor core enhancement may rely on TMR or lockstep, and the periph-

erals should also be triplicated. An ECC or parity method may protect the register file

and on-chip memories. CRAM scrubbing must be performed to avoid the accumulation

of faults, and periodic reset can reestablish the system state. A SIHFT technique can

be applied at the software level to deal with SDCs. Moreover, increasing the processor

speed is an alternative to achieve better MWBF without affecting the cross section signif-

icantly. Commercial soft processors with built-in fault tolerance are also available in the

market and can be considered, such as the fault tolerant NOEL-VFT (FRONTGRADE

GAISLER, 2022b).

Real scenarios may have restrictions on the available resources, such as constraints

in the design area, power consumption, or a limited financial budget. For instance, the

required FPGA might not allow full triplication of the design. As shown in section 6.1.3.3,

the possibility of applying a full TMR to the lowRISC SoC was excluded due to the

limited area of the Zynq-7000 PL. As a solution, only the Rocket core was triplicated.



123

Moreover, optimizations were enabled to the FDTMR design due to area restrictions.

Although the strategy made a level of protection possible, it came with the cost of a less

expressive improvement in reliability.

The following chapter intends to answer some open questions from the previous

experiments. It characterizes a RISC-V NOEL-V soft processor employing a distributed

TMR with feedback voters, using another automated tool for the netlist triplication to

avoid the over-inferred logic. We also investigate the different cache sizes and protection

under proton testing.



124



125

7 EXPLORING THE COTS RISC-V NOEL-V SOFT PROCESSOR UNDER RA-

DIATION EFFECTS

This chapter demonstrates the mitigation process using different fault tolerance

techniques on the COTS open source RISC-V NOEL-V processor synthesized into the

SRAM-based Zynq UltraScale+ FPGA. The SEE characterization is performed under

proton testing, and further investigation is done through emulation fault injection. We as-

sess the effect of the cache size on the reliability of the processor and the use of scrubbing

combined with triplication, duplication with comparison, and cache refreshing.

7.1 COTS RISC-V NOEL-V soft processor

The NOEL-V is a state-of-the-art soft processor based on the RISC-V architecture

(FRONTGRADE GAISLER, 2022b). The NOEL-V soft processor can be synthesized as

a 32-bit (RV32) or a 64-bit (RV64) model, and its IP subsystem allows configurations

ranging from a lite controller to high performance. The in-order pipeline can be imple-

mented with either a single- or dual-issue. Figure 7.1 shows the implementation of the

7-stage dual-issue integer pipeline. The NOEL-V features advanced branch prediction

capabilities, a cache controller supporting high throughput, an optional MMU integrated

into the cache controller, and an Advanced Microcontroller Bus Architecture (AMBA)

2.0 AMBA High-performance Bus (AHB) bus interface.

In this chapter, we use the NOEL-V soft processor as well as the IP subsystem

from the COTS open source non-protected version of the GRLIB IP Library1 (FRONT-

GRADE GAISLER, 2022b). As a case study, a lite configuration of the NOEL-V was

selected due to its reduced size. The selected NOEL-V is a 32-bit in-order single-issue

processor implementing an RV32IM RISC-V ISA. The NOEL-V core contains the IU,

ALU, multiplier, divider, dynamic branch prediction, branch target buffer, register file,

L1 instruction and data cache, and cache controller. By default, this configuration has a 1

KB L1 cache. The L1 cache usage and size vary depending on the test design, as further

describer in section 7.2.2. The NOEL-V SoC features an AMBA interface with AHB

and Advanced Peripheral Bus (APB), AHB memory bridge to AXI, debug unit, interrupt

controller, peripherals such as UART, and GPIO.

1GNU General Public License (GPL) - reference grlib-gpl-2022.1-b4272.



126

Figure 7.1 – NOEL-V processor 7-stage dual-issue integer pipeline.

Source: (FRONTGRADE GAISLER, 2022b).

7.2 Investigation methodology

7.2.1 Platform setup

The DUT is the COTS Xilinx Zynq UltraScale+ Multi-Processor System-on-Chip

(MPSoC), which is built on the 16 nm FinFET technology (XILINX, 2022). Similar

to the Zynq-7000 device, whose tests are described in chapter 6, the Zynq UltraScale+

comprises a PS and PL. The PS is an SoC around hard core ARM Cortex-A53 and Cortex-

R5F processors, and the PL is the FPGA fabric.

The test board is the Avnet Ultra96-V2 development board (AES-ULTRA96-

V2-G) (AVNET, 2021) that features a Zynq UltraScale+ XCZU3EG-1SBVA484E chip

(ZU3EG). The ZU3EG chip is a bare-die flip-chip Ball Grid Array (BGA), with a thick-

ness of around 800 µm to the sensitive region of Silicon, and the die area is about

16.29 × 11.04 mm (Xilinx, 2022). Because of the substrate thickness and the non-

availability of sample preparation, the irradiation testing is performed using a proton beam

since its penetration can reach many microns in the device.

Unlike the test setup presented in chapter 6, we decided not to use any ARM

processor controlling the NOEL-V testing. Despite the ASIC PS being more robust to

radiation than the FPGA fabric, soft errors can still occur. Therefore, we avoid PS errors

being misinterpreted as FPGA errors. Instead, the control of the experiments is performed



127

Figure 7.2 – NOEL-V SoC implemented into the Zynq UltraScale+ FPGA.

Source: From the author.

via Python scripts, and the monitoring of the NOEL-V design is via the GRMON3 debug

tool2 (FRONTGRADE GAISLER, 2022c) through an UART link.

Another improvement of this test setup compared to the one presented in chapter

6 is the external DDR memory as the boot memory. Previously, the boot memory was

implemented in BRAMs that, although triplicated, were also exposed to radiation. Figure

7.2 shows the NOEL-V SoC implemented in the Xilinx Zynq UltraScale+ FPGA. The

NOEL-V SoC characteristics are presented in section 7.1. The processor’s register file

and L1 cache are implemented in BRAMs.

7.2.2 Mitigating the COTS NOEL-V soft processor

This thesis studies different combinations of mitigation solutions. The investiga-

tion focuses on the effect of the L1 cache size on the processor reliability and the use of

scrubbing combined with TMR, DWC, and cache refreshing. The characteristics of the

used techniques are described below.

7.2.2.1 Scrubbing

The Xilinx SEM-IP is used for the FPGA CRAM scrubbing. As discussed in

the previous chapters, scrubbing is mandatory in SRAM-based FPGAs due to its partic-

2Evaluation/academic version (reference grmon-eval-64-3.2.15.1).



128

ular configuration memory vulnerability. Therefore, the SEM-IP is enabled in all tested

designs to correct bit-flips periodically. The SEM-IP scrubbing frequency is 50 MHz.

7.2.2.2 TMR for the central processing unit

A distributed TMR is applied to the NOEL-V SoC using the open source SpyDr-

Net TMR tool (BYU CONFIGURABLE COMPUTING LAB., 2020). The design netlist

is triplicated with feedback voters for error correction in the flip-flop’s feedback logic.

The BRAMs are not triplicated in the design. The TMR protection had to be restricted to

the NOEL-V processor core due to the limited resources available in the Zynq UltraScale+

ZU3EG FPGA.

Two versions of fine grain distributed TMR designs are implemented:

• TMRcore: the TMR is applied to the entire NOEL-V core, including the IU, multi-

plier and divider elements, and cache controller. All the logic and flip-flops around

the register file and L1 cache are triplicated.

• TMRiucctrl: the TMR is applied to the IU and cache controller only, which are

the most resource-consuming elements of the NOEL-V core. The resources not

included in the IU and cache controller components are not triplicated. This ver-

sion is an alternative workaround related to the few resources available in the Zynq

UltraScale+ ZU3EG FPGA.

7.2.2.3 L1 cache protection

As previously discussed, cache memories affect the processor’s soft error suscep-

tibility. The impact of the L1 cache configuration and associativity on the Rocket soft

processor has been assessed in chapter 6.2. To progress the investigation on the NOEL-V

processor, we propose an analysis of the tradeoff between performance gain and suscep-

tibility by using the L1 cache. Different configurations are used for this analysis:

• Cache usage: The NOEL-V processor is tested with L1 cache enabled and disabled.

• Cache size: the impact of the cache size is evaluated for the NOEL-V processor

featuring a 1 KB or 8 KB L1 instruction and data cache. Increasing the cache size

also increases the resource usage of the cache controller.

• Cache fault tolerance (cFT): L1 cache with DWC implementation. All the BRAMs

of cache memory are duplicated. A checker verifies the instruction and data mem-



129

ory consistency at every access. The checker is a combinational logic and does not

affect the processor execution in a faulty-free execution. In case of data mismatch,

the entire L1 cache is flushed.

• Periodic flush: a periodic flush is performed every 100 ms to refresh the L1 cache

contents.

The NOEL-V L1 cache is implemented in unprotected BRAMs for all designs.

7.2.2.4 Designs description overview

Table 7.1 describes all design versions of the NOEL-V SoC synthesized into the

Zynq UltraScale+ FPGA. The configurations vary the L1 cache enabled and disabled,

L1 cache size in 1 KB and 8 KB, and implemented protection. The L1 cache can be

enhanced using DWC with a flush in case of errors or a periodic flush at every 100 ms. The

distributed TMR is applied to the entire NOEL-V core or to the IU and cache controller

only. All designs are with scrubbing enabled. Note that versions with the L1 cache

disabled are still with the 1 KB L1 cache memory instantiated in the design since the

NOEL-V core does not provide support for removing the cache.

Table 7.1 – NOEL-V test designs description.

NOEL-V SoC design
L1 cache

Distributed TMR
Size Status Protection

NV_1KBdis 1 KB DIS NO NO

NV_TMRcore_1KBdis 1 KB DIS NO NOEL-V core

NV_1KB 1 KB EN NO NO

NV_TMRcore_1KB 1 KB EN NO NOEL-V core

NV_cFT1KB 1 KB EN DWC + flush (if mismach) NO

NV_TMRcore_cFT1KB 1 KB EN DWC + flush (if mismach) NOEL-V core

NV_TMRiucctrl_cFT1KB 1 KB EN DWC + flush (if mismach) IU/cache controller

NV_Flush1KB 1 KB EN Periodic flush (every 100 ms) NO

NV_TMRcore_Flush1KB 1 KB EN Periodic flush (every 100 ms) NOEL-V core

NV_8KB 8 KB EN NO NO

NV_TMRiucctrl_8KB 8 KB EN NO IU/cache controller

NV_cFT8KB 8 KB EN DWC + flush (if mismach) NO

NV_TMRiucctrl_cFT8KB 8 KB EN DWC + flush (if mismach) IU/cache controller

NV_Flush8KB 8 KB EN Periodic flush (every 100 ms) NO

NV_TMRiucctrl_Flush8KB 8 KB EN Periodic flush (every 100 ms) IU/cache controller



130

7.2.3 Software benchmark

A bare-metal 32-bit data 100 × 100 Matrix Multiplication (MxM) application is

used to evaluate the NOEL-V SoC designs. The MxM benchmark is one of the standard

applications extensively used in SEE testing processors and FPGA designs (QUINN et

al., 2015). Large matrix multiplication is used for highly exercising the L1 cache under

evaluation. The application is written in C programming language and is originally from

the MiBench benchmark suite (GUTHAUS et al., 2001). The application’s code has been

updated for a higher exercise of the data range, so the matrices are initialized with data

randomly generated through a PRNG at every execution. The PRNG computation is

expected to have low interference in the execution of the benchmarks and not affect the

susceptibility results. A 16-bit size checksum is generated from the resulting matrix for

data verification.

The application reporting is performed via the GRMON3 debug tool. At every

execution, the processor boots from the DDR memory, loads the L1 cache (if enabled),

initializes the 100 × 100 matrices, runs the MxM, computes the checksum, and reports

the result. After the application result is checked, a new execution starts. No processor

reset or FPGA reprogramming is performed between executions. Due to the limited pro-

ton beam time and the number of different design versions, only the MxM benchmark

application is tested.

7.2.4 Failure definition

For this investigation, the NOEL-V design events are defined as below:

• UNACE: The application finishes its execution as expected with the correct output.

It is not a failure.

• SDC: The application finishes its execution as expected but reports an incorrect

checksum from the resulting matrix. It is a failure.

• SEFI: The application does not finish its execution, and the design is not responsive,

including application timeout or system crash. It is a failure.

The failures are divided into transient and permanent. Transient failures do not

require any recovery, and the application execution in the sequence is UNACE. On the

other hand, permanent failures persist over application executions and are only recovered



131

via processor reset, FPGA reprogramming, or board power cycle.

7.2.5 Emulation fault injection

The fault injection engine is based on the one used in chapter 6. The ICAP in-

terface is used to access the CRAM frames and emulate bit-flips by XOR’ing the value

of specific bits. The FI engine’s VHDL code has been updated to target the Zynq Ul-

traScale+ FPGA. The injection control is performed via Python scripts through a UART

interface.

Faults are injected in the entire CRAM, except for the area of the injector engine.

The target area is the same for all NOEL-V designs to perform a normalized fault in-

jection. Bit-flips are randomly injected in order to mimic the radiation-induced upsets.

Accumulative injections are used to evaluate the designs’ reliability under multiple faults.

One bit-flip is injected at a time, but the upsets are only cleaned when the system expe-

riences a failure. A total of 10, 000 faults are injected per NOEL-V design. Since the

SEM-IP also uses the ICAP to scrub the FPGA, scrubbing is disabled in all designs for

the emulation fault injection experiments.

7.2.6 Proton testing

The Zynq UltraScale+ chip was irradiated using a proton beam at the Radiation

Effects Facility (RADEF) at the University of Jyväskylä, Finland (UNIVERSITY OF

JYVÄSKYLÄ, 2022). The beam time was granted by the RADiation facility Network for

the EXploration of effects for indusTry and research (RADNEXT)3 (CERN, 2023).

Figure 7.3 shows the test setup at the facility. The heat sink of the Ultra96-V2

board was removed to expose the Zynq UltraScale+ chip. A cooling fan was used to

prevent the device from overheating. The tests were performed in air using a proton

energy of 53 MeV, and the target fluence per run was 5 × 1010 p/cm2. The 53 MeV

proton beam is expected to reach more than 12 mm in Silicon, based on TRAD Omere tool

estimation. This penetration is more than enough to go through the substrate thickness of

the Zynq UltraScale+. To avoid the high spread of particles affecting other components

on the board, a collimator with opening dimensions of 20 × 13 mm was set the closest

3This project has received funding from the European Union’s Horizon 2020 Research and Innovation
programme under Grant Agreement No 101008126.



132

possible to the device, about a 7 cm distance.

Figure 7.3 – Zynq UltraScale+ proton testing setup.

Source: From the author.

7.3 Results

7.3.1 FPGA resource usage and performance

Table 7.2 presents the area and performance information per test design. The

FPGA resource usage is detailed per processor core and the entire SoC. The number of

essential bits in the design is also provided, including the percentage of FPGA usage.

The distributed TMR of the NOEL-V core requires about five times more LUTs

and three times more FFs compared to the original NV_1KB design. Applying the TMR

only to the IU and cache controller requires around 4.5 and 2.5 times more LUTs and FFs,

respectively. Differently from expected, designs using the L1 cache DWC method do not

use twice the number of BRAMs, but less than 1.6 times are required. Possibly because

not all BRAM addresses are used in the original design, and those empty addresses might

be filled when more memory is needed for the DWC designs. As expected, TMR designs

require about three times more essential bits.

Table 7.2 also shows the MxM application execution time (in seconds) per design.

All NOEL-V designs run at 50 MHz, which is the maximum achieved frequency for the



133

Table 7.2 – NOEL-V test designs information: resource usage per processor core and entire SoC;
number of essential bits (percentage of FPGA usage); and application execution time (in

seconds).

NOEL-V SoC design
Resource usage Essential bits

(% usage)

App. exec

time (sec)Comp. LUT FF Carry DSP BRAM

NV_1KBdis
core 11, 690 6, 833 150 16 13 5, 466, 435

(17.70%)
33.965

SoC 15, 392 9, 979 186 16 16

NV_TMRcore_1KBdis
core 59, 687 20, 365 450 48 13 17, 506, 959

(56.70%)
33.947

SoC 63, 386 23, 511 486 48 16

NV_1KB
core 11, 690 6, 833 150 16 13 5, 466, 435

(17.70%)
9.924

SoC 15, 392 9, 979 186 16 16

NV_TMRcore_1KB
core 59, 687 20, 365 450 48 13 17, 506, 959

(56.70%)
9.928

SoC 63, 386 23, 511 486 48 16

NV_cFT1KB
core 11, 770 6, 871 153 16 17 5, 849, 888

(18.95%)
9.900

SoC 16, 511 10, 333 207 16 20

NV_TMRcore_cFT1KB
core 59, 550 20, 401 453 48 17 17, 774, 878

(57.57%)
9.950

SoC 64, 296 23, 863 507 48 20

NV_TMRiucctrl_cFT1KB
core 52, 732 17, 499 347 16 17 16, 296, 146

(52.78%)
9.905

SoC 57, 474 20, 961 401 16 20

NV_Flush1KB
core 11, 690 6, 833 150 16 13 5, 466, 435

(17.70%)
9.939

SoC 15, 392 9, 979 186 16 16

NV_TMRcore_Flush1KB
core 59, 687 20, 365 450 48 13 17, 506, 959

(56.70%)
9.968

SoC 63, 386 23, 511 486 48 16

NV_8KB
core 13, 820 7, 256 155 16 23 6, 188, 702

(20.04%)
2.964

SoC 17, 522 10, 406 191 16 26

NV_TMRiucctrl_8KB
core 60, 703 18, 724 347 16 23 17, 676, 131

(57.25%)
3.013

SoC 64, 400 21, 874 383 16 26

NV_cFT8KB
core 14, 482 7, 323 161 16 37 6, 673, 561

(21.61%)
3.031

SoC 19, 125 10, 785 215 16 40

NV_TMRiucctrl_cFT8KB
core 61, 841 18, 807 353 16 37 17, 676, 131

(57.25%)
3.978

SoC 66, 584 22, 269 407 16 40

NV_Flush8KB
core 13, 820 7, 256 155 16 23 6, 188, 702

(20.04%)
3.023

SoC 17, 522 10, 406 191 16 26

NV_TMRiucctrl_Flush8KB
core 60, 703 18, 724 347 16 23 17, 676, 131

(57.25%)
3.181

SoC 64, 400 21, 874 383 16 26

triplicated designs. Disabling the L1 cache impacts 3.4 times the performance compared

to the design with a 1 KB cache enabled. On the other hand, increasing the L1 cache size

to 8 KB improves performance by more than three times.

7.3.2 Fault injection results

Table 7.3 describes the results of the fault injection experiments per NOEL-V

design, detailing the number of failures, the error rate (#failures/#inj.faults) with



134

Table 7.3 – Fault injection result table describing the number of failures per design, the error rate
with 95% confidence interval, and the mean faults to failure.

NOEL-V SoC design

Failures Error rate1
Mean faults

to failure2#SDCs #SEFIs #Total Total
Lower

confidence

Upper

confidence

NV_1KBdis 78 90 168 1.68× 10−2 1.44× 10−2 1.95× 10−2 59.52

NV_TMRcore_1KBdis 12 36 48 4.80× 10−3 3.54× 10−3 6.36× 10−3 208.33

NV_1KB 31 134 165 1.65× 10−2 1.41× 10−2 1.92× 10−2 60.61

NV_TMRcore_1KB 4 35 39 3.90× 10−3 2.77× 10−3 5.33× 10−3 256.41

NV_cFT1KB 39 153 192 1.92× 10−2 1.66× 10−2 2.21× 10−2 52.08

NV_TMRcore_cFT1KB 11 66 77 7.70× 10−3 6.08× 10−3 9.62× 10−3 129.87

NV_TMRiucctrl_cFT1KB 16 59 75 7.50× 10−3 5.90× 10−3 9.40× 10−3 133.33

NV_Flush1KB 48 152 200 2.00× 10−2 1.73× 10−2 2.30× 10−2 50.00

NV_TMRcore_Flush1KB 11 45 56 5.60× 10−3 4.23× 10−3 7.27× 10−3 178.57

NV_8KB 40 148 188 1.88× 10−2 1.62× 10−2 2.17× 10−2 53.19

NV_TMRiucctrl_8KB 12 53 65 6.50× 10−3 5.02× 10−3 8.28× 10−3 153.85

NV_cFT8KB 62 173 235 2.35× 10−2 2.06× 10−2 2.67× 10−2 42.55

NV_TMRiucctrl_cFT8KB 23 57 80 8.00× 10−3 6.34× 10−3 9.96× 10−3 125.00

NV_Flush8KB 49 146 195 1.95× 10−2 1.69× 10−2 2.24× 10−2 51.28

NV_TMRiucctrl_Flush8KB 17 53 70 7.00× 10−3 5.46× 10−3 8.84× 10−3 142.86

1. FI error rate = total failures/total inj. faults, as defined in section 5.2.2.
2. Mean faults to failure = total inj. faults / total failures.

a 95% of confidence interval, and the mean faults to failure. As expected, triplicating

the entire processor core leads to a reduced number of errors. The NV_TMRcore_1KB

presents the lowest error rate, which is more than four times better than NV_1KB. The

design with triplication and L1 cache disabled (NV_TMRcore_1KBdis) also gives good

results. Since one bit-flip is injected in the CRAM per application execution, the design’s

performance is not explored, and resource usage significantly impacts susceptibility. De-

signs with unprotected hardware are expected to have the worst error rates, such as the

non-triplicated versions with 8 KB L1 cache.

Because injections do not affect BRAMs, the L1 cache protections are not ex-

ercised. Designs with periodic flush and cFT are underused, and the extra hardware

increases the susceptibility. Those designs present more SEFIs than completely unpro-

tected designs. A reason might be due to faults in the unmitigated cache controller that

could have a SEFI during the regular flushes or lead to inconsistent data in the memories,

causing a constant refresh. Either case would result in application timeout.

The mean faults to failure column in table 7.3 shows the average number of accu-

mulated bit-flips to cause an error. The higher the values, the better. Since that compu-

tation is the reverse of the error rate metric, a design with a low error rate requires more



135

accumulated faults until experiencing a failure.

Figure 7.4 shows the reliability curves per design related to the number of accumu-

lated injected bit-flips until a failure occurs, and figure 7.5 presents the Weibull fit of the

reliability curves, describing the Weibull parameters per design in the format of (shape;

width). Due to the characteristics of the CRAM fault injection, the configurations present

similar reliability curves. However, the non-triplicated and triplicated designs are clearly

spread. As expected, designs with TMRed hardware are more reliable, meaning they sta-

tistically provide more correct results. Non-triplicated designs use fewer resources but are

highly susceptible to errors in case of bit-flips in the design area.

7.3.3 Proton testing results

Two Ultra96-V2 boards were used in the experiments. The first board (BN1) was

irradiated until accumulating a TID of about 80 Krad(Si). Then, the BN1 connection

constantly failed, even with the beam disabled and after multiple power cycles. This

behavior may be due to TID effects in ICs located around the DUT on the Ultra96-V2

board. As a note, the BN1 is again functional after annealing at room temperature. The

second board (BN2) was irradiated until the end of the tests, with an accumulated TID of

40 Krad(Si).

The Zynq UltraScale+ FPGA fabric (ZU3EG chip) has 154, 350 system logic cells,

about 54, 063, 047 configuration bits. For a 53 MeV proton beam, the estimated fluence

to upset in the FPGA CRAM is 1.3×108 p/cm2, based on data from (KOGA et al., 2018).

Table 7.4 describes the average flux and computed fluence per design and test board. The

valid fluence means the calculated value after data analysis in which the unresponsive

time of the design was removed.

Due to the limited beam time, a reduced number of configurations were tested.

Table 7.5 presents the observed results per NOEL-V design. The total cross section

considers the sum of SDCs and SEFIs and is presented with a 95% confidence interval,

considering a fluence uncertainty of ±10%, as defined in the ESCC25100 (ESA, 2014).

Transient and permanent failures were observed during the tests.

Transient failures were related to some SDCs, meaning that one MxM execution

returned an incorrect result, but the subsequent executions were correct. Transient fail-

ures can occur due to soft errors in the user memories, such as the register file and L1

cache. When the memory is refreshed for the subsequent application execution, the data



136

Figure 7.4 – Reliability to failure as a function of accumulated injected faults.

Source: From the author.

Figure 7.5 – Weibull fit of the reliability to failure as a function of accumulated injected faults.
The Weibull parameters are described per design (shape; width).

Source: From the author.



137

Table 7.4 – Proton testing table describing actual flux and fluence by design per test board.

NOEL-V SoC design
Test

board

Proton beam

Flux (p/cm2/s) Fluence (p/cm2)

NV_1KBdis BN1 4.36× 107 7.90× 109

NV_TMRcore_1KBdis BN1 4.22× 107 2.14× 1010

NV_1KB
BN1 4.44× 107 3.39× 1010

BN2 4.46× 107 3.76× 1010

NV_TMRcore_1KB BN1 4.75× 107 4.54× 1010

NV_cFT1KB BN1 4.26× 107 2.22× 1010

NV_TMRcore_cFT1KB
BN1 4.92× 107 3.92× 1010

BN2 4.44× 107 4.26× 1010

NV_TMRiucctrl_cFT1KB BN1 4.39× 107 4.37× 1010

NV_8KB
BN1 4.83× 107 4.35× 1010

BN2 4.33× 107 2.44× 1010

NV_TMRiucctrl_8KB BN1 4.36× 107 1.96× 1010

NV_TMRiucctrl_cFT8KB
BN1 4.68× 107 1.73× 1010

BN2 4.28× 107 2.57× 1010

NV_TMRiucctrl_Flush8KB BN2 4.14× 107 4.58× 1010

Table 7.5 – 53 MeV proton testing result table describing the observed failures and total cross
section with 95% confidence interval (±10% fluence uncertainty).

NOEL-V SoC design
Test

board

Failures Cross section

#SDCs #SEFIs
σTotal

(cm2/device)

Lower

confidence

Upper

confidence

NV_1KBdis BN1 0 2 2.53× 10−10 2.92× 10−11 9.15× 10−10

NV_TMRcore_1KBdis BN1 0 1 4.67× 10−11 9.44× 10−13 2.61× 10−10

NV_1KB
BN1 1 3 1.18× 10−10 3.13× 10−11 3.03× 10−10

BN2 2 2 1.06× 10−10 2.83× 10−11 2.73× 10−10

NV_TMRcore_1KB BN1 1 2 6.61× 10−11 1.32× 10−11 1.93× 10−10

NV_cFT1KB BN1 0 5 2.25× 10−10 7.14× 10−11 5.26× 10−10

NV_TMRcore_cFT1KB
BN1 1 3 1.02× 10−10 2.71× 10−11 2.61× 10−10

BN2 0 2 4.69× 10−11 5.42× 10−12 1.70× 10−10

NV_TMRiucctrl_cFT1KB BN1 0 1 2.29× 10−11 4.62× 10−13 1.27× 10−10

NV_8KB
BN1 4 5 2.07× 10−10 9.27× 10−11 3.94× 10−10

BN2 0 6 2.46× 10−10 8.83× 10−11 5.36× 10−10

NV_TMRiucctrl_8KB BN1 2 2 2.04× 10−10 5.42× 10−11 5.23× 10−10

NV_TMRiucctrl_cFT8KB
BN1 1 6 4.04× 10−10 1.59× 10−10 8.34× 10−10

BN2 0 8 3.11× 10−10 1.32× 10−10 6.15× 10−10

NV_TMRiucctrl_Flush8KB BN2 1 1 4.37× 10−11 5.04× 10−12 1.58× 10−10



138

error is overwritten. All SEFI failures were permanent and repeatedly occurred in all the

subsequent application executions until being recovered. Some SDCs were also detected

in a burst of sequential MxM runs. Permanent failures are more related to architectural

changes in the processor because of upsets in the FPGA CRAM. Additionally, the state

of flip-flops is not recovered since the processor is not reset between executions. The per-

manent failure duration was excluded from the valid test fluence, and just the first event

of the failure burst was computed as a valid event. The valid fluence and valid number of

events were used to calculate the cross section results. Figure 7.6 shows the application

executions events per design until a permanent failure or the end of the test run.

The FPGA CRAM soft errors can be persistent even using scrubbing mitigation.

Although the detection and correction of CRAM upsets are enabled, the SEM-IP does

not ensure the correction of all bit-flips. The SEM-IP scrubbing stops in the presence of

uncorrectable errors, which may occur due to multiple upsets in the same CRAM frame

(XILINX, 2022d). Therefore, the design is temporary without scrubbing until an FPGA

reprogramming. Unfortunately, the occurrence of those events was not logged.

Some NOEL-V designs experienced application executions that were consider-

ably shorter than expected. For instance, executions took around 2 seconds to compute

a result despite an expected execution time of 10 seconds for the MxM operation. As

a result, the application would either return an incorrect checksum or a repeated value

from a previous execution. Such behavior can be due to control flow errors, like a branch

error causing the program to jump to the wrong address. Multiples of these events hap-

pened sequentially and were only recovered with reprogramming, sometimes only with

a power cycle. These events were considered SEFIs, and the multiple occurrences in se-

quence were counted as a single SEFI. Another unexpected observed behavior was the

application executed for the expected period but did not report any result. These events

commonly appeared in a permanent failure sequence. The NOEL-V designs with TMRi-

ucctrl combined with L1 cache DWC (both 1 and 8 KB) or the periodic flush were the

only designs that did not report any of those unexpected events. Interesting to note that

these designs are with cache protection and have the distributed TMR applied to the IU

and cache controller only.

Bursts of SDCs were observed in designs with an unprotected 8 KB L1 cache.

Multiple sequential executions with wrong data results were reported in the NV_8KB

and NV_TMRiucctrl_8KB designs. The burst of SDCs only stopped after a timeout or a

system crash. Then the system was recovered with FPGA reprogramming.



139

Figure 7.6 – Events per application execution until a permanent failure or the end of the test run.
Results are presented per design and test board (BN1/BN2).

Source: From the author.



140

7.3.3.1 Failure cross section

Figure 7.7 presents the total failure cross section of the NOEL-V designs with a

95% confidence interval (±10% fluence uncertainty). These values are also described in

table 7.5. Testing with higher proton fluence would be preferable to gather more statistics

and improve the confidence interval of the results. Due to the limited beam time and the

number of designs to be tested, the maximum valid fluence was 4.5 × 1010 p/cm2 per

design.

Figure 7.7 – Total cross section per device with 95% confidence interval for 53 MeV proton
testing. Results are presented per design and test board (BN1/BN2).

Source: From the author.

The unprotected design with the L1 cache disabled has one of the highest cross

sections due to the longer application execution time, which increases the susceptibility

period during the execution. Additionally, although the L1 cache is disabled, the hardware

(cache controller and BRAMs) is still implemented in the design since there is no support

for removing the L1 from the processor. Upsets in the unused modules might still lead to

failures.

The processor triplication has improved the system enhancement, with better re-

sults for 1 KB L1 cache (EN/DIS) designs. The TMRiucctrl also positively impacts the

designs, reducing the cross section more than five times. Since the IU and the cache

controller are the most critical and significant components in the NOEL-V core, the fact



141

that other elements are not triplicated has a low reliability impact. One should notice that

results might differ in a more complex processor configuration. For instance, adding a

FPU would considerably increase the core resource usage, and the susceptibility variation

compared to an entire triplicated core is expected to increase. The cFT DWC also per-

forms better with the 1 KB L1 cache and TMRiucctrl. The NV_TMRiucctrl_cFT1KB has

11 times lower cross section compared to NV_1KBdis.

Scrubbing is essential to avoid the accumulation of upsets in the FPGA CRAM

and maintain the TMRed modules’ integrity. However, upsets in critical bits may cause

design failures. Cross-domain errors may still occur in triplicated designs and overcome

the TMR masking capability, leading to failures. Additionally, the limitation of SEM-IP in

treating uncorrectable bit-flips may leave the design vulnerable, as previously discussed.

As expected, increasing the L1 cache size without memory mitigation shows to

be highly susceptible to soft errors due to the larger unprotected area. However, the pe-

riodic flush has efficiently mitigated memory upsets, avoiding error propagation. The

NV_TMRiucctrl_Flush8KB design is about three and six times better than the NV_1KB

and NV_1KBdis, respectively. A larger L1 cache with mitigation allows better perfor-

mance with reduced cross section than an unprotected smaller cache.

7.3.3.2 MTBF and MEBF results

Figure 7.8 shows the MTBF and MEBF results per NOEL-V design integrated

from runs of both test boards (BN1 and BN2). MTBF and MEBF are presented in bars re-

lated to the left axis. The purple and green horizontal dashed lines highlight the NV_1KB

design as a reference point for MTBF and MEBF, respectively. The best designs present

the MTBF and MEBF higher than the NV_1KB reference. The higher the values, the

longer the design availability until experiencing a failure and the higher the number of

correct application executions. Figure 7.8 also shows the application execution time (in

seconds), for a fault-free scenario, as the red line related to the right axis.

The NOEL-V design with the 1 KB L1 cache enabled performs better than with

the cache disabled and, therefore, presents better MTBF and MEBF. The soft error sus-

ceptibility is reduced by triplicating the processor core even if the L1 cache is disabled.

The NV_TMRcore_1KBdis design has higher MTBF than the NV_1KB, but with a lower

MEBF as a penalty for the higher application execution time.

The highest MTBF is from the NV_TMRiucctrl_cFT1KB. Although most designs

with 8 KB L1 cache present lower MTBF than the NV_1KB, the MEBFs are overall



142

Figure 7.8 – MTBF and MEBF are presented in bars related to the left axis, with the horizontal
dashed lines highlighting the results for NV_1KB design as a reference. The red line shows the
execution time, in seconds, related to the right axis. Results are presented per design integrated

from both test boards.

Source: From the author.

better. Designs with a larger L1 cache tend to have higher MEBF because they present

better performance (i.e., faster execution time), and the impact in the cross section is not

so expressive. The best-case scenario for using the 8 KB L1 cache is reached with the

periodic flush on the cache and triplicated IU and cache controller. Although the cache

flush has some impact on the application execution time, the gain in error mitigation leads

this design to present a high MTBF and the best MEBF.

7.3.4 Discussion

This thesis assesses the soft error vulnerability of a RISC-V NOEL-V soft pro-

cessor implemented in the Xilinx Zynq UltraScale+ FPGA. Several factors have been

evaluated, including the impact of L1 cache size on processor reliability, the effective-

ness of periodic refreshing and DWC for cache protection, and the benefits of combining

scrubbing with distributed TMR.

NOEL-V designs were evaluated under proton testing and emulation fault injec-

tion. Since the Zynq UltraScale+ FPGA is built on the 16 nm FinFET technology, it



143

requires a high proton fluence to upset. A higher test fluence per design configuration

would be preferable for gathering a statistically higher number of failure events and re-

ducing the data uncertainty. Nonetheless, valuable conclusions can be drawn from the

results.

Combining distributed TMR and CRAM scrubbing can significantly improve pro-

cessor enhancement. The TMR masking capabilities are maintained by the scrubbing

ability to recover upsets, reducing the overall susceptibility to errors. The processor with

the L1 cache disabled has a lower exposed area but at the expense of longer exposure

time due to poor performance. The more time the design is exposed, the more prone to

upsets. Better performance is achieved by enabling the L1 cache. However, mitigation

techniques are mandatory for further improving reliability. The maximum improvement

reached with mitigated NOEL-V designs was about eleven times.

As expected, designs with unprotected larger memories present higher susceptibil-

ity due to the increase of vulnerable resources. However, combining the distributed TMR

to periodic flush of the cache leads to a reduced cross section and more application execu-

tions between failures, improving the MEBF. A design including a larger L1 cache with

mitigation allows better performance with reduced error propagation than designs with

unprotected smaller memories. Therefore, increasing the L1 cache size and using the

correct combination of mitigation techniques can reduce the overall SEE susceptibility in

RISC-V processors implemented in SRAM-based FPGAs.



144



145

8 EXPLORING THE COMMERCIAL FAULT TOLERANT RISC-V NOEL-VFT

SOFT PROCESSOR COMBINED WITH EXTERNAL FPGA SUPERVISOR UN-

DER RADIATION EFFECTS

This thesis presents the SEE characterization under proton testing of the commer-

cial fault tolerant RISC-V NOEL-VFT soft processor implemented in a 20 nm Xilinx

Kintex UltraScale combined with the extra protection of an external FPGA supervisor

and distributed TMR. The NOEL-VFT soft processor features built-in fault tolerance to

protect the user memories against SEUs. It is equipped with SECDED in its internal mem-

ories, which can be adaptable per target technology or technology-agnostic, and BRAM

scrubbing. The investigation aims to explore the SEE sensitiveness of the NOEL-VFT

and to understand if even a fault tolerant soft processor requires additional enhancement

when implemented in an SRAM-based FPGA.

The Ph.D. student developed the external FPGA supervisor while working at

Frontgrade Gaisler (previously Cobham Gaisler) and, in collaboration with the Front-

grade Gaisler’s team, performed the SEE characterization evaluation of the commercial

NOEL-VFT soft processor.

8.1 RISC-V NOEL-VFT soft processor

The RISC-V NOEL-V processor, previously described in chapter 7, allows differ-

ent configurations through the GRLIB IP Library (FRONTGRADE GAISLER, 2022b).

Besides the processor features detailed in the previous chapter, the commercial version

of the NOEL-V supports built-in soft error protection. The fault tolerance features of

NOEL-VFT can also be complemented by GRLIB IP library designs with SEE mitigation

techniques, including protection of on-chip peripherals and external memory (FRONT-

GRADE GAISLER, 2022b).

The fault tolerant NOEL-V (NOEL-VFT) can implement a custom RTL EDAC

scheme to protect both the register file and the L1 cache. Each 32-bit word is covered by

8 check bits. The check bits can be used to correct 1-bit errors and detect 2-bit errors,

similar to the conventional 32 + 7 BCH protection. However, the top half of the check

bits (4 bits) is the logical XOR of the other nibbles in the codeword. This extra check

guarantees the detection of 3 and 4 adjacent bit errors, also protecting MBUs on some



146

technologies. The L2 cache is protected using a (39, 32, 7) BCH SECDED code.

The L1 and L2 caches include a hardware scrubber of the user memories that

complements the error detection and correction schemes, preventing error accumulation

without software intervention. The scrubber mechanism exercises the EDAC in all mem-

ory addresses and triggers the data correction in case of Correctable Errors (CEs). In case

of Uncorrectable Errors (UEs), the cache line is invalidated, which leads to a refresh of

the data.

As many modern FPGAs include BRAMs with ECC capabilities, the NOEL-VFT,

like other GRLIB IPs, is also able to exercise such built-in ECC, maximizing the area

efficiency of the design. In the case of the Xilinx UltraScale FPGAs (XILINX, 2022c),

such error correction codes consist of 8 check bits for every 64 bits of data with SECDED

capability.

In this chapter, we use the commercial fault tolerant NOEL-VFT processor. The

selected NOEL-VFT is a single-issue 64-bit processor set for Controller (MC) configu-

ration. This version was chosen due to its size to allow design triplication fitting into

the Xilinx Kintex UltraScale XCKU060 FPGA. The SoC features an 8 KB L1 cache, a

small FPU unit, 256 KB L2 cache, an Serial Peripheral Interface (SPI) memory controller,

AMBA 2.0 AHB bus, debug unit, timers, UARTs, and error monitoring peripherals.

8.2 External FPGA supervisor

The external FPGA supervisor features programming and scrubbing capabilities

on the target SRAM-based FPGA. The supervisor IP module, namely GRSCRUB, was

developed by the Ph.D. student and is part of the GRLIB IP Library (FRONTGRADE

GAISLER, 2022b). The advantage of an external FPGA supervisor is the reduced sus-

ceptibility to SEE since its engine is expected to be implemented in a radiation-tolerant

technology device. The GRSCRUB IP can be implemented in a Rad-Hard FPGA or

ASIC. The GRSCRUB will also be included in the next generation of Frontgrade Gaisler’s

microcontrollers, such as the GR716B (FRONTGRADE GAISLER, 2022a) and GR765

(FRONTGRADE GAISLER, 2023b).

The GRSCRUB can detect and correct single and multiple errors affecting the

FPGA CRAM, avoiding the accumulation of upsets. The GRSCRUB is compatible with

the Xilinx Kintex UltraScale and Virtex-5 FPGA families. It accesses the FPGA con-

figuration memory externally through the SelectMap (SMAP) interface. The SelectMap



147

performs better than JTAG due to its parallel data access with supported bus widths of 8-,

16-, or 32-bit data.

8.2.1 System integration

Figure 8.1 shows the block diagram of a GRSCRUB-based system integrated with

the target FPGA. The target FPGA CRAM is accessed externally through the slave Se-

lectMap configuration interface (control and data). The bus width (i.e., 8-, 16-, or 32-bit)

can be configured in the GRSCRUB to meet the setup requirements. The SelectMap input

clock should be provided externally by the subsystem in which the GRSCRUB is embed-

ded. The GRSCRUB is designed in a multiple clock domain, which includes the internal

system AMBA clock, and the SelectMap clock used for synchronization.

Figure 8.1 – Example of a system including GRSCRUB.

Source: From the author.

The GRSCRUB accesses through an AMBA AHB or AXI bus, a memory (Golden

memory) that stores the golden reference of the configuration bitstream and mask data of

the design implemented in the target FPGA. The golden bitstream is used both to con-

figure the FPGA at start-up and to repair CRAM bit-flips. The mask data information

is provided by the synthesis tool (e.g., Xilinx Vivado) and contains a description of all

dynamic bits in the design. As described in section 4.1.1, the CRAM scrubbing operation

does not protect the dynamic memory elements against soft errors. The GRSCRUB uses

the mask data to identify all the dynamic bits in the CRAM frames during data verifica-

tion.

8.2.2 Operational modes

The GRSCRUB FPGA supervisor features four operation modes:



148

• Programming mode: programs the configuration bitstream into the target FPGA.

• Scrubbing mode: executes a scrubbing operation. The IP can be configured to scrub

the entire FPGA configuration memory or just selected CRAM frames.

• Mapping mode: identifies and maps the CRAM frame addressing of the target

FPGA. The addressing map defines the positioning of the CRAM frames, required

for any scrubbing operation. Only frames that refer to configuration blocks are

mapped, i.e., the memory block frames are not considered. The frame addresses

are saved in the Golden memory and are accessed by the IP in scrubbing mode

during reading and writing operations.

• Golden CRC mode: computes the golden CRC codes for the current frame data of

the target FPGA configuration memory. The CRC code can be selected as a data

check in the readback scrubbing mode. A CRC code is computed to each frame of

the configuration memory, and it is verified against the golden CRC copy.

8.2.2.1 Scrubbing operation

The GRSCRUB scrubbing operation mode supports both blind and readback meth-

ods. The blind scrubbing mode rewrites the configuration frames without any data ver-

ification. The blind scrubbing can be performed periodically, continually refreshing the

configuration data.

In the readback scrubbing mode, the GRSCRUB reads frame-by-frame and check

for inconsistencies. The error detection can be performed by Full Frame Check (FFC),

which verifies all bits of the FPGA configuration frames, or using a 32-bit CRC algo-

rithm, which validates the CRC code of each configuration frame. The error correction is

performed by rewriting the entire faulty frame with its reference copy in the Golden mem-

ory. Differently from the blind scrubbing, the readback mode allows detecting errors and

correcting the frame only if necessary. The readback can also be executed periodically.

8.2.2.2 Configuration interface integrity check

A novelty of the GRSCRUB is the integrity check of the FPGA configuration in-

terface in the scrubbing mode. Soft errors affecting this interface may lead to catastrophic

results during the scrubbing operation. For instance, an SEU in the FPGA Frame Address

Register (FAR) may change its value to another valid address. During a blind scrubbing

execution, this would wrongly overwrite all the subsequent scrubbing frames, compro-



149

mising the entire design. Lee, Swift and Wirthlin (2016) observed high-current events in

Xilinx FPGAs due to SEUs affecting the configuration interface, which led to the blind

scrubbing to write multiple frames in incorrect addresses.

The GRSCRUB was designed to decrease the probability of failures during the

scrubbing operation due to a faulty interface. The GRSCRUB can be configured to verify

the integrity of the configuration interface before each new scrubbing execution. The

verification is performed by reading a specific frame and checking its address. If the

returned address matches the expected one, the interface is considered stable, and the

scrubbing cycle starts. Otherwise, an error is reported, and the scrubbing operation is

suspended. With the integrity check, the responsiveness of the configuration interface is

ensured before a new scrubbing. Additionally, setting up the configuration interface for

each scrubbing frame could be safer than configuring all frames at once. For instance,

writing one frame at a time during blind scrubbing avoids overwriting the entire memory

in case of errors in the FAR register. Both blind and readback scrubbing can be configured

to enable or disable such features.

8.3 Investigation methodology

8.3.1 Platform setup

Figure 8.2 shows a block diagram of the NOEL-VFT SoC implemented in the

Kintex UltraScale FPGA. The NOEL-VFT SoC characteristics are presented in section

8.1. The NOEL-VFT L1 cache makes use of the Xilinx UltraScale BRAMs built-in ECC

capabilities, while the L2 cache uses the RTL EDAC. The boot memory in this setup is

an external SPI memory. After boot, the L2 cache is locked and works as the processor’s

main memory. The hardware scrubbers of both L1 and L2 caches are enabled. In case

of an uncorrectable error in the L1 cache, the cache line is invalidated, and the data is

fetched from the L2 cache. In case of an uncorrectable error in the L2 cache, the behavior

is different due to the setup restriction on not allowing a dynamic refresh of the L2 cache.

If the scrubber detects the L2 UE, the error is reported, but no action is taken. In the case

the L2 UE is detected due to a processor request, a trap is triggered, and the software is

locked until a reset.

The DUT is the COTS Xilinx Kintex UltraScale XCKU060 FPGA, which is

built on a High-K Metal Gate (HKMG) Taiwan Semiconductor Manufacturing Company



150

Figure 8.2 – NOEL-VFT SoC implemented into the Kintex UltraScale FPGA.

Source: From the author.

(TSMC) 20 nm planar CMOS technology (XILINX, 2022c). The test board is the GR-

CPCIS-XCKU development platform (FRONTGRADE GAISLER, 2023a), which fea-

tures a Kintex UltraScale XCKU060 FPGA (flip-chip BGA package). No sample prepa-

ration was required since the DUT was characterized under a proton beam.

Figure 8.3 describes the NOEL-VFT test system. The test board allows external

access to the FPGA SelectMap interface. The Test Controller (TC), an additional board

based on a Xilinx Virtex-5 FPGA, implements a GRSCRUB-based design that accesses

the FPGA SelectMap interface. The GRSCRUB is used to program and scrub the Kin-

tex UltraScale FPGA. A periodic readback, with both FFC and CRC methods enabled,

continually checks the correctness of the entire CRAM. The XCKU060 has 147, 596, 064

CRAM bits, and the SelectMap clock frequency is 25 MHz with 8-bit data bus width. The

scrubbing cycle period is about 6.7 seconds. The performance is related to the GRSCRUB

settings and SelectMap configuration (frequency and bus width). Moreover, the perfor-

mance is affected by the size of the target FPGA.

The TC is also responsible for configuring and monitoring the NOEL-VFT SoC

via GPIOs. The commercial GRMON3 debug monitor (FRONTGRADE GAISLER,

2022c) is used on the host computer to control the test system through Ethernet com-

munication with the TC. The NOEL-VFT software reporting and memory error diagnosis

are collected through Python scripts via the UART communication.

The test board embeds power monitoring circuitry of the DUT’s power rails. The



151

Figure 8.3 – NOEL-VFT test system.

Source: From the author.

live monitoring of the DUT’s current and voltage is performed through the Texas Instru-

ment Fusion Digital Power™ software. Limits were established to power down the Kintex

UltraScale FPGA in case of high current events.

8.3.2 Additional fault tolerance

As discussed in the previous chapters, the processor architecture is highly vulner-

able to soft errors due to the CRAM SRAM cell characteristics. Failures can still occur

even with complete protection on the user memories and with CRAM scrubbing. Since

the NOEL-VFT features built-in protection for the user memories, the processor triplica-

tion is employed to investigate if TMR is also required in a commercial fault tolerant soft

processor.

A distributed TMR synthesis strategy is applied to the entire NOEL-VFT SoC

using Synopsys’ Synplify Premier automated software tool (SYNOPSYS, 2015b). All

internal submodules are triplicated and feedback voters are added to flip-flops with feed-

back logic for error correction. BRAMs are not triplicated since the L1 and L2 caches are

already protected from SEUs by NOEL-VFT’s EDAC and hardware scrubbing. Due to

the complexity of the design and in order to facilitate the synthesis, the TMR is applied



152

individually to some elements in the NOEL-VFT subsystem, leading to single voters be-

tween those components.

8.3.3 Designs description overview

Table 8.1 describes the NOEL-VFT design versions synthesized into the Kintex

UltraScale FPGA. As previously defined, the 8 KB L1 cache is enabled using the built-

in Xilinx BRAM ECC, and the 256 KB L2 cache uses the RTL EDAC. Both caches are

with hardware scrubbing enabled. In the NVFT_TMR, the distributed TMR is applied to

the entire SoC, except for the BRAMs. Due to the timing constraints of the triplicated

design, the NOEL-VFT processor runs at 30 MHz in both versions. Both designs are with

GRSCRUB’s CRAM scrubbing enabled. For comparison, the designs are also tested with

CRAM scrubbing disabled but at low fluence since that is not the primary testing focus

and due to the beam time restrictions.

Table 8.1 – NOEL-VFT test designs description.

NOEL-VFT

SoC design

L1 cache L2 cache Distributed

TMRSize Status Protection Size Status Protection

NVFT 8 KB EN
BRAM ECC /

scrubbing
256 KB EN

RTL EDAC /

scrubbing
NO

NVFT_TMR 8 KB EN
BRAM ECC /

scrubbing
256 KB EN

RTL EDAC /

scrubbing

Complete SoC,

except BRAMs

8.3.4 Software benchmark

The test software is a bare-metal benchmark designed by Frontgrade Gaisler for

processors’ testing. The test software includes a set of test cases to evaluate different parts

of the processor:

• IU (Integer Unit RAM test): to exercise the L1 cache and register file.

• Paranoia: to exercise the floating-point unit.

• Stanford: a set of benchmarks for general processor tests, such as sorting, FFT,

puzzle, towers of Hanoi, permutation, and matrix multiplication.

The test software sequentially executes the test cases (i.e., IU, Paranoia, and Stan-



153

ford). Each test case runs in a loop for ten seconds. After the ten seconds window, the

next test case starts. When the Stanford execution finishes, the IU test is re-executed, and

the loop restarts. No reset is performed between test cases, and the software uninterrupt-

edly runs until a SEFI is detected or the end of the test. The objective is to evaluate the

uninterrupted software execution in the presence of correctable errors.

The test software reporting is performed via UART. A package is sent at every

test case execution, informing the success of the task or data error detected. The software

also reports the detected and corrected errors in memory elements, such as the L1 and

L2 caches. The software execution is not affected when a memory error is corrected,

except for reporting the error counters included in the design. For SEFI monitoring, the

test software toggles a GPIO at every 100 ms, which works as a heartbeat to indicate that

the software is working correctly. Moreover, a report package is also periodically sent via

UART to sign the software availability.

8.3.5 Failure definition

For this investigation, the NOEL-VFT events are defined as below:

• SDC: A test case finishes its execution with a data error. It is a failure.

• SEFI: A test case does not finish its execution, and the processor is not responsive,

including application timeout or system crash. SEFIs are also considered when a

processor trap occurs due to L2 uncorrectable errors. It is a failure.

• L1 CE: L1 cache correctable errors are bit-flips detected and corrected by the fault

tolerance features and do not interfere with the software execution. It is not a failure.

• L1 UE: L1 cache uncorrectable errors are bit-flips detected but cannot be corrected

by the fault tolerance features due to multiple bit-error. This event may result in a

processor trap and lead to a SEFI. It can lead to failure.

• L2 CE: L2 cache correctable errors are bit-flips detected and corrected by the fault

tolerance features and do not interfere with the software execution. It is not a failure.

• L2 UE: L2 cache uncorrectable errors are bit-flips detected but cannot be corrected

by the fault tolerance features due to multiple bit-error. This event may result in a

processor trap and lead to a SEFI. It can lead to failure.



154

8.3.6 Proton testing

The proton testing was performed at the Light Ion Facility (LIF) at the Université

Catholique de Louvain (UCL), Belgium (UNIVERSITÉ CATHOLIQUE DE LOUVAIN,

2023). The Kintex UltraScale XCKU060 FPGA was irradiated with the lid. It was as-

sumed a 15 µm kovar for the lid and 100 µm to reach the sensitive silicon region. The

irradiation was in the air using energies of 14.4, 25.8, 30.1, and 62 MeV at room temper-

ature. Those proton energies are expected to reach many millimeters, ranging from 1 mm

(14.4 MeV) to 16 mm (62 MeV), based on TRAD Omere tool estimation.

To avoid the high spread of particles affecting other components on the board,

a collimator with opening dimensions of 40 × 40 mm was set the closest possible to the

DUT. The test runs were divided into low and high fluence runs, with average flux ranging

from 1 × 106 to 3 × 107 p/cm2/s and fluence from 1 × 109 to 2 × 1010 p/cm2. Figure 8.4

shows the test setup at LIF/UCL.

Figure 8.4 – Kintex UltraScale proton testing setup.

Source: From the author.



155

8.4 Results

8.4.1 FPGA resource usage

Table 8.2 presents the FPGA resource usage of the test designs for the entire

NOEL-VFT SoC, and the number of essential bits, including the percentage of FPGA us-

age. The distributed TMR of the NOEL-VFT SoC requires about 4.8 more LUTs and 3.1

more FFs than the NOEL-VFT non-triplicated. More than three times of LUTs are needed

due to the extra voters added after each triplicated submodule. In total, the NVFT_TMR

uses 3.1 more essential bits.

Both NOEL-VFT designs run at 30 MHz, which is the maximum achieved fre-

quency for the triplicated SoC. The performance information is omitted from table 8.2

due to the test software characteristic of endless execution, which does not lead to a fixed

execution time.

Table 8.2 – NOEL-VFT test designs information: SoC resource usage and number of essential
bits (percentage of FPGA usage).

NOEL-VFT SoC design
Resource usage Essential bits

(% usage)LUT FF Carry DSP BRAM

NVFT 44, 461 24, 271 696 18 121.5 15, 706, 771 (10.60%)

NVFT_TMR 211, 643 74, 842 2, 744 39 126 48, 826, 903 (32.95%)

8.4.2 Proton testing results

Table 8.3 describes the proton beam (energy and valid fluence), observed failures,

and total cross section per NOEL-VFT SoC design. The valid fluence means the calcu-

lated value after data analysis in which the unresponsive time of the design was removed.

The NVFT_TMR design was exercised over all tested proton energies. Due to beam time

restrictions, the NVFT design was tested only under 30.1 and 62 MeV protons. In order

to evaluate the GRSCRUB external scrubbing improvement in reliability, the NVFT and

NVFT_TMR designs were also tested with scrubbing disabled (versions with noScrub

labels) under 62 MeV protons.

The following sections detail the observed results in terms of susceptibility of the

FPGA CRAM and BRAM bits, and the failure cross section.



156

Table 8.3 – Proton testing result table describing the proton energies and fluence, observed
failures, and total cross section.

NOEL-VFT SoC design

Proton beam Failures Cross section

Energy (MeV) Fluence (p/cm2) #SDCs #SEFIs
σTotal

(cm2/device)

NVFT
30.1 1.85× 1010 8 15 1.25× 10−9

62 5.84× 1010 33 114 2.52× 10−9

NVFT_noScrub 62 9.99× 108 26 1 2.70× 10−8

NVFT_TMR

14.4 5.00× 109 0 0 0.00

25.8 5.00× 109 1 0 2.00× 10−10

30.1 6.30× 1010 0 15 2.38× 10−10

62 1.35× 1011 4 39 3.19× 10−10

NVFT_TMR_noScrub 62 1.53× 1010 3 13 1.05× 10−9

8.4.2.1 Configuration memory cross section

Figure 8.5 shows the Kintex UltraScale XCKU060 CRAM cross section per bit for

upsets detected and corrected by the GRSCRUB. The CRAM cross section computation

considers the integrated values of CRAM upsets results from both NOEL-VFT designs.

All detected CRAM upsets were corrected. No bit-flips were detected by GRSCRUB for

14.4 MeV protons up to a fluence of 5 × 109 p/cm2.

The resulting CRAM cross section from bit-flips reported by GRSCRUB matches

the expected CRAM error rate of the Kintex UltraScale XCKU060 FPGA for proton

testing (MAILLARD et al., 2019). Figure 8.5 also includes the Bendel distribution fitting

for the GRSCRUB reporting results and the XCKU060 expected values.

The CRAM upsets reported by the GRSCRUB are defined as Single-Cycle Cor-

rected Upsets (SCCUs) and Double-Cycle Corrected Upsets (DCCUs). The SCCUs are

upsets corrected in one scrubbing execution cycle, while DCCUs require two sequential

scrubbing cycles to be repaired.

SRAM-based FPGAs present two types of CRAM errors (BERG et al., 2008):

• Single point error: an upset that affects a single function logic bit; and

• Burst of errors: an upset that directly affects the state of multiple bits.

For clarification, the burst of errors is not related to an MBU, but a single CRAM

bit is flipped, and because of the updated state of the specific bit, other multiple bits have

their states also updated. The burst of errors may occur due to SEUs in configuration

bits responsible for controlling the status of other bits in the FPGA. When a control bit is



157

Figure 8.5 – CRAM cross section per bit for the Kintex UltraScale XCKU060: GRSCRUB SCCU
and DCCU, Bendel fit of GRSCRUB SCCU, and Bendel fit of the XCKU060 reference data.

Source: From the author.

flipped, all other bits under its control are also affected and may only return to the correct

state after correcting the original control bit. Therefore, in the worst-case scenario, two

scrubbing cycles are required to recover all affected bits and restore the configuration

memory to a consistent state. GRSCRUB could cope with both types of events and correct

all detected errors.

8.4.2.2 User memory cross section

Figure 8.6 describes the BRAM cross section per bit for upsets detected and cor-

rected by the EDAC features in the NOEL-VFT L1 and L2 caches. The BRAM cross

section computation considers the integrated values of cache memories’ upsets results

from all NOEL-VFT designs. The observed BRAM upsets agree with the reference data

for BRAM cross section of the Kintex UltraScale XCKU060 FPGA for proton testing

(MAILLARD et al., 2019). Figure 8.6 also presents the Bendel distribution fitting for the

reporting results of L1 and L2 correctable errors and the XCKU060 expected values.

The NOEL-VFT EDAC features successfully cope with single-bit upsets in the

cache memories, avoiding the build-up of errors. No upsets were detected in the memories



158

for 14.4 MeV protons up to a fluence of 5 × 109 p/cm2.

Figure 8.6 also shows the detected L2 cache uncorrectable errors. No UEs were

observed in the L1 cache. An UE is due to multiple bit-flips in a cache line, which

might be related to the high particle flux used during the accelerated irradiation testing.

Therefore, the actual error rates in a space orbit are expected to be lower than the numbers

reported here.

Figure 8.6 – BRAM cross section per bit for the Kintex UltraScale XCKU060: L1 cache CE, L2
cache CE and UE, Bendel fit of L1 and L2 caches CE, and Bendel fit of the XCKU060 reference

data.

Source: From the author.

8.4.2.3 Failure cross section

Figure 8.7 presents the total failure cross section of the NOEL-VFT designs with

a confidence level of 95%, considering a fluence uncertainty of ±10%, as per ESCC25100

(ESA, 2014). Large error bars are observed for some tests due to the lack of events. No

failure events were observed for the NVFT_TMR design under the 14.4 MeV proton beam

until a fluence of 5 × 109 p/cm2. For this case, the cross section upper limit calculation

presented in figure 8.7 considers one failure event for the 14.4 MeV tested fluence. For

the 25.8 MeV protons, only one test case error was reported in the NVFT_TMR with a



159

fluence of 5 × 109 p/cm2, leading to a high error bar interval.

As expected, applying triplication to NOEL-VFT SoC shows to be highly effec-

tive along with scrubbing. Although the fault tolerance features of the NOEL-VFT protect

the embedded user memories, the processor architecture in the CRAM is still highly sus-

ceptible. The NVFT_TMR leads to up to 7.9 times reduced cross section compared to

NVFT. Failures can still occur due to critical bits in the triplicated design. Upsets in the

design’s single points of failure might overcome the TMR protection and lead to an error.

All SEFIs were recoverable with a soft reset in designs with scrubbing enabled (NVFT

and NVFT_TMR). In cases where scrubbing was disabled (i.e., versions with noScrub),

reprogramming the FPGA was often required to recover the system.

The effectiveness of the GRSCRUB external scrubbing shows to improve the

NVFT reliability by almost 11 times. When comparing the combined protection of scrub-

bing and triplication (i.e., NVFT_noScrub versus NVFT_TMR), the improvement boosts

nearly 85 times.

No SEL or high current events were detected during the tests. The accumulated

TID was about 57 krad(Si). No TID-induced effects were observed by the end of the

campaign.

Figure 8.7 – Total cross section per device with 95% confidence interval for different proton
energies.

Source: From the author.



160

8.4.2.4 MTTF and error rate in-orbit

The NOEL-VFT designs have been tested with different proton energies, resulting

in distinct cross section points over the energy range. That data allows the computation

of a fitting curve, which can be used to estimate the error rates in-orbit, such as LEO and

GEO.

Assuming that the particle flux is much lower in a natural environment than in

an accelerated irradiation test, efficient periodic scrubbing protection is expected to cope

with all bit-flips in the CRAM, and upsets will not accumulate over time. Considering that

the NOEL-VFT has built-in protection for the user memories, the SECDED features are

expected to correct all errors in the used BRAMs. Based on those assumptions, failures

would only be caused by SEUs happening within a CRAM scrubbing cycle. Therefore,

estimating the MTTF and the error rate should only consider failures within the scrubbing

cycle period.

The approach for estimating the MTTF for SEFI events follows the method pro-

posed by Ostler et al. (2009). The authors adapted the MTTF calculation, previously

presented in section 5.2.4, towards failures in a CRAM scrubbing duration. In summary,

the re-designed MTTF equation is defined below (OSTLER et al., 2009).

MTTF = ts × (Σ∞n=0P (n)P (F/n))−1 (8.1)

In which:

• ts is the scrubbing cycle duration (i.e., GRSCRUB period = 6.7 sec);

• the summation gives the probability of a failure in each scrubbing cycle;

• P (n) is the probability of n upsets in a single scrubbing cycle; and

• P (F/n) is the probability of a failure in a scrubbing cycle, assuming n upsets in

that scrubbing cycle.

P (n) follows a Poisson distribution relating the SEU rate and the scrubbing cycle,

determined by

P (n) = eµts
(µts)

n

n! (8.2)

where:

• µ is the Xilinx Kintex UltraScale KU060 CRAM upset rate (orbit dependent) calcu-



161

lated in OMERE 5.5 tool based on the reference static cross section data for heavy

ion and proton testing (MAILLARD et al., 2019).

P (F/n) (equation 8.3) is computed from the NOEL-VFT empirical proton data

relating the GRSCRUB correctable error counters and the SEFIs in the design. A logistic

curve, based on P (F/n), is fitted to the data using the least square method (a and b are

the parameters to be fitted).

P (F/n) = f(n) =
1

1 + (n
a
)−b

(8.3)

The error rate is estimated for LEO (800 km, 98° inclination) and GEO (36000

km) using CREME96 (Z=1-92) for heavy ions and AP8min for protons, with 1 g/cm2 of

Al shielding. The computed Kintex UltraScale KU060 CRAM upset rates (µ) are around

5 and 7.5 upsets/device/day for LEO and GEO, respectively. The SEFI rate and MTTF

for the NOEL-VFT designs with scrubbing enabled are described in table 8.4.

Table 8.4 – Orbital SEFI rate and MTTF of NOEL-VFT test designs.

NOEL-VFT SoC design
SEFI rate (events/device/day) SEFI MTTF (years)

LEO GEO LEO GEO

NVFT 3.86 × 10−4 5.78 × 10−4 7.10 4.74

NVFT_TMR 6.00 × 10−5 8.99 × 10−5 45.70 30.47



162



163

9 COMPARATIVE ANALYSIS BETWEEN SOFT PROCESSORS

This chapter presents a comparison between this thesis and state-of-the-art works.

Additionally, a comparison is performed between the soft processors regarding resource

usage, emulation fault injection results, and proton testing cross sections.

9.1 Comparison to the state-of-the-art

Table 9.1 shows a comparative analysis between this thesis and the literature on

state-of-the-art works on RISC-V soft processors. The contributions of this thesis over

the related works have been discussed in section 4.2.

The state-of-the-art studies have tested different RISC-V processors, such as the

open source Rocket, Taiga, VexRisc, and NOEL-V. The target SRAM-based FPGAs are

primarily Xilinx well-known devices like Artix-7 and Zynq-7000 and more modern ones

like the Kintex UltraScale FPGA. The investigations lie around redundancy (TMR and

EDAC) and scrubbing. Most works perform single-bit emulation fault injection in the

CRAM, and few perform irradiation tests using neutron beam. A work instead performed

laser and X-ray testing and assessed the TID influence in the system. This thesis has

proven the efficacy of combining fault tolerance methods to improve the reliability of the

RISC-V Rocket, NOEL-V, and NOEL-VFT in the Zynq-7000, Zynq UltraScale+, and

Kintex UltraScale, respectively. Tests were performed by emulating accumulated upsets

in the CRAM, single-bit faults in BRAMs, and SEE testing using heavy ion and proton

particles. The results are summarized in table 9.1.

Few works setups and results are comparable to this thesis. Aranda et al. (2020)

saw that single-bit faults in the essential bits of the Rocket processor running combined

benchmarks led to 99.7% and 90% of correctness for TMR and unhardened designs, re-

spectively. Compared to the Rocket results presented in chapter 6, we observed maxi-

mum reliability for single faults of 88% for unhardened core (section 6.1.3.1) and 98.8%

for triplicated core (section 6.1.3.3). Different benchmarks, FPGA devices, and the trip-

lication implementation of the Rocket processor explain the differences in the single-bit

injection results. This thesis goes further in the analysis and shows the system’s reliability

under an accumulation of faults and different combinations of techniques under heavy ion

testing.



164

Table 9.1 – This thesis comparison against the state-of-the-art.

Work
RISC-V

soft processor
DUT

Fault tolerance /
investigation

Experiments
Results
summary

Ramos et al.
(2019)

Rocket Artix-7 Partial TMR for ALU
Single-bit
FI (CRAM)

Partial TMR differs
in 2% correctness
vs. full TMR

Wilson and
Wirthlin
(2019)

Taiga
Kintex

UltraScale
TMR; CRAM scrub.

Single-bit
FI (CRAM);
neutron testing

33× lower cross section;
24× better MWTF;
27% lower freq.;
5.6× more area

Aranda et
al. (2020)

Rocket
Kintex

UltraScale
TMR; critical bits analysis

Single-bit
FI (CRAM)

99.7% of reliability
for TMRed vs. 90%
for unmitigated (all bench.)

Dörflinger
et al. (2020)

Rocket and
BOOM

Virtex
UltraScale+

ECC; BRAM scrub.
Performance
and area tests

Area overhead:
more than 5% logic
and 41% BRAMs

Santos et al.
(2020)

Customized
RV32I

Zynq-7000
TMR for ALU/control unit;
ECC for PC and reg. file

SEUs and SETs
emulation

16× reduction
in error propagation

Neri (2021)
Customized

RI5CY
- TMR; ECC Simulation

No errors observed with
FT features enabled

Wilson and
Wirthlin
(2021)

Taiga, VexRiscv,
PicoRV32, and

Kronos
Artix-7 TMR

Single-bit
FI (CRAM)

More than 80×
reliability improvement

Wilson et al.
(2021)

VexRiscv Artix-7
TMR; CRAM scrub.;
Linux applications

Single-bit
FI (CRAM);
neutron testing

10× lower cross section;
4× more area

Shukla and
Ray (2022)

Customized
RV32IM

Artix-7 /
32 nm
CMOS

DMR
Single-bit
FI (CRAM)

The FT mode detected all
injected upsets; re-execution
for error correction

Li et al.
(2022)

Customized
RV32IM

Kintex-7
SECDED for the pipeline;
rollback recovery

Simulation
Coverage of all
simulated faults

Walsemann
et al. (2023)

Customized
RV32IMC

65 nm
CMOS

TMR; SRAM scrub.
Laser and
X-ray testing

1490% more leakage
due to TID; all SRAM
SEUs corrected

Wilson et al.
(2023)

Taiga, VexRiscv,
PicoRV32, and

NOEL-V

Kintex
UltraScale

TMR SoC (including DSPs
and BRAMs);
ext. CRAM scrub.

Single-bit
FI (CRAM);
neutron testing

75× lower cross section;
4.8× more area;
12.4% lower performance

This thesis

Rocket Zynq-7000

TMR core: coarse grain and
distributed; CRAM scrub.;
watchdog; freq. variation;
reliability

Accumulated
FI (CRAM);
heavy ion testing

98.8% max. FI reliability;
3.7× lower cross section
(51× fewer timeouts
with watchdog); 4.8× better
MWBF; 6× more area

Rocket Zynq-7000
L1 cache topology ;
periodic flush

Single-bit
FI (BRAM)

Icache more vulnerable;
same SDCs over configs.;
few timeouts (small sizes);
67× lower ER w/ flush

NOEL-V
Zynq

UltraScale+

TMR core and IU/cache
controller; CRAM scrub.;
L1 cache DWC and periodic
flush; cache size

Accumulated
FI (CRAM);
proton testing

High susceptibility for
L1 cache dis. (exec. time);
11× lower cross section;
4.5× more area

NOEL-VFT
Kintex

UltraScale

TMR; built-in SECDED
and BRAM scrub.;
ext. CRAM scrub.;
in-orbit ER

Proton testing

High coverage of CRAM
and BRAM upsets;
85× lower cross section;
45 years to SEFI (LEO);
4.8× more area



165

Wilson and Wirthlin (2021) showed an improvement of more than 80 times for

single-bit injection results in triplicated RISC-V soft processors (Taiga, VexRiscv, Pi-

coRV32, and Kronos). The authors developed a fault injection platform to assess the

CRAM sensitivity of the designs by implementing the processors in predefined partial

block regions. In this thesis, we also used the partial block strategy to restrict the target

area for fault injection in the Rocket soft processor.

Wilson et al. (2023) showed an improvement of about 75 times in the cross section

of a triplicated NOEL-V soft processor under neutron testing. The experiments presented

in chapter 7 resulted in up to 11 times cross section improvement for combined techniques

on the NOEL-V soft processor. Distinct characteristics of the test setup may lead to those

different results. In this thesis, only the NOEL-V core is triplicated due to the limited

resources of the Zynq UltraScale+ ZU3EG chip, the internal SEM-IP is used for CRAM

scrubbing in all designs (including non-triplicated), and the testing is performed under a

proton beam. In (WILSON et al., 2023), the entire processor SoC is triplicated - including

all BRAMs - combined with external CRAM scrubbing, and they perform neutron testing

in the Kintex UltraScale FPGA. Additionally, the works evaluate different benchmarks

running at different operation frequencies.

No works have been found that tested the commercial fault tolerant NOEL-VFT.

9.2 Comparative results between processors

9.2.1 Resource usage comparison

Table 9.2 describes the resource usage and tested frequency for Rocket (Zynq-

7000), NOEL-V (Zynq UltraScale+), and NOEL-VFT (Kintex UltraScale) soft proces-

sors. Only a few NOEL-V configurations are presented for simplicity. The tested fre-

quencies are the maximum allowed frequencies for the triplicated soft processors. The

area information corresponds to the entire SoC implementation and is presented in chap-

ters 6, 7, and 8, respectively. For instance, the high BRAM usage for the Rocket is due to

the main memory being implemented in triplicated BRAMs, and the NOEL-VFT includes

an L2 cache. Additionally, both processors feature an 8 KB L1 cache.



166

Table 9.2 – Resource usage and tested frequency for Rocket (Zynq-7000), NOEL-V (Zynq
UltraScale+), and NOEL-VFT (Kintex UltraScale).

Soft

processor
Design

Resource usage LUT

impact

Freq.

(MHz)LUT FF Carry DSP BRAM

Rocket

Unhard 17, 329 12, 164 544 9 68 1×
20CGTMR 39, 232 21, 495 369 5 68 2.3×

FDTMR 42, 382 20, 215 369 5 68 2.4×

NOEL-V

NV_1KB 15, 392 9, 979 186 16 16 1×

50
NV_TMRcore_1KB 63, 386 23, 511 486 48 16 4.1×
NV_8KB 17, 522 10, 406 191 16 26 1.1×
NV_TMRiucctrl_8KB 64, 400 21, 874 383 16 26 4.2×

NOEL-VFT
NVFT 44, 461 24, 271 696 18 121.5 1×

30
NV_TMR 211, 643 74, 842 2, 744 39 126 4.8×

The LUT usage impact is related to the unhardened version of the corresponding

soft processor. As discussed in chapter 6, the TMR impact on the Rocket core area is

more than 6 times, but when considering the total SoC area, the related impact is reduced

to 2.4 times. Similarly, applying TMR to the NOEL-V core impacts more than 5 times

the LUT usage (chapter 7) when considering only the core area, but it is reduced to 4.1

times considering the entire SoC. Since the TMR on the NOEL-VFT is employed for the

whole SoC, the LUT impact corresponds to the actual TMR overhead.

9.2.2 FI comparison: Rocket vs. NOEL-V

Table 9.3 shows the error rate and mean faults to failure for the CRAM accumu-

lation fault injection on the Rocket (Zynq-7000) and NOEL-V (Zynq UltraScale+) soft

processors. Several factors lead to the high error rate on the Rocket designs. The FI

target area is the Rocket Tile region, which narrows faults to the most sensitive parts in

the processor. The entire CRAM is affected during the NOEL-V FI, which decreases the

probability of an injected bit-flip leading to failures.

Another point is the TMR implementation. The coarse grain TMR is more vulner-

able to cross-domain failures and has a low masking effect under multiple faults. Instead,

the distributed TMR with feedback voters, the triplication method used on NOEL-V, has

a high granularity to replicate elements and can restore the state of flip-flops. These

characteristics allow the distributed TMR to maintain the error masking capability under

multiple accumulated faults.



167

Table 9.3 – Fault injection results for Rocket (Zynq-7000) and NOEL-V (Zynq UltraScale+).

Soft
processor

Design Error rate
Mean faults

to failure

Rocket
Unhard 1.60× 10−1 6.37

CGTMR 1.80× 10−1 5.49

NOEL-V

NV_1KB 1.65× 10−2 60.61

NV_TMRcore_1KB 3.90× 10−3 256.41

NV_8KB 1.88× 10−2 53.19

NV_TMRiucctrl_8KB 6.50× 10−3 153.85

It should also be considered that the Rocket soft processor seems to be more sus-

ceptible to failures than other processors. The work performed by Harward et al. (2015)

describes a normalized soft error sensitivity for distinct soft processors implemented in a

Virtex-5 FPGA. The Cortex-M0 presented the lowest sensitivity (i.e., 3.79%), and the Pi-

coBlaze the highest (i.e., 6.11%). The sensitivity of the LEON3 soft processor is 4.81%.

From another work, the estimated Rocket (lowRISC) sensitivity is 6.86% (RAMOS;

MAESTRO; REVIRIEGO, 2017), which indicates the Rocket might be more prone to

failures than other cores.

9.2.3 Cross section comparison: NOEL-V vs. NOEL-VFT

The open source NOEL-V and the commercial fault tolerant NOEL-VFT soft pro-

cessors were tested on the Zynq UltraScale+ and Kintex UltraScale FPGAs, respectively.

Both DUTs were irradiated using a proton beam. Because the DUTs are built on different

technologies (i.e., 16 nm FinFET and 20 nm CMOS), and due to setup differences, a direct

comparison of the design cross sections between processors shall not be made. Instead,

we roughly estimate the designs dynamic cross section targeting one DUT based on the

ratio of static cross sections of both DUTs under protons. This analysis is not performed

with the Rocket results since its test was executed with heavy ions.

Some assumptions are taken for this analysis:

• The differences between the processors’ setups are negligible for the cross section:

SoC, frequency, test software, etc.

• The difference between 53 MeV, 60 MeV, and 62 MeV proton irradiation is negli-

gible for the cross section.

• The dynamic failure cross section per device increases at the same rate as the



168

CRAM static cross section per bit.

• The ratio between the static cross section per bit of the Zynq UltraScale+ and the

Kintex UltraScale is valid.

It is worth mentioning that those assumptions are made only to allow this esti-

mated comparison and do not reflect reality. For a fair comparison, one should perform

irradiation testing on the same conditions (beam, DUT, SoC, etc).

The first step is to find the ratio for the static cross section per bit between DUTs.

The analysis is performed for 60 MeV protons to simplify the data collection from the

literature. The CRAM static cross section per bit for 60 MeV protons is about 2.5×10−15

cm2/bit for the Kintex UltraScale (MAILLARD et al., 2019) and around 1×10−16 cm2/bit

for the Zynq UltraScale+ (AZIMI et al., 2022). The CRAM static cross section ratio of

Kintex UltraScale and Zynq UltraScale+ is 25.

Considering the Kintex UltraScale as the target device, the second step is to find

the estimated dynamic cross section of the open source NOEL-V on the Kintex UltraScale

FPGA. For that, we can multiply the cross sections reported in chapter 7 by 25 (i.e.,

the ratio computed above). To reduce the number of comparisons, only the following

designs are selected: NV_1KB, NV_TMRcore_1KB, NV_8KB, NV_TMRiucctrl_8KB,

and NV_TMRiucctrl_Flush8KB. These designs’ characteristics are described in table 7.1,

from chapter 7. The NOEL-VFT designs are NVFT and NVFT_TMR from chapter 8.

Table 9.4 shows the dynamic failure cross sections obtained from empiric data

of irradiation tests for Zynq UltraScale+ (ZUS+) and Kintex UltraScale (KUS) FPGAs,

and the estimated data for the open source NOEL-V on the Kintex UltraScale FPGA. The

NVFT and NVFT_TMR results are repeated in the KUS estimated column for comparison

convenience.

From the KUS estimated column, one can observe the most susceptible design is

the unprotected NOEL-V core with 8 KB L1 cache (NV_8KB). In comparison, the NVFT,

which features a NOEL-VFT with a protected 8 KB L1 cache, has a 2.4 times lower cross

section. Adding fault tolerance to the open source NOEL-V shows to be an opportunity

for those low-budget missions. The NV_TMRiucctrl_Flush8KB presents 2.3 times lower

cross section than the NVFT. The best design, however, is the NVFT_TMR, featuring a

NOEL-VFT with distributed TMR SoC. The NVFT_TMR is 19.3 better than NV_8KB.



169

Table 9.4 – Comparison between NOEL-V and NOEL-VFT dynamic failure cross section. Zynq
UltraScale+ (ZUS+) 53 MeV are results from chapter 7, Kintex UltraScale (KUS) 62 MeV are
results from chapter 8, and Kintex UltraScale (KUS) estimated are the computed cross section

values.

Soft
processor

Design
Empiric data (cm2/device) KUS estimated

(cm2/device)ZUS+ 53MeV KUS 62 MeV

NOEL-V

NV_1KB 1.18× 10−10 - 2.95× 10−9

NV_TMRcore_1KB 6.61× 10−11 - 1.65× 10−9

NV_8KB 2.46× 10−10 - 6.15× 10−9

NV_TMRiucctrl_8KB 2.04× 10−10 - 5.10× 10−9

NV_TMRiucctrl_Flush8KB 4.37× 10−11 - 1.09× 10−9

NOEL-VFT
NVFT - 2.52× 10−9 2.52× 10−9

NVFT_TMR - 3.19× 10−10 3.19× 10−10



170



171

10 CONCLUSIONS

This thesis characterized the SEE susceptibility of RISC-V soft processors embed-

ded in SRAM-based FPGAs and demonstrated how combining fault tolerance techniques

can significantly reduce system vulnerability. The investigation addressed the problems

of using soft processors in SEE-prone environments and the complexities and trade-offs

behind mitigation methods.

The case studies are the open source RISC-V Rocket and NOEL-V soft processors

and the commercial fault tolerant RISC-V NOEL-VFT. The processors are embedded in

the Xilinx Zynq-7000 APSoC, Zynq UltraScale+ MPSoC, and Kintex UltraScale, respec-

tively. Protection is applied at the design level targeting the FPGA configuration memory,

processor core, and embedded memories. The susceptibility to soft errors is assessed

under emulation fault injection and accelerated ground testing.

The following sections summarizes the contributions of this thesis and presents

the future works.

10.1 Contributions

10.1.1 RISC-V Rocket soft processor investigation

This thesis assessed the soft error vulnerability of the in-order single-issue RISC-

V Rocket soft processor implemented in a COTS SRAM-based FPGA. The Rocket pro-

cessor is embedded into the Xilinx Zynq-7000 APSoC, built on 28 nm CMOS technology.

Results from accumulated fault injection and heavy ion testing show that CRAM scrub-

bing and periodic reset are essential for SRAM-based FPGA designs. Scrubbing prevents

the accumulation of bit-flips in the configuration memory. The reset restores the soft

processor SoC to a known state.

The unhardened Rocket core is highly susceptible to single bit-flips. It achieved a

maximum of 88% of reliability in the fault injection experiments. Therefore, additional

user-level mitigation techniques are required to mask or correct faults. Combining scrub-

bing with the Rocket core triplication resulted in a reduction of three times the cross

section. Adding a watchdog monitor improved the timeout cross section more than 51

times, showing the high efficacy of the monitoring.

An outcome of the heavy ion testing was to prove that protecting only the proces-



172

sor core may not be enough, depending on the target mission error rate. Protection needs

to be extended to other parts of the SoC for higher fault coverage. Soft errors in the L1

cache, peripherals, buses, and other SoC components can also lead the soft processor to

fail.

This thesis investigated the influence of the L1 cache topology on the Rocket soft

processor susceptibility by emulating single-bit faults in user memories. Results showed

an increase in vulnerability by increasing the cache size, which is related to the lower

refresh of the memory (i.e., a lower cache miss). Small caches have a high miss rate, and

the data is more often updated, which reduces the vulnerability window. The opposite

is valid for larger caches. The 16 KB cache size is up to 12.5 times more susceptible to

errors than 1 KB cache. Results also demonstrated a similar SDC rate over the L1 cache

configurations, demonstrating the high probability of application output errors caused by

upsets in the user memories. A high timeout rate is observed in larger memories, while

SDCs are more likely to occur in smaller caches.

Most failures observed in the Rocket cache are due to upsets in the instruction

cache. Few timeouts and no SDCs were observed from bit-flips in the data cache. Soft

errors in the instruction cache may lead to data or control flow errors. If a corrupted

instruction is validated, the processor can execute an incorrect instruction or generate a

trap, leading to SDCs or SEFIs. Upsets in the instruction cache are more likely to lead to

failures, and data memories are more susceptible than control memories.

This thesis also explored periodic flush on data memories of the Rocket’s L1 in-

struction cache to reduce the soft error vulnerability. Increasing the refresh rate impacted

the application performance in all topologies but also reduced the number of failures. The

application error rate is reduced at a more frequent flush. Larger caches have a high drop

in the error rate regarding the use of a periodic refresh. The impact on performance is also

lower for larger caches. Therefore, by employing a periodic flush, one can take advantage

of the faster application execution of a larger cache with a similar error rate of a small

memory.

10.1.2 RISC-V NOEL-V soft processor investigation

The NOEL-V is a cutting-edge high-performance RISC-V processor targeting

space computing. It features an advanced pipeline and is a highly configurable processor

IP core. This thesis performed a sensitiveness analysis of the COTS open source NOEL-



173

V soft processor in the Xilinx Zynq UltraScale+ MPSoC, fabricated on 16 nm FinFET

technology. The investigation included emulation fault injection and proton testing to

confirm that strategies such as cache refreshing, scrubbing, TMR, and duplication with

comparison are effective in mitigating soft errors.

Different NOEL-V design configurations were investigated. Results demonstrated

that combining distributed TMR and CRAM scrubbing can significantly improve proces-

sor enhancement. The TMR masking capabilities are maintained by the scrubbing ability

to recover upsets, reducing the overall susceptibility to errors. The distributed TMR with

feedback voters combined with scrubbing for cleaning faults can sustain the masking ca-

pability under more accumulated bit-flips.

Disabling the L1 cache reduces the processor’s exposed area but at the expense

of longer application execution time and, therefore, longer exposure time. The more

time the design is exposed, the more prone to upsets. Better performance is achieved

by enabling the L1 cache. However, mitigation techniques are mandatory for further

improving reliability.

The NOEL-V soft processor with an unprotected larger cache has higher suscep-

tibility due to the increase of vulnerable resources. Combining the distributed TMR,

CRAM scrubbing, and periodic cache flush leads to a reduced cross section and more ap-

plication executions between failures, improving the MEBF. A design including a larger

L1 cache with mitigation allows better performance with reduced error propagation than

designs with unprotected smaller memories. Therefore, increasing the L1 cache size and

using the correct combination of mitigation techniques can reduce the overall SEE sus-

ceptibility in RISC-V processors implemented in SRAM-based FPGAs.

10.1.3 RISC-V NOEL-VFT soft processor investigation

This thesis explored the use of a NOEL-VFT-based SoC implemented in a 20 nm

Xilinx Kintex UltraScale combined with the extra protection of an external FPGA super-

visor. The NOEL-VFT soft processor features built-in fault tolerance to protect the user

memories against SEUs. It is equipped with SECDED in its internal memories, which can

be adaptable per target technology or technology-agnostic, and BRAM scrubbing. More-

over, a distributed TMR with feedback voters is implemented to enhance the availability

of the design. The SEE characterization was performed using proton testing.

Results demonstrated the NOEL-VFT’s fault tolerance effectiveness in handling



174

soft errors and the robust hardness solution combining the NOELV-FT (with and with-

out TMR) with the external scrubbing for SRAM-based FPGAs. The scrubbing cor-

rected all detected CRAM upsets, and the error rate meets the Xilinx reference data. The

NOEL-VFT EDAC features successfully cope with single-bit upsets in the cache mem-

ories, avoiding the build-up of errors. The observed BRAM upsets also agree with the

reference data for the DUT.

The effectiveness of the external scrubbing shows to improve the NOEL-VFT

reliability by almost 11 times. Combining the scrubbing and triplication protection can

boost the improvement by nearly 85 times. The triplicated NOELV-FT has a mean time

to SEFI of 45.7 years compared to 7.1 years for the non-triplicated processor in a typical

LEO orbit, both with scrubbing enabled.

An outcome of this thesis is the development of the external FPGA supervisor -

GRSCRUB IP, which can be implemented in a Rad-Hard FPGA or ASIC. The GRSCRUB

IP will also be included in the next generation of Frontgrade Gaisler’s microcontrollers,

such as the GR716B and GR765.

10.1.4 Summary

RISC-V-based soft processors are already being used in many terrestrial applica-

tions, and there is an expectation of adopting RISC-V also in aerospace systems. An

outcome of this thesis is demonstrating that RISC-V soft-processors embedded into a

COTS SRAM-based FPGA present analogous SEE sensitivity as the state-of-the-art pro-

cessors, and the system enhancement through fault tolerance techniques may significantly

improve the reliability. Results also indicate that the processor core is one of many crit-

ical elements in the system that requires protection. Hardening caches and peripherals

is essential to increase the system’s overall reliability. Results are promising for using

RISC-V soft processors in new generations of FPGAs and aerospace missions.

10.2 Future works

• Improve the fault injection methodology.

Emulation fault injection was performed in the soft processor systems targeting

the FPGA configuration memory. However, due to the usage concurrency of the ICAP



175

interface, CRAM scrubbing could not be tested simultaneously in the designs. An im-

provement can be made in the fault injection system methodology to allow both scrubbing

and injection. Although a parallel use of the ICAP is not possible, one can implement a

controller to multiplex its access between the injector and the scrubber engine.

A possibility is to use an external scrubbing system using either JTAG or Se-

lectMap interfaces. Both interfaces also use the ICAP, but an external module can coor-

dinate its usage if the fault injection is performed via the same interface. For instance,

injecting one fault at a time and releasing the scrubbing between injections. In this case,

the scrubbing would be expected to fix all injected bit-flips.

Another improvement would be to simultaneously perform fault injection in the

FPGA CRAM and BRAM in the system. This thesis performed CRAM and BRAM

injections but in individual campaigns.

Additionally, injecting only in the essential bits of the designs would boost the per-

formance of the fault injection, which currently can take days depending on the required

number of faults.

• Evaluation of other SoC components.

The L2 cache topology could be investigated to understand if the observed effects

on the L1 cache are also valid for the L2. This thesis has used the L2 cache in the NOEL-

VFT, but no further investigation was performed to verify different configurations.

Soft errors in FPU can also be investigated. An FPU can occupy a large portion of

the soft processor area and, therefore, be highly susceptible to soft errors.

• Partial scrubbing investigation.

In high-density FPGAs, a large portion of the device may be unused by the de-

sign. Depending on the scrubbing implementation, the placement of the design will also

influence the CRAM frames’ scrubbing rate, as in the case of SEM-IP. Restricting the

scrubbing to the design area can reduce the time to detect and correct upsets and reduce

the error build-up. An investigation of the error latency can be performed to understand

if there is a correlation between the scrubbing rate and the number of failures.

• Using the TMR voting output to trigger scrubbing.

In power-restricted systems, frequently scrubbing the FPGA might not be an op-

tion. A possibility to save power and keep the fault coverage is to use an error flag from

the TMR voters to inform when the TMR is masking faults and then trigger a scrubbing.



176

It would be interesting also to coordinate a reset of the system to restore possible unsafe

states. A study could be performed to investigate the latency from faults happening until

being fixed and the trade-off in the system.

• Power analysis.

One of the initial goals of this thesis was to perform an in-deep power analysis and

understand the power penalties by employing different fault tolerance. Unfortunately, the

low possibility of resources limited us to working only with the Xilinx Vivado power esti-

mations, which are not accurate. An interesting study would be to assess the voltage and

current consumption through circuitry on the test boards to measure the power variations

considering different mitigation methods and, additionally, analyze if those variations in-

crease with TID.

• Testing other FPGA and ASIC devices.

High-density FPGAs can be used to test the full triplication of the soft processors.

This thesis showed the limitations of applying TMR on low resources devices. One out-

come was the reduction of the protection due to more cross-domain failures. Using larger

FPGAs would avoid those issues.

Additionally, the RISC-V soft processors could be evaluated in modern devices,

such as the cutting-edge Xilinx Versal, with a 7 nm architecture, and other technologies,

such as Lattice FPGAs. Another possibility is to compare the SoC susceptibility into

flash-based and Rad-Hard devices.

ASIC implementations of the processors would open the opportunity for various

comparisons. All the motivation discussions presented in this thesis could be checked,

such as the differences in area, power consumption, cost, and susceptibility.

• Error rate comparison with real aerospace missions.

An interesting study would be implementing a RISC-V soft processor in an SRAM-

based FPGA embedded onboard in a CubeSat and evaluating the observed error rate. This

data could be used to assess future missions.



177

REFERENCES

ABATE, F.; STERPONE, L.; VIOLANTE, M. A New Mitigation Approach for Soft
Errors in Embedded Processors. IEEE Transactions on Nuclear Science, v. 55, n. 4, p.
2063–2069, Aug 2008. ISSN 0018-9499.

AGUIAR et al. Experimental setup for Single Event Effects at the São Paulo 8UD
Pelletron Accelerator. Nuclear Instruments and Methods in Physics Research B,
v. 332, p. 397–400, aug. 2014.

ALTERA. Stratix III Device Handbook, Volume 1. [S.l.], 2011.

AMIN, A. F. M. et al. Embedded System Implementation on FPGA System With mu
CLinux OS. IOP Conference Series: Materials Science and Engineering, v. 17, p.
012049, 02 2011.

ANDERSSON, J. et al. LEON Processor Devices for Space Missions: First 20 Years of
LEON in Space. In: 2017 6th International Conference on Space Mission Challenges
for Information Technology (SMC-IT). [S.l.: s.n.], 2017. p. 136–141.

ANGHEL, L. et al. Multi-level Fault Effects Evaluation. Dordrecht: Springer
Netherlands, 2007. 69–88 p. [Accessed July-2022]. ISBN 978-1-4020-5646-8. Available
from Internet: <https://doi.org/10.1007/978-1-4020-5646-8_4>.

ARANDA, L. A. et al. Analysis of the Critical Bits of a RISC-V Processor Implemented
in an SRAM-Based FPGA for Space Applications. Electronics, v. 9, n. 1, 2020. ISSN
2079-9292.

ARM. Cortex™-M3 Technical Reference Manual, Revision: r1p1. [S.l.], 2005.

ARM. Cortex-R5 and Cortex-R5F Technical Reference Manual. Revision: r1p2.
2011.

ARNOLD, S. S.; NUZZACI, R.; GORDON-ROSS, A. Energy budgeting for CubeSats
with an integrated FPGA. In: 2012 IEEE Aerospace Conference. [S.l.: s.n.], 2012. p.
1–14.

ASADI, G.; TAHOORI, M. B. Soft Error Rate Estimation and Mitigation for
SRAM-Based FPGAs. In: Proceedings of the 2005 ACM/SIGDA 13th International
Symposium on Field-Programmable Gate Arrays. New York, NY, USA: Association
for Computing Machinery, 2005. (FPGA ’05), p. 149–160. ISBN 1595930299. Available
from Internet: <https://doi.org/10.1145/1046192.1046212>.

ASANOVIĆ et al. The Rocket Chip Generator. [S.l.], 2016. [Accessed November-
2022]. Available from Internet: <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-17.html>.

ATITALLAH, A. B. et al. Real-Time video system design based on the
NIOS II processor and µClinux. 01 2005. [Accessed December-2020].
Available from Internet: <https://www.design-reuse.com/articles/12547/
real-time-video-system-design-based-on-the-nios-ii-processor-and-clinux.html>.

https://doi.org/10.1007/978-1-4020-5646-8_4
https://doi.org/10.1145/1046192.1046212
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.design-reuse.com/articles/12547/real-time-video-system-design-based-on-the-nios-ii-processor-and-clinux.html
https://www.design-reuse.com/articles/12547/real-time-video-system-design-based-on-the-nios-ii-processor-and-clinux.html


178

AVNET. Ultra96-V2 Single Board Computer Hardware User’s Guide, Version 1.3.
[S.l.], 2021.

AZAMBUJA, J. R.; KASTENSMIDT, F.; BECKER, J. Hybrid Fault Tolerance
Techniques to Detect Transient Faults in Embedded Processors. [S.l.: s.n.], 2014.
ISSN 1467-9280. ISBN 9780874216561.

AZIMI, S. et al. A comparative radiation analysis of reconfigurable memory technologies:
FinFET versus bulk CMOS. Microelectronics Reliability, p. 114733, 2022. ISSN
0026-2714. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S0026271422002578>.

BACHRACH, J. et al. Chisel: Constructing hardware in a Scala embedded language. In:
Design Automation Conference. [S.l.: s.n.], 2012. p. 1216–1225.

BANSAL, A. et al. Evaluating the Memory Subsystem of a Configurable Heterogeneous
MPSoC. In: Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT). [S.l.: s.n.], 2018.

BAUMANN, R. C. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and Materials Reliability, v. 5, n. 3, p.
305–316, Sept 2005. ISSN 1530-4388.

BENDEL, W. L.; PETERSEN, E. L. Proton upsets in orbit. IEEE Transactions on
Nuclear Science, v. 30, n. 6, p. 4481–4485, 1983.

BENEVENUTI, F.; KASTENSMIDT, F. L. Comparing Exhaustive and Random Fault
Injection Methods for Configuration Memory on SRAM-based FPGAs. In: 2019 IEEE
Latin American Test Symposium (LATS). [S.l.: s.n.], 2019. p. 1–6.

BENITES, L. A. C. et al. Reliability Calculation With Respect to Functional Failures
Induced by Radiation in TMR Arm Cortex-M0 Soft-Core Embedded Into SRAM-Based
FPGA. IEEE Transactions on Nuclear Science, v. 66, n. 7, p. 1433–1440, 2019.

BENITES, L. A. C.; KASTENSMIDT, F. L. Automated design flow for applying
Triple Modular Redundancy (TMR) in complex digital circuits. In: 2018 IEEE 19th
Latin-American Test Symposium (LATS). [S.l.: s.n.], 2018. p. 230–233.

BENSO, A. et al. A watchdog processor to detect data and control flow errors. In: 9th
IEEE On-Line Testing Symposium, 2003. IOLTS 2003. [S.l.: s.n.], 2003. p. 144–148.

BERG, M. et al. Analyzing System on A Chip Single Event Upset Responses
using Single Event Upset Data, Classical Reliability Models, and Space
Environment Data. 2017. [Accessed April-2023]. Available from Internet:
<https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170009889.pdf>.

BERG, M. et al. Effectiveness of Internal Versus External SEU Scrubbing Mitigation
Strategies in a Xilinx FPGA: Design, Test, and Analysis. IEEE Transactions on
Nuclear Science, v. 55, n. 4, p. 2259–2266, 2008.

BERG, M. et al. An Analysis of Single Event Upset Dependencies on High Frequency
and Architectural Implementations within Actel RTAX-S Family Field Programmable
Gate Arrays. IEEE Transactions on Nuclear Science, v. 53, n. 6, p. 3569–3574, 2006.

https://www.sciencedirect.com/science/article/pii/S0026271422002578
https://www.sciencedirect.com/science/article/pii/S0026271422002578
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170009889.pdf


179

BOWEN, N. S.; PRADHAM, D. K. Processor- and memory-based checkpoint and
rollback recovery. Computer, v. 26, n. 2, p. 22–31, Feb 1993. ISSN 0018-9162.

BROSSER, F. et al. Assessing scrubbing techniques for Xilinx SRAM-based FPGAs
in space applications. In: 2014 International Conference on Field-Programmable
Technology (FPT). [S.l.: s.n.], 2014. p. 296–299.

BUCHNER, S. et al. Variable Depth Bragg Peak Method for Single Event Effects
Testing. IEEE Transactions on Nuclear Science, v. 58, n. 6, p. 2976–2982, 2011.

BYU CONFIGURABLE COMPUTING LAB. SpyDrNet TMR. 2020. [Accessed
October-2022]. Available from Internet: <https://byuccl.github.io/spydrnet-tmr/docs/
stable/index.html>.

CALVEL, P. et al. An empirical model for predicting proton induced upset. IEEE
Transactions on Nuclear Science, v. 43, n. 6, p. 2827–2832, 1996.

CARLO, S. D. et al. A fault injection methodology and infrastructure for fast single
event upsets emulation on Xilinx SRAM-based FPGAs. In: 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). [S.l.: s.n.], 2014. p. 159–164.

CERN. RADiation facility Network for the EXploration of effects for indusTry
and research. 2023. [Accessed April-2023]. Available from Internet: <https:
//radnext.web.cern.ch/>.

CHIELLE, E. et al. S-SETA: Selective Software-Only Error-Detection Technique Using
Assertions. IEEE Transactions on Nuclear Science, v. 62, n. 6, p. 3088–3095, Dec
2015. ISSN 0018-9499.

CHO, H. Impact of Microarchitectural Differences of RISC-V Processor Cores on Soft
Error Effects. IEEE Access, v. 6, p. 41302–41313, 2018.

COX, C. Success Story: How RISC-V Is Enabling the Internet of Space.
Embedded Computing Design, 2022. [Accessed April-2023]. Available from Internet:
<https://embeddedcomputing.com/technology/open-source/risc-v-open-source-ip/
success-story-how-risc-v-is-enabling-the-internet-of-space>.

CPCL. The CubeSat standard. Cal Poly CubeSat Laboratory (CPCL), California
Polytechnic State University, 2018. [Accessed October-2021]. Available from Internet:
<https://www.cubesat.org/cubesatinfo>.

DI MASCIO et al. Leveraging the Openness and Modularity of RISC-V in Space.
Journal of Aerospace Information Systems, v. 16, n. 11, p. 454–472, 2019.
Doi:10.2514/1.I010735.

DIMOND, R. G.; MENCER, O.; LUK, W. Combining Instruction Coding and
Scheduling to Optimize Energy in System-on-FPGA. 2006 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, p. 175–184,
2006.

https://byuccl.github.io/spydrnet-tmr/docs/stable/index.html
https://byuccl.github.io/spydrnet-tmr/docs/stable/index.html
https://radnext.web.cern.ch/
https://radnext.web.cern.ch/
https://embeddedcomputing.com/technology/open-source/risc-v-open-source-ip/success-story-how-risc-v-is-enabling-the-internet-of-space
https://embeddedcomputing.com/technology/open-source/risc-v-open-source-ip/success-story-how-risc-v-is-enabling-the-internet-of-space
https://www.cubesat.org/cubesatinfo


180

DÖRFLINGER, A. et al. "ECC Memory for Fault Tolerant RISC-V Processors". In:
BRINKMANN, A. et al. (Ed.). Architecture of Computing Systems – ARCS 2020.
Cham: Springer International Publishing, 2020. p. 44–55. ISBN 978-3-030-52794-5.

DOUCIN, B. et al. Model of single event upsets induced by space protons in electronic
devices. In: Proceedings of the Third European Conference on Radiation and its
Effects on Components and Systems. [S.l.: s.n.], 1995. p. 402–408.

ECKERT, M. et al. Comparison and evaluation of cache parameters for softcores
on FPGAs. In: 2017 International Conference on FPGA Reconfiguration for
General-Purpose Computing (FPGA4GPC). [S.l.: s.n.], 2017. p. 19–24.

ENTRENA, L. et al. Soft error sensitivity evaluation of microprocessors by multilevel
emulation-based fault injection. IEEE Transactions on Computers, v. 61, n. 3, p.
313–322, 2012.

ESA. Single Event Effects Test Method and Guidelines - ESCC Basic Specification
No. 25100. 2014.

ESA. SPENVIS - The Space Environment Information System. 2018. [Accessed
July-2022]. Available from Internet: <https://www.spenvis.oma.be/intro.php>.

ESA. Trisat-R Nanosatellite. 2022. [Accessed April-2023]. Available from Internet:
<https://www.eoportal.org/satellite-missions/trisat-r#trisat-r>.

ESPOSITO et al. COTS-Based High-Performance Computing for Space Applications.
IEEE Transactions on Nuclear Science, v. 62, n. 6, p. 2687–2694, Dec 2015.

Ferlini, F. et al. Non-intrusive fault tolerance in soft processors through circuit
duplication. In: 2012 13th Latin American Test Workshop (LATW). [S.l.: s.n.], 2012.
p. 1–6.

FRONTGRADE GAISLER. Comparison Between GR716A and GR716B,
Application Note, Doc. GR716B-COMP-1, Issue 1.0. [S.l.], 2022. [Accessed
November-2022]. Available from Internet: <https://www.gaisler.com/doc/gr716/
GR716B-COMP-1-1-0-Comparison_between_GR716A_and_GR716B.pdf>.

FRONTGRADE GAISLER. GRLIB IP Core User’s Manual, Version 2022.2. [S.l.],
2022. [Accessed October-2022]. Available from Internet: <https://www.gaisler.com/
products/grlib/grip.pdf>.

FRONTGRADE GAISLER. GRMON3 User’s Manual, ver. 3.2.15, Feb. 2022. 2022.

FRONTGRADE GAISLER. GR-CPCIS-XCKU Development Board. 2023. [Accessed
April-2023]. Available from Internet: <https://gaisler.com/index.php/products/boards/
gr-cpcis-xcku>.

FRONTGRADE GAISLER. GR765 Octa-Core LEON5 SPARC V8 Processor.
2023. [Accessed April-2023]. Available from Internet: <https://gaisler.com/index.php/
products/components/gr765>.

FUCHS, C. M. et al. A Fault-Tolerant MPSoC For CubeSats. In: 2019 IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT). [S.l.: s.n.], 2019. p. 1–6. Doi:10.1109/DFT.2019.8875417.

https://www.spenvis.oma.be/intro.php
https://www.eoportal.org/satellite-missions/trisat-r#trisat-r
https://www.gaisler.com/doc/gr716/GR716B-COMP-1-1-0-Comparison_between_GR716A_and_GR716B.pdf
https://www.gaisler.com/doc/gr716/GR716B-COMP-1-1-0-Comparison_between_GR716A_and_GR716B.pdf
https://www.gaisler.com/products/grlib/grip.pdf
https://www.gaisler.com/products/grlib/grip.pdf
https://gaisler.com/index.php/products/boards/gr-cpcis-xcku
https://gaisler.com/index.php/products/boards/gr-cpcis-xcku
https://gaisler.com/index.php/products/components/gr765
https://gaisler.com/index.php/products/components/gr765


181

GARDENYES, R. B. Trends and patterns in ASIC and FPGA use in space missions
and impact in technology roadmaps of the European Space Agency. Dissertation
(Master) — T. U. Delft and ESA, 2012.

GOLOUBEVA, O. et al. Software-implemented hardware fault tolerance. [S.l.]:
Springer Science & Business Media, 2006.

GOMEZ-CORNEJO, J. et al. Fast context reloading lockstep approach for SEUs
mitigation in a FPGA soft core processor. In: IECON 2013 - 39th Annual Conference
of the IEEE Industrial Electronics Society. [S.l.: s.n.], 2013. p. 2261–2266. ISSN
1553-572X.

GROVER, N.; K.SONI, M. Reduction of Power Consumption in FPGAs - An Overview.
International Journal of Information Engineering and Electronic Business, v. 4, p.
50–69, 10 2012.

GUPTA, S. et al. SHAKTI-F: A Fault Tolerant Microprocessor Architecture. In: 2015
IEEE 24th Asian Test Symposium (ATS). [S.l.: s.n.], 2015. p. 163–168.

GUTHAUS, M. R. et al. MiBench: A free, commercially representative embedded
benchmark suite. In: Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538). [S.l.: s.n.],
2001. p. 3–14.

HARDGROVE, C. et al. The Lunar Polar Hydrogen Mapper CubeSat Mission.
IEEE Aerospace and Electronic Systems Magazine, v. 35, n. 3, p. 54–69, 2020.
Doi:10.1109/MAES.2019.2950747.

HARWARD, N. A. et al. Estimating Soft Processor Soft Error Sensitivity through
Fault Injection. In: 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines. [S.l.: s.n.], 2015. p. 143–150.

HAUCK, S.; DEHON, A. Reconfigurable Computing. [S.l.]: Elsevier, 2008. ISBN
978-0-12-370522-8.

HEIDA, W. F. Towards a fault tolerant RISC-V softcore. Dissertation (Master) —
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University
of Technology, Netherlands, 2016.

HEINER, J.; COLLINS, N.; WIRTHLIN, M. Fault Tolerant ICAP Controller for
High-Reliable Internal Scrubbing. In: 2008 IEEE Aerospace Conference. [S.l.: s.n.],
2008. p. 1–10.

HUFFMAN, W. C.; PLESS, V. Fundamentals of Error-Correcting Codes. [S.l.]:
Cambridge University Press, 2003.

ISMAIL, M. et al. Eclipse intervals for satellites in circular orbit under the effects of
Earth’s oblateness and solar radiation pressure. NRIAG Journal of Astronomy and
Geophysics, Taylor Francis, v. 4, n. 1, p. 117–122, 2015. Available from Internet:
<https://doi.org/10.1016/j.nrjag.2015.06.001>.

https://doi.org/10.1016/j.nrjag.2015.06.001


182

JAYAKRISHNAN, V.; PARIKH, C. Embedded Processors on FPGA: Soft vs Hard.
In: 2019 ASEE North Central Section Conference. [S.l.]: American Society for
Engineering Education, 2019. p. 1–8.

JEDEC. JESD57 - Test procedures for the measurement of single-event effects in
semiconductor devices from heavy ion irradiation. Electronic Industries Assoc.,
Engineering Dept., Arlington, VA: [s.n.], 1996.

KASAP, S. et al. Survey of Soft Error Mitigation Techniques Applied to LEON3 Soft
Processors on SRAM-Based FPGAs. IEEE Access, v. 8, p. 28646–28658, 2020.

KASTENSMIDT, F. L. et al. Designing and Testing Fault-Tolerant Techniques for
SRAM-Based FPGAs. In: Proceedings of the 1st Conference on Computing Frontiers.
New York, NY, USA: Association for Computing Machinery, 2004. (CF ’04), p. 419–432.
ISBN 1581137419. Available from Internet: <https://doi.org/10.1145/977091.977150>.

KASTENSMIDT, F. L. et al. On the optimal design of triple modular redundancy logic
for SRAM-based FPGAs. In: Design, Automation and Test in Europe. [S.l.: s.n.],
2005. p. 1290–1295 Vol. 2. ISSN 1530-1591.

KELLER, A. M.; WIRTHLIN, M. J. Benefits of Complementary SEU Mitigation for
the LEON3 Soft Processor on SRAM-Based FPGAs. IEEE Transactions on Nuclear
Science, v. 64, n. 1, p. 519–528, Jan 2017. ISSN 1558-1578.

KLEIN, M. Static Power and the Importance of Realistic Junction Temperature Analysis.
Xilinx WP221 (v1.0) March 23, 2005, 2005. [Accessed November-2021]. Available
from Internet: <https://www.xilinx.com/support/documentation/white_papers/wp221.
pdf>.

KO, Y. et al. Protecting caches from soft errors: A microarchitect’s perspective.
ACM Transactions on Embedded Computing Systems, v. 16, p. 1–28, 05 2017.
Doi:10.1145/3063180.

KOGA, R. et al. Heavy Ion and Proton Induced Single Event Effects on Xilinx Zynq
UltraScale+ Field Programmable Gate Array (FPGA). In: 2018 IEEE Radiation Effects
Data Workshop (REDW). [S.l.: s.n.], 2018. p. 311–315.

KRASICH, M. How to estimate and use MTTF/MTBF would the real MTBF please
stand up? In: 2009 Annual Reliability and Maintainability Symposium. [S.l.: s.n.],
2009. p. 353–359.

KULU, E. Nanosats Database. 2022. [Accessed November-2022]. Available from
Internet: <www.nanosats.eu>.

KUMAR, U. K.; UMASHANKAR, B. S. Improved hamming code for error detection
and correction. In: 2007 2nd International Symposium on Wireless Pervasive
Computing. [S.l.: s.n.], 2007.

LADBURY, R. Statistical Properties of SEE Rate Calculation in the Limits of Large and
Small Event Counts. IEEE Transactions on Nuclear Science, v. 54, n. 6, p. 2113–2119,
2007.

https://doi.org/10.1145/977091.977150
https://www.xilinx.com/support/documentation/white_papers/wp221.pdf
https://www.xilinx.com/support/documentation/white_papers/wp221.pdf
www.nanosats.eu


183

LAPPAS, V.; KOSTOPOULOS, V. A Survey on Small Satellite Technologies and
Space Missions for Geodetic Applications. [S.l.]: IntechOpen, 2020.

LATTICE. CertusPro-NX Family, Preliminary Data Sheet, FPGA-DS-02086-0.81.
2021.

LAUENSTEIN, J. JESD57 Test Standard, Procedures for the Measurement of
Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation Revision
Update. 2016. [Presented at Single Event Effects (SEE) Symposium and Military and
Aerospace Programmable Logic Devices (MAPLD) Workshop, San Diego, CA, United
States, 23-26 May 2016.].

LEE, D. S.; SWIFT, G.; WIRTHLIN, M. An Analysis of High-Current Events Observed
on Xilinx 7-Series and Ultrascale Field-Programmable Gate Arrays. In: 2016 IEEE
Radiation Effects Data Workshop (REDW). [S.l.: s.n.], 2016. p. 1–5.

LEIBSON, S. Designing SOCs with Configured Cores: Unleashing the
Tensilica Xtensa and Diamond Cores. Morgan Kaufmann Publishers, 2006.
(Electronics & Electrical). ISBN 9780123724984. Available from Internet:
<https://books.google.se/books?id=h79BlQEACAAJ>.

LI, J. et al. DuckCore: A Fault-Tolerant Processor Core Architecture Based on the
RISC-V ISA. Electronics, v. 11, n. 1, 2022. ISSN 2079-9292. Available from Internet:
<https://www.mdpi.com/2079-9292/11/1/122>.

LINDOSO, A. et al. A Hybrid Fault-Tolerant LEON3 Soft Core Processor Implemented
in Low-End SRAM FPGA. IEEE Transactions on Nuclear Science, v. 64, n. 1, p.
374–381, 2017.

LIVANY, M. A.; SALEHI, M.; KARGAR, M. Effect of cache run-time parameters on
the reliability of embedded systems. In: 2020 CSI/CPSSI International Symposium
on Real-Time and Embedded Systems and Technologies (RTEST). [S.l.: s.n.], 2020.
p. 1–6. Doi:10.1109/RTEST49666.2020.9140080.

LowRISC. Ibex: An embedded 32 bit RISC-V CPU core. 2018. ETH Zurich
and University of Bologna. [Accessed April-2023]. Available from Internet:
<https://ibex-core.readthedocs.io/en/latest/index.html>.

MAHMOOD, A.; MCCLUSKEY, E. J. Concurrent error detection using watchdog
processors - a survey. IEEE Transactions on Computers, v. 37, n. 2, p. 160–174, Feb
1988. ISSN 0018-9340.

MAILLARD, P. et al. Total Ionizing Dose and Single-Events characterization of Xilinx
20nm Kintex UltraScale™. In: 2019 19th European Conference on Radiation and Its
Effects on Components and Systems (RADECS). [S.l.: s.n.], 2019. p. 1–6.

MANSOUR, W.; VELAZCO, R. SEU fault-injection in VHDL-based processors: A
case study. In: 2012 13th Latin American Test Workshop (LATW). [S.l.: s.n.], 2012.
p. 1–5.

MONDRAGóN-TORRES, A.; CHRISTMAN, J. Hard Core vs. Soft Core: A Debate.
In: 2012 ASEE Annual Conference Exposition2012 ASEE Annual Conference
Exposition. [S.l.]: American Society for Engineering Education, 2012.

https://books.google.se/books?id=h79BlQEACAAJ
https://www.mdpi.com/2079-9292/11/1/122
https://ibex-core.readthedocs.io/en/latest/index.html


184

MUKHERJEE, S. S.; KONTZ, M.; REINHARDT, S. K. Detailed design and evaluation
of redundant multi-threading alternatives. In: Proceedings 29th Annual International
Symposium on Computer Architecture. [S.l.: s.n.], 2002. p. 99–110. ISSN 1063-6897.

NANOXPLORE. NG-ULTRA. 2022. [Accessed November-2022]. Available from
Internet: <https://nanoxplore-wiki.atlassian.net/wiki/spaces/NAN/pages/9961482/
NG-ULTRA>.

NASA. CubeSat101 Basic Concepts and Processes for First-Time CubeSat
Developers - NASA CubeSat Launch Initiative. [S.l.], 2017. [Accessed October-2021].
Available from Internet: <https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_
cubesat_101_508.pdf>.

NASA. Mars2020 mission Perseverance rover. 2020. [Accessed April-2023]. Available
from Internet: <https://mars.nasa.gov/mars2020/>.

NERI, M. Design of a fault tolerant instruction decode stage in RISC-V core against
soft and hard errors. Dissertation (Master) — Politecnico di Torino, Corso di laurea
magistrale in Ingegneria Elettronica (Electronic Engineering), 2021.

NICOLAIDIS, M. [S.l.: s.n.], 2011. ISSN 0929-1296. ISBN 978-1-4419-6993-4.

NIETO-PEROY, C.; EMAMI, M. R. CubeSat Mission: From Design to Operation.
Applied Sciences, v. 9, n. 15, 2019. ISSN 2076-3417. Available from Internet:
<https://www.mdpi.com/2076-3417/9/15/3110>.

NIKULAINEN, M. Usage of COTS EEE Components in ESA Space Programs.
ESCCON, 2019. [Accessed October-2021]. Available from Internet: <https:
//escies.org/download/webDocumentFile?id=67090>.

NORMAND, E. Correlation of inflight neutron dosimeter and SEU measurements with
atmospheric neutron model. IEEE Transactions on Nuclear Science, v. 48, n. 6, p.
1996–2003, Dec 2001. ISSN 0018-9499.

OH, N.; SHIRVANI, P.; MCCLUSKEY, E. Error detection by duplicated instructions in
super-scalar processors. IEEE Transactions on Reliability, v. 51, n. 1, p. 63–75, 2002.

OLDHAM, T.; MCLEAN, F. Total ionizing dose effects in MOS oxides and devices.
IEEE Transactions on Nuclear Science, v. 50, n. 3, p. 483–499, 2003.

OLIVEIRA, Á. et al. Dynamic heavy ions SEE testing of NanoXplore radiation
hardened SRAM-based FPGA: Reliability-performance analysis. Microelectronics
Reliability, v. 100-101, p. 113437, 2019. ISSN 0026-2714. 30th European Symposium
on Reliability of Electron Devices, Failure Physics and Analysis. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S0026271419304809>.

OLIVEIRA, Á. B. de et al. Lockstep Dual-Core ARM A9: Implementation and
Resilience Analysis Under Heavy Ion-Induced Soft Errors. IEEE Transactions on
Nuclear Science, v. 65, n. 8, p. 1783–1790, 2018.

OSINSKI, L.; LANGER, T.; MOTTOK, J. A survey of fault tolerance approaches
on different architecture levels. In: ARCS 2017; 30th International Conference on
Architecture of Computing Systems. [S.l.: s.n.], 2017. p. 1–9.

https://nanoxplore-wiki.atlassian.net/wiki/spaces/NAN/pages/9961482/NG-ULTRA
https://nanoxplore-wiki.atlassian.net/wiki/spaces/NAN/pages/9961482/NG-ULTRA
https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf
https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf
https://mars.nasa.gov/mars2020/
https://www.mdpi.com/2076-3417/9/15/3110
https://escies.org/download/webDocumentFile?id=67090
https://escies.org/download/webDocumentFile?id=67090
https://www.sciencedirect.com/science/article/pii/S0026271419304809


185

OSTLER, P. S. et al. SRAM FPGA Reliability Analysis for Harsh Radiation
Environments. IEEE Transactions on Nuclear Science, v. 56, n. 6, p. 3519–3526, 2009.
Doi:10.1109/TNS.2009.2033381.

OZTURK, Z.; TOPCUOGLU, H. R.; KANDEMIR, M. Studying error propagation on
application data structure and hardware. The Journal of Supercomputing, v. 16, p.
18691–18724, 2022. Doi:10.1007/s11227-022-04625-x.

PEREZ, F. Overview of ESA Cubesat Missions and Radiation Testing on Cubesat
Electronics. In: 2021 Radiation and its Effects on Components and Systems
(RADECS) - Short Course. [S.l.: s.n.], 2021.

PETERSEN, E. et al. Rate prediction for single event effects-a critique. IEEE
Transactions on Nuclear Science, v. 39, n. 6, p. 1577–1599, 1992.

PETERSEN, E. et al. Rate predictions for single-event effects - critique ii. IEEE
Transactions on Nuclear Science, v. 52, n. 6, p. 2158–2167, 2005.

PHAM, H. M.; PILLEMENT, S.; PIESTRAK, S. J. Low-overhead fault-tolerance
technique for a dynamically reconfigurable softcore processor. IEEE Transactions on
Computers, v. 62, n. 6, p. 1179–1192, June 2013. ISSN 0018-9340.

PULLINI, A. et al. Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power
SoC for IoT Edge Processing. IEEE Journal of Solid-State Circuits, v. 54, n. 7, p.
1970–1981, 2019.

QIN, T. et al. Performance Analysis of Nanoelectromechanical Relay-Based
Field-Programmable Gate Arrays. IEEE Access, v. 6, p. 15997–16009, 2018.

Quinn, H. Challenges in Testing Complex Systems. IEEE Transactions on Nuclear
Science, v. 61, n. 2, p. 766–786, April 2014. ISSN 1558-1578.

QUINN, H. et al. Domain Crossing Errors: Limitations on Single Device Triple-Modular
Redundancy Circuits in Xilinx FPGAs. IEEE Transactions on Nuclear Science, v. 54,
n. 6, p. 2037–2043, Dec 2007. ISSN 0018-9499.

QUINN, H. et al. Using Benchmarks for Radiation Testing of Microprocessors and
FPGAs. IEEE Transactions on Nuclear Science, v. 62, n. 6, p. 2547–2554, 2015.

QUINN, H.; WIRTHLIN, M. Validation Techniques for Fault Emulation of SRAM-based
FPGAs. IEEE Transactions on Nuclear Science, v. 62, n. 4, p. 1487–1500, 2015.

QUINN, H. M. et al. Fault simulation and emulation tools to augment radiation-hardness
assurance testing. IEEE Transactions on Nuclear Science, v. 60, n. 3, p. 2119–2142,
2013.

RAMOS, A.; MAESTRO, J. A.; REVIRIEGO, P. Characterizing a RISC-V SRAM-
based FPGA implementation against Single Event Upsets using fault injection.
Microelectronics Reliability, v. 78, p. 205 – 211, 2017. ISSN 0026-2714.

RAMOS, A. et al. An ALU Protection Methodology for Soft Processors on SRAM-Based
FPGAs. IEEE Transactions on Computers, v. 68, n. 9, p. 1404–1410, 2019.



186

RAMOS, A. et al. Efficient Protection of the Register File in Soft-Processors
Implemented on Xilinx FPGAs. IEEE Transactions on Computers, v. 67, n. 2, p.
299–304, 2018.

RAMOS, P. F. et al. Assessing the Static and Dynamic Sensitivity of a Commercial
Off-the-Shelf Multicore Processor for Noncritical Avionic Applications. Journal
of Nanotechnology, 2018. ISSN 1687-9503. [Accessed July-2022]. Available from
Internet: <https://doi.org/10.1155/2018/2926392>.

RECH, P. et al. Impact of GPUs Parallelism Management on Safety-Critical and HPC
Applications Reliability. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. [S.l.: s.n.], 2014. p. 455–466.

REINHARDT, S. K.; MUKHERJEE, S. S. Transient fault detection via simultaneous
multithreading. In: Proceedings of 27th International Symposium on Computer
Architecture (IEEE Cat. No.RS00201). [S.l.: s.n.], 2000. p. 25–36. ISSN 1063-6897.

REIS, G. et al. SWIFT: software implemented fault tolerance. In: International
Symposium on Code Generation and Optimization. [S.l.: s.n.], 2005. p. 243–254.

REZGUI, S. et al. Estimating error rates in processor-based architectures. IEEE
Transactions on Nuclear Science, v. 48, n. 5, p. 1680–1687, 2001.

RODRIGUES, C. et al. Towards a Heterogeneous Fault-Tolerance Architecture based
on Arm and RISC-V Processors. In: IECON 2019 - 45th Annual Conference of
the IEEE Industrial Electronics Society. [S.l.: s.n.], 2019. v. 1, p. 3112–3117.
Doi:10.1109/IECON.2019.8926844.

ROGENMOSER, M.; TORTORELLA, Y. PULP in Space: Leveraging an Open
Hardware Platform to build reliable Multicore SoCs for Space. 2022. [Accessed
March-2023]. Available from Internet: <http://microelectronics.esa.int/riscv/rvws2022/
presentations/05-ESA_PULP.pdf>.

RONAK, B.; FAHMY, S. A. Evaluating the efficiency of DSP Block synthesis inference
from flow graphs. In: 22nd International Conference on Field Programmable Logic
and Applications (FPL). [S.l.: s.n.], 2012. p. 727–730.

SANCHEZ-ELEZ, M. et al. Radiation-hardened DSP configurations for implementing
arithmetic functions on FPGA. In: 2016 Design, Automation Test in Europe
Conference Exhibition (DATE). [S.l.: s.n.], 2016. p. 1501–1504.

SANTINI, T. et al. Reducing embedded software radiation-induced failures through
cache memories. In: 2014 19th IEEE European Test Symposium (ETS). [S.l.: s.n.],
2014. p. 1–6.

SANTOS, D. A. et al. A Low-Cost Fault-Tolerant RISC-V Processor for Space Systems.
In: 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS).
[S.l.: s.n.], 2020. p. 1–5. Doi: 10.1109/DTIS48698.2020.9081185.

SANTOS, D. A. et al. Neutron Irradiation Testing and Analysis of a Fault-Tolerant
RISC-V System-on-Chip. In: 2022 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT). [S.l.: s.n.], 2022.

https://doi.org/10.1155/2018/2926392
http://microelectronics.esa.int/riscv/rvws2022/presentations/05-ESA_PULP.pdf
http://microelectronics.esa.int/riscv/rvws2022/presentations/05-ESA_PULP.pdf


187

SARI, A.; PSARAKIS, M. A fault injection platform for the analysis of soft error effects
in FPGA soft processors. In: 2016 IEEE 19th International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS). [S.l.: s.n.], 2016. p. 1–6.

SCHMIDT, A. G.; FRENCH, M.; FLATLEY, T. Radiation hardening by software
techniques on FPGAs: Flight experiment evaluation and results. In: 2017 IEEE
Aerospace Conference. [S.l.: s.n.], 2017. p. 1–8.

SHUKLA, S.; RAY, K. C. A Low-Overhead Reconfigurable RISC-V Quad-Core
Processor Architecture for Fault-Tolerant Applications. IEEE Access, v. 10, p.
44136–44146, 2022. Doi:10.1109/ACCESS.2022.3169495.

SIEWIOREK, D. P.; SWARZ, R. S. Reliable Computer Systems: Design and
Evaluation, Third Edition. [S.l.]: A K Peters/CRC Press, 1998. ISBN 9780429065101.

SONG, W. Untethered lowRISC tutorial. 2015. [Accessed November-2022]. Available
from Internet: <https://www.lowrisc.org/docs/untether-v0.2>.

SRINIVASAN, G.; TANG, H.; MURLEY, P. Parameter-free, predictive modeling of
single event upsets due to protons, neutrons, and pions in terrestrial cosmic rays. IEEE
Transactions on Nuclear Science, v. 41, n. 6, p. 2063–2070, 1994.

STERPONE, L.; VIOLANTE, M. Static and Dynamic Analysis of SEU Effects in
SRAM-Based FPGAs. In: 12th IEEE European Test Symposium (ETS’07). [S.l.:
s.n.], 2007. p. 159–164.

STODDARD, A. et al. A Hybrid Approach to FPGA Configuration Scrubbing. IEEE
Transactions on Nuclear Science, v. 64, n. 1, p. 497–503, 2017.

SYNOPSYS. Synplify Pro and Premier Datasheet. 2015. [Accessed October-2022].
Available from Internet: <synopsys.com/content/dam/synopsys/implementation&
signoff/datasheets/synplify-pro-premier.pdf>.

SYNOPSYS. Synplify Pro and Premier Datasheet. 2015. [Accessed April-
2023]. Available from Internet: <https://www.synopsys.com/content/dam/synopsys/
implementation&signoff/datasheets/synplify-pro-premier.pdf>.

TAMBARA et al. Heavy Ions Induced Single Event Upsets Testing of the 28 nm Xilinx
Zynq-7000 All Programmable SoC. In: 2015 IEEE Radiation Effects Data Workshop
(REDW). [S.l.: s.n.], 2015. p. 29–34.

TAMBARA, L. A. Analyzing the Impact of Radiation-induced Failures in All
Programmable System-on-Chip Devices. Thesis (PhD) — Universidade Federal
do Rio Grande do Sul, Instituto de Informática, Programa de Pós-Graduação em
Microeletrônica, Brazil, 2017.

TARRILLO, J. et al. Neutron Cross-Section of N-Modular Redundancy Technique
in SRAM-Based FPGAs. IEEE Transactions on Nuclear Science, v. 61, n. 4, p.
1558–1566, 2014.

TAUSCH, J. et al. Neutron Induced Micro SEL Events in COTS SRAM Devices. In:
2007 IEEE Radiation Effects Data Workshop. [S.l.: s.n.], 2007. p. 185–188.

https://www.lowrisc.org/docs/untether-v0.2
synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/synplify-pro-premier.pdf
synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/synplify-pro-premier.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/synplify-pro-premier.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/synplify-pro-premier.pdf


188

TONFAT, J. et al. Analyzing the Influence of the Angles of Incidence and Rotation on
MBU Events Induced by Low LET Heavy Ions in a 28-nm SRAM-Based FPGA. IEEE
Transactions on Nuclear Science, v. 64, n. 8, p. 2161–2168, 2017.

TONFAT, J. et al. Analyzing the Effectiveness of a Frame-Level Redundancy Scrubbing
Technique for SRAM-based FPGAs. IEEE Transactions on Nuclear Science, v. 62,
n. 6, p. 3080–3087, 2015.

TONFAT, J. et al. Method to Analyze the Susceptibility of HLS Designs in SRAM-Based
FPGAs Under Soft Errors. In: Proceedings of the 12th International Symposium
on Applied Reconfigurable Computing - Volume 9625. Berlin, Heidelberg:
Springer-Verlag, 2016. p. 132–143. ISBN 9783319304809.

TONFAT, J. et al. Soft error susceptibility analysis methodology of HLS designs in
SRAM-based FPGAs. Microprocessors and Microsystems, v. 51, p. 209–219, 2017.
ISSN 0141-9331. Available from Internet: <https://www.sciencedirect.com/science/
article/pii/S014193311730217X>.

TRAD. OMERE Radiation Software. 2022. [Accessed July-2022]. Available from
Internet: <https://www.trad.fr/en/space/omere-software/>.

TSELONIS, S. et al. Microprocessor reliability-performance tradeoffs assessment at the
microarchitecture level. In: 2016 IEEE 34th VLSI Test Symposium (VTS). [S.l.: s.n.],
2016. p. 1–6.

UNIVERSITY OF JYVÄSKYLÄ. RADiation Effects Facility. 2022. [Accessed
April-2023]. Available from Internet: <https://www.jyu.fi/science/en/physics/research/
infrastructures/accelerator-laboratory/radiation-effects-facilitys>.

UNIVERSITÉ CATHOLIQUE DE LOUVAIN. Light Ion Facility
(LIF). 2023. [Accessed April-2023]. Available from Internet: <https:
//uclouvain.be/en/research-institutes/irmp/crc/light-ion-facility-lif.html>.

UNOOSA. Online Index of Objects Launched into Outer Space. United Nations Office
for Outer Space Affairs (UNOOSA), 2022. [Accessed November-2022]. Available
from Internet: <https://www.unoosa.org/oosa/osoindex/search-ng.jspx>.

UPADHYAYA, J. S.; SALUJA, K. K. A watchdog processor based general rollback
technique with multiple retries. IEEE Transactions on Software Engineering, SE-12,
n. 1, p. 87–95, 1986.

VARAPRASAD, B. et al. Design of Watchdog Circuit using Decision Trees for Detection
of Single Event Upsets in Processor. In: 2021 Third International Conference on
Inventive Research in Computing Applications (ICIRCA). [S.l.: s.n.], 2021. p.
1306–1311.

VELAZCO, R.; FAURE, F. "Error Rate Prediction of Digital Architectures:
Test Methodology and Tools". Dordrecht: Springer Netherlands, 2007. 233–
258 p. [Accessed June-2022]. ISBN 978-1-4020-5646-8. Available from Internet:
<https://doi.org/10.1007/978-1-4020-5646-8_11>.

https://www.sciencedirect.com/science/article/pii/S014193311730217X
https://www.sciencedirect.com/science/article/pii/S014193311730217X
https://www.trad.fr/en/space/omere-software/
https://www.jyu.fi/science/en/physics/research/infrastructures/accelerator-laboratory/radiation-effects-facilitys
https://www.jyu.fi/science/en/physics/research/infrastructures/accelerator-laboratory/radiation-effects-facilitys
https://uclouvain.be/en/research-institutes/irmp/crc/light-ion-facility-lif.html
https://uclouvain.be/en/research-institutes/irmp/crc/light-ion-facility-lif.html
https://www.unoosa.org/oosa/osoindex/search-ng.jspx
https://doi.org/10.1007/978-1-4020-5646-8_11


189

VELAZCO, R.; REZGUI, S.; ECOFFET, R. Predicting error rate for microprocessor-
based digital architectures through C.E.U. (Code Emulating Upsets) injection. IEEE
Transactions on Nuclear Science, v. 47, n. 6, p. 2405–2411, 2000.

VIOLANTE, M. et al. A Low-Cost Solution for Deploying Processor Cores in Harsh
Environments. IEEE Transactions on Industrial Electronics, v. 58, n. 7, p. 2617–2626,
July 2011. ISSN 0278-0046.

WALSEMANN, A. et al. STRV — a radiation hard RISC-V microprocessor for
high-energy physics applications. Journal of Instrumentation, IOP Publishing, v. 18,
n. 02, p. C02032, feb 2023. Doi:10.1088/1748-0221/18/02/C02032.

WARNER, J. et al. Displacement damage correlation of proton and silicon ion radiation
in GaAs. IEEE Transactions on Nuclear Science, v. 52, n. 6, p. 2678–2682, 2005.

WATERMAN et al. The RISC-V instruction set manual, volume I: User-level ISA,
version 2.0. Technical Report UCB/EECS- 2014-54. EECS Department, University of
California, Berkeley, 2014.

WEIBULL, W. A Statistical Distribution Function of Wide Applicability. Journal of
Applied Mechanics, p. 293–297, 1951.

WEULERSSE, C. et al. Prediction of proton cross sections for SEU in SRAMs and
SDRAMs using the METIS engineer tool. Microelectronics Reliability, v. 55, n. 9, p.
1491–1495, 2015. ISSN 0026-2714. Proceedings of the 26th European Symposium on
Reliability of Electron Devices, Failure Physics and Analysis. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S0026271415300718>.

WILSON, A. E. et al. Neutron Radiation Testing of a TMR VexRiscv Soft Processor
on SRAM-Based FPGAs. IEEE Transactions on Nuclear Science, v. 68, n. 5, p.
1054–1060, 2021.

WILSON, A. E. et al. Neutron Radiation Testing of RISC-V TMR Soft Processors on
SRAM-Based FPGAs. IEEE Transactions on Nuclear Science, v. 70, n. 4, p. 603–610,
2023. Doi:10.1109/TNS.2023.3235582.

WILSON, A. E.; WIRTHLIN, M. Neutron Radiation Testing of Fault Tolerant RISC-V
Soft Processor on Xilinx SRAM-based FPGAs. In: 2019 IEEE Space Computing
Conference (SCC). [S.l.: s.n.], 2019. p. 25–32.

WILSON, A. E.; WIRTHLIN, M. Fault Injection of TMR Open Source RISC-V
Processors using Dynamic Partial Reconfiguration on SRAM-based FPGAs. In:
2021 IEEE Space Computing Conference (SCC). [S.l.: s.n.], 2021. p. 1–8.
Doi:10.1109/SCC49971.2021.00008.

WIRTHLIN, M. High-Reliability FPGA-Based Systems: Space, High-Energy Physics,
and Beyond. Proceedings of the IEEE, v. 103, n. 3, p. 379–389, March 2015. ISSN
1558-2256.

XILINX. 7-Series Architecture Overview. 2013. [Accessed November-2021].
Available from Internet: <http://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/
9204-20390-7_series_architecture_overview.pdf>.

https://www.sciencedirect.com/science/article/pii/S0026271415300718
http://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_series_architecture_overview.pdf
http://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_series_architecture_overview.pdf


190

XILINX. 7 Series FPGAs Configurable Logic Block, User Guide, UG474 (v1.8),
September 27, 2016. 2016. [Accessed November-2021]. Available from Internet: <https:
//www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf>.

XILINX. Zynq-7000 All Programmable SoC Technical Reference Manual UG585
(v1.11). [S.l.], 2016.

XILINX. 7 Series DSP48E1 Slice, User Guide, UG479 (v1.10) March 27, 2018. 2018.
[Accessed November-2021]. Available from Internet: <https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_DSP48E1.pdf>.

XILINX. 7 Series FPGAs Data Sheet: Overview, Product Specification, DS180
(v2.6.1), September 8, 2020. 2020. [Accessed October-2021]. Available from Internet:
<https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.
pdf>.

XILINX. MicroBlaze Processor Reference Guide, UG984 (v2021.2), October 27,
2021. 2021. [Accessed November-2021]. Available from Internet: <https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.
pdf>.

XILINX. UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs, UG949
(v2020.2), February 18, 2021. 2021. [Accessed November-2021]. Available from
Internet: <https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/
ug949-vivado-design-methodology.pdf>.

XILINX. Vivado Design Suite User Guide, Implementation, UG904 (v2021.1)
August 30, 2021. 2021. [Accessed November-2021]. Available from Internet:
<https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/
xilinx2021_2/ug904-vivado-implementation.pdf>.

XILINX. Zynq-7000 SoC Technical Reference Manual, UG585 (v1.13) April
2, 2021. 2021. [Accessed November-2021]. Available from Internet: <https:
//www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf>.

XILINX. Device reliability report, UG116 (v10.16) June 29, 2022. 2022.
[Accessed October-2022]. Available from Internet: <https://docs.xilinx.com/viewer/
book-attachment/66EpZI5rDuOf2Bd0djXvSg/wHyVZkT9321xbDF9suFemA>.

XILINX. Soft Error Mitigation Controller, v4.1 LogiCORE IP Product Guide,
Vivado Design Suite, PG036, May 2022. 2022. [Accessed October-2022]. Available
from Internet: <https://www.xilinx.com/content/dam/xilinx/support/documents/ip_
documentation/sem/v4_1/pg036_sem.pdf>.

XILINX. UltraScale Architecture and Product Data Sheet: Overview, Product
Specification, DS890 (v4.3), November 7, 2022. 2022. [Accessed April-2023].
Available from Internet: <https://www.xilinx.com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf>.

XILINX. UltraScale Architecture Soft Error Mitigation Controller v3.1, LogiCORE
IP Product Guide (PG187). 2022.

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug949-vivado-design-methodology.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug949-vivado-design-methodology.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug904-vivado-implementation.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://docs.xilinx.com/viewer/book-attachment/66EpZI5rDuOf2Bd0djXvSg/wHyVZkT9321xbDF9suFemA
https://docs.xilinx.com/viewer/book-attachment/66EpZI5rDuOf2Bd0djXvSg/wHyVZkT9321xbDF9suFemA
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf


191

Xilinx. Zynq UltraScale+ Device Packaging and Pinouts, UG1075 (v1.11). 2022.

XILINX. Zynq UltraScale+ MPSoC Data Sheet: Overview, DS891 (v1.10). 2022.

YIU, J. System-on-Chip Design with Arm® Cortex®-M Processors. [S.l.]: Arm
Education Media, 2019. ISBN 978-1-911531-19-7.

Yuanwen Huang; Mishra, P. Reliability and energy-aware cache reconfiguration for
embedded systems. In: 2016 17th International Symposium on Quality Electronic
Design (ISQED). [S.l.: s.n.], 2016. p. 313–318.

ZIADE, H.; AYOUBI, R.; VELAZCO, R. A survey on fault injection techniques. Int.
Arab J. Inf. Technol., v. 1, p. 171–186, 01 2004.

ZIEGLER, J. F. SRIM - The Stopping and Range of Ions in Matter. 2013. [Accessed
July-2022]. Available from Internet: <http://www.srim.org>.

http://www.srim.org


192



193

APPENDIX A — PUBLICATIONS

The evaluation performed on the RISC-V Rocket soft processor implemented in

the Zynq-7000 FPGA, detailed in Chapter 6, was presented at the 2019 Radiation Effects

on Components and Systems (RADECS) conference and published in the 2020 IEEE

Transactions on Nuclear Science (TNS) journal:

• Á. B. de Oliveira et al., "Evaluating Soft Core RISC-V Processor in SRAM-Based

FPGA Under Radiation Effects," in IEEE Transactions on Nuclear Science, vol. 67,

no. 7, pp. 1503-1510, July 2020, doi: 10.1109/TNS.2020.2995729.

The work performed on the open source NOEL-V soft processor in a Zynq Ul-

traScale+ FPGA under protons testing and emulation fault injection was presented at the

2022 RADECS conference and published in the 2023 IEEE TNS journal:

• Á. B. De Oliveira and F. L. Kastensmidt, "Evaluating Fault Tolerant Techniques on

COTS RISC-V NOEL-V Processor in Zynq UltraScale+ FPGA under Proton Test-

ing," in IEEE Transactions on Nuclear Science, doi: 10.1109/TNS.2023.3281396.

The evaluation of the commercial fault tolerant NOEL-VFT soft processor with

external FPGA supervisor (GRSCRUB IP) under proton testing in a Kintex UltraScale

FPGA was presented at 2022 RADECS conference:

• Á. B. de Oliveira et al., "NOEL-V FT and GRSCRUB IP: Fault Tolerance Char-

acterization of a Complex System-on-Chip on Xilinx Kintex UltraScale FPGA," in

2022 European Conference on Radiation and Its Effects on Components and Sys-

tems (RADECS), 2022. [To be published].

The following papers were published by the Ph.D. student and are not directly

related to this thesis proposal:

• Á. B. de Oliveira et al., "Multi chips heavy ions SEE testing of the COTS Myriad-2

vision processing unit," in 2021 European Conference on Radiation and Its Effects

on Components and Systems (RADECS), 2021.

• Á. B. de Oliveira et al., "Dynamic heavy ions SEE testing of NanoXplore radia-

tion hardened SRAM-based FPGA: Reliability-performance analysis," in Micro-

electronics Reliability, v. 100-101, p. 113437, 2019. ISSN 0026-2714. 30th Euro-

pean Symposium on Reliability of Electron Devices, Failure Physics and Analysis.

• Á. B. de Oliveira et al., "Lockstep Dual-Core ARM A9: Implementation and Re-



194

silience Analysis Under Heavy Ion-Induced Soft Errors," in IEEE Transactions on

Nuclear Science, v. 65, n. 8, p. 1783–1790, 2018.

Additionally, the Ph.D. student also published the following works in project col-

laboration:

• F. Benevenuti, F. Kastensmidt, A. Oliveira, N. Added, V. Aguiar, N. Medina, M.

Guazzelli, "Robust Convolutional Neural Networks in SRAM-based FPGAs: a

Case Study in Image Classification," in Journal of Integrated Circuits and Systems

(Jics), 2021, doi: 10.29292/jics.v16i2.504.

• F. Benevenuti, A. Oliveira et al., "Heavy Ions Testing of an All-Convolutional

Neural Network for Image Classification Evolved by Genetic Algorithms and Im-

plemented on SRAM-Based FPGA," 2019 19th European Conference on Radia-

tion and Its Effects on Components and Systems (RADECS), 2019, pp. 1-4, doi:

10.1109/RADECS47380.2019.9745650.

• L. A. C. Benites, F. Benevenuti, A. Oliveira et al., "Reliability Calculation With

Respect to Functional Failures Induced by Radiation in TMR Arm Cortex-M0 Soft-

Core Embedded Into SRAM-Based FPGA," in IEEE Transactions on Nuclear Sci-

ence, vol. 66, no. 7, pp. 1433-1440, July 2019, doi: 10.1109/TNS.2019.2921796.

• Rodrigues, G.S., Barros de Oliveira, Á., Kastensmidt, F.L. et al., "Assessing the Re-

liability of Successive Approximate Computing Algorithms under Fault Injection,"

in J Electron Test 35, 367–381, 2019, doi: 10.1007/s10836-019-05806-y.

• G. S. Rodrigues, A. Barros de Oliveira, A. Bosio, F. L. Kastensmidt and E. Pignaton

de Freitas, "ARFT: An Approximative Redundant Technique for Fault Tolerance,"

in 2018 Conference on Design of Circuits and Integrated Systems (DCIS), 2018,

pp. 1-6, doi: 10.1109/DCIS.2018.8681499.

• Rodrigues, G.S., de Oliveira, Á.B., Kastensmidt, F.L., Bosio, A., "Analyzing the

Use of Taylor Series Approximation in Hardware and Embedded Software for Good

Cost-Accuracy Tradeoffs," in Applied Reconfigurable Computing. Architectures,

Tools, and Applications. ARC 2018. Lecture Notes in Computer Science, vol

10824. Springer, Cham, doi: 10.1007/978-3-319-78890-6_52.


	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Objectives and contributions
	1.2 Structure of this thesis

	2 Using soft processors in aerospace missions
	2.1 Aerospace missions overview
	2.2 COTS SRAM-based FPGAs
	2.3 Embedded soft processors
	2.4 Soft processor implementation in FPGAs
	2.4.1 Processor configurability
	2.4.2 Arithmetic operations
	2.4.3 Memories
	2.4.4 Resource usage
	2.4.5 Optimizations
	2.4.6 Placement
	2.4.7 Power consumption


	3 Single event effects and problem definition
	3.1 Radiation-induced effects
	3.1.1 Overview of SEE on integrated circuits
	3.1.2 Soft errors in SRAM-based FPGAs
	3.1.3 Soft errors in soft processors

	3.2 Problem definition: the use of soft processors implemented into COTS SRAM-based FPGAs in SEE-prone environments

	4 Background and related works
	4.1 Background of fault tolerance techniques
	4.1.1 Configuration memory scrubbing
	4.1.2 Redundancy-based techniques
	4.1.2.1 Modular redundancy
	4.1.2.2 Error correction codes
	4.1.2.3 Lockstep technique

	4.1.3 Software-based techniques
	4.1.4 Hardware monitors
	4.1.5 Summary

	4.2 Related works
	4.2.1 Fault tolerance solutions for soft processors
	4.2.2 L1 cache vulnerability


	5 Radiation characterization methodology
	5.1 Single Event Effects testing
	5.1.1 Accelerated ground testing
	5.1.2 Emulation Fault injection

	5.2 Evaluation metrics
	5.2.1 Cross section
	5.2.2 Fault injection error rate
	5.2.3 SEU error rate estimation
	5.2.4 Mean time to failure and mean time between failures
	5.2.5 Mean fluence to failure
	5.2.6 Mean executions and workload between failures
	5.2.7 Empiric reliability

	5.3 SEE error prediction

	6 Exploring the COTS RISC-V Rocket soft processor under radiation effects
	6.1 SEE characterization of the COTS Rocket soft processor
	6.1.1 COTS RISC-V Rocket soft processor
	6.1.2 Investigation methodology
	6.1.2.1 Platform setup
	6.1.2.2 Software benchmarks
	6.1.2.3 Failure definition
	6.1.2.4 Emulation fault injection
	6.1.2.5 Heavy ion testing

	6.1.3 Rocket soft processor under faults
	6.1.3.1 Unhardened Rocket soft processor
	6.1.3.2 Rocket soft processor protected by scrubbing
	6.1.3.3 Rocket soft processor protected by TMR
	6.1.3.4 Rocket soft processor protected by combined fault tolerance techniques
	6.1.3.5 Influence of the processor frequency in the soft error susceptibility
	6.1.3.6 Discussion


	6.2 L1 cache susceptibility investigation
	6.2.1 Investigation methodology
	6.2.1.1 L1 cache configurations
	6.2.1.2 Emulation fault injection

	6.2.2 Results
	6.2.2.1 Data memory error rate
	6.2.2.2 Control memory error rate
	6.2.2.3 Total error rate
	6.2.2.4 Instruction cache protected by periodic flush


	6.3 Discussion

	7 Exploring the COTS RISC-V NOEL-V soft processor under radiation effects
	7.1 COTS RISC-V NOEL-V soft processor
	7.2 Investigation methodology
	7.2.1 Platform setup
	7.2.2 Mitigating the COTS NOEL-V soft processor
	7.2.2.1 Scrubbing
	7.2.2.2 TMR for the central processing unit
	7.2.2.3 L1 cache protection
	7.2.2.4 Designs description overview

	7.2.3 Software benchmark
	7.2.4 Failure definition
	7.2.5 Emulation fault injection
	7.2.6 Proton testing

	7.3 Results
	7.3.1 FPGA resource usage and performance
	7.3.2 Fault injection results
	7.3.3 Proton testing results
	7.3.3.1 Failure cross section
	7.3.3.2 MTBF and MEBF results

	7.3.4 Discussion


	8 Exploring the commercial fault tolerant RISC-V NOEL-VFT soft processor combined with external FPGA supervisor under radiation effects
	8.1 RISC-V NOEL-VFT soft processor
	8.2 External FPGA supervisor
	8.2.1 System integration
	8.2.2 Operational modes
	8.2.2.1 Scrubbing operation
	8.2.2.2 Configuration interface integrity check


	8.3 Investigation methodology
	8.3.1 Platform setup
	8.3.2 Additional fault tolerance
	8.3.3 Designs description overview
	8.3.4 Software benchmark
	8.3.5 Failure definition
	8.3.6 Proton testing

	8.4 Results
	8.4.1 FPGA resource usage
	8.4.2 Proton testing results
	8.4.2.1 Configuration memory cross section
	8.4.2.2 User memory cross section
	8.4.2.3 Failure cross section
	8.4.2.4 MTTF and error rate in-orbit



	9 Comparative analysis between soft processors
	9.1 Comparison to the state-of-the-art
	9.2 Comparative results between processors
	9.2.1 Resource usage comparison
	9.2.2 FI comparison: Rocket vs. NOEL-V
	9.2.3 Cross section comparison: NOEL-V vs. NOEL-VFT


	10 Conclusions
	10.1 Contributions
	10.1.1 RISC-V Rocket soft processor investigation
	10.1.2 RISC-V NOEL-V soft processor investigation
	10.1.3 RISC-V NOEL-VFT soft processor investigation
	10.1.4 Summary

	10.2 Future works

	References
	Appendix A — Publications

