
Universidade Federal do Rio Grande do Sul
Instituto de Matemática e Estat́ıstica
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Abstract

Montero-Manso et al. [2020] proposed a meta-learning combination method
that outputs weights for each candidate forecast method given the time series
features, named FFORMA. It reached the second overall place in the M4 com-
petition, a contest that received a special edition at the International Journal
of Forecasting. The competition’s relevance stems from the vast number of di-
verse time series (100,000) that reflect the characteristics of the time series often
encountered by researchers and practitioners in their challenges. Inspired by re-
cent developments in forecast combination literature, we propose mFFORMS,
a meta-learner to select a forecast combination method of time series models
based on time series features. This novel approach consists of two phases. First,
we use a collection of time series to train a meta-learner that selects the forecas-
ting combination method that minimises an error measure. Each combination
method uses cross-validated data to estimate the weights of each forecasting
model in the pool. The inputs for the meta-learner are the time series featu-
res, and the response is the label of the combination method that produces the
lowest error. In the second phase, we use the previously trained meta-learner
to select the combination method given the time series features. Afterwards,
we employ the selected combination method to assign weights to the forecasts
produced by the forecasting methods. In our comparison, we consider the same
pool of forecasting models and the same information available throughout the
competition. In the M4 settings, our approach provides better results than the
candidate combination methods; however, it underperforms FFORMA and is
more intensive computationally



Resumo

Montero-Manso et al. [2020] propôs um método de combinação de meta-
aprendizagem, denominado FFORMA, que fornece pesos para cada método de
previsão candidato, dado as caracteŕısticas da série temporal. Esse método ob-
teve o segundo lugar geral na competição M4, concurso que contou com edição
especial no International Journal of Forecasting. A relevância da competição
M4 advém do grande número de séries temporais (100.000) com caracteŕısticas
variadas que são encontradas por pesquisadores e profissionais em seus desa-
fios. Inspirados por desenvolvimentos recentes na literatura de combinação de
previsão, propômos o mFFORMS, um meta-learner que seleciona um método
de combinação de previsão de modelos de séries temporais com base em ca-
racteŕısticas de séries temporais. Esta abordagem consiste em duas fases. Na
primeira, usamos uma coleção de séries temporais para treinar um meta-learner
que seleciona o método de combinação de previsão que minimiza uma medida de
erro. Cada método de combinação usa dados de validação cruzada para estimar
os pesos de cada modelo de previsão presentes no pool de candidatos. As entra-
das para o meta-learner são as caracteŕısticas da série temporal e a resposta é o
rótulo do método de combinação que produz o menor erro esperado. Na segunda
fase, usamos o meta-learner previamente treinado para selecionar o método de
combinação dado as caracteŕısticas da série temporal. Em seguida, empregamos
o método de combinação selecionado para atribuir pesos às previsões produzidas
pelos métodos de previsão. Em nossa comparação, consideramos o mesmo con-
junto de modelos de previsão e as mesmas informações dispońıveis ao longo da
competição. Nas configurações M4, nossa abordagem fornece melhores resulta-
dos do que os métodos de combinação candidatos; no entanto, tem desempenho
inferior ao FFORMA e é mais intensivo computacionalmente.
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1 Introdução

Em seu artigo seminal, Bates and Granger [1969] introduziram um método para
combinar previsões de diferentes modelos estat́ısticos com o intuito de reduzir
o erro de previsão. O método consiste em estimar pesos para as previsões dos
distintos modelos. A ideia subjacente é atribuir maiores pesos aos modelos
cujos erros apresentam menor variância. Desde a publicação desse artigo, um
vasto corpo de pesquisa teórica e emṕırica deu suporte à afirmação de que as
previsões geradas por combinação de forecast geralmente apresentam erros me-
nores do que as dos modelos individualmente. Essa redução de erros pode ser
atribúıda a diferentes aspectos dos modelos candidatos, tais como a forma que
as informações/variáveis são utilizadas pelos modelos, os distintos mas desco-
nhecidos viéses de má-especificação e o comportamento na presença de quebras
estruturais. Clemen [1989] e Timmermann [2006] fornecem uma extensa re-
visão da literatura anterior, enquanto Wang et al. [2022] fornece uma revisão
atualizada.

Em sua revisão da literatura inicial, Clemen [1989] fez duas perguntas: “Por
que a média simples funciona tão bem¿‘ e “Sob quais condições outros métodos
espećıficos funcionam melhor¿‘. Stock and Watson [2004] cunhou o termo Fore-
cast Combination Puzzle para se referir à observação em vários estudos emṕıricos
de que a combinação de pesos iguais (média simples) das previsões candida-
tas geralmente supera métodos mais complexos e sofisticados, apesar de sua
sub-otimalidade teórica, visto que ela é teoricamente ótima apenas quando as
variâncias dos reśıduos de todos os métodos candidatos são iguais.

Alguns estudos demonstram o efeito de erros de estimativa de pesos ótimos.
Smith and Wallis [2009] demonstrou que a alta variância dos estimadores dos pe-
sos devido a amostras pequenas resulta em desvios maiores em relação ao ótimo
do que a média simples. Timmermann [2006] indica situações em que o ganho
dos pesos ótimos é pequeno em relação à combinação de pesos iguais devido à
proximidade das estimativas. Outra explicação para o desempenho instável da
estimativa de peso ótimo é a presença de quebras estruturais no processo de
geração de dados e especificação incorreta do modelo. Hendry and Clements
[2004] demonstram que pesos iguais geralmente superam uma estratégia de es-
timativa de pesos ótimos sob quebras estruturais e especificações incorretas do
modelo, pois os dados históricos não dão suporte à estimativa do conjunto de
pesos ótimos.

Para explicar o Forecast Combination Puzzle, Yang [2004] sugere a existência
de dois cenários. O primeiro é a combinação para adaptação (CFA, na sigla em
inglês), onde um dos candidatos é o melhor ou porque captura o processo gerador
de dados ou porque os outros candidatos adicionam apenas informações redun-
dantes. Nesse cenário, o objetivo de um método de combinação de previsões
deve ser imitar o desempenho da melhor previsão individual, que é desconhe-
cida. Isso é análogo a atribuir peso um ao melhor modelo e zero aos demais
candidatos. O segundo é a combinação para melhoria (CFI, na sigla em inglês),
onde nenhum método é individualmente melhor e há, portanto, um potencial
ganho ao combinar as previsões. Nesse cenário, o objetivo de um método de
combinação de previsão deve ser encontrar os pesos ótimos.



Partindos dos cenários sugeridos por Yang [2004], Qian et al. [2019] propõem
uma estratégia de combinação adaptativa que funciona bem em ambos cenários.
A estratégia consiste em duas etapas, na primeira, emprega-se diferentes métodos
de combinação de previsão para gerar novos candidatos. Esses novos candidatos
são passados para a segunda etapa, que consiste em atribuir peso um a algum
dos candidatos e zero aos demais. No artigo, Qian et al. [2019] consideram os
seguintes métodos de combinação para a primeira etapa: (a) pesos iguais, (b)
regressão linear Granger and Ramanathan [1984] e (c) AFTER Yang [2004], um
método de seleção adequado para o cenário CFA. Na segunda etapa, eles usam
AFTER novamente nas previsões combinadas em vez de usar nas previsões ori-
ginais, por esse motivo o nome AFTER multińıvel. Nas simulações geradas, eles
descobriram que o método pode se adaptar ao cenário subjacente contornando
o Forecast Combination Puzzle.

Recentemente, métodos de combinação de previsão que partem da ideia
de meta-aprendizado baseado em caracteŕısticas de séries temporais ganharam
atenção devido ao excelente desempenho na competição de séries temporais M4,
uma disputa que recebeu edição especial no International Journal of Forecasting,
e é de grande importância, pois traz um número expressivo de séries temporais
(100.000) com caracteŕısticas variadas. O FFORMA (Feature-based FORecast-
Model Averaging) proposto por Montero-Manso et al. [2020] combina previsões
empregando uma abordagem de meta-aprendizagem baseada em caracteŕısticas
de séries temporais. Esse método alcançou o segundo lugar geral na competição
M4 para estimativas pontuais e intervalos de previsão. O FFORMA é inspirado
no FFORMS (Feature-based FORecast-Model Selection) do Talagala et al. [2018].
A distinção conceitual entre FFORMS e FFORMA reside em seus respectivos
meta-learners. Enquanto o FFORMS escolhe um modelo singular de um pool de
candidatos, o FFORMA gera um conjunto de pesos que coletivamente somam
um.

Esta dissertação propõe uma abordagem de combinação de previsões baseada
em meta-aprendizado para lidar com uma quantidade extensa de séries tempo-
rais. Inspirados na proposta de Qian et al. [2019], avaliamos se um FFORMS
multińıvel supera o FFORMA nas configurações da competição M4. Chama-
mos de mFFORMS, ou FFORMS multińıvel, porque nós, assim como Qian
et al. [2019], usamos um método de seleção para selecionar previsões geradas
por combinações de previsões, com a diferença de que o FFORMS não seleciona
um modelo de previsão na primeira etapa.

O restante deste trabalho está organizado da seguinte forma: na Seção 2,
descreve-se o contexto e objetivos da dissertação, na Seção 3 descreve-se a abor-
dagem proposta através de um fluxograma, na Seção 4 está o artigo da dis-
sertação e, finalmente, na Seção 5, a conclusão.

2 Contexto e Objetivo

O contexto parte de qualquer profissional que enfrenta o desafio de prever mi-
lhares de séries temporais recorrentemente e em intervalos curtos. As séries
encontradas apresentam comprimentos variados devido a diversos fatores, entre
eles estão, por exemplo, o ińıcio da coleta de dados, mudança na poĺıtica comer-
cial, e as diferentes datas de lançamento de produtos. Algumas séries podem
apresentar processos geradores de dados com diferentes caracteŕısticas, como sa-
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Tabela 1: Quantidade Séries M4
period Demographic Finance Industry Macro Micro Other Total
Daily 10 1,559 422 127 1,476 633 4,227
Monthly 5,728 10,987 10,017 10,016 10,975 277 48,000
Quarterly 1,858 5,305 4,637 5,315 6,020 865 24,000
Weekly 24 164 6 41 112 12 359
Yearly 1,088 6,519 3,716 3,903 6,538 1,236 23,000
Hourly 0 0 0 0 0 414 414
Total 8,708 24,534 18,798 19,402 25,121 3,437 100,000

zonalidade, tendências e ciclos. É improvável que um único modelo de previsão
lide com séries temporais que exibem padrões tão distintos. Uma alternativa é
combinar as previsões de um conjunto de métodos de previsão de forma a lidar
com as diversas caracteŕısticas da série temporal.

No entanto, atribuir os pesos a cada método de previsão candidato para
cada uma das milhares de séries temporais é uma tarefa complexa, especialmente
para séries temporais curtas onde uma avaliação residual adequada é imposśıvel.
Uma solução posśıvel para esse problema é empregar meta-aprendizagem para
combinar previsões. A ideia-chave é aprender com outras séries que apresenta-
ram caracteŕısticas semelhantes no passado. O meta-aprendizado envolve o uso
de algoritmos de aprendizado de máquina para aprender com dados históricos
quais métodos de previsão são mais eficazes para séries com um determinado
conjunto de caracteŕısticas. O modelo de meta-aprendizagem pode identificar
padrões e relações entre diferentes métodos de previsão e caracteŕısticas de séries
temporais ao analisar uma grande quantidade de dados históricos.

A competição M4 visa fornecer séries temporais que reflitam a realidade;
por isso, emprega um conjunto de dados que consiste em uma amostra aleatória
de 100.000 séries temporais extráıdas do FoReDeck, um banco de dados dis-
ponibilizado pela National Technical University of Athens contendo cerca de
900.000 séries temporais cont́ınuas de múltiplas fontes socioeconômicas de da-
dos gerados por interações humanas. O conjunto de dados possui seis categorias
principais: dados demográficos, financeiros, industriais, macroeconômicos, mi-
croeconômicos e outros tipos. Inclui dados de indústrias, serviços, turismo,
importações e exportações, demografia, educação, trabalho e salários, governo,
famı́lias, t́ıtulos, ações, seguros, empréstimos, imóveis, transporte, etc. O con-
junto de dados tem seis frequências de tempo distintas: horária, diária, semanal,
mensal, trimestral e anual. No entanto, a proporção em que aparecem não é
uniforme; 95% das séries são de periodicidade mensal (48%), trimestral (24%)
e anual (23%). Em relação às observações dispońıveis, o teste de treinamento
mais curto é 13 para anual, 16 para trimestral, 42 para mensal, 80 para se-
manal, 93 para diário e 700 para série horária. O número de passos previstos
à frente também variou de acordo com a frequência da série. Os participan-
tes da competição foram solicitados a prever seis próximas observações para a
série temporal anual, oito para trimestral, 18 para mensal, 13 para semanal, 14
para diária e 48 para horária. Observa-se na Tabela 1 a quantidade de séries
temporais presentes na competição de acordo com a periodicidade e origem.
Na Tabela 2 estão algumas estat́ısticas da quantidade de observações das séries
dispońıveis.
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Tabela 2: Quantidade Observações M4
Period Min. 1st Qu. Median Mean 3rd Qu. Max.
Daily 93 323 2,940 2,357 4,197 9,919
Hourly 700 700 960 854 960 960
Monthly 42 82 202 216 306 2 794
Quarterly 16 62 88 92 115 866
Weekly 80 379 934 1,022 1,603 2,597
Yearly 13 20 29 31 40 835

O objetivo é desenvolver um framework de combinação de previsões alta-
mente automatizado que consiga utilizar informações históricas para determi-
nar padrões que auxiliem na decisão da maneira mais efetiva de prever cada
uma das séries temporais distintas originadas de um grupo heterogêneo e de
volume expressivo. O meta-aprendizado é um artif́ıcio importante para permi-
tir essa previsão em larga escala. As entradas não ficam restritas às features
de séries temporais, pois é posśıvel inserir outras variáveis que possam trazer
informação relevante (ex: categoria de produto). O método proposto é idêntico
ao FFORMS, exceto na parte em que o alvo não é um método de previsão, mas
um método de combinação de previsões. Inspirou-se em Qian et al. [2019] para
ajustar o FFORMS para fazer seleção do método de combinação. Verifica-se
seu desempenho em dados reais tanto usando os métodos de combinação de
previsão individuais quanto comparando ao FFORMA em condições mais pa-
recidas posśıveis, ou seja, usando os mesmos dados, as mesmas informações, os
mesmos métodos de previsão, o mesmo conjunto de features e considerando, de
certa forma, a mesma função de perda.

3 Resumo da Abordagem

A implementação do mFFORMS é realizada em duas fases: (1) a fase offline, na
qual o meta-learner é treinado para selecionar o melhor método de combinação
de previsões e (2) a fase online, na qual o meta-learner pré-treinado é usado
para identificar a melhor combinação de previsões para uma nova série com
base em suas features de séries temporais. O fluxograma Figura 1 descreve os
passos para prever usando o mFFORMS, que precisa das seguintes entradas:
(1) as séries temporais Y a prever, (2) as funções F para calcular as features,
(3) os métodos de previsão M, (4) os métodos de combinação C e (5) o conjunto
de Dados Referência. Se a resposta para a pergunta ’É necessário treinar o
meta-learner?’ for sim, começa-se a fase offline do mFFORMS, caso a resposta
seja não, pois já foi calculado anteriormente, inicia-se a fase online.
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Figura 1: Fluxograma mFFORMS
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mFFORMS: multi-level Feature-based FORecast Model Selection

de Bermúdez, B. G.1, Ziegelmann, F.1

Abstract

Montero-Manso et al. (2020) proposed a meta-learning combination method that outputs weights for each
candidate forecast method given the time series features, named FFORMA. It reached the second overall
place in the M4 competition, a contest that received a special edition at the International Journal of Fore-
casting. The competition’s relevance stems from the vast number of diverse time series (100,000) that reflect
the characteristics of the time series often encountered by researchers and practitioners in their challenges.
Inspired by recent developments in forecast combination literature, we propose mFFORMS, a meta-learner
to select a forecast combination method of time series models based on time series features. This novel
approach consists of two phases. First, we use a collection of time series to train a meta-learner that se-
lects the forecasting combination method that minimises an error measure. Each combination method uses
cross-validated data to estimate the weights of each forecasting model in the pool. The inputs for the meta-
learner are the time series features, and the response is the label of the combination method that produces
the lowest error. In the second phase, we use the previously trained meta-learner to select the combination
method given the time series features. Afterwards, we employ the selected combination method to assign
weights to the forecasts produced by the forecasting methods. In our comparison, we consider the same pool
of forecasting models and the same information available throughout the competition. In the M4 settings,
our approach provides better results than the candidate combination methods; however, it underperforms
FFORMA and is more intensive computationally

Keywords: Forecast Combination, Time Series Features, Meta-learning, M4 Competition

1. Introduction

Forecasting practitioners are often faced with the challenge of frequently predicting thousands of time
series in short intervals. The time series usually display varying lengths due to several factors, such as the
beginning of the data collection and the different release dates of products. Some series may display data-
generating processes with different characteristics, such as seasonality, trends, and irregular patterns. A
single forecasting model is unlikely to deal with time series exhibiting such distinct patterns. An alternative
is to combine the predictions of a pool of forecasting models to deal with the varied features of the time
series.

In their seminal paper, Bates and Granger (1969) proposed a method to reduce prediction error by
combining predictions from different models by estimating the weights of each candidate method. The
underlying idea was to attribute greater weights to models whose errors had lower variance. Since their
seminal paper, a vast body of theoretical and empirical research has supported the claim that combined
predictions generally have lower errors than individual ones. This improvement can be attributed to different
aspects of the candidate models, such as the form they use the information, the distinct but unknown
misspecification bias, and the different behaviour in the presence of structural breaks. Clemen (1989) and
Timmermann (2006) provide extensive earlier literature review while Wang et al. (2022) provide an up-to-
date review.

In his review of early literature, Clemen (1989) posed two questions: “Why does the simple average
work so well?” and “Under what conditions do other specific methods work better?”. Stock and Watson
(2004) coined the term Forecast Combination Puzzle to refer to the observation in several empirical studies
that the equal weights combination of candidate forecasts often outperforms more complex and sophisticated
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methods despite its theoretical sub-optimality. The simple average combination is theoretically optimal only
when all forecast candidates’ error variances are equal.

Some studies demonstrate the effect of optimal-weights estimation errors. Smith and Wallis (2009)
demonstrated that the high variance of weight estimators due to a small sample causes the estimated
weights to deviate more from the optimum than the simple average. They also conclude that their simu-
lations, together with a large-sample approximation to the variance of the combining weight, support the
recommendation to ignore forecast error covariances in estimating the weights. Timmermann (2006) indi-
cates situations where the gain of the optimal weights is small relative to the combination of equal weights
due to the proximity of the estimates.

Another explanation for the unstable performance of the optimal weight estimation is the presence of
structural breaks in the data-generating process and model misspecification. Hendry and Clements (2004)
demonstrate that equal weights usually outperform an optimal weight estimation strategy under structural
breaks and model misspecification. Under these scenarios, the simple average generally outperforms strate-
gies based on weight estimation, as historical data do not support estimating the set of optimal weights.

Yang (2004) considers two scenarios. The first is combining for adaptation (CFA), where one of the
candidates is the best because it captures the actual data generating process or the other candidates add
only redundant information. Under this scenario, the goal of a forecast combination method should be to
target the performance of the best individual forecast, which is unknown. This is analogous to attributing
weight one to the best model and zero to all other candidates. The second is combining for improvement
(CFI), where no method is alone the best, so there is a potential significant accuracy gain over all the
individual candidates. Under this scenario, the goal of a forecast combination method should be to find
the optimal set of weights. Qian et al. (2019) suggest an adaptive combining strategy that performs well
in both scenarios, named mAFTER. The strategy consists of two steps. First, it creates new candidates
by combining the original forecasts with different methods. The second step selects one of the previously
created combined forecasts. In their paper, Qian et al. (2019) considers the following combination methods:
(a) equal weights, (b) linear regression Granger and Ramanathan (1984) and (c) AFTER Yang (2004), a
selection method suited for the CFA scenario. In the second step, they use AFTER again on the combined
forecasts instead of the original forecasts, hence the name, multi-level AFTER. In the simulation settings,
they found that the method can adapt to the underlying scenario by circumventing the puzzle caused by
improperly chosen combining methods. Under the CFI, it performs closer to the simple average when the
degree of estimation error is high and closer to the optimal weight estimation when information is sufficient
to estimate it.

In the M4 competition, Makridakis et al. (2020) observed that the candidates that employed combination
methods had more accurate predictions than those who did not. Also, the top three methods utilised
information from multiple time series to decide the most effective way of forecasting or selecting the weights
for combining methods.

However, assigning the weights to each candidate forecasting method for each of the thousands of series
is a complex task, especially for short time series where proper residual evaluation is impossible. One
possible solution to this practitioner’s problem is to employ meta-learning to combine predictions. The
key idea is to learn from other series that displayed similar characteristics in the past. Meta-learning
involves using machine learning algorithms to learn from historical data about which forecasting methods
are most effective for series with a set of characteristics. The meta-learning model can identify patterns
and relationships between different forecasting methods and time series characteristics by analysing a large
amount of historical data.

Montero-Manso et al. (2020)’s FFORMA (Feature-based FORecast-Model Averaging) combines predic-
tions using a meta-learning approach based on time series features. It is an ’averager’ in the sense that
the output is a set of weights for each candidate forecast model. It reached second place overall in the M4
competition for point estimates and prediction intervals. It is inspired by Talagala et al. (2018)’s FFORMS
(Feature-based FORecast-Model Selection). The conceptual distinction between FFORMS and FFORMA
lies in their respective meta-learners. Whereas FFORMS chooses a singular model from a candidate pool,
FFORMA generates a set of weights that collectively sum to one. FFORMS is a times series forecast model
selection based on meta-learning to identify the best forecast method using time series features as inputs.
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It employs machine learning to estimate the meta-learner. It requires a large pool of time series whose
features and labels of the ’best model’ are already known. The new time series to be forecasted must be
additional draws from the same population to avoid applying the classification rules to a set of time series
whose features were not observed in the sample employed to calculate the meta-learner. It is useful when
the number of series to predict is extensive.

Inspired by the proposal of Qian et al. (2019), we evaluate whether a two-step FFORMS can outperform
FFORMA in the M4 settings. We call it mFFORMS, or multi-level FFORMS, because we, as Qian et al.
(2019), use a selection method to select previously combined forecasts, with the difference that FFORMS
does not select a forecasting model in the first step. The M4 competition is a rich playground since it provides
100,000 time series from different socio-economical interactions, described in subsection 3.1. The underlying
mFFORMS idea is to create new forecast candidates by combining the candidate forecasts with different
strategies that are suited for the CFA or the CFI scenario. For the CFA scenario, we use a näıve approach
that selects the forecasting method that produces the lowest cross-validated mean squared error. For the CFI
scenario, the candidates will be partially-egalitarian LASSO, or peLASSO, which has approximately equal
weights on pooled methods, equal weights and LASSO (optimal weights that might work as a forecasting
method selection).

The remainder of this work is organised as follows. In section 2, we describe the mFFORMS methodology
providing a flowchart of the steps and choices involved; alternatively, we also offer a more detailed description
through a pseudo-algorithm. In section 3, we provide details of the implementation in the M4 settings,
containing a description of the problem space, the time series features, the candidate forecasting methods,
the combination methods employed to generate new forecasts, the error metric and the mapping function
(the meta-learner) to classify the labels according to the time series features. In section 4, we conduct an ex-
ante evaluation of the candidate combination methods against mFFORMS. This evaluation considers only
information available to the competitors throughout the competition, simulating the competition settings
for mFFORMS. We also describe the selected meta-learner results, which produced lower errors than the
candidate combination strategies alone, suggesting that the information used by the meta-learner helps
reduce prediction errors by identifying the underlying scenario. In section 5, we compare the predictions
generated by the mFFORMS with the ones submitted by FFORMA.

2. Methodology

One early proponent of the meta-learning idea was Rice (1976), which he called the algorithm selection
problem (ASP) and whose four main components were the problem space, the feature space, the algorithm
space and the performance metric. Talagala et al. (2018) employs the ASP framework to describe the
forecasting selection problem.

Let P be the problem space that represents the available data set with a large collection of time series,
F the time series features space that represents the measures that characterise the problem space P , A the
algorithm space that contains a list of suitable candidate algorithms which can be used to find solutions to
the problem in P , and L the metrics to evaluate the algorithm performance.

Algorithm selection problem. For a given time series y ∈ P , with features f(y) ∈ F , find the
selection mapping S(f(y)) into the algorithm space A, such that the selected algorithm α ∈ A
minimises forecast accuracy error metric l(α(y)) ∈ L on the test set of the time series.

In our context, the algorithm space contains the candidate forecasting methods that are suited to predict
the time series and the candidate forecast combination methods that assign weights to the predictions
generated by each candidate forecasting method. In the recent M4 competition, a method that employs
this framework achieved achieved second overall place. This framework, FFORMA, is inspired by Talagala
et al. (2018)’s FFORMS. The conceptual distinction between FFORMS and FFORMA lies in how the meta-
learner is specified. Whereas FFORMS chooses a singular model from a candidate pool, FFORMA generates
a set of weights that collectively sum to one. The meta-learner estimation reflects this distinction.
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FFORMS and FFORMA can employ the same pool of forecasting methods and time series features.
They may utilise the same loss function. They both consist of two distinct phases: an offline phase and
an online phase. In the offline phase, both require a reference set, a collection of time series divided into
training and test period. The reference set must be representative of the new series to be predicted. For
the training period, they calculate a set of time series features employed as inputs for the meta-learner,
estimated by machine learning techniques. The observations in the training period are used to generate
forecasts for the test period, and forecast errors are then computed.

In FFORMS, the forecasting method that produces the lowest error is the target for the meta-learner. The
meta-learner estimation is a classification problem with defined classes. Among the candidate configurations
of meta-learner, the one that achieves the lowest loss is selected. The configurations could be, for example,
estimating the meta-learner with balanced and unbalanced classes.

In FFORMA, the target is the set of weights that minimises the expected loss. The meta-learning
estimation is a problem of finding a function that assigns weights to each forecasting method to minimise
the expected loss that would have been produced if the methods had been picked at random using these
weights as probabilities.

In the online phase, the previously trained meta-learner is employed to generate the response. In
FFORMS, it is the label of the selected forecasting model. In FFORMA, it is a set of weights for the
candidate forecasting models. For each new series, the time series features are calculated and then passed
to the meta-learner to output the class or set of weights that minimise the expected loss.

The mFFORMS is exactly like FFORMS, except that the target is not an individual forecasting model
but a combination strategy that estimates weights to combine the predictions generated by the pool of
forecasting methods. It is inspired by Qian et al. (2019)’s finding that a multi-level approach can deal with
the different combination scenarios, CFA or CFI, without knowing the underlying scenario beforehand. In
the following subsections, there is a detailed description of mFFORMS.

To evaluate whether this multi-level approach outperforms FFORMA, we aim to conduct the fairest
comparison by employing the same forecasting methods and the time series features.

2.1. Algorithmic Description

The implementation of mFFORMS is conducted in two phases: (1) the offline phase, in which the meta-
learner is trained to select the best combination method and (2) the online phase, in which the pre-trained
meta-learner is used to identify the best combination for a new series based on its features. The following
algorithms present the pseudo-code of the proposed combination selection. The algorithm 1 describes the
steps for estimating the set of weights, while the algorithm 2 describes the mFFORMS approach, both online
and offline phases.

In the offline phase, the weights for the series are calculated based on the cross-validation errors of each
candidate forecasting method in the same series. This approach has some apparent drawbacks; it requires
more observations than FFORMA since there is a cross-validation step for the the meta-learner and the
estimation of the optimal set of weights. Also, it requires running the forecasting methods twice in the
online phase unless the selected combination approach is the simple average.

A flowchart of the mFFORMS process can be seen in Figure 1. The online phase implementation
was optimised to calculate only the essential steps to output the combined prediction to speed up the
computations. For example, if the meta-learner suggests the best method is equal weights, estimating the
weights with out-of-sample data is unnecessary, thus reducing the number of fitted forecasting methods. In
cases where the combination method assigns weights to a few forecasting models, it only estimates these
forecasts.

3. Implementation to M4 Settings

In this section we describe the components of the algorithm selection problem.
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Figure 1: mFFORMS Flowchart
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Algorithm 1 Estimate out-of-sample weights

Estimating optimal weights for combination
Inputs:

y: a time series.
h: the number of steps ahead to predict.
M : a set of forecasting methods in the pool.
C: a set of combination methods.

Output:
the set of weights for each forecast combination method

1: Split y into a training period and test period of size h.
2: Fit each forecasting method m ∈ M over the training period and generate the

forecasts over the test period.
3: Calculate the set of weights for each combination method c ∈ C on the

observations of test period.

3.1. Problem Space

The M4 dataset includes 100,000 time series of different frequencies. For each time series, we split it
into a training and test period, whose length was set equal to the forecast horizon set by the competition.
The dataset is limited to time series that are not constant over the training period and with a minimum
number of observations relative to the frequency of the series and the number of steps ahead to predict since
there would be two holdout periods, one to compare the results and the other to estimate the weights for
the combination methods. The amount of time series included in the ex ante evaluation is 94,966. One
fundamental assumption is that the new series comes from a similar data-generating process to the reference
set.

The M4 aims to provide time series that reflects reality; thus, it employs a dataset consisting of a random
sample of 100,000 time series extracted from the FoReDeck, a database made available by the National
Technical University of Athens containing around 900,000 time series from multiple socioeconomic sources
of data generated by human interactions. The dataset has six main categories: demographic, finance,
industry, macroeconomic data, microeconomic data and other types. It includes data from industries,
services, tourism, imports exports, demographics, education, labour and wage, government, households,
bonds, stocks, insurance, loans, real estate, transportation, et cetera.

The dataset has six distinct time frequencies: hourly, daily, weekly, monthly, quarterly and yearly.
However, the proportion in which they appear is not uniform; 95% of the series comes from monthly (48%),
quarterly (24%) and yearly (23%) frequency. Regarding the available observations, the shortest training test
is 13 for yearly, 16 for quarterly, 42 for monthly, 80 for weekly, 93 for daily and 700 for hourly time series.
The number of predicted steps ahead also varied by the series’ frequency. The contestants had to predict
six steps for the yearly time series, eight for quarterly, 18 for monthly, 13 for weekly, 14 for daily and 48 for
hourly.

The organisers of the M4 competition scaled the time series to prevent negative observations and values
lower than 10. The scaling was performed by adding a constant to the series so that their minimum value
was equal to 10 (only 29 occurrences across the whole dataset). In addition, the organisers removed any
information that could lead to identifying the original series to ensure the results’ objectivity. For example,
the series’ starting dates were only available once the M4 competition had ended.

3.2. Time Series Features

The features used should provide information about the structure of the time series, such as trend,
seasonality, cycle, and so on. The features for seasonal time series are set to zero for non-seasonal time series,
as in the FFORMA implementation. Also, the features are calculated for the scaled time series because
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Algorithm 2 The mFFORMS framwork: Forecast combination selection based on meta-learning

Offline phase: train the classifier
Inputs:

{y1, y2, . . . , yN}: N observed time series forming the reference set.
F : a set of functions for calculating time series features.
M : a set of forecasting methods in the pool.
C: a set of combination methods.

Output:
mFFORMS meta-learner: a classifier that returns the label of the combination
method with lowest expected loss given the time series features input.

Prepare the meta-data

1: for n = 1 to N : do
2: Split yn into a training period and test period.
3: Calculate the set of features f ∈ F over the training period.
4: Estimate out-of-sample weights (algorithm 1)
5: Fit each forecasting method m ∈ M over the training period and generate forecasts

over the test period.
6: Combine the forecasts for the test period using the set of weights (4).
7: Calculate the forecast error of each combination over the test period.
8: Select the combination with the lowest forecast error .
9: Meta-data: input features (2) and label of best combination (8).

10: Bind the meta-data from each time series.

Train the meta-learner classifier

11: Train a xgboost classifier based on the meta-data
12: Return the mFFORMS meta-learner

Online phase: forecast a new time series
Input:

mFFORMS meta-learner from offline phase.
Output:

Forecast the new time series ynew.
13: for each ynew: do
14: Calculate features ynew by applying F .
15: Use the meta-learner to produce the label of the combination method.
16: Estimate out-of-sample weights Algorithm 1
17: Fit each forecasting method m ∈ M over all data and generate forecasts
18: Combine the forecasts using the set of weights to generate final forecasts

some features are scale dependent. The features provide information about the dynamic structure of the
time series, such as trend, seasonality, autocorrelation, nonlinearity, heterogeneity, and so on. Furthermore,
interpretability, robustness to outliers, and scale and length independence should also be considered when
selecting features for this classification problem.

The tsfeatures R-package by Hyndman et al. (2022) was employed to calculate the time series features.
The Table 1 was extracted from Montero-Manso et al. (2020). For a more detailed definition of the time
series features, see Talagala et al. (2018).
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Table 1: Time Series Features in mFFORMS framework

Feature Description Non-seasonal Seasonal

1 T length of time series ✓ ✓
2 trend strength of trend ✓ ✓
3 seasonality strength of seasonality - ✓
4 linearity linearity ✓ ✓
5 curvature curvature ✓ ✓
6 spikiness spikiness ✓ ✓
7 e acf1 first ACF value of remainder series ✓ ✓
8 e acf10 sum of squares of first 10 ACF values of remainder series ✓ ✓
9 stability stability ✓ ✓
10 lumpiness lumpiness ✓ ✓
11 entropy spectral entropy ✓ ✓
12 hurst Hurst exponent ✓ ✓
13 nonlinearity nonlinearity ✓ ✓
13 alpha ETS(A,A,N) α̂ ✓ ✓
14 beta ETS(A,A,N) β̂ ✓ ✓
15 hwalpha ETS(A,A,A) α̂ - ✓
16 hwbeta ETS(A,A,A) β̂ - ✓
17 hwgamma ETS(A,A,A) γ̂ - ✓
18 ur pp test statistic based on Phillips–Perron test ✓ ✓
19 ur kpss test statistic based on KPSS test ✓ ✓
20 y acf1 first ACF value of the original series ✓ ✓
21 diff1y acf1 first ACF value of the differenced series ✓ ✓
22 diff2y acf1 first ACF value of the twice-differenced series ✓ ✓
23 y acf10 sum of squares of first 10 ACF values of original series ✓ ✓
24 diff1y acf10 sum of squares of first 10 ACF values of differenced series ✓ ✓
25 diff2y acf10 sum of squares of first 10 ACF values of twice-differenced series ✓ ✓
26 seas acf1 autocorrelation coefficient at first seasonal lag - ✓
27 sediff acf1 first ACF value of seasonally differenced series - ✓
28 y pacf5 sum of squares of first 5 PACF values of original series ✓ ✓
29 diff1y pacf5 sum of squares of first 5 PACF values of differenced series ✓ ✓
30 diff2y pacf5 sum of squares of first 5 PACF values of twice-differenced

series

✓ ✓

31 seas pacf partial autocorrelation coefficient at first seasonal lag ✓ ✓
32 crossing point number of times the time series crosses the median ✓ ✓
33 flat spots number of flat spots, calculated by discretizing the series into

10 equal-sized intervals and counting the maximum run length

within any single interval

✓ ✓

34 nperiods number of seasonal periods in the series - ✓
35 seasonal period length of seasonal period - ✓
36 peak strength of peak ✓ ✓
37 trough strength of trough ✓ ✓
38 ARCH.LM ARCH LM statistic ✓ ✓
39 arch acf sum of squares of the first 12 autocorrelations of z2 ✓ ✓
40 garch acf sum of squares of the first 12 autocorrelations of r2 ✓ ✓
41 arch r2 R2 value of an AR model applied to z2 ✓ ✓
42 garch r2 R2 value of an AR model applied to r2 ✓ ✓ ✓
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3.3. Algorithm Space

3.3.1. Combination Methods

The first step of mFFORMS consists of generating different combinations of candidate forecasting meth-
ods. Consider yt a univariate time series selected from P and let ŷm,t+h|t be an h-step-ahead forecast of yt+h

made at time t using the information set available at the moment t by the candidate forecast m ∈ M , where
M is the set of forecasting methods in the pool. The combination c ∈ C, where C is the set of combination
methods, without imposing a sum-to-one constraint is given by

ct+h|t = β1ŷ1,t+h|t + β2ŷ2,t+h|t + · · ·+ βM ŷM,t+h|t

where βm is the non-negative weight associated to the forecast ŷm. To reduce the notational clutter in this
section, the t+ h|t will be dropped, considering it will be clear in the context that the t notation will refer
to cross-validated observations.

The first candidate is the equal-weights combination, a simple average of all the candidate forecasts.
A second candidate is a näıve approach that assigns weight one to the forecasting method that produces
the lowest mean squared cross-validated error and zeroes to the others. The other candidates are penalised
methods that overcome some limitations of the Bates-Granger weights estimation method. First, BG cannot
be estimated when the number of candidate forecasts exceeds the number of observations. Second, when
there are highly correlated forecasts, the variance inflation factor makes the variance of the estimated weights
larger than they would otherwise be. Also, when the forecasts are redundant or not advantageous for the
prediction combination, they are still considered in the combination. The penalised combination is helpful
in these scenarios. The considered methods are LASSO and peLASSO.

Ridge-based methods are not considered because they cannot produce a parsimonious combination since
they keep all the candidates in the combination. Elastic Net, proposed by Zou and Hastie (2005), is a convex
combination of LASSO and Ridge. It overcomes LASSO limitations when the number of predictors is much
larger than the number of observations. However, it also exhibits the grouping effect, where strongly
correlated predictors tend to be in or out of the model together; furthermore, given that the elastic net
penalty is strictly convex, a group of highly correlated variables tend to be equal. In the forecast combination
setting, the grouping effect keeps redundant models.

LASSO. The primary reference for LASSO methods is Tibshirani (1996), it is a penalized least squares
method that imposed a L1-penalty on the regression coefficients; due to the nature of the L1-penalty,
the LASSO simultaneously shrinks and selects the coefficients. Tibshirani (1996) points out that LASSO
does not uniformly dominate the ridge regression. Despite its success in many applied situations, it has
some limitations. Despite dealing with scenarios where the number of candidates exceeds the number of
observations, it selects at most n variables before it saturates because of the nature of the convex optimization
problem. If there is a group of variables with a very high pairwise correlation, LASSO tends to select only
one and does not care which one is selected (since it is not strictly convex, it does not have a unique solution).
In the combination setup, the LASSO is given by

β̂LASSO = argmin
β




T∑

t=1

(
yt −

M∑

i=1

βiŷi,t

)2

+ λ
M∑

i=1

|βi|


 ,

where t = 1 refers to the first out-of-sample observation and T = t+ h

peLASSO. Diebold and Shin (2019) proposed the partially-egalitarian LASSO, a LASSO-based procedure
that sets some combining weights to zero and shrinks the survivors toward equality. The LASSO select and
shrink the coefficients; however, the direction of the selection and shrinkage is towards zero. In its concept,
peLASSO is a two-penalty function given by

β̂peLASSO = argmin
β




T∑

t=1

(
yt −

M∑

i=1

βiŷi,t

)2

+ λ1

M∑

i=1

|βi|+ λ2

M∑

i=1

∣∣∣∣βi −
1

p(β)

∣∣∣∣


 ,
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where p(β) is the number of elements different from zero in β. The first penalty term is the standard
LASSO that selects and shrinks towards zero, while the second penalty selects and shrinks towards equality.
Optimizing the objective function in one step is difficult due to its discontinuity when βi = 0; therefore, the
authors propose a two-step estimation.

In the first step, the goal is to select the m predictions within the complete set of forecasts M . For
such an end, they employ the standard LASSO with one penalty. The method can handle situations where
M > T , in other words, where the number of predictions exceeds the number of observations. In the second
step, the goal is to shrink towards equality the m forecasts that survive the first step. For this purpose,
the authors employ the egalitarian Ridge (eRidge), which shrinks the coefficients towards equality. It is
estimated using standard Ridge regression with a modification in the response variable, which consists of
the difference between the actual value and the simple average of the surviving forecasts.

3.3.2. Forecasting Methods

The pool of nine candidate forecasting methods was implemented in the forecast package in R by Hyn-
dman and Khandakar (2008). The choice of parameters is the same as in the implementation available at
robjhyndman’s github repository M4metalearning, where most of the methods were run with the default
parameters. The methods are:

1. näıve (naive);

2. random walk with drift (rwf). The parameter drift is set to TRUE;

3. seasonal näıve (snaive);

4. theta method (thetaf);

5. automated ARIMA algorithm (auto.arima). The parameter stepwise is set to FALSE, so it searches
over all methods, which can be relatively slow to seasonal series;

6. automated exponential smoothing algorithm (ets). The parameter opt.crit is set to ’mae’, which uses
the mean of absolute errors as optimisation criteria;

7. TBATS model (tbats);

8. STLM-AR seasonal and trend decomposition using loess with AR modelling of the seasonally ad-
justed series. The parameter modelfunction is set to stats::ar to model the seasonally adjusted series.
Furthermore, if the stlm produces an error, an automated ARIMA algorithm is used instead.

9. neural networks autoregressive (nnetar).

A brief description of each forecasting model is available at Appendix Appendix A.

3.4. Error Metric

Hyndman and Koehler (2006) proposed a measure named MASE, which has a defined mean and finite
variance, is scale-independent and can be computed for a single forecast horizon, being less than one if it
provides a better forecast than the benchmark and more than one otherwise. Franses (2016) points out
that the absolute scale error has the same moment properties as the absolute error and thus has moment
properties that match the assumptions underlying the asymptotic theory of the Diebold-Mariano test. In
the M4 competition, a modified version of MASE was proposed to evaluate, given by

MASE =
1

h

∑n+h
t=n+1

∣∣∣Yt − Ŷt

∣∣∣
1

n−m

∑n
t=m+1 |Yt − Yt−m|

.

In the Hyndman and Koehler (2006) version, the m is set to one regardless of the frequency of the data.
Also, the M4 is scaled by the in-sample errors of the benchmark, which might generate a MASE above one
when comparing the benchmark against itself.
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3.5. Meta-Learner: the mapping function

The candidate approaches to estimating the optimal hyperparameters for the meta-learner are: (i) min-
imising the cross entropy to calculate the candidate meta-learners specifications and selecting the one with
the lowest cross-validated loss, a two-step procedure as in FFORMS, and (ii) minimising a custom objective
function depending on the class labels, a single-step procedure as in FFORMA. As in FFORMA, the learning
model implementation utilised the gradient tree boosting model of XGBoost, a supervised machine-learning
algorithm that implements regularised gradient boosting implemented by Chen and Guestrin (2016) in the
xgboost R package. However, instead of selecting the hyperparameters that minimise a custom loss, OWA
(the M4 evaluation score), we consider the optimisation approach as in FFORMS, where the meta-learner is
trained as a classification problem minimising the cross-entropy, then selecting the configuration that min-
imises the error measure, in this case, the MASE. We are not interested in accurately predicting the class as
in a classification problem but in minimising overall error given the output labels. The configurations vary
on the class imbalance, where some classes are significantly more prevalent than others in the available data,
and down-sampling might be required. Another configuration choice for the meta-learner is calculating a
single model or one model for each period (monthly, yearly, and so on).

The selection of the meta-learner strategy is the one that provides the

min

N∑

n=1

K∑

k=1

Ick = Ŝ(fn)
Lnk,

where K is the length of C, the set of candidate combination methods mapped in the algorithm selection
problem, C = {c1, c2, ..., cK}, N is the length of the reference set considered in the meta-learning estimation,
Lnk is the loss associated to the k-th combination for the n-th time series, Ŝ (fn) = Ĉ is the estimated class
produced by the meta-learner given the time series features fn, and Ick = Ĉ is the indicator function for when
the k-th combination is equal to the predicted combination.

The performance of XGBoost relies on the choice of hyperparameters, which cannot be estimated directly
from the data. We consider the race ANOVA algorithm proposed by Kuhn (2014) to efficiently select the
set of hyperparameters that minimise the cross entropy on cross-validated data. The hyperparameters are
essential to prevent the trees to growing too much and having end-points that contain very few observations,
which can, in turn, lead to overfitting. Estimating the best subset of hyperparameters based on cross-
validated error avoids the eventual problem of learning patterns available only in the training data.

4. Ex Ante Evaluation

In this section, we conduct an evaluation of the results of the historical cross-validated data, limited to
the length of series available to the competitors throughout the competition.

4.1. Evaluating the Results

For each series and combination method, the errors are scaled by the in-sample loss of the naive prediction,
as proposed in the competition guidelines. From now on, we will call it the competition MASE or cMASE.
However, to aggregate and compare the results, we scale it by the cMASE of the seasonal näıve as the
benchmark. We then compute the ratio between the cMASE of each candidate method and the cMASE of
the seasonal näıve. When it is equal to one, the proposed method had the same cMASE as the benchmark;
when it is below one, the combination provided more accurate forecasts; when it is above one, the seasonal
naive provided better predictions. From now on, this ratio will be named eMASE, or evaluation MASE.

eMASE =
cMASE

cMASEbenchmark
.
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4.1.1. Frequency Each Method Provides Better Results

In this subsection, we evaluate how frequently each combination method should be selected to provide
the lowest loss among the candidate combination methods for each time series in consideration. Overall, the
combination for adaptation (CFA) scenario represents 40% of the series in consideration and the combination
for improvement (CFI) scenario the remaining 60%, as displayed in Table 2. For 40% of the series, a single
forecasting method better describes the data-generating process. For the series in the CFI scenario, the
better strategy is to employ the equal weights combination in 59% of these cases. It is worth estimating the
optimal weights using LASSO or peLASSO only in 41% of the CFI scenario cases. We consider the relative
frequency CFI for Min RMSE to be NA, since it belongs to the CFA scenario.

Table 2: How often each combination method provides better forecasts

Scenario Combination Rel. Frequency Rel. Frequency CFI
CFA Min RMSE 39.97% NA
CFI 1/N 35.51% 59.07%
CFI LASSO 9.86% 16.40%
CFI peLASSO 14.75% 24.53%

In the Figure 2, we observe this scenario is not homogeneous throughout the series when we evaluate the
frequency in which each combination method provides the lowest loss by the time series frequency. However,
it is essential to note that most of the M4 data set is composed of monthly, yearly and quarterly series.

Figure 2: How often each combination method provides better forecasts per Period

For hourly series, the CFA scenario happens more often, around 68% of the time. For daily, yearly and
weekly series, the CFI scenario appears around 46-49% of the time. For monthly and quarterly series, the
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most frequent in the M4 dataset, only 36-38% of the scenarios are CFI. Within the CFA scenario, the simple
average combination is more frequent in quarterly and monthly series; for the other periods, there is a more
balanced distribution of how frequent each method is the best.

4.1.2. Combination Errors Dispersion

In this subsection, we compare the dispersion of the loss associated to each combination method. The
idea is to evaluate whether the misclassification affects the overall loss considerably. In the Figure 3, we
observe how the errors for each combination approach relate.

Figure 3: eMASE of the combination strategies

We observe that peLASSO and LASSO combination methods provide errors that are considerably higher
than the equal weights combination. Furthermore, it appears that for a considerable amount of time series
the seasonal-naive forecasting is the best method.

4.1.3. How Often Each Strategy Defeats the sNaive?

This subsection evaluates how often each combination method beats the seasonal naive benchmark, a
simple approach that requires few computational resources.

The Table 3 shows the frequency each combination strategy provides lower cross-validated loss than
the seasonal naive benchmark. The clear winner is the simple average, which beats the seasonal naive
benchmark in 71.5% of the time series evaluated. The second best strategy is to select a method with the
lowest cross-validated RMSE. The LASSO and peLASSO combination provide worse predictions more than
half the time, except for the yearly series. However, the gain is marginal, demonstrating its inefficiency for
this application due to its computing-intensive requirements and poor performance.
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Table 3: How often each combination method provides better forecasts

Period 1/N LASSO Min RMSE peLASSO
Daily 34.5% 27.9% 39.6% 27.4%
Hourly 27.5% 22.9% 62.6% 9.7%
Monthly 74.4% 44.1% 64.0% 40.6%
Quarterly 74.6% 41.7% 61.2% 41.3%
Weekly 43.7% 42.9% 60.4% 42.3%
Yearly 69.8% 51.4% 65.6% 51.3%
Total 71.5% 44.1% 62.5% 42.1%

The Figure 4 contains the distribution of the eMASE for each combination strategy. From the distribu-
tion, we observe that the minimum cross-validated error strategy beats the benchmark by a wide margin
more frequently than the combination of equal weights, despite beating less frequently.

Figure 4: In the x-axis we display the discretised eMASE with intervals of size 0.2 and truncated at 3. The y-axis provide the
relative frequency they occur within the displayed combination method. The relative frequencies sum to one within each facet.
The colours and facets represent each distinct combination strategy. The blue line represents the point where the eMASE is
equal to one.

4.2. Selecting the Meta-Learner

In this subsection, we evaluate the implications of the choices regarding the possible parametrisations
of the meta-learner. We consider three candidate approaches. The first consists of a single meta-learner
and unbalanced classes. The second consists of a single meta-leaner and balanced classes by down-sampling
the most frequent ones. The third consists of multiple meta-learners, one for each period available, and
unbalanced classes. We randomly select a third of the available time series of the ex ante section to estimate
the meta-learner and the remaining two-thirds to compare the results.
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Table 4: The candidate meta-learners cMASE

Period Multiple Unbalanced Single Balanced Single Unbalanced
Daily 3.3432 4.0977 3.3001
Hourly 0.9937 1.4661 0.9937
Monthly 0.9515 1.2469 0.9274
Quarterly 1.2116 1.3781 1.2028
Weekly 2.6841 3.9763 2.6473
Yearly 3.4196 4.0303 3.3766

Table 5: How often each combination method provides better forecasts

Period mFFORMS 1/N LASSO Min RMSE peLASSO
Daily 48.2% 34.0% 27.7% 44.7% 27.2%
Hourly 72.5% 29.9% 23.4% 72.9% 9.6%
Monthly 73.4% 74.2% 43.7% 69.4% 40.3%
Quarterly 74.1% 74.9% 41.8% 67.2% 41.5%
Weekly 68.1% 41.4% 40.6% 67.7% 39.8%
Yearly 72.1% 69.8% 51.3% 71.8% 51.2%
Total 72.2% 71.4% 43.9% 68.2% 42.0%

The results in Table 4 demonstrate that the clear winner is the single meta-learner with unbalanced classes
to predict the combination algorithm. It is marginally better than multiple meta-learners, except in hourly
time series, where there is a tie. The meta-learner with balanced classes provides a worse performance due
to predicting LASSO and peLASSO more often, even in scenarios where they perform considerably worse,
thus making the overall loss considerably higher, as observed in Figure 4.

From now on, mFFORMS refers to the single meta-learner with unbalanced data.

4.3. mFFORMS Results

In this subsection, we compare the mFFORMS results with the candidates, but we display only three
combination methods graphically: mFFORMS, simple average and minimum cross-validated RMSE. We
discard the other methods because they provide a worse loss and make the plots harder to read.

In Table 5, we observe the mFFORMS beats overall the benchmark more often than any other method.
A surprising observation is that the simple average combination beats the benchmark more often than
mFFORMS in the monthly and quarterly series despite having a worse average loss. The explanation is
that when the mFFORMS beat the benchmark, it beats by a wider margin. The Figure 5 provides a visual
demonstration.
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Table 6: E[eMASE|eMASE < 1]

Period mFFORMS 1/N LASSO Min RMSE peLASSO
Daily 0.86 0.75 0.68 0.89 0.68
Hourly 0.64 0.81 0.76 0.64 0.75
Monthly 0.65 0.66 0.64 0.65 0.65
Quarterly 0.65 0.69 0.64 0.64 0.64
Weekly 0.73 0.80 0.68 0.75 0.68
Yearly 0.60 0.78 0.59 0.58 0.59
Total 0.64 0.69 0.63 0.64 0.63

Figure 5: In the x-axis we display the discretised eMASE with intervals of size 0.2 and truncated at 3. The y-axis provide the
relative frequency they occur within the displayed combination method. The relative frequencies sum to one within each facet.
The colours and facets represent each distinct combination strategy. The blue line represents the point where the eMASE is
equal to one. The text inside the bars represent the cumulative relative frequency.

The Table 6 displays the mean eMASE conditioned on being lower than one, so the lower the value,
the higher the gain over the benchmark. We observe that the LASSO has the most gain when it beats the
benchmark, despite not beating it often. Also, we observe that the mFFORMS approach has little to no
gain over the minimum cross-validated RMSE and a smaller gain over the simple average, except on the
daily time series.

4.3.1. Variables Importance

To understand the variables that help the most at identifying the most suited forecast combination
method, we employ the Gain as a measure of variable importance. The Gain represents the improvement
in the model’s loss function achieved by splitting a tree node based on a particular feature. It measures
how much each feature contributes to the overall reduction in the error of the model. The higher the value
the metric assumes, the more influential the feature is in making accurate predictions. Since the measure is
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relative, the sum of the Gain provided by the variables sum up to one.
From Figure 6, we observe that the time series features that help the most with prediction are the

seasonal strength and trend, followed by the curvature, spike and linearity.

Figure 6: Variable Importance

For a detailed treatment of the gain, see Chen and Guestrin (2016).

5. Ex Post Evaluation

In this section, we compare the mFFORMS results with the ones obtained from FFORMA for the M4
competition submission. To compare the results, we calculate the MASE of the candidates considering
FFORMA as the benchmark. So when it is equal to one, the proposed method had the same errors as the
FFORMA; when it is below one, the candidate method provided more accurate forecasts; when it is above
one, the FFORMA provided better predictions. In Table 7 we observe that the mFFORMS underperforms
FFORMA for all time series frequencies. We also notice that the mFFORMS performs consistently worse
than FFORMA for all time series lengths.

6. Conclusion

In conclusion, the results of our analysis showed that the forecast combination strategy under evaluation
did not outperform the FFORMA in the M4 settings. FFORMA provides better results and is less intensive
computationally since it provides a set of weights given the time series features and requires the series to be
forecasted only once. In contrast, mFFORMS requires calculating some forecasting methods twice (except
when it selects the equal weights combination method) due to its optimal weights estimation on cross-
validated data. We observe that the multi-level approach provides more accuracy than the combination
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Table 7: MASE with FFORMA as benchmark

Period Mean 5th Percentile 1st Quartile Median 3rd Quartile 95th Percentile
Total 1.120 0.590 0.908 1.029 1.222 2.196
Daily 1.197 0.730 0.945 1.018 1.136 2.080
Hourly 1.130 0.624 0.969 1.012 1.157 1.833
Monthly 1.166 0.638 0.916 1.024 1.191 2.008
Quarterly 1.171 0.605 0.910 1.036 1.233 2.085
Weekly 1.103 0.756 0.924 1.010 1.125 1.670
Yearly 1.304 0.472 0.871 1.039 1.320 2.759

strategies in the algorithm space on the historical cross-validated setting; however, the gains are marginal,
and the excess complexity is very high. Considering the results, We infer that FFORMA exploits better
the dependencies between time series and that FFORMA already deals with the CFA and CFI scenarios
in the M4 competition settings. Another potential reason for the mFFORMS underperformance is that
any classification approach considers only the best combination method, regardless of the performance gap
between the first and second methods. Conversely, the approach taken by FFORMA considers the magnitude
of the error of each candidate forecast while attributing weights. Furthermore, Montero-Manso et al. (2020)
points out that FFORMA provides a diverse profile of weights, ranging from simple average to an almost
classification weights set (most of the weight to only a single method).

Appendix A. Forecast Methods

The näıve forecasting method consists of replicating the last observation available, and it is equivalent
to an ARIMA(0,1,0). The seasonal näıve replicates the last seasonal observation given the time series
frequency, equivalent to an ARIMA(0,0,0)(0,1,0)m, where m is the time series frequency. If the frequency is
one, it is analogous to a näıve approach. The random walk with drift is equivalent to an ARIMA(0,1,0)
model with a drift coefficient.

The ets method is based on an extended range of exponential smoothing methods. The acronym ’ets’
stands for error type, trend type and seasonality type, where each can assume different forms: none, additive,
multiplicative. So, for example, ”ANN” is simple exponential smoothing with additive errors, ”MAM” is
multiplicative Holt-Winters’ method with multiplicative errors, and so on. We consider the fully automated
selection method, which chooses the type of error, trend and seasonality. The parameters are optimised for
all appropriate models, selecting the best type according to the AIC or mean absolute error.

The auto.arima estimation follows the algorithm proposed by Hyndman and Khandakar (2008), which
combines unit root tests and the minimisation of AICc to obtain an ARIMA model. The parameters
passed to the algorithm affect the solution path. As in FFORMA implementation, we consider the non-
stepwise approach that searches over all models and returns the one with the lowest AIC. Some parameters
set boundaries to the search space; they limit the maximum orders each (p, P, q, Q) may take and the
maximum sum of these orders. The order of the first-differencing is estimated by the KPSS unit root test,
and the order of seasonal-differencing is selected by a measure of seasonal strength computed from an STL
decomposition.

The theta method of Assimakopoulos and Nikolopoulos (2000) is equivalent to simple exponential
smoothing with drift, as demonstrated in Hyndman and Billah (2003). The series is tested for seasonality,
where the criterion is the t-test value for the auto-correlation function value with the lag to previous seasonal
observation compared to the t-statistic value for 0.1 probability. If the series is seasonal, it is seasonally
adjusted using a classical multiplicative decomposition before applying the theta method. The resulting
forecasts are then reseasonalized.

The TBATS method is the Exponential smoothing state space model that was developed for forecasting
time series with complex seasonal patterns developed by Livera et al. (2011). It stands for Trigonometric
Box-Cox transformation, ARMA errors, Trend and Seasonal components. The default parameters evaluate
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whether to use the Box-Cox transformation, whether to include a trend or not, and whether to include a
dumping parameter in the trend or not. Also, it considers ARMA errors.

The NNETAR is a feed-forward neural network with a single hidden layer and lagged values of the
time series as inputs. By default, the number of nodes in the hidden layer is half of the number of input
nodes plus one. Also, it estimates 20 networks with different random starting weights that are averaged
when producing forecasts.

The STLM consists of applying a non-seasonal forecasting method to the seasonally adjusted data
by LOESS (locally estimated scatterplot smoothing) and re-seasonalizing using the last full period of the
seasonal component.

Appendix B. Error Metric

Error measures can be used to select models and estimate their parameters. Some of these measures
are inadequate to optimise the model’s parameters due to some drawbacks, and others are not adequate to
compare the performance of forecasting methods for series with different scales.

Appendix B.1. Point Forecasts

Typically, point forecasts are evaluated by evoking a loss function (usually the quadratic loss), and
the average loss is employed to compare candidate methods’ performance. Regardless of the loss function
choice, comparing the performance of different models for the same series or multiple series on the same
scale is pretty straightforward. However, the problem arises when one wants to assess the performance of
the candidate forecast methods in series measured on different scales. For example, the mean squared error
might be misleading in this scenario despite providing unbiased forecasts. The mean squared errors lead to
unbiased forecasts; however, they are sensitive to very high errors. It is calculated by

MSE =
1

h

n+h∑

t=n+1

(
Yt − Ŷt

)2
.

Some error measures, such as the ones based on percentage errors, are scale-independent and intuitive to
compare the performance of the models on time series of different scales. The mean absolute percentage error,
MAPE, tends to be biased downwards due to its asymmetric treatment of errors since the under-forecast is
limited to 100

MAPE =
1

h

n+h∑

t=n+1

∣∣∣Yt − Ŷt

∣∣∣
|Yt|

× 100 (%) .

sMAPE =
2

h

n+h∑

t=n+1

∣∣∣Yt − Ŷt

∣∣∣

|Yt|+
∣∣∣Ŷt

∣∣∣
× 100 (%) .

Goodwin and Lawton (1999) point out that the symmetric MAPE (sMAPE) is a flawed symmetrised
version of MAPE. Despite being symmetric for interchanged values of actuals and forecasts, it introduces an
asymmetry in treating negative and positive errors. They also demonstrate that, under some circumstances,
a non-monotonic relationship can occur between the sMAPE and the absolute forecast errors. It is defined
if forecasts and actuals are not both zero, but if there is a realisation of zero, the contribution is two
independent of the point forecast.

Another group of interest is the relative error measures, which compare the error of a forecast relative
to a benchmark. The relative error measure will be undefined if the benchmark forecasts the actual without
error, which is more likely to happen on a period-by-period evaluation but not over a forecasting horizon.
Hyndman and Koehler (2006) proposed a measure named MASE, which has a defined mean and finite
variance, is scale-independent and can be computed for a single forecast horizon, being less than one if it
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provides a better forecast than the benchmark and more than one otherwise. Franses (2016) points out
that the absolute scale error has the same moment properties as the absolute error and thus has moment
properties that match the assumptions underlying the asymptotic theory of the Diebold-Mariano test. In
the M4 competition, a modified version of MASE was proposed to evaluate, given by

MASE =
1

h

∑n+h
t=n+1

∣∣∣Yt − Ŷt

∣∣∣
1

n−m

∑n
t=m+1 |Yt − Yt−m|

.

In the Hyndman and Koehler (2006) version, the m is set to one regardless of the frequency of the data.

Appendix B.2. Interval

Winkler (1972) proposed a score method to allow comparisons between intervals that consider the cov-
erage rate and the width of the intervals. The Winkler (1972) score is defined by the mean of

W (Lt, Ut, Yt) =





(Ut − Lt) ;Lt < Yt < Ut

(Ut − Lt) +
2

α
(Lt − Yt) ;Yt < Lt

(Ut − Lt) +
2

α
(Yt − Ut) ;Yt > Ut

.

This score penalizes both wide ranges (since Ut−Lt will be wide) and non-coverage, as observations that
are further from the range are penalized more severely. Although this metric was proposed in 1972, it has
only recently received more attention when a scaled version proposed by Gneiting and Raftery (2007) was
used as the M4 competition metric; however, Hyndman (2020) points out that it seems rather ad hoc and
its properties are unknown. It is calculated as

MSIS =
1

h
×
∑n+h

t=n+1 (Ut − Lt) +
2

α
(Lt − Yt) I (Yt < Lt) +

2

α
(Yt − Ut) I (Yt > Ut)

1

n−m

∑n
t=m+1 |Yt − Yt−m|

.

Askanazi et al. (2018) argue that comparisons of interval forecasts are problematic in several ways and
should be abandoned for density forecasts, because density forecasts convey more information than interval
forecasts and can be computed by simulation. Furthermore, density forecasts can be readily compared using
known proper scoring rules like the log predictive score, whereas interval forecasts cannot.

Appendix C. XGBoost Hyperparameters

The hyperparameters in consideration are:

• mtry: the number of predictors (features) that are randomly sampled at each split when creating the
tree models

• trees: the number of trees contained in the ensemble

• min n: the minimum number of data points in a node that is required for the node to be split further

• tree depth: the maximum depth of the tree (i.e. the number of splits)

• learn rate: a number for the rate at which the boosting algorithm adapts from iteration-to-iteration.
It is also referred to as the shrinkage parameter

• loss reduction: the reduction in the loss function required to split further
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5 Conclusão

Em conclusão, os resultados de nossa análise mostraram que a estratégia de
combinação de previsão proposta não superou o FFORMA nas configurações
M4. O FFORMA fornece melhores resultados e é menos intensivo computacio-
nalmente, pois fornece um conjunto de pesos dado as features das série temporal
e requer que a série seja prevista apenas uma vez. Em contraste, o mFFORMS
requer o cálculo de alguns métodos de previsão duas vezes (exceto quando ele
seleciona o método de combinação de pesos iguais) devido à sua estimativa
de pesos ótimos em dados de validação cruzada. Observamos que a aborda-
gem multińıvel apresenta menores erros do que as combinações de previsão que
compõe o grupo de candidatos individualmente nos dados de validação cruzada
histórica; no entanto, os ganhos são marginais e o excesso de complexidade é
muito alto. Inferimos que o FFORMA explora melhor as dependências entre
as séries temporais. Outra razão potencial para o baixo desempenho do mF-
FORMS é que qualquer abordagem de classificação considera apenas o melhor
método de combinação, independentemente da diferença de desempenho entre
o primeiro e o segundo métodos. Por outro lado, a abordagem adotada pelo
FFORMA considera a magnitude do erro de cada previsão candidata ao atri-
buir pesos. Além disso, Montero-Manso et al. [2020] aponta que o FFORMA
fornece um perfil diversificado de pesos, variando de média simples a quase um
conjunto de pesos de classificação (a maior parte do peso a apenas um único
método).
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