UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

TIAGO CORRÊA FEIJÓ

SISTEMATIZAÇÃO DE METODOLOGIAS PARA AVALIAÇÃO DE METABÓLITOS E PRODUTOS DE TRANSFORMAÇÃO EM AMOSTRAS DE ÁGUAS SUPERFICIAIS

DISSERTAÇÃO DE MESTRADO

Profa Dra. Tânia Mara Pizzolato Orientadora

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

TIAGO CORRÊA FEIJÓ

SISTEMATIZAÇÃO DE METODOLOGIAS PARA AVALIAÇÃO DE METABÓLITOS E PRODUTOS DE TRANSFORMAÇÃO EM AMOSTRAS DE ÁGUAS SUPERFICIAIS

Dissertação submetida ao Programa de Pós-Graduação em Química da Universidade Federal do Rio Grande do Sul como preenchimento parcial dos requisitos para a obtenção do título de Mestre em Química.

Orientadora: Prof.a Dra. Tânia Mara Pizzolato Porto Alegre, Janeiro de 2024. A presente dissertação foi realizada inteiramente pelo autor, exceto as colaborações as quais serão devidamente citadas nos agradecimentos, no período entre Março de 2020 e Novembro de 2023 no Instituto de Química da Universidade Federal do Rio Grande do Sul sob Orientação da Professora Doutora Tânia Mara Pizzolato. A dissertação foi julgada adequada para a obtenção do título de Mestre em Química pela seguinte banca examinadora:

Comissão Examinadora:	
Prof. Dra. Cristiane Storck Schwalm	Prof. Dra. Rosângela Assis Jacques
Prof. Dra. Lívia Streit	Orientadora
	Prof. Dra. Tânia Mara Pizzolato
Aluno Tiago Corrêa Feijó	

AGRADECIMENTOS

A concretização deste trabalho não seria possível sem o esforço e a expertise de muitas pessoas!

Agradeço imensamente à minha orientadora Professora Dra. Tânia Mara Pizzolato pela orientação na condução deste trabalho, pela confiança e pelos muitos ensinamentos, pelos momentos de integração em grupo e pelo apoio e acolhimento que recebi sempre que precisei.

Á Dra. Magda Targa Martins, que em seu curto período de Pós Doutorado em nosso laboratório contribuiu de maneira muito importante na organização e classificação da lista de fármacos e ao Engenheiro Agrônomo Rafael Friedrich de Lima pelo incansável suporte no fornecimento dos dados de comercialização de agrotóxicos compilados pela SEAGRI/RS. Ao colega Dr. Alexsandro Dallegrave pelas inúmeras explicações sobre Espectrometria de Massa.

Aos professores e professoras por compartilharem seus conhecimentos, algo de grande importância para meu crescimento profissional: Dr. Adriano Araújo Gomes (Quimiometria), Dra. Lívia Streit (Toxicidade *in silico*), Dra Cristiane Storck Schwalm (Mecanismos de reações Orgânicas) e Dra Mariana Roberto Gama Sato (Métodos Cromatográficos).

Aos colegas do grupo de pesquisa LQAA, pela parceria, troca de conhecimentos e principalmente pela união de sempre. Isso faz toda diferença!

Ao Edeson, agradeço pelo cuidado e carinho infinito em todos os momentos.

Agradeço à minha família pela pronta organização que tiveram, sempre que necessário, para que eu pudesse chegar até aqui.

Muito Obrigado!

TRABALHOS GERADOS

Juliana Bazzan Arsand, Alexandro Dallegrave, Louíse Jank, Tiago Feijo, Mauricio Perin, Rodrigo Barcellos Hoff, Alexandre Arenzon, Adriano Gomes, Tânia Mara Pizzolato. **Spatial-temporal occurrence of contaminants of emerging concern in urban rivers in southern Brazil.** Chemosphere, Volume 311, Part 1, 2023, 136814, ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2022.136814.

Em elaboração:

"Structural elucidation of Propoxur Transformation Products: Reaction mechanisms, kinetics and toxicity"

"Suspect screening and targeted analysis for the evaluation of organic contaminants in surface water samples from peri-urban rivers"

RESUMO

Contaminantes emergentes (CEs) são um grupo de compostos, não legislados, cujo a estrutura, propriedades e efeitos sobre a saúde humana e meio ambiente ainda não estão totalmente compreendidos, fato que justifica sua investigação. Metabólitos e Produtos de transformação (TPs) são exemplos de CEs onipresentes no meio ambiente e que foram avaliados neste trabalho quanto a sua incidência, distribuição, fototransformação e toxicidade.

Um fluxo de trabalho *pós data* foi desenvolvido e aplicado nas amostras de águas superficiais oriundas do monitoramento realizado em seis pontos do Arroio Dilúvio, em Porto Alegre- RS, entre os anos de 2016 e 2018, através da metodologia de *suspect screening*, partindo-se de uma base de dados de 2028 compostos. Para dimensionar todas as etapas envolvidas na busca *suspect screening* utilizando processos de fotodegradação, um segundo fluxo trabalho, paralelo e independente, foi desenvolvido para avaliar os TPs gerados pelo processo de fotólise direta em água, utilizando o inseticida Propoxur como modelo.

Os fármacos, agrotóxicos, hormônios e drogas de abuso foram as classes de compostos identificadas nos estudos de monitoramento. Os metabólitos 4-amino-antipirina (4-AA), 4-acetil-amino- antipirina (4-AAA), Fenpiroximato M-13 e Benzoilecgonina, foram os compostos majoritários, apresentando as maiores áreas. As regiões de maior incidência foram nos pontos 3, 4 e 5, nos meses de Junho e Setembro dos anos de 2016 e 2018. Em relação aos TPs gerados nos estudo de fotodegradação, três foram identificados, formados pela recombinação de radicais do Propoxur via rearranjo foto-fries ou por compostos intermediários, sendo um deles ainda não previsto anteriormente na literatura.

A toxicidade *in silico*, através do método QSAR, foi utilizada para realizar a avaliação de risco de todos compostos identificados. Os metabólitos Carbofurano-fenol e Carbendazim foram previstos como mutagênicos, ao ponto que Dihidrotestosterona e 4-hidroxinorefedrina são tóxicos para o desenvolvimento reprodutivo humano. Os três TPs do Propoxur são carcinogênicos, mas não apresentam perfil mutagênico ao contrário do Propoxur. As previsões de biodegradabilidade imediata foram avaliadas, porém os resultados obtidos apresentaram baixa confiabilidade.

Palavras-chave: triagem de compostos suspeitos, fluxo de trabalho, monitoramento de metabólitos e produtos de transformação, fotólise, avaliação de risco.

ABSTRACT

Emerging contaminants (ECs) are a group of non-legislated compounds whose structure, properties and effects on human health and the environment are not yet fully understood, a fact that justifies their investigation. Metabolites and transformation products (TPs) are examples of ECs that are ubiquitous in the environment and were evaluated in this work in terms of their incidence, distribution, photo-transformation and toxicity.

A post-dating workflow was developed and applied to surface water samples from the monitoring carried out at six points in the Dilúvio Stream, in Porto Alegre, RS, between 2016 and 2018, using the suspect screening methodology, starting from a database of 2028 compounds. In order to scale up all the steps involved in suspect screening using photodegradation processes, a second, parallel and independent workflow was developed to evaluate the TPs generated by the direct photolysis process in water, using the insecticide Propoxur as a model. Pharmaceuticals, pesticides, hormones and drugs of abuse were the classes of compounds identified in the monitoring studies.

The metabolites 4-amino-antipyrine (4-AA), 4-acetyl-amino-antipyrine (4-AAA), Phenpyroximate M-13 and Benzoylecgonine were the majority compounds, with the largest areas. The regions with the highest incidence were at points 3, 4 and 5 in June and September 2016 and 2018. Regarding the TPs generated in the photodegradation studies, three were identified, formed by the recombination of Propoxur radicals via photo-Fries rearrangement or by intermediate compounds, one of which was not previously predicted in the literature.

In silico toxicity, using the QSAR method, was used to carry out the risk assessment of all the compounds identified. The metabolites Carbofuran-phenol and Carbendazim were predicted to be mutagenic, while Dihydrotestosterone and 4-hydroxynorephedrine are toxic to human reproductive development. Propoxur's three TPs are carcinogenic, but do not have a mutagenic profile, unlike Propoxur. Ready biodegradability predictions were evaluated, but the results obtained showed low reliability.

Keywords: suspect screening, workflow, monitoring metabolites and transformation products, photolysis, risk assessment.

LISTA DE FIGURAS

Figura 1 - Principais caminhos de contaminação dos recursos aquáticos por CEs
Figura 2 - Sítios prováveis de transformação química para geração de TPs (em
amarelo) e biotransformação (em verde) nos medicamentos antirretrovirais (1)
Abacavir, (2) Aciclovir, (3) Zidovudina, (4) Lamivudina e (5) Emtricitabina
Figura 3 - Mecanismos mais comuns na fase I de metabolização para os compostos
(1) Ibuprofeno e (2) (S) -Fluoxetina (3) Cocaína e (4) Nimesulida
Figura 4 - Conjugação por glicuronidação do (1) Enalapril e da (2) Duloxetina 13
Figura 5 - Sulfatação do (1) ceftriaxona e da (2) propanolol (3) ciprofloxacino.
Figura 6 - Reação de acetilação do antineoplásico da hidralazina
Figura 7 - Resumo do processo de metabolização de xenobióticos
Figura 8 - Reação de transformação do Clorobenzeno em Fenol por dois diferentes
mecanismos iniciados pela ação da absorção da luz, via fotólise direta 17
Figura 9 - Ciclo catalítico da degradação de um contaminante ambiental via fotólise
indireta
Figura 10 - Fórmula estrutural do Propoxur. 20
Figura 11 – Proposta de mecanismo foto-fries proposto por Silk e colaboradores para
carbamatos
Figura 12 - Produtos obtidos na fotólise realizado por Sanjuán et al
Figura 13 - TPs do Propoxur formados pela reação de Eletro-Fenton e caracterizadas
por LC-MS, realizada por Guelfi et al., 2017
Figura 14 - Esquema dos principais componentes de um espectrômetro de massa
(MS)
Figura 15 - Espectrômetro de Massa com analisador quadrupolo/TOF em modo
tandem (Q-TOF/MS). 27
Figura 16 - Esquema do modo de aquisição de dados por <i>bb</i> CID
Figura 17 - Níveis de confiança associados ao fluxo de trabalho de análise não
direcionada
Figura 18 - Padrão isotópico para o átomo de bromo apresentado através do seu
espectro de massa teórico (MS).
Figura 19 - Padrão isotópico para o átomo de cloro apresentado através do seu
espectro de massa teórico (MS).

Figura 20 - Padrão isotópico para o átomo de enxofre apresentado através do seu
espectro de massa teórico (MS).
Figura 21 - Exemplos de representações gráficas utilizadas para pesquisas em base de
dados químicos para ácido acetil salicílico.
Figura 22 - Fluxo de trabalho utilizado para investigação de compostos suspeitos nas
amostras do Arroio Dilúvio
Figura 23 - Fluxo de trabalho estabelecido para a avaliação de compostos suspeitos
nas amostras de águas superficiais do Arroio Dilúvio
Figura 24 - Pontuação MRSQ utilizada para avaliação dos resultados fornecidos pelo
software TASQ
Figura 25 - Reação de formação do metabólito 10,11-dihdiroxicarbamazepina 52
Figura 26 - (a) Cromatograma com pico no tempo de retenção 1,8 minutos e
cromatogramas de íons extraídos para (b) íon precursor m/z =271,1077 e fragmentos
bbCID (c) $m/z = 210,0912$ e (d) $m/z = 236,0708$ para amostra 6A de junho de 2018.
59
Figura 27 - Reações metabólicas para formação dos metabólitos da dipirona 4-AAA
e 4-AA
Figura 28 (a) Cromatograma com pico no tempo de retenção 1,5 minutos para o 4-
AAA e cromatogramas de íons extraídos para (b) íon precursor $m/z = 246,1234$ e
fragmentos bbCID (c) m/z = $159,0914$ e (d) m/z = $204,1119$ para amostra 3A de março
de 2017
Figura 29 -(a) Cromatograma com pico no tempo de retenção 1,6 minutos PARA O
4-AA e cromatogramas de íons extraídos para (b) íon precursor $m/z = 204,1131$ e
fragmentos bbCID (c) m/z = 159,0916 e (d) m/z = 187,0865 para amostra 2A de
dezembro de 2016
Figura 30 - Reações de metabolização das anfetaminas para formação da 4-hidroxi-
norefedrina
Figura 31 - (a) Cromatograma com pico no tempo de retenção 1,8 minutos para 4-
hidroxi-norefedrina e cromatogramas de íons extraídos para (b) íon precursor m/z =
168,1023 e fragmento bbCID (c) m/z = $134,0898$ para amostra 4B de junho de 2017.
Figura 32 - Reações de metabolização da Losartana à Losartana ácido carboxílico (E-
3174)

Figura 33 - (a) Cromatograma com pico no tempo de retenção 3,3 minutos para o
ácido losartana carboxílico e cromatogramas de íons extraídos para (b) íon precursor
m/z = 437,1504 e fragmento bbCID (c) $m/z = 235,0981$ para amostra 6C de junho de
2017
Figura 34 - Reação de formação do ácido 5-etil-nicotínico a partir do herbicida
imazetapir
Figura 35 - (a) Cromatograma com pico no tempo de retenção 3,3 minutos para o
ácido losartana carboxílico e cromatogramas de íons extraídos para (b) íon precursor
$\mbox{m/z}=152{,}0703$ e fragmento bbCID (c) $\mbox{m/z}=110{,}0600$ para amostra 1C de março de
2018
Figura 36 - Reação de formação dos metabólitos da cocaína, benzoilecgonina e éster
metílico de ecgonina (EME)
Figura 37 - (a) Cromatograma com pico no tempo de retenção 2,3 minutos para a
benzoilecgonina e cromatogramas de íons extraídos para (b) íon precursor m/z =
290,1386 e fragmento bbCID (c) m/z = $168,1018$ para amostra $1A$ de setembro de
2018
Figura 38 - (a) Cromatograma com pico no tempo de retenção 0,4 minutos para a éster
metílico de ecgonina e cromatogramas de íons extraídos para (b) íon precursor $m/z=1$
200,1289 e fragmento bbCID (c) m/z = $186,1129$ para amostra 4C de setembro de
2017
Figura 39 - Reações de formação do Carbendazim a partir do Benomil por
metabolismo animal/humano e vegetal via hidrólise e pela ação da luz solar
(fotoquímica) 83
Figura 40 - (a) Cromatograma com pico no tempo de retenção 1,3 minutos para o
$Carbendazim e \ cromatogramas \ de \ íons \ extraídos \ para \ (b) \ íon \ precursor \ m/z = 204,1131 \ de \ for \ for$
e fragmento bbCID (c) $m/z = 160,0505$ para amostra 2B de Dezembro de 2016. 85
Figura 41 - Reação de formação do metabólito carbofurano-fenol, a partir da hidrólise
do inseticida carbofurano
Figura 42 - (a) Cromatograma com pico no tempo de retenção 4,1 minutos para o
carbofurano-fenol e cromatogramas de íons extraídos para (b) íon precursor $m/z=\sqrt{2}$
165,0912 e fragmento bbCID (c) m/z = $147,0805$ para amostra 6B de dezembro de
2017
Figura 43 - Reações de formação fotoquímica e metabólica da Deetilatrazina (DEA).
90

Figura 44 - (a) Cromatograma com pico no tempo de retenção 1,9 minutos para o
Deetilatrazina e cromatogramas de íons extraídos para (b) íon precursor m/z =
188,0700 e fragmento bbCID (c) m/z = 146,0232 para amostra 3B de março de 2017.
Figura 45 - Reação metabólica de conversão da testosterona em DHT
Figura 46 - (a) Cromatograma com pico no tempo de retenção 4,4 minutos para o DHT
e cromatogramas de íons extraídos para (b) íon precursor $m/z=290,2318$ e fragmentos extraídos
$bbCID\ (c)\ m/z = 273,2217\ e\ (d)\ m/z = 255,1592\ para\ amostra\ 6A\ de\ junho\ de\ 2018.\ 9500\ para\ para\ amostra\ 6A\ de\ junho\ de\ 2018.\ 9500\ para\ para\$
Figura 47 - Reação de formação do Fenpiroximato M-13
Figura 48 - (a) Cromatograma com pico no tempo de retenção 1,4 minutos para o
Fenpiroximato M-13 e cromatogramas de íons extraídos para (b) íon precursor m/z =
232,1082 e fragmentos bbCID (c) m/z = $214,0669$ e (d) m/z = $187,0865$ e (e) m/z = $214,0669$ e (d) m/z = $214,0669$ e (e) m/z = $214,0669$ e (f) m/z = 214
173,0710 para amostra 1A de setembro de 2016
Figura 49 - Reação de formação do metabólito Metolacloro OA100
Figura 50 - (a) Cromatograma com pico no tempo de retenção 2,1 minutos para o
Metolacloro OA e cromatogramas de íons extraídos para (b) íon precursor m/z =
280,1543 e fragmentos bbCID (c) $m/z = 105,0545$ e (d) $m/z = 135,0651$ e (e) $m/z = 105,0545$ e (d) $m/z = 135,0651$ e (e) $m/z = 105,0545$ e (e) $m/z = 105,0545$ e (e) $m/z = 105,0545$ e (f) $m/z = 105,0651$ e (e) $m/z = 105,0545$ e (e) $m/z = 105,0545$ e (e) $m/z = 105,0545$ e (f) $m/z = 105,0651$ e (e) $m/z = 105,0545$ e (f) $m/z = 105,0651$ e (e) $m/z = 105,0545$ e (f) $m/z = 105,0651$ e (e) $m/z = 105,0545$ e (f) $m/z = 105,0651$ e (f) $m/z = 105,0$
para a amostra 2B de dezembro de 2016
Figura 51 - Frequência de ocorrência para os compostos ao longo dos pontos de
amostragem. 103
Figura 52 - Áreas médias dos compostos por ponto de amostragem em (A) 2016 (B)
2017 e (C) 2018
Figura 53 - Dendograma das áreas dos compostos para os anos de (A) 2016 e (B) 2017
dos meses de março (M), junho (J) e setembro (S) e dezembro (D) para todos os pontos
amostrados
Figura 54 - Dendograma das áreas dos compostos para o ano de 2018 dos meses de
março (M), junho (J) e setembro (S) para todos os pontos amostrados 107
Figura 55 – Dispersão espacial dos compostos para o ano de 2016 sendo (A) setembro
e (B) dezembro. A notação para os compostos são as seguintes: (1) 4-
hidroxinorefedrina, (2) Ácido Losartana Carboxílico, (3) Benzoilecgonina, (4) Éster
metílico de Ecgonina, (5) 4-amino-antipirina, (6) 4- acetil- amino-antipirina, (7)
Dihidrotestosterona, (8) 10,11-dihidroxicarbamazepina, (9) Deetilatrazina, (10)

Carbendazim, (11) Ácido-5-etilnicotínico, (12) Fenpiroximato M-13, (13
Carbofurano-fenol, (14) Metolacloro
Figura 56 - Dispersão espacial dos compostos para o ano de 2017 sendo (A) março
(B) junho (C) setembro e (D) dezembro. A notação para os compostos são as seguintes
(1) 4-hidroxinorefedrina, (2) Ácido Losartana Carboxílico, (3) Benzoilecgonina, (4
Éster metílico de Ecgonina, (5) 4-amino-antipirina, (6) 4- acetil- amino-antipirina, (7
Dihidrotestosterona, (8) 10,11-dihidroxicarbamazepina, (9) Deetilatrazina, (10
Carbendazim, (11) Ácido-5-etilnicotínico, (12) Fenpiroximato M-13, (13)
Carbofurano-fenol, (14) Metolacloro – OA
Figura 57 - Dispersão espacial dos compostos para o ano de 2018 sendo (A) março
(B) junho (C) setembro. A notação para os compostos são as seguintes: (1) 4-
hidroxinorefedrina, (2) Ácido Losartana Carboxílico, (3) Benzoilecgonina, (4) Éste
metílico de Ecgonina, (5) 4-amino-antipirina, (6) 4- acetil- amino-antipirina, (7
Dihidrotestosterona, (8) 10,11-dihidroxicarbamazepina, (9) Deetilatrazina, (10
Carbendazim, (11) Ácido-5-etilnicotínico, (12) Fenpiroximato M-13, (13
Carbofurano-fenol, (14) Metolacloro – OA
Figura 58 - Presença de fragmento raro identificado na molécula do composto 10,11
dihidroxicarbamazepina, a partir das moléculas do conjunto de treinamento do model
SarPy para resultado não mutagênico
Figura 59 - Alertas estruturais presentes no composto Fenpiroximato M-13 e na
moléculas do conjunto de treinamento do modelo SarPy para resultado mutagênico
Figura 60 - Alertas estruturais encontrados nos compostos 4-AA e 4-AAA associado
a moléculas com resultado carcinogênico a partir do conjunto de treinamento d
modelo de IFRMN-ISS-CGX
Figura 61 Moléculas de 4-AA e 4-AAA e alertas estruturais Acetamida e Acetaldeíd
associados ao resultado de possivelmente prontamente biodegradável pelo model-
IFRMN
Figura 62 Alerta estrutural da presença de halogênio (cloro), alerta estrutural (butano
e átomos proeminentes de nitrogênio e centrados em átomos de carbono (ane
tetrazólico) considerados raros ou nunca observados em moléculas do modelo IFRMN

Figura 63 Átomos de nitrogênio ou nitrogênio e cloro centrados nos átomos de
carbono considerados raros ou nunca observados em moléculas do conjunto de
treinamento do IFRM
Figura 64 (A) Alerta estrutural identificado no composto 10,11-
dihidroxicarbamazepina associada a resultado não prontamente biodegradável (etano-
1,2-diol) e (B) alerta associado a resultado prontamente biodegradável (N-fenilanilina)
pelo modelo IFRMN. r
Figura 65 - Fluxo de trabalho proposto para a elucidação dos TPs do Propoxur obtidos
por fotólise aquosa e avaliados pelo software Bruker Data Analysis. r 129
Figura 66 - (A) Cromatograma contendo Propoxur e seus TPs no tempo de fotólise de
90 minutos e (B) Cromatograma de íon extraído para o TP1 contendo os espectros de
massa MS m/z = 210,1126 e os respectivos fragmentos de massa no espectro MS/MS
(bbCID) m/z = 93,0336, 111,0442, 137,0235, 168,0657
Figura 67 - Cromatograma de íon extraído para o TP2 contendo os espectros de massa
MS m/z = 210,1122 e os respectivos fragmentos de massa no espectro MS/MS (bbCID)
m/z = 111,0439, m/z = 137,0232 e m/z = 168,0653. 132
Figura 68 - Cromatograma de íon extraído para o TP2 contendo os espectros de massa
MS m/z = 210,1122 e os respectivos fragmentos de massa no espectro MS/MS (bbCID)
m/z = 111,0439, m/z = 137,0232 e m/z = 168,0653. 132
Figura 69 – Variação da área do propoxur e de seus TPs durante o processo de fotólise.
Figura 70 - Mecanismo de reação para formação dos TP1 e TP2, resultantes da fotolise
do propoxur, através do mecanismo de rearranjo foto-fries
Figura 71 - Demonstração do mecanismo de reação para formação de TP1 através de
tautomerismo ceto-enol iniciada pela abstração do hidrogênio alfa-carbonila A mesma
reação leva também a formação de TP2 a partir de p-cicloexadiona
Figura 72 - Proposta das etapas envolvidas na formação do TP3 (3- isopropoxifenil-
metanamina)
Figura 73 Alerta estrutural para os TPs do Propoxur, identificados a partir do conjunto
de treinamento do modelo IFRMN para o desfecho de carcinogenicidade 142
Figura 74- Alerta estrutural para carcinogenicidade referente ao 2-hidroxibenzaldeído
identificado no TP2 a partir das moléculas do conjunto de treinamento do modelo
IFRMN-ISSCAN-CGX

Figura 75 - Alerta estrutural para possivelmente prontamente biodegradável refe	rente
ao Anisol identificado nos TPs do Propoxur a partir das moléculas do conjun	to de
treinamento do modelo IFRMN.	147

LISTA DE TABELAS

Tabela 1 - Reações mais comuns na formação de TPs abióticos. 19
Tabela 2 - Abundância relativa de alguns isótopos presentes em moléculas orgânicas
Tabela 3 - Compostos positivos NC = 2 para a metodologia de suspect screening
empregada, com valores de massa dos íons qualificadores (Qual) e tempo de retenção
(Tr) utilizados no método TASQ. 48
Tabela 4 - Descrição dos critérios para pontuação dos compostos realizada no TASQ. 51
Tabela 5 - Pontuação MRSQ contendo o metabólito 10,11-dihidroxicarbamazepina
com a respectiva variação de exatidão de massa, variação de tempo de retenção e
mSigma para amostra 6A de Junho de 2018 53
Tabela 6 - Pontuação MRSQ contendo os 4-AAA com as respectivas variações de
exatidão de massa, variação de tempo de retenção e mSigma para amostra 3A de Março
de 2017
Tabela 7 - Pontuação MRSQ contendo os 4-AA com as respectivas variações de
exatidão de massa, variação de tempo de retenção e mSigma para amostra 2A de
Dezembro de 2016. Fonte: Dados extraídos do TASQ
Tabela 8 - Pontuação MRSQ para a 4-hidroxi-norefedrina e as respectivas variações
de exatidão de massa, variação de tempo de retenção e mSigma para amostra 4B de
Junho de 2017
Tabela 9 - Pontuação MRSQ para a Losartana ácido carboxílico (E-3174) e as
respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma
para amostra 6C de Junho de 2017
Tabela 10 - Pontuação MRSQ para o ácido 5- etilnicotínico e as respectivas variações
de exatidão de massa, variação de tempo de retenção e mSigma para amostra 1C de
Março de 2018. Q
Tabela 11 - Pontuação MRSQ para a benzoilecgnonina e as respectivas variações de
exatidão de massa, variação de tempo de retenção e mSigma para amostra 1A de
Setembro de 2018

Tabela 12 - Pontuação MRSQ para éster metílico de ecgonina e as respectivas
variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra
4C de Setembro de 2017
Tabela 13 - Pontuação MRSQ para Carbendazim e as respectivas variações de
exatidão de massa, variação de tempo de retenção e mSigma para amostra 2B de
Dezembro de 2016
Tabela 14 - Pontuação MRSQ para o carbofurano-fenol e as respectivas variações de
exatidão de massa, variação de tempo de retenção e mSigma para amostra 6B de
Dezembro
Tabela 15 Pontuação MRSQ para a Deetilatrazina e as respectivas variações de
exatidão de massa, variação de tempo de retenção e mSigma para amostra 3B de Março
de 2017
Tabela 16 – Pontuação MRSQ para o DHT e as respectivas variações de exatidão de
massa, variação de tempo de retenção e mSigma para amostra 6A de Junho de 2018
94
Tabela 17 - Pontuação MRSQ para o Fenpiroximato M-13 e as respectivas variações
de exatidão de massa, variação de tempo de retenção e mSigma para amostra 1A de
Setembro de 2016
Tabela 18 - Pontuação MRSQ para o Metolacloro OA e as respectivas variações de
exatidão de massa, variação de tempo de retenção e mSigma para amostra 2B de
Dezembro de 2016
Tabela 19 - Resumo do score de consensus e da confiabilidade dos resultados da
predição realizada individualmente pelos modelos Caesar, ISS, SarPy e KNN para o
desfecho de mutagenicidade para os compostos avaliados no arroio Dilúvio 116
Tabela 20 - Resumo do índice de domínio da aplicabilidade (IDA), índice de
similaridade, precisão, concordância, ACF (Atom centered fragments similarity check)
e confiabilidade dos resultados para os modelos Caesar, ISS e IFRMN utilizados para
a avaliação do desfecho de Carcinogenicidade dos compostos avaliados no arroio
Dilúvio
Tabela 21 Resumo do índice de domínio da aplicabilidade (IDA), índice de
similaridade, precisão, concordância, ACF (Atom centered fragments similarity check)
e confiabilidade dos resultados para o modelo Caesar, utilizado para a avaliação do
desfecho de toxicidade do desenvolvimento dos compostos avaliados no arroic
Dilúvio

Tabela 22 - Resumo do índice de domínio da aplicabilidade (IDA), índice de
similaridade, precisão, concordância, ACF (Atom centered fragments similarity check)
e confiabilidade dos resultados para o modelo IFRMN, utilizado para a avaliação do
desfecho de biodegradabilidade imediata dos compostos avaliados no arroio Dilúvio.
Tabela 23 - Estrutura do Propoxur e seus TPs identificadas pelo método empregado e
informações de tempo de retenção (TR), fórmulas protonadas do íon precursor e
fragmentos, erro de massa baseado na massa teórica e experimental, perfil isotópico
mSigma e valor de RDB obtidos por LC-Q-TOF/MS
Tabela 24 - Resumo do score de consensus e da confiabilidade dos resultados da
predição realizada individualmente pelos modelos Caesar, ISS, SarPy e KNN para o
desfecho de mutagenicidade para o Propoxur e seus TPs obtidos por fotólise direta.
Tabela 25 -Resumo do índice de domínio da aplicabilidade (IDA), índice de
similaridade, precisão, concordância, ACF (Atom centered fragments similarity check)
e confiabilidade dos resultados para os modelos IFRMN-ISSCAN-CGX utilizado para
a avaliação do desfecho de Carcinogenicidade para o Propoxur e seus TPs obtidos por
fotólise direta
Tabela 26 - Resumo do índice de domínio da aplicabilidade (IDA), índice de
similaridade, precisão, concordância, ACF (Atom centered fragments similarity check)
e confiabilidade dos resultados para o modelo Caesar, utilizado para a avaliação do
desfecho de toxicidade do desenvolvimento para o Propoxur e seus TPs obtidos por
fotólise direta
Tabela 27 - Resumo do índice de domínio da aplicabilidade (IDA), índice de
similaridade, precisão, concordância, ACF (Atom centered fragments similarity check)
e confiabilidade dos resultados para o modelo IFRMN, utilizado para a avaliação do
desfecho de biodegradabilidade imediata para o Propoxur e seus TPs obtidos por
fotólise direta

GLOSSÁRIO DE SIGLAS E ABREVIATURAS

ADI – Índice do domínio de aplicabilidade

APCI – Atmospheric Pressure Chemical Ionization

bbCID – Dissociação induzida por colisão de banda larga

CAS – Chemical Abstract Service

CD - Cromóforo Ambiental

CE – Contaminantes Emergentes

CFM-ID – Competitive Fragmentation Modeling for Metabolite Identification

CONAMA - Conselho Nacional de Meio Ambiente

CSV – Valores separados por vírgula

CT – Arquivo de Tabela Química

DDDs – Doses diárias definidas

DrugBank - Banco de dados de drogas

EF - Eletro Fenton

EO-H₂O₂ - Eletroxidação com H₂O₂

EPA-US - United States Environmental Ptotection Agency

ESI – Eletrospray Ionization

ETE - Estação de Tratamento de Esgoto

FWHM – largura a meia altura

GM/MS – Gabinete do Ministro/ Ministério da Saúde

HMDB – The Human Metabolome Data Base

HPLC – Cromatografia líquida de alta eficiência

IAs – Ingredientes ativos

IBAMA – Instituto Brasileiro de Meio Ambiente

IDH – Índice de deficiência de Hidrogênio

InCkey – Chave (identificador químico) da União Internacional de Química Pura e Aplicada

IUPAC – União Internacional de Química Pura e Aplicada

LC – Cromatografia líquida

LC-MS – Cromatografia líquida acoplada à espectrometria de massa

LC-q-TOF/MS - Cromatografia líquida acoplada a espectrometria de massa com analisador por tempo de vôo

m/z – razão massa carga

MS – *Mass Spectrometry*

MS/MS - Analisador de massa em seqüência

MS-MS/MS – análise de massa de íons específicos em seqüência

NC – Níveis de confiança

nm – nanômetro

OECD – Organização para cooperação do desenvolvimento econômico

PEF - Foto- eletrofenton

PFASs – Fluorosurfactantes

QqQ – Triplo quadrupolo

QR – Quociente de Risco

QSAR – Quantitative structure- activity relationship

QTOF- Quadrupolo/Analisador por tempo de vôo

RDB - Ring doublebond equivalentes

REACH - Registration, Evalution, Authorization na d Registration of Chemical

REMUNE – Relação municipal de medicamentos

RS - Rio Grande do Sul

SEAPDR – Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural

SES – Secretaria Estadual de Saúde

SCN – Sistema nervosa central

SMILES - Simplified Molecular-Input Line-Entry System

TASQ - Software Targeted Analysis for Screening and Quantitation

TDAH - Transtorno do déficit de atenção com hiperatividade

TOC - Carbono Orgânico Total

TOF – Time of Flight

TPs – Transformation Products

TPY - 2,4,6 Trifenilpirílio

UE – União Europeia

UHPLC – Cromatografia líquida de ultra alta eficiência

UNODC – Escritório das Nações Unidas sobre Drogas e Crimes

UV – Ultravioleta

WHO - World Health Organization

SUMÁRIO

1	. li	ntrodução	1
2	. 0	Objetivos	4
	2.1	Objetivo geral	4
	2.2	Objetivos específicos	4
3	. R	Revisão Bibliográfica	5
	3.1	Uma visão geral sobre Contaminantes Emergentes	5
	3.2	Presença de Contaminantes Emergentes no Ambiente	7
	3.3	Aspectos Regulatórios	9
	3.4.	Metabólitos e Produtos de Transformação	10
	3.5	Estudos sobre fotodegradação do inseticida Propoxur	19
	3.6	Metodologias Analiticas para avaliação de Contaminantes Emergentes	25
	3.	.6.1 Instrumentação analítica	25
	3.	.6.2 Fluxo de Trabalho para avaliação de Metabólitos e TPs	29
	3.7	Ferramentas de Quimioinformática	35
	3.	.7.1 Metodologias in silico para avaliação de toxicidade	37
4	N	Nateriais e Métodos	38
	4.1	Monitoramento Ambiental: Amostragem e preparo de amostras	38
	4.2	Pré-processamento de dados	39
	4.	.2.1 Métodos de Priorização	39
	4.3	Parâmetros utilizados na triagem de compostos suspeitos	40
	4.4	Avaliação temporal e espacial	41
	4.5	Fotodegradação e elucidação estrutural dos TPs do inseticida Propoxur	42
	4.	.5.1 Experimentos de fotólise	42
	4.	.5.2 Condições instrumentais de análise	42
	4.	.5.3 Sistemática para avaliação dos TPs	43

4	4.6 Avaliação de Risco
5. Resultados e Discussão	
	5.1 Metodologia <i>suspect screening</i> na avaliação de compostos das amostras do ArroioDilúvio
	5.1.1 Interpretação dos dados utilizando o TASQ
5	5.2 Avaliação espaço-temporal dos compostos identificados por suspect screening 102
5	5.3 Avaliação de risco utilizando a toxicidade in silico para compostos suspect
S	screening
	5.3.1 Mutagenicidade
	5.3.2 Carcinogenicida
	5.3.3 Toxidade do desenvolvimento
	5.3.4 Biodegradabilidade imediata
5	5.4 Avaliação dos TPs do Propoxur obtidos por fotólise direta
5	5.4.1 Avaliação de risco para Propoxur e seus TPs
	5.4.1.1 Mutagenicidade
	5.4.1.2 Carcinogenicida
	5.4.1.3 Toxicidade do desenvolvimento
	5.4.1.4 Biodegradabilidade imediata
6	Considerações finais
7	Referências
8	Apêndices
9.	Anexos

1. Introdução

Contaminantes ambientais são frequentemente detectados em diversos compartimentos naturais como água, ar, solo e sedimentos, sendo a atividade humana a principal responsável pela inserção desses compostos no ambiente ^{1–3}. Fármacos de uso humano e veterinário, drogas ilícitas, pesticidas, hormônios e produtos de higiene pessoal estão entre os compostos de maior impacto ^{4–8}.

Os compostos secundários, a exemplo dos metabólitos, representam um risco ambiental e sanitário, podendo apresentar toxicidade, mobilidade e persistência superior aos seus produtos de partida, fato que torna relevante o estudo destes compostos para evidenciar suas propriedades ^{9–14}. O efeito nocivo de misturas de compostos, candidatos a contaminantes sobre o organismo, denominado de efeito coquetel, é considerado o maior risco quando produtos parentais e metabólitos têm seus efeitos avaliados isoladamente ^{15–17}. O risco toxicológico está associado à exposição prolongada do organismo humano e da biota aos contaminantes onipresentes no ambiente em baixas concentrações, na faixa de µg L⁻¹ e ng L⁻¹. Estes, são tipicamente relacionados a efeitos e doenças crônicas, ou seja, observadas a longo prazo, por vezes de caráter irreversível ¹⁸⁻²¹

Metabólitos chegam ao ambiente via excreção humana e animal, sendo gerados também por metabolismo microbiano e vegetal diretamente na natureza, quando em contato com a água e organismos aquáticos, solo e sedimento ^{7,22,23}. Produtos de transformação (TPs, do inglês *Transformation Products*) possuem a mesma relevância ambiental e são formados por processos abióticos como fotólise, hidrólise ou oxirredução ²⁴. Produtos de transformação são comumente formados em estações de tratamento de esgoto (ETEs) ^{25,26}. ETEs são consideradas fontes pontuais de contaminação de águas superficiais, pois através dos processos de tratamento de efluentes os contaminantes são parcialmente eliminados e uma fração desses compostos é posteriormente devolvido ao meio ambiente ^{27,28}. Escoamento de águas de origem agrícola e efluente industrial, são fontes particulares de contaminação ambiental e causam impacto significativo sobre as águas ²⁹⁻³².

A identidade, propriedades e vias de degradação de alguns TPs podem ser melhor compreendidas por processos de fotodegradação simuladas em laboratório, fornecendo evidências do seu comportamento no ambiente. Nesses estudos utiliza-se, geralmente, concentrações superiores as ambientais em amostras sintéticas, em solvente orgânico ou água, que são submetidos a ação da luz, catalisadores por fotossensibilizadores com capacidade de degradar os contaminantes em estudo ^{33–36}.

O potencial de técnicas analíticas recentes baseadas na espectrometria de massa, sobretudo as que utilizam analisadores de massa de alta resolução, têm sido aplicadas em métodos de análise não direcionada ou triagem de compostos suspeitos. Com esta abordagem é possivel detectar, através de um amplo escopo, compostos desconhecidos ^{37–40}. Dentre as principais vantagens dessas metodologias estão a alta resolução, com poder de diferenciar compostos com massas adjacentes de forma precisa, em uma ampla faixa de dados, de forma dinâmica e versátil, sem necessidade de padrão de referência.

Como metabólitos e TPs não são legislados, sendo considerados contaminantes emergentes, a disponibilidade de informações sobre suas propriedades, estrutura, atividade biológica e toxicológica tornam-se incógnitas. Portanto, a análise não direcionada é a metodologia mais adequada nesses casos ^{41,42}. Devido ao grande volume de contaminantes emergentes detectados em amostras ambientais a cada ano e da incerteza sobre suas reais propriedades, diversos estudos têm se concentrado em propor uma lista de compostos prioritários. Diversos aspectos são considerados através de bancos de dados que facilitam o fluxo de trabalho ^{43–47}. Estes aspectos são a frequência de detecção e concentração em amostras de relevância ambiental, toxicidade, volume consumido e comercialização.

No que tange a avaliação de toxicidade, métodos computacionais de predição *in silico* emergem como uma ferramenta viável para a determinação dos efeitos toxicológicos de novos contaminantes, tanto para estudos de monitoramento quanto para métodos de priorização ^{48,49}. A grande vantagem dos métodos *in sílico* sobre os *in vivo* ou *in vitro*, é a não utilização de seres vivos ou embriões⁵⁰. Muitos métodos computacionais são baseados em modelos preditivos quantitativos de relação entre estrutura e atividade (Q)SAR (*Quantitative Structure-Activity Relationship*), que estima o grau de toxicidade de contaminantes, incluindo propriedades como ecotoxicidade, mutagenicidade, carcinogenicidade, entre outras. Modelos QSAR têm sido largamente utilizados para a análise de risco, e sugeridos por agências reguladoras europeias, como o *Registration*, *Evaluation, Authorisation and Restriction of Chemicals* (REACH) ⁵¹.

Em avaliações onde muitos dados são gerados, muitas vezes a análise univariada torna-se mais trabalhosa e menos conclusiva. Neste aspecto, a quimiometria, sobretudo

através da análise multivariada, é a mais adequada no tratamento de dados complexos e em grande escala, característica dos estudos na área de contaminantes emergentes em amostras ambientais ^{52,53}. A análise exploratória é aplicada nesses casos, pois permite visualizar de forma mais clara o comportamento de amostras e como elas estão relacionadas ou agrupadas, reduzindo muitas variáveis do sistema ^{54–56}.

Dessa maneira, o presente estudo tem o intuito de desenvolver um fluxo de trabalho para avaliação de metabólitos e produtos de transformação de substâncias diversas em amostras de águas superficiais oriundas do monitoramento ambiental do Arroio Dilúvio, através da metodologia de triagem de compostos suspeitos (*suspect screening*), utilizando avaliação *pós data*. Além disso, foi realizado estudo para elucidação estrutural dos produtos de transformação do inseticida Propoxur obtidos por fotólise direta em água. Este estudo foi realizado tendo por finalidade apresentar as etapas necessárias para estudos de degradação que tenham como resultado a identificação de TPs. Assim foi possível dimensionar todo o trabalho envolvido nestes processos. A opção pelo Propoxur deveu-se ao fato de que há pouquíssimos dados na literatura, ele não é legislado, ou seja, não há limites máximos permitidos em diferentes amostras e compartimentos ambientais, no entanto é extensivamente utilizado em diversas formulações como inseticida de uso doméstico.

2. Objetivos

2.1 Objetivo geral

Utilização da sistemática de "compostos suspeitos" para investigação de metabólitos e produtos de transformação de contaminantes orgânicos, em amostras de água.

2.2 Objetivos específicos

- ➤ Estabelecer dinâmica para a análise de compostos suspeitos (*suspect screening*), por espectrometria de massa de alta resolução;
- ➤ Utilizar a metodologia estabelecida para a identificação de metabólitos e produtos de transformação de diferentes substâncias, em amostras de água do Arroio Dilúvio;
- ➤ Avaliar o comportamento espacial e temporal dos TPs e metabólitos encontrados nas amostras do Arroio Dilúvio;
- ➤ Utilizar o inseticida Propoxur como modelo no dimensionamento das etapas de invetigação de compostos suspeitos obtidos via fotólise direta em água;
- ➤ Realizar a elucidação estrutural dos TPs do Propoxur obtidos por fotólise direta em água;
- ➤ Avaliar modelos preditivos e apresentar a toxicidade *in silico* dos metabólitos e TPs em estudo.

3. Revisão Bibliográfica

3.1 Uma visão geral sobre Contaminantes Emergentes

Contaminantes emergentes (CEs) são um grupo de substâncias não legisladas descobertas recentemente e que vêm sendo lançadas regularmente no meio ambiente há décadas, decorrente de diversas atividades antrópicas ^{57–59}. Podem ser persistentes e apresentar alta mobilidade nos compartimentos ambientais ^{60,61}.

Embora a existência destes compostos não seja necessariamente nova ⁶², sua presença têm sido revelada devido ao desenvolvimento de técnicas analíticas sensíveis, com capacidade de detectar concentrações em nível de traço e ultra traço ^{63–65}. Os compostos orgânicos são um grande grupo de contaminantes e estão entre os mais comumente encontrados no ambiente, tais como os agrotóxicos utilizados na agropecuária e utilidades domésticas, medicamentos diversos, produtos de higienização pessoal, Fluoro surfactantes (PFASs) utilizados em retardadores de chamas, produtos domésticos como teflon, tecidos e repelentes, plastificantes, hormônios, drogas ilícitas e produtos industriais diversos ^{66–71}.

A probabilidade de oferecer risco à saúde humana é a forma mais adequada de categorizar esses compostos baseado em suas propriedades físico químicas, que definem também o tipo de compartimento ambiental afetado, como solo, ar, águas e sedimentos ^{72,73}. No entanto, a qualidade dos sistemas hídricos tem recebido grande atenção, pois a maioria destes contaminantes possuem estabilidade e atividade biológica nas águas ⁷⁴. Como consequência, através das águas os contaminantes podem percorrer grandes áreas e comprometer a manutenção da biodiversidade aquática ^{75–79}.

As bacias hidrográficas através dos mananciais são fontes de água potável para o abastecimento da população. Diversos contaminantes têm sido identificados em água potável, o que representa um potencial problema social ^{80–82}. A presença constante de alguns destes compostos tais como os antimicrobianos, no solo e na água interferem no desenvolvimento dos microorganismos, através da formação de cepas resistentes ^{83–86}.

Estudos sobre o efeito desregulador endócrino dos CEs são bem difundidos ^{87–91} e a investigação sobre a toxicidade em humanos, biota e o destino ambiental dos contaminantes é crescente ^{92–96}. No entanto, os efeitos sinérgicos e biocumulativos dessas substâncias capazes de gerar doenças crônicas ainda representam um desafio no que diz respeito a sua avaliação de risco ^{97–102}.

O monitoramento ambiental tem sido a forma de controle de CEs mais adequada, principalmente em fontes não pontuais de contaminação que são difíceis de controlar decorrente do efeito da sazonalidade através das chuvas e oscilação de temperatura, que comprometem a frequência e a concentração dos contaminantes no ambiente ^{81,103–105}.

São fontes não pontuais de contaminação a lixiviação do solo, escoamento pluvial e de águas provenientes do esgoto doméstico, hospitalar e industrial sem tratamento adequado em que os contaminantes são transportados e depositadas diretamente nos recursos naturais ^{106,107}. As ETEs representam um importante sistema para o tratamento de efluentes. No entanto, os processos de tratamento utilizados não são completamente eficazes na degradação total dos contaminantes, dependendo das características de cada grupo de compostos e do tratamento aplicado ^{108–111}. Dessa forma, o efluente tratado é liberado no ambiente podendo ainda conter mistura de contaminantes parentais e seus produtos de degradação que podem ser gerados ao longo do processo de tratamento ^{59,112}. A **figura 1** apresenta os possíveis caminhos de contaminação de águas superficiais e processos subsequentes.

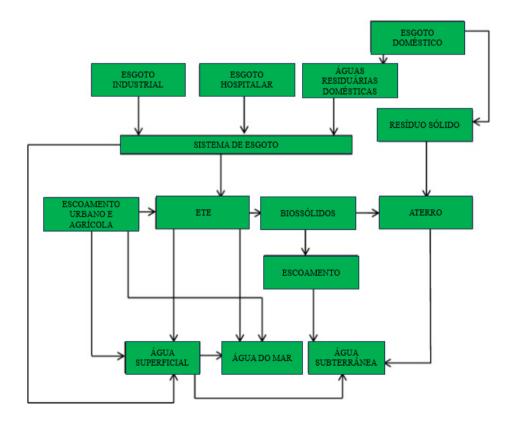


Figura 1 - Principais caminhos de contaminação dos recursos aquáticos por CEs 113

3.2 Presença de Contaminantes Emergentes no Ambiente

A presença de contaminantes orgânicos (emergentes, legislados ou não) no ambiente é sempre objeto de estudo crescente. Serão relatados alguns destes estudos que estão diretamente relacionados ao assunto desta dissertação.

Os fármacos são um grupo de CEs de maior incidência, principalmente em zonas urbana e juntamente com os agrotóxicos são os contaminantes de maior predominância nas de águas no Brasil ¹¹⁴. Estima-se que em média 3.000 ingredientes ativos (IAs) sejam utilizados para a concepção de medicamentos diversos ¹¹⁵. Os principais são: antibióticos, hormônios naturais e sintéticos, antirretrovirais, anti-hipertensivos/betabloqueadores, antiepiléticos seus metabólitos e conjugados ^{116–120}.

Um dos pontos a serem ressaltados é o fato de que nos últimos anos, há relatos do aumento das doses diárias definidas (DDDs) para antibióticos em 76 países em um período de 16 anos, totalizando aproximadamente 35 bilhões de doses, o que representa um aumento de 65% no período avaliado ¹²¹. A estimativa é que nos próximos 10 anos os antibióticos atinjam uma margem 126 bilhões de doses definidas, já que entre 30% e 90% somente dessa classe de fármacos é liberada no ambiente na forma inalterada ou como metabólitos ¹²². Regiões próximas a hospitais são pontos de críticos e podem apresentar maior diversidade, incidência e concentração de fármacos do que em outras regiões ^{123,124}. Isso se deve ao fato de que muitos estabelecimentos de saúde ainda possuem lacunas no gerenciamento sobre o descarte de seus resíduos ¹²⁵.

No que diz respeito aos agrotóxicos, a variedade de ingredientes ativos de agrotóxicos utilizados no manejo agrícola faz com que esses contaminantes sejam comumente encontrados em regiões rurais. A deposição de fezes de animais tratados com antimicrobianos profiláticos são também potenciais contaminantes, juntamente com os fertilizantes orgânicos que incluem, em alguns casos, os biossólidos provenientes de esgoto doméstico ^{126–129}.

Além disso, também as drogas ilícitas e seu metabólitos já foram detectadas em amostras de águas superficiais, sendo conduzidas via sistema de esgoto até os recursos hídricos ^{130–133}. A presença dessas substâncias no ambiente tem importância ambiental e forense devido ao seu uso ilegal. A estimativa da liberação dessas substâncias no ambiente se torna mais complexa do que fármacos e agrotóxicos, por exemplo, que tem liberação de comercialização¹³⁴.

Outra classe de contaminantes que merece atenção são os ftalatos. Há trabalhos que indicam a quantificação deles em águas superficiais urbanas e água da torneira, com

influência da variação sazonal ¹³⁵. Para as amostras de águas da torneira, as concentrações de ftalatos variaram de 71 a 3.881 ng L⁻¹ durante a estação chuvosa e de 72 a 153 ng L⁻¹ durante a estação seca. Os ftalatos estavam presentes em todas as amostras de águas superficiais analisadas, com concentrações de 307 ng L⁻¹ a 1804 ng L⁻¹ e 358 ng L⁻¹ a 1992 ng L⁻¹ durante as estações chuvosa e seca, respectivamente.

Na China, 17 locais de amostragem em um rio foram avaliados e 70 CEs foram identificados ¹³⁶. Os principais grupos de compostos foram produtos farmacêuticos, de higiene pessoal e agrotóxicos, incluindo Sucralose, 1H-Benzotriazol e Carbendazim com concentração variando entre 0,592 a 4650 ng L⁻¹. Medroxiprogesterona e trembolona foram considerados contaminantes prioritários com potencial mutagênico nos ensaios de toxicidade.

Na América Latina, alguns estudos mostram a presença de CE em diversas regiões: Na Argentina, glifosato, AMPA e atrazina, presentes em mais de 70% das amostras de águas superficiais análisadas ¹³⁷; na Colômbia com o aumento de até 14 vezes na concentração de analgésicos e antiinflamatórios após a pandemina do COVID-19 ¹³⁸ e 12 substâncias perfluoroalquiladas e polifluoroalquiladas (PFAS), identificadas em amostras de água, variando entre 0,06 a 0,52 μg L ^{-1 139}; no Peru antibióticos, antihipertensivos, analgésicos, hormônios, conservantes, filtros UV e drogas de abuso, incluindo seus metabólitos , identificados por triagem de suspeitos com alta nível de confiança ³⁷ e no México, paracetamol, naproxeno, eritromicina, sulfametoxazol, acetil-sulfametoxazol, bezafibrato, diclofenaco e 4-terc-ocifenol foram previstos como desreguladores endócrinos com potencial risco ambiental ¹⁴⁰.

No Brasil, muitos estudos já foram publicados ^{141–144} sendo que grande quantidade de fármacos na faixa de concentração de (0,019 – 0,193 mg L⁻¹)¹⁴⁵, (11 – 4.200 ng L ⁻¹) ¹⁴⁶, agrotóxicos e seus TPs (na faixa de concentração 0,002 a 0,080 μg L⁻¹) ¹⁴⁷, bem como produtos de higiene pessoal, hormônios, drogas ilícitais, produtos industriais, dentre outros avaliados ^{148–152}. Além da presença destes CEs, os estudos também apresentaram dados de resistência microbianas ¹⁵³ indicando que a preocupação ambiental vai além da questão da detecção destes compostos no ambiente, mas principalmente aos efeitos que os mesmos podem causar a biota.

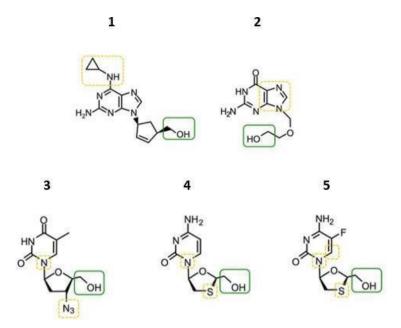
3.3 Aspectos Regulatórios

Os aspectos regulatórios sobre contaminantes, estabelecidos por diferentes órgãos de interesse ambiental, estão relacionados à concentração de cada substância, que quando excedida pode apresentar risco aos ecossistemas após um período de exposição prolongado¹⁵⁴. Porém, no caso de CEs não existe diretrizes regulatórias fixando concentrações permitidas para água ambiente e potável, devido aos dados sobre sua ocorrência, comportamento, propriedades ainda serem escassos, o que compromete em parte o seu monitoramento.

Como a presença de CEs no ambiente se tornou um problema global, pesquisadores de inúmeros países vêm trabalhando para reduzir as dificuldades encontradas nos estudos de monitoramento ambiental dessas substâncias, principalmente no que diz respeito aos métodos de priorização de substâncias para gestão de risco, baseados no consumo, frequência de detecção, concentrações ambientais e toxicidade ^{44,155,156}. Tais esforços são baseados em estudos colaborativos, que abrangem a troca de informação, consulta a resultados analíticos considerando os métodos, equipamentos e matrizes de interesse comum, dados espectrais arquivados em softwares e banco de dados de acesso aberto, capazes de comportar um grande volume de informações. Evidencia-se também a necessidade crescente de pesquisas relacionadas a essa temática, à medida que a demanda de investigação sobre CEs cresce a cada ano ^{157–160}.

Através desses processos algumas listas de CEs prioritárias foram criadas. A União Europeia (UE) possui uma infinidade de estudos sobre CEs, desde finais da década de 90. Neste sentido, eles foram os primeiros a estabelecerem lista de compostos vigiados a partir dos estudos realizados durante quase duas décadas ^{161–163}. O marco regulatório sobre CEs na Europa foi no início dos anos 2000 com as diretrizes para adoção de fornecimento de água potável segura para a população até a criação do REACH em 2006. Este marco, teve o objetivo de registrar, avaliar, autorizar e restringir o uso de produtos químicos de uso geral.

A agência de proteção ambiental dos Estados Unidos, a EPA-US (do inglês, *Environmental Protection Agency - United States*), atualiza a cada cinco anos a lista de candidatos a contaminantes de água potável (CCL). As atualizações mais recentes incluem 97 substâncias químicas e 12 contaminantes microbianos, incluindo agrotóxicos, toxinas biológicas, subprodutos de desinfecção, fármacos, patógenos, cianotoxinas, per/polifluoralquílicos e tensoativos organoclorados presentes em mais de 5000 produtos comerciais ¹⁶⁴.


No Brasil, atualmente, estão estabelecidos os padrões de qualidade para águas superficiais e água potável, considerando propriedades físicas e químicas dos contaminantes, classe toxicológica e níveis de consumo de produtos em geral que contenham ingredientes ativos considerados contaminantes em potencial. Para águas superficiais, a resolução CONAMA nº 357/2005 estabelece as condições de padrões de efluentes que podem ser dispostos em águas superficiais, apresentando limites regulatórios especificamente para ingredientes ativos de agrotóxicos.

Os parâmetros de potabilidade de águas em nível nacional são descritos pela portaria GM/MS n° 888/2021, que fornece limites regulatórios para agrotóxicos, dos quais estão incluídos Atrazina Glifosato e seus metabólitos ¹⁶⁵. Estes dois agrotóxicos possuem alta comercialização no Brasil.

A portaria estadual RS/SES n° 320/2014 estabelece 46 parâmetros para agrotóxicos em água potável no estado do Rio Grande do Sul ¹⁶⁶. Em geral, os valores são inferiores ao de ingredientes ativos reconhecidamente comercializados e detectados no ambiente como contaminantes ^{143,167}. Além disso, nesta portaria não há referências aos metabólitos ou produtos de transformação. Os fármacos e outros CEs não possuem referências estabelecidas para águas, superficial ou potável.

3.4. Metabólitos e Produtos de Transformação

Embora a literatura utilize o termo produto de transformação (TP) para classificar também metabólitos, os mecanismos de formação desses dois grupos de compostos são distintos, mesmo que ambos os processos, em alguns casos, possam levar à formação da mesma molécula. As alterações funcionais que geram a transformações biológicas e química nas moléculas ocorrem em diferentes grupos funcionais (**Figura 2**).

Figura 2 - Sítios prováveis de transformação química para geração de TPs (em amarelo) e biotransformação (em verde) nos medicamentos antirretrovirais (1) Abacavir, (2) Aciclovir, (3) Zidovudina, (4) Lamivudina e (5) Emtricitabina **Fonte:** (Prassi, 2015) ¹⁶⁸

A metabolização consiste em um processo de transformação bioquímica de compostos xenobióticos, através de distintos sistemas enzimáticos, que tem o objetivo de garantir a inativação da molécula, quando possível, e sua eliminação do organismo. Pequenas alterações estruturais ocorrem neste processo que conferem propriedades diferentes em relação à molécula original, permitindo a eliminação do organismo 169.

Na primeira fase do metabolismo, conhecida como fase I ou biotransformação é comum ocorrer reações de oxidação, hidrólise e redução, obtendo-se majoritariamente metabólitos contendo grupos funcionais do tipo –OH, –NH₂, –SH ou –COOH. Em grupos alquila e arila ocorrem mecanismos de N e O-desalquilação, hidroxilação e formação de grupo sulfóxido. Aminas primárias e secundárias sofrem desaminação ou dessulfuração. Reações de redução são mais raras, e ocorrem principalmente na conversão de cetonas a álcoois ¹⁷⁰.

O objetivo da metabolização na fase I é gerar metabólitos com polaridade superior aos compostos originais. No entanto, é comum que muitas reações que ocorrem nessa etapa não sejam suficientes para assegurar o aumento da polaridade garantindo a eliminação do composto. Sendo assim o metabolismo da fase I funcionaliza a estrutura

da molécula, tornando-a um substrato para reações metabólicas ocorridas na fase II, quando necessário. A molécula original poderá sofrer reações somente de fase II, dependendo da sua estrutura e propriedades.

A característica fundamental para um substrato sofrer reações na fase II de metabolização é conter grupos nucleofílicos que, mediante a um grupo doador ativo, sejam capazes de realizar reações de substituição ou adição nucleofílica. Na fase II de metabolização também conhecida como etapa de conjugação, as enzimas transferem uma molécula endógena de alta polaridade para o substrato, originando conjugados mais hidrossolúveis. A **figura 3** apresenta as reações de oxidação através da hidroxilação do Ibuprofeno e da N-oxidação da (S)-Fluoxetina e de hidrólise e redução da Cocaína e da Nimesulida, respectivamente.

Figura 3 - Mecanismos mais comuns na fase I de metabolização para os compostos (1) Ibuprofeno e (2) (S) -Fluoxetina (3) Cocaína e (4) Nimesulida **Fonte**: (Barreiro, 2013).

duplas.

¹ CYP ou Citocromo Oxidase é um grupo amplo e versátil de enzimas responsável pela oxidação de xenobióticos no organismo com objetivo de torna-los polares e hidrossolúveis, enquanto estearases catalisam reações de hidrólise em grupos funcionais ésteres. Enzimas redutase atuam em processos de oxiredução, reduzindo grupos nitrato a nitrito por exemplo ou através da adição de hidrogênio a ligações

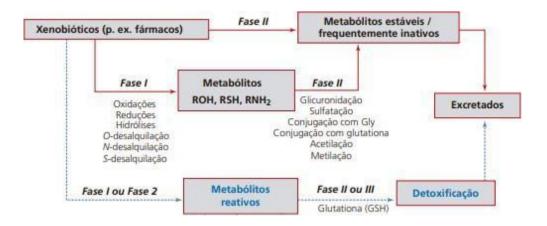
A principal reação de fase II para maioria dos xenobióticos é a conjugação com ácido glicurônico ou glicuronidação, onde ocorre a condensação do ácido glicurônico e a estrutura nucleofílica do substrato correspondente, resultando em metabólitos Oglicuronato ou N-glicuronato, acil-glicuronato hidrofílicos, conforme demonstrado na **figura 4**.

2

Figura 4 - Conjugação por glicuronidação do **(1)** Enalapril e da **(2)** Duloxetina **Fonte:** (Barreiro, 2013).

² UGT corresponde a UDP-glucoronil-transferase uma enzima que atua na fase II de metabolização catalisando principalmente as reações onde os substratos são grupos fenólicos, álcoois, aminas e ácidos graxos endógenos ou exógenos. O UDPGA corresponde ao ácido UDP-Glicurônico.

A sulfa conjugação ou sulfatação é uma reação que ocorre entre substratos contendo grupos funcionais amina (RNH₂ ou RRNH), hidroxilaminas (RNHOH) e álcoois (ROH) podendo ser alifáticos ou aromáticos. O resultado deste processo são metabólitos sulfonatos (RNHSO₃) e sulfamatos (ROSO₃), que são estáveis e inativos quando eliminados pelo organismo. A conjugação com aminoácido também ocorre na fase II do metabolismo, embora sejam mais raras, as reações envolvendo Glicina e substratos com grupo funcional de ácidos carboxílicos é a mais comum. Na metilação, substratos que contenham grupos amina (RNH₂) ou álcool (ROH) ou sulfidrila (RSH) resultam em metabólitos O-, N- ou S-metilados. A **figura 5** demonstra alguns exemplos de reação de sulfatação com doador ativo PAPS (3'-fosfoadenosina-5'- -fosfosulfato) catalisada por sulfotransferases (SULT).


Figura 5 - Sulfatação do (1) ceftriaxona e da (2) propanolol (3) ciprofloxacino Fonte: (Barreiro, 2013).

³ PAPS (3' -fosfoadenosina-5' - -fosfosulfato) é uma molécula doador ativa (coenzima) responsável por inibir a toxicidade de xenobióticos em reações de sulfatação; SULT ou sulfotransferases é a enzima responsável por esta reação.

Nas reações de acetilação os substratos contendo grupos NH₂ de aminas, sulfonamidas, hidrazinas e hidrazidas, ou grupos OH de fenóis e álcoois recebem a transferência de um grupo acetila, formando metabólitos apolares, mas que podem posteriormente serem hidrolisados e produzir metabólitos mais tóxicos. No entanto, existem reações na fase II do metabolismo que são fundamentais na desfuncionalização de compostos gerados na fase I, inibindo a toxicidade. A conjugação com glutationa (GSH) é um exemplo deste processo. **A figura 6** demonstra um exemplo de reação de acetilação e a **figura 7** apresenta um resumo geral das reações de metabolização de xenobióticos.

Figura 6 - Reação de acetilação do antineoplásico da hidralazina **Fonte:** (Barreiro, 2013).

⁴ O- ou N-acetiltransferases são responsáveis por promover a transferência de um grupo acetila, a partir do cofator acetil CoA, para a estrutura do substrato.

Figura 7 - Resumo do processo de metabolização de xenobióticos **Fonte:** (Barreiro, 2013)

Os compostos eliminados de forma inalterada ou na forma de metabólitos ativos, podem ser transformados diretamente na água ou no solo, por processos exclusivamente de natureza química (processos abióticos), gerando TPs, que são depositados no meio ambiente por outros processos. Os principais mecanismos envolvendo os TPs ocorrem por reações fotoquímicas a partir da exposição dos compostos a energia solar, combinados com reações de oxi redução e hidrólise ¹⁷¹.

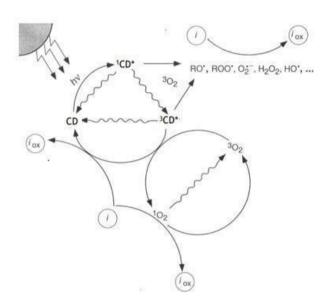
O princípio de um processo fotoquímico está relacionado às transições eletrônicas das moléculas¹⁷². Neste processo os elétrons ocupam níveis energéticos mais elevados decorrente da absorção de energia. Em um dado período de tempo os elétrons retornam ao seu estado fundamental liberando energia na forma de luz ou calor, com fragmentação das ligações químicas, gerando diferentes compostos, através do processo de fotodegradação. Processos físicos e químicos decorrente da absorção de luz podem resultar em transferência de energia ou elétrons para outras substâncias ¹⁷¹.

Em águas superficiais, as reações fotoquímicas são essenciais na degradação e destino de contaminantes persistentes. Na camada superficial de corpos d'água ocorre a irradiação solar de forma abundante ao longo do dia, induzindo processos de fotodegradação, como a fotólise direta e indireta.

Na fotólise direta a energia é absorvida por um grupo cromóforo da molécula, um grupo funcional com regiões ricas em elétrons, fator que os torna bons absorvedores de luz ^{173–176}. A absorção desta energia resulta na quebra das ligações da própria molécula absorvedora, conforme demonstrado na **figura 8**.

A fragmentação das ligações da molécula gera novos compostos por mecanismos como abstração de hidrogênio da molécula, rearranjo, formação de isômeros, dimerização dentre outros processos. Ocorre perda de energia vibracional na forma de calor e emissão de luz, podendo essas formas de energia serem transmitidas para outros compostos ¹⁷⁷.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$


Figura 8 - Reação de transformação do Clorobenzeno em Fenol por dois diferentes mecanismos iniciados pela ação da absorção da luz, via fotólise direta. **Fonte:** Adaptado de (Schwarzenbach et al., 2002) 177

Na fotólise indireta, a energia é absorvida por componentes fotossensibilizadores presentes na água. Os íons metálicos, nitrito, nitrato e ácidos húmicos dissolvidos na água presentes na matéria orgânica são os fotossensibilizadores que mais contribuem para esse processo, conforme demonstrado nas reações abaixo para os nitratos e nitritos:

(1)
$$NO_3 \rightarrow NO_3^* \rightarrow NO_2 + O^- \rightarrow OH_2 + OH^-$$

(2)
$$NO_2 \rightarrow NO_2^* \rightarrow NO + O \rightarrow OH_2 + OH^-$$

Os fotossensibilizadores possuem maior capacidade de absorção da energia luminosa do que os contaminantes presentes no meio, gerando caminhos de degradação alternativos, decorrente da produção de espécies oxidativas intermediárias como os radicais livres. As espécies intermediárias, previamente produzidas, irão reagir com os contaminantes, promovendo sua degradação ^{178,179}. A **figura 9** demonstra o ciclo genérico da reação entre um cromóforo ambiental no estado excitado (CD*), capaz de gerar espécies reativas intermediárias para iniciar a degradação de um contaminante, representada por (i); nesse caso (i_{ox}) representa o produto da reação e na **Tabela 1** são demonstrados as principais reações que ocorrem contaminantes no ambiente.

Figura 9 - Ciclo catalítico da degradação de um contaminante ambiental via fotólise indireta. **Fonte:** (Schwarzenbach et al., 2003) ¹⁷⁷

.

Tabela 1 - Reações mais comuns na formação de TPs abióticos.

Transformação	Reação		
Nitro	NO2 → NH2		
Haleto alifática	$\begin{array}{c} \text{C-Cl} \longrightarrow \text{CH} \\ \text{C=O} \longrightarrow \text{C-C} \end{array}$		
Carbonil			
Éster carboxílico	-COOR → COOH + ROH		
Éster fosfato	$P(S,O) - OR \rightarrow P(O,S) - OH + ROH$		
Amida	- CONHR → COOH + H2NR		
N-oxidação	$R3N \rightarrow R3NO$		
Sulfoxidação	- S- → S. + O. → OSO		
Dessulfuração	PS → PO		
N-dealquilação	NCH3 → NCH2OH → NH + HCHO		
	OCH3 → OCH2OH → OH + HCHO		
Hidroxilação alifática			
Hidroxilação aromática	OH OH		
Nitro hidrólise	O II+ N O O O H		
Halo-hidrólise	CI OH		
-			
	Nitro Haleto alifática Carbonil Éster carboxílico Éster fosfato Amida N-oxidação Sulfoxidação Dessulfuração N-dealquilação O-Desalquilação Hidroxilação alifática Hidroxilação aromática		

3.5 Estudos sobre fotodegradação do inseticida Propoxur

Uma das alternativas para estudar o comportamento e a eliminação de contaminantes ambientais do meio ambiente é através de fotodegradação simulada em laboratório, dessa maneira pesquisas têm sido desenvolvidas com intuito de compreender melhor a fotoquímica de inúmeros compostos ^{180–183}. O Propoxur ou 2-isopropoxifenil-*N*-metil-Carbamato (**Figura 10**) é um dos compostos que podem ser pesquisados em relação a sua capacidade de degradação no ambiente aquático, juntamente com seus TPs, devido a sua alta solubilidade e instabilidade em água ¹⁸⁴. Trata-se de um inseticida

carbamato, ingrediente ativo do produto comercial Baygon™, comercializado desde 1959.

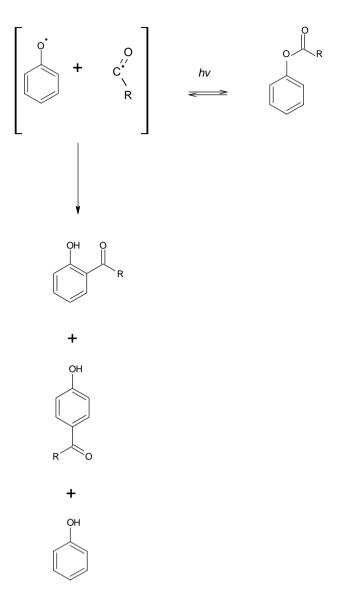

Assim como outros carbamatos, o Propoxur se popularizou devido a sua baixa persistência no ambiente, principalmente quando comparado com compostos organoclorados e organofosforados usados com a mesma finalidade ^{184,185}. É considerado tóxico para aves e espécies aquáticas, mas apresenta baixa toxicidade para mamíferos ¹⁸⁶. O seu amplo espectro de ação permite a aplicação no controle de pragas domésticas e agrícolas, portanto é esperado que este inseticida e seus TPs possam estar presentes em sistemas aquáticos urbanos e rurais.

Figura 10 - Fórmula estrutural do Propoxur.

Fonte: O autor

Existem poucas referências recentes sobre a fotodegradação do Propoxur e os mecanismos que dão origem aos seus TPs. As primeiras pesquisas relacionadas ocorreram em 1971, com Aly e El-Did que avaliaram a influência do pH do meio na degradação do Propoxur em solução aquosa, propondo um mecanismo que leva a formação de quatro TPs pelo rompimento da porção éster carbamato da molécula, dentre eles o 2-isopropoxifenol ¹⁸⁷.

Silk et. al, 1976 realizaram experimentos de fotodegradação utilizando luz natural e artificial com diversos carbamatos, incluindo o Propoxur, na presença de etanol e cicloexano. O mecanismo observado seguiu o rearranjo de foto-fries, através da cisão do carbamato da molécula (**Figura 11**) ¹⁸⁸.

Figura 11 – Proposta de mecanismo foto-fries proposto por Silk e colaboradores para carbamatos. **Fonte:** o autor.

A fotodegradação do Propoxur foi avaliada em isopropanol, ciclohexano e cicloexeno ($\lambda=280$ nm, concentração de 1 mg mL $^{-1}$). Dois produtos foram obtidos, com destaque para o isopropilfenil éter como produto majoritário, com maior eficiência em isopropanol, com tempo de meia vida de 12 horas. O tempo de meia vida nestas condições foi aproximadamente três vezes menor do que os demais solventes utilizados. Os produtos de rearranjo não foram observados neste experimento 189 .

Benitez et al., 1994 realizaram a fotodegradação aquosa (fotólise direta) do

Propoxur na presença e ausência de ozônio obtendo o 2-isopropoxifenol como produto. Os parâmetros de concentração inicial, pH e temperatura foram avaliados. Os dois primeiros exercem pouca influência sobre o processo de degradação, porém a temperatura demonstrou ser um parâmetro decisivo ¹⁹⁰.

Sanjuán et al., 2000 também utilizaram soluções aquosas para avaliar o processo de fotólise e fotocatálise do Propoxur. No experimento foi utilizada uma solução de Propoxur na concentração de 0,003 mol L⁻¹, irradiada durante 5 h com uma lâmpada de 125W, 254 nm em pH 6,8, levando a formação de dois produtos pelo mecanismo de rearranjo foto fries, além de isopropoxifenol éter, em um processo de transformação quase efetivo (90%), mas com baixa taxa de mineralização (16%) ¹⁸⁵.

Um segundo experimento utilizando uma solução aquosa nas mesmas condições, irradiada com uma lâmpada de 4000 W, comprimento de onda de 354 utilizando TiO2 e zeólita funcionalizada com íon 2,4,6 Trifenilpirílio (TPY) resultou na formação de 2-isopropoxifenol, 1,2-di-hidroxibenzeno e isopropoxi-di-hidroxibenzeno, com taxa de mineralização entre 30 e 50%.

Alternativamente, foram realizados experimentos de fotólise direta em acetonitrila combinados com pulso a laser, e os produtos observados foram o 2-isopropoxifenol e o isopropilfenil éter como produto majoritário (> 90%), resultado que concorda com os experimentos realizados em anos anteriores por outros pesquisadores para solventes orgânicos (**Figura 12**).

Figura 12 - Produtos obtidos na fotólise realizado por Sanjuán et al. Fonte: O autor

Sun & Lee, 2003 realizaram estudos da estabilidade do Propoxur em amostras de água da torneira, água da chuva, superficiais (mar e rio) e ultrta pura ¹⁸⁴. O efeito do pH e da fonte de irradiação foram avaliados e foi demonstrado que a melhor condição para a hidrólise do Propoxur é em meio alcalino, onde dois TPs puderem ser identificados: 2-isopropoxifenol e a N-metilformamida. Em água ultra pura a hidrólise completa do Propoxur foi obtida em pH 8,0 e 10,5 após 24 h e 10 minutos de reação, respectivamente.

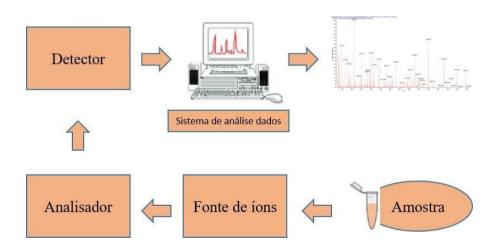
Os experimentos com irradiação solar foram mais efetivos do que iluminação interna ou reações realizadas no escuro. Amostras de água do mar, da chuva e água ultra pura foram testadas com luz artificial controlada (220-340 nm) e foi observada rápida degradação para todas as matrizes, demonstrando maior eficiência em relação às outras fontes de irradiação. A degradação completa do Propoxur em água do mar foi alcançada após 60 min de reação. Em água ultrapura 90% do Propoxur havia sido degradado em 40 horas. Com outras formas de irradiação, nesse mesmo tempo, apenas 20% foram degradados. Neste mesmo estudo diferentes formas de ionização (ESI e APCI, ambas no modo positivo e negativo) foram avaliadas para a analise do Propoxur e seus TPs. O Propoxur e a N-metilformamida foram melhor ionizados no modo positivo em ambas as fontes e o 2-isopropoxifenol no modo negativo utilizando APCI.

Guelfi et al., 2017 estudaram a oxidação eletroquímica de uma solução 0,38 mM de Propoxur utilizando eletroxidação com H₂O₂ (EO-H₂O₂), eletro-fenton (EF) e fotoeletro-fenton (PEF). Todos os mecanismos envolvidos na degradação do Propoxur neste experimento envolveram a geração de fotossensibilizadores. A menor capacidade de oxidação foi da reação de eletrogeração (EO-H₂O₂), devido à baixa capacidade de produção do radical 'OH da reação. O processo de mineralização mais rápido foi alcançado com concentração adicional de radicais 'OH decorrente da reação de eletrofenton e na reação de fotoeletrofeton a mineralização total pode de ser obtida utilizando métodos oxidativos combinados com irradiação UV-A ¹⁹¹.

A cinética de degradação do Propoxur foi de pseudo-primeira ordem e os resultados demonstraram que o pH do meio exerce influência sobrea a cinética da reação principalmente em meio altamente alcalino (pH=10), sugerindo a formação de TPs recalcitrantes, principalmente na reação de eletrogeração com H₂O₂. Os TPs gerados foram analisados por LC-MS e foram identificados três produtos aromáticos, em que o produto 2 é resultante da hidroxilação do Propoxur e a perda do grupo funcional carbamato leva a formação do produto 2, conforme demonstrado na **figura 13.**

Propoxur

$$\begin{array}{c}
 & \downarrow \\
 & \downarrow$$


Figura 13 - TPs do Propoxur formados pela reação de Eletro-Fenton e caracterizadas por LC-MS, realizada por Guelfi et al., 2017. **Fonte**: O autor

3.6 Metodologias Analíticas para avaliação de Contaminantes Emergentes

3.6.1 Instrumentação analítica

Metabólitos e TPs são essencialmente polares em relação aos seus compostos de origem, sendo necessário que toda a separação cromatográfica favoreça, de forma conjunta, às características e propriedades das moléculas em análise, com intuito de atingir o melhor desempenho analítico. Nesse caso a cromatografia líquida (LC) acoplada a sistemas MS (Figura 14) é a técnica ideal para atender a essas necessidades, sendo melhor alternativa em relação a cromatografia gasosa devido à grande quantidade de compostos termolábeis.

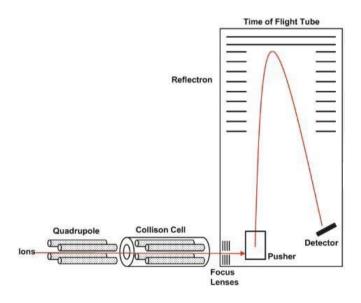
A espectrometria de massa (MS), em especial a de alta resolução, é a técnica mais utilizada na identificação de contaminantes orgânicos em amostras ambientais, quando acoplada à técnicas cromatográficas de separação, pois possui características importantes para a avaliação adequada desses compostos a nível traço em matrizes complexas, tais como alta seletividade, sensibilidade e exatidão $^{192-195}$. O princípio da MS envolve a geração de espécies químicas ionizadas em fase gasosa, a separação delas com base na razão massa-carga (m/z), seguido de detecção e/ou quantificação com base na m/z e na intensidade relativa dos íons gerados 196,197 .

Figura 14 - Esquema dos principais componentes de um espectrômetro de massa (MS). **Fonte:** O autor.

O processo de ionização ocorre após a separação cromatográfica, sendo a etapa fundamental dos métodos envolvendo MS, pois é onde ocorre a formação das espécies carregadas (íons moleculares protonados, desprotonados ou como adutos). Na ionização por *elestrospray* (ESI), que é a fonte mais utilizada, não ocorre fragmentação, como é o caso da ionização por impacto eletrônico utilizada nos sistemas de MS acoplados à GC, pois a função desta etapa é remover o solvente (Fase móvel), quando do acoplamento com LC. Na ESI, uma diferença de potencial é aplicada na ponta de um capilar por onde passa o efluente da coluna. A nebulização é promovida com auxílio de aquecimento e grande fluxo do gás de nebulização e do auxiliar, que tem por função remover o solvente. Como resultado tem-se a formação de íons em fase gasosa, em um forte campo elétrico

¹⁹⁸. O processo de ionização depende dos grupos funcionais de cada molécula e dos aditivos utilizados na fase móvel. Os íons podem ser gerados no modo positivo, onde as moléculas serão protonadas, sendo que a protonação ocorre através do modelo [M + H]⁺ ou [M + nH]ⁿ⁺ e o processo é favorecido pela presença de ácidos orgânicos adicionados na fase móvel, em baixas concentrações, geralmente na ordem de 0,1% v/v.

No modo negativo [M - H]⁻ a ionização ocorre pela desprotonação da molécula, sendo utilizado mais comumente o hidróxido de amônio como um dos constituintes da fase móvel. A formação de adutos no processo de ionização ocorre, geralmente devido à sais presentes em quantidades residuais na água, em algum constituinte utilizado no preparo de amostras ou na matriz, sendo mais comum a formação de adutos de amônio, sódio e potássio, nas formas NH₄⁺, Na⁺ e K⁺.

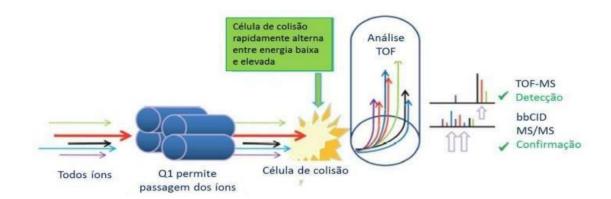

Os analisadores de um espectrômetro de massa podem ser simples (MS) ou dispostos em modo tandem (MS/MS). Também podem ser do mesmo tipo (quadrupolos, tempo de voo, ions trap) ou combinados formando os sistemas de MS hidridos (por exemplo: quadrupolo seguido de tempo de voo, dispostos em modo tandem). Os sistemas tipo MS/MS utilizando apenas analisadores de quadrupolo são mais utilizados para quantificação devido a elevada especificidade, seletividade, e como consequência sensibilidade analítica ^{199–201}.

Espectrômetros de Massa com analisadores por tempo de voo (TOF, do inglês *Time of Flight*) fornecem massa exata e portanto são adequados para utilização em métodos de *screening*, e para elucidação estrutural, uma vez que trabalham em uma ampla faixa de *m/z*, com alta resolução e exatidão de massa. O poder de resolução tem sido uma propriedade muito importante pois o desafio das metodologias atuais é diferenciar inúmeras famílias de compostos de forma inequívoca.

Normalmente estes espectrômetros operam em modo tandem com um analisador de quadrupolo, seguido pela câmara de colisão e por fim o analisador de tempo de voo (**Figura 15**).

Os analisadores que operam em alta resolução, como o TOF, conseguem resolver picos vizinhos, discriminando sinais em um espectro de massa com os íons com m/z adjacentes. A resolução é a razão da massa do composto pela variação de massa a meia altura do pico (largura do pico a 50% da altura) expressa por $m/\Delta m$, em que m é a massa nominal da molécula e Δm a diferença entre as massas exatas das moléculas, também expressa por FWHM (*full width half maximum*) 202 .

Os íons gerados na fonte, são acelerados através de um pulso de alta voltagem em direção ao detector, passando por todos os componentes por diferença de potencial, tendo a razão m/z como propriedade determinante. O cálculo da razão m/z é realizado através do tempo que um íon leva para ser transferido da entrada do analisador até atravessar o tubo de voo, chegando ao detector. Os íons com menor valor de m/z possuem maior velocidade de voo, chegando ao detector mais rapidamente, sendo computados através de pulsos elétricos que formam o sinal espectral.


Figura 15 - Espectrômetro de Massa com analisador quadrupolo/TOF em modo tandem (Q-TOF/MS). **Fonte:** (Vorce SP, 2020) ²⁵⁰.

Dois fatores favorecem a alta resolução alcançada em sistema que utiliza cromatografia a líquido acoplada a um espectrômetro de massa com analisadores sequenciais de quadrupolo e tempo de voo em modo (LC-q-TOF/MS): A utilização de sistemas de cromatografia a líquido de ultra alta eficiência (UHPLC), em que a coluna cromatográfrica possui tamanho de partícula, dâmetro interno e comprimento reduzidos em relação às colunas convencionais, e a presença dos refletores no analisador TOF que corrige a distorção espacial dos íons que ocorre ao longo do trajeto no tubo de voo. A correção do trajeto dos íons de mesma m/z permite que todos cheguem ao detector no mesmo tempo, gerando picos bem resolvidos e com baixo erro de massa 196,197 .

Um sistema LC-q-TOF/MS opera através de quatro modos de aquisição de dados disponíveis: *Full scan*, MS-MS/MS, Auto MS/MS e *bb*CID. No modo *full scan*, todos os íons que chegam no quadrupolo são enviados para a câmara de colisão onde são fragamentados em energias determinadas. Os fragmentos gerados, para cada íon, são analisados no analisador de tempo de voo, e são direcionados para o detector e o espectro de massa de cada composto é obtido.

No modo MS-MS/MS, valores específicos de íons moleculares, previamente identificados, são selecionados no primeiro quadrupolo, fragmentados na câmara de colisão e o espectro de massa completo é obtido. Este modo normalmente é posterior ao *full scan*, uma vez que neste caso, já estão definitos quais serão os compostos alvo. No modo auto MS/MS os íons mais intensos são selecionados automaticamente em um espectro de *full scan*, para posteriormente serem fragmentados. No auto MS/MS cada ciclo de aquisição compreende a coleta dos íons de interesse até a sua fragmentação, portanto nesse tempo de análise as informações no modo de varredura não estão sendo coletadas, o que pode acarretar a perda de informações.

O modo de aquisição bbCID (do inglês, Broadband Collision Induced Dissociation, este termo de aquisição é específico do fabricante) é um dos mais utilizados, pois consegue preservar toda informação espectral da análise, sendo ideal para elucidação estrutural para de compostos desconhecidos. Neste processo o quadrupolo funciona no modo fullscan e a cela de colisão realiza a fragmentação desses íons, de forma alternada com alta e baixa energia de colisão, coletando respectivamente o íon molecular (modo MS) e os fragmentos gerados (MS/MS) (Figura 16).

Figura 16 - Esquema do modo de aquisição de dados por bbCID. **Fonte:** Bruker Daltonics 251

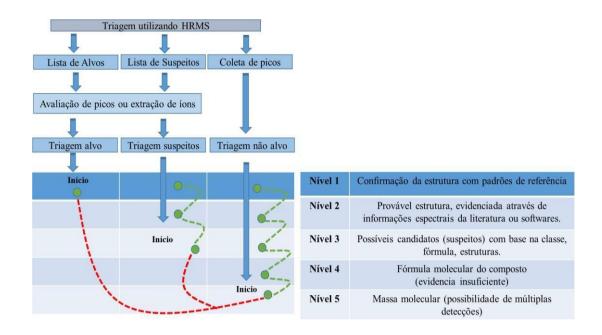
3.6.2 Fluxo de Trabalho para avaliação de Metabólitos e TPs

A diversidade de substâncias candidatas a contaminantes ambientais é desafiadora para as metodologias e recursos existentes. Muitos metabólitos e TPs, por exemplo, não possuem um padrão analítico, que permita utilizá-los em metodologias analíticas que envolvem estudos de validação utilizando espectrometria de massas com identificação inequívoca do composto, conhecida como análise alvo ²⁰³.

A indisponibilidade de padrões analíticos decorrente das incertezas sobre a estrutura e as propriedades destes compostos, levaram ao desenvolvimento de metodologias que utilizam os recursos da espectrometria de massas de alta resolução para a identificação temporária através da análise não direcionada ^{204–206}.

Os espectros de varredura completa permitem o registro simultâneo de todos os compostos presentes nas amostras, cujo os dados podem ser, a qualquer momento, avaliados quanto a presença dos compostos de interesse, estabelecendo critérios que visem o aumento da confiabilidade do resultado analítico ^{144,207}.

A fim de tornar o processo de identificação de TPs confiável, Schymanski et al., 2014, propuseram cinco níveis de confiança para a identificação dos compostos. O nível 5 é o mais baixo e pode ser alcançado quando a informação da massa exata pode ser obtida através de íons extraídos do espectro de massa de varredura. No entanto, a


informação de massa exata não fornece informações inequívocas sobre a identificação dos compostos, tão pouco informações seguras para determinação da fórmula molecular. Os espectros de massa nesse caso, podem ser salvos e posteriormente utilizados como recursos adicionais quando mais informações sobre os compostos de interesse foram coletadas.

O nível de identificação 4 subentende que hajam informações sobre a fórmula molecular do composto. Esta informação permite atribuir uma fórmula molecular inequívoca ao composto com base nos espectros de massa e informações adicionais como presença de isótopos, adutos e fragmentos característicos. No entanto, essa informação não contém evidências suficientes para propor uma única estrutura, favorecendo a múltiplas possibilidades.

Para o nível 3, informações como grupo químico ou classes de compostos são necessárias, informação que pode conter múltiplas detecções, porém para um grupo mais seletivo de compostos. A posição dos substituintes das moléculas e distinção entre isômeros, por exemplo, são fatores que impedem a determinação inequívoca entre compostos neste nível.

No nível de confiança 2 os perfis de fragmentação dos compostos podem ser comparados com aqueles disponíveis com softwares de fragmentação *in sílico*. Esses softwares de consulta requerem que as mesmas condições experimentais sejam inseridas, para que um resultado confiável seja fornecido. Os dados de entrada, para busca de fragmentos, incluem instrumentação analítica, resolução, energia de fragmentação e modos de ionização e os resultados fornecidos estarão disponíveis através de bibliotecas de espectros de massa ²⁰⁸. Em alguns casos, em que nenhuma correspondência de fragmentação *in silico* estiver disponível, um diagnóstico considerando avaliação de outros fragmentos do espectro, ionização/adutos e estrutura dos compostos parentais, podem ser consideradas para manter uma identificação mais confiável ²⁰⁹.

O nível 1 de confiabilidade, representa a estrutura confirmada utilizando padrões de referência e correspondência de tempo de retenção. Nesse caso, também é sugerido a utilização de métodos ortogonais de confirmação ²⁰⁹. A **figura 17** apresenta um resumo das etapas das três abordagens de análise não direcionada com seus respectivos níveis de confiança.

Figura 17 - Níveis de confiança associados ao fluxo de trabalho de análise não direcionada. **Fonte:** Adaptado de (Schymanski et al., 2015) ²⁵².

Atualmente, três modalidades de análise não direcionada são utilizadas para estudos de CEs. A triagem de compostos alvo (*targeted screening*) que avalia compostos específicos nas amostras, a partir de uma análise de varredura em alta resolução. As informações sobre fórmula e estrutura dos compostos nesse caso já estão estabelecidas, bem como as informações espectrais em relação às respectivas fragmentações. Como se trata de uma análise quantitativa é necessário que uma curva de calibração seja gerada, não sendo uma metodologia apropriada para investigação de compostos desconhecidos 210,211

Análise não alvo (*untargeted*) é a modalidade que utiliza a coleta de picos cromatográficos na busca de compostos de interesse, sem nenhuma informação prévia do composto, ou seja, não há uma base de dados com informações disponíveis. A maior contribuição quando essa estratégia é utilizada, são as informações do composto parental, para TPs e metabólitos, que serve como base para a busca, já que as estruturas apresentam semelhanças estruturais. Além disso, se a fórmula molecular, o tempo de retenção para as condições cromatográficas empregadas e os espectros de massa forem conhecidos, a identificação dos compostos poderá ser facilitada, com estratégias alternativas confiáveis ^{212–214}

Adicionalmente o índice de deficiência de hidrogênios (IDH) é uma ferramenta que também pode auxiliar na elucidação estrutural dos compostos, à medida que fornece uma previsão sobre o número de insaturações da molécula ²¹⁵.

Na triagem de suspeitos, conhecida também como *suspect screening*, uma lista de compostos suspeitos é obtida com base em critérios de priorização. A lista de contaminantes prioritários contém os compostos de maior preocupação, oriundos de substâncias consumidas em grande escala pela população e que podem ter maior incidência no ambiente ou potencial toxicidade ^{44,155,156,216,217}. A lista contendo o nome dos compostos e fórmula fornecem, previamente, um nível mínimo de confiabilidade igual a 3 para este fluxo de trabalho. No entanto, o perfil de fragmentação *in silico* pode fornecer maior confiabilidade aos resultados, sendo esta uma metodologia ideal para contaminantes emergentes desconhecidos. As três estratégias podem ser utilizadas, em conformidade com o objetivo de cada estudo ²⁰⁶.

Além do perfil de fragmentação, outros importantes parâmetros são necessários na avaliação dos resultados obtidos na triagem, tais como erro de massa exata e variabilidade isotópica. O erro de massa exata é um parâmetro que está relacionado às sucessivas medidas realizadas pelo equipamento e pode ser obtido quando a massa exata é relacionada aos valores de massa obtidos experimentalmente. O valor de massa exata é um valor teórico, calculado a partir da fórmula molecular do composto considerando os isótopos presentes na molécula.

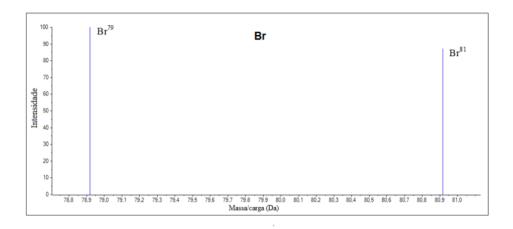
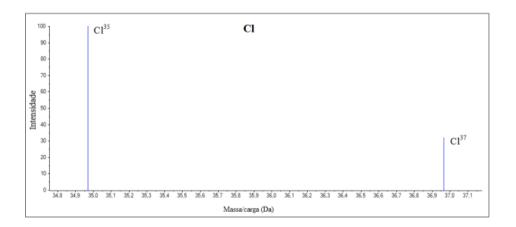

A possibilidade de medição destes isótopos, através da massa e da fórmula do composto e seus respectivos espectros de massa, permite que um perfil seja estabelecido, fornecendo evidências da presença de isótopos específicos nos compostos investigados. Os isótopos mais comuns da Tabela Periódica, que podem estar presentes em contaminantes orgânicos, estão presentes na **tabela 2**.

Tabela 2 - Abundância relativa de alguns isótopos presentes em moléculas orgânicas **Fonte**: (Silverstein, 2005) ²¹⁸.


Elemento	Nuclídeo	Massa	Abundância natural isotópica (%)
Hidrogênio	¹ H	1,00783	99,985
_	$^{2}\mathrm{H}$	2,01410	0,015
Carbono	¹² C	12,0000	98,893
	¹³ C	13,0033	1,107
Nitrogênio	¹⁴ N	14,0031	99,634
	¹⁵ N	15,0001	0,366
Oxigênio	¹⁶ O	15,9949	99,759
	¹⁷ O	16,9991	0,037
	¹⁸ O	17,9992	0,204
Enxofre	³² S	31,9721	95,00
	³³ S	32,9715	0,76
	³⁴ S	33,9679	4,22
Cloro	³⁵ Cl	34,9689	75,77
	³⁷ Cl	36,9659	24,23
Bromo	⁷⁹ Br	78,9183	50,69
_	⁸¹ Br	80,9163	49,31

O padrão isotópico apresenta distribuição em torno do íon molecular, que pode ser relacionada com o número de átomos de um determinado isótopo que tenha alto percentual do segundo isótopo mais abundante. Um exemplo pode ser verificado nos espectros de massa contendo bromo, cloro e enxofre, especificamente em espécies mono carregadas.

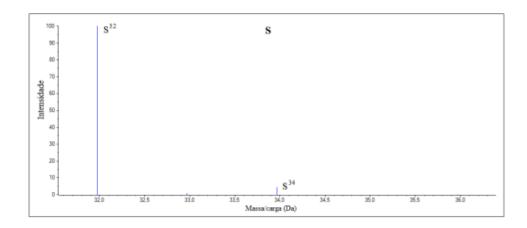
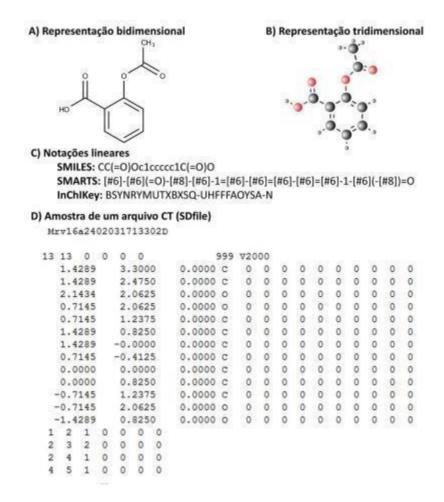

Para o bromo, quando dois espectros de massa estão presentes com intensidades próximas na composição da molécula, com diferença de m/z de duas unidades, correspondentes aos isótopos 79 e 81, existe a possibilidade de haver bromo na composição do composto (**Figura 18**). Para o cloro é apresentada a mesma diferença de m/z, porém o primeiro espectro apresenta uma intensidade três vezes maior do que o segundo, correspondente aos isótopos 35 e 37, respectivamente (**Figura 19**). A possibilidade de haver enxofre pode ser avaliada pela presença de dois espectros de massa, isótopos 32 e 34, em que o segundo corresponde a 4% da intensidade do primeiro (**Figura 20**). Quando a quantidade de átomos com variabilidade isotópica aumenta em uma molécula, outros espectros de massa são observados com diferentes intensidades relativas, além disso, os isótopos mais abundantes serão sempre mais intensos.

Figura 18 - Padrão isotópico para o átomo de bromo apresentado através do seu espectro de massa teórico (MS). **Fonte:** (Segalin, 2015) ²⁵³

Figura 19 - Padrão isotópico para o átomo de cloro apresentado através do seu espectro de massa teórico (MS). **Fonte:** (Segalin, 2015) ²⁵³.

Figura 20 - Padrão isotópico para o átomo de enxofre apresentado através do seu espectro de massa teórico (MS). **Fonte:** (Segalin, 2015) ²⁵³

3.7 Ferramentas de Quimioinformática


Recursos de ciência da computação juntamente com informações experimentais, podem ser utilizados para resolver problemas encontrados em conjunto de dados químicos através da ferramenta interdisciplinar conhecida como quimioinformática ²¹⁹. As principais áreas abrangentes da quimioinformática foram desenvolvidas ao longo de 40 anos, e na atualidade essa ciência é utilizada principalmente para representar, visualizar, manipular e processar estruturas químicas, organizar base de dados e desenvolver metodologias de OSAR ^{220,221}.

Um composto químico pode ser representado através de representações gráficas ou por descritores moleculares. Uma representação gráfica demonstra a disposição e conectividade dos átomos de uma molécula de forma bi ou tridimensional e são informações que, geralmente, alimentam os bancos de dados. Um exemplo desta representação pode ser visto no código *Simplified Molecular-Input Line-Entry System* (SMILES). No SMILES cada átomo é representado por seu próprio símbolo da tabela periódica, as ramificações das moléculas são representadas por parênteses e anéis são representados por um sistema numérico. Além disso, os SMILES isoméricos são uma representação gráfica adicional capaz de representar compostos quirais, ligações duplas e informações isotópicas ^{222,223}.

A International Union of Pure and Applied Chemistry (IUPAC) possui a sua representação própria para substâncias químicas, o International Union of Pure and

Applied Chemistry Key (InCkey) ²²⁴. A sociedade Americana de Química possui uma representação numérica única e simples, o código o *Chemical Abstract Service* (CAS), bastante utilizada na construção de base de dados e que foi originada a partir de representações gráficas ²¹⁹.

A **Figura 21** apresenta as representações gráficas para o ácido acetil salicílico. O código SMART (**Figura 21** C) é uma extensão mais abrangente dos SMILES contendo informações adicionais como número atômico, ligação com anel, número de membros do anel e carga das espécies químicas. O código de arquivo de Tabela Química ou CT (*Chemical Table file*) (**Figura 21 D**) é um conjunto de formato aberto, baseado em textos que descrevem reações químicas e suas moléculas com conectividade atômica e disposição espacial (*x*, *y*, *z*), utilizado para gerar e buscar estruturas em banco de dados compatíveis,

Figura 21 - Exemplos de representações gráficas utilizadas para pesquisas em base de dados químicos para ácido acetil salicílico. **Fonte:** (Alves et al., 2018) ²²⁵.

3.7.1 Metodologias in silico para avaliação de toxicidade

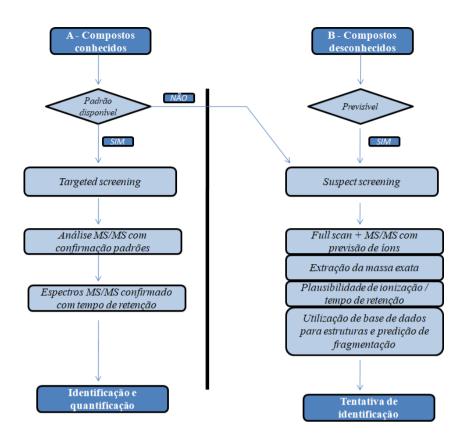
Quando dados químicos são simplificados em forma de representações gráficas a visualização e interpretação humana pode ser facilitada. No entanto, *softwares* computacionais não possuem a capacidade de realizar essa leitura e interpretação. Dessa maneira foram, desenvolvidas alternativas para que um sistema computacional consiga ter acesso a descrição de uma molécula, através de uma linguagem específica, fornecendo informações úteis sobre suas propriedades e estrutura.

Descritores moleculares desempenham essa atividade, na interface humana e computacional, e são a fase final de um cálculo matemático matricial e lógico que converte a informação química em uma representação simbólica para moléculas em estudo ou resultado de experimentos padronizados. A variedade dos descritores moleculares é proporcional aos diferentes níveis de representar uma estrutura com maior possibilidade de descrevê-la corretamente. Alguns exemplos de descritores são massa molecular, logP, número de ligações e conectividades da molécula, áreas superficiais acessíveis ao solvente ²²⁵.

A toxicologia *in silico* utiliza modelos computacionais e matemáticos na predição de efeitos adversos e na melhoria da compreensão dos mecanismos pelos quais determinadas substâncias provocam o dano, através da avaliação de risco ²²⁶. A principal motivação pelo desenvolvimento deste modelo de avaliação foi o alto tempo demandado por ensaios tradicionais, ensaios *in vitro/in vivo*, incapazes de suprir a alta demanda de novos contaminantes ambientais com propriedades ainda desconhecidas ²²⁷. Além disso, buscou-se apoiar diretrizes regulatórios em que essa abordagem é considerada aceitável ²²⁸. Os ensaios convencionais cobrem apenas uma pequena quantidade de espécies com avaliações de exposição individual, subestimando o risco real de misturas de compostos químicos ¹⁶.

Atualmente a toxicologia *in silico* se tornou uma ferramenta sólida de aplicação em pesquisa científica de caráter multidisciplinar, principalmente na criação de base de dados e programas de avaliação de risco para tomada de decisão, metodologia de

priorização incluindo ações com caráter regulatório ²²⁹. As principais metodologias utilizadas são aquelas baseadas em estatística que usam metodologias QSAR ^{230–232}.


A metodologia QSAR utiliza modelos matemáticos que derivam de um conjunto de treinamento (método supervisionado), que contém moléculas de produtos químicos diversos, com resultados positivos ou negativos para determinado desfecho de toxicidade (end point), considerando dados experimentais de estudos realizados, ou ainda baseado em outras simulações computacionais. Os modelos são concebidos com base nos descritores moleculares de cada molécula, e nesse caso, não somente as propriedades físico-químicas, mas também descritores baseados na estrutura do composto, como presença ou ausência de grupos funcionais específicos são utilizados.

Dessa forma, um descritor molecular no QSAR é usado para descrever uma molécula que compõe um composto químico presente no conjunto de treinamento do modelo, que adquire a capacidade de codificar a relação existente entre os descritores e cada desfecho de toxicidade. O modelo após ser desenvolvido precisa obrigatoriamente ser validado, seguindo requisitos regulatórios pré-estabelecidos, estando dessa forma adequado para geração das previsões ²³³

4 Materiais e Métodos

4.1 Monitoramento Ambiental: Amostragem e preparo de amostras

Este trabalho é parte integrante do monitoramento ambiental realizado no Arroio Dilúvio realizado entre os anos de 2016 e 2018 ¹⁵³. As amostras coletadas no referido monitoramento foram submetidas ao preparo de amostras através do protocolo estabelecido por (Arsand et al., 2020). Neste trabalho foi proposta uma análise retrospectiva (*pos data*), para as amostras deste monitoramento, seguindo o fluxo de trabalho apresentado na **figura 22B**. Os pontos de coleta, amostragem, preparação das amostras e condições analíticas estão detalhados nos ANEXOS.

Figura 22 - Fluxo de trabalho utilizado para investigação de compostos suspeitos nas amostras do Arroio Dilúvio. **Fonte**: O autor.

4.2 Pré-processamento de dados

4.2.1 Métodos de Priorização

Um banco de dados foi construído utilizando como priorização substâncias de elevado consumo pela população. Os fármacos foram coletados a partir da relação de medicamentos essenciais do município de Porto Alegre – REMUNE, que é uma lista padronizada de medicamentos prioritários da secretaria de saúde (SMS) que visa atender as necessidades sanitárias da população. Além disso, três hospitais do município de Porto Alegre forneceram relatórios da quantidade média mensal dos medicamentos mais utilizados. As drogas ilícitas mais consumidas foram coletadas do banco de dados do Escritório das Nações Unidas sobre Drogas e Crimes – UNODC, através dos metadados disponibilizados no subitem "Uso de Drogas e Tratamentos" (https://dataunodc.un.org/dpdrug-use-prevalence-regional).

A relação de agrotóxicos foi baseada na comercialização de seus ingredientes ativos realizadas nos anos de 2018, 2019 e 2020 para a região de Porto Alegre, fornecidos pelo Departamento de defesa agropecuária da Secretaria de Agricultura, Pecuária e Desenvolvimento Rural – SEAPDR/RS, nas unidades em quilogramas e litros. É importante ressaltar que os agrotóxicos mais comercializados nos anos em que ocorreram o monitoramento ambiental (2016-2018) são basicamente os mesmos dos anos seguintes, mudando apenas algumas posições na classificação, em conformidade com os metadados do IBAMA – Instituto Brasileiro do Meio Ambiente e Recursos Naturais, onde pode ser verificada a lista de IAs mais comercializados Os herbicidas, inseticidas, fungicidas e acaricidas foram as classes selecionadas para o estudo pois são os mais comercializados. Outras substâncias como hormônios, produtos de higiene pessoal diversos e compostos usados em retardadores dechama foram coletadas da literatura.

4.3 Parâmetros utilizados na triagem de compostos suspeitos

Os metabólitos e produtos de transformação das substâncias selecionadas, foram coletados no DrugBank https://go.drugbank.com/ ²³⁴, no EnviPath - The Environmental Contaminant Biotransformation Pathway Resource https://envipath.org/ ²³⁵ e quando disponível na literatura científica. No EnviPath os metabólitos foram coletados através da seleção dos seus compostos parentais disponíveis na opção "Pathway" que fornece um caminho de degradação com o nome e a representação gráfica de SMILES de cada molécula.

Através dos SMILES a fórmula molecular foi obtida nas bases de dados *on line* PubChem http://pubchem.ncbi.nlm.nih.gov²³⁶ e no ChemSpider - www.chemspider.com ²³⁷. Uma tabela contendo os compostos parentais e seus respectivos metabólitos e produtos de transformação foi elaborada, totalizando 2028 compostos conforme detalhado nos APÊNDICES.

O processamento dos dados foi realizado no *software* TASQ Bruker Daltonics 2.2 (*Targeted Analysis for Screening and Quantitation*) ²³⁸. As pastas contendo as amostras foram importadas para o software em formato compatível (*d.) para compor o *batch* de análise. A tabela contendo todos compostos de interesse foi convertida para arquivo em formato *csv. ou valores separados por vírgula (do inglês, *comma-separated*

values) e na sequência, o arquivo foi importado para o *software* para composição do método. O método foi elaborado contendo o nome do composto e fórmula neutra na primeira triagem. O *software* foi selecionado para marcar como positivos todos os íons precursores correspondentes às fórmulas indicadas no método e com intensidade igual ou superior a 1000, para adutos protonados [M+H] ⁺ e de Sódio [M +Na] ⁺.

O sinal ruído foi definido em 3,0 e um filtro de suavização gaussiano foi aplicado para auxiliar na redução do ruído. A variação máxima aceitável do tempo de retenção foi de 0,5 minutos e o erro de massa para o íon precursor foi estabelecido em ± 5 ppm. A variabilidade isotópica máxima (*mSigma*) foi de 50. O parâmetro *Sigma* representa um valor de concordância entre um padrão teórico e um valor experimental obtido de todos os isótopos presentes no composto, fornecido pela intensidade do sinal e pelo desvio padrão das massas dos isótopos.

A segunda triagem foi realizada com o objetivo de identificar os fragmentos dos íons selecionados na primeira triagem. Dessa forma, uma nova tabela foi elaborada contendo todos os compostos positivos na primeira triagem sob as mesmas condições, adicionando-se valores de massa dos principais íons qualificadores que foram obtidos nos softwares de fragmentação *MassBank* (https://massbank.eu/MassBank/)²³⁹, *mzCloud* (https://www.mzcloud.org/) ²⁴⁰, The Human Metabolome Data Base - HMDB (https://hmdb.ca/spectra/ms_ms/search) ²⁴¹ e CFM-ID (https://cfmid.wishartlab.com/) ²⁴². Para estes dois últimos softwares foram utilizados o nome do composto ou os identificadores químicos Inchi, InchiKey, código SMILES ou SMARTS como parâmetro de busca. Todos os fragmentos pesquisados foram para LC-q-TOF/MS no modo de ionização positivo e energia de colisão variando entre 20 e 40 eV.

4.4 Avaliação temporal e espacial

A distribuição espacial e temporal dos compostos foi realizada no *software* OriginPro versão 2023b (OriginLab Corporation, Northampton, MA, USA). A metodologia de superfície de resposta (MSR) foi utilizada para avaliar o comportamento dos compostos dispostos na superfície contínua do gráfico (eixo *z*), representadas pelas áreas médias do compostos, em função da relação entre as variáveis *x* e *y* que são respectivamente, os compostos avaliados e os pontos de amostragem.

A análise de *clusters* hierárquica foi utilizada para avaliar o comportamento dos compostos em cada ponto de coleta observando-se os meses, através de uma matriz de distância ou dissimilaridade. Os dados foram normalizados previamente ao cáclulo da distância para o agrupamento. A interpretação dos dados foi avaliada diretamente no Origin pelo dendograma e através tabela de estágios do *cluster*.

4.5 Fotodegradação e elucidação estrutural dos TPs do inseticida Propoxur

4.5.1 Experimentos de fotólise

A fotodegradação por fotólise direta do inseticida Propoxur foi realizada em água ultrapura, utilizando 100 mL de solução na concentração de 10 mg mL⁻¹, na temperatura de 27 °C e pH 6,8, utilizando três lâmpadas com descarga de mercúrio e sódio metálico OsramTM de 8W – UVC 254 *nm*, totalizando 24 W. Um copo béquer de borissilicato foi utilizado como reator sob agitação constante. Uma câmara escura foi utilizada para a reação evitando entrada de luz externa. Uma alíquota da solução foi coletada antes da reação (tempo zero) e na sequência alíquotas foram coletadas em 5, 10, 15, 30, 45, 60, 90, 120, 170 e 220 minutos após a reação, sendo imediatamente acondicionadas em freezer após a coleta. As amostras foram filtradas diretamente para o vial utilizando filtro de 0,22 μm e foram guardadas sob refrigeração até o momento da análise.

4.5.2 Condições instrumentais de análise

O sistema UHLC-q-TOF/MS utilizado foi um UHPLC (Nexera X2, Shimadzu) e QTOF-MS (Impact II, Brucker corporation). As amostras foram analisadas por LC utilizando uma coluna analítica Kinetex Fenil-Hexil C18 com 100 × 2,1 mm de diâmetro interno e 1,7 μm de tamanho de partícula, na temperatura de 40 °C. O sistema operou em modo gradiente utilizando água (solvente A) e acetonitrila (solvente B), acidificadas com ácido fórmico 0,1% (v/v) com uma vazão de 350 μL min ⁻¹ e volume de injeção foi de 10 μL. O gradiente otimizado iniciou com 95% de A a 5% de B (0-1 min), 5% de A a 95% B (1 – 12 min), 95% A a 5% B (12-14 min) e 95% de A a 5% B (14 – 16 min), com equilibro de 4 minutos entre as corridas com composição de 95% de A e 5% de B, totalizando 20 minutos de análise.

A varredura completa através da aquisição de dados *bb*CID foi realizada em faixa de *m/z* compreendida entre 500 e 1200, com resolução superior a 60.000 utilizando formiato de sódio 10 mM como calibrante. O Nitrogênio (N₂) foi utilizado como gás de secagem com vazão de 9 L min ⁻¹ a 200 °C e como gás de nebulização com pressão de 4 bar. A energia da célula de colisão operou com variação de 20 a 40 eV para o *bb*CID e 4 eV no *full scan*. Os analitos foram ionizados no modo positivo, utilizando fonte ESI e a tensão do capilar foi de 4000 V e da placa condutora de íons foi de 500 V.

4.5.3 Sistemática para avaliação dos TPs

O software Data Analysis 4.2 (Bruker Daltonics) foi utilizado para a avaliação dos TPs do Propoxur. Inicialmente foi realizada uma comparação entre os cromatogramas no tempo zero com os demais tempos de reação. Todos os picos encontrados nos tempos de reação a partir de 5 minutos foram avaliados como sendo possíveis TPs do Propoxur. Os íons foram extraídos para cada pico cromatográfico e a fórmula molecular mais plausível gerada pelo software foi selecionada, com base na estrutura do Propoxur. Os parâmetros de avaliação para o íon precursor foram erros de massa ± 5 ppm, variabilidade isotópica de 50. O índice de deficiência de hidrogênios (IDH) foi utilizado como parâmetro auxiliar na proposta de estrutura dos TPs, o software fornece um valor de RDB (do inglês, *Ring double bond equivalentes*), conforme a equação abaixo:

(3)
$$RDB = C - \frac{H}{-} - \frac{X}{-} - \frac{N+P}{-} + 1$$

Na equação (3), os átomos de carbono são representados por C, H são os hidrogênios, X uma notação genérica para halogênios, N nitrogênio e P átomos de fósforo presentes na molécula. Átomos divalentes como oxigênio e enxofre não influenciam no cálculo de RDB e foram considerados zero. Para espécies iônicas ou radicalares soma-se 0,5 unidades ao valor de RDB. Foi adotado esse procedimento pois todos os valores obtidos foram para moléculas protonadas.

4.6 Avaliação de Risco

A avaliação de risco foi realizada para os compostos obtidos nos estudos de monitoramento ambiental e também daqueles propostos no processo de fotodegradação do Propoxur. Os SMILES para cada molécula foram obtidos da base de dados Pubchem ou EnviPath. Compostos desconhecidos ou não encontrados no PubChem ou EnviPath foram desenhados através da ferramenta ChemSketch sendo possível obter os SMILES ou SMARTS através do desenho da estrutura química do composto.

O método QSAR foi aplicado, sendo gerado através do software VEGA versão 1.2.0 para avaliar os seguintes modelos e desfechos de toxicidade: Modelos CONSENSUS versão 1.0.4 para mutagenicidade (teste de Ames). O resultado do modelo CONSENSUS foi originado das predições combinadas dos modelos SarPy 1.0.8, KNN-Read Across 1.0.1, ISS 1.0.3 e Caesar 2.1.13. O modelo CAESAR versão 2.1.8 foi utilizado para avaliar toxicidade do desenvolvimento, modelos CAESAR versão 2.1.10, ISS versão 1.0.3 e IFRMN-ISSCAN-CGX versão 1.0.2 para avaliar carcinogenicida e IFRMN 1.0.10 para avaliar biodegradabilidade imediata. A confiabilidade dos resultados foi avaliada de acordo com o índice de domínio da aplicabilidade (IDA) fornecida para cada previsão. O IDA mede o grau de ajuste da molécula alvo ao modelo utilizado para a predição, sendo um parâmetro calculado automaticamente pelo *software* VEGA baseado nos seguintes *outputs*:

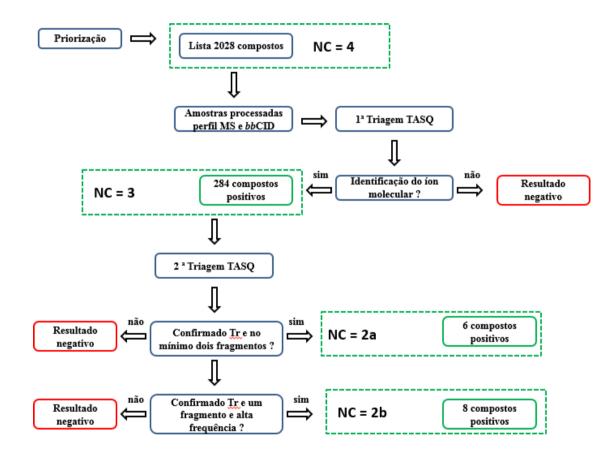
- índice de similaridade: Descreve o grau de similaridade entre o composto avaliado e os três compostos mais semelhantes presentes no conjunto de treinamento do modelo:
- índice de concordância: Fornece informações sobre a concordância entre o valor previsto para o composto avaliado e os valores experimentais dos três compostos químicos mais semelhantes;
- índice de precisão: Fornece a qualidade da precisão da previsão realizada pelas moléculas do conjunto de treinamento do modelo;
- **índice de fragmentos centrados em átomos (ACF):** Fragmentos raros presentes no composto alvo, identificados a partir das moléculas do conjuno de treinamento;
- Alertas estruturais: Grupos funcionais observados a partir do conjunto de treinamento do modelo, associados a determinado desfecho de toxicidade a partir de dados experimentais.

Os valores de IDA e dos *outputs* estão compreendidos em uma escala entre zero e 1 sendo, respectivamente, o pior e o melhor resultado a predição realizada. Os valores abaixo de 0,7 são baixos, portanto não confiáveis podendo a molécula em avaliação estar fora do domínio de aplicabilidade do modelo utilizado.

5. Resultados e Discussão

5.1 Metodologia *suspect screening* na avaliação de compostos das amostras do Arroio Dilúvio

A fim de estabelecer o Fluxo de trabalho para a avaliação de compostos suspeitos nas amostras de águas superficiais do Arroio Dilúvio as seguintes, considerações foram conduzidas:


- O método de priorização dos compostos incluídos na lista de busca por *suspect screening* foi elaborado, considerando prioritariamente os compostos os quais não havia padrões analíticos disponíveis, estando estes portanto, fora do escopo de análise alvo estabelecida. Foram considerados compostos suspeitos todos aqueles que apresentaram resultados satisfatórios no processamento aplicado através do software TASQ, atendendo os parâmetros definidos nas triagens, para um total de 2028 compostos;
- para os critérios estabelecidos foram considerados satisfatórios aqueles compostos que atenderam um erro de massa de \pm 5 ppm para um íon precursor com área mínima de 1000 e variabilidade isotópica não superior a 50 na primeira triagem. A presença de possíveis íons qualificadores ou fragmentos de massa relacionados ao composto alvo foram pesquisados em banco de dados externos de fragmentação *in silico* e comparados aos valores de massa experimentais na segunda triagem, juntamente com o tempo de retenção, com variação aceitável máxima de 0,5 minutos;
- os compostos foram escalonados em níveis de confiança (NC) de acordo com o atendimento a cada parâmetro como descrito na metodologia estabelecida por Schymanski et al., 2014. Os NCs 4 e 5 são os mais baixos e correspondem aos compostos que se pode atribuir fórmulas moleculares inequívocas e massas exatas de interesse, respectivamente.
- neste trabalho não foi considerado NC igual a 5 para nenhum composto, uma vez que a lista inicial contendo os compostos prioritários tinham uma fórmula conhecida associada

ao nome do composto, porém em alguns casos a mesma fórmula foi atribuída para compostos diferentes, incluído distinção entre classes e grupos químicos, sendo, portanto, o NC igual a 4 utilizado como valor de partida.

- o NC igual a 3 contém candidatos provisórios com base na fórmula e classe do composto, em que um íon precursor pode ser identificado e atende os critérios de exatidão de massa e variabilidade isotópica (*mSigma*). Sigma é um valor de concordância entre um padrão teórico e um valor experimental relacionado à intensidade dos picos dos isótopos. O cálculo de *mSigma* leva em consideração também o desvio padrão das massas dos isótopos. Portanto, pode-se considerar que para aqueles compostos os quais apenas os picos isotópicos mais intensos foram identificados, o valor de *mSigma* pode ter sido comprometido.
- o nível 2 foi estabelecido sendo possível sugerir possíveis estruturas candidatas. Uma anotação adicional foi realizada neste nível de confiabilidade, através dos subníveis 2a e 2b. Classificou-se como o subnível 2a quando existe correspondência dos fragmentos de massa pesquisados em banco de dados de fragmentação com aqueles observados experimentalmente, enquanto 2b está relacionado a informação de diagnóstico ou possíveis evidências. Neste trabalho a confiabilidade 2a foi estabelecida para aqueles compostos em que pelo menos dois fragmentos de massa para os íons qualificadores foram identificados e 2b para os compostos em que apenas um íon qualificador foi identificado, observando-se também a frequência de detecção nas amostras.
- os bancos de dados de fragmentação foram pesquisados quanto a presença de qualificadores e alguns destes não apresentam concordância entre as informações, embora alguns estejam relacionados e compartilhem os mesmos dados, os valores de massas para os qualificadores foram selecionados com base na disponibilidade do banco de dados. Em alguns casos são fornecidos valores de massa experimentais apresentadas por redes de laboratórios como a NORMAN (Network of references laboratories, research centers and related organisations for monitoring of emerging environmental substances) e o Mona (MassBank of North America) a exemplo do Massbank.
- tanto o *MassBank* quanto o *mzCloud* foram utilizados como base de dados de busca prioritárias. O *mzCloud* compartilha informações com as bases de dados HMDB e *Chemspider*. Quando as informações obtidas por todos os bancos de dados não geraram informações satisfatórias, o CFM-ID foi então utilizado fornecendo valor teórico obtido a partir da estrutura de molécula, o que conduziu a uma possível previsão de fragmentação, mas que pode não ser comprovada experimentalmente. Em ambos os

casos os fragmentos de massa foram obtidos em conformidade com a mesma técnica de espectrometria de massa utilizada neste trabalho (LC-q-TOF/MS), incluindo as mesmas condições de ionização e faixa de energia de fragmentação.

- o NC igual a 1 refere-se ao composto confirmado com um padrão de referência, não estando relacionado ao escopo deste trabalho, no entanto, o fungicida Carbendazim foi identificado anteriormente por metodologia alvo para as mesmas amostras, utilizando padrões de referência, sendo identificado também neste trabalho por *suspect screening*. A **figura 23** apresenta o resumo do fluxo de trabalho estabelecido e **Tabela 3** os compostos identificados.

Figura 23 - Fluxo de trabalho estabelecido para a avaliação de compostos suspeitos nas amostras de águas superficiais do Arroio Dilúvio. **Fonte**: O autor

Tabela 3 - Compostos positivos NC = 2 para a metodologia de *suspect screening* empregada, com valores de massa dos íons qualificadores (Qual1, Qual2 e Qual 3) e tempo de retenção (Tr) utilizados no método TASQ.

Nome do composto	Fórmula	Tr (min)	Qual 1	Qual 2	Qual 3	NC
10,11-dihidroxicarbamazepina	C15H14N2O3	1,80	236,0710	198,0913	210,0913	2a
4-acetil-amino-antipirina	C13H15N3O2	1,60	159,0906	204,1133		2a
4-aminoantipirina	C11H13N3O	1,60	187,0875	77,0385	159,0915	2a
4-hidroxi-norefedrina	C9H13NO2	1,80	134,0650	107,0491	65,0385	2b
Ácido losartano-carboxílico (E-3174)	C22H21ClN6O2	3,30	235,0978	207,0916	379,1207	2b
Ácido-5-Etilnicotínico	C8H9NO2	0,70	134,0600	106,0651	110,0706	2b
Benzoilecgonina	C16H19NO4	2,30	228,1019	122,0964	168,1010	2b
Carbendazim	C9H9N3O2	1,30	160,0504	161,0528	144,0556	2b
Carbofurano-fenol	C10H12O2	4,10	109,0284	147,0804	65,0385	2b
Deetilatrazina	C6H10ClN5	1,90	146,0219	135,0750		2b
Dihidrotestosterona	C19H30O2	4,40	165,1274	145,1011	107,0855	2a
EME (Éster Metílico de Ecgonina)	C10H17NO3	0,40	186,1138	168,1034	82,0657	2b
Fenpiroximato-M13	C12H13N3O2	1,40	214,0975	187,0866	173,0709	2a
Metolacloro OA	C15H21NO4	2,20	192,0655	119,0855	105,0698	2a

5.1.1 Interpretação dos dados utilizando o TASQ

Todos os resultados processados foram interpretados de acordo com a pontuação gerada pelo *software* TASQ sempre ao final de cada triagem através da pontuação MRSQ. As letras maiúsculas representam os dados gerados para exatidão de massa (M), tempo de retenção (R), ajuste a variabilidade isotópica (S) e avaliação da presença e razão iônica para as massas dos íons qualificadores fornecidos (Q). Essas informações foram combinadas através de colunas e um sistema de cores que indicam se os valores individuais obtidos para cada parâmetro satisfazem os critérios mínimos aceitáveis para que o resultado da triagem seja considerado positivo (**Figura 24**).

Figura 24 - Pontuação MRSQ utilizada para avaliação dos resultados fornecidos pelo software TASQ. **Fonte:** Adaptado TASQ Bruker Daltonics 2021.

A pontuação MRSQ é calculada a partir da diferença expressa entre um valor teórico fornecido ao método utilizado no processamento e aquele obtido experimentalmente após o processamento. Um valor máximo e mínimo deve ser fornecido para que durante o processamento os valores sejam avaliados conforme o ajuste a esta faixa estabelecida. No caso do tempo de retenção, uma pontuação satisfatória será obtida quando a diferença de tempo de retenção teórico e experimental (dRT) estiver igual a zero ou abaixo do menor valor da faixa limite estabelecida. Nesse caso a pontuação MRSQ correspondente ao tempo de retenção (R) gerou a cor verde para este parâmetro.

A pontuação para tempo de retenção indicou cor amarela quando dRT ficou entre a faixa mínima e máxima limite de tempo de retenção estabelecida e o resultado nesse caso foi considerado aceitável. Um dRT superior ao maior valor estabelecido na faixa de tolerância foi considerado não satisfatório e a cor vermelha foi visualizada, sendo todos estes resultados desconsiderados.

Os mesmos critérios foram utilizados para a diferença dos valores teóricos e experimentais de exatidão de massa (dm/z) e mSigma (S). Os íons qualificadores foram avaliados quanto a sua presença e ausência, porém não foram definidos critérios quanto a razão iônica entre o íon precursor e os qualificadores. Quando todos os íons qualificadores definidos como obrigatórios estavam presentes, a cor verde foi observada. Se um ou mais íons qualificadores definidos como obrigatórios não foram encontrados, a cor amarela foi observada, ambos sendo resultados aceitos.

A **Tabela 4** apresenta os critérios de aceitação dos resultados gerados pelo TASQ que foram utilizados na triagem de compostos. O limite máximo e mínimo estabelecido para tempo de retenção estão representados por RTT1/RTT2 (\pm 0,25 / \pm 0,50 minutos), MT1/MT2 (\pm 3,0 / \pm 5,0 ppm) para exatidão de massa e ST1/ST2 (25/50) para variabilidade isotópica.

Tabela 4 - Descrição dos critérios para pontuação dos compostos realizada no TASQ.

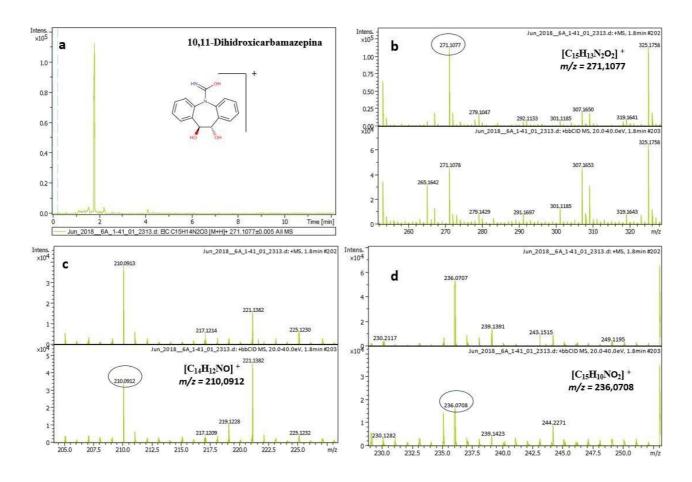
Fonte: Baseado no Manual Brucker Daltonics, 2021

Fator	Critério de aceitação	Tabela de resultados (Codificação de cores)
	$0 \le dRT \le RTT1$	
Tempo de Retenção	$RTT1 < dRT \le RTT2$	
	RTT2 < dRT	
	$0 \le dm/z \le MT1$	
Exatidão de Massa	$MT1 < dm/z \le MT2$	
	MT2 < dm/z	
Valor de Sigma	$0 \le S \le ST1$	
(Pontuação	$ST1 < S \le ST2$	
mSigma)	ST2 < S	

A seguir serão apresentados os resultados para cada composto identificado no método. Os resultados foram extraídos de uma lista de comopostos avaliados pelo *software* TASQ e os compostos positivos estão destacados em negrito nas tabelas, juntamento com a pontuação MRSQ e os critérritos utilizados na triagem.

O composto 10,11-dihidroxicarbamazepina é um metabólito de excreção humana da carbamezepina, que é um medicamento utilizado como antiepilético/anticonvulsivante e analgésico, também utilizada para tratar sintomas de transtorno de bipolaridade. Seu uso está condicionado a avaliação rigorosa e controle de receita, devido a oferecer risco intermediário com efeitos adversos ao usuário. A carbamezepina é amplamente metabolizada no fígado formando, majoritariamente, metabólitos hidroxilados com taxa de metabolização superior a 70%, sendo excretados principalmente pela urina ²³⁴. A 10,11-dihidroxicarbamazepina é formada a partir do intermediário ativo epóxido, conforme apresentado na **figura 25**.

Figura 25 - Reação de formação do metabólito 10,11-dihdiroxicarbamazepina.


10 ,11 - dihidroxicarbamazepina

Fonte: O autor

A partir da avaliação dos resultados observados na pontuação MRSQ para o metabólito 10,11-dihidroxocarbamazepina (**Tabela 5**) os espectros de massa do íon precursor e dos fragmentos identificados puderam ser extraídos do pico cromatográfico no tempo de retenção 1,8 minutos. O espectro de massa correspondente ao íon precursor m/z = 271,1077 e os espectros de massa m/z = 210,0912 e m/z = 236,0708 correspondentes aos respectivos íons qualificadores identificados pelo método, para o mesmo tempo de retenção, conforme demonstrado na **Figura 26.**

Tabela 5 - Pontuação MRSQ contendo o metabólito 10,11-dihidroxicarbamazepina com a respectiva variação de exatidão de massa, variação de tempo de retenção e mSigma para amostra 6A de junho de 2018. **Fonte**: Dados extraídos do TASQ.

Nome do analito	MRSQ	Δm/z [ppm]	ΔRT	mSigma	área
			[min]		
Fenpiroximato M-9		1.93	0.31	64.9	67051
Fenpiroximato M-13		- 0.52	-0.25	8.5	1267464
1-quinol-glucoronideo		4.90	0.33	684.5	8546
10,11-Dihidroxicarbamazepina		-0.44	-0.17	14.9	155322
10,11-Epoxicarbamazepina		0.47	-0.47	32.9	97803
17-alfa-Estradiol-3-glucoronidio		0.31	0.08	460	18529

Figura 26 - (a) Cromatograma com pico no tempo de retenção 1,8 minutos e cromatogramas de íons extraídos para (b) íon precursor m/z =271,1077 e fragmentos bbCID (c) m/z = 210,0912 e (d) m/z = 236,0708 para amostra 6A de junho de 2018.

Foram identificados os compostos 4-acetil-amino antipirina (4-AAA) e 4-amino-antipirina (4-AAA), ambos metabólitos da dipirona (metamizol). A dipirona está entre os analgésicos e antipiréticos mais comercializados no Brasil, representando 22% entre os medicamentos não tarjados comercializados ²⁴³. Trata-se de um medicamento isento de prescrição e retenção de receita, sendo comercializado livremente em farmácias e não requer controle de alta vigilância em hospitais, o que pode justificar sua presença no ambiente, observada através de seus metabólitos. Dentre os metabólitos identificados apenas o 4-AA conserva efeitos analgésicos, análogo à dipirona e a taxa de metabolização está na faixa de 90% ²³⁴

A metabolização da dipirona consiste na formação do seu metabólito ativo 4-metilamino-antipirina (MAA) por hidrólise. O MAA é metabolizado em 4-formil-amino – antipirina (FAA) via oxidação e em 4-amino-antipirina (4-AA) por N-desmetilação. O 4-AA após reação de acetilação forma o 4-AAA. Um resumo das reações está apresentado na **figura** 27.

Os valores observados na pontuação MRSQ para ambos compostos, está dentro da faixa estabelecida para método. Para o 4-AAA a variação de tempo de retenção está entre os valores estabelecidos como limite e para o 4-AA dois íons qualificadores puderem ser encontrados de um total de três indicados no método Estes valores podem ser observados nas **tabelas 6 e 7**.

No cromatograma de íons extraídos a partir do pico no tempo de retenção 1,5 minutos o íon precursor de massa exata m/z = 246,1234 foi encontrado para o metabólito 4-AAA, bem com os fragmentos de massas correspondente aos seus íons qualificadores m/z = 159,0914 e m/z = 204,1119. No tempo de retenção 1,6 minutos o cromatograma de íons extraído apresenta um espectro de massa correspondente ao íon precursor da 4-AA m/z = 204,1131 e de seus fragmentos m/z = 159,0916 e m/z = 187,0865 Os espectros de massa para ambos compostos estão apresentados nas **figuras 28 e 29**.

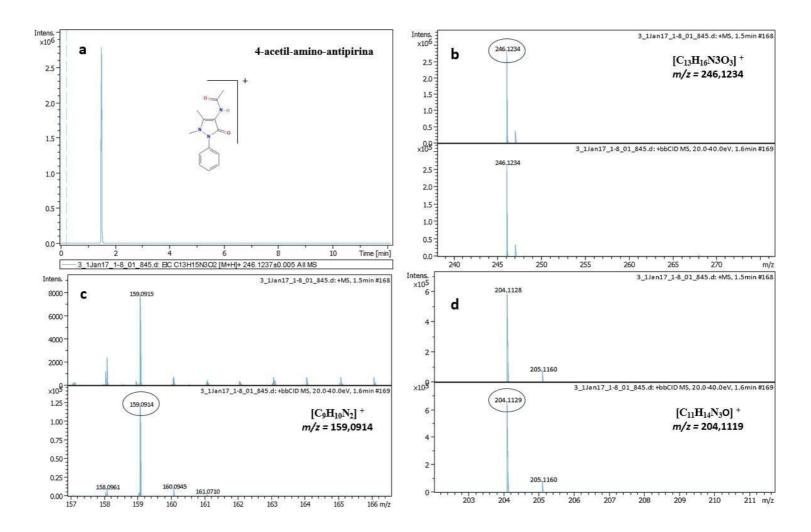

Figura 27 - Reações metabólicas para formação dos metabólitos da dipirona 4-AAA e 4-AA. **Fonte**: O autor

Tabela 6 - Pontuação MRSQ contendo os 4-AAA com as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 3A de março de 2017. **Fonte:** Dados extraídos do TASQ.

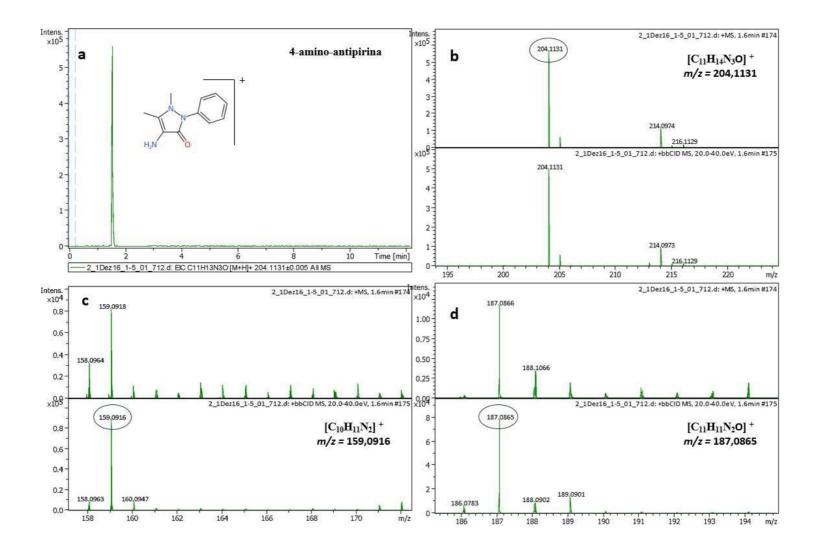

Nome do analito	MRSQ	Δm/z [ppm]	ΔRT [min]	mSigma	área
4-acetil-amino-antipirina		-0.28	-0.36	4.2	1509698
4-amino-antipirina		-1.06	0.14	18.3	365851
4-formil-amino-antipirina		-0.36	-0.06	19.4	635600
ácido-5-etilnicotínico		-0.49	-0.13	33.1	55447
6-beta-hidroxisimvastatina		-0.97	-0.09	37.4	14071
8-Hidroxinevirapina		-4.51	0.10	19.2	28974

Tabela 7 - Pontuação MRSQ contendo os 4-AA com as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 2A de dezembro de 2016. Fonte: Dados extraídos do TASQ.

Nome do analito	MRSQ	Δm/z [ppm]	ΔRT	mSigma	área
			[min]		
2,6-Dimetilanilina		- 1.34	0.22	7.5	83416
2-Amino-3-Metilbenzoato		- 0.24	0.24	29.3	111405
3-(2-piridini) ácido butanóico		1.56	0.05	8.6	161430
3-hidroxicarbamazepina		2.22	-0.25	7.5	85045
4-acetil-amino-antipirina		-0.09	-0.30	7.1	5516332
4-amino-antipirina		0.32	0.20	10.9	1197492

Figura 28 - -(a) Cromatograma com pico no tempo de retenção 1,5 minutos para o 4-AAA e cromatogramas de íons extraídos para (b) íon precursor m/z = 246,1234 e fragmentos *bb*CID (c) m/z = 159,0914 e (d) m/z = 204,1119 para amostra 3A de março de 2017.

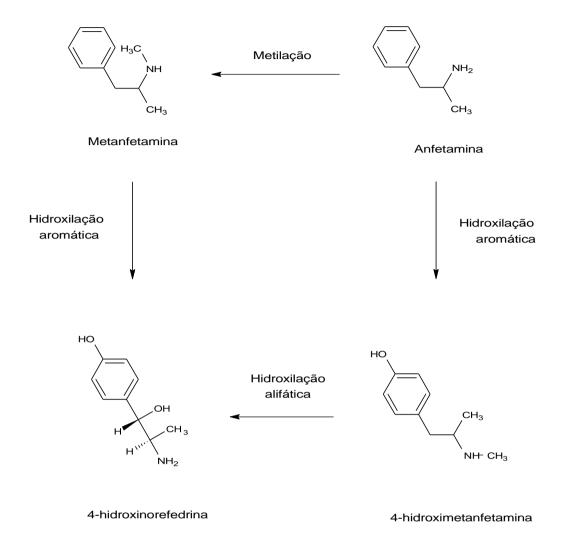


Figura 29 -(a) Cromatograma com pico no tempo de retenção 1,6 minutos PARA O 4-AA e cromatogramas de íons extraídos para (b) íon precursor m/z = 204,1131 e fragmentos bbCID (c) m/z = 159,0916 e (d) m/z = 187,0865 para amostra 2A de dezembro de 2016.

A 4-hidroxi-norefedrina é um metabólito urinário das anfetaminas. Anfetaminas são um grupo de substâncias estimulantes do sistema nervoso central (SNC), indicadas para transtorno de déficit de atenção (TDAH) e regulação do ritmo do sono relacionados a perturbações neurológicas crônicas. Medicamentos que contenham este ingrediente ativo são tarja preta, necessitando de um controle maior para sua comercialização, pois podem causar dependência ou em alguns casos óbito decorrente do uso inadequado. Algumas anfetaminas não estão aprovadas para o uso clínico e acabam sendo fabricadas e consumidas de forma ilegal.

Um exemplo de anfetamina sintética é a metanfetamina. A metanfetamina é utilizada em danceterias, festas e por profissionais que necessitam permanecer horas acordados no desempenho de suas atividades, pois confere forte efeito estimulante. Também são utilizadas com intuito de perder peso e neste e nos casos citados anteriores quando o seu uso é interrompido pode levar a sintomas de abstinência que incluem quadros de convulsões, overdose e crises suicidas.

A 4-hidroxi-norefedrina pode ser originada tanto dos medicamentos que contenham como ingrediente ativo a anfetamina, quanto da metanfetamina. Em torno de 40% da anfetamina poder ser eliminada pela urina de forma inalterada, o restante em forma de metabólitos, que inclui duas reações de hidroxilação, uma aromática e outra alifática, formando respectivamente a 4-hidroxianfetamina e a norefedrina. A hidroxilação alifática da 4-hidroximetanfetamina resulta na 4-hidroxi-norefedrina. Pela mesma reação o metabólito pode ser originado através da metanfetamina (**Figura 30**).

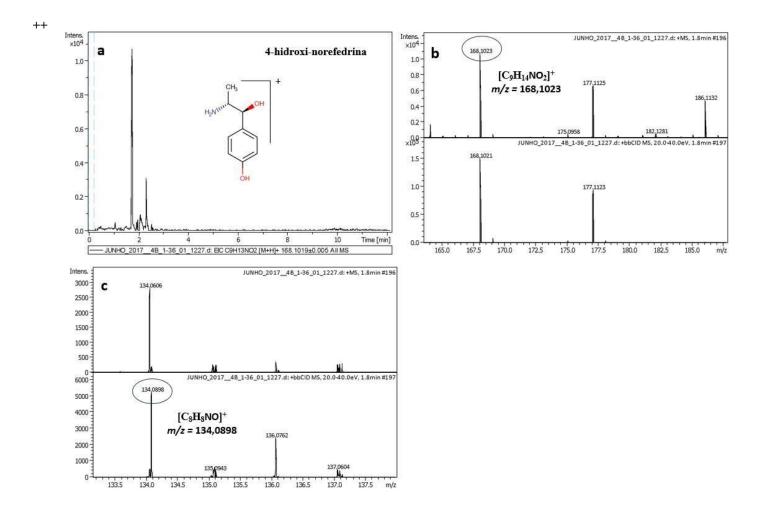


Figura 30 - Reações de metabolização das anfetaminas para formação da 4-hidroxi-norefedrina. **Fonte:** O autor

Tabela 8 - Pontuação MRSQ para a 4-hidroxi-norefedrina e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 4B de junho de 2017. Fonte: Dados extraídos do TASQ.

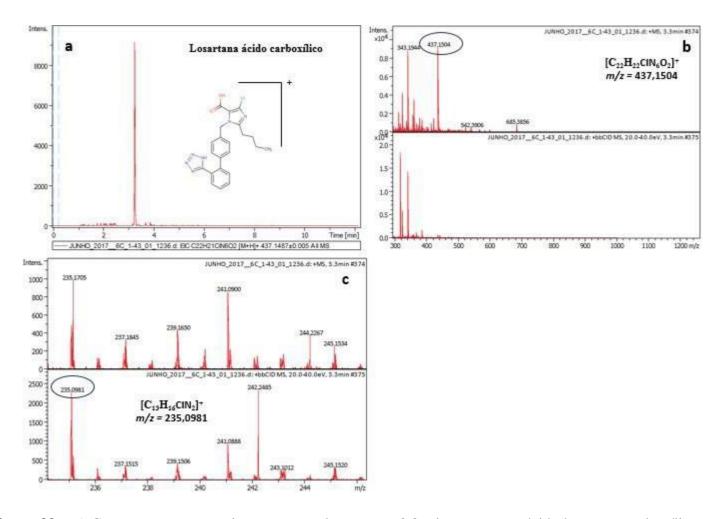
Nome do analito	MRSQ	Δm/z [ppm]	ΔRT	mSigma	área
			[min]		
Fenpiroximato M-13		0.09	-0.24	16.4	502225
10,11-Dihydroxicarbamazepina		-2.14	-0.18	23.6	40981
4-hidroxi norefedrina		2.89	0.03	11.3	51003
10,11-Epoxicarbamazepina		0.53	-0.49	30.2	24855
2-hidroxicarbamazepina		0.53	-0.49	30.2	24855
3-hidroxicarbamazepina		0.53	-0.49	30.2	24855

A pontuação MRSQ para o 4-hidroxi-norefedrina apresenta resultados dentro do estabelecido para o método para exatidão de massa, variação de tempo de retenção e variabilidade isotópica. Dentre os íons qualificadores definidos para o método como obrigatórios, somente um foi encontrado. Os cromatogramas de íons extraídos apresentam um espectro de massa correspondente ao íon precursor m/z = 168,1023 e o espectro de massa bbCID, correspondente ao fragmento m/z = 134,0898, do pico cromatográfico no tempo de retenção 1,8 minutos, conforme demonstrado na **figura 31.**

Figura 31 - (a) Cromatograma com pico no tempo de retenção 1,8 minutos para 4-hidroxi-norefedrina e cromatogramas de íons extraídos para (b) íon precursor m/z = 168,1023 e fragmento bbCID (c) m/z = 134,0898 para amostra 4B de junho de 2017.

O ácido losartana carboxílico (E-3174) é um metabólito da losartana (losartan), o anti-hipertensivo mais utilizado no Brasil ²⁴⁴. Foi introduzido há mais de 30 anos no mercado e desde então serviu de base para o desenvolvimento de diversos outros compostos com o mesmo mecanismo de ação ²⁴⁵. Além da hipertensão é indicado para tratamento de nefropatia diabética e na redução de riscos de acidente vascular cerebral. Sua utilização em grande escala se deve ao fato de que é o medicamento indicado para pacientes entre 6 e 55 anos, uma faixa etária em que outros medicamentos para essa finalidade não são indicados. São medicamentos que oferecem risco intermediário com efeitos adversos ao usuário, com restrições de uso para algumas situações especiais, por isso são controlados com receituário prescrito por profissional da saúde.

A losartana é inicialmente metabolizada para o intermediário aldeído, o losartana carboxaldeído (E-3179) e posteriormente oxidado ao metabólito ativo E-3174, que corresponde a 14% da metabolização total. A losartana pode sofrer oxidação que leva diretamente a formação de E-3174, sem uma etapa intermediária conforme demonstrado na **figura 32**. A pontuação MRSQ está apresentada na **tabela 9**.


Figura 32 - Reações de metabolização da Losartana à Losartana ácido carboxílico (E-3174). **Fonte**: O autor

Losartana ácido carboxilico

Tabela 9 - Pontuação MRSQ para a Losartana ácido carboxílico (E-3174) e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 6C de junho de 2017. Fonte: Dados extraídos do TASQ.

Nome do	MRSQ	Δm/z [ppm]	ΔRT	mSigma	área
analito			[min]		
Dibutilamine		-1.76	-0.25	4.7	403893
Dietil succinate		-6.59	0.48	628.5	11393
Diuron		0.59	-0.19	14.7	14753
Dopamina Quinona		-0.76	-0.26	7.1	270566
E-3174		-1.44	-0.05	19.9	8723
EPC		0.47	-0.17	32.9	97803

Os valores de variação de exatidão de massa, tempo de retenção e variabilidade isotópica estão dentro do valor esperado para faixa definida pela pontuação MRSQ. Dentre os íons qualificadores definidos como obrigatórios, somente um fragmento de massa foi encontrado. A partir do cromatograma no tempo de retenção 3,3 minutos foram extraídos os cromatogramas de íons para o íon precursor m/z = 437,1504 e de seu respectivo fragmento de massa correspondente ao íon qualificador m/z = 235,0981 (**Figura 33**).

Figura 33 - (a) Cromatograma com pico no tempo de retenção 3,3 minutos para o ácido losartana carboxílico e cromatogramas de íons extraídos para (b) íon precursor m/z = 437,1504 e fragmento bbCID (c) m/z = 235,0981 para amostra 6C de junho de 2017.

O ácido 5-etilnicotínico é um produto de transformação do imazetapir, um herbicida de amplo espectro utilizado em diversos cultivares como soja, amendoim, ervilha, grão de bico, feijão, lentilha, milho, arroz, alface e pastagem. É possível que haja uma pequena contribuição de contaminação agrícola da zona rural de Porto Alegre, a partir do carregamento de agrotóxicos por pequenos afluentes como os arroios Cascatinha e Moinhos que depositam este tipo de contaminação entre outras, diretamente no Arroio Dilúvio. A atividade agrícola mais intensa no entorno do município de Porto Alegre está relacionada ao plantio de arroz, cultivar bastante recomendado para a utilização de imazetapir. O Imazetapir é um agrotóxico previsto na legislação estadual SES nº 320/2014 que define padrões de potabilidade para água potável, com limite fixado de 1500 μL L⁻¹, sem limites regulatórios estabelecidos para corpos d'águas naturais superficiais de qualquer natureza. Os limites regulatórios para o ácido 5- etilnicotínico e outros produtos de transformação não são estabelecidos em nenhuma legislação.

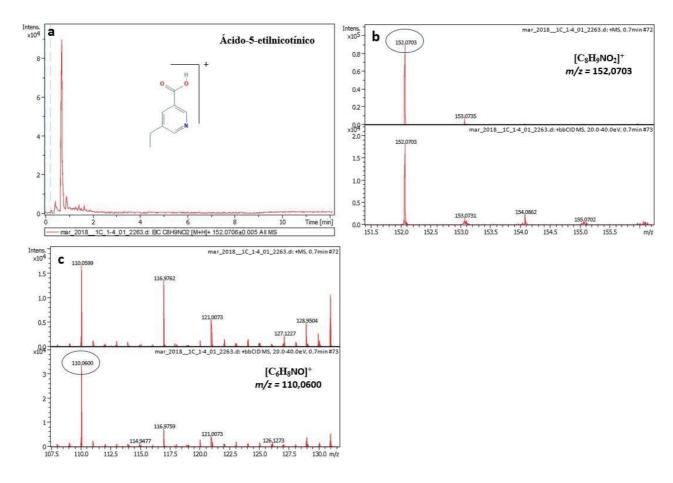

O imazetapir forma o produto intermediário 1 (2 [(1-carbamoil-1,2-dimetilpropil) -carbamoil] -5-etilnicotínico), através da abertura do anel da imidazolinona que pode ocorrer por processo fotoquímico ou metabolismo microbiano no solo ²⁴⁶. O produto intermediário 1 forma um segundo intermediário o ácido 5-etil-2,3-piridinodicarboxílico por uma reação oxidativa fotoquímica. Uma reação de descarboxilação do segundo intermediário leva a formação do ácido-5-etilnicotínico (**Figura 34**).

Figura 34 – Reação de formação do ácido 5-etil-nicotínico a partir do herbicida imazetapir**. Fonte**: O autor

Tabela 10 - Pontuação MRSQ para o ácido 5- etilnicotínico e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 1C de Março de 2018. Fonte: Dados extraídos do TASQ.

Nome do analito	MRSQ	Δm/z [ppm]	ΔRT [min]	mSigma	área
Ácido-5-etilnicotínico		0.17	-0.21	5.9	11852
Lamivudina		0.19	-0.13	27.5	44731
M13 Metilpred		-2.05	-0.36	436,1	16529
M3 Metilpred		0.68	-0.37	120.7	13624
M9 (M7.1)		0.68	-0.07	120.7	13528
MAC		0.25	-0.27	7.7	477501

A pontuação MRSQ demonstra que os valores de variação de exatidão de massa, tempo de retenção e variabilidade isotópica estão dentro do esperado para faixa definida. Dentre os íons qualificadores indicados no método como obrigatório, somente um foi localizado. O espectro de massa correspondente ao íon precursor tem valor de m/z = 152,0703 e seu respectivo fragmento de massa bbCID m/z = 110,0600 foram extraídos do cromatograma no tempo de retenção 0,7 minutos conforme demonstrado na **figura 35**.

Figura 35 - (a) Cromatograma com pico no tempo de retenção 3,3 minutos para o ácido 5-etilnicotínico e cromatogramas de íons extraídos para (b) íon precursor m/z = 152,0703 e fragmento bbCID (c) m/z = 110,0600 para amostra 1C de março de 2018.

A Benzoilecgonina e o éster metílico de ecgonina (EME), ambos metabólitos da cocaína foram identificados. A cocaína é um estimulante do SNC, amplamente utilizada como droga recreativa. Seu uso pode ser em forma de cloridrato de cocaína, um sólido branco consumido por aspiração intranasal de forma injetável, geralmente diluído em água, ou ainda por inalação na forma de crack (base livre) e da merla uma forma impura da droga contendo solventes e outros contaminantes.

Assim como outros compostos a cocaína torna-se um contaminante ambiental chegando até o ambiente através da rede de esgoto, indicado principalmente na forma de seus metabólitos urinários, sendo bastante comum em sistemas aquáticos de grandes centros urbanos. A Benzoilecgonina e o éster metílico de ecgonina correspondem a 75 - 90% do metabolismo da cocaína, ambos são formados por reações de hidrólise (**Figura 36**). O éster metílico de ecgnonia é também formado diretamente no ambiente, a partir da cocaína excretada de forma inalterada, via metabolismo bacteriano ²³⁵.

Os valores de variação de massa, tempo de retenção e variabilidade isotópica para ambos compostos estão entre a faixa de valores limite estabelecidos. Dentre os íons qualificadores definidos no método como obrigatórios, um íon qualificador pode ser identificado para benzoilecgonina e para o éster metílico de ecgonina. Os valores correspondentes a pontuação MRSQ estão apresentados nas **tabelas 11 e 12**.

A partir do pico cromatográfico no tempo de retenção 2,3 minutos foram observados os espectros de massa correspondente ao íon precursor da benzoilecgonina m/z = 290,1386 e um espectro de massa bbCID correspondente ao fragmento m/z = 168,1018 (**Figura 37**). O íon precursor m/z = 200,1289 corresponde ao éster metílico de ecgonina, extraído do cromatograma onde se observa um pico cromatográfico no tempo de retenção 0,4 minutos, onde se observa um fragmento de massa bbCID m/z = 186,1129 (**Figura 38**).

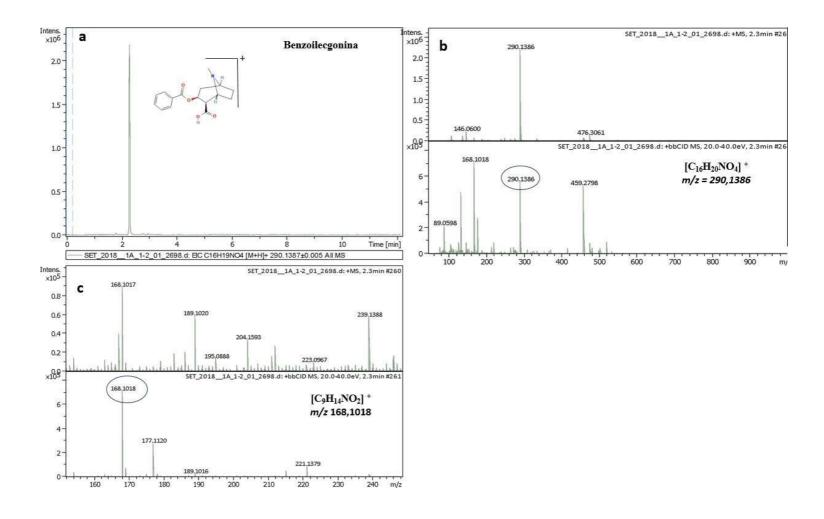

Figura 36 - Reação de formação dos metabólitos da cocaína, benzoilecgonina e éster metílico de ecgonina (EME). **Fonte:** O autor.

Tabela 11 - Pontuação MRSQ para a benzoilecgnonina e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 1A de setembro de 2018. Fonte: Dados extraídos do TASQ.

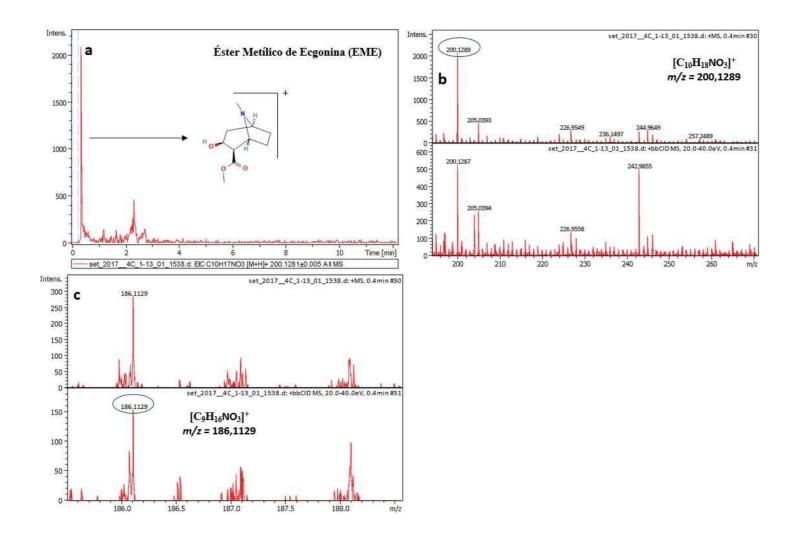

Nome do	MRSQ	Δm/z [ppm]	Δ RT	mSigma	área
analito			[min]		
Androstenediona		0.54	-0.39	349.4	49777
Atazanavir		0.22	-0.11	25.6	158360
Atenolol		-0.02	-0.37	9.4	1193564
Atrazina		1.30	-0.17	43.3	13913
BF12		-0.31	0.20	603.7	10024
Benzoilecgonina		1.54	-0.20	3.4	2507384

Tabela 12 - Pontuação MRSQ para éster metílico de ecgonina e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 4C de setembro de 2017. Fonte: Dados extraídos do TASQ.

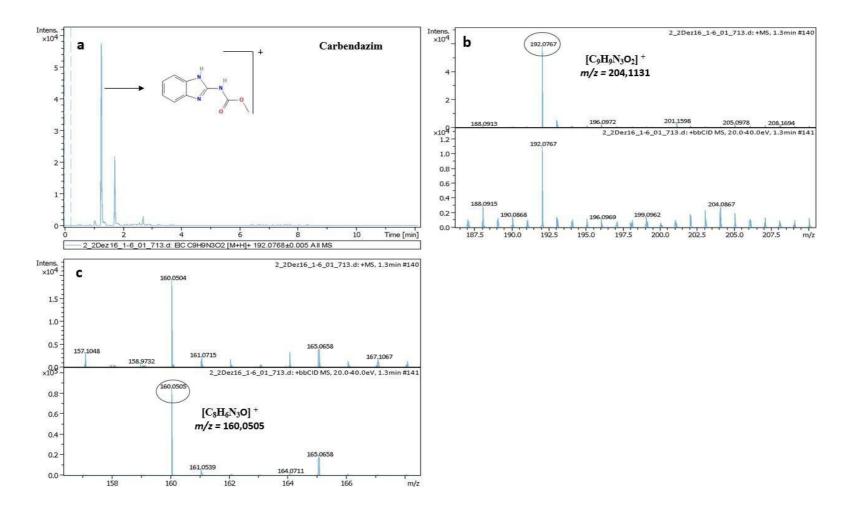
Nome do analito	MRSQ	$\Delta m/z$ [ppm]	ΔRT	mSigma	área
			[min]		
Dietil succinato		-2.77	-0.38	60.8	109539
Dihidrotestosterona		0.53	-0.03	3.3	256072
Diuron		2.16	-0.18	17.5	26831
Dopamina Quinona		0.12	-0.25	96.5	847285
E-3174		-0.04	-0.03	31.1	147140
Éster Metílico de		1.07	-0.08	21.1	2155
Ecgonina					

Figura 37 - (a) Cromatograma com pico no tempo de retenção 2,3 minutos para a benzoilecgonina e cromatogramas de íons extraídos para (b) íon precursor m/z = 290,1386 e fragmento bbCID (c) m/z = 168,1018 para amostra 1A de setembro de 2018.

Figura 38 - (a) Cromatograma com pico no tempo de retenção 0,4 minutos para a éster metílico de ecgonina e cromatogramas de íons extraídos para (b) íon precursor m/z = 200,1289 e fragmento bbCID (c) m/z = 186,1129 para amostra 4C de setembro de 2017.

O Carbendazim, além de ser um agrotóxico, também é um metabólito do benomil e ambos são fungicidas benzimidazóis utilizados na agricultura. O Carbendazim teve seu uso aprovado para aplicação foliar e em sementes de algodão, cana de açúcar, cevada, citros, feijão, maçã, milho, soja e trigo, no entanto, no ano de 2022 a ANVISA proibiu o uso deste ingrediente ativo em formulações e definiu medidas de mitigação de riscos. A presença de Carbendazim e seu composto parental foram avaliadas anteriormente nas amostras do arroio Dilúvio ²⁴⁷, com concentrações variando entre 0,01 e 1 ng mL ⁻¹. A presença do Carbendazim no ambiente como contaminante está relacionado às rotas metabólicas humana, vegetal e bacteriana que ocorre na água, sedimento ou solo, através da reação de hidrólise da cadeia lateral do grupamento butilcarbamoil ²⁴⁸. Porém reações fotoquímicas ocorrem em paralelo, através da perda do isocianato de n-butila, em que o mecanismo envolve a interação do par de elétrons na posição N-1 e do próton doado para formar o isocianato de butila. (**Figura 39**). A portaria estadual SES n° 320/2014 e federal GM/MS nº 888/2021 estabelecem um limite máximo de 120 μg L ⁻¹ para Carbendazim em água potável. Não há limites estabelecidos para o fungicida em águas naturais superficiais.

Isocianato de n-butila


Figura 39 - Reações de formação do Carbendazim a partir do Benomil por metabolismo animal/humano e vegetal via hidrólise e pela ação da luz solar (fotoquímica) **Fonte:** O autor

A **tabela 13** apresenta a pontuação MRSQ para o Carbendazim cujas variações de massa, tempo de retenção e variabilidade isotópica estão dentro da faixa prevista para o método. A pontuação para presença de íons qualificadores indica que um fragmento de massa foi identificado dentre aqueles disponíveis no método.

A identificação do Carbendazim foi realizada pela extração do cromatograma de íons extraídos onde se observa o íon precursor m/z = 204,1131 e o espectro de massa correspondente ao fragmento bbCID m/z = 160,0505 ambos para o tempo de retenção 1,3 minutos, conforme demonstrado na **figura 40**.

Tabela 13 - Pontuação MRSQ para Carbendazim e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 2B de dezembro de 2016. Fonte: Dados extraídos do TASQ.

Nome do	MRSQ	Δm/z [ppm]	Δ RT	mSigma	área
analito			[min]		
Atrazina		1.86	0.02	35.3	21566
BP Aldeído		3.94	-0.03	6.0	27737
Benzoilecgonina		-0.02	0.03	12.7	1543138
Cafeína		0.16	0.04	11.3	877171
Carbamazepina		1.91	0.05	15.7	365814
Carbendzim		1.52	0.04	10.8	126076

Figura 40 - (a) Cromatograma com pico no tempo de retenção 1,3 minutos para o Carbendazim e cromatogramas de íons extraídos para (b) íon precursor m/z = 204,1131 e fragmento bbCID (c) m/z = 160,0505 para amostra 2B de Dezembro de 2016.

O carbofurano fenol (carbofurano-7-fenol) é um metabólito do inseticida carbofurano. O carbofurano é um inseticida metilcarbamato que teve seu uso autorizado para as culturas agrícolas de café, banana, cana de açúcar, batata, milho e soja, estando presentes em formulações para uso não agrícola como cupinicida. No ano de 2017 a ANVISA, em seu processo de reavaliação toxicológica, proibiu a comercialização do ingrediente ativo, por se tratar de um composto altamente tóxico (classe I). Carbofurano é um agrotóxico legislado pela portaria federal nº 888/2021 com limite máximo igual a 7 μg L -1 , exclusivamente para padrão de potabilidade de água para consumo humano, porém não há informações para seu metabólito.

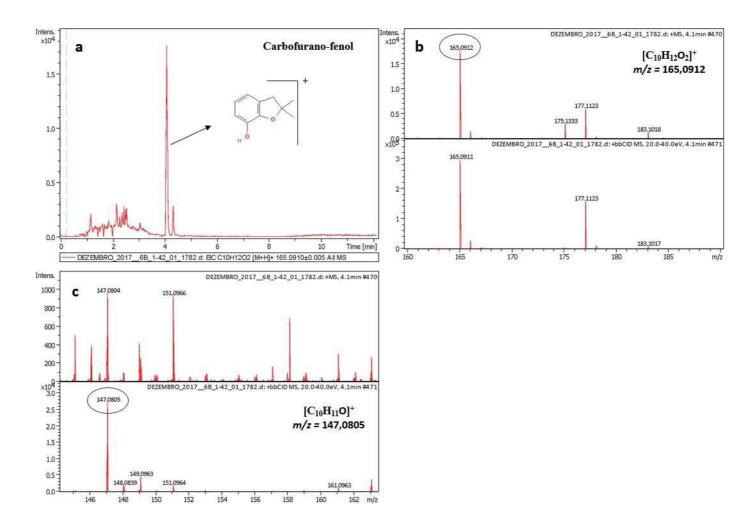

A transformação de carbofurano em carbofurano-fenol ocorre na água ou sedimento a partir da ação de bactérias e vegetais, via processo de hidrólise ²⁴⁸. O mesmo mecanismo foi identificado no organismo humano via metabolismo hepático ²⁴⁹.

Figura 41 - Reação de formação do metabólito carbofurano-fenol, a partir da hidrólise do inseticida carbofurano. Fonte: **O autor.**

Na pontuação MRSQ para carbofurano-fenol (**tabela 14**) os valores de variação de massa exata, tempo de retenção e variabilidade isotópica estão dentro da faixa prevista para o método. A pontuação para presença de íons qualificadores indica que apenas um fragmento de massa foi identificado, dentre aqueles disponibilizados no método como obrigatórios. O cromatograma no tempo de retenção 4,1 minutos apresenta um pico cromatográfico correspondente ao carbofurano-fenol e os cromatogramas de íons extraídos com m/z = 165,0912 e m/z = 147,0805 correspondem aos espectros de massa respectivamente do íon precursor e do fragmento de massa bbCID, conforme demonstrado na **figura 42**.

Tabela 14 - Pontuação MRSQ para o carbofurano-fenol e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 6B de dezembro

Nome do analito	MRSQ	Δm/z [ppm]	ΔRT	mSigma	área
			[min]		
Carbofurano fenol		1.25	0.03	10.4	65265
Carbofurano		1.98	0.04	26.5	114816
DPB 2		-1.14	-0.01	20.9	89483
DEET TP M222		1.98	0.04	26.5	112365
Desvenlafaxina		0.22	0.14	20.9	80294
Dextroanfetamina		-0.69	-0.03	27.3	46942

Figura 42 - (a) Cromatograma com pico no tempo de retenção 4,1 minutos para o carbofurano-fenol e cromatogramas de íons extraídos para (b) íon precursor m/z = 165,0912 e fragmento bbCID (c) m/z = 147,0805 para amostra 6B de dezembro de 2017.

A Deeltilatrazina (DEA) é um metabólito da Atrazina, um herbicida triazínico indicado para cana-de-açúcar e milho e sorgo utilizado isoladamente ou em combinação com outros agrotóxicos devido ao seu efeito sinérgico. Seu uso não agrícola está relacionado à aplicação de pós-emergência de plantas daninhas em capinas químicas para erradicação de vegetação infestante ao longo de cercas, margens de rodovias, oleodutos, leitos de ferrovias e faixa sob rede de alta tensão. Nos últimos seis anos a Atrazina está entre os cinco ingredientes ativos mais comercializados no Brasil, sendo um agrotóxico legislado, assim como seus metabólitos, incluindo a Deetilatrazina. A portaria federal n° 888/2021 estabelece um limite máximo de 2,0 μg L ⁻¹ para ambos os compostos para água destinada ao consumo humano. O mesmo limite está previsto para Atrazina pela CONAMA n° 357/2005 para águas superficiais naturais, doces, salgadas ou salobras destinadas a todas as atividades. A portaria estadual não prevê limites para a Atrazine e nenhum de seus metabólitos.

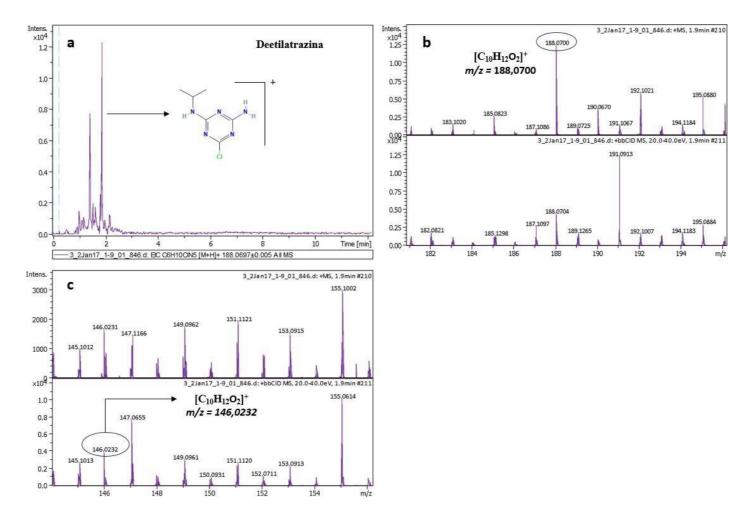

A reação de degradação fotoquímica da Atrazina para formar DEA ocorre por dois intermediários a partir da oxidação da cadeia lateral etil. Na sequência, ambos intermediários levam a formação de DEA por desalquilação e redução do grupo funcional amida. A desalquilação ocorre também por metabolismo microbiano, vegetal e animal levando a formação direta de DEA ²⁴⁶, conforme demonstrado na **figura 43**.

Figura 43 - Reações de formação fotoquímica e metabólica da Deetilatrazina (DEA). **Fonte**: O autor

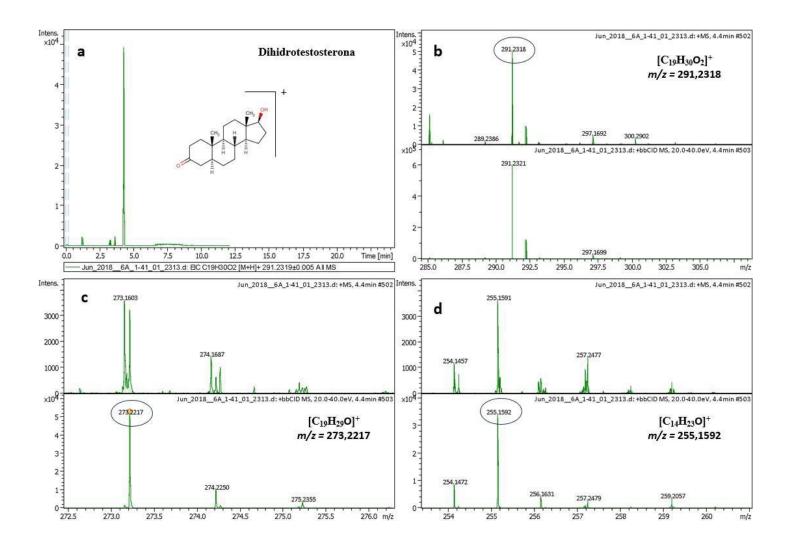
Na pontuação MRSQ para Deetilatrazina (**tabela 15**) os valores de variação de massa exata, tempo de retenção e variabilidade isotópica estão dentro da faixa prevista para o método. A pontuação para presença de íons qualificadores indica que apenas um fragmento de massa foi identificado, dentre aqueles disponibilizados no método como obrigatórios. O cromatograma no tempo de retenção 1,9 minutos apresenta um pico cromatográfico correspondente a Deetilatrazina e os cromatogramas de íons extraídos com m/z = 188,0700 e m/z = 146,0232 correspondem aos espectros de massa respectivamente do íon precursor e do fragmento de massa bbCID, conforme demonstrado na **figura 44**.

Tabela 15 Pontuação MRSQ para a Deetilatrazina e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 3B de março de 2017 Fonte: Dados extraídos do TASQ.

Nome do analito	MRSQ	$\Delta m/z$ [ppm]	ΔRT	mSigma	área
Cafeína		-0.05	[min] -0.26	14.1	624335
Carbamazepina-2,3-epóxido		2.90	-0.01	13.2	30323
Deetilatrazina		1.60	0.20	14.4	25556
Dibutilamina		0.01	-0.06	16.1	140798
Dopamina Quinona		-0.54	-0.03	33.1	52395
E-3174		-0.59	-0.09	10.1	34305

Figura 44 - (a) Cromatograma com pico no tempo de retenção 1,9 minutos para o Deetilatrazina e cromatogramas de íons extraídos para (b) íon precursor m/z = 188,0700 e fragmento bbCID (c) m/z = 146,0232 para amostra 3B de março de 2017.

A dihidrotestosterona (DHT) é um hormônio esteroide sexual androgênico, responsável pela diferenciação das características físicas e sexuais masculinas no processo de formação embrionária. O DHT é um dos principais metabólitos da testosterona e apesar de ser um composto endógeno, produzido através de reações metabólicas pelo próprio organismo, a testosterona é utilizada como anabolizante injetável para maturação dos ossos e crescimento muscular acelerado, tornando-se um agente de dependência química devido aos efeitos colaterais. Seu uso lícito está relacionado ao tratamento de doenças como câncer e insuficiência hormonal e na adequação corporal de gênero. Como medicamento seu uso é controlado e realizado com prescrição médica, devido ao risco potencial à saúde. A partir da testosterona exógena aproximadamente 6% do DHT é eliminado na forma não conjugada, sendo mais comum a sulfatação e a glucoronidação prévia a excreção, pois DHT é um metabólito ativo ²³⁴. A reação de metabolização ocorre pela redução da ligação C4-C5 da testosterona, conforme demonstrado na **figura 45**.


Figura 45 - Reação metabólica de conversão da testosterona em DHT.

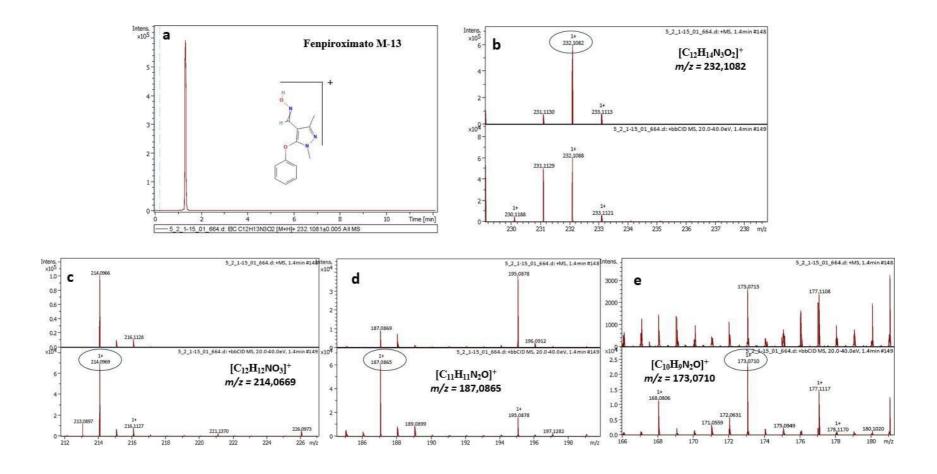
Fonte: O autor

Na pontuação MRSQ para o DHT (**tabela 16**) os valores de variação de massa exata, tempo de retenção e variabilidade isotópica estão dentro da faixa prevista para o método. A pontuação para presença de íons qualificadores indica que dois fragmentos de massa foram identificados, dentre aqueles disponibilizados no método como obrigatórios. O cromatograma no tempo de retenção 4,4 minutos apresenta um pico cromatográfico correspondente ao DHT e os cromatogramas de íons extraídos com m/z = 290,2318 e m/z = 273,2217 e m/z = 255,1592, correspondem aos espectros de massa respectivamente do íon precursor e dos fragmentos de massa bbCID, conforme demonstrado na **figura 46**.

Tabela 16 – Pontuação MRSQ para o DHT e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 6A de junho de 2018 **Fonte**: Dados extraídos do TASQ

Nome do analito	MRSQ	Δm/z [ppm]	ΔRT [min]	mSigma	área
Dietil succinato		-4.84	0.00	259.5	2155
Dihidrotestosterona (DHT)		0.53	-0.03	3.3	25607
Diuron		1.00	-0.10	7.4	274130
N-desmetilcitalopram		-4.84	0.00	259.5	2155
NAPQI (I)		7.58	0.24	557.5	2984
Norfloxacino		-0.77	-0.18	47.0	27080

Figura 46 - (a) Cromatograma com pico no tempo de retenção 4,4 minutos para o DHT e cromatogramas de íons extraídos para (b) íon precursor m/z = 290,2318 e fragmentos *bb*CID (c) m/z = 273,2217 e (d) m/z = 255,1592 para amostra 6A de junho de 2018.


O Fenpiroximato M-13 (1-(1,3-dimetil-5-fenoxi-1H-pirazol-4-il) -N-hidroximetanamina) é um metabólito do acaricida pirazol Fenpiroximato, autorizado para uso agrícola de uma diversidade de frutas, hortaliças e grãos. Fenpiroximato e seu metabólito não são legislados e a conversão metabólica está relacionada à degradação do Fenpiroximato no solo, por bactérias, através de duas vias, em que o composto parental gera diretamente o metabólito através de N-desalquilação ou através de um intermediário (M-3), formado por O-desalquilação do grupo terc-butil, seguindo da clivagem correspondente na sequência para forma Fenpiroximato M-13 ²³⁵, conforme demonstrado na **figura 47.**

Na pontuação MRSQ para o Fenpiroximato M-13 os valores de variação de massa exata, tempo de retenção e variabilidade isotópica estão dentro da faixa prevista para o método. Todos os íons qualificadores indicados no método foram encontrados, conforme demonstrado na **tabela 17**. O cromatograma no tempo de retenção 1,4 minutos apresenta um pico correspondente ao Fenpirtoximato M-13 de onde foram extraídos os espectros de massa contendo o íon precursor m/z = 232,1082 e os fragmentos bbCID m/z = 214,0669, m/z = 187,0865 e m/z = 173,0710, conforme demonstrado na **figura 48**.

Tabela 17 - Pontuação MRSQ para o Fenpiroximato M-13 e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 1A de setembro de 2016 Fonte: Dados extraídos do TASQ.

Nome do analito	MRSQ	Δm/z [ppm]	ΔRT	mSigma	área
			[min]		
Fenpiroximato - M13		-0.28	-0.20	17.8	832661
10,11-		0.05	-0.12	30.4	75907
Dihidroxycarbamazepina					
2-Amino-3-Metilbenzoato		-0.44	-0.00	20.7	79323
249		-1.98	-0.24	26.7	43663
3-(2-Piridiniloxi)ácido		1.58	-0.12	14.8	48895
butanóico					
4-amino-antipirina		-0.27	0.00	21.7	498158

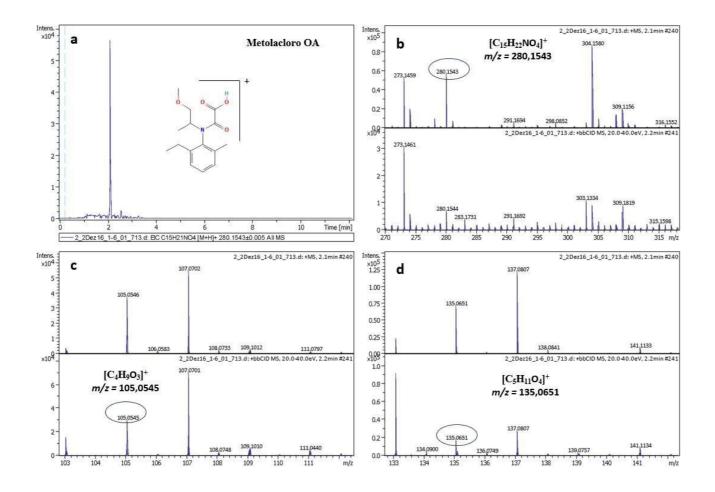
Figura 47 - Reação de formação do Fenpiroximato M-13. Fonte: O autor

Figura 48 - (a) Cromatograma com pico no tempo de retenção 1,4 minutos para o Fenpiroximato M-13 e cromatogramas de íons extraídos para (b) íon precursor m/z = 232,1082 e fragmentos bbCID (c) m/z = 214,0669 e (d) m/z = 187,0865 e (e) m/z = 173,0710 para amostra 1A de setembro de 2016.

O Metolacloro OA é um metabólito do herbicida Metolacloro pertencente ao grupo químico das cloroacetanilida e tem seu uso autorizado para frutas, hortaliças, flores e grãos incluindo culturas importantes como soja, milho, arroz e trigo. O Metolacloro está previsto na legislação CONAMA 357/2005 com concentração limite estabelecida de 10 µg L⁻¹ exclusivamente para águas superficiais doces, porém não há limites previstos para seu metabólito. Na reação de formação do Metolacloro OA, a formação de um produto intermediário ocorrer por ação da luz solar, por decloração, porém o mesmo produto pode ser formado por rota metabólica microbiana no solo e também animais e vegetais ²⁴⁶. A oxidação do produto intermediário leva a formação do Metolacloro OA (**Figura 49**).

Na pontuação MRSQ para o Metolacloro OA os valores de variação de massa exata, tempo de retenção e variabilidade isotópica estão dentro da faixa prevista para o método. Dois íons qualificadores indicados no método foram encontrados, conforme demonstrado na **tabela 18.** O cromatograma no tempo de retenção 2,1 minutos apresenta um pico correspondente ao Metolacloro OA de onde foram extraídos os espectros de massa contendo o íon precursor m/z = 280,1543 e os fragmentos bbCID m/z = 105,0545, m/z = 187,0865 e m/z = 135,0651, conforme demonstrado na **figura 50**.

Tabela 18 - Pontuação MRSQ para o Metolacloro OA e as respectivas variações de exatidão de massa, variação de tempo de retenção e mSigma para amostra 2B de dezembro de 2016 Fonte: Dados extraídos do TASQ.


Nome do	MRSQ	Δm/z [ppm]	ΔRT	mSigma	área
analito			[min]		
Imazapir		0.32	0.05	27.6	99298
Lamivudina		-0.00	0.14	13.6	68449
MAC		-0.53	-0.01	7.3	808586
Metalaxil-m		2.64	-0.03	8.3	55921
(Mefenoxam)	••••				
Metolaclor OA		2.64	-0.03	8.3	55921
Metolaclor Descloro		1.13	0.01	19.2	178691

$$H_3C$$
 O
 O
 CH_3
 H_3C
 OH

Metolacloro OA

Figura 49 - Reação de formação do metabólito Metolacloro OA.

Fonte: O autor

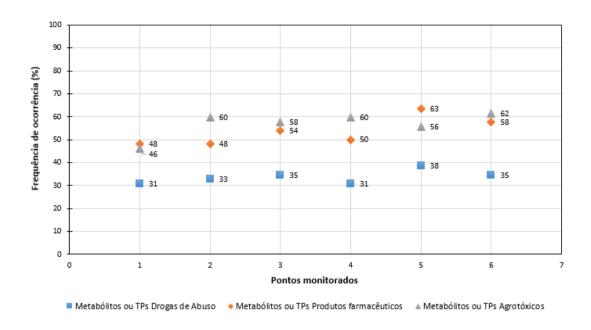
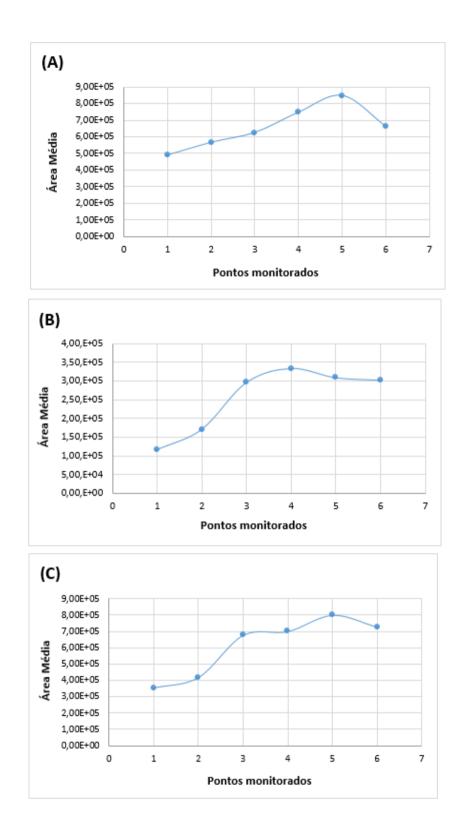


Figura 50 - (a) Cromatograma com pico no tempo de retenção 2,1 minutos para o Metolacloro OA e cromatogramas de íons extraídos para (b) íon precursor m/z = 280,1543 e fragmentos bbCID (c) m/z = 105,0545 e (d) m/z = 135,0651 e (e) m/z = para a amostra 2B de dezembro de 2016.


5.2 Avaliação espaço-temporal dos compostos identificados por suspect screening

O arroio Dilúvio foi monitorado através de seis pontos de coleta em um trecho altamente urbanizado equivalente a 12 km, durante 2 anos. De maneira geral, as principais fontes de contaminação estão associadas ao despejo de esgoto não tratado de bairros localizados ao longo do percurso avaliado. Além disso, existe contribuição de uma microbacia hidrográfica de pequenos arroios adjacentes que recebem esgoto de alguns bairros, incluindo uma porção da zona rural do município, desaguando diretamente no arroio Dilúvio. A avaliação foi realizada de maneira individual, pois cada ano possui um número diferente de campanhas de coleta de amostras. No ano de 2016, foram avaliados os meses de setembro e dezembro, no ano de 2017, os meses de março, junho, setembro e dezembro e no ano de 2018 os meses de março, junho e setembro, totalizando 24 meses de monitoramento, não possibilitando uma avaliação integral do período

A frequência de ocorrência para os compostos foi semelhante entre os pontos, com quantidades significativas de metabólitos ou TPs de agrotóxicos e produtos farmacêuticos, quando comparado às drogas de abuso. O valor médio das áreas detectadas em cada ponto aumenta do ponto 1 ao ponto 5 e tem uma pequena diminuição no ponto 6. Essa variação é consistente com a densidade de urbanização, estando os pontos 4 e 5 na região com maior população. O ponto 1 fica próximo à nascente, mas recebe uma carga considerável de esgoto bruto, proveniente de moradias clandestinas às margens do arroio, que descarrega esgoto doméstico. O ponto 6 é onde o arroio Dilúvio deságua no Lago Guaíba, causando diluição que é percebida pela redução das áreas médias. As **figuras 51** e **52** demonstram, respectivamente, a frequência relativa dos compostos e os valores de áreas médias detectadas em cada ponto de amostragem.

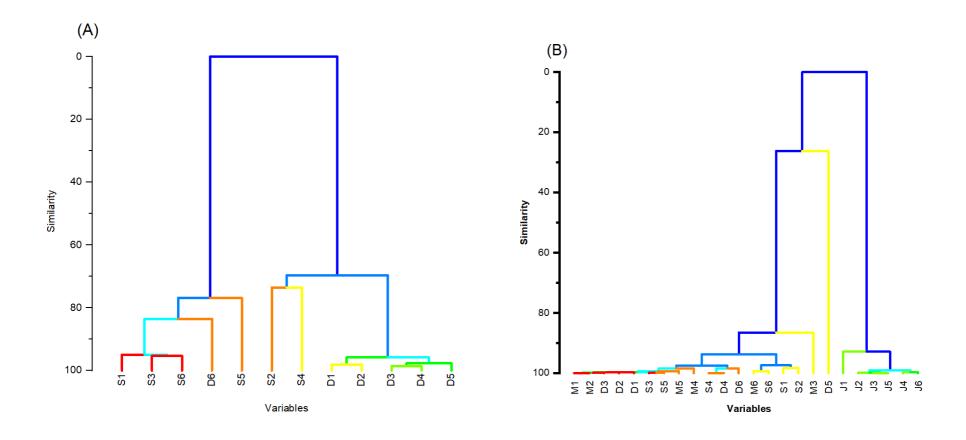

Figura 51 - Frequência de ocorrência para os compostos ao longo dos pontos de amostragem. **Fonte**: O autor


Figura 52 - Áreas médias dos compostos por ponto de amostragem em (A) 2016 (B) 2017 e (C) 2018. **Fonte**: O autor.

As maiores áreas foram observadas nos anos de 2016 e 2018. No ano de 2017 houve significativa redução da presença de compostos nas amostras e redução das áreas para a maioria dos pontos dos meses de setembro e junho, o que pode estar relacionado ao aumento das temperaturas médias em um período que tipicamente é mais frio, representando um inverno atípico, demandando um menor consumo de fármacos, consequentemente reduzindo sua presença e de seus metabólitos no ambiente. Foi observada uma redução entre 30% e 60% das áreas médias no mês de setembro de 2017 em relação à 2016 e entre 83% e 89% em relação a 2018 para todos os pontos. Em relação aos agrotóxicos observou-se o mesmo comportamento para o período.

A variação climática exerce grande influência nas culturas agrícolas e consequentemente no uso de agrotóxicos. No entanto, a relação da redução desses compostos nesse período e das áreas médias, não está totalmente esclarecida. Em relação aos metabólitos ou TPs de drogas de abuso não foram observadas variações com dimensão semelhante aos outros grupos de compostos, sugerindo que a entrada no ambiente para esses compostos é permanente. Para avaliar as semelhanças entre os meses de coleta, as amostras de cada ano foram submetidas a uma análise hierárquica de cluster individualmente e os resultados estão demonstrados nas **figuras 53** e **54**.

Figura 53 - Dendograma das áreas dos compostos para os anos de (A) 2016 e (B) 2017 dos meses de março (M), junho (J) e setembro (S) e dezembro (D) para todos os pontos amostrados. **Fonte:** O autor.

Figura 54 - Dendograma das áreas dos compostos para o ano de 2018 dos meses de março (M), junho (J) e setembro (S) para todos os pontos amostrados. **Fonte:** O autor.

No ano de 2016 foi possível identificar dois grupos bem definidos, nos meses de setembro a dezembro para a maior parte dos pontos. Os pontos 2 e 4 possuem semelhança entre si, mas formam um cluster distinto dos demais pontos do mesmo mês. A maior parte dos pontos do mês de dezembro encontram-se agrupados em um único cluster com exceção do ponto 6. O ano de 2017 é o que possui o maior número de meses avaliados, apresentando um dendograma mais complexo, em que se observa dois grupos, sendo que um deles agrupa todos os pontos do mês de junho com similaridade de 93% entre o ponto 1 e os demais pontos. No outro grupo não é possível visualizar um padrão entre os meses. Para o ano de 2018 três grupos foram identificados. O ponto 1 do mês de setembro encontra-se isolado em um único grupo. O ponto 2 do mês de junho encontra-se isolado não sendo similar a nenhum outro ponto de nenhum mês avaliado. Os demais pontos de junho formam um único grupo, no entanto os pontos do mês de março estão separados em dois grupos, em que o ponto 1 e 5 se distinguem dos demais.

A avaliação dos compostos mais incidentes foi realizada em cada ponto. Para os metabólitos de fármacos foi observado áreas mais intensas para o 4-amino antipirina (4-aa) e 4-acetil-amino-antipirina (4-AAA). Estes compostos são onipresentes nos três anos, as maiores áreas estão entre a região dos pontos 3 e 6. As áreas correspondentes ao metabólito 10,11-dihidroxicarbamazepina foram mais incidentes no mês de setembro de 2016, ponto 4 ao 6, em no ano de 2018 nos meses de março na região entre os pontos 1 e 2 e região localizada entre os pontos 4 e 6 do mês de junho em todos os pontos.

Dentre os metabólitos e TPs de agrotóxicos a maior incidência foi para o Fenpiroximato M-13, com áreas maiores entre os pontos 3 e 6. No ano de 2017, os valores de área maiores, foram na região do ponto 5. O ácido-5-etilnicotínico foi observado mais intensamente no ano de 2017 nos meses de março, junho e setembro na região localizada entre os pontos 4 e 6. A Benzoilecgonina foi o metabólito/TP de drogas de abuso mais incidente. Sua presença foi identificada com áreas maiores no ano de 2017, principalmente na região dos pontos 4 ,5 e 6. No ano de 2018 a Benzoilecgonina foi encontrada em todos os pontos nos meses de março e junho, e a 4-hidroxinorefedrina foi no ponto 2 do mês de junho. A incidência dos compostos está apresentada nas **figuras 55**, **56** e **57**.

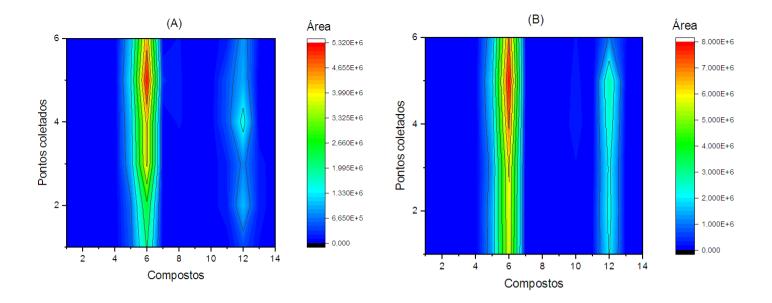
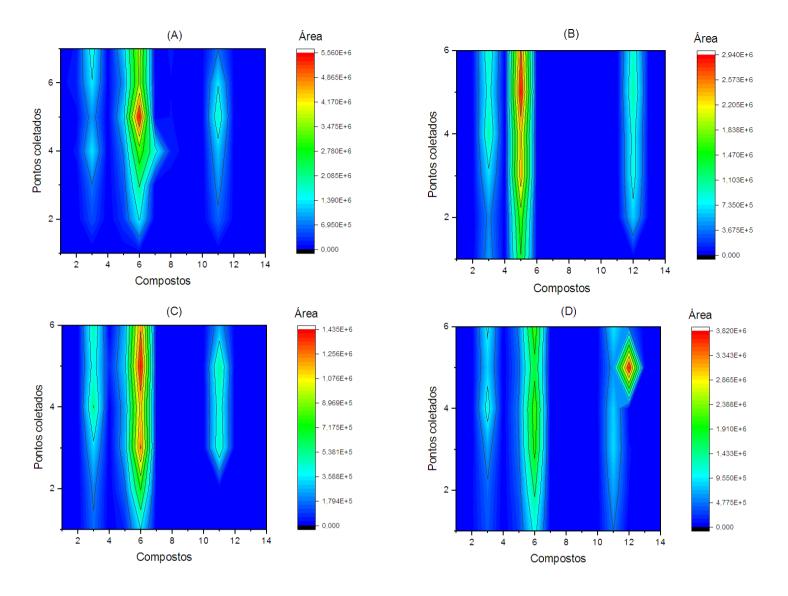



Figura 55 – Dispersão espacial dos compostos para o ano de 2016 sendo (A) setembro e (B) dezembro. A notação para os compostos são as seguintes: (1) 4-hidroxinorefedrina, (2) Ácido Losartana Carboxílico, (3) Benzoilecgonina, (4) Éster metílico de Ecgonina, (5) 4-amino-antipirina, (6) 4- acetil- amino-antipirina, (7) Dihidrotestosterona, (8) 10,11-dihidroxicarbamazepina, (9) Deetilatrazina, (10) Carbendazim, (11) Ácido-5-etilnicotínico, (12) Fenpiroximato M-13, (13) Carbofurano-fenol, (14) Metolacloro – OA. Fonte: O autor.

Figura 56 - Dispersão espacial dos compostos para o ano de 2017 sendo (A) março (B) junho (C) setembro e (D) dezembro. A notação para os compostos são as seguintes: (1) 4-hidroxinorefedrina, (2) Ácido Losartana Carboxílico, (3) Benzoilecgonina, (4) Éster metílico de Ecgonina, (5) 4-amino-antipirina, (6) 4-acetil-amino-antipirina, (7) Dihidrotestosterona, (8) 10,11-dihidroxicarbamazepina, (9) Deetilatrazina, (10) Carbendazim, (11) Ácido-5-etilnicotínico, (12) Fenpiroximato M-13, (13) Carbofurano-fenol, (14) Metolacloro – OA. Fonte: **O autor.**

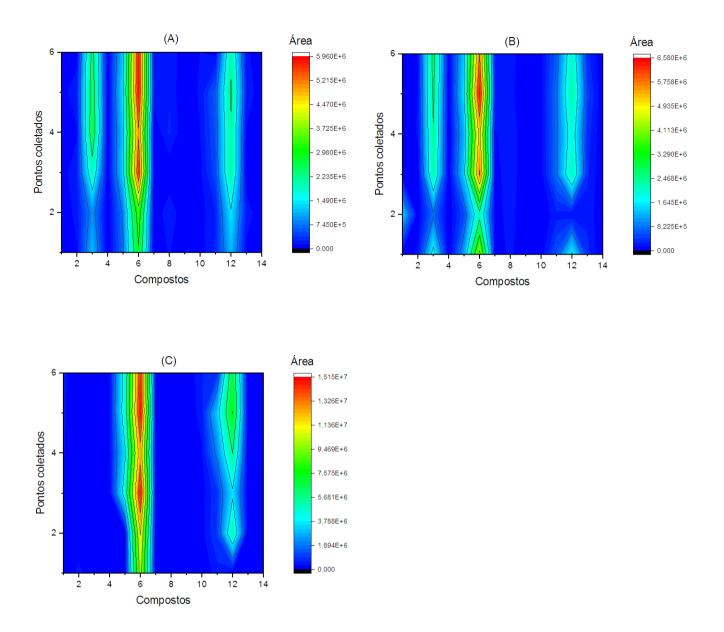


Figura 57 - Dispersão espacial dos compostos para o ano de 2018 sendo (A) março (B) junho (C) setembro. A notação para os compostos são as seguintes: (1) 4-hidroxinorefedrina, (2) Ácido Losartana Carboxílico, (3) Benzoilecgonina, (4) Éster metílico de Ecgonina, (5) 4-amino-antipirina, (6) 4- acetil- amino-antipirina, (7) Dihidrotestosterona, (8) 10,11-dihidroxicarbamazepina, (9) Deetilatrazina, (10) Carbendazim, (11) Ácido-5-etilnicotínico, (12) Fenpiroximato M-13, (13) Carbofurano-fenol, (14) Metolacloro – OA. Fonte: O autor.

5.3 Avaliação de risco utilizando a toxicidade in silico para compostos suspect screening

Os metabólitos e TPs identificados foram submetidos a avaliação de risco, utilizando a metodologia de toxicidade *in silico*. Foram avaliados quatro desfechos de toxicidade:

- i. mutagenicidade, onde os modelos avaliaram a capacidade dos compostos em alterar o material genético através de mutações;
- ii. carcinogenicidade ou capacidade dos compostos em levar ao surgimento de câncer;
- iii. toxicidade no desenvolvimento (reprodutiva) que avalia os efeitos adversos sobre desenvolvimento de fetos e bebês e na fertilidade feminina e masculina;
- iv. biodegradabilidade imediata, que se refere ao teste que mede a propriedade de um composto ser facilmente metabolizado (60% em 28 dias) em condições aeróbicas, utilizando cultura mista de micro- organismos presentes no meio ambiente.

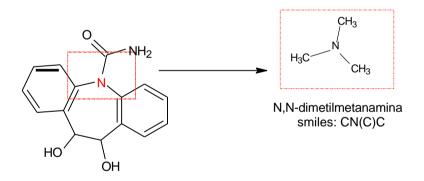
5.3.1 Mutagenicidade

O modelo consensus está baseado nas previsões dos modelos Caesar, SarPy, ISS e KNN. Os compostos Deetilatrazina e Carbendazim estão incluídos no conjunto de treinamento dos modelos Caesar, SarPy e ISS com valor experimental, respectivamente de não mutagênico e mutagênico, com pontuação igual a 1. Os compostos 4-hidroxinorefedrina, Dihidrotestosterona (DHT) e ácido 5-etil-nicotínico foram previstos como não mutagênicos, com resultados confiáveis, pontuação de consensus variando entre 0,9 e 0,825. Uma pontuação de consensus de 0,675 foi atribuída à Benzoilecgonina para não mutagênico, com confiabilidade moderada. A avaliação individual de cada modelo demonstra que os modelos Caesar, ISS e SarPy possuem resultados com confiabilidade média pois a precisão da previsão para moléculas semelhantes encontradas no conjunto de treinamento não é moderada e não foram encontrados compostos com boa semelhança com valor experimental conhecido no conjunto de treinamento, o que justifica um valor mais baixo para consensus. No entanto, o modelo SarPy apresenta seis alertas estruturais

que colaboram com resultado não mutagênico: 2-metil-pentano, heptano, 4-metil-heptano, etil-benzoato, hexanal, metil-benzoato.

Os compostos Losartano ácido carboxílico (E-3174), éster metílico de ecgonina (EME), 4-amino-antipirina (4-AA) e Metolacloro AO foram previstos como não mutagênicos com pontuação de consensus não confiáveis e uma avaliação individual de cada modelo foi realizada. A avaliação individual indica que E-3174 está fora do domínio de aplicabilidade dos modelos ISS e KNN, o que contribui para uma baixa pontuação de consensus. A previsão para E-3174 utilizando o modelo Caesar é não mutagênico com IDA igual a 0,873. O modelo SarPy prevê o composto como possivelmente não mutagênico também com confiabilidade moderada (IDA 0,787).

Para o composto EME valores não confiáveis de consensus podem ser explicados pela previsão dos modelos SarPy e Caesar. O modelo SarPy contém quatro alertas estruturais correspondentes ao 2-metil-pentano, heptano, 4-metil-heptano, etil- benzoato, hexanal, metil-benzoato, que discordam do valor previsto, pois geralmente são fragmentos previstos para compostos mutagênicos. O modelo Caesar contém moléculas no conjunto de treinamento com valor experimental conhecido que discordam do valor previsto, índice de concordância não confiável, igual a 0,334.


As baixas pontuações de consensus para o composto 4-AA estão relacionadas às previsões dos modelos ISS e SarPy. 4-AA está fora do domínio de aplicabilidade do modelo ISS (IDA igual a zero). O modelo SarPy apresenta baixa confiabilidade (IDA 0,561) para um resultado mutagênico, que discorda do valor previsto. Dois alertas estruturais para resultado mutagênico foram previstos pelo modelo, correspondente a fenilhidrazina e etilhidrazina. Os modelos Caesar e KNN forneceram uma previsão moderada para resultado não mutagênico, IDA igual a 0,866.

Os compostos Metolacloro OA está fora do domínio de aplicabilidade para o modelo ISS. Os modelos Caesar e SarPy forneceram previsões com confiabilidade moderada para resultado não mutagênico, ambos com IDA de 0,750. O modelo SarPy apresenta um alerta estrutural correspondente a N- (propano-2-il) anilina, fragmento encontrado geralmente em moléculas com resultado não mutagênico.

Os compostos 4-acetil-aminoantipirina (4-AAA), 10,11-dihidroxicarbamazepina, fenpiroximato M-13 e carbofurano fenol, foram previstos como mutagênicos com pontuações de consensus não confiáveis. A avaliação individual de cada modelo demonstrou que as previsões fornecidas pelos modelos Caesar e KNN para um resultado mutagênico para o composto 4-AAA são confiáveis, com IDA igual a 0,866.

O composto está fora do domínio de aplicabilidade do modelo ISS (IDA igual a zero). O modelo SarPy apresenta dois fragmentos relevantes correspondentes a fenilhidrazina e a etilhidrazina, encontrados também em moléculas do conjunto de treinamento para resultado mutagênico. No entanto, o índice concordância e a precisão da predição para moléculas do conjunto de treinamento é baixa, fornecendo um IDA igual 0,561, o que justifica baixa pontuação de consensus.

Para o composto 10,11-dihidroxicarbamazepina o modelo ISS indica a presença de um fragmento centrado em átomo raro encontrado na molécula, correspondente ao *N*, *N*-dimetilmetanamina (**Figura 58**) para um resultado não mutagênico, que discorda do valor previsto no modelo consensus. O fragmento não foi encontrado nas moléculas do conjunto de treinamento do modelo, fornecendo um baixo índice de similaridade (0,499). O composto é não mutagênico para o modelo SarPy, com confiabilidade moderada (IDA 0,693). As moléculas do conjunto de treinamento possuem valores experimentais conhecidos que discordam do valor previsto, apresentando dois alertas estruturais para não mutagênico correspondente à *N*-fenilureia e *N*-fenilanilina. Os modelos Caesar e KNN apresentaram resultados confiáveis para predição mutagênico, IDA igual a 0,822.

10,11-dihidroxicarbamazepina

Figura 58 - Presença de fragmento raro identificado na molécula do composto 10,11-dihidroxicarbamazepina, a partir das moléculas do conjunto de treinamento do modelo SarPy para resultado não mutagênico. **Fonte:** O autor

O composto fenpiroximato M-13 é mutagênico para os modelos Caesar, KNN e SarPy com confiabilidade moderada, IDA igual a 0,799. O modelo SarPy apresentou dois alertas estruturais presentes nas moléculas do conjunto de treinamento com o mesmo resultado da predição: *N*-hidroximetanamina e 1H-pirazol (**Figura 59**). O modelo Caesar forneceu uma previsão confiável para o composto Carbofurano-fenil, para resultado mutagênico (IDA 0,942) e KNN previsão com confiabilidade moderada para o mesmo resultado. O modelo ISS forneceu resultado com confiabilidade moderada para previsão não mutagênico, com baixa precisão para moléculas semelhantes do conjunto de treinamento do modelo. Além disso, o composto está fora do domínio de aplicabilidade do modelo SarPy, fatores que contribuíram para uma baixa pontuação de consensus.

Figura 59 - Alertas estruturais presentes no composto Fenpiroximato M-13 e nas moléculas do conjunto de treinamento do modelo SarPy para resultado mutagênico.

Fonte: O autor

Tabela 19 - Resumo do score de consensus e da confiabilidade dos resultados da predição realizada individualmente pelos modelos Caesar, ISS, SarPy e KNN para o desfecho de mutagenicidade para os compostos avaliados no Arroio Dilúvio. **Legenda:** (N = Não mutagênico; S = Mutagênico; PN – Possivelmente Não mutagênico)

			Mutagenicidade					
			confiabilidade					
Molécula	Score consensus	resultado	Caesar	ISS	SarPy	KNN		
4-hidroxinorefedrina	0,825	N	Boa	Moderada	Boa	Boa		
Losartana ácido carboxílico	0,400	N	Moderada	Baixa	Moderada	Baixa		
Benzoilecgonina	0,675	N	Moderada	Moderada	Moderada	Boa		
Éster metílico de ecgonina	0,400	N	Baixa	Moderada	Baixa	Moderada		
4-amino-antipirina	0,300	N	Moderada	Baixa	Baixa	Moderada		
4-acetil-aminoantipirina	0,350	S	Moderada	Baixa	Moderada	Moderada		
Dihidrotestosterona	0,900	N	Boa	Boa	Boa	Boa		
10,11-dihidroxicarbamazepina	0,300	S	Moderada	Baixa	Moderada	Moderada		
Deetilatrazina	1,0	N	Valor experimental	Baixa	Valor experimental	Valor experimenta		
Carbendazim	1,0	S	Valor experimental	Baixa	Valor experimental	Valor experimenta		
Ácido-5-etil-nicotínico	0,825	N	Bom	Moderado	Bom	Bom		
Fenpirtoximato M-13	0,450	S	Moderado	Baixo	Moderado	Moderado		
Carbofurano-fenol	0,375	S	Bom	Moderado	Baixo	Moderado		
Metolacloro OA	0,400	N	Moderado	Baixo	Moderado	Baixo		

5.3.2 Carcinogenicidade

O modelo Caesar, ISS e IFRMN-ISS-CGX foram utilizados para avaliar o desfecho de carcinogenicidade. O composto 4-hidroxinorefedrina é possivelmente não carcinogênico para o modelo IFRMN-ISS-CGX, com confiabilidade moderada, IDA igual a 0,862, embora algumas moléculas do conjunto de treinamento discordem do valor previsto (índice de concordância igual 0,678). Os compostos carbofurano fenol, 4AA e 4-AAA foram previstos como carcinogênicos com confiabilidade moderada (IDA entre 0,643 e 0,767). Um total de cinco alertas estruturais para carcinogenicidade foram encontrados para o composto 4-AA e 4-AAA, também presentes nas moléculas do conjunto treinamento: Prop-2-em-1-amina, etilhidrazina, formohidrazida, fenilhidrazina e anilina (Figura 60). Metolacloro OA foi previsto como carcinogênico com boa confiabilidade pelo modelo IFRMN-ISS-CGX, com IDA 0,899. O composto E-3174 está fora do domínio de aplicabilidade para todos os modelos utilizados para carcinogenicida. Os compostos Benzoilecgonina e EME são carcinogênicos com confiabilidade moderada, com IDA de 0,751 e 0,619, respectivamente, para o modelo IFRMN-ISS-CGX. Um alerta estrutural, para ambos os compostos, correspondente ao 1metoxi-2-metil-propano foi identificado. O modelo forneceu resultado carcinogênico para o composto 10,11-dihidroxicarbamazepina, com confiabilidade moderada (IDA 0,726). Deetilatrazina e Carbendazim são carcinogênicos com resultado bom a moderado, IDA 0,783 e 0,909 para o modelo ISS. Os compostos Ácido-5-etilnicotínico e Fenpiroximato M-13 são não carcinogênicos utilizando o modelo Caesar. A confiabilidade da previsão foi moderada para Ácido-5-etilnicotínico (IDA 0,749) e para Fenpiroximato foi baixa (IDA 0,308), nesse caso baixos índices de similaridade e concordância com valores experimentais conhecidos das moléculas do conjunto de treinamento foram baixos, assim como a precisão da previsão realizada pelo modelo.

Figura 60 - Alertas estruturais encontrados nos compostos 4-AA e 4-AAA associados a moléculas com resultado carcinogênico a partir do conjunto de treinamento do modelo de IFRMN-ISS-CGX. **Fonte**: O autor

Tabela 20 - Resumo do índice de domínio da aplicabilidade (IDA), índice de similaridade, precisão, concordância, ACF (*Atom centered fragments similarity check*) e confiabilidade dos resultados para os modelos Caesar, ISS e IFRMN utilizados para a avaliação do desfecho de Carcinogenicidade dos compostos avaliados no arroio Dilúvio. **Legenda:** (N = Não carcinogênico; S = Carcinogênico; PN – Possivelmente Não carcinogênico

Carcinogenicidade									
Molécula	IDA	resultado	Índice similaridade	Precisão	Índice de concordância com valor experimental	Índice ACF	Modelo	Confiabilidad	
4-hidroxinorefedrina	0,786	PN	0,875	1,0	0,498	1,0	Caesar	Moderada	
Losartana ácido carboxílico	0,298	S	0,730	0,330	0,633	0,51	IFRMN	Baixa	
Benzoilecgonina	0,766	S	0,848	0,479	1,0	1,0	Caesar	Moderada	
Éster metílico de ecgonina	0,639	N	0,818	0,505	0,495	1,0	Caesar	Moderada	
4-amino-antipirina	0,767	S	0,905	0,651	0,651	1,0	IFRMN	Moderada	
4-acetil-aminoantipirina	0,762	S	0,895	0,650	0,650	1,0	IFRMN	Moderada	
Dihidrotestosterona	0,805	S	0,918	1,0	0,499	1,0	Caesar	Moderada	
10,11-dihidroxicarbamazepina	0,758	N	0,795	1,0	1,0	0,850	Caesar	Moderada	
Deetilatrazina	0,783	S	0,849	1,0	1,0	0,850	ISS	Moderada	
Carbendazim	0,909	S	0,826	1,0	1,0	1,0	ISS	Boa	
Ácido-5-etil-nicotínico	0,749	N	0,792	1,0	0,502	1,0	Caesar	Moderada	
Fenpirtoximato M-13	0,308	N	0,757	0,499	0,501	1,0	Caesar	Baixa	
Carbofurano-fenol	0,643	S	0,873	0,335	0,667	1,0	IFRMN	Moderada	
Metolacloro OA	0,899	S	0,807	1,0	1,0	1,0	IFRMN	Boa	

5.3.3 Toxicidade do desenvolvimento

A avaliação da toxicidade do desenvolvimento foi realizada pelo modelo Caesar. Os compostos 4-AA, 4-AAA são não tóxicos e 10,11-dihidroxicarbamazepina e Carbendazim são tóxicos com confiabilidade moderada, IDA entre 0,746 e 0,758. Dois fragmentos raros foram encontrados nas moléculas 4-AA e 4-AAA referente a 1,1-dimetilhidrazina e 2-metiltriazina, não encontrados nas moléculas do conjunto de treinamento, o que pode ter contribuído para uma pontuação mais baixa. Metolacloro OA é não tóxico com boa confiabilidade. Os compostos Benzoilecgonina, EME e Carbofurano fenol estão fora do domínio de aplicabilidade do modelo (IDA igual a zero). Fenpiroximato M-13, E-3174 e Deetilatrazina são não tóxicos com baixa confiabilidade, IDAs inferiores a 0,43, devido a um número proeminente de fragmentos raros estarem presentes nos compostos, mas não serem encontrados nas moléculas do conjunto de treinamento do modelo. Os compostos 4-hidroxinorefedrina e DHT são tóxicos com boa confiabilidade, IDAs igual a 0,976 e 0,944, respectivamente e uma previsão confiável para resultado não tóxico foi atribuído ao Ácido 5-etilnicotínico (IDA 0,933).

Tabela 21 Resumo do índice de domínio da aplicabilidade (IDA), índice de similaridade, precisão, concordância, ACF (*Atom centeredfragments similarity check*) e confiabilidade dos resultados para o modelo Caesar, utilizado para a avaliação do desfecho de toxicidade do desenvolvimento dos compostos avaliados no Arroio Dilúvio. **Legenda**: (N = Não tóxico; S = Tóxico;)

Toxicidade do desenvolvimento								
Molécula	IDA	resultado	Índice similaridade	Precisão	Índice de concordância com valor experimental	Índice ACF	Modelo	Confiabilidade
4-hidroxinorefedrina	0,976	S	0,952	1,0	1,0	1,0	Caesar	Boa
Losartana ácido carboxílico	0,303	S	0,737	1,0	0,499	0,420	Caesar	Baixa
Benzoilecgonina	0	S	0,879	0	0,502	1,0	Caesar	Baixa
Éster metílico de ecgonina	0	N	0,793	0	0,486	1,0	Caesar	Baixa
4-amino-antipirina	0,746	N	0,770	1,0	1,0	0,850	Caesar	Moderada
4-acetil-aminoantipirina	0,745	N	0,768	1,0	1,0	0,850	Caesar	Moderada
Dihidrotestosterona	0,944	S	0,891	1,0	1,0	1,0	Caesar	Boa
10,11-dihidroxicarbamazepina	0,758	S	0,810	1,0	0,504	1,0	Caesar	Moderada
Deetilatrazina	0,429	S	0,719	1,0	0,504	0,600	Caesar	Baixa
Carbendazim	0,731	S	0,756	1,0	0,499	1,0	Caesar	Moderada
Ácido-5-etil-nicotínico	0,933	N	0,871	1,0	1,0	1,0	Caesar	Boa
Fenpirtoximato M-13	0,364	S	0,753	1,0	1,0	0,420	Caesar	Baixa
Carbofurano-fenol	0	N	0,822	1,0	0	1,0	Caesar	Baixa
Metolacloro OA	0,761	N	0,818	1,0	0,502	1,0	Caesar	Moderada

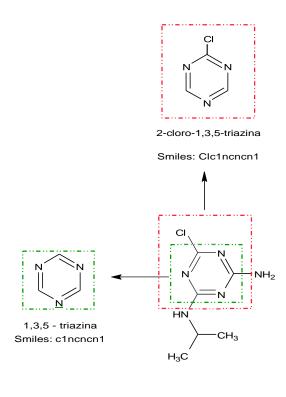
5.3.4 Biodegradabilidade imediata

O desfecho de biodegradabilidade imediata foi avaliado pelo modelo IFRMN. O composto Metolacloro OA é não prontamente biodegradável com confiabilidade moderada IDA 0,814. A precisão para essa predição é mais baixa (0,676), pois moléculas do conjunto de treinamento com valor experimental conhecido tem valores que discordam do resultado previsto. Por exemplo, quatro alertas estruturais foram encontrados para a molécula de

Metolacloro OA: 1-etil-3-metilbenzeno, *N*- (2-hidroxietil) formamida, acetamida e acetaldeído. Os três últimos alertas estruturais estão associados a moléculas com resultados prontamente biodegradável e possivelmente prontamente biodegradável, ambos valores que discordam do valor previsto, fator que pode ter contribuído para uma pontuação mais baixa.

O carbofurano-fenol é prontamente biodegradável com confiabilidade moderada (IDA igual a 0,697). O 4-AA e 4-AAA foram previstos como possivelmente prontamente biodegradáveis, porém o resultado não é confiável. Esses resultados podem ser explicados por fragmentos raros presentes em ambas as moléculas, não previstos em moléculas do conjunto de treinamento do modelo, como 1,1-dimetilhidrazina e prop-1-en-2-amina. No entanto, dois alertas estruturais foram identificados que colaboram para resultado possivelmente prontamente biodegradável: Acetamida e acetaldeído (**Figura 61**).

Figura 61 Moléculas de 4-AA e 4-AAA e alertas estruturais Acetamida e Acetaldeído associados ao resultado de possivelmente prontamente biodegradável pelo modelo IFRMN. **Fonte**: O autor.


Os compostos Benzoilecgonina e EME são possivelmente não prontamente biodegradável e não prontamente biodegradável, respectivamente, com confiabilidade moderada (IDA 0,679 e 0,688). Para ambos compostos a previsão é que apresentam moléculas no conjunto de treinamento do modelo com valor experimental conhecido que discordam do valor previsto. Para a Benzoilecgonina foram encontrados 10 alertas estruturais associados a moléculas com resultado possivelmente prontamente biodegradável ou prontamente biodegradável: Butan-1-ol, propano-1-amina, butano, acetaldeído, heptano, 2-metoxibutano, formato de butila, octan-1-ol, ácido propanoico e ácido benzoico.

Para EME oito fragmentos foram encontrados para o resultado possivelmente prontamente biodegradável: Metil-propanoato, octan-1-ol, ácido propanoico, butan-1-ol, acetaldeído, propano-1-amina, heptano e butano. Carbendazim é não prontamente biodegradável, porém o modelo não conseguiu fornecer uma previsão classificável quanto a confiabilidade da previsão e consequentemente sobre o respectivo IDA, no entanto, o resultado está baseado em dados experimentais contidos no modelo que concordam com o valor da predição. Os compostos DHT e Fenpiroximato M-13 estão fora do domínio de aplicabilidade do modelo (IDA igual a zero).

O modelo não conseguiu realizar uma previsão para os compostos 4-hidroxinorefedrina, e Ácido-5-etilnicotínico não sendo possível estabelecer uma avaliação quanto a biodegradabilidade para estes compostos. Os compostos E-3174 e Deetilatrazina são possivelmente não prontamente biodegradáveis e 10,11-dihidroxicarbamazepina não prontamente biodegradável com baixa confiabilidade, IDAs entre 0,238 e 0,534. Para os compostos E-3174 e Deetilatrazina um alerta estrutural foi identificado relacionado à presença de Cloro ligado ao anel tetrazólico e triazínico. Halogênios foram identificados em moléculas do conjunto de treinamento do modelo e estão associados a resultados não prontamente biodegradável. No entanto, a baixa confiabilidade para ambos compostos pode ser atribuída a fragmentos raros, representado pelos átomos proeminentes de nitrogênio e cloro centrados em átomos de carbono nos anéis imidazólico e tetrazólico do composto E-3174 e nos fragmentos 1,3,5 triazina e 2-cloro-1,3,5-triazina na molécula de Deetilatrazina. Além disso, um alerta estrutural (butano) foi identificado, com valor experimental que discorda do valor previsto para o composto E-3174. As estruturas estão apresentadas nas figuras 62 e 63.

Losartana ácido carboxílico (E-3174)

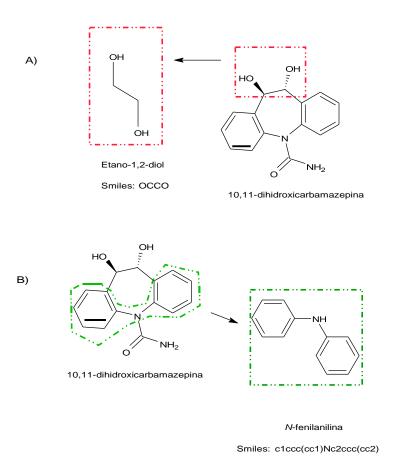

Figura 62 Alerta estrutural da presença de halogênio (cloro), alerta estrutural (butano) e átomos proeminentes de nitrogênio centrados em átomos de carbono (anel tetrazólico) considerados raros ou nunca observados em moléculas do modelo IFRMN. **Fonte:** O autor.

Figura 63 Átomos de nitrogênio ou nitrogênio e cloro centrados nos átomos de carbono considerados raros ou nunca observados em moléculas do conjunto de treinamento do IFRM. **Fonte:** O autor

Deetilatrazina

Alertas estruturais foram identificados para a 10,11-dihidroxicarbamazepina que colaboram com resultado não prontamente biodegradável: *N*-fenilanilina. As baixas pontuações para essa previsão podem estar relacionadas a um alerta estrutural presente em moléculas do conjunto de treinamento que contém um valor experimental que discorda do valor previsto: Etano-1,2-diol. Átomos proeminentes de carbono centrados no átomo de nitrogênio, considerados raros ou nunca identificados nas moléculas do conjunto de treinamento do modelo foram identificados (**Figura 64**).

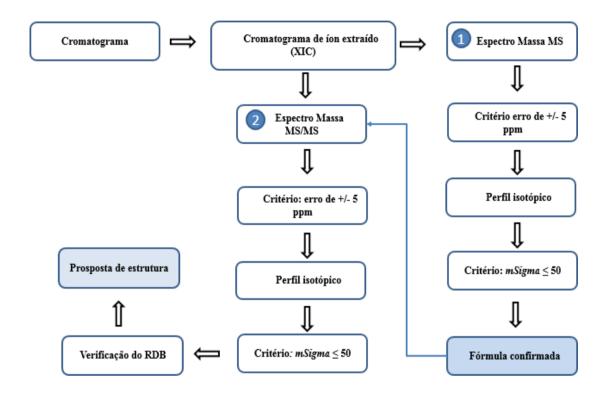
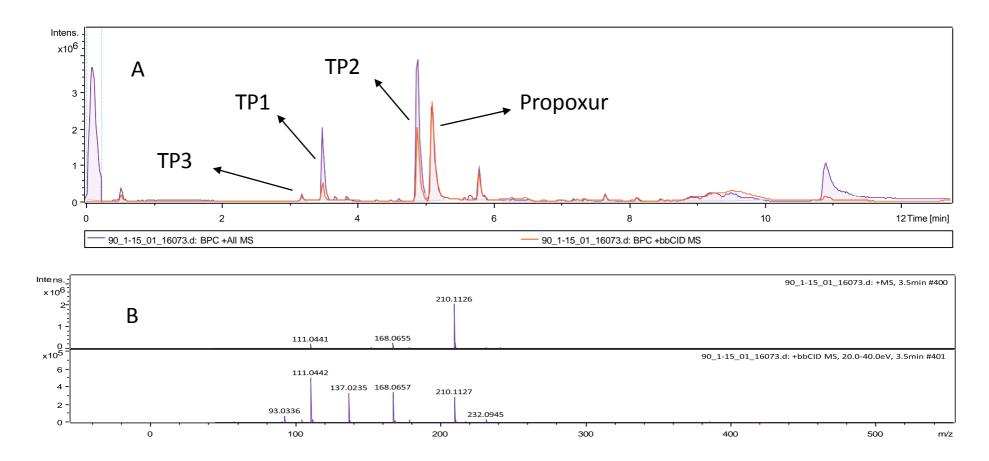

Figura 64 (A) Alerta estrutural identificado no composto 10,11-dihidroxicarbamazepina associada a resultado não prontamente biodegradável (etano-1,2-diol) e (B) alerta associado a resultado prontamente biodegradável (N-fenilanilina) pelo modelo IFRMN. **Fonte:** O autor

Tabela 22 - Resumo do índice de domínio da aplicabilidade (IDA), índice de similaridade, precisão, concordância, ACF (*Atom centered fragments similarity check*) e confiabilidade dos resultados para o modelo IFRMN, utilizado para a avaliação do desfecho de biodegradabilidade imediata dos compostos avaliados no Arroio Dilúvio. **Legenda:** (N = Não pronamente biodegradável; S = Prontamente biodegradável; PN= Possivelemente não prontamente biodegradável).

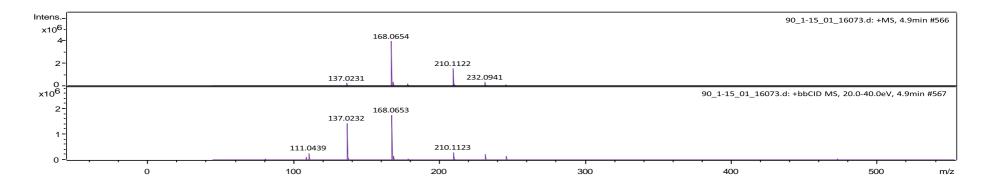
Biodegradabilidade Imediata									
Molécula	IDA	resultado	Índice similaridade	Precisão	Índice de concordância com valor experimental	Índice ACF	Modelo	Confiabilidade	
4-hidroxinorefedrina	-	-	-	-	-	-	IFRMN	-	
Losartana ácido carboxílico	0,238	PN	0,725	1,0	1,0	0,280	IFRMN	Baixa	
Benzoilecgonina	0,679	PN	0,812	1,0	0,323	1,0	IFRMN	Moderada	
Éster metílico de ecgonina	0,688	N	0,810	1,0	0,341	1,0	IFRMN	Moderada	
4-amino-antipirina	0,368	PB	0,777	0,670	0,670	1,0	IFRMN	Baixa	
4-acetil-aminoantipirina	0,400	PB	0,751	1,0	0,67	0,51	IFRMN	Baixa	
Dihidrotestosterona	0	N	0,820	1,0	0	1,0	IFRMN	Baixa	
10,11-dihidroxicarbamazepina	0,534	N	0,791	1,0	1,0	0,600	IFRMN	Baixa	
Deetilatrazina	0,414	PN	0,802	0,296	0,296	0,850	IFRMN	Baixa	
Carbendazim	-	N	-	-	-	-	IFRMN	Valor experiment	
Ácido-5-etil-nicotínico	-	-	-	-	-	-	IFRMN	-	
Fenpirtoximato M-13	0	N	0,184	0,751	0,332	0,280	IFRMN	Baixa	
Carbofurano-fenol	0,697	PB	0,833	1,0	0,340	1,0	IFRMN	Moderada	
Metolacloro OA	0,814	N	0,806	1,0	0,676	1,0	IFRMN	Moderada	

5.4 Avaliação dos TPs do Propoxur obtidos por fotólise direta

Um fluxo de trabalho para identificação dos TPs do Propoxur foi proposto conforme apresentado na **figura 65**.


Figura 65 - Fluxo de trabalho proposto para a elucidação dos TPs do Propoxur obtidos por fotólise aquosa e avaliados pelo software Bruker Data Analysis. **Fonte**: O autor

A sistemática aplicada levou em consideração a possibilidade de fornecer fórmulas e estruturas químicas, dependendo do ajuste aos critérios estabelecidos para a identificação do composto. Primeiramente os espectros de massa com perfil MS e MS/MS foram obtidos a partir dos picos cromatográficos gerados por fotólise, compreendidos


entre os tempos de 5 a 220 minutos de reação. A verificação de ajuste aos critérios de exatidão de massa e correspondência ao perfil isotópico foram realizadas, primeiramente para os compostos presentes no espectro de MS (íon precursor), onde a fórmula do composto pode ser obtida, observando-se a relação existente com a fórmula do Propoxur.

A seguir os fragmentos de massa foram avaliados no espectro MS/MS (bbCID) com intuito de elaborar uma estrutura para os TPs de acordo com as possibilidades de fragmentação da molécula do propoxur. Os fragmentos de massa foram avaliados também quanto a exatidão de massa e perfil isotópica e a partir da possibilidade de propor uma estrutura, em concordância com a molécula de partida, a RDB foi então utilizada para auxiliar na elucidação da estrutura do composto.

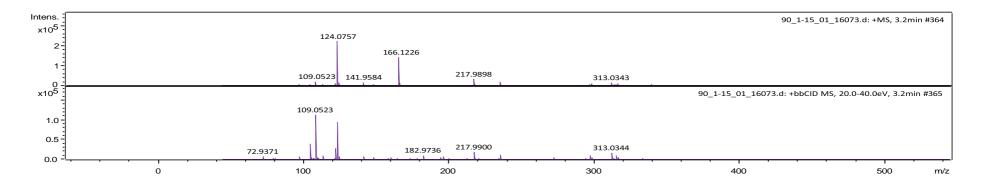

A estratégia utilizada possibilitou a identificação de três estruturas (TPs 1 e 2). Dois picos com m/z 210 foram identificados, nos tempos de retenção 3,5 e 4,9 minutos. A avaliação dos espectros de massa destes tempos de retenção levaram a observação de fragmentos de massa semelhantes às do Propoxur. A massa exata e os mesmos fragmentos, em sua grande maioria, e o mesmo valor de RDB, levaram a conclusão de serem produtos originados por rearranjo. O dado de m/z igual a 166 corresponde ao terceiro produto identificado. Nesse caso a estrutura leva a compreensão de que a formação para este TP parte dos TPs intermediários (1 e 2) e não diretamente. As **figuras 66,67 e 68** apresentam os cromatogramas do Propoxur e seu produtos de transformação.

Figura 66 - (A) Cromatograma contendo Propoxur e seus TPs no tempo de fotólise de 90 minutos e (B) Cromatograma de íon extraído para o TP1 contendo os espectros de massa MS m/z = 210,1126 e os respectivos fragmentos de massa no espectro MS/MS (bbCID) m/z = 93,0336, 111,0442, 137,0235, 168,0657. **Fonte**: O autor

Figura 67 - Cromatograma de íon extraído para o TP2 contendo os espectros de massa MS m/z = 210,1122 e os respectivos fragmentos de massa no espectro MS/MS (bbCID) m/z = 111,0439, m/z = 137,0232 e m/z = 168,0653. **Fonte:** O autor

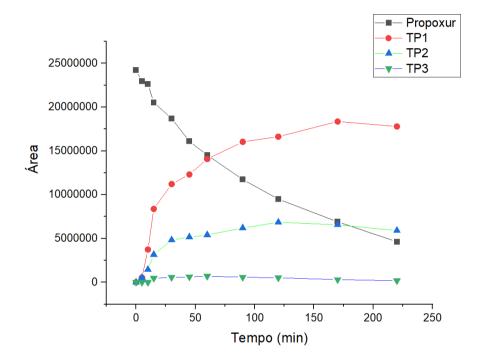
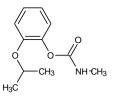


Figura 68 - Cromatograma de íon extraído para o TP3 contendo os espectros de massa MS m/z = 166,1127 e o fragmento de massa no espectro MS/MS (bbCID) m/z = 124,0758 . **Fonte:** O autor

Tabela 23 - Estrutura do Propoxur e seus TPs identificadas pelo método empregado e informações de tempo de retenção (TR), fórmulas protonadas do íon precursor e fragmentos, erro de massa baseado na massa teórica e experimental, perfil isotópico *mSigma* e valor de RDB obtidos por LC-Q-TOF/MS

Estrutura	TR (min)	Fórmula [M+H]	Massa Teórica	Massa Experimental	Erro (ppm)	mSigma	RDB
Propoxur	5.1	C11H16NO3	210,1126	210,1125	-0.7	2.7	4.5
	.CH ₂	C8H10NO3	168,0655	168,0656	- 0.3	3.8	4.5
		C9H13O2	153,0910	153,0910	0.0	3.8	3.5
0′	∖ ₀	C6H7O2	111,0441	111,0442	1.2	2.5	3.5
H ₃ C O CH ₃		C6H5O	93,0336	93,0335	-1.1	4.6	4.5
TP1	3.5	C11H16NO3	210,1125	210,1125	0.0	1,1	4.5
	OH.	C10H11O3	179,0698	179,0703	2.4	18.1	5.5
	Ī	C8H10NO3	168,0654	168,0655	0.8	8.9	4.5
n ₃ C		C7H5O3	137,0233	137,0233	0.0	3.3	5.5
ċн₃ Ų		C6H7O2	111,0440	111,0441	0.3	0.9	3.5
H ₃ C NH		C6H5O	93,0334	93,0335	0.7	4.1	4.5
TP2	4.9	C11H16NO3	210,1123	210,1125	- 0.9	2.5	4.5
		C10H11O3	179,0705	179,0703	0.9	7.0	5.5
OH	0	C8H10NO3	168,0654	168,0655	0.7	1.9	4.5
H.C. O. I	I _cH_	C7H5O3	137,0233	137,0233	-0.2	5.3	5.5
CH ₃	TP1 3.5 H ₃ C OH OH OH CH ₃ H ₃ C OH OH OH CH ₃ TP2 4.9	C6H7O2	111,0440	111,0441	0.7	3.7	3.5
TP3	3.2	C10H16NO	166,1127	166,1126	-0.2	1.8	3.5
		C7H10NO	124,0758	124,0757	-0.6	6.2	3.5
/	NH ₂						

Não foi observada a degradação total nem do propoxur ou de seus TPs no tempo de fotólise máximo, avaliado neste trabalho. Em torno de 80% do Propoxur foi degradado com formação progressiva dos seus TPs, conforme apresentado na **figura. 69**.


Figura 69 – Variação da área do propoxur e de seus TPs durante o processo de fotólise. **Fonte:** O autor

Em relação aos mecanismos para a formação dos TPs, para o 1 e 2, o processo de degradação têm início com a absorção da luz e clivagem homolítica na porção carbâmica do propoxur, formando os radicais carbamoil e fenoxil. O par de radicais se recombinam, podendo formar o composto éster inicial ou gerar compostos intermediários orto e para-cicloexadionas. A partir dessa etapa os produtos finais podem ser formados por rearranjo foto-fries a partir da tautomerização da cicloexadiona ¹⁸⁵. Nesse caso, o hidrogênio alfa-carbonila se desloca para o oxigênio carbonílico, em um mecanismo concertado, com subsequente rearranjo da ligações sigma do anel, formando os compostos fenólicos substituídos orto/para correspondentes (Figura 70). No entanto, o hidrogênio alfa carbonílico pode ser abstraído pelas moléculas de água do meio atuando com base. Na sequência a água atua como ácido, doando o próton para o oxigênio formando o composto fenólico correspondente que é mais estável que sua forma ceto (Figura 71). A estrutura proposta para o TP3 leva a conclusão de que este produto foi originado a partir dos produtos intermediários 1 e 2 e não diretamente do propoxur, possivelmente por Ndesmetilação e eliminação do oxigênio carbonílico e da hidroxila presente no composto, no entanto, nenhum intermediário foi identificado que fornecesse a sequência pela qual a reação se desenvolve. (Figura 72).

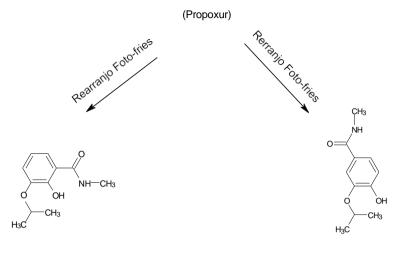
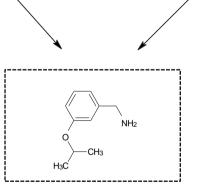

Figura 70 - Mecanismo de reação para formação dos TP1 e TP2, resultantes da fotolise do propoxur, através do mecanismo de rearranjo foto-fries. **Fonte:** O autor

Figura 71 - Demonstração do mecanismo de reação para formação de TP1 através de tautomerismo ceto-enol iniciada pela abstração do hidrogênio alfa-carbonila A mesma reação leva também a formação de TP2 a partir de *p*-cicloexadiona. **Fonte:** O autor.

(TP1)

2- isopropoxifenil-N-metilcarbamato



2-hidroxi-*N*-metil-3-(propan-2-iloxi) benzamida

(TP2)

4-hidroxi-*N*-metil-3-(propan-2-iloxi) benzamida

(TP1)

3- isopropoxifenil-metanamina (TP3)

Figura 72 - Proposta das etapas envolvidas na formação do TP3 (3- isopropoxifenil-metanamina).

Fonte: O autor

5.4.1 Avaliação de risco para Propoxur e seus TPs

5.4.1.1 Mutagenicidade

O propoxur é mutagênico com pontuação de consensus igual a 1,0, pois possui valor experimental no conjunto de treinamento de três dos quatros modelos utilizados na predição. Os TPs 1 e 2 são não mutagênicos e TP3 mutagênico, com pontuação de consensus baixa, menor ou igual a 0,40. Os baixos resultados podem ser explicados pela avaliação individual de cada modelo.

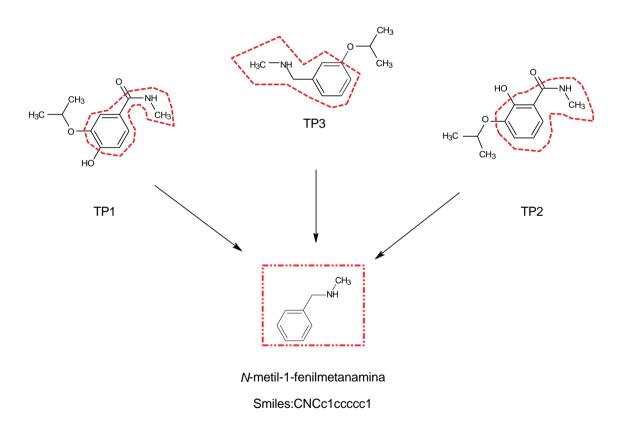

A avaliação individual de cada modelo demonstra que TP1e TP2 não são mutagênicos, com baixa confiabilidade pelo modelo ISS. TP1 é não mutagênico para os modelos Caesar, SarPy e KNN com confiabilidade moderada, IDAs entre 0,715 e 0,789, no entanto para o modelo Caesar o índice de similaridade com moléculas do conjunto de treinamento com valor experimental conhecido que concordam com o valor previsto é baixo, igual 0,335, para ambos os compostos. TP3 é não mutagênico com confiabilidade moderada para os modelos Caesar, ISS e KNN, IDAs entre 0,788 a 0,837, resultado que diverge da previsão realizada pelo consensus. Nenhum dos modelos apresentou alertas estruturais ou fragmentos que contribuíssem com os resultados apresentados. A **tabela 24** apresenta os resultados obtidos pelo modelo consensus.

Tabela 24 - Resumo do score de consensus e da confiabilidade dos resultados da predição realizada individualmente pelos modelos Caesar, ISS,SarPy e KNN para o desfecho de mutagenicidade para o Propoxur e seus TPs obtidos por fotólise direta. **Legenda**: S (Resultado Mutagênico); N (Resultado não mutagênico)

			Mutagenicidade						
			confiabilidade						
Molécula	Score consensus	resultado	Caesar	ISS	SarPy	KNN			
Propoxur	1,0	S	Valor experimental	Baixa	Valor experimental	Valor experimental			
TP1	0,35	N	Moderada	Baixa	Moderada	Moderada			
TP2	0,40	N	Baixa	Baixa	Moderada	Moderada			
TP3	0,30	S	Moderada	Moderada	Baixa	Moderada			

5.4.1.2 Carcinogenicidade

Os TPs 1, 2 e 3 são carcinogênicos com boa confiabilidade pelo modelo IFRMN, IDAs respectivamente de 0,916, 0918 e 0,834. Alertas estruturais foram identificados para os três compostos referente a carcinogenicidade correspondente a *N*-metil-1-fenilmetanamina e para TP2 correspondente a 2-hidroxibenzaldeído. O Propoxur, ao contrário dos seus TPs, foi previsto como não mutagênico com confiabilidade moderada. A **tabela 25** apresenta um resumo dos resultados de carcinogenicidade e as **figuras 73 e 74** os alertas estruturais que foram identificados a partir do conjunto de treinamento dos modelo utilizado.

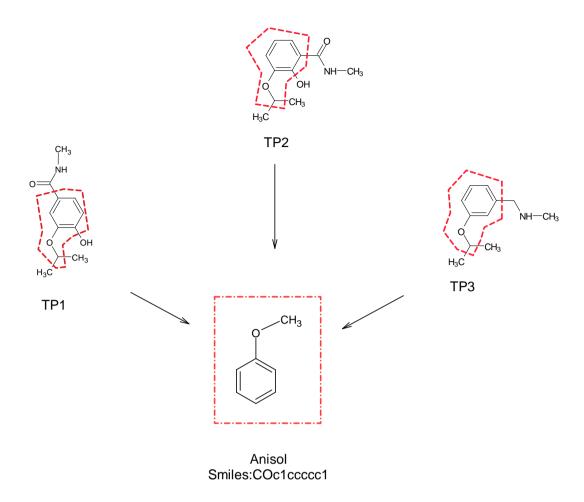
Figura 73 Alerta estrutural para os TPs do Propoxur, identificados a partir do conjunto de treinamento do modelo IFRMN para o desfecho de carcinogenicidade. **Fonte**: O autor

Figura 74- Alerta estrutural para carcinogenicidade referente ao 2-hidroxibenzaldeído identificado no TP2 a partir das moléculas do conjunto de treinamento do modelo IFRMN-ISSCAN-CGX. **Fonte:** O autor.

Tabela 25 -Resumo do índice de domínio da aplicabilidade (IDA), índice de similaridade, precisão, concordância, ACF (*Atom centered fragments similarity check*) e confiabilidade dos resultados para os modelos IFRMN-ISSCAN-CGX utilizado para a avaliação do desfecho de Carcinogenicidade para o Propoxur e seus TPs obtidos por fotólise direta. **Legenda**: S (Resultado Carcinogênico); N (Resultado não Carcinogênico)

Molécula	IDA	resultado	Índice similaridade	Precisão	Índice de concordância com valor experimental	Índice ACF	Confiabilidade
Propoxur	0,640	N	0,874	0,675	0,325	1,0	Moderada
TP1	0,916	S	0,839	1,0	1,0	1,0	Boa
TP2	0,918	S	0,834	1,0	1,0	1,0	Boa
TP3	0,834	S	0,853	0,665	1,0	1,0	Boa

5.4.1.3 Toxicidade do desenvolvimento


Todos os TPs do Propoxur são não tóxicos pelo modelo Caesar com confiabilidade moderada. Os IDAs foram de 0,766 para os TPs 1 e 2 e 0,767 para o TP3. Apesar da confiabilidade ser moderada um índice de similaridade para moléculas do conjunto de treinamento com valor experimental conhecido foi igual a 0,5. O Propoxur é tóxico com confiabilidade moderada (IDA 0,757) e índice de similaridade de 0,481. Os resultados estão apresentados na **tabela 26**.

5.4.1.4 Biodegradabilidade imediata

Todos os TPs do Propoxur são possivelmente prontamente biodegradáveis pelo modelo IFRMN. A confiabilidade da previsão é moderada para os TPs 1 e 2, IDAs 0,691 e baixa para TP3 IDA igual a 0,630. Em todas as previsões foram observadas índice de similaridade menor que 0,4, devido aos resultados experimentais de moléculas do conjunto de treinamento do modelo que discordam com o resultado da predição. Apesar da previsão moderada, um alerta estrutural presente nos três TPs foi identificado, que concorda com o valor previsto (**Figura 75**). A **tabela 27** demonstra um resumo dos resultados de biodegradabilidade imediata.

Tabela 26 - Resumo do índice de domínio da aplicabilidade (IDA), índice de similaridade, precisão, concordância, ACF (*Atom centered fragments similarity check*) e confiabilidade dos resultados para o modelo Caesar, utilizado para a avaliação do desfecho de toxicidade do desenvolvimento para o Propoxur e seus TPs obtidos por fotólise direta. **Legenda**: S (Resultado Tóxico); N (Resultado não Tóxico)

Molécula	IDA	resultado	Índice similaridade	Precisão	Índice de concordância com valor experimental	Índice ACF	Confiabilidade
Propoxur	0,757	S	0,827	1,0	0,481	1,0	Moderada
TP1	0,766	N	0,830	1,0	0,500	1,0	Moderada
TP2	0,766	N	0,828	1,0	0,500	1,0	Moderada
TP3	0,767	N	0,831	1,0	0,502	1,0	Moderada

Figura 75 - Alerta estrutural para possivelmente prontamente biodegradável referente ao Anisol identificado nos TPs do Propoxur a partir das moléculas do conjunto de treinamento do modelo IFRMN. **Fonte:** O autor.

Tabela 27 - Resumo do índice de domínio da aplicabilidade (IDA), índice de similaridade, precisão, concordância, ACF (Atom centered fragments similarity check) e confiabilidade dos resultados para o modelo IFRMN, utilizado para a avaliação do desfecho de biodegradabilidade imediata para o Propoxur e seus TPs obtidos por fotólise direta. **Legenda**: S (Resultado Não prontamente biodegradável); PB (Resultado Possivelmente prontamente biodegradável)

Molécula	IDA	resultado	Índice	Precisão	Índice de concordância	Índice ACF	Confiabilidade
ivioiecula	IDA	resurtado	similaridade		com valor experimental		
Propoxur	0,943	N	0,890	1,0	1,0	1,0	Boa
TP1	0,690	PB	0,826	1,0	0,333	1,0	Moderada
TP2	0,691	PB	0,827	1,0	0,334	1,0	Moderada
TP3	0,630	PB	0,830	0,665	0,328	1,0	Baixa

6 Considerações finais

O presente estudo teve como principal contribuição o desenvolvimento de fluxos de trabalho para utilização na sistemática de identificação de metabólitos e produtos de transformação por *suspect screening*. Este fluxo de trabalho foi utilizado em amostras de águas superficiais do monitoramento realizado no Arroio Dilúvio e em estudo de identificação dos produtos de transformação do inseticida propoxur, por fotólise direta. O estudo de degradação do propoxur, foi realizado tendo por finalidade apresentar as etapas necessárias para estudos de degradação que tenham como resultado a identificação de TPs. Assim foi possível dimensionar todo o trabalho envolvido nestes processos.

O sotfware TASQ demonstrou boa capacidade de processamento em um período de tempo muito menor, se considerarmos a realização manual de todos estes processamentos, após a construção das tabelas dos compostos suspeitos. O método de preparo de amostras, mesmo que não tenha sido direcionado para a análise da disversidade de compostos presentes na base de dados elaborada, mostrou-se adequado, pois muitos compostos foram identificados. No entanto a necessidade de uma metodologia de preparo de amostras mais ampla, pode ser adequada a fim de melhorar o espectro de compostos que poderão ser identificados. A presença de íons qualificadores no método foi decisiva para o aumento da confiabilidade na identificação dos compostos. Dentre as principais lacunas estão as bases de dados contendo valores de m/z de fragmentos obtidos por fragmentação teórica e não através de dados experimentais e a escassez de íons qualificadores em artigos científicos, sobretudo de compostos menos recorrentes.

As quatro classes de compostos identificasdas foram os metabólitos ou TPs de fármacos, agrotóxicos, hormônios e drogas ilícitas. O tratamento dos dados, mostrou que não há diferença percentual ao longo do trecho monitorado, observando-se cada ponto, quando os compostos são avaliados por classes. No entanto, a avaliação individual dos compostos demonstrou que as áreas tendem a ser maiores nos pontos 3, 4 e 5, onde há maior concentração populacional. Os compostos majoritários identificados foram os metabólitos 4-AAA, 4-AA, Fenpiroximato M-13 e Benzoilecgonina. Foi possível inferir que a variação de temperatura pode ter influênciado a presença dos compostos no ambiente, impossibilitando que no ano de 2017, fosse observado um comportamento padrão para as amostras ao longo dos meses, decorrente do inverno atípico. Esta

observação pode ser realizada pelo agrupamento hierárquico dos pontos de coleta. O comportamento dos agrotóxicos neste período precisa ser mais bem avaliada ao ponto que para drogas ilícitas não há alteração na incidência.

A estratégia *suspect screening* pode ser reproduzida de forma muito útil em trabalhos onde um padrão analítico não esteja disponível ou requerido, na busca de compostos prioritários e incógnitas presentes em amostras resultantes de estudos de monitoramento ambiental ou na elucidação estrutural de TPs obtidos por fotólise ou fotocatálise.

A sistemática de identificação dos TPs do Propoxur foi estabelecida a partir de um experimento simples e reprodutível de fotólise, utilizando exclusivamente água como solvente. Três TPs puderam ser identificados, dois deles bastante conhecidos na literatura obtidos por rearranjo-foto fries, no entanto, este trabalho demonstrou o mecanismo iniciado via abstração do hidrogênio alfa-carbonílico, pelas moléculas de água do meio reacional, pouco discutido nos trabalhos que tratam sobre os mecanismos de degradação do Propoxur, mas que nas condições experimentais propostas ocorrem de forma efetiva. A estrurua do TP3 foi proposta a partir dos dados de fórmula, massa exata, variabilidade isotópica fornecidas pela LC-Q-TOF/MS, observando-se as possibilidades de degradação do Propoxur e na sequência de TPs intermediários. Este composto não foi citado anteriormente na literatura que trata sobre a degradação do Propoxur. Em trabalhos futuros será necessária a avaliação de outros produtos intermediários que possam explicar os mecanismos pelos quais TP3 se forma. O tempo de fotólise utilizado não foi suficiente para a degradação completa do propoxur e de seus TPs. Este resultado indica que mais estudos poderão ser realizados a fim de esclarecer melhor a degradação do propoxur e seus TPs.

A toxicidade *in silico* foi utilizada para avaliar a toxicidade dos TPs identificados. Os pontos mais relevantes, neste caso, são:

- pelo menos dois modelos, quando avaliados individualmente, dentre os quatro utilizados no desfecho de mutagenicidade são capazes de realizar previsões confiáveis quando consensus não demontra boa previsão;
- a maioria dos compostos avaliados estavam fora do domínio de aplicabilidade dos modelos utilizados para avaliação de toxicidade do desenvolvimento e biodegradabilidade imediata:

- alertas estruturais, fragmentos raros e grupos funcionais identificados a partir do conjunto de treinamento dos modelos são fundamentais para a compreensão do resultado em que a confiabilidade é boa, moderada e baixa;
- resultados com IDA entre 0,7 e 0,9 podem ser questionáveis ou inconslusivos, quando dados experimentais discoradarem do valor previsto ou ainda os índices de precisão, similaridade, ACF e alertas estruturais forem baixos, mesmo com confiabilidade moderada.
- Especificamente para os TPs de Propoxur, todos podem ser considerados carcinogênicos com boa confiabilidade.

O conjunto de estudos realizados neste trabalho traz uma importante contribuição ambiental e social, sobretudo para o município de Porto Alegre. Prever a composição dos contaminantes nas amostras do Arroio Dilúvio propicia a reflexão para a busca de alternativas de tratamento ou remediação, através de políticas públicas, de cunho ambiental e social. O Arroio Dilúvio faz parte da história e do desenvolvimento de Porto Alegre e para além desta questão, atualmente é um dos princiapais contribuintes de poluição do lago Guaíba, de onde é captada parte da água de abastecimento para a população.

7 Referências

- 1. Cipriani-Avila, I. *et al.* Occurrence of emerging contaminants in surface water bodies of a coastal province in Ecuador and possible influence of tourism decline caused by COVID-19 lockdown. *Sci. Total Environ.* **866**, (2023).
- 2. Ghaffarpasand, O., Nadi, S. & Shalamzari, Z. D. Short-term effects of anthropogenic/natural activities on the Tehran criteria air pollutants: Source apportionment and spatiotemporal variation. *Build. Environ.* **186**, 107298 (2020).
- 3. Silori, R. *et al.* Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. *Environ. Pollut.* **320**, 120978 (2023).
- 4. Battaglin, W. A. *et al.* Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012–2013. *Sci. Total Environ.* **643**, 651–673 (2018).
- 5. Fabregat-Safont, D. *et al.* Wide-scope screening of pharmaceuticals, illicit drugs and their metabolites in the Amazon River. *Water Res.* **200**, 117251 (2021).
- 6. Fernández-Rubio, J. *et al.* Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment. *Chemosphere* **224**, 379–389 (2019).
- 7. Jonkers, T. J. H. *et al.* Chemosphere Identifying antimicrobials and their metabolites in wastewater and surface water with effect-directed analysis. **320**, (2023).
- 8. Sotão Neto, B. M. T. *et al.* Persistent organic pollutants (POPs) and personal care products (PCPs) in the surface sediments of a large tropical bay (Todos os Santos Bay, Brazil). *Mar. Pollut. Bull.* **161**, (2020).
- 9. Archer, E., Petrie, B., Kasprzyk-hordern, B. & Wolfaardt, G. M. Chemosphere The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. *Chemosphere* **174**, 437–446 (2017).
- Carstensen, L., Beil, S., Börnick, H. & Stolte, S. Structure-related endocrinedisrupting potential of environmental transformation products of benzophenonetype UV filters: A review. *J. Hazard. Mater.* 430, (2022).
- 11. García-Galán, M. J., Petrovic, M., Rodríguez-Mozaz, S. & Barceló, D.

- Multiresidue trace analysis of pharmaceuticals, their human metabolites and transformation products by fully automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. *Talanta* **158**, 330–341 (2016).
- 12. Hintze, S., Glauser, G. & Hunkeler, D. Influence of surface water groundwater interactions on the spatial distribution of pesticide metabolites in groundwater. *Sci. Total Environ.* **733**, 139109 (2020).
- 13. López-Serna, R., Petrović, M. & Barceló, D. Occurrence and distribution of multiclass pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). *Sci. Total Environ.* **440**, 280–289 (2012).
- 14. Schuhmann, A. *et al.* A long-term lysimeter experiment to investigate the environmental dispersion of the herbicide chloridazon and its metabolites—comparison of lysimeter types. *J. Soils Sediments* **16**, 1032–1045 (2016).
- 15. Campos, D. *et al.* Science of the Total Environment Toxicity assessment of binary mixtures of BP3 with 4-MBC (UV- fi Iters), and BP3 with DEET (insect repellent) using the aquatic midge Chironomus riparius. **892**, (2023).
- Lv, X. et al. The strategy for estrogen receptor mediated-risk assessment in environmental water: A combination of species sensitivity distributions and in silico approaches. Environ. Pollut. 309, 119763 (2022).
- 17. ZIND, H. *et al.* Occurrence of carbamazepine, diclofenac, and their related metabolites and transformation products in a French aquatic environment and preliminary risk assessment. *Water Research* vol. 196 117052 https://doi.org/10.1016/j.watres.2021.117052 (2021).
- 18. Abreu-Villaça, Y. & Levin, E. D. Developmental neurotoxicity of succeeding generations of insecticides. *Environ. Int.* **99**, 55–77 (2017).
- 19. Arman, N. Z. *et al.* A review on emerging pollutants in the water environment: Existences, health effects and treatment processes. *Water (Switzerland)* **13**, 1–31 (2021).
- Cho, Y., Jeon, H., Kim, K., Kim, C. & Lee, S. Ecotoxicology and Environmental Safety Developmental toxicity of a pymetrozine photo-metabolite, 3-pyridinecar boxaldehyde, in zebrafish (Danio rerio) embryos: Abnormal cardiac development and occurrence of heart dysfunction via differential expres. *Ecotoxicol. Environ. Saf.* 253, 114654 (2023).
- 21. Harmon O'Driscoll, J. *et al.* A risk ranking of pesticides in Irish drinking water considering chronic health effects. *Sci. Total Environ.* **829**, 154532 (2022).

- 22. Koba, O. *et al.* Transport of pharmaceuticals and their metabolites between water and sediments as a further potential exposure for aquatic organisms. *J. Hazard. Mater.* **342**, 401–407 (2018).
- 23. Stepnowski, P., Do, J., Wojs, J. & Bia, A. Chemosphere Leaching behavior of pharmaceuticals and their metabolites in the soil environment. **231**, (2019).
- 24. Fenner, K., Canonica, S. & Wackett, L. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. (2013) doi:10.1126/science.1236281.
- 25. Cui, H., Chang, H., Zheng, H. & Wan, Y. Determination and occurrence of sulfonamide transformation products in surface waters. *Sci. Total Environ.* **779**, 146562 (2021).
- 26. Seiwert, B., Nihemaiti, M., Troussier, M., Weyrauch, S. & Reemtsma, T. Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater. *Water Res.* 212, 118122 (2022).
- 27. Blum, K. M., Andersson, P. L., Ahrens, L., Wiberg, K. & Haglund, P. Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. *Sci. Total Environ.* **612**, 1532–1542 (2018).
- 28. Wolska, L., Cieszynska-semenowicz, M. & Ratajczyk, W. Micropollutants in treated wastewater. *Ambio* **49**, 487–503 (2020).
- 29. Anawar, H. M., Akter, F., Solaiman, Z. M. & Strezov, V. Biochar: An Emerging Panacea for Remediation of Soil Contaminants from Mining, Industry and Sewage Wastes. *Pedosph. An Int. J.* **25**, 654–665 (2015).
- 30. Peluso, J. *et al.* Metals, pesticides, and emerging contaminants on water bodies from agricultural areas and the effects on a native amphibian. *Environ. Res.* **226**, 115692 (2023).
- 31. Tian, Z., Wark, D. A., Bogue, K. & James, C. A. Suspect and non-target screening of contaminants of emerging concern in streams in agricultural watersheds. *Sci. Total Environ.* **795**, 148826 (2021).
- 32. Yasasve, M. *et al.* Unravelling the emerging carcinogenic contaminants from industrial waste water for prospective remediation by electrocoagulation A review. *Chemosphere* **307**, 136017 (2022).
- 33. Abramovi, B. F., Uzelac, M. M., Armakovi, S. J., Dragana, D. Č. & Armakovi, S.

- Science of the Total Environment Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity. **768**, (2021).
- 34. Guo, X., Li, D., Wan, J. & Yu, X. Electrochimica Acta Preparation and electrochemical property of TiO 2 / Nano-graphite composite anode for electrocatalytic degradation of ceftriaxone sodium. *Electrochim. Acta* **180**, 957–964 (2015).
- 35. Pozdnyakov, I. P. *et al.* Chemosphere Direct UV photodegradation of herbicide triclopyr in aqueous solutions: A mechanistic study. *Chemosphere* **293**, 133573 (2022).
- 36. Zhu, Y. *et al.* Science of the Total Environment Photodegradation of enestroburin in water by simulated sunlight irradiation: Kinetics, isomerization, transformation products identification and toxicity assessment. *Sci. Total Environ.* **849**, 157725 (2022).
- 37. Fabregat-safont, D., Botero-coy, A. M. & Nieto-ju, J. I. Searching for pharmaceutically active products and metabolites in environmental waters of Peru by HRMS-based screening: Proposal for future monitoring and environmental risk assessment. 337, (2023).
- 38. Hollender, J. *et al.* High resolution mass spectrometry based non target screening can support regulatory environmental monitoring and chemicals management. *Environ. Sci. Eur.* (2019) doi:10.1186/s12302-019-0225-x.
- 39. Leendert, V., Langenhove, H. Van & Demeestere, K. Trends in Analytical Chemistry Trends in liquid chromatography coupled to high-resolution mass spectrometry for multi-residue analysis of organic micropollutants in aquatic environments. *Trends Anal. Chem.* **67**, 192–208 (2015).
- 40. Menger, F., Gago-Ferrero, P., Wiberg, K. & Ahrens, L. Wide-scope screening of polar contaminants of concern in water: A critical review of liquid chromatography-high resolution mass spectrometry-based strategies. *Trends Environ. Anal. Chem.* **28**, e00102 (2020).
- 41. Eysseric, E., Gagnon, C. & Segura, P. A. Science of the Total Environment Identifying congeners and transformation products of organic contaminants within complex chemical mixtures in impacted surface waters with a top-down non-targeted screening work fl ow. *Sci. Total Environ.* **822**, 153540 (2022).
- 42. Kokoszka, K. et al. Science of the Total Environment Suspect screening of

- antimicrobial agents transformation products in environmental samples development of LC-QTrap method running in pseudo MRM transitions. **808**, (2022).
- 43. Baken, K. A., Sjerps, R. M. A., Schriks, M. & van Wezel, A. P. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern. *Environ. Int.* **118**, 293–303 (2018).
- 44. Deere, J. R. *et al.* A chemical prioritization process: Applications to contaminants of emerging concern in freshwater ecosystems (Phase I). *Sci. Total Environ.* **772**, 146030 (2021).
- 45. Escher, B. I. & Fenner, K. Recent Advances in Environmental Risk Assessment of Transformation Products. *Environ Sci Technol*. 3835–3847 (2011).
- 46. Park, N., Choi, Y., Kim, D., Kim, K. & Jeon, J. Prioritization of highly exposable pharmaceuticals via a suspect/non-target screening approach: A case study for Yeongsan River, Korea. *Sci. Total Environ.* **639**, 570–579 (2018).
- 47. Rocco, K., Margoum, C., Richard, L. & Coquery, M. Enhanced database creation with in silico workflows for suspect screening of unknown tebuconazole transformation products in environmental samples by UHPLC-HRMS. *J. Hazard. Mater.* **440**, 129706 (2022).
- 48. Khan, K., Kar, S. & Roy, K. Are we ready to combat the ecotoxicity of COVID-19 pharmaceuticals? An in silico aquatic risk assessment. *Aquat. Toxicol.* **256**, 106416 (2023).
- 49. Santos, C. E. M. & Nardocci, A. C. Prioritization of pharmaceuticals in drinking water exposure based on toxicity and environmental fate assessment by in silico tools: An integrated and transparent ranking. *Comput. Toxicol.* **9**, 12–21 (2019).
- 50. Alves, M. S. & Lívia Streit, T. M. P. Utilização de modelos in silico para avaliação da toxicidade de resíduos deagrotóxicos, fármacos e metabólitos em águas naturais. Quim. Nova **46**, 881–889 (2023).
- 51. Cappelli, C. I. *et al.* Assessment of in silico models for acute aquatic toxicity towards fish under REACH regulation. *SAR QSAR Environ. Res.* **26**, 977–999 (2015).
- 52. Koroša, A. & Mali, N. Control of organic contaminants in groundwater by passive sampling and multivariate statistical analysis. *J. Environ. Manage.* **318**, (2022).

- 53. Li, M., Liu, Z., Yu, Q. & Chen, Y. Exploratory analysis on spatio-seasonal variation patterns of hydro-chemistry in the upper Yangtze River basin. *J. Hydrol.* **597**, 126217 (2021).
- 54. Zhou, F., Huang, G. H., Guo, H. C., Zhang, W. & Hao, Z. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. *Water Res.* **41**, 3429–3439 (2007).
- 55. Huang, F., Wang, X., Lou, L., Zhou, Z. & Wu, J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. *Water Res.* **44**, 1562–1572 (2010).
- 56. Koroša, A. & Mali, N. Control of organic contaminants in groundwater by passive sampling and multivariate statistical analysis. *J. Environ. Manage.* **318**, (2022).
- 57. Arregui, L. *et al.* Laccases: structure, function, and potential application in water bioremediation. *Microb. Cell Fact.* **18**, 1–33 (2019).
- 58. Castiglioni, S. *et al.* Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy. *Water Res.* **131**, 287–298 (2018).
- 59. Sivaranjanee, R. & Kumar, P. S. A review on remedial measures for effective separation of emerging contaminants from wastewater. *Environ. Technol. Innov.* **23**, 101741 (2021).
- 60. Christensen, E. R., Wang, Y., Huo, J. & Li, A. Properties and fate and transport of persistent and mobile polar organic water pollutants: A review. *J. Environ. Chem. Eng.* **10**, (2022).
- 61. Mishra, A. *et al.* Persistent organic pollutants in the environment: Risk assessment, hazards, and mitigation strategies. *Bioresour. Technol. Reports* **19**, 101143 (2022).
- 62. Sauvé, S. & Desrosiers, M. A review of what is an emerging contaminant. *Chem. Cent. J.* **8**, 1–7 (2014).
- 63. Badea, S. L., Geana, E. I., Niculescu, V. C. & Ionete, R. E. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. *Sci. Total Environ.* **722**, 137914 (2020).
- 64. Guo, Z., Huang, S., Wang, J. & Feng, Y. L. Recent advances in non-targeted screening analysis using liquid chromatography high resolution mass spectrometry to explore new biomarkers for human exposure. *Talanta* **219**, 121339 (2020).

- 65. Pourchet, M. *et al.* Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. *Environ. Int.* **139**, 105545 (2020).
- 66. Carrizo, J. C. *et al.* Suspect screening of pharmaceuticals, illicit drugs, pesticides, and other emerging contaminants in Argentinean Piaractus mesopotamicus, a fish species used for local consumption and export. *Chemosphere* **309**, (2022).
- 67. Mali, H. *et al.* Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. *J. Environ. Sci. (China)* **127**, 234–250 (2023).
- 68. Mitchelmore, C. L. *et al.* Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. *Sci. Total Environ.* **670**, 398–410 (2019).
- 69. Velmurugan, P. M., Krishnan Vijayaprabhakaran & Devika, P. T. Baseline study on identification, characterization, distribution and abundance of microplastics in surface water from Ennore to Kovalam along the east coast of India. *Phys. Chem. Earth* **130**, 103391 (2023).
- 70. Yadav, M. K. *et al.* Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment. *Water Res.* **124**, 713–727 (2017).
- 71. Zakari-Jiya, A. *et al.* Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. *Environ. Toxicol. Pharmacol.* **94**, 103914 (2022).
- 72. Korkmaz, N. E., Caglar, N. B. & Aksu, A. Presence and distribution of selected pharmaceutical compounds in water and surface sediment of the Golden Horn Estuary, Sea of Marmara, Turkey. *Reg. Stud. Mar. Sci.* **51**, 102221 (2022).
- 73. Qin, Y., Liu, Y., Wang, J., Lu, Y. & Xu, Z. Emission of PAHs, PCBs, PBDEs and heavy metals in air, water and soil around a waste plastic recycling factory in an industrial park, Eastern China. *Chemosphere* **294**, 133734 (2022).
- 74. Sun, S. *et al.* Characteristics of organic pollutants in source water and purification evaluations in drinking water treatment plants. *Sci. Total Environ.* **733**, 139277 (2020).
- 75. Guo, J. *et al.* Deep mining of reported emerging contaminants in China's surface water in the past decade: Exposure, ecological effects and risk assessment. *Water*

- Res. 243, 120318 (2023).
- 76. Heydebreck, F., Tang, J., Xie, Z. & Ebinghaus, R. Alternative and Legacy Perfluoroalkyl Substances: Differences between European and Chinese River/Estuary Systems. *Environ. Sci. Technol.* **49**, 8386–8395 (2015).
- 77. Malaj, E. *et al.* Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 9549–9554 (2014).
- 78. Ricarte, M. *et al.* Environmental concentrations of tire rubber-derived 6PPD-quinone alter CNS function in zebrafish larvae. *Sci. Total Environ.* **896**, 165240 (2023).
- 79. Topaz, T. *et al.* Ecological Risk Dynamics of Pharmaceuticals in Micro-Estuary Environments. *Environ. Sci. Technol.* **54**, 11182–11190 (2020).
- 80. Mukhopadhyay, A., Duttagupta, S. & Mukherjee, A. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. *J. Environ. Chem. Eng.* **10**, 107560 (2022).
- 81. Pulicharla, R., Proulx, F., Behmel, S., Sérodes, J. B. & Rodriguez, M. J. Occurrence and seasonality of raw and drinking water contaminants of emerging interest in five water facilities. *Sci. Total Environ.* **751**, 141748 (2021).
- 82. Selak, A. & Luka, J. Science of the Total Environment Assessing the persistence, mobility and toxicity of emerging organic contaminants in Croatian karst springs used for drinking water supply. **903**, (2023).
- 83. Fu, C. *et al.* Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes. *Science of the Total Environment* vol. 807 151011 https://doi.org/10.1016/j.scitotenv.2021.151011 (2022).
- 84. OPAs., H. O. P. A. da saúde das A. O. M. da saúde. Resistência antimicrobiana. https://www.paho.org/pt/topicos/resistencia-antimicrobiana. Acessado em Outurbro de 2022.
- 85. Meek, R. W., Vyas, H. & Piddock, L. J. V. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? *PLoS Biol.* **13**, 1–11 (2015).
- 86. Naquin, A., Shrestha, A., Sherpa, M., Nathaniel, R. & Boopathy, R. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana,

- USA. Bioresour. Technol. 188, 79-83 (2015).
- 87. Adeogun, A. O., Ibor, O. R., Adeduntan, S. D. & Arukwe, A. Intersex and alterations in reproductive development of a cichlid, Tilapia guineensis, from a municipal domestic water supply lake (Eleyele) in Southwestern Nigeria. *Sci. Total Environ.* **541**, 372–382 (2016).
- 88. Autrup, H. *et al.* Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? *Toxicol. Vitr.* **67**, (2020).
- 89. Karki, N. P., Colombo, R. E., Gaines, K. F. & Maia, A. Exposure to 17β estradiol causes erosion of sexual dimorphism in Bluegill (Lepomis macrochirus). *Environ. Sci. Pollut. Res.* **28**, 6450–6458 (2021).
- 90. Khushboo, M. *et al.* Dietary phytoestrogen diosgenin interrupts metabolism, physiology, and reproduction of Swiss albino mice: Possible mode of action as an emerging environmental contaminant, endocrine disruptor and reproductive toxicant. *Food Chem. Toxicol.* **176**, 113798 (2023).
- 91. Paschoalini, A. L. *et al.* Evaluation of the oestrogenic potential of oestrone and bisphenol-A on the reproduction of Astyanax bimaculatus males after subacute exposure. *Fish Physiol. Biochem.* **47**, 797–810 (2021).
- 92. Barceló, D. & Petrović, M. Emerging Contaminants from industrial and municipal waste: Occurrence, Analysis and Effects. Springer (2008).
- 93. Gomes, A. R. *et al.* Review of the ecotoxicological effects of emerging contaminants to soil biota. *J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ. Eng.* **52**, 992–1007 (2017).
- 94. Mishra, S. & Sundaram, B. Fate, transport, and toxicity of nanoparticles: An emerging pollutant on biotic factors. *Process Saf. Environ. Prot.* **174**, 595–607 (2023).
- 95. Saidulu, D., Gupta, B., Gupta, A. K. & Ghosal, P. S. A review on occurrences, ecotoxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. *J. Environ. Chem. Eng.* **9**, 105282 (2021).
- 96. Vald, M. E. *et al.* Chemosphere Contaminants of emerging concern fate and fluvial biofilm status as pollution markers in an urban river a Barcel o. **340**, (2023).

- 97. Białk-Bielińska, A., Caban, M., Pieczyńska, A., Stepnowski, P. & Stolte, S. Mixture toxicity of six sulfonamides and their two transformation products to green algae Scenedesmus vacuolatus and duckweed Lemna minor. *Chemosphere* **173**, 542–550 (2017).
- 98. Cleuvers, M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. *Ecotoxicol. Environ. Saf.* **59**, 309–315 (2004).
- 99. Pomati, F., Orlandi, C., Clerici, M., Luciani, F. & Zuccato, E. Effects and interactions in an environmentally relevant mixture of pharmaceuticals. *Toxicol. Sci.* **102**, 129–137 (2008).
- 100. Richardson, S. *et al.* Mixtures of sediment chemical contaminants at freshwater sampling sites across Europe with different contaminant burdens. *Sci. Total Environ.* **891**, 164280 (2023).
- 101. Spurgeon, D. J. *et al.* Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. *Sci. Total Environ.* **408**, 3725–3734 (2010).
- Vasquez, M. I., Lambrianides, A., Schneider, M., Kümmerer, K. & Fatta-Kassinos,
 D. Environmental side effects of pharmaceutical cocktails: What we know and what we should know. *J. Hazard. Mater.* 279, 169–189 (2014).
- 103. Bai, X. *et al.* Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. *Chemosphere* **200**, 133–142 (2018).
- 104. Corada-Fernández, C. *et al.* Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain). *Sci. Total Environ.* **605–606**, 770–783 (2017).
- 105. Zhao, H. *et al.* Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China. *Mar. Pollut. Bull.* 125, 208–215 (2017).
- 106. Damashek, J. *et al.* Non-point source fecal contamination from aging wastewater infrastructure is a primary driver of antibiotic resistance in surface waters. *Water Res.* **222**, 118853 (2022).
- Peirce, J. J., Weiner, R. F. & Vesilind, P. A. Nonpoint Source Water Pollution.
 Environ. Pollut. Control 137–143 (1998) doi:10.1016/b978-075069899-3/50011-

0.

- 108. Bogunović, M. *et al.* Removal of selected emerging micropollutants from wastewater treatment plant effluent by advanced non-oxidative treatment A labscale case study from Serbia. *Sci. Total Environ.* **765**, (2021).
- 109. Dubey, M., Vellanki, B. P. & Kazmi, A. A. Emerging contaminants in conventional and advanced biological nutrient removal based wastewater treatment plants in India- insights into the removal processes. *Sci. Total Environ.* **894**, 165094 (2023).
- 110. Mohamed, B. A., Hamid, H., Montoya-Bautista, C. V. & Li, L. Y. Circular economy in wastewater treatment plants: Treatment of contaminants of emerging concerns (CECs) in effluent using sludge-based activated carbon. *J. Clean. Prod.* 389, 136095 (2023).
- 111. Song, H. *et al.* Advanced treatment of low C/N ratio wastewater treatment plant effluent using a denitrification biological filter: Insight into the effect of medium particle size and hydraulic retention time. *Environ. Technol. Innov.* **24**, 102044 (2021).
- 112. Rapp-Wright, H., Regan, F., White, B. & Barron, L. P. A year-long study of the occurrence and risk of over 140 contaminants of emerging concern in wastewater influent, effluent and receiving waters in the Republic of Ireland. *Sci. Total Environ.* **860**, (2023).
- 113. Shehu, Z., Nyakairu, G. W. A., Tebandeke, E. & Odume, O. N. Overview of African water resources contamination by contaminants of emerging concern. *Sci. Total Environ.* **852**, 158303 (2022).
- 114. Souza, M. C. O. *et al.* Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. *Sci. Total Environ.* **848**, (2022).
- 115. Puri, M., Gandhi, K. & Suresh Kumar, M. A global overview of endocrine disrupting chemicals in the environment: occurrence, effects, and treatment methods. *Int. J. Environ. Sci. Technol.* (2022) doi:10.1007/s13762-022-04636-4.
- 116. Godoy, A. A., Kummrow, F. & Pamplin, P. A. Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment A review. *Chemosphere* **138**, 281–291 (2015).
- 117. Khumalo, S. M., Makhathini, T. P., Bwapwa, J. K., Bakare, B. F. & Rathilal, S. The occurrence and fate of antibiotics and nonsteroidal anti-inflammatory drugs in

- water treatment processes: A review. J. Hazard. Mater. Adv. 10, 100330 (2023).
- 118. Montone, C. M. *et al.* Biotic transformation products of sulfonamides in environmental water samples: High-resolution mass spectrometry-based tentative identification by a suspect screening approach. *J. Pharm. Biomed. Anal.* **227**, 1–9 (2023).
- 119. Ngwenya, N. & Mahlambi, P. Methods optimization and application: Solid phase extraction, ultrasonic extraction and Soxhlet extraction for the determination of antiretroviral drugs in river water, wastewater, sludge, soil and sediment. *J. Pharm. Biomed. Anal.* **230**, 115358 (2023).
- 120. Segura, P. A., MacLeod, S. L., Lemoine, P., Sauvé, S. & Gagnon, C. Quantification of carbamazepine and atrazine and screening of suspect organic contaminants in surface and drinking waters. *Chemosphere* **84**, 1085–1094 (2011).
- 121. Klein, E. Y. *et al.* Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E3463–E3470 (2018).
- 122. Wang, Y. *et al.* Interaction of Microplastics with Antibiotics in Aquatic Environment: Distribution, Adsorption, and Toxicity. *Environ. Sci. Technol.* **55**, 15579–15595 (2021).
- 123. Khan, N. A. *et al.* Hospital effluent guidelines and legislation scenario around the globe: A critical review. *J. Environ. Chem. Eng.* **9**, 105874 (2021).
- 124. Rozman, U., Duh, D., Cimerman, M. & Turk, S. Š. Hospital wastewater effluent: Hot spot for antibiotic resistant bacteria. *J. Water Sanit. Hyg. Dev.* **10**, 171–178 (2020).
- 125. Carraro, E. *et al.* Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries. *J. Environ. Manage.* **168**, 185–199 (2016).
- 126. Burkholder, J. A. *et al.* Impacts of waste from concentrated animal feeding operations on water quality. *Environ. Health Perspect.* **115**, 308–312 (2007).
- 127. Lulijwa, R., Rupia, E. J. & Alfaro, A. C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. *Rev. Aquac.* **12**, 640–663 (2020).

- 128. Slaby, S. *et al.* Science of the Total Environment Chemical occurrence of pesticides and transformation products in two small lentic waterbodies at the head of agricultural watersheds and biological responses in caged Gasterosteus aculeatus. **904**, (2023).
- 129. Smalling, K. L. *et al.* Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. *Sci. Total Environ.* **774**, 145687 (2021).
- 130. Berset, J. D., Brenneisen, R. & Mathieu, C. Analysis of llicit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatography Electrospray tandem mass spectrometry (HPLC-MS/MS). *Chemosphere* **81**, 859–866 (2010).
- 131. Fontes, M. K. *et al.* Seasonal monitoring of cocaine and benzoylecgonine in a subtropical coastal zone (Santos Bay, Brazil). *Mar. Pollut. Bull.* **149**, 110545 (2019).
- 132. Skees, A. J., Foppe, K. S., Loganathan, B. & Subedi, B. Contamination profiles, mass loadings, and sewage epidemiology of neuropsychiatric and illicit drugs in wastewater and river waters from a community in the Midwestern United States. *Sci. Total Environ.* **631–632**, 1457–1464 (2018).
- 133. Lai, F. Y. *et al.* Estimating daily and diurnal variations of illicit drug use in Hong Kong: A pilot study of using wastewater analysis in an Asian metropolitan city. *Forensic Sci. Int.* **233**, 126–132 (2013).
- 134. Burgard, D. A., Fuller, R., Becker, B., Ferrell, R. & Dinglasan-Panlilio, M. J. Potential trends in Attention Deficit Hyperactivity Disorder (ADHD) drug use on a college campus: Wastewater analysis of amphetamine and ritalinic acid. *Sci. Total Environ.* 450–451, 242–249 (2013).
- 135. Cui, D., Ricardo, M. & Quinete, N. A novel report on phthalates levels in Biscayne Bay surface waters and drinking water from South Florida. *Mar. Pollut. Bull.* **180**, 113802 (2022).
- 136. Wu, X. *et al.* Priority screening of contaminant of emerging concern (CECs) in surface water from drinking water sources in the lower reaches of the Yangtze River based on exposure-activity ratios (EARs). *Sci. Total Environ.* **856**, 159016 (2023).
- 137. Mac Loughlin, T. M., Peluso, M. L. & Marino, D. J. G. Evaluation of pesticide pollution in the Gualeguay Basin: An extensive agriculture area in Argentina. *Sci.*

- Total Environ. 851, (2022).
- 138. Jiménez-Bambague, E. M., Madera-Parra, C. A. & Machuca-Martinez, F. The occurrence of emerging compounds in real urban wastewater before and after the COVID-19 pandemic in Cali, Colombia. *Curr. Opin. Environ. Sci. Heal.* 33, 100457 (2023).
- 139. Ramírez-Canon, A., Paola Becerra-Quiroz, A. & Herrera-Jacquelin, F. Perfluoroalkyl and polyfluoroalkyl substances (PFAS): First survey in water samples from the Bogotá River, Colombia. *Environ. Adv.* **8**, (2022).
- 140. Garduño-Jiménez, A. L. *et al.* Delivering on sustainable development goals in wastewater reuse for agriculture: Initial prioritization of emerging pollutants in the Tula Valley, Mexico. *Water Res.* **238**, (2023).
- 141. Starling, M. C. V. M., Amorim, C. C. & Leão, M. M. D. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. *J. Hazard. Mater.* **372**, 17–36 (2019).
- 142. Madeira, C. L. *et al.* Uncovering the impact of agricultural activities and urbanization on rivers from the Piracicaba, Capivari, and Jundiaí basin in São Paulo, Brazil: A survey of pesticides, hormones, pharmaceuticals, industrial chemicals, and PFAS. *Chemosphere* **341**, (2023).
- 143. Arsand, J. B. *et al.* Spatial-temporal occurrence of contaminants of emerging concern in urban rivers in southern Brazil. *Chemosphere* **311**, (2023).
- 144. Perin, M. *et al.* Identification of the organic compounds in surface water: Suspect screening using liquid chromatography high-resolution mass spectrometry and in silico toxicity evaluation. *Int. J. Mass Spectrom.* **484**, (2023).
- 145. Veras, T. B., Luiz Ribeiro de Paiva, A., Duarte, M. M. M. B., Napoleão, D. C. & da Silva Pereira Cabral, J. J. Analysis of the presence of anti-inflammatories drugs in surface water: A case study in Beberibe river PE, Brazil. *Chemosphere* 222, 961–969 (2019).
- 146. Santos, A. V. *et al.* Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. *Sci. Total Environ.* **746**, 141011 (2020).
- 147. Finoto Viana, L. et al. Occurrence of contaminants of emerging concern and their risks to the Pantanal Sul-Mato-Grossense aquatic biota, Brazil. Chemosphere 337, (2023).
- 148. Derisso, C. R., Pompei, C. M. E., Spadoto, M., da Silva Pinto, T. & Vieira, E. M.

- Occurrence of Parabens in Surface Water, Wastewater Treatment Plant in Southeast of Brazil and Assessment of Their Environmental Risk. *Water. Air. Soil Pollut.* **231**, (2020).
- Reichert, G. et al. Determination of Parabens, Triclosan, and Lipid Regulators in a Subtropical Urban River: Effects of Urban Occupation. Water. Air. Soil Pollut. 231, (2020).
- 150. Stefano, P. H. P. *et al.* Occurrence and distribution of per-and polyfluoroalkyl substances (PFAS) in surface and groundwaters in an urbanized and agricultural area, Southern Brazil. *Environ. Sci. Pollut. Res.* **30**, 6159–6169 (2023).
- 151. Torres, N. H. *et al.* Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. *Environ. Monit. Assess.* **187**, (2015).
- 152. Em, E. E. & Superficiais, Á. Artigo. 44, 817–823 (2021).
- 153. Arsand, J. B. *et al.* Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. *Sci. Total Environ.* **738**, 139781 (2020).
- 154. Kovalakova, P. *et al.* Occurrence and toxicity of antibiotics in the aquatic environment: A review. *Chemosphere* **251**, 126351 (2020).
- 155. García-vara, M. & Orlando-v, D. Prioritization of organic contaminants in a reclaimed water irrigation system using wide-scope LC-HRMS screening. 459, (2023).
- 156. Zhao, J. H. *et al.* Screening and prioritization of organic chemicals in a large river basin by suspect and non-target analysis. *Environ. Pollut.* **333**, 122098 (2023).
- 157. Alygizakis, N. A. *et al.* NORMAN digital sample freezing platform: A European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in "digitally frozen" environmental samples. *TrAC Trends Anal. Chem.* **115**, 129–137 (2019).
- 158. Dulio, V. *et al.* Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. *Environ. Sci. Eur.* **30**, (2018).
- 159. Haug, K. et al. MetaboLights An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, 781–786 (2013).
- 160. Vinaixa, M. *et al.* Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. *TrAC Trends Anal. Chem.*

- **78**, 23–35 (2016).
- 161. Parlamento Europeu & Conselho da União Europeia. Directiva 2008/105/CE do Parlamento Europeu e do Conselho, de 16 de Dezembro de 2008, relativa a normas de qualidade ambiental no domínio da política da água, que altera e subsequentemente revoga as Directivas 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/C. *J. Of. da União Eur.* 14 (2008).
- 162. UE. DECISÃO DE EXECUÇÃO (UE) 2015/495 DA COMISSÃO de 20 de março de 2015. J. Of. da União Eur. 2015, 40–42 (2015).
- 163. Dulio, V. *et al.* Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. *Environ. Sci. Eur.* **30**, (2018).
- 164. Environmental Protection Agency United States, E. lista de candidatos a contaminantes de água potável (CCL). https://www.epa.gov/ccl (2022).
- 165. BRASIL. PORTARIA GM/MS Nº 888, *DE* 4 DE MAIO DE 2021. Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017, para dispor sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade (2021).
- 166. RIO GRANDE DO SUL, 2014. Governo do Estado do Rio Grande do Sul. Anexo I. Portaria Agrotóxicos Nº 320, de 28 de Abril De 2014. Estabelece parâmetros adicionais de agrotóxicos ao padrão de potabilidade para substâncias químicas, no controle e vigilância da qualidade da água para c. 54–55 (2014).
- 167. Monticelli Barizon, R. R. *et al.* Surface water contamination from pesticide mixtures and risks to aquatic life in a high-input agricultural region of Brazil. *Chemosphere* **308**, (2022).
- 168. Prasse, C., Wenk, J., Jasper, J. T., Ternes, T. A. & Sedlak, D. L. Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands. *Environ. Sci. Technol.* 49, 14136–14145 (2015).
- 169. E. Barreiro; Fraga. Quimica Medicinal: As bases moleculares da ação de fármacos. Artmed. 3º Edição. Porto Alegre. ISBN: 9783131450715. 2015.
- 170. Silverman, B. R. & Mark, d; H. *The organic chemistry of drug design and drug action*. Academic Press; 1^a edição (2004)
- 171. Crosby, D. *Environmental Toxicology and Chemistry*. Oxford University Press; 1^a edição (1998).
- 172. Oliveira, L. F. C. De. Spectroscopia molecular. Spectrochim. Acta 6, 454 (2001).
- 173. Boreen, A. L., Arnold, W. A. & McNeill, K. Photodegradation of pharmaceuticals

- in the aquatic environment: A review. Aquat. Sci. 65, 320–341 (2003).
- 174. Challis, J. K., Carlson, J. C., Friesen, K. J., Hanson, M. L. & Wong, C. S. Aquatic photochemistry of the sulfonamide antibiotic sulfapyridine. *J. Photochem. Photobiol. A Chem.* **262**, 14–21 (2013).
- 175. Fatta-Kassinos, D., Meric, S. & Nikolaou, A. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. *Anal. Bioanal. Chem.* **399**, 251–275 (2011).
- 176. Ozaki, N., Tanaka, T., Kindaichi, T. & Ohashi, A. Photodegradation of fragrance materials and triclosan in water: Direct photolysis and photosensitized degradation. *Environ. Technol. Innov.* **23**, 101766 (2021).
- 177. Schwarzenbach, P.R, Gschwend, P, M. & Imboden, d. m. *Environmental Organic Chemistry*. (2002). doi:10.1002/0471649643.
- 178. Grebel, J. E., Pignatello, J. J., Song, W., Cooper, W. J. & Mitch, W. A. Impact of halides on the photobleaching of dissolved organic matter. *Mar. Chem.* **115**, 134–144 (2009).
- 179. Guo, Z. *et al.* Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes. *Water Res.* **231**, 118236 (2023).
- 180. Fang, N., Lu, Z., Hou, Z., Zhang, C. & Zhao, X. Hydrolysis and photolysis of flupyradifurone in aqueous solution and natural water: Degradation kinetics and pathway. *Chemosphere* **298**, 134294 (2022).
- 181. Sanches, S., Barreto Crespo, M. T. & Pereira, V. J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. *Water Res.* **44**, 1809–1818 (2010).
- 182. Starling, M. C. V. M., Souza, P. P., Le Person, A., Amorim, C. C. & Criquet, J. Intensification of UV-C treatment to remove emerging contaminants by UV-C/H2O2 and UV-C/S2O82—: Susceptibility to photolysis and investigation of acute toxicity. *Chem. Eng. J.* **376**, 120856 (2019).
- 183. Yan, C. *et al.* Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters. *J. Hazard. Mater.* **299**, 241–248 (2015).
- 184. Sun, L. & Lee, H. K. Stability studies of propoxur herbicide in environmental water samples by liquid chromatography-atmospheric pressure chemical ionization ion-trap mass spectrometry. *J. Chromatogr. A* **1014**, 153–163 (2003).
- 185. Sanjuán, A., Aguirre, G., Álvaro, M., García, H. & Scaiano, J. C. Degradation of

- propoxur in water using 2,4,6-triphenylpyrylium-Zeolite Y as photocatalyst: Product study and laser flash photolysis. *Appl. Catal. B Environ.* **25**, 257–265 (2000).
- 186. US EPA. Fact Sheet for Propoxur. (1997).
- 187. Osman M. Aly, M. A. E.- & Dib. Studies on the persistence of some carbamate inseticides in the aquatic environmental-I. Hidrolysis of sevin, baygon, pyrolan and dimetilan in waters. **5**, 1191–1205 (1971).
- 188. Silk, P. J., Semeluk, G. P. & Unger, I. Key words: 4, 51–63 (1976).
- 189. Schwack, W. & Kopf, G. Photodegradation of the carbamate insecticide propoxur. *Z. Lebensm. Unters. Forsch.* **195**, 250–253 (1992).
- 190. T, B. & GONZALEZ, Z. F. B. J. KINETIC-STUDY OF PROPOXUR OXIDATION BY UV-RADIATION AND COMBINED O3 UV RADIATION/. *Ind. Eng. Chem. Res.* **33**, 1264–1270 (1994).
- 191. Guelfi, D. R. V. *et al.* Degradation of the insecticide propoxur by electrochemical advanced oxidation processes using a boron-doped diamond/air-diffusion cell. *Environ. Sci. Pollut. Res.* **24**, 6083–6095 (2017).
- 192. Ferrer, I. & Thurman, E. M. Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. *TrAC Trends Anal. Chem.* **22**, 750–756 (2003).
- 193. Hernández, F. *et al.* Current use of high-resolution mass spectrometry in the environmental sciences. *Anal. Bioanal. Chem.* **403**, 1251–1264 (2012).
- 194. Köke, N., Solano, F., Knepper, T. P. & Frömel, T. Unraveling the dynamics of organic micropollutants in wastewater: Online LC-MS/MS analysis at high temporal resolution. *Environ. Pollut.* **310**, (2022).
- 195. Liu, L., Aljathelah, N. M., Hassan, H., Leitão, A. & Bayen, S. Development of a liquid chromatography-quadrupole-time-of-flight-mass spectrometry based method for the targeted and suspect screening of contaminants in the pearl oyster Pinctada imbricata radiata. *Environ. Pollut.* 253, 841–849 (2019).
- 196. Ardrey & E., R. *Liquid Chromatography Mass Spectrometry: An Introduction.* (2003). doi:10.1002/0470867299.
- 197. Hoffman, E. de; V. S. Mass Spectrometry: Principles and applications. (2007).
- 198. Manisali, I., Chen, D. D. Y. & Schneider, B. B. Electrospray ionization source geometry for mass spectrometry: Past, present, and future. *TrAC Trends Anal. Chem.* **25**, 243–256 (2006).

- 199. Kiszkiel-Taudul, I. Determination of antihistaminic pharmaceuticals in surface water samples by SPE-LC-MS/MS method. *Microchem. J.* **162**, 105874 (2021).
- 200. Lucini, L., Pellegrino, R., Cimino, N., Kane, D. & Pretali, L. QqQ and Q-TOF liquid chromatography mass spectrometry direct aqueous analysis of herbicides and their metabolites in water. *Int. J. Mass Spectrom.* **392**, 16–22 (2015).
- 201. Kowal, S., Balsaa, P., Werres, F. & Schmidt, T. C. Fully automated standard addition method for the quantification of 29 polar pesticide metabolites in different water bodies using LC-MS/MS. *Anal. Bioanal. Chem.* **405**, 6337–6351 (2013).
- 202. Lanças, F. M. A cromatografia líquida moderna e a espectrometria de massas: Finalmente 'compatíveis'? II. A escolha do analisador de massas. *Sci. Chromatogr.* 5, 27–46 (2013).
- 203. Krauss, M., Singer, H. & Hollender, J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. *Anal. Bioanal. Chem.* **397**, 943–951 (2010).
- 204. Grandy, J. J., Lashgari, M., Heide, H. Vander, Poole, J. & Pawliszyn, J. Introducing a mechanically robust SPME sampler for the on-site sampling and extraction of a wide range of untargeted pollutants in environmental waters. *Environ. Pollut.* **252**, 825–834 (2019).
- 205. Montone, C. M. *et al.* Untargeted analysis of contaminants in river water samples: Comparison between two different sorbents for solid-phase extraction followed by liquid chromatography-high-resolution mass spectrometry determination. *Microchem. J.* **172**, (2022).
- 206. Wang, Y. Q. *et al.* Suspect, non-target and target screening of pharmaceuticals and personal care products (PPCPs) in a drinking water system. *Sci. Total Environ.* **808**, 151866 (2022).
- 207. Creusot, N. *et al.* Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: A case study on antifungal azoles. *Environ. Int.* **139**, 105708 (2020).
- 208. Bletsou, A. A., Jeon, J., Hollender, J., Archontaki, E. & Thomaidis, N. S. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. *TrAC Trends Anal. Chem.* **66**, 32–44 (2015).
- 209. Schymanski, E. L. *et al.* Identifying small molecules via high resolution mass spectrometry: Communicating confidence. *Environ. Sci. Technol.* **48**, 2097–2098

(2014).

- 210. Beretsou, V. G. *et al.* Multiclass target analysis of contaminants of emerging concern including transformation products, soil bioavailability assessment and retrospective screening as tools to evaluate risks associated with reclaimed water reuse. *Sci. Total Environ.* **852**, 158391 (2022).
- 211. Nikolopoulou, V., Ajibola, A. S., Aalizadeh, R. & Thomaidis, N. S. Wide-scope target and suspect screening of emerging contaminants in sewage sludge from Nigerian WWTPs by UPLC-qToF-MS. *Sci. Total Environ.* **857**, 159529 (2023).
- 212. Hogenboom, A. C., van Leerdam, J. A. & de Voogt, P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. *J. Chromatogr. A* **1216**, 510–519 (2009).
- 213. Ibáñez, M., Sancho, J. V., Pozo, Ó. J., Niessen, W. & Hernández, F. Use of quadrupole time-of-flight mass spectrometry in the elucidation of unknown compounds present in environmental water. *Rapid Commun. Mass Spectrom.* **19**, 169–178 (2005).
- 214. Jeon, J., Kurth, D. & Hollender, J. Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry. *Chem. Res. Toxicol.* 26, 313– 324 (2013).
- 215. Kind, T. & Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. *BMC Bioinformatics* **8**, 1–20 (2007).
- 216. James, C. A. *et al.* The screening and prioritization of contaminants of emerging concern in the marine environment based on multiple biological response measures. *Sci. Total Environ.* **886**, (2023).
- 217. Kim, J., Seston, R., Mund, C., McNett, D. & Xu, S. Comment on "Optimization of suspect and non-target analytical methods using GC/TOF for prioritization of emerging contaminants in the Arctic environment". *Ecotoxicol. Environ. Saf.* 217, 112223 (2021).
- 218. Silverstein;, R. M.; F. X. W. D. J. K. Spectrometric identification of organic compounds. New York. John Wiley e Sons, INC. (2005).
- 219. Gasteiger, J. & Eds, T. E. Related Titles from WILEY-VCH Molecular Modeling Neural Networks in Chemistry and Drug Design 150 and More Basic. (2003).

- 220. Hann, M. & Green, R. Chemoinformatics: A new name for an old problem? *Curr. Opin. Chem. Biol.* **3**, 379–383 (1999).
- Willett, P. Chemoinformatics: A history. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 46–56 (2011).
- 222. Cohen, I. B. & Morison, S. E. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. *Some Early Tools Am. Sci.* 177–190 (2014) doi:10.4159/harvard.9780674368446.c10.
- 223. Futures, S. et al. Appendix F. SMILES Notation Tutorial. 2-5 (2012).
- 224. Heller, S., McNaught, A., Stein, S., Tchekhovskoi, D. & Pletnev, I. InChI The worldwide chemical structure identifier standard. *J. Cheminform.* **5**, 1 (2013).
- 225. Alves, V. M., Braga, R. C., Muratov, E. N. & Andrade, C. H. Cheminformatics: An introduction. *Quim. Nova* **41**, 202–212 (2018).
- 226. Duffus, J. H., Nordberg, M. & Templeton, D. M. Glossary of terms used in toxicology, 2nd edition (IUPAC recommendations 2007). *Pure Appl. Chem.* **79**, 1153–1344 (2007).
- 227. Myatt, G. J. *et al.* Implementation of in silico toxicology protocols within a visual and interactive hazard assessment platform. *Comput. Toxicol.* **21**, 100201 (2022).
- 228. Myatt, G. J. *et al.* In silico toxicology protocols. *Regul. Toxicol. Pharmacol.* **96**, 1–17 (2018).
- 229. Zwickl, C. M. *et al.* Principles and procedures for assessment of acute toxicity incorporating in silico methods. *Comput. Toxicol.* **24**, 100237 (2022).
- 230. Lim, S. J. & Fox, P. Estimating the persistence of organic contaminants in indirect potable reuse systems using quantitative structure activity relationship (QSAR). *Sci. Total Environ.* **433**, 1–7 (2012).
- 231. Samadi, A., Pour, A. K. & Jamieson, R. Development of remediation technologies for organic contaminants informed by QSAR/QSPR models. *Environ. Adv.* 5, 100112 (2021).
- 232. Villaverde, J. J., Sevilla-Morán, B., López-Goti, C., Alonso-Prados, J. L. & Sandín-España, P. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. *Sci. Total Environ.* 634, 1530–1539 (2018).
- 233. European Commission Environment Directorate General. Guidance Document on the Validation of (Quantitative)Structure-Activity Relationships [(Q)Sar] Models. 1–154 (2014).

- 234. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, A. & pour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, W. M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res . (2017) doi:10.1093/nar/gkx1037.
- 235. Wicker, J. *et al.* enviPath The environmental contaminant biotransformation pathway resource. *Nucleic Acids Res.* **44**, D502–D508 (2016).
- 236. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Sapateiro, BA, Thiessen, PA, Yu, B., Zaslavsky, L., Zhang, J. e Bolton, E. Atualização PubChem 2023. Ácidos Nucleicos, metabolitos Res., 51 (D1), D1373–D1380. (2023) doi:https://doi.org/10.1093/nar/gkac956.
- 237. Chemistry., R. S. of. ChemSpider: Search and Share Chemistry. http://www.chemspider.com/AboutUs.aspx. Acessado em Outubro de (2023).
- 238. Gmbh, B. D. Mnaual software TASQ. (2019).
- 239. Association, N. Mass Bank: High Quality Mass Spectral Data Base. https://massbank.eu/MassBank/About (2023) doi:10.5281/zenodo.8308157.
- 240. Chemistry, I. of, Sciences, S. A. of & Bratislava, S. m/z cloud: Advanced Mass Spectral DataBase. https://www.mzcloud.org/. Acessado em Outubro de (2022).
- 241. Wishart DS, Guo AC, Oler E, et al. HMDB 5.0: o banco de dados do metabolismo humano para 2022. Nucleic Acids Res. (2002) doi:;50(D1):D622–31. 34986597.
- 242. Djoumbou-Feunang Y, Pon A, Karu N, Zheng J, Li C, Arndt D, Gautam M, A. F. e W. D. CFM-ID 3.0. Predição ESI-MS/MS e identificação de compostos significativamente melhoradas. Metabólitos. (2019) doi:9(4):72.
- 243. Santana Veras Moita, A. L., Narina Dos Santos, F. & Salete Vaceli Quintilio, M. Estudo comparativo entre os analgésicos MIP mais vendidos: dipirona sódica, paracetamol e acido acetilsalicilico. *Rev. JRG Estud. Acadêmicos* 5, 443–454 (2022).
- 244. Monteiro, C. N., Lima, M. G., Szwarcwald, C. L., Bastos, T. F. & Barros, M. B. de A. Use of antihypertensive and antidiabetic medications in Brazil: An analysis of socioeconomic differences. national health survey, 2013. *Rev. Bras. Epidemiol.* 22, (2019).
- 245. Moinho, J. G. Mill JG. Differences among Angiotensin Receptor Blockers (BRA) in the Treatment of Arterial Hypertension. *Arq Bras Cardiol* (2022) doi:10.36660/abc.20220281.

- 246. Terry Roberts. *Metabolomic Pathways of Agrochemiacals Part II.: Regulators*, *Plant Growth*. Cambridge. The Royal society of chemistry. (1998)
- 247. Arsand, J. B. Avaliação ambiental da presença de contaminantes emergentes em água de rio utilizando espectrometria de massa. 171 (2019).
- 248. Terry Roberts; David Hutson. *Methanolic Pathways of agrochemicals: Part I: Inseticides and fungicides*. Cambridge.The Royal society of chemistry. (1999).
- 249. Abass K, Reponen P, Anyanwu B, P. O. Inter-species differences between humans and other mammals in the in vitro metabolism of carbofuran and the role of human CYP enzymes. *Env. Toxicol Pharmacol.* (2023) doi:10.1016/j.etap.2023.104243.
- 250. Vorce, S. Espectrometria de massa. In: Levine, BS, KERRIGAN, S. (eds) Princípios de Toxicologia Forense. in (2020). doi:https://doi.org/10.1007/978-3-030-42917-1_14.
- 251. Daltonics, B. *TargetAnalysis 1.3 User Manual Bruker Daltonics*. www.bdal.de (2012).
- 252. Schymanski, E. L. *et al.* Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis. *Anal. Bioanal. Chem.* **407**, 6237–6255 (2015).
- 253. Segalin, J. Utilização da Espectrometria de Massas no Estudo de Produtos de Transformação/Degradação de Fármacos de uso Humano e Veterinário . Tese de Doutorado. 39–45 (2015).

8 Apêndices

Tabela I – Método utilizado no software TASQ (base de dados) na primeira triagem dos compostos contendo nome do composto e fórmula (NC = 4)

Nome	Fórmula
Sulfametoxazol	C10H11N3O3S
N-acetilsulfametoxazol	C12H13N3O4S
5-Hidroxisulfametoxazol	C10H11N3O4S
Sulfmetoxazol N-glucoronideo	C16H19N3O10S
N4-Acetil-5-OH-sulfametoxazol	C12H13N3O5S
4-hidroxilaminasulfametoxazol	C10H11N3O4S
Sulfametoxazolnitroso	C10H9N3O4S
Sulfametoxazol GSH conjugado	C20H26N6O10S3
TP1 - SMX	C4H9N2O3
TP2 - SMX	C6H8NO3S
TP3 - SMX	C6H8NO4S
TP4 - SMX	C7H10N3O3S
TP5 - SMX	C7H10N3O4S
TP6 - SMX	C6H6NO2S
TP7 - SMX	C7H10N3O3S
TP8 - SMX	C10H12N3O4S
TP9 - SMX	C10H12N3O3S
TP10 - SMX	C10H12N3O4S
Sulfassalazina	C18H14N4O5S
Sulfapiridina	C11H11N3O2S
Ácido 5-aminosalicilico	C7H7NO3
Desamino-SPY	C11H10N2O2S
N4-methyl-SPY	C12H13N3O2S
Methyl-SPY (R group)	C12H13N3O2S
Formyl-SPY	C12H11N3O3S
N4-hydroxy-SPY	C11H11N3O3S
Chlorinated-SPY	C11H10ClN3O2S
N 4 -acetilsulfapiridina	C13H13N3O2S

Sulfatiazol	C9H9N3O2S2
N 4 -acetilsulfatiazol	C11H11N3O3S2
Sulfametazina	C12H14N4O2S
N 4 -acetilsulfametazina	C14H16N4O3S
Sulfadiazina	C10H10N4O2S
Desamino-SDZ	C10H9N3O2S
N4-methyl-SDZ	C11H12N4O2S
Formyl-SDZ	C11H10N4O3S
N4-Acetilsulfadiazina	C12H12N4O3S
4-hidroxisulfadiazina	C10H10N4O3S
Sulfanilamida	C6H8N2O2S
N4-acetil-N1-dietilsulfanilamida	C12H18N2O3S
Sulfaquinoxalina	C14H12N4O2S
N4-Acetil-Sulfaquinoxalina	C16H14N4O3S
Hidroxisulfaquinoxalina	C14H12N4O3S
N4-Acetil-hidroxisulfaquinoxalina	C16H14N4O4S
Trimetoprim (TMP)	C14H18N4O3
3-NO-TMP	C14H18N4O4
1-NO-TMP	C14H18N4O4
3-desmetil-TMP	C13H16N4O3
4-desmetil-TMP	C13H16N4O3
Сα-ОН-ТМР	C14H18N4O4
Cα-NAC-TMP	C19H26N5O6S
Albendazol	C 12 H 15 N 3 O 2 S
albendazole sulfone	C12H15N3O4S
albendazole sulfoxide	C12H15N3O3S
Azitromicina	C38H72N2O12
TP734-A	C37H70N2O10
TP734-B	C37H70N2O10
TP720-A	C36H68N2O12
TP720-B	C36H68N2O12
TP591	C30H57NO10
TP590	C30H58N2O9

TP433	C22H43NO7
Amoxiciclina	C16H19N3O5S
Amoxiciclina Metabólito M1 Amox	C16H19N3O6S
Amoxiciclina Metabolito M2 Amox	C17H20N2O5S
Amoxiciclina Metabólito M3 Amox	C16H19N3O6S
Amoxiciclina Metabólito M4 Amox	C16H17N3O6S
Amoxiciclina Metabólito M5 Amox	C16H17N3O7S
Amoxiciclina Metabólito M6 Amox	C15H19N3O3S
Amoxiciclina Metabólito M7 Amox	C22H27N3O11S
AMX desaminado	C16H17N2O5S
Amoxicilina ácido penilóico	C15H22N3O4S
Dicetopiperazina amoxicilina	C16H20N3O5S
Amoxicilina ácido penicilóico	C16H22N3O6S
Éster metílico do ácido amoxiciloico	C17H23N3O6S
4-hidroxifenilglicil amoxicilina	C24H27N4O7S
AMX-S-óxido	C16H20N36S
ácido tiazolidinocarboxílico	C6H10NO2S
4-hidroxifenilglicina	C8H9NO3
ácido 6-aminopenicilânico	C8H12N2O3S
N -pivaloil-4-hidroxifenilglicina	C13H17NO4
PP-2-OH-3-(4-OH) fenilpirazina	C10H8N2O2
Dissulfeto de penicilamina	C10H21N2O4S2
Ácido L -5,5-dimetiltiazolidin-4-carbônico	C6H12NO2S
2-({(E)-[5-(4-hidroxi-fenil)-3,6-dioxo-3,6-di-hidropirazin-	C16H18N3O5
2(1H)-ilideno]metil}amino)-3-metil-3-sulfanilbutanóico ácido	
Ácido 2-[Amino(carboxi)-metil]-5,5-dimetil-1,3-tiazolidina-4-	C8H15N2O4S
carboxílico	
Ácido penilóico AMX desidrocarboxilado	C14H19N3O2NaS
2-Amino-2-(4-hidroxifenil)-N-{(Z)-[3-(4-hidroxifenil)-2-oxo-	C20H21N4O4
2,3,6,7-tetrahidro-1H-1,4-diazepin-5-il]metilideno}-acetamida	
Amoxicilina peniciloaldeído	C10H12N2O3
Amoxicilina ácido penal	C11H12N2O5S
Produto de fotólise III	C15H20N3O5S

Produto de fotólise V	C16H22N3O7S
Produto de fotólise VI	C16H19N2O7S
Produto de fotólise VII	C14H20N3O3S
Produto de fotólise VIII	C8H11N2O4S
Produto de fotólise IX	C16H18N3O9S
Produto de fotólise X	C6H10NO3S
Produto de fotólise XI	C14H20N3O2S
Produto de fotólise XII	C16H18N3O8S
Fenoximetilpenicilina (Pen V)	C16H18N2O5S
Ácido-6-Aminopenicilanico Pen V	C8H12N2O3S
Ácido Penicilóico Pen V	C16H20N2O5S
Benzilpenicilina (Pen G)	C16H18N2O4S
Ácido-6-Aminopenicilanico Pen G	C8H12N2O3S
Ácido Penicilóico Pen G	C16H20N2O5S
Cefepime	C19H24N6O5S2
Nicotina	C10H14N2
NMP-N-Óxido (N-Óxido de Nicotinamida)	C6H6N2O2
Cefotaxima	C16H17N5O7S2
Desacetil-cefatoxima	C14H15N5O6S2
Claritromicina	C38H69NO13
14-hidroxiclaritromicina	C38H69NO14
N-desmetilclaritromicina	C37H67NO13
Eritromicina	C37H67NO13
N-desmetileritromicina	C36H69NO11
Linezolida	C16H20FN3O4
Ácido-aminoetoxiacético	C4H8NO3
Hidroexietilglicina	C4H9NO3
Clindamicina	C18H33CIN2O5S
Sulfóxido de Clindamicina	C18H33CIN2O6S
N-desmetilclindamicina	C17H31CIN2O5S
Ampilicilina	C16H19N3O4S
AMP desaminado	C16H17N2O4S
AMP ácido penicilóico	C16H22N3O5S

AMP ácido penilóico	C15H22N3O3S
AMP dicetopiperazinas	C16H20N3O4S
Éster metílico do ácido ampicilóico	C17H22N3O6S
(Z)-2-amino- N -((2-oxo-3-fenil-2,3,6,7-tetrahidro-1H-1,4-	C20H21N4O2
diazepin-5-il)metileno)-2-fenilacetamida	
Ácido 2-(1-(2-Amino-2-fenilacetamido)-2-	C24H27N4O6S
((carboxi(fenil)metil)amino)-2-oxoetil-5,5,-dimetil-4,5-	
dihidrotiazol-4-carboxílico	
3-Fenirazina-2-ol	C10H9N2O
Dímero fechado de ampicilina	C32H39N6O8S2
ácido (E)-2-(((3,6-dioxo-5-fenil-1,6-di-hidropirazin-2(3H)-	C16H18N3O4S
ilideno) metil)amino)-3-mercapto-3-metilbutanóico	
Ácido 5-(Amino(fenil)metil)-7-formil-2,2-dimetil-2,3-	C16H18N3O3S
dihidroimidazo [5,1-b]tiazol-3-carboxílico	
Dímero de ampicilina de ciclo aberto	C32H41N6O9S2
Trímero de ampicilina de ciclo aberto	C48H60N9O13S3
Trímero fechado de ampicilina	C48H58N9O12S3
D -fenilglicilampicilina	C24H27N4O5S
Dímero de ampicilina de ciclo aberto de descarboxilação	C31H41N6O7S2
Oxacilina	C19H19N3O5S
2-(carboxy{[(5-methyl-3-phenylisoxazol-4-	C19H21N3O6S
yl)carbonyl]amino}methyl)-5,5-dimethyl-1,3-thiazolidine-4-	
carboxylic acid	
Tetraciclina	22 H 24 N 2 O 8
TP430	C21H23N2O8
TP399	C20H18NO 8
Piperacilina	C23H27N5O7S
Desethylpiperacillin	C21H23N5O7S
Cefataxima	C16H17N5O7S2
Desacetyl-cefotaxime	C14H15N5O6S2
M2 Cefa	C14H15N5O5S2
Meropenem	C17H25N3O5S
M1 Merop	C17H27N3O6S

Cefuroxima	C16H16N4O8S
Ácido acético	C2H4O2
Acetaldeido	C2H4O
Fluorocitosina	C4H4FN3O
Itraconazol	C35H38Cl2N8O4
hydroxy-itraconazole	C35H38Cl2N8O5
Keto-itraconazole	C35H36Cl2N8O5
N-Desalkyl-itraconazole	C31H30Cl2N8O4
Metronidazol	C6H9N3O3
2-hidroximetronidazol	C6H9N3O4
Cloroquina	C18H26ClN3
R-Cloroquina-N-desetil	C16H22CIN3
N-bidesetilcloroquina	C14H18ClN3
7-cloro-4-aminoquinolina	C9H7CIN2
Hidroxicloroquina	C 18 H 26 CIN 3 O
Desetilcloroquina	C16H22ClN3
Desetil-hidroxicloroquina	C16H22ClN3O
Bidesetilcloroquina	C14H18ClN3
Voriconazol	C16H14F3N5O
N-óxido-voriconazol	C16H14F3N5O2
UK-51.060	C10H7F2N3O
UK-215.364	C10H9F2N3O
Derivado O-Glucoronideo voriconazol	C16H18FN3O8
4-hidroxivoriconazol	C16H14F3N5O2
4-hidroxivoriconazol-4-O-glurocornideo	C22H22F3N5O8
Hidroximetil-Voriconazol	C16H14F3N5O2
N-oxido-voriconazol	C16H14F3N5O2
Etionamida	C8H10N2S
Sulfóxido de Etianomida	C8H10N2OS
5-hidroxi-Pirazinamida	C5H5N3O2
Ethionamide sulphoxide	C8H10N2OS
Pirazinamida	C5H5N3O
5-hydroxypyrazinamide	C5H5N3O2

Aciclovir	C8H11N5O3
9-carboximetoximetilguanina	C8H9N5O4
8-hidroxi-aciclovir	C8H11N5O3
Oseltamivir	C16H28N2O4
Oseltamivir Carboxilase	C14H24N2O4
Didanosina	C10H12N4O3
Hipoxantina	C5H4N4O
Dolutegravir	C20H19F2N3O5
M1 Dolu	C13H15N3O5
M2 Dolu	C26H27F2N3O11
M3 Dolu	C20H19F2N3O6
M4.1 Dolu	C23H25FN4O8S
M4.2 Dolu	C23H25FN4O8S
Efavirenz	C14H9C1F3NO2
8-OH-efavirenz	C14H9CIF3NO3
Indinavir	C36H47N5O4
Metabólito M6 Ind	C30H42N4O4
Remdesevir	C 27 H 35 N 6 O 8 P
Remdesivir Alanina Metabólito (Ala-Met; GS-704277	C15H17N6O8P
Remdesivir carboxylate	C21H22N6O8P
Remdesivir cyclic anhydride	C15H17N6O7P
Remdesivir Alanine Metabolite (Ala-Met; GS-704277)	C15H17N6O8P
Remdesivir Nucleoside Monophosphate	C12H12N5O7P
Remdesivir Nucleoside Triphosphate	C12H12N5O13P3
GS-441524	C12H13N5O4
Lamivudina	C8H11N3O3S
Lamivudina Sulfóxido	C8H11N3O4S
Lamivudina-monofostato	C8H12N3O6PS
Lamivudina-trifosfato	C8H14N3O12P3S
Lopinavir	C37H48N4O5
Lopinavir M2	C37H48N4O6
Lopinavir M3/M4	C37H48N4O6
Lopinavir M1	C37H46N4O6

Nevirapina	C15H14N4O
•	
12-Hidroxinevirapina	C15H14N4O2
12-Hidroxinevirapina-Glucoronideo	C21H22N4O8
4-carboxinevirapina	C15H12N4O3
2-Hidroxinevirapina	C15H14N4O2
8-Hidroxinevirapina	C15H14N4O2
8-Hidroxinevirapina-glucoronideo	C21H22N4O8
3-Hidroxinevirapina	C15H14N4O2
3-Hidroxinevirapina-glucoronideo	C21H22N4O8
Ritonavir	C37H48N6O5S2
N-desmetil-ritonavir	C36H46N6O5S2
Hidroxiritonavir	C37H48N6O6S2
Metabólito M1	C32H45N5O3S
Metabólito M11	C30H39N5O5S
Saquinavir	C38H50N6O5
Metabólito M2 Di-hidroxilado	C24H28FN3O3
(2S)-N-[(2S,3R)-4- [1]	C38H50N6O6
(2S)-N-[(2S,3R)-4- [2]	C38H50N6O6
(2S)-N-[(2S,3R)-4- [3]	C38H50N6O6
Tenofovir	C9H14N5O4P
Monofosfato de Tonofovir	C9H15N5O7P2
Difosfato de Tenofovir	C9H16N5O10P3
Entricitabina	C 8 H 10 FN 3 O 3 S
Emtricitabine 3'-sulfoxide (M-III)	C8H10FN3O4S
Emtricitabine 3'-sulfoxide (M-IV)	C8H10FN3O4S
Emtricitabine O-glucuronide (M-II)	C14H20FN3O9S
5-fluorocytosine	C4H4FN3O
3'-azido-3'-deoxy-5'- O-beta-D-glucopyranuronosylthymidine	C16H21N5O10
3'-amino-3'-deoxythimidine	C10H13N3O3
3'-amino-3'-deoxythimidine glucuronide	C16H23N3O10
Abacavir	C14H18N6O
5'-carboxylic acid	C21H18O12
5'-glucuronide	C9H7NO2

Atazanavir	C38H52N6O7
M1 Ata	C26H44O7N5
M2 Ata	C36H51O5N6
M3 Ata	C36H51O5N7
M4 Ata	C38H53O8N6
M5 Ata	C38H51O8N6
Darunavir	C27H37N3O7S
M1 Dar	C20H29N3O3S
M2 Dar	C11H16N2O2S
M3 Dar	C6H5NO2S
M4 Dar	C6H8O2
M5 Dar	C14H19N
Zidovudina	C10H13N5O4
3'-Amino-3'-deoxythymidine	C10H15N3O4
3'-Azido-3'-deoxy-5'-O-beta-D-glucopyranuronosylthymidine	C16H21N5O10
Tenofovir Diphosphate	C9H16N5O10P3
Raltegravir	C20H21FN6O5
Raltegravir Glucuronide	C26H24FN6O11
Maraviroque	C29H41F2N5O
Maraviroque + O	C29H40F2N5O2
Fosamprenavir	C25H36N3O9PS
M2 Fos	C25H35N3O7S
M3 Fos	C25H34N3O7S
Amprenavir	C25H35N3O6S
M1 Amp	C25H35N3O7S
M2 Amp	C25H34N3O7S
Ribavarina	C8H12N4O5
P1 - RBV	C8H10N4O5
P2 - RBV	C8H10N4O4
P3 - RBV	C5H10O4
P4 - RBV	C5H8O4
P5 - RBV	C3H4N4O
P6 - RBV	С3Н6О3

P7 - RBV	C3H2N4
P8 - RBV	C6H8N4O4
P9 - RBV	C4H5N3O2
Ofloxacin	C18H20FN3O4
Desmethyl Ofloxaxin	C17H18FN3O4
Ofloxaxin N-oxide	C18H20FN3O5
Norfloxaxin	C16H19FN3O3
M1 Norf	C16H18FN3O4
M2 Norf	C14H18FN3O3
M3 Norf	C16H20FN3O4
M4A Norf	C18H22FN3O4
M4B Norf	C17H20FN3O4
M5 Norf	C12H13FN2O3
TP1NFOX	C16H19N3O6
TP2NFOX	C16H17N3O5
TP3NFOX	C16H17N3O4
TP4NFOX	C16H19N3O4
TP5NFOX	C15H17N3O4
TP6NFOX	C14H17N3O3
TP7NFOX	C16H19N3O3
TP8NFOX	C14H16N3O3F
TP9NFOX	C16H19N3O5
TP10NFOX	C16H18N3O4F
TP11NFOX	C16H17N3O5
TP12NFOX	C12H12N2O 3
TP13NFOX	C16H18 N 3 O 4 F
TP14NFOX	C16H17N3O4
TP15NFOX	C12H11N2O3F
Moxifloxaxin	C21H24FN3O4
M1 (sulfate conjugate)	C21H24FN3O7S
M2 (glucuronide conjugate)	C27H32FN3O10
Ciprofloxaxin	C17H18FN3O3
Formylciprofloxacin	C18H18FN3O4

Oxociprofloxacin	C17H16FN3O4
Sulfociprofloxacin	C17H18FN3O6S
TP1CFX	C17H19N3O6
TP2CFX	C9H11NO2
TP3CFX	C17H19N3O4
TP4CFX	C15H17N3O3
TP5CFX	C15H16N3O3F
TP6CFX	C17H19N3O5
TP7CFX	C16H18N3O3F
TP8CFX	C17H18N3O4F
TP9CFX	C16H17N3O4
TP10CFX	C13H12N2O3
TP11CFX	C17H18N3O4F
TP12CFX	C16H16N3O4F
TP13CFX	C14H10N3O3F
TP14CFX	C13H11N2O3F
TP15CFX	C17H18N3O4F
Ivermectina	C95H146O28
3"-o-Desmethyl-ivermectin B1a	C47H72O14
3"-o-Desmethyl-ivermectin B1b	C46H70O14
Buprenorfina	C29H41NO4
Norbuprenorfina	C25H35NO4
Hidroxinorbuprenorfina	C26H39NO5
Hidroxibuprenorfina	C30H45NO5
Brupenorfina Glicoronídeo	C35H50NO11
Clonazepam	C15H10ClN3O3
7-amino-clonazepam	C15H12CIN3O
3-hidroxi-amino-clonazepam	C15H12ClN3O2
7-acetamido-clonazepam	C17H14ClN3O2
3-hidrox-7-acetmido-clonazepam	C17H14ClN3O3
Glucoronil-3-hidroxi-clonazepam	C21H18CIN3O10
3-hidroxiclonazepam	C15H10ClN3O4
Diazepam	C 16 H 13 CIN 2 O

Nordazepam	C15H11ClN2O
Nordiazepam O-glucuronide	C21H21ClN2O7
Oxazepam	C15H11ClN2O2
Temazepam	C16H13ClN2O2
Desmetildiazepam	C15H11CIN2O
Dietilamida do ácido lisérgico (LSD)	C20H25N3O
2-Oxo-3-hydroxy-lysergide	C20H25N3O3
Metanfetamina	C10H15N
Norefedrina	C9H13NO
4-hidroxi-anfetamina	C9H13NO
4-hidroxi-metanfetamina	C10H15NO
4-hidroxi-nofenedrina	C9H13NO2
2,5-dimetoxianfetamina (2,5 -DMA)	C11H17NO2
Dextroanfetamina	C9H13N
Midometanfetamina (MDMA)	C11H15NO2
4-Hydroxy-3-methoxyamphetamine Hydrochloride	C10H16ClNO2
4-Hydroxy-3-methoxymethamphetamine (HMMA)	C11H17NO2
3,4-Dihydroxymethamphetamine	C10H15NO2
Codeína	C18H21NO3
Codeína-6-glucoronídeo	C24H29NO9
Morfina	C17H19NO3
Glucoronídeo de Morfina	C23H27NO9
Morfina-3-Glucoronídeo	C26H39NO9
Normorfina	C16H17NO3
Sulfato Etéro de Morfina	C17H17NO9S2
Diamorfina (heroína)	C21H23NO5
6-monoacetilmorfina	C19H21NO4
Cafeína	C8H10N4O2
Teobromina	C7H8N4O2
Teofilina	C7H8N4O2
1-Metilxantina	C6H6N4O2
Ácido-1-Metilúrico	C6H6N4O3
Ácido-1,3,7-trimetilúrico	C8H10N4O3

Paraxntina	C7H8N4O2
Ácido-1,7-dimetilúrico	C7H8N4O3
5-acetilamino-6-formilamino-3-metiluracil	C8H10N4O4
P1-CAF	C8H10N4O5
P2-CAF	C8H8N4O4
P3-CAF	C7H10N4O3
P4-CAF	C5H8N2O3
P5-CAF	C6H8N3O4
P6-CAF	C8H10N4O4
Cocaína	C17H21NO4
Norcocaina	C16H19NO4
Benzolecgonina	C16H19NO4
Cocaetileno	C18H23NO4
AEME: éster metílico de anidroecgonina	C 10 H 15 NO 2
ECG: ecgonina	C 9 H 15 NO 3
EME: éster metílico de ecgonina	C 10 H 17 NO 3
OH-BE: hidroxibenzoilecgonina	C 16 H 19 NO 5
H-COC: hidroxicocaína	C 17 H 21 NO 5
Metadona	C21H27NO
2-Etil-1,5-dimetil-3,3-difenilpirrolínio (EDDP)	C20H23N
2-Etil-5-metil-3,3-difenil-1-pirrolina (EMDP)	C19H21N
Tramadol	C16H25NO2
O-desmetiltramadol	C15H23NO2
O-desmetiltramadol-glucoronideo	C21H31NO8
N,O-desmetiltramadol	C14H21NO2
N-desmetiltramadol	C15H23NO2
N,N,O-tridesmetil-tramadol	C13H19NO2
N,N-disdemetil-tramadol	C13H23NO
Tetrahidrocanabinol (THC)	C 21 H 30 O 2
11-hidroxi-delta-9-THC	C21H30O3
8,11-dihidroxi-delta-9-THC	C21H30O4
11-nor-9-carboxi-delta-9-THC (THCCOOH)	C21H28O4
P1a	C21H27ClO4

P1b	C21H27ClO4
P2	C21H26C12O4
P3	C21H26ClBrO4
P4	C21H25Cl3O4
P5	C21H26O5
P6	C21H27ClO5
P7	C21H25ClO5
7-beta-hidroxi-delta-9-THC	C21H30O3
7-alfa-hidroxi-delta-9-THC	C21H30O4
8-hidroxi-delta-9-THC	C21H30O3
9-alpha,10-alfa-epoxihexahidrocarbinol	C21H30O3
11-OH-delta-THC	C21H30O4
7-OH-delta-9-THC	C21H30O3
8-alfa-OH-delta-9-THC	C21H30O4
Atenolol	C14H22N2O3
M1 (Atenolol)	C14H22N2O4
Atenolol GLUCORONIDEO Conjugado	C20H30N2O9
AAC	C14H21NO4
A1	C13H19NO4
A2	C11H15NO4
Propanolol	C16H21NO2
N-desisopropilpropanolol	C13H15NO2
4-hidroxipropanolol	C16H21NO3
Propanolol Glucoronideo	C22H29NO8
Ácido-α-Naftoxilatico	C13H12O4
Metoprolol	C15H25NO3
Alfa-hidroximetoprolol	C15H25NO4
O-demetilmetoprolol	C14H23NO3
MAC	C14H21NO4
Deisopropilmetoprolol	C12H19NO3
Captopril	C9H15NO3S
Captopril-Cysteine Disulfide	C12H20N2O5S2
Enalapril	C20H28N2O5

Enalaprilat	C18H24N2O5
Losartano	C22H23CIN6O
E-3179	C22H21CIN6O
E-3174	C22H21CIN6O2
Losartan N2-glucuronide	C28H31CIN6O7
Irbesartan	C25H28N6O
SR 49498	C25H30N6O2
Irbesartan derivado M4	C25H28N6O2
Irbesartan derivado M1	C25H28N6O3
Irbesartan derivado M2	C25H26N6O3
Irbesartan derivado M6	C25H26N6O2
Irbesartan derivado M5	C25H28N6O2
Irbesartan derivado M7	C25H28N6O2
Irbesartan derivado M3	C25H26N6O3
Irbesartan derivado M8	C31H37N6O7
Valsartan	C24H29N5O3
Valeril-4-hidroxi-valsartan	C24H29N5O4
Dobutamina	C18H23NO3
3-O-Methyldobutamine	C19H25NO3
Dopamina	C8H11NO2
6-Hydroxydopamine	C8H11NO3
Dopamine 4-Sulfate	C8H11NO5S
Dopamine 3-O-sulfate	C8H11NO5S
Dopamine Glucuronide	C14H19NO8
Dopamine Quinone	C8H9NO2
Carazolol	C18H22N2O2
Dipirona (Metamizol)	C13H16N3O4S
4-metil-amino-antipirina (4-MAA)	C12H15N3O
P1 - 4-MAA	C6H5N2
P2 - 4-MAA	C11H15N2O3
P3 - 4-MAA	C11H13N2O3
P4 - 4-MAA	C8H11N2O
P5 - 4-MAA	C10H12NO4

P6 - 4-MAA	C10H10NO 3
P7 - 4-MAA	C12H16N3O3
P8 - 4-MAA	C8H10NO
P9 - 4-MAA	C11H13N2O2
P10 - 4-MAA	C9H13N2O
P11 - 4-MAA	C11H13N2O
4-amino-antipirina	C11H13N3O
4-formil-amino-antipirina	C12H13N3O2
4-acetil-amino-antipirina	C13H15N3O2
DBP 1	C12H15N3O3
DBP 2	C11H12N2O3
DBP 3	C9H12N2O
DBP 4	C9H12N2O
Naproxeno	C14H14O3
O-desmertil Naproxeno	C15H16O3
Carbamazepina	C 15 H 12 N 2 O
10,11-Epoxycarbamazepine	C15H12N2O2
10,11-Dihydroxycarbamazepine	C15H14N2O3
3-hydroxycarbamazepine	C15H12N2O2
2,3-Dihydroxycarbamazepine	C15H12N2O3
Carbamazepine-o-quinione	C15H12N2O3
Carbamazepine 2,3-epoxide	C15H12N2O2
2-hydroxycarbamazepine	C15H12N2O2
2-hydroxyiminostilbene	C14H11NO
Iminoquinone	C15H12N2O3
EPC	C15H12N2O2
OXC	C15H12N2O2
DHC	C15H14N2O
RTC	C15H14N2O3
C1	C13H9NO
C2	C14H9NO2
C3	C15H10N2O3
Paracetamol	C8H9NO2

NAPQI (I)	C8H7NO2
Acetaminophen cystein (I-I)	C11H14N2O3S
Acetaminophen glucuronide	C14H17NO8
Acetaminophen sulfate	C8H9NO5S
I – Hidroquinona	С6Н6О2
Produto II	C8H9NO3
Produto III	C8H9NO5
Diclofenaco	C14H11Cl2NO2
3'-Hydroxydiclofenac	C14H11Cl2NO3
4'-Hydroxydiclofenac	C14H11Cl2NO3
5'-Hydroxydiclofenac	C14H11Cl2NO3
4,5-dihidroxidiclofenaco	C14H12Cl2NO4
Cetoprofeno	C16H14O3
Ketoprofen glucuronide	C22H22O9
Ibuprofeno	C13H18O2
3-Hydroxyibuprofen (I)	C13H18O3
Carboxy-ibuprofen (I-I)	C13H16O4
Ibuprofen glucuronide	C19H26O8
2-Hydroxyibuprofen	C13H18O3
1-Hydroxyibuprofen	C13H18O3
Indometacina	C19H16ClNO4
N-Deschlorobenzoyl indomethacin (I)	C12H13NO3
O-Desmethyl-N-deschlorobenzoyl indomethacin (I-I)	C11H11NO3
O-Desmethylindomethacin	C18H14CINO4
Indomethacin acyl glucuronide	C25H24ClNO10
Piroxicam	C15H13N3O4S
5'-Hydroxypiroxicam	C15H13N3O5S
Lidocaina	C14H22N2O
3-hidroxilidocaina	C14H22N2O2
3-Hidroximonoetilglicinalidida	C12H18N2O2
Monoetilglicinalidida	C12H18N2O
2,6-Dimetilanilina	C8H11N
GX (Glicinaxilidida)	C10H14N2O

2-Amino-3-Metilbenzoato	C8H9NO2
4-hidroxi-2,6-metilanilina	C8H11NO
2- amino-3-metilbenzoato	C8H9NO2
4-HIDROXI-2,6-dimetilanilina	C8H11NO
Propofol	C12H18O
4-hidroxi-propofol	C12H18O2
1-quinol-glucoronideo	C18H26O8
1-quinol-sulfato	C12H18O5S
Letrozol	C17H11N5
Análogo Letrozol Cetona	C15H8N2O
4-4-Metanol-bisbenzonitrila	C15H10N2O
Letrozol Carbinol glucoronídeo	C21H18N2O7
Anagrelida	C10H7Cl2N3O
2-amino-5,6-dichloro-3,4,-dihydroquinazoline	C8H7Cl2N3
6,7-dichloro-3-hydroxy-1,5 dihydro-imidazo[2,1-b]quinazolin-2-	C10H7Cl2N3O2
one	
Anastrozol	C17H19N5
Anastrozole glucuronide	C23H29N5O7
Hydroxyanastrozole	C17H19N5O
Hydroxyanastrozole glucuronide	C23H27N5O7
Triazole	C2H3N3
3,5-Bis-(2-methylpropiononitrile)-benzoic acid	C15H16N2O2
Azatioprina	C9H7N7O2S
6-Mercaptopurine	C5H4N4S
6-thiouric acid	C5H4N4O2S
6-methylmercaptopurine	C6H8N4S
6-Thiosine 5'-monophosphate	C10H13N4O8PS
6-methylthiosine 5'-monophosphate	C11H15N4O8PS
6-thioinosine triphosphate	C10H15N4O13P3S
6-methylthioinosine triphosphate	C11H17N4O13P3S
6-thioxanthylic acid	C10H13N4O8PS
6-thioguanine monophosphate	C10H14N5O7PS
Thioguanine diphosphate	C10H15N5O10P2S

Thioguanine triphosphate	C10H16N5O13P3S
Bicalutamida	C18H14F4N2O4S
(S)-Bicalutamide glucuronide	C24H22F4N2O10S
(R)-Hydroxybicalutamide	C18H14F4N2O5S
(R)-Hydroxybicalutamide glucuronide	C24H21F4N2O11S
Bussulfano	C6H14O6S2
Methanesulfonic acid	CH4O3S
Capecitabina	C15H22FN3O6
5'-Deoxy-5-fluorouridine	C9H11FN2O5
5-fluorouracil	C4H3FN2O2
Ciclosporina	C62H111N11O12
AM1	C62H111N11O13
AM1c	C62H111N11O13
AM4N	C61H109N11O12
AM9	C62H111N11O13
AM1c9	C62H111N11O14
Dasatinibe	C22H26CIN7O2S
M4 Desa	C20H22CIN7OS
M5 Desa	C22H26CIN7O3S
M6 Desa	C22H24ClN7O3S
M20 Desa	C22H26CIN7O3S
M24 Desa	C22H26CIN7O3S
M9 Desa	C22H24CIN7O2S
Doxorrubicina	C27H29NO11
Doxorubicinol	C27H31NO11
Doxorubicin-semiquinone	C27H31NO11
Doxorubicinol deoxaglycone	C21H20O8
Doxorubicine hydroxyaglycone	C21H18O9
Doxirubicinol hydroxyaglycone	C21H20O9
Imatinibe	C29H31N7O
N-Desmethylimatinib	C28H29N7O
AFN911	C29H33N7O2
CGP71422	C29H32N7O2

CGP72383	C29H32N7O2
N-demethylated piperazine	C28H29N7O
Nilotinibe	C28H22F3N7O
Nilotinib n-oxide	C28H22F3N7O2
Nilotinib carboxylic acid	C28H20F3N7O3
Tamoxifeno	C26H29NO
N-Desmethyltamoxifen	C25H27NO
N-desmethyltamoxifen Sulfate	C25H26NO4S
Endoxifen	C25H27NO2
4-endoxifen Sulfate	C25H26NO5S
4-hydroxytamoxifen sulfate	C26H29NO5S
Norendoxifen	C24H25NO2
N,N-didesmethyltamoxifen	C24H25NO
Tamoxifen Metabolite Y	C24H24O2
Tamoxifen Metabolite E	C22H20O
Tamoxifen Metabolite E Glucuronide	C28H28O7
Tamoxifen Metabolite E Sulfate Conjugate	C22H19O4S
α-hydroxytamoxifen	C26H29NO2
α-hydroxytamoxifen Glucuronide	C32H37NO8
α-tamoxifen Sulfate	C26H28NO5S
Tamoxifen N-oxide	C26H29NO2
4-Hydroxytamoxifen	C26H29NO2
Tamoxifen Glucuronides	C31H35NO8
4-endoxifen Sulfate	C25H26NO5S
4-hydroxytamoxifen sulfate	C26H29NO5S
Norendoxifen	C24H25NO2
Tretinoína	C20H28O2
4-Hydroxyretinoic acid	C20H28O3
18-Hydroxyretinoic acid	C20H28O3
5,6-Epoxyretinoic acid	C20H28O3
4-Oxoretinoic acid	C20H26O3
Retinoyl b-glucuronide	C26H36O8
Retinyl beta-glucuronide	C26H38O7

Androstediona	C19H26O 2
Sbeta-hydroxy-androstenedione	C19H26O3
Estradiol (17-alfa-estradiol)	C18H24O 2
2-hydroxyestrone	C18H22O3
2-hydroxyestradiol	C18H24O3
4-hydroxyestrone	C18H22O3
4-Hydroxyestradiol	C18H24O3
Estradiol-17beta 3-sulfate	C18H24O5S
Estradiol-17beta 3-sulfate	C18H24O5S
2-Methoxyestrone 3-glucuronide	C24H32O8
17-beta-Estradiol-3-glucuronide	C24H32O8
2-methoxy-17beta-estradiol 3-O-(beta-D-glucuronide)	C25H34O9
17-beta-Estradiol glucuronide	C24H32O8
17-alpha-Estradiol-3-glucuronide	C24H32O8
Estradiol-17alpha 3-D-glucuronoside	C24H32O8
17-beta-estradiol 3-sulfate-17-(beta-D-glucuronide)	C24H32O11S
17-Beta-Estradiol-3,17-beta-sulfate	C18H24O8S2
Estrone	C18H22O2
16-alpha hydroxyestrone	C18H22O3
17-Epiestriol	C18H24O3
Estriol	C18H24O3
4-methoxyestradiol	C19H26O3
Estrone sulfate	C18H22O5S
Progesterona	C21H30O 2
6β-Hydroxyprogesterone	C21H30O3
deoxycorticosterone	C21H32O3
17Alpha-hydroxy progesterone	C21H30O3
Testosterona	C19H28O 2
5-beta-hydroxytestosterone	C19H28O3
Testosterone sulfate	C19H28O5S
Dihydrotestosterone	C19H30O2
5alpha-androstane-3beta,17beta-diol	C19H32O2
5alpha-androstane-3alpha,17beta-diol	C19H32O2

F 1 1 1 1 1 1 1 1	G10H22O2
5-alpha androstanediol	C19H32O2
5a-Dihydrotestosterone sulfate	C19H30O5S
5-alpha-Dihydrotestosterone glucuronide	C25H38O8
5-alpha androstanedione	C19H28O2
5-alpha androsterone	C19H30O2
Testosterone glucuronide	C25H36O8
5-alpha-Dihydrotestosterone glucuronide	C25H38O8
2alpha-hydroxytestosterone	C19H28O3
2beta-hydroxytestosterone	C19H28O3
15alpha-hydroxytestosterone	C19H28O3
15beta-hydroxytestosterone	C19H28O3
16alpha-hydroxytestosterone	C19H28O3
16beta-hydroxytestosterone	C19H28O3
Androstenedione	C19H26O2
5-alpha androstanedione	C19H28O2
Dihidrotestosterona	C19H30O 2
5alpha-androstane-3beta,17beta-diol	C19H32O2
5alpha-androstane-3alpha,17beta-diol	C19H32O2
5-alpha androstanediol	C19H32O2
5a-Dihydrotestosterone sulfate	C19H30O5S
5-alpha-Dihydrotestosterone glucuronide	C25H38O8
5-alpha androsterone	C19H30O2
1β-hydroxy-testosterone	C19H28O3
Nandrolona (19-nortestosterona)	C18H26O2
11β-hydroxy-testosterone	C19H28O3
Epinefrina (Adrenalina)	C9H13NO 3
Epinephrine sulfate	C9H13NO6S
Epinephrine glucuronide	C15H21NO9
Metanephrine	C16H23NO9
Aceclidina	C9H15NO 2
Bisfenol A	C15H16O2
Bisfenol A-diglicidil éter (BADGE)	C21H24O4
4-isopropenilfenol (4-IPP)	C9H12O

Bisfenol A-bis(diglicidil éter)	C21H26O
4-Nonilfenol	C15H24O
4-Nonilcatecol	C15H24O2
N-fenil-N'-(1,3-dimetilbutil)-p-fenilenodiamina (6-PPD)	C15H18N2
257	C16H21N2O
259_1	C16H23N2O
259_2	C16H23N2O
281	C18H21N2O
283_1	C18H23N2O
285_1_2	C18H25N2O
297_1	C18H21N2O2
6- PPDIQ	C18H22N2
299_1	C18H23N2O2
299_2	C18H23N2O2
6- PPDQ	C18H23N2O2
NO- DPA	C12H11N2O
285_3	C18H25N2O
4- HDPA	C12H12NO
200	C12H10NO2
138	C6H4NO3
194	C12H20NO
213	C13H13N2O
297_2	C19H25N2O
297_3	C19H25N2O
4- ADPA	C12H13N2
227	C14H15N2
269	C17H20N2O
283_2	C18H23N2O
285_4	C18H25N2O
171	C8H15N2O2
188	C10H16NO3
197	C9H13N2O3
202	C9H9NO3

205	C13H21N2
235	C12H24N2O
240	C9H15NO5
249	C12H22N2O2
263	C15H23N2O2
265	C15H25N2O2
270	C10H17NO6
271	C16H19N2O2
277Na	C15H20N2O3
291	C16H23N2O3
299	C16H23N2O3
301	C16H23N2O3
302	C16H23N2O3
329	C16H23N2O3
343a	C16H23N2O3
343b	C16H23N2O3
347	C16H23N2O3
351	C16H23N2O3
367	C16H23N2O3
Metilprednisolona	C22H30O5
M13 Metilpred	C22H30O6
M14 (M13.1)	C22H32O6
M15 (M13.2)	C22H28O6
M7 Metilpred	C22H30O6
M9 (M7.1)	C22H32O6
M10 (N7.2)	C22H32O6
M4 Metilpred	C22H28O5
M5 (M4.1)	C22H30O5
M6 (M4.2)	C22H30O5
M2 Metilpred	C22H32O5
M3 Metilpred	C22H32O6
M1 Metilpred	C22H28O5
M8 (M1.1)	C22H28O6

M11 (M1.2)	C22H30O5
M12 (M1.3)	C22H30O6
Prednisolona	C21H28O5
Δ6-Prednisolone (M-XI)	C21H26O5
20α-Dihydro-Prednisolone (M-III)	C21H30O5
20β-Dihydro-Prednisolone (M-II)	C21H30O6
6α-Hydroxy-Prednisolone (M-VII)	C21H28O6
6α,11β,17α,20β,21-Pentahydroxypregnan-1,4-diene-3-one (M-X) (M-VII.1)	C21H30O6
	C211129O4
6βHydroxy-Prednisolone(M-VI)	C21H28O6
6β,11β,17α,20β,21-Pentahydroxypregnan-1,4-diene-3-one (M-VIII) (M-VI.1)	C21H30O6
6β ,11 β ,17 α ,20 β ,21-Pentahydroxy-5 ξ -Pregn-1-en-3-one (M-XV) (M-VII.1.1)	C21H32O6
6β,11β,17α,21-Tetrahydroxy-5ξ-pregn-1-en-3,20-dione (M-XIV) (M-VI.1.1.1)	C21H30O6
6β,11β,17α,21-Tetrahydroxy-5ξ-pregn-1-en-3,20-dione (M-XIV) (M-VI.2)	C21H30O6
6β,11β,17α,20α,21-Pentahydroxypregnan-1,4-diene-3-one (M-IX) (M-VI.3)	C21H30O6
6β,11β,17α,20α,21-Pentahydroxy-5ξ-pregn-1-en-3-one (M-XVI) (M-VI.3.1)	C21H32O6
6β,11β,17α,21-Tetrahydroxy-5ξ-pregn-1-en-3,20-dione (M-XIV) (M-VI.3.2)	C21H30O6
Prednisona Metabólito	C21H26O5
17α,21-Dihydroxy-Pregnan-1,4,6-trien-3,11,30-trione (M-XVII) (PREDNISONA.1)	C21H24O5
20α-Dihydro-Prednisone (M-V) (PREDNISONA.2)	C21H28O5
20β-Dihydro-Prednisone (M-IV) (PREDNISONA.3)	C21H28O5
17α,20ξ,21-Trihydroxy-5ξ-Pregn-1-en-3,11-dione(M-XVIII) (PREDNISONA.3.1)	C21H30O5
6α-Hydroxy-Prednisone (M-XIII) (PREDNISONA.4)	C21H26O6
6-βHydroxy-Prednisone (M-XII) (PREDNISONA.5)	C21H26O7

Prednisona	C21H26O5
Prednisolona Metabólito	C21H28O5
Δ6-Prednisolone (M-XI)	C21H26O5
20α-Dihydro-Prednisolone (M-III)	C21H30O5
20β-Dihydro-Prednisolone (M-II)	C21H30O6
6α-Hydroxy-Prednisolone (M-VII)	C21H28O6
6α,11β,17α,20β,21-Pentahydroxypregnan-1,4-diene-3-one (M-X)	C21H30O6
(M-VII.1)	
6βHydroxy-Prednisolone(M-VI)	C21H28O6
6β,11β,17α,20β,21-Pentahydroxypregnan-1,4-diene-3-one (M-	C21H30O6
VIII) (M-VI.1)	
6β ,11 β ,17 α ,20 β ,21-Pentahydroxy-5 ξ -Pregn-1-en-3-one (M-XV)	C21H32O6
(M-VII.1.1)	
6β,11β,17α,21-Tetrahydroxy-5ξ-pregn-1-en-3,20-dione (M-XIV)	C21H30O6
(M-VI.1.1.1)	
6β,11β,17α,21-Tetrahydroxy-5ξ-pregn-1-en-3,20-dione (M-XIV)	C21H30O6
(M-VI.2)	
6β,11β,17α,20α,21-Pentahydroxypregnan-1,4-diene-3-one (M-	C21H30O6
IX) (M-VI.3)	
6β,11β,17α,20α,21-Pentahydroxy-5ξ-pregn-1-en-3-one (M-XVI)	C21H32O6
(M-VI.3.1)	
6β,11β,17α,21-Tetrahydroxy-5ξ-pregn-1-en-3,20-dione (M-XIV)	C21H30O6
(M-VI.3.2)	
17α,21-Dihydroxy-Pregnan-1,4,6-trien-3,11,30-trione (M-XVII)	C21H24O5
(PRED.1)	
20α-Dihydro-Prednisone (M-V) (PREDNISONA.2)	C21H28O5
20β-Dihydro-Prednisone (M-IV) (PREDNISONA.3)	C21H28O5
17α,20ξ,21-Trihydroxy-5ξ-Pregn-1-en-3,11-dione(M-XVIII)	C21H30O5
(PREDNISONA.3.1)	
6α-Hydroxy-Prednisone (M-XIII) (PREDNISONA.4)	C21H26O6
6-βHydroxy-Prednisone (M-XII) (PREDNISONA.5)	C21H26O7
Difenidramina	C17H21NO
N-Desmethyldiphenhydramine	C16H19NO

N,N-Didesmethyldiphenhydramine (N-DES.1)	C15H17NO
Diphenylmethoxyacetic Acid (N-DES.1.1)	C15H14O3
N-Acetyl-N-Desmethyldiphenhydramine (N-DES.1.2)	C17H19NO2
Diphenhydramine N-glucuronide	C23H30NO7
Dimenidrinato	C24H28CIN5O3
Monodesmethyldiphenhydramine (DMDP)	C16H19NO
Loratadina	C22H23CIN2O2
Descarboethoxyloratadine	C19H19ClN2
3-Hydroxydesloratadine (DESCARB.1.1)	C19H19CIN2O
3-Hydroxydesloratadine Glucuronide (DESCARB.1.2)	C25H27CIN2O7
Desloratadina (DESCARB.2)	C19H19ClN2
Loratadina (DESCARB.2.1) (DESLO.1)	C22H23C1N2O2
Prometazina	C17H20N2S
Promethazine Sulphoxide	C17H20N2OS
Desmethylpromethazine	C16H18N2S
Promethazine Hydroxy Metabolite	C17H22N2OS
Zolpidem	C19H21N3O
Methoxyzolpidem derivative (M3)	C19H21N3O2
Zolpidem carboxylic acid derivative (M1)	C19H19N3O3
Methoxyzolpidem derivative (M4)	C19H21N3O2
Zolpidem carboxylic acid derivative (M2)	C19H19N3O3
methoxyzolpidem	C19H21N3O3
Imipramina	C19H24N2
2-hidroxiimipramina	C19H24N2O
2-hidroxiimipramina-glucoronideo	C25H32N2O7
Desipramina	C18H22N2
2-hidroxidesipramina	C18H22N2O
2-hidroxidesipramina-glucoronideo	C24H30N2O7
N-oxido-imipramina	C19H24N2O
Imidodibenzil	C14H13N
Didemetilimipramina	C17H20N2
10-hidroxididemetilimipramina	C17H20N2O
Amitriptilina	C20H23N

Nortiptrilina	C19H21N
Desmetilnortriptilina	C18H19N
E-10-hidroxidesmetilnortriptilina	C18H19NO
E-10-hidroxinortriptilina	C19H21NO
E-10-hidroxiamitriptilina	C20H23NO
Clomipramina	C19H23ClN2
Desmetilclomipramina	C18H21ClN2
Didesmetilcloripramina	C17H19ClN2
2-hidroxicloripramina	C19H23ClN2O
2-hidroxidesmetilcloripramina	C18H21CIN2O
2-hidroxidesmetilcloripramina-glucoronideo	C24H29ClN2O8
2-hidroxicloripramina-glucoronideo	C25H31ClN2O8
8-hidroxiclomipramina	C19H23ClN2O
8-hidroxiclomipramina-glucoronideo	C25H31ClN2O8
8-hidroxidesmetilclomipramina	C18H21CIN2O
8-hidroxidesmetilclomipramina-glucoronideo	C24H29CIN2O8
N-óxido-cloripramina	C19H23CIN2O
8-OH-cloripramina	C19H23CIN2O
10-OH-cloripramina	C19H23CIN2O
Fluoxetina	C17H18F3NO
Norfluoxetina	C16H16F3NO
Norfluoxetina-glucoronideo	C22H24F3NO8
Álcool Norfluoxetina	C16H15F3O2
Ácido Norfluoxetina	C16H13F3O3
Para-trifluorometilfenol	C7H5F3O
Ácido hipúrico	C9H9NO3
Fluoxetina-glucoronideo	C23H26F3NO7
Citalopram	C20H21FN2O
N-desmetilcitalopram	C19H19FN2O
Escitalopram	C20H21FN2O
S-desmetilcitalopram	C19H19FN2O
Ácido propiônico escitalopram	C18H13FNO3
Sertralina	C17H17Cl2N

Norsertralina	C16H15Cl2N
Sertralina-carbamoil-O-glucoronideo	C24H25Cl2NO8
Fluvoxamina	C15H21F3N2O2
Ácido Fluvoxamino	C14H17F3N2O3
Álcool Fluvoxamino	C14H19F3N2O2
Venlafaxina	C17H27NO2
Desvenlafaxina	C16H25NO2
N,O-Didesmetildesvenlafaxina	C15H23NO2
Benzil-hidroxi-desvenlafaxina	C16H25NO3
Ciclohexano-ring-hidroxi-desvenlafaxina	C16H25NO3
Denvenfalaxina-O-glucoronideo	C22H33NO8
N-oxido-desvenfalaxina	C16H25NO3
Duloxetina	C18H19NOS
4-hidroxi-duloxetina	C18H19NO2S
4-hidroxi-duloxetina-glucoronideo	C24H27NO8S
5-hidroxi-duloxetina	C18H19NO2S
6-hidroxi-duloxetina	C18H19NO2S
Catecol-duloxetina	C18H19NO3S
5-hidroxi-6-metoxi-duloxetina-sulfato	C19H21NO7S
5-hidroxi-6-metoxi-duloxetina-glucoronideo	C25H29NO9S
Nefazodona	C25H32CIN5O2
Hidroxinefazodona	C25H32CIN5O3
m-Clorofenilpiperazina (m-CPP)	C10H13CIN2
3- [3-etil-5-oxo-4- (2-fenoxietil) -4,5-di-hidro-1H-1,2,4-triazol-1-	C15H19N3O3
il] propanal	
2-cloro-4-piperazin-1-ilfenol	C10H13CIN2O
Trazodona	C19H22CIN5O
m-Clorofenilpiperazina (m-CPP)	C10H13ClN2
Epóxido de Triazolopiridinona	C19H22CIN5O2
4-hidroxitrazodona	C19H22CIN5O2
Bupropiona	C13H18CINO
Hidroxibupropiona	C13H18CINO2

propan-1-ona (2R) -2- (terc-butilamino) -1- (3-clorofenil) -3-hidroxipropan-1- ona (2R) -2- (terc-butilamino) -1- (3-cloro-5-hidroxifenil) propan-1- ona Mirtazapina C17H19N3 N-óxido-mirtazapina C17H19N3O N-desmetilmirtazapina C17H19N3O Noclobemida C17H19N3O Moclobemida C13H17CIN2O2 Moclobemida M5 C13H17CIN2O3 Moclobemida M6 C13H17CIN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO
ona (2R) -2- (terc-butilamino) -1- (3-cloro-5-hidroxifenil) propan-1- ona Mirtazapina C17H19N3 N-óxido-mirtazapina C16H17N3 8-hidroximirtazapina C17H19N3O Moclobemida C17H19N3O C17H19N3O C17H19N3O C17H19N3O C17H19N3O C17H19N3O C13H17CIN2O2 Moclobemida M5 C13H17CIN2O3 Moclobemida M6 C13H17CIN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
(2R) -2- (terc-butilamino) -1- (3-cloro-5-hidroxifenil) propan-1- ona Mirtazapina C17H19N3 N-óxido-mirtazapina C16H17N3 8-hidroximirtazapina C13H17ClN2O2 Moclobemida M5 C13H17ClN2O3 Moclobemida M6 C13H17ClN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H21N2O2S
ona C17H19N3 N-óxido-mirtazapina C17H19N3O N-desmetilmirtazapina C16H17N3 8-hidroximirtazapina C17H19N3O Moclobemida C13H17CIN2O2 Moclobemida M5 C13H17CIN2O3 Moclobemida M6 C13H17CIN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
MirtazapinaC17H19N3N-óxido-mirtazapinaC17H19N3ON-desmetilmirtazapinaC16H17N38-hidroximirtazapinaC17H19N3OMoclobemidaC13H17CIN2O2Moclobemida M5C13H17CIN2O3Moclobemida M6C13H17CIN2O4VortioxetinaC18H22N2SVortioxetina metabolito 1C18H23N2OSMOC18H21N2O2S
N-óxido-mirtazapina C17H19N3O N-desmetilmirtazapina C16H17N3 8-hidroximirtazapina C17H19N3O Moclobemida C13H17CIN2O2 Moclobemida M5 C13H17CIN2O3 Moclobemida M6 C13H17CIN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
N-desmetilmirtazapina 8-hidroximirtazapina C17H19N3O Moclobemida C13H17ClN2O2 Moclobemida M5 C13H17ClN2O3 Moclobemida M6 C13H17ClN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
8-hidroximirtazapina C17H19N3O Moclobemida C13H17ClN2O2 Moclobemida M5 C13H17ClN2O3 Moclobemida M6 C13H17ClN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
Moclobemida C13H17ClN2O2 Moclobemida M5 C13H17ClN2O3 Moclobemida M6 C13H17ClN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
Moclobemida M5 Moclobemida M6 C13H17ClN2O3 Moclobemida M6 C13H17ClN2O4 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
Moclobemida M6 Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
Vortioxetina C18H22N2S Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
Vortioxetina metabolito 1 C18H23N2OS MO C18H21N2O2S
MO C18H21N2O2S
M8 Vortioxetina C18H23N2OS
Vortioxetina metabolito 2 C18H23N2S
Quetiapina C21H25N3O2S
N-desalquilquetiapina C17H17N3S
7-hidroxiquetiapina C21H25N3O3S
Sulfóxido de quetiapina C21H25N3O3S
Risperidona C23H27FN4O2
9-hidroxirisperidona C23H27FN4O3
Ziprasidona C21H21ClN4OS
Sulfóxido de ziprasidona C21H21ClN4O2S
Ziprasidona sulfona C21H21ClN4O3S
Ácido (6-cloro-2-oxo-2,3-di-hidro-1H-indol-5-il) acético C10H8ClNO3
3- (piperazina-1-il) -1,2-benzisotiazol C11H13N3S
Sulfóxido de 3- (piperazina-1-il) -1,2-benzisotiazol C11H13N3OS
Sulfóxido de 3- (piperazina-1-il) -1,2-benzisotiazol-sulfona C11H13N3O2S
Sulfóxido de 3- (piperazina-1-il) -1,2-benzisotiazol-sulfona- C11H11N3O3S
lactama

S-metil-di-hidro-ziprasidona	C22H25CIN4OS
6-cloro-5- (2-piperazin-1-il-etil) -1,3-di-hidro-indol-2-ona	C14H18ClN3O
di-hidro-ziprasidona-sulfona	C21H23ClN4O3S
Clozapina	C18H19ClN4
Norclozapina	C17H17ClN4
N-óxido-clorazapina	C18H19ClN4O
Clorazapina-glucoronideo	C24H27ClN4O6
Haloperidol	C21H23ClFNO2
4- (4-clorofenil) -4-hidroxipiperidina	C11H14ClNO
Haloperidol reduzido	C21H25ClFNO2
Derivado do íon piridínio com haloperidol reduzido	C21H20ClFNO
Derivado de íon haloperidol piridínio	C21H18ClFNO
Ácido Fluorobenzoilpropionico	C10H8F2O3
4- (4-Clorofenil) -1- [4- (4-fluorofenil) -4-oxobutil] -piridínio (HPP +)	C21H18CIFNO
Ácido p-fluorobenzoilpropiônico e 4- (4-clorofenil) -4- hidroxipiperidina	C10H9FO3
Clorpromazina	C17H19ClN2S
hidroxiclorpromazina	C17H19ClN2OS
N-óxido-clorpromazina	C17H19ClN2OS
Dedimetilclorpromazina	C15H15ClN2S
N-dedimetilclorpromazina	C15H15ClN2S
S-óxido de clorpromazina	C17H19ClN2OS
Lovastatinsa	C24H36O5
6' beta-hidroxilovastatina	C24H36O6
3" hidroxilovastatina	C23H34O6
6' exometileno-lovastatina	C24H34O5
Simvastatina	C25H38O5
hidroxiacido simvastatina	C25H40O6
6-beta-hidroxisimvastatina	C25H38O6
3,5-di-hidrodiol	C25H40O7
6-exometileno	C25H36O5
Pravastatina	C23H36O7

3-alfa-isopravastatina	C23H36O7
5,6-epoxy-3-alpha-isopravastatin	C23H36O8
7-hydroxy-3-alpha-isopravastatin	C23H36O8
6-epi-pravastatin	C23H36O7
Triol pravastatin	C23H38O9
Pravastatina de 3-ceto-5,6-diol	C23H36O9
Pravastatina Glucoronídeo	C29H44O13
3 '(S) -hidroxi-pravastatina-tetranor	С19Н30О6
3'(S)-hydroxy-pravastatin-tetranor glucuronide	C25H38O12
3'(S)-hydroxy-pravastatin	C23H36O8
Desacilpravastatina	C18H24O5
Fluvastatina	C24H26FNO4
6-hidroxi-fluvastatina	C24H26FNO5
N-desisopropil-fluvastatina	C21H20FNO4
5-hidroxi-fluvastatina	C24H26FNO5
6-OH-fluvastatina	C24H26FNO5
5-OH-fluvastatna	C24H26FNO5
Atorvastatina	C33H35FN2O5
para-hidroxiatorvastatina	C33H35FN2O6
para-hidroxiatorvastatina lactona	C33H35FN2O6
para-hidroxiatorvastatina glucoronideo	C39H45FN2O12
orto-hidroxiatorvastatina	C33H35FN2O6
orto-hidroxiatorvastatina lactona	C33H35FN2O6
orto-hidroxiatorvastatina glucoronideo	C39H45FN2O12
Atorvastatina lactona	C33H35FN2O5
Rosuvastatina	C22H28FN3O6S
N-desmetilrosuvastatina	C21H26FN3O6S
Rosuvastatina-5-S-Lactona	C22H22FN3O5S
Fenofibrato	C 20 H 21 CIO 4
Ácido fenofibrico	C17H15ClO4
Glucoronido de fenofibril	C23H23ClO10
Ácido fenofibrico reduzido	C17H17ClO4
Glucoronido de fenofibrico reduzido	C23H25ClO10

Acetamiprido	C10H11ClN4
N-[(6-Chloro-3-pyridinyl)methyl]-N-methylethanimidamide	C9H12ClN3
N-[(6-Chloropyridin-3-yl)methyl]-N-methylacetamide	C9H11CIN2O
(1E)-N'-Carbamoyl-N-[(6-chloro-3-pyridinyl)methyl]-N-	C10H13ClN4O
methylethanimidamide	
6-Chloronicotinic acid	C6H4CINO2
1-(6-Chloro-3-pyridinyl)-N-methylmethanamine	C7H9ClN2
Propoxur	C11H15NO3
PPX - TP1	C11H15NO3
PPX-TP2	C11H15NO3
PPX-TP3	C10H15NO
PPX-TP4	C7H11NO2
Azadiractina	C35H44O16
3-Deacetyl-azadirachtinA	С26Н38О11
AZADIRACHTINB(P)	C33H42O14
Beta-ciflutrina (Ciflutrina)	C22H18Cl2FNO3
4-Fluoro-3-phenoxybenzoic acid	C13H9FO3
3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid	C8H10Cl2O2
4-Fluoro-3-phenoxybenzaldehyde	C13H9FO2
m-phenoxy-p-fluorobenzoic alcohol	C13H11FO2
1-Fluoro-2-phenoxybenzene	C12H9FO
Buprofezina	C16H23N3OS
N-tert-butyl-N'-phenyl-N-propan-2-yldicarbonimidic diamide	C15H23N3O2
3-(2-Methyl-2-propanyl)-5-phenyl-1,3,5-thiadiazinane-2,4-dione	C13H16N2O2S
(2Z)-2-(tert-butylimino)-5-phenyl-3-(propan-2-yl)-1,3,5-	C16H23N3O2S
thiadiazinan-4-one 1-oxide	
BF12	C10H14N2O
6-[(2-Methyl-2-propanyl)amino]-3-phenyl-2,3-dihydro-4H-1,3,5-	C13H17N3OS
thiadiazin-4-one	
4-Aminophenol	C6H7NO
Carbosulfano	C20H32N2O3S
carbofuran phenol	C10H12O2
Carbofuran	C12H15NO3

3-Hydroxycarbofuran	C12H15NO4
Carbofuran-3-keto	C12H13NO4
Dibutylamine	C8H19N
Ciantraniliprole	C19H14BrClN6O2
2-(3-Bromo-1H-pyrazol-5-yl)-3,8-dimethyl-4-oxo-3,4-dihydro-6-	C14H10BrN5O
quinazolinecarbonitrile	
2-[3-Bromo-1-(3-hydroxy-2-pyridinyl)-1H-pyrazol-5-yl]-3,8-	C19H13BrN6O2
dimethyl-4-oxo-3,4-dihydro-6-quinazolinecarbonitrile	
3-Bromo-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-1-	C19H15BrN6O3
(3-hydroxy-2-pyridinyl)-1H-pyrazole-5-carboxamide	
2-(2-Bromo-4-oxo-3a,4-dihydropyrazolo[1,5-a]pyrido[3,2-	C19H15BrN6O2
e]pyrazin-5(3H)-yl)-5-cyano-N,3-dimethylbenzamide	
2-[3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-3,8-	C19H12BrClN6O
dimethyl-4-oxo-3,4-dihydroquinazoline-6-carbonitrile	
2-(3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl)-3,8-	C19H14BrClN6O2
dimethyl-4-oxo-3,4-dihydroquinazoline-6-carboxamide	
4-({[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-	C19H16BrClN6O3
yl]carbonyl}amino)-N3,5-dimethylisophthalamide	
2-[3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-3,8-	C19H13BrClN5O3
dimethyl-4-oxo-3,4-dihydroquinazoline-6-carboxylic acid	
4-[3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-	C18H14BrClN6O3
carboxamido]-5-methylisophthalamide	
2-[3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-8-methyl-	C18H11BrClN5O3
4-oxo-1,4-dihydroquinazoline-6-carboxylic acid	
4-[3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-	C19H15BrClN5O4
carboxamido]-3-methyl-5-(methylcarbamoyl)benzoic acid	
4-({[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-	C18H13BrClN5O4
yl]carbonyl}amino)-3-carbamoyl-5-methylbenzoic acid	
3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide	C9H6BrClN4O
3-Bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid	C9H5BrClN3O2
Ciromazina	C6H10N6
N-(4,6-Diamino-1,3,5-triazin-2-yl)alanine	C6H10N6O2
Melamine	C3H6N6

Clorfenapir	C15H11BrClF3N2O
2-(4-Chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile	C12H6ClF3N2
Tralopyril	C12H5BrClF3N2
Deltametrina	C22H19Br2NO3
Diafentiurom	C23H32N2OS
Esfenvalerato	C25H22CINO3
(1S)-2-(Aminooxy)-1-(3-phenoxyphenyl)ethyl (2S)-2-(4-	C25H26ClNO4
chlorophenyl)-3-methylbutanoate	
(2S)-2-(4-Chlorophenyl)-3-methylbutanoic acid	C11H13ClO2
3-PBAc	C13H10O3
3-(4-Chlorophenyl)-4-methyl-2-(3-phenoxyphenyl)pentanenitrile	C24H22CINO
Espinetoram	C42H69NO10
XDE-175-L	C43H69NO10
N-succinyl-175-L	C46H71NO13
N-demethyl-175-L	C42H67NO10
N-demethyl-N-nitroso-175-L	C41H63NO11
N-succinyl J	C45H71NO13
N-demethyl-175-J	C41H67NO10
N-demethyl-N-nitroso-175-J	C40H63NO11
Espirodiclofeno	C21H24Cl2O4
3-(3,5-Dichlorophenyl)-1,4-dioxaspiro[5.5]undecane-2,5-dione	C15H14Cl2O4
3-(3,5-Dichlorophenyl)-3-hydroxy-1-oxaspiro[4.5]decane-2,4-	C15H14Cl2O4
dione	
3-(3,5-Dichlorophenyl)-4-hydroxy-1-oxaspiro[4.5]dec-3-en-2-	C15H14Cl2O3
one	
3-(3,5-Dichlorophenyl)-3,4-dihydroxy-1-oxaspiro[4.5]decan-2-	C15H16Cl2O4
one	
2,4-dichlorobenzoic acid	C7H4Cl2O2
Etiprole	C13H9Cl2F3N4OS
Etofenproxi	C25H28O3
3-phenoxybenzoic acid	C13H10O3
· · · · · · · · · · · · · · · · · · ·	C13111003

4-[3-[[2-(4-Ethoxyphenyl)-2-	C25H28O4
methylpropoxy]methyl]phenoxy]phenol	
3-{[2-(4-Ethoxyphenyl)-2-methylpropoxy]methyl}phenol	C19H24O3
2-(4-Ethoxyphenyl)-2-methylpropyl 3-phenoxybenzoate	C25H26O4
etofenprox-desethyl	C23H24O3
3-Phenoxybenzyl 2-(4-ethoxyphenyl)-2-methylpropanoate	C25H26O4
(3-phenoxyphenyl)methan-1-ol	C13H12O2
3-Phenoxybenzyl 2-(4-ethoxyphenyl)-2-methylpropanoate	C25H26O4
Fenpiroximato	C24H27N3O4
4-(Hydroxymethyl)benzoic acid	C8H8O3
2-Methyl-2-propanyl [4-(hydroxymethyl)phenyl]acetate	C13H18O3
(E)-α-(1,3-Dimethyl-5-phenoxypyrazol-4-	C20H19N3O4
ylmethyleneaminooxy)-p-toluic acid	
2-Methyl-2-propanyl 4-[({(E)-[(3-methyl-5-phenoxy-1H-pyrazol-	C23H25N3O4
4-yl)methylene]amino}oxy)methyl]benzoate	
2-Methyl-2-propanyl 4-({[(E)-{[5-(4-hydroxyphenoxy)-1,3-	C24H27N3O5
dimethyl-1H-pyrazol-4-yl]methylene}amino]oxy}methyl)benzoate	
2-Methyl-2-propanyl 4-({[(E)-{[3-(hydroxymethyl)-1-methyl-5-	C24H27N3O5
phenoxy-1H-pyrazol-4-yl]methylene}amino]oxy}methyl)benzoate	
1-Methyl-4-[(E)-{[(4-{[(2-methyl-2-	C24H25N3O6
propanyl)oxy]carbonyl}benzyl)oxy]imino}methyl]-5-phenoxy-1H-	
pyrazole-3-carboxylic acid	
1-(1,3-Dimethyl-5-phenoxy-1H-pyrazol-4-yl)-N-	C12H13N3O2
hydroxymethanimine	
1,3-Dimethyl-5-phenoxy-1H-pyrazole-4-carbonitrile	C12H11N3O
3-Methyl-5-phenoxy-1H-pyrazole-4-carbaldehyde	C11H10N2O2
1,3-Dimethyl-5-phenoxy-1H-pyrazole-4-carbaldehyde	C12H12N2O2
1,3-Dimethyl-5-phenoxy-1H-pyrazole-4-carboxylic acid	C12H12N2O3
Fenpropatrina	C22H23NO3
Flubendiamida	C23H22F7IN2O4S
Fosmete	C11H12NO4PS2
2-(Sulfanylmethyl)-1H-isoindole-1,3(2H)-dione	C9H7NO2S
Dimethyl phosphite	C2H7O3P

Phosmet oxon	C11H12NO5PS
O,O-Dimethyl dithiophosphate	C2H7O2PS2
Phthalic acid	C8H6O4
Phthalamic acid	C8H7NO3
Phthalimide	C8H5NO2
Hydroxymethyl Phthalimide	C9H7NO3
2-[(Hydroxymethyl)carbamoyl]benzoic acid	C9H9NO4
2-(Methoxymethyl)-1H-isoindole-1,3(2H)-dione	C10H9NO3
2-[(Methoxymethyl)carbamoyl]benzoic acid	C10H11NO4
2-{[(Methylsulfonyl)methyl]carbamoyl}benzoic acid	C10H11NO5S
2-[(Methylsulfonyl)methyl]-1H-isoindole-1,3(2H)-dione	C10H9NO4S
2-{[(Methylsulfinyl)methyl]carbamoyl}benzoic acid	C10H11NO4S
2-[(Methylsulfinyl)methyl]-1H-isoindole-1,3(2H)-dione	C10H9NO3S
2-{[(Methylsulfanyl)methyl]carbamoyl}benzoic acid	C10H11NO3S
2-[(Methylsulfanyl)methyl]-1H-isoindole-1,3(2H)-dione	C10H9NO2S
2-[(Sulfomethyl)carbamoyl]benzoic acid	C9H9NO6S
(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)methanesulfinic acid	C9H7NO4S
Lufenurom	C17H8Cl2F8N2O3
2 6-difluorobenzoic acid	C7H4F2O2
2,6-Difluorobenzamide	C7H5F2NO
2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)aniline	C9H5Cl2F6NO
1-[2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]urea	C10H6Cl2F6N2O2
Malationa	C10H19O6PS2
Oxaloacetate	C4H2O5
2-[(Dimethoxyphosphorothioyl)sulfanyl]succinate	C6H9O6PS2
Ethanol	C2H6O
3-[(Dimethoxyphosphorothioyl)sulfanyl]-4-ethoxy-4-	C8H14O6PS2
oxobutanoate	
O,O-Dimethyl dithiophosphate	C2H7O2PS2
Diethyl malate	C8H14O5
O,O-Dimethyl phosphorothioate	C2H6O3PS
S-(1,4-Diethoxy-1,4-dioxo-2-butanyl) O-methyl	C9H16O6PS2
phosphorodithioate	

Malaoxon	C10H19O7PS
Dimethyl phosphate	C2H6O4P
S-(1,4-Diethoxy-1,4-dioxo-2-butanyl) O-methyl phosphorothioate	C9H16O7PS
Methanol	CH4O
O-Methyl phosphorothioate	CH3O3PS
Methyl phosphate	CH3O4P
Phosphorothioate	O3PS3
S-(1,4-Diethoxy-1,4-dioxo-2-butanyl) phosphorothioate	C8H13O7PS
Phosphate trianion	O4P3
Diethyl 2-sulfanylsuccinate	C8H14O4S
Diethyl succinate	C8H14O4
4-Ethoxy-4-oxobutanoate	С6Н9О4
Succinate	C4H4O4
DL-Lactic Acid	C3H6O3
Malic Acid	C4H6O5
Malathion dicarboxylic acid	C6H11O6PS2
Malathion α-Monoacid	C8H15O6PS2
Metam-sódico	C2H4NNaS2
Hydrosulfide	HS
Methyl isothiocyanate	C2H3NS
1-(dioxo-λ5-sulfanyl)-N,N'-dimethyl-formamidine	C3H7N2O2S
DMU	C3H8N2O
1,3-Dimethylthiourea	C3H8N2S
(1Z)-N,N'-Dimethyl-2-	C6H14N4S
[(methylcarbamothioyl)amino]ethanimidamide	
(1Z)-N,N'-Dimethyl-2-	C6H14N4O
[(methylcarbamoyl)amino]ethanimidamide	
Metomil	C5H10N2O2S
1-(Methylsulfanyl)acetaldoxime	C3H7NOS
Thiodicarb	C10H18N4O4S3
Metoxifenozida	C22H28N2O3
Milbemectina	C31H44O7
N,N-Diethyl-3-methylbenzamide (DEET)	C12H17NO

DEET_TP_M164 ou N-Etil-3-Metilbenzamida	DEET_TP_M222 ou DEET-ácido carboxílico	C12H15NO3
DEET_208_1.7_pos_b ou N,N-dietil-2-hidroxi-3-metilbenzamida C12H17NO2 Milbemectina C12H17NO N, N -dietil-3- (hidroximetil) benzamida (DHMB) C12H17NO2 ácido 3- (dietilcarbamoil) benzóico (DCBA) C12H15NO3 Novalurom C17H9CIF8N2O4 1-{3-Chloro-4-[1,1,2-trifluoro-2- C10H7CIF6N2O3 (trifluoromethoxy)ethoxy]phenyl}urea C10H7CIF6N2O3 3-Chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]aniline C9H6CIF6NO2 2,6-Difluorobenzoic acid C7H4F2O2 2,6-Difluorobenzamide C7H5F2NO Pimetrozina C10H11N5O 6-Ox-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO2 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(-6xo-1,6-dihydro-3-pyridinyl)methylene]amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O2 5-Hydroxy-6-methyl-4-{(E)-{(3-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 6-Methyl-4-{(E)-{(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O3 5-Hydroxy-6-methyl-4-{(E)-{(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C4H8N4O2	DEET_TP_M164 ou N-Etil-3-Metilbenzamida	C10H13NO
Milbemectina C12H17NO N , N -dietil-3- (hidroximetil) benzamida (DHMB) C12H17NO2 ácido 3- (dietilcarbamoil) benzóico (DCBA) C12H15NO3 Novalurom C17H9CIF8N2O4 1-{3-Chloro-4-{1,1,2-trifluoro-2- (trifluoromethoxy)ethoxy]phenyl}urea C10H7CIF6N2O3 3-Chloro-4-{1,1,2-trifluoro-2- (trifluoromethoxy)ethoxy]aniline C9H6CIF6NO2 2,6-Difluorobenzoic acid C7H4F2O2 2,6-Difluorobenzamide C7H5F2NO Pimetrozina C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO2 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-{(6-oxo-1,6-dihydro-3-pyridinylmethylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O2 5-Hydroxy-6-methyl-1+{(E)-{(3-pyridinylmethylene)amino}-4,5-dihydro-3-pyridinylmethylene amino}-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 6-Methyl-4-{(E)-{(6-oxo-1,6-dihydro-3-pyridinylmethylene amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O3 5-Hydroxy-6-methyl-4-{(E)-{(6-oxo-1,6-dihydro-3-pyridinyl)methylene amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C4H8N4O2 6-Methyl-4-{(E)-{(6-oxo-1,6-dihydro-1,2,4-triazin-3(2H)-one} C4H8N4O2	DEET_208_1.7_pos ou N,N-Dietil-3-(Hidroximetil)Benzamida	C12H17NO2
N , N -dietil-3- (hidroximetil) benzamida (DHMB)	DEET_208_1.7_pos_b ou N,N-dietil-2-hidroxi-3-metilbenzamida	C12H17NO2
ácido 3- (dietilcarbamoil) benzóico (DCBA) C12H15NO3 Novalurom C17H9ClF8N2O4 1-{3-Chloro-4-[1,1,2-trifluoro-2- C10H7ClF6N2O3 (trifluoromethoxy)ethoxy]phenyl}urea C10H7ClF6N2O3 3-Chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]aniline C9H6ClF6NO2 2,6-Difluorobenzoic acid C7H4F2O2 2,6-Difluorobenzamide C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO2 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O2 5-Hydroxy-6-methyl-4-{(E)-(3-pyridinyl)methylene)amino]-4,5-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 6-Methyl-4-{(E)-(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O3 5-Hydroxy-6-methyl-4-{(E)-(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C4H8N4O2 6-Methyl-4-(E)-pyridazinone C4H8N4O2	Milbemectina	C12H17NO
Novalurom	N , N -dietil-3- (hidroximetil) benzamida (DHMB)	C12H17NO2
1-{3-Chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]phenyl}urea 3-Chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]aniline 2,6-Difluorobenzoic acid 2,6-Difluorobenzamide C7H4F2O2 2,6-Difluorobenzamide C7H5F2NO Pimetrozina C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO 3-Pyridinecarboxaldehyde 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-4,5-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-C10H1N5O3 Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-pyridazinone} C10H1SCIN2OS	ácido 3- (dietilcarbamoil) benzóico (DCBA)	C12H15NO3
(trifluoromethoxy)ethoxy]phenyl}urea 3-Chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]aniline C9H6ClF6NO2 2,6-Difluorobenzoic acid C7H4F2O2 2,6-Difluorobenzamide C7H5F2NO Pimetrozina C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO2 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O2 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-dione C4H6N4O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O3 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one C4H8N4O2 Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-[[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone C19H25ClN2OS	Novalurom	C17H9C1F8N2O4
3-Chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]aniline 2,6-Difluorobenzoic acid 2,6-Difluorobenzamide C7H4F2O2 2,6-Difluorobenzamide C7H5F2NO Pimetrozina C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde 3-Pyridinecarboxaldehyde 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinyl)methylene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-[[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	1-{3-Chloro-4-[1,1,2-trifluoro-2-	C10H7ClF6N2O3
2,6-Difluorobenzoic acid C7H4F2O2 2,6-Difluorobenzamide C7H5F2NO Pimetrozina C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO2 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinylmethylene]amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O2 5-Hydroxy-6-methyl-4-{(E)-(3-pyridinylmethylene)amino]-4,5-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione C10H11N5O3 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O3 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one C4H8N4O2 Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone C19H25CIN2OS	(trifluoromethoxy)ethoxy]phenyl}urea	
2,6-Difluorobenzamide Pimetrozina C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO2 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-{(E)-(3-pyridinyl)methylene)amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)]sulfinyl}-3(2H)-pyridazinone	3-Chloro-4-[1,1,2-trifluoro-2-(trifluoromethoxy)ethoxy]aniline	C9H6ClF6NO2
Pimetrozina C10H11N5O 6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO2 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O2 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one C4H6N4O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione C10H9N5O3 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one C10H11N5O3 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one C4H8N4O2 Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone C19H25CIN2OS	2,6-Difluorobenzoic acid	C7H4F2O2
6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde C6H5NO 3-Pyridinecarboxaldehyde C6H5NO 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinyl)methylene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione C4H6N4O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)]sulfinyl}-3(2H)-pyridazinone	2,6-Difluorobenzamide	C7H5F2NO
3-Pyridinecarboxaldehyde 4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione C5H7N3O2 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinyl)methylene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)]sulfinyl}-3(2H)-pyridazinone	Pimetrozina	C10H11N5O
4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-{(E)-(3-pyridinylmethylene)amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	6-Oxo-1,6-dihydro-3-pyridinecarbaldehyde	C6H5NO2
6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	3-Pyridinecarboxaldehyde	C6H5NO
pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 5-Hydroxy-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-4,5- dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3- pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3- pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)- one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2- propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	4,6-Dimethyl-1,2,4-triazine-3,5(2H,4H)-dione	C5H7N3O2
5-Hydroxy-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-4,5- dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3- pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3- pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)- one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2- propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-	C10H11N5O2
dihydro-1,2,4-triazin-3(2H)-one 4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one	
4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione 6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25CIN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	5-Hydroxy-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-4,5-	C10H11N5O2
6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	dihydro-1,2,4-triazin-3(2H)-one	
pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione 5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	4-Amino-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione	C4H6N4O2
5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	6-Methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-	C10H9N5O3
pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one 4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)- one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	pyridinyl)methylene]amino}-1,2,4-triazine-3,5(2H,4H)-dione	
4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)- one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	5-Hydroxy-6-methyl-4-{(E)-[(6-oxo-1,6-dihydro-3-	C10H11N5O3
one Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone C19H25ClN2O2S	pyridinyl)methylene]amino}-4,5-dihydro-1,2,4-triazin-3(2H)-one	
Piridabem C19H25ClN2OS 4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone C19H25ClN2O2S	4-Amino-5-hydroxy-6-methyl-4,5-dihydro-1,2,4-triazin-3(2H)-	C4H8N4O2
4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	one	
propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	Piridabem	C19H25CIN2OS
	4-Chloro-2-(2-methyl-2-propanyl)-5-{[4-(2-methyl-2-	C19H25ClN2O2S
5-Chloro-1-(2-methyl-2-propanyl)-6-oxo-1,6-dihydro-4- C8H11ClN2O4S	propanyl)benzyl]sulfinyl}-3(2H)-pyridazinone	
	5-Chloro-1-(2-methyl-2-propanyl)-6-oxo-1,6-dihydro-4-	C8H11CIN2O4S
pyridazinesulfonic acid	pyridazinesulfonic acid	

5-Chloro-6-oxo-1,6-dihydro-4-pyridazinesulfonic acid	C4H3ClN2O4S
1-(2-Methyl-2-propanyl)-5-[4-(2-methyl-2-propanyl)benzoyl]-6-	C19H24N2O5S
oxo-1,6-dihydro-4-pyridazinesulfonic acid	
1-(2-Methyl-2-propanyl)-5-[4-(2-methyl-2-propanyl)benzyl]-6-	C19H26N2O4S
oxo-1,6-dihydro-4-pyridazinesulfonic acid	
4-Chloro-5-{[4-(1-hydroxy-2-methyl-2-	C19H25CIN2O2S
propanyl)benzyl]sulfanyl}-2-(2-methyl-2-propanyl)-3(2H)-	
pyridazinone	
2-[4-({[5-Chloro-1-(2-methyl-2-propanyl)-6-oxo-1,6-dihydro-4-	C19H23CIN2O3S
pyridazinyl]sulfanyl}methyl)phenyl]-2-methylpropanoic acid	
Pirimifos Metil	C11H20N3O3PS
1,1-Diethylguanidine	C5H13N3
2-(Diethylamino)-6-methyl-4(1H)-pyrimidinone	C9H15N3O
Piriproxifem	C20H19NO3
2-pyridone	C5H5NO
4-{4-[2-(2-Pyridinyloxy)propoxy]phenoxy}phenol	C20H19NO4
2-(Pyridin-2-yloxy)propan-1-ol	C8H11NO2
3-(2-Pyridinyloxy)butanoic acid	C9H11NO3
4-(2-(pyridin-2-yloxy)propoxy)phenol	C14H15NO3
Tebufenozida	C22H28N2O2
(4-{[2-(3,5-Dimethylbenzoyl)-2-(2-methyl-2-	C22H26N2O4
propanyl)hydrazino]carbonyl}phenyl)acetic acid	
4-{[2-(3,5-Dimethylbenzoyl)-2-(2-methyl-2-	C21H24N2O4
propanyl)hydrazino]carbonyl}benzoic acid	
N'-(4-Acetylbenzoyl)-3,5-dimethyl-N-(2-methyl-2-	C22H26N2O3
propanyl)benzohydrazide	
Teflubenzurom	C14H6Cl2F4N2O2
1,3-Difluorobenzene	C6H4F2
2,6-Difluorobenzoic acid	C7H4F2O2
2,6-Difluorobenzamide	C7H5F2NO
2,4-Difluoro-3,5-dichloroaniline	C6H3Cl2F2N
1-(3,5-Dichloro-2,4-difluorophenyl)urea	C7H4Cl2F2N2O
Triflumurom	C15H10ClF3N2O3

4-(Trifluoromethoxy)aniline	C7H6F3NO
4-(Trifluoromethoxy)phenylurea	C8H7F3N2O2
2-Chlorobenzoic acid	C7H5ClO2
2-Chlorobenzamide	C7H6CINO
Aminopiralide	C6H4Cl2N2O2
Oxamic acid	C2H3NO3
Malonamic acid	C11H13NO3
Bentazona	C10H12N2O3S
6-Hydroxybentazone	C10H12N2O4S
8-Hydroxybentazone	C10H12N2O4S
2-Amino-n-isopropylbenzamide	C10H14N2O
Anthranilic acid	C7H7NO2
Bentazon methyl	C11H14N2O3S
Bispiribaque-sódico	C19H18N4O8
Sodium 2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]-6-[(4-hydroxy-6-	C18H15N4NaO8
methoxy-2-pyrimidinyl)oxy]benzoate	
Sodium 2-hydroxy-6-[(4-hydroxy-6-methoxy-2-	C12H9N2NaO6
pyrimidinyl)oxy]benzoate	
MeBA	C5H6N2O3
Me2BA	C6H8N2O3
2,6-Dihydroxybenzoic acid	C7H6O4
Carfentrazona-etílica	C15H14Cl2F3N3O3
3-hydroxymethyl-F8246-propionic acid	C13H11ClF3N3O4
3-Hydroxymethyl-F8426-benzoic acid	C11H7CIF3N3O4
3-Hydroxymethyl-F8426-chloropropionic acid	C13H10Cl2F3N3O4
2,2-Dichloro-3-[3-[4-(difluoromethyl)-3-methyl-5-oxo-1,2,4-	C13H10Cl2F3N3O3
triazol-1-yl]-4-fluorophenyl]propanoic acid	
1-(5-Carboxy-4-chloro-2-fluorophenyl)-4-(difluoromethyl)-5-	C11H5ClF3N3O5
oxo-1,2,4-triazole-3-carboxylic acid	
F8426-Benzoic acid	C11H7CIF3N3O3
Carfentrazone	C13H10Cl2F3N3O3
F8426-Propionic acid	C13H11ClF3N3O3
F8426-Cinnamic acid	C13H9CIF3N3O3

4-(Difluoromethyl)-3-methyl-1H-1,2,4-triazol-5-one	C4H5F2N3O
Methoxy-F8246-despropionate	C11H9ClF3N3O2
Cialofope-butílico	C20H20FNO4
Cyhalofop	C16H12FNO4
1-Butanol	C4H10O
[1,1'-Biphenyl]-2,3'-diol	C12H10O2
Clodinafope-Propargil	C17H13CIFNO4
5-Chloro-3-fluoro-2-hydroxypyridine	C5H3C1FNO
Clodinafop	C14H11ClFNO4
4-((5-Chloro-3-fluoro-2-pyridinyl)oxy)phenol	C11H7CIFNO2
Clomazona	C12H14CINO2
2-Chloro-4,5-dihydroxybenzoic acid	C7H5C1O4
2-Chloro-4-hydroxybenzoic acid	C7H5C1O3
2-Chlorobenzoic acid	C7H5C1O2
2-chlorobenzylalcohol	C7H7ClO
3'-Hydroxyclomazone	C12H14CINO3
5-Hydroxyclomazone	C12H14CINO3
5'-Hydroxyclomazone	C12H14CINO3
5-Ketoclomazone	C12H12CINO3
4',5-Dihydroxyclomazone	C12H14CINO4
Cloransulam-metílico	C15H13CIFN5O5S
Cloransulam	C14H11CIFN5O5S
5-Hydroxycloransulam methyl	C13H9CIFN5O5S
5-Hydroxycloransulam	C12H7CIFN5O5S
Dibrometo de diquate	C12H12Br2N2
Picolinamide	C6H6N2O
Picolinic acid	C6H5NO2
Dicloreto de paraquate	C12H14Cl2N2
1-Methyl-4-(pyridin-4-yl)pyridinium	C11H11N2
4-(Carboxymethyl)pyridinium	C7H8NO2
Fumaric acid	C4H4O4
Fluazifope-P-butílico	C19H20F3NO4
Fluazifop-P	C15H12F3NO4

2-(4-Hydroxyphenoxy)propanoic acid	C9H10O4
2-Hydroxy-5-(trifluoromethyl)pyridine	C6H4F3NO
4-{[5-(Trifluoromethyl)pyridin-2-yl]oxy}phenol	C12H8F3NO2
Flumioxazina	C19H15FN2O4
2-[(7-Fluoro-3-oxo-4-prop-2-ynyl-1,4-benzoxazin-6-	C19H17FN2O5
yl)carbamoyl]cyclohexene-1-carboxylic acid	
3-[6-(1,3-Dioxo-4,5,6,7-tetrahydroisoindol-2-yl)-7-fluoro-3-oxo-	C19H17FN2O6
1,4-benzoxazin-4-yl]propanoic acid	
Imoxa	C16H13FN2O4
APF	C11H9FN2O2
3,4,5,6-Tetrahydrophthalic acid	C8H10O4
3,4,5,6-Tetrahydrophthalic anhydride	C8H8O3
Glufosinato - sal de amônio	C5H15N2O4P
Glufosinate-P	C5H12NO4P
N-Acetylphosphinothricin	C7H14NO5P
Methylphosphinic acid	CH4O2P
Methylphosphonic acid	CH5O3P
4-(hydroxymethylphosphinyl)-2-oxobutyric acid	C5H9O5P
3-(Hydroxymethylphosphinyl)propionic acid	C4H9O4P
(2E)-3-[Hydroxy(methyl)phosphoryl]acrylic acid	C4H7O4P
Methylphosphinoformic acid	C2H5O4P
2-[Hydroxy(methyl)phosphoryl]acetic acid	C3H7O4P
Halossulfurom-metílico	C12H13ClN6O7S
Halosulfuron	C12H13ClN6O7S
2-Amino-4,6-dimethoxypyrimidine	C6H9N3O2
5-Chloro-3-{[(4,6-dimethoxy-2-	C12H15ClN6O7S
pyrimidinyl)carbamoyl]sulfamoyl}-2-methyl-2,3-dihydro-1H-	
pyrazole-4-carboxylic acid	
3-Chloro-1-methyl-5-sulfamoyl-1H-pyrazole-4-carboxylic acid	C5H6ClN3O4S
Methyl 5-chloro-3-{[(4-hydroxy-6-methoxy-2-	C12H15ClN6O7S
pyrimidinyl)carbamoyl]sulfamoyl}-2-methyl-2,3-dihydro-1H-	
pyrazole-4-carboxylate	

Methyl 3-chloro-1-methyl-5-sulfamoyl-1H-pyrazole-4-	C6H8CIN3O4S
carboxylate	
3-Chloro-5-[(4,6-dimethoxy-2-pyrimidinyl)amino]-1-methyl-1H-	C11H12ClN5O4
pyrazole-4-carboxylic acid	
Methyl 3-chloro-5-[(4,6-dimethoxy-2-pyrimidinyl)amino]-1-	C12H14ClN5O4
methyl-1H-pyrazole-4-carboxylate	
Haloxifope-P-metílico	C16H13ClF3NO4
Haloxyfop-P	C15H11ClF3NO4
2-(4'-Hydroxyphenoxy)-3-chloro-5-trifluoromethylpyridine	C12H7ClF3NO2
3-Chloro-2-hydroxy-5-(trifluoromethyl)pyridine	C6H3ClF3NO
3-Chloro-1-methyl-5-(trifluoromethyl)pyridin-2-one	C7H5ClF3NO
Hexazinona	C12H20N4O2
1-Methyl-3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1,3,5-	C12H20N4O3
triazine-2,4(1H,3H)-dione	
1-Methyl-3-(4-hydroxycyclohexyl)-6-(methylamino)-1,3,5-	C11H18N4O3
triazine-2,4(1H,3H)-dione	
3-Cyclohexyl-1-methyl-6-(methylamino)-1,3,5-triazine-	C11H18N4O2
2,4(1H,3H)-dione	
Imazapique	C14H17N3O3
5-(Hydroxymethyl)-2-(4-methyl-5-oxo-4-propan-2-yl-1H-	C14H17N3O4
imidazol-2-yl)pyridine-3-carboxylic Acid	
5-((beta-D-Glucopyranosyloxy)methyl)-2-(4-isopropyl-4-methyl-	C20H27N3O9
5-oxo-2-imidazolin-2-yl)nicotinic acid	
2-(4-Isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-	C14H15N3O5
3,5-pyridinedicarboxylic acid	
Imazapir	C13H15N3O3
7-Hydroxyfuro[3,4-b]pyridin-5(7H)-one	C7H5NO3
Furo[3,4-b]pyridin-5(7H)-one	C7H5NO2
Quinolinic acid	C7H5NO4
2,3-Pyridinedicarboximide	C7H4N2O2
2-Carbamoylpyridine-3-carboxylic acid	C7H6N2O3
Imazaquim	C17H17N3O3

(4a,5,6,7,8,8a-14C6)quinolinecarboxylic acid C11H7NO4 3-Quinolinecarboxylic acid C10H7NO2 Indaziflam C16H20FN5 4-(1-Fluoroethyl)-1,3,5-triazine-2,6-diamine C5H8FN5 (2S,3R)-3-{{4-Amino-6-{(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl}amino}-2-methyl-5-indanecarboxylic acid C16H18FN5O2 (2R,3R)-3-{[4-Amino-6-{(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl}amino}-2-dimethyl-2,3-dihydroinden-1-one C16H18FN5O Linurom C9H10C12N2O2 Diuron-desdimethyl C8H8C12N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8C12N2O Diuron-desmethyl C8H8C12N2O MCPA C9H9C1O3 5-chloro-3-methylcatechol C7H7C1O2 (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C9H9C1O4 p-Toluquinone C7H8O2 o-Cresol C7H8O2 5-Chlorosalicylaldehyde C7H5C1O2 4-Chloro-2-methylphenol C7H7C1O Cloxyfonac C9H9C1O3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diston-metribuzin C8H13N3OS <t< th=""><th>2-[(1-Amino-2,3-dimethyl-1-oxo-2-butanyl)carbamoyl]-3-</th><th>C1114C6H19N3O4</th></t<>	2-[(1-Amino-2,3-dimethyl-1-oxo-2-butanyl)carbamoyl]-3-	C1114C6H19N3O4
3-Quinolinecarboxylic acid	(4a,5,6,7,8,8a-14C6)quinolinecarboxylic acid	
Indaziflam 4-(1-Fluoroethyl)-1,3,5-triazine-2,6-diamine (2S,3R)-3-({4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl}amino)-2-methyl-5-indanecarboxylic acid (2R,3R)-3-[[4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl]amino]-2,5-dimethyl-2,3-dihydroinden-1-one Linurom C9H10C12N2O2 Diuron-desdimethyl C7H6C12N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8C12N2O2 Diuron-desmethyl C8H8C12N2O MCPA C9H9C1O3 5-chloro-3-methylcatechol (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C7H6C2 Methylhydroquinone C7H6O2 Methylhydroquinone C7H8O2 5-Chlorosalicylaldehyde 4-Chloro-2-methylphenol C7H5C1O2 4-Chloro-2-methylphenol C7H5C1O2 4-Chloro-2-methylphenol C7H5C1O2 Cloxyfonac C9H9C1O4 C1-Cloxyfonac C9H9C1O4 C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deamino-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	acridinic acid	C11H7NO4
4-(1-Fluoroethyl)-1,3,5-triazine-2,6-diamine (2S,3R)-3-({4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl}amino)-2-methyl-5-indanecarboxylic acid (2R,3R)-3-[[4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl]amino]-2,5-dimethyl-2,3-dihydroinden-1-one Linurom C9H10Cl2N2O2 Diuron-desdimethyl 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8Cl2N2O2 Diuron-desmethyl C8H8Cl2N2O2 MCPA C9H9ClO3 5-chloro-3-methylcatechol (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C7H6O2 Methylhydroquinone C7H8O2 O-Cresol C7H8O2 5-Chlorosalicylaldehyde 4-Chloro-2-methylphenoxy)acetic acid C9H9ClO4 4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O2 C8H13N3OS Deamino-diketometribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	3-Quinolinecarboxylic acid	C10H7NO2
(2S,3R)-3-({4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl} amino)-2-methyl-5-indanecarboxylic acid (2R,3R)-3-[[4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl]amino]-2,5-dimethyl-2,3-dihydroinden-1-one Linurom C9H10Cl2N2O2 Diuron-desdimethyl C7H6Cl2N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8Cl2N2O2 Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol C7H7ClO2 (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C9H9ClO4 p-Toluquinone C7H6O2 Methylhydroquinone C7H8O2 o-Cresol C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deamino-diketometribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	Indaziflam	C16H20FN5
yl}amino)-2-methyl-5-indanecarboxylic acid (2R,3R)-3-[[4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2- yl]amino]-2,5-dimethyl-2,3-dihydroinden-1-one Linurom C9H10Cl2N2O2 Diuron-desdimethyl C7H6Cl2N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8Cl2N2O2 Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol C7H7ClO2 (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C9H9ClO4 p-Toluquinone C7H6O2 Methylhydroquinone C7H8O2 o-Cresol C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO4 (4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O Disemino-metribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3OS Nicossulfurom C15H18N6O6S	4-(1-Fluoroethyl)-1,3,5-triazine-2,6-diamine	C5H8FN5
(2R,3R)-3-[[4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl]amino]-2,5-dimethyl-2,3-dihydroinden-1-one Linurom C9H10Cl2N2O2 Diuron-desdimethyl C7H6Cl2N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8Cl2N2O2 Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol C7H7ClO2 (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C9H9ClO4 p-Toluquinone C7H6O2 Methylhydroquinone C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO4 (4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4O8 Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O2 Desamino-metribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	(2S,3R)-3-({4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-	C16H18FN5O2
yl]amino]-2,5-dimethyl-2,3-dihydroinden-1-one Linurom C9H10Cl2N2O2 Diuron-desdimethyl C7H6Cl2N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8Cl2N2O2 Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol C7H7ClO2 (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C9H9ClO4 p-Toluquinone C7H6O2 Methylhydroquinone C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deamino-diketometribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	yl}amino)-2-methyl-5-indanecarboxylic acid	
Linurom C9H10Cl2N2O2 Diuron-desdimethyl C7H6Cl2N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8Cl2N2O2 Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol C7H7ClO2 (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid P-Toluquinone C7H6O2 Methylhydroquinone C7H8O2 o-Cresol C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deamino-metribuzin C8H13N3OS Deaminodiketometribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	(2R,3R)-3-[[4-Amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-	C16H18FN5O
Diuron-desdimethyl C7H6Cl2N2O 1-(3,4-Dichlorophenyl)-3-methoxyurea C8H8Cl2N2O2 Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol C7H7ClO2 (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid C9H9ClO4 p-Toluquinone C7H8O2 o-Cresol C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O Desamino-metribuzin C8H13N3OS Deaminodiketometribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	yl]amino]-2,5-dimethyl-2,3-dihydroinden-1-one	
1-(3,4-Dichlorophenyl)-3-methoxyurea Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid p-Toluquinone C7H6O2 Methylhydroquinone o-Cresol C7H8O 5-Chlorosalicylaldehyde 4-Chloro-2-methylphenol Cloxyfonac (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO4 (4-Chloro-2-methylphenol C1H2O C1H2O C1H2O C1H2O C1H2O C1H2O C1H2O C1H2O C1H2N4O Diketo-metribuzin Desamino-metribuzin Desamino-metribuzin C7H11N3O2 4-methyl-DADK-metribuzin C1H18N6O6S	Linurom	C9H10Cl2N2O2
Diuron-desmethyl C8H8Cl2N2O MCPA C9H9ClO3 5-chloro-3-methylcatechol (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid p-Toluquinone C7H6O2 Methylhydroquinone C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenol) Cloxyfonac C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide Metribuzim Desmethylthio-metribuzin Desmethylthio-metribuzin Desamino-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deaminodiketometribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	Diuron-desdimethyl	C7H6Cl2N2O
MCPA 5-chloro-3-methylcatechol (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid p-Toluquinone C7H6O2 Methylhydroquinone C7H8O2 O-Cresol 5-Chlorosalicylaldehyde 4-Chloro-2-methylphenol Cloxyfonac (4-Chloro-2-methylphenol) Cloxyfonac (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide Metribuzim C8H14N4OS Desmethylthio-metribuzin Diketo-metribuzin C7H12N4O Diseto-metribuzin C8H13N3OS Deaminodiketometribuzin C8H13N3O2 A-methyl-DADK-metribuzin C15H18N6O6S	1-(3,4-Dichlorophenyl)-3-methoxyurea	C8H8Cl2N2O2
5-chloro-3-methylcatechol (4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid p-Toluquinone C7H6O2 Methylhydroquinone C7H8O2 o-Cresol 5-Chlorosalicylaldehyde 4-Chloro-2-methylphenol C1H5ClO2 4-Chloro-2-methylphenol C1H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	Diuron-desmethyl	C8H8Cl2N2O
(4-Chloro-2-hydroxy-6-methylphenoxy)acetic acidC9H9ClO4p-ToluquinoneC7H6O2MethylhydroquinoneC7H8O2o-CresolC7H8O5-ChlorosalicylaldehydeC7H5ClO24-Chloro-2-methylphenolC7H7ClOCloxyfonacC9H9ClO3(4-Chloro-2-methylphenoxy)acetic acidC9H9ClO34-Carboxymethylenebut-2-en-4-olideC6H4O4MetribuzimC8H14N4OSDesmethylthio-metribuzinC7H12N4ODiketo-metribuzinC7H12N4O2Desamino-metribuzinC8H13N3OSDeaminodiketometribuzinC7H11N3O24-methyl-DADK-metribuzinC8H13N3O2NicossulfuromC15H18N6O6S	MCPA	C9H9ClO3
p-Toluquinone C7H6O2 Methylhydroquinone C7H8O2 o-Cresol C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	5-chloro-3-methylcatechol	C7H7ClO2
MethylhydroquinoneC7H8O2o-CresolC7H8O5-ChlorosalicylaldehydeC7H5ClO24-Chloro-2-methylphenolC7H7ClOCloxyfonacC9H9ClO4(4-Chloro-2-methylphenoxy)acetic acidC9H9ClO34-Carboxymethylenebut-2-en-4-olideC6H4O4MetribuzimC8H14N4OSDesmethylthio-metribuzinC7H12N4ODiketo-metribuzinC7H12N4O2Desamino-metribuzinC8H13N3OSDeaminodiketometribuzinC7H11N3O24-methyl-DADK-metribuzinC8H13N3O2NicossulfuromC15H18N6O6S	(4-Chloro-2-hydroxy-6-methylphenoxy)acetic acid	C9H9ClO4
o-Cresol C7H8O 5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O2 Desamino-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	p-Toluquinone	C7H6O2
5-Chlorosalicylaldehyde C7H5ClO2 4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O2 Desamino-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	Methylhydroquinone	C7H8O2
4-Chloro-2-methylphenol C7H7ClO Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O2 Desamino-metribuzin C7H12N4O2 Desaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3OS Nicossulfurom C15H18N6O6S	o-Cresol	C7H8O
Cloxyfonac C9H9ClO4 (4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide C6H4O4 Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O2 Desamino-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	5-Chlorosalicylaldehyde	C7H5ClO2
(4-Chloro-2-methylphenoxy)acetic acid C9H9ClO3 4-Carboxymethylenebut-2-en-4-olide Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deamino-metribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3OS C8H13N3OS C7H11N3O2 C7H11N3O2 C8H13N3OS C8H13N3OS C8H13N3OS C8H13N3OS C8H13N3OS C8H13N3OS C8H13N3OS	4-Chloro-2-methylphenol	C7H7ClO
4-Carboxymethylenebut-2-en-4-olide Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3OS C8H13N3O2 C8H13N3OS C15H18N6O6S	Cloxyfonac	C9H9ClO4
Metribuzim C8H14N4OS Desmethylthio-metribuzin C7H12N4O Diketo-metribuzin C7H12N4O2 Desamino-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	(4-Chloro-2-methylphenoxy)acetic acid	C9H9ClO3
Desmethylthio-metribuzinC7H12N4ODiketo-metribuzinC7H12N4O2Desamino-metribuzinC8H13N3OSDeaminodiketometribuzinC7H11N3O24-methyl-DADK-metribuzinC8H13N3O2NicossulfuromC15H18N6O6S	4-Carboxymethylenebut-2-en-4-olide	C6H4O4
Diketo-metribuzin Desamino-metribuzin C8H13N3OS Deaminodiketometribuzin C7H11N3O2 4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	Metribuzim	C8H14N4OS
Desamino-metribuzinC8H13N3OSDeaminodiketometribuzinC7H11N3O24-methyl-DADK-metribuzinC8H13N3O2NicossulfuromC15H18N6O6S	Desmethylthio-metribuzin	C7H12N4O
Deaminodiketometribuzin 4-methyl-DADK-metribuzin Nicossulfurom C7H11N3O2 C8H13N3O2 C15H18N6O6S	Diketo-metribuzin	C7H12N4O2
4-methyl-DADK-metribuzin C8H13N3O2 Nicossulfurom C15H18N6O6S	Desamino-metribuzin	C8H13N3OS
Nicossulfurom C15H18N6O6S	Deaminodiketometribuzin	C7H11N3O2
	4-methyl-DADK-metribuzin	C8H13N3O2
MU-466 C7H9N3O3S	Nicossulfurom	C15H18N6O6S
	MU-466	C7H9N3O3S

ASDM	C8H11N3O3S
Nicosulfuron-TP UCSN	C10H13N5O5S
HMUD	C14H16N6O6S
Nicosulfuron-TP AUSN	C10H14N6O4S
2-Amino-4,6-dimethoxypyrimidine	C6H9N3O2
Octanoato de ioxinila	C15H17I2NO2
3,5-Diiodo-4-hydroxybenzamide	C7H5I2NO2
3,5-Diiodo-4-hydroxybenzoic acid	C7H4I2O3
Gallic acid	C7H6O5
4-Hydroxy-3-iodobenzonitrile	C7H4INO
Oxadiazona	C15H18Cl2N2O3
1-(2,4-Dichloro-5-isopropoxyphenyl)-2-{[(2-methyl-2-	C14H22Cl2N2O2
propanyl)oxy]methyl}hydrazine	
3-(2,4-Dichloro-5-ethoxyphenyl)-5-(2-methyl-2-propanyl)-1,3,4-	C14H16Cl2N2O3
oxadiazol-2(3H)-one	
2-[4-(2,4-Dichloro-5-hydroxyphenyl)-5-oxo-4,5-dihydro-1,3,4-	C12H10Cl2N2O5
oxadiazol-2-yl]-2-methylpropanoic acid	
2-[4-(2,4-Dichloro-5-isopropoxyphenyl)-5-oxo-4,5-dihydro-	C15H16Cl2N2O5
1,3,4-oxadiazol-2-yl]-2-methylpropanoic acid	
2-[4-(2,4-Dichloro-5-hydroxyphenyl)-5-oxo-4,5-dihydro-1,3,4-	C12H10Cl2N2O5
oxadiazol-2-yl]-2-methylpropanoic acid	
5-tert-Butyl-3-(2,4-dichloro-5-hydroxyphenyl)-1,3,4-oxadiazol-	C12H12Cl2N2O3
2(3H)-one	
Oxifluorfem	C15H11ClF3NO4
2-Chloro-4-(trifluoromethyl)phenol	C7H4ClF3O
3-Chloro-4-hydroxybenzoic acid	C7H5ClO3
Penoxsulam	C16H14F5N5O5S
2-(2,2-Difluoroethoxy)-N-(iminomethyl)-6-	C10H9F5N2O3S
(trifluoromethyl)benzenesulfonamide	
2-(2,2-Difluoroethoxy)-6-(trifluoromethyl)benzenesulfonic acid	C9H7F5O4S
2-(2,2-Difluoroethoxy)-N-(5-hydroxy-8-	C15H12F5N5O5S
methoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-6-	
(trifluoromethyl)benzenesulfonamide	

2-(2,2-Difluoroethoxy)-N-(1H-1,2,4-triazol-3-yl)-6-	C11H9F5N4O3S
(trifluoromethyl)benzenesulfonamide	C111191·3114O35
	CIQUOESNAOS
3-({[2-(2,2-Difluoroethoxy)-6-	C12H9F5N4O5S
(trifluoromethyl)phenyl]sulfonyl}amino)-1H-1,2,4-triazole-5-	
carboxylic acid	
Picloram	C6H3Cl3N2O2
Oxalic acid	C2H2O4
3,5-Dichloro-6-hydroxypicolinic acid	C6H3Cl2NO3
2,3,5-Trichloro-4-pyridinamine	C5H3Cl3N2
Pirazossulfurom-etílico	C12H14N6O7S
2-Amino-4,6-dimethoxypyrimidine	C6H9N3O2
1-methyl-4-ethyl formate-5-pyrazole sulfonamide	C7H11N3O4S
1-Methyl-5-sulfamoyl-1H-pyrazole-4-carboxylic acid	C5H7N3O4S
Pyrazosulfuron	C12H14N6O7S
Piroxsulam	C14H13F3N6O5S
2-Methoxy-4-(trifluoromethyl)-3-pyridinesulfonic acid	C7H6F3NO4S
Pyridine sulfonamide	C7H7F3N2O3S
N-(6-Chloro-7-hydroxy-5-methoxy[1,2,4]triazolo[1,5-	C13H10ClF3N6O5S
a]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3-	
pyridinesulfonamide	
N-Cyano-2-methoxy-4-(trifluoromethyl)-3-pyridinesulfonamide	C8H6F3N3O3S
N-(5,7-Dihydroxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-	C12H9F3N6O5S
methoxy-4-(trifluoromethyl)-3-pyridinesulfonamide	
N-(5-Hydroxy-7-methoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-	C13H11F3N6O5S
methoxy-4-(trifluoromethyl)-3-pyridinesulfonamide	
N-(7-Hydroxy-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-	C13H11F3N6O5S
methoxy-4-(trifluoromethyl)-3-pyridinesulfonamide	
Propanil	C9H9Cl2NO
1,2-Dichloro-4-nitrobenzene	C6H3Cl2NO2
3,3',4,4'-Tetrachloroazobenzene	C12H6Cl4N2
3,4-DCA	C6H5Cl2N
Quincloraque	C10H5Cl2NO2
Methyl 3,7-dichloroquinoline-8-carboxylate	C11H7Cl2NO2
-	<u> </u>

8-Chloroquinoline-3-carboxylic acid	C10H6CINO2
3,7-Dichloroquinoline	C9H5Cl2N
Saflufenacil	C17H17CIF4N4O5S
Trifluoroacetic acid	C2HF3O2
Saflufenacil Metabolite M800H02	C16H15CIF4N4O5S
Saflufenacil Metabolite M800H11	C15H13ClF4N4O5S
Saflufenacil Metabolite M800H35	C11H14CIFN4O4S
Setoxidim	C17H29NO3S
2-butanimidoyl-5-(2-ethylsulfinylpropyl)-3-hydroxycyclohex-2-	C15H25NO3S
en-1-one	
2-[(E)-N-ethoxy-C-propylcarbonimidoyl]-5-(2-	C17H29NO4S
ethylsulfinylpropyl)-3-hydroxycyclohex-2-en-1-one	
2-butanimidoyl-5-(2-ethylsulfanylpropyl)-3-hydroxycyclohex-2-	C15H25NO2S
en-1-one	
Sethoxydim sulfone	C17H29NO5S
S-metolacloro	C15H22CINO2
Metolachlor OA	C15H21NO4
Metolachlor esa	C15H23NO5S
Metolachlor-NOA 413173	C14H19NO6S
N-(2-Ethyl-6-methylphenyl)-N-oxalo-L-alanine	C14H17NO5
S-Metolachlor CGA 368208	C11H14NNaO4S
N-(2-ethyl-6-methylphenyl)-2-hydroxyacetamide	C11H15NO2
N-(2-Ethyl-6-methylphenyl)-L-alanine	C12H17NO2
(2-Ethyl-6-methylanilino)(oxo)acetic acid	C11H13NO3
Sulfentrazona	C11H10Cl2F2N4O3S
1-[2,4-dichloro-5-(methanesulfonamido)phenyl]-4-	C11H8Cl2F2N4O5S
(difluoromethyl)-5-oxo-1,2,4-triazole-3-carboxylic acid	
N-[2,4-Dichloro-5-[4-(difluoromethyl)-4,5-dihydro-5-oxo-1H-	C10H8Cl2F2N4O3S
1,2,4-triazol-1-yl]phenyl]methanesulfonamide	
N-{2,4-Dichloro-5-[4-(difluoromethyl)-3-(hydroxymethyl)-5-	C11H10Cl2F2N4O4S
oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]phenyl}methanesulfonamide	
Tepraloxidim	
-	C17H24CINO4

2-Ethyl-6-(oxan-4-yl)-6,7-dihydro-5H-1,3-benzoxazol-4-one	C14H19NO3
3-(Tetrahydro-4H-pyran-4-yl)pentanedioic acid	C10H16O5
3-Hydroxy-5-(oxan-4-yl)-2-propanimidoylcyclohex-2-en-1-one	C14H21NO3
Triclopir-butotílico	C7H4Cl3NO3
Triclopyr BEE	C13H16Cl3NO4
ТСРу	C5H2Cl3NO
Azoxistrobina	C22H17N3O5
Ácido Azoxistrobina (AZ-acid) ou R234886	C12H15N3O5
Bentiavalicarbe Isopropílico	C18H24FN3O3S
2-Benzothiazolemethanol, 6-fluoro-alpha-methyl-Benthiavalicarb	C9H8FNOS
Benzovindiflupir	C18H15Cl2F2N3O
Bixafem	C18H12Cl2F3N3O
3-(Difluoromethyl)-1H-pyrazole-4-carboxylic acid	C5H4F2N2O2
Boscalida	C18H12Cl2N2O
Captana	C9H8Cl3NO2S
Carboxina	C12H13NO2S
Ciazofamida	C13H13CIN4O2S
Ciprodinil	C14H15N3
Cloridrato de propamocarbe	C9H21ClN2O2
Diclosulam	C13H10Cl2FN5O3S
Dimetomorfe	C21H22CINO4
Dodina	C15H33N3O2
Espiromesifeno	C23H30O4
Famoxadona	C22H18N2O4
Fenamidona	C17H17N3OS
Fenpropimorfe	C20H33NO
Fluazinam	C13H4Cl2F6N4O4
Fludioxonil	C12H6F2N2O2
Fluopicolide	C14H8Cl3F3N2O
Fluroxipir-meptílico	C15H21Cl2FN2O3
Flutolanil	C17H16F3NO2
Fluxapiroxade	C18H12F5N3O
Fosetil	C2H7O3P

Imibenconazol	C17H13Cl3N4S
Ipconazole	C18H24CIN3O
Iprodiona	C13H13Cl2N3O3
Mandipropamida	C23H22CINO4
Metconazol	C17H22CIN3O
Metominostrobrina	C16H16N2O3
Pencicurom	C19H21CIN2O
Piraclostrobina	C19H18ClN3O4
Pirimetanil	C12H13N3
Procimidona	C13H11Cl2NO2
Propiconazol	C15H17Cl2N3O2
Propinebe	C5H8N2S4Zn
Protioconazol	C14H15Cl2N3OS
Tiabendazol	C10H7N3S
Tifluzamida	C13H6Br2F6N2O2S
Tiram	C6H12N2S4
Triadimenol	C14H18ClN3O2
Trifloxistrobina	C20H19F3N2O4
Triflumizol	C15H15ClF3N3O
Flutolanil	C17H16F3NO2
Fluxapiroxade	C18H12F5N3O
Fosetil	C2H7O3P
Imibenconazol	C17H13Cl3N4S
Ipconazole	C18H24ClN3O
Iprodiona	C13H13Cl2N3O3
Mandipropamida	C23H22CINO4
Metconazol	C17H22CIN3O
Metominostrobrina	C16H16N2O3
Pencicurom	C19H21ClN2O
Piraclostrobina	C19H18ClN3O4
Pirimetanil	C12H13N3
Procimidona	C13H11Cl2NO2
Propiconazol	C15H17Cl2N3O2

Propinebe	C5H8N2S4Zn
Protioconazol	C14H15Cl2N3OS
Tiabendazol	C10H7N3S
Tifluzamida	C13H6Br2F6N2O2S
Tiram	C6H12N2S4
Triadimenol	C14H18ClN3O2
Triciclazol	C9H7N3S
Trifloxistrobina	C20H19F3N2O4
Triflumizol	C15H15ClF3N3O
Ciflumetofem	C24H24F3NO4
2,4 D	C8H6C12O3
2,4-dichloroanisole	C7H6Cl2O
2,4-Dichlorophenol	C6H4Cl2O
2,4-Dichloro-5-hydroxyphenoxyacetic acid	C8H6Cl2O4
2,5-Dichloro-4-hydroxyphenoxyacetic acid	C8H6Cl2O4
Succinic acid	C4H6O4
2,4,5 T	C8H5Cl3O3
2,4,5-Trichlorophenol	C6H3Cl3O
2,5-Dichloro-1,4-benzenediol	C6H4Cl2O2
5-Chloro-1,2,4-benzenetriol	C6H5ClO3
Hydroxy-1,4-benzoquinone	С6Н4О3
1,2,4-Benzenetriol	С6Н6О3
Cis-2-maleylacetate	C6H4O5
b-Oxoadipate	С6Н6О5
Alaclor	C14H20ClNO2
Alachlor ESA	C14H21NO5S
Alachlor OA	C14H19NO4
Metolachlor ethanesulfonic acid	C15H23NO5S
Aldicarbe	C7H14N2O2S
E-Isomeraldicarb sulfoxide	C7H14N2O3S
[(Z)-(2-Methyl-2-methylsulfonylpropylidene)amino] N-	C6H13N2O4S
methylcarbamate	
Aldicarbesulfona	C6H13N2O4S

2-Methyl-2-(methylsulfonyl)propanal C5H1003S 2-Methyl-2-(methylsulfonyl)propanoic acid C5H1203S 2-Methyl-2-(methylsulfonyl)propanamide C5H1004S 2-Methyl-2-(methylsulfonyl)propanamide C5H1N03S 2-Methyl-2-(methylsulfonyl)propanamide C5H1N03S Aldrin C1403S Aldrian C12H8C16 Dieldrin C12H8C16O Dieldrin C12H8C16O Dieldrin C12H8C16O Atrazina C8H14CIN5 Ammeline C3H35N5O Deisopropylatrazine C5H8CIN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4CIN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- C8H14CIN5O 1,3,5-triazine C6H10CIN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H6N2O<	(1E)-N-Hydroxy-2-methyl-2-(methylsulfonyl)-1-propanimine	C5H11NO3S
2-Methyl-2-(methylsulfonyl)propanoic acid C5H10O4S 2-Methyl-2-(methylsulfonyl)propanamide C5H11NO3S 2-Methyl-2-(methylsulfonyl)propanenitrile C5H9NO2S Methanesulfonic acid CH4O3S Aldicarbesulfóxido C7H14N2O3S Aldrin C12H8Cl6 Dieldrin C12H8Cl6O Dieldrin C12H8Cl6O Atrazina C8H14ClN5 Ammeline C3H5N5O Deisopropylatrazine C5H8ClN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4ClN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- C8H14ClN5O 1,3,5-triazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Amino-Hybenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O 2-amino-6-hydroxyphenyl)urea	2-Methyl-2-(methylsulfonyl)propanal	C5H10O3S
2-Methyl-2-(methylsulfonyl)propanamide C5H1NO3S 2-Methyl-2-(methylsulfonyl)propanenitrile C5H9NO2S Methanesulfonic acid CH4O3S Aldicarbesulfóxido C7H14N2O3S Aldrin C12H8Cl6 Dieldrin C12H8Cl6O Dieldrin C12H8Cl6O Atrazina C8H14ClN5 Ammeline C3H5N5O Deisopropylatrazine C5H8ClN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4ClN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- C8H14ClN5O 1,3,5-triazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benz(d]himidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O	2-Methyl-2-(methylsulfonyl)-1-propanol	C5H12O3S
2-Methyl-2-(methylsulfonyl)propanenitrile C5H9NO2S Methanesulfonic acid CH4O3S Aldicarbesulfóxido C7H14N2O3S Aldrin C12H8C16 Dieldrin C12H8C16O Dieldrin C12H8C16O Atrazina C8H14CIN5 Ammeline C3H5N5O Deisopropylatrazine C5H8CIN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4CIN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- C8H14CIN5O 1,3,5-triazine C6H10CIN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]mindazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O H-Benzoimidazol-4-ol C7H6N2O	2-Methyl-2-(methylsulfonyl)propanoic acid	C5H10O4S
Methanesulfonic acid Aldicarbesulfóxido C7H14N2O3S Aldrin C12H8Cl6 Dieldrin C12H8Cl6O Dieldrin C12H8Cl6O Atrazina C8H14ClN5 Ammeline C3H5N5O Deisopropylatrazine 6-Chloro-1,3,5-triazine-2,4-diamine C3H4ClN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	2-Methyl-2-(methylsulfonyl)propanamide	C5H11NO3S
Aldrin C12H8Cl6 Dieldrin C12H8Cl6O Dieldrin C12H8Cl6O Dieldrin C12H8Cl6O Atrazina C8H14ClN5 Ammeline C3H5N5O Deisopropylatrazine C5H8ClN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4ClN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Amino-IH-benzo[d]imidazol-5-ol C7H7N3 (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O IH-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	2-Methyl-2-(methylsulfonyl)propanenitrile	C5H9NO2S
Aldrin	Methanesulfonic acid	CH4O3S
Dieldrin C12H8C16O Dieldrin C12H8C16O Atrazina C8H14CIN5 Ammeline C3H5N5O Deisopropylatrazine C5H8CIN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4CIN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- C8H14CIN5O 1,3,5-triazine C6H10CIN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Aldicarbesulfóxido	C7H14N2O3S
Dieldrin Atrazina C8H14CIN5 Ammeline C3H5N5O Deisopropylatrazine 6-Chloro-1,3,5-triazine-2,4-diamine C3H4CIN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine Deethylatrazine C6H10CIN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H6N4O (2-amino-6-hydroxyphenyl)urea C7H6N2O HH-Benzoimidazol-4-ol Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Aldrin	C12H8Cl6
Atrazina C8H14CIN5 Ammeline C3H5N5O Deisopropylatrazine C5H8CIN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4CIN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10CIN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Dieldrin	C12H8Cl6O
Ammeline C3H5N5O Deisopropylatrazine C5H8ClN5 6-Chloro-1,3,5-triazine-2,4-diamine C3H4ClN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Dieldrin	C12H8Cl6O
Deisopropylatrazine 6-Chloro-1,3,5-triazine-2,4-diamine C3H4ClN5 Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3 (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Atrazina	C8H14ClN5
6-Chloro-1,3,5-triazine-2,4-diamine Hydroxyatrazine C8H15N5O Atrazine-desethyl-2-hydroxy C6H11N5O 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H6N2O H-Benzoimidazol-4-ol Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C8H14ClN5O C7H18N4O3 C7H9N3O2 C7H7N3O C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine	Ammeline	C3H5N5O
Hydroxyatrazine Atrazine-desethyl-2-hydroxy 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine	Deisopropylatrazine	C5H8CIN5
Atrazine-desethyl-2-hydroxy 2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	6-Chloro-1,3,5-triazine-2,4-diamine	C3H4CIN5
2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)- 1,3,5-triazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 C7H8N2O C6H8N2	Hydroxyatrazine	C8H15N5O
Deethylatrazine Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 C6H8N2	Atrazine-desethyl-2-hydroxy	C6H11N5O
Deethylatrazine C6H10ClN5 Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	2-Chloro-4-(ethylamino)-6-(1-methyl-2-hydroxyethylamino)-	C8H14CIN5O
Benomil C14H18N4O3 Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	1,3,5-triazine	
Carbendazim C9H9N3O2 n-butil-isocianato C5H9NO Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O C2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Deethylatrazine	C6H10ClN5
n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C5H9NO C7H7N3O C7H7N3O C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 C6H8N2		C1 41110N14O2
Methyl 5-hydroxy-2-benzimidazole carbamate C9H9N3O3 2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Benomil	C14H18N4O3
2-Aminobenzimidazole C7H7N3 1-butylcarbamoyl-2-aminobenzimidazole C12H16N4O 2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2		
1-butylcarbamoyl-2-aminobenzimidazole 2-Amino-1H-benzo[d]imidazol-5-ol (2-amino-6-hydroxyphenyl)urea 5-Hydroxybenzimidazole 1H-Benzoimidazol-4-ol Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C12H16N4O C7H7N3O C7H9N3O2 C7H6N2O C7H6N2O C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Carbendazim	C9H9N3O2
2-Amino-1H-benzo[d]imidazol-5-ol C7H7N3O (2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Carbendazim n-butil-isocianato	C9H9N3O2 C5H9NO
(2-amino-6-hydroxyphenyl)urea C7H9N3O2 5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate	C9H9N3O2 C5H9NO C9H9N3O3
5-Hydroxybenzimidazole C7H6N2O 1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate 2-Aminobenzimidazole	C9H9N3O2 C5H9NO C9H9N3O3 C7H7N3
1H-Benzoimidazol-4-ol C7H6N2O Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole	C9H9N3O2 C5H9NO C9H9N3O3 C7H7N3 C12H16N4O
Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate C9H9N3O3 O-Phenylenediamine C6H8N2	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole 2-Amino-1H-benzo[d]imidazol-5-ol	C9H9N3O2 C5H9NO C9H9N3O3 C7H7N3 C12H16N4O C7H7N3O
O-Phenylenediamine C6H8N2	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole 2-Amino-1H-benzo[d]imidazol-5-ol (2-amino-6-hydroxyphenyl)urea	C9H9N3O2 C5H9NO C9H9N3O3 C7H7N3 C12H16N4O C7H7N3O C7H9N3O2
	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole 2-Amino-1H-benzo[d]imidazol-5-ol (2-amino-6-hydroxyphenyl)urea 5-Hydroxybenzimidazole	C9H9N3O2 C5H9NO C9H9N3O3 C7H7N3 C12H16N4O C7H7N3O C7H9N3O2 C7H6N2O
2-Aminobenzonitrile C7H6N2	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole 2-Amino-1H-benzo[d]imidazol-5-ol (2-amino-6-hydroxyphenyl)urea 5-Hydroxybenzimidazole 1H-Benzoimidazol-4-ol	C9H9N3O2 C5H9NO C9H9N3O3 C7H7N3 C12H16N4O C7H7N3O C7H9N3O2 C7H6N2O C7H6N2O
	Carbendazim n-butil-isocianato Methyl 5-hydroxy-2-benzimidazole carbamate 2-Aminobenzimidazole 1-butylcarbamoyl-2-aminobenzimidazole 2-Amino-1H-benzo[d]imidazol-5-ol (2-amino-6-hydroxyphenyl)urea 5-Hydroxybenzimidazole 1H-Benzoimidazol-4-ol Methyl (7-hydroxy-1H-benzimidazol-2-yl)carbamate	C9H9N3O2 C5H9NO C9H9N3O3 C7H7N3 C12H16N4O C7H7N3O C7H9N3O2 C7H6N2O C7H6N2O C9H9N3O3

2,2-Dimethyl-2,3-dihydro-1-benzofuran-4,7-diol 3-(2-Hydroxy-2-methylpropyl)-1,2-benzenediol 2-Hydroxy-3-(2-hydroxy-2-methylpropyl)phenyl methylcarbamate Carbofuran-7-phenol C10H12O2 methylamine CH5N 5-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate 3-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate 3-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate 3-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate 3-Hydroxy-carbofuran C12H15NO4 C12H15NO4 C10H6C18 Oxychlordane C10H4C18O C10H5C17 trans-Nonachlor C10H5C17 trans-Nonachlor C10H5C19 cis-Nonachlor C10H5C19 1-Hydroxychlordene C10H6C18 1,2-Dichlorochlordene C10H6C18 C10H6C19 C10H5C17 C10H5C17 C10H5C17 C10H5C17 C10H5C17 C10H5C17 C10H5C17 C10H5C19	Carbofurano	C12H15NO3
2-Hydroxy-3-(2-hydroxy-2-methylpropyl)phenyl methylcarbamate Carbofuran-7-phenol	2,2-Dimethyl-2,3-dihydro-1-benzofuran-4,7-diol	C10H12O3
methylcarbamate Carbofuran-7-phenol CloH12O2 methylamine S-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate 3-Hydroxycarbofuran Clordano Clordano Clordano Clordano Clordano CloH6Cl8 Oxychlordane CloH5Cl7 trans-Nonachlor cis-Nonachlor cl-Hydroxychlordene CloH5Cl9 1-Hydroxychlordene CloH6Cl6O Heptachlor cloH5Cl7 trans-Chlordane CloH6Cl8 1,2-Dichlorochlordene CloH6Cl8 Clordane CloH6Cl8 Clordane CloH6Cl8 Clordane CloH6Cl8 Clordane CloH6Cl8 1,2-Dichlorochlordene CloH6Cl8 Clordene chlorohydrin Clopirifós CgH11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol chlorpyrifos oxon O,O-Diethyl thiophosphate TCPy CSH2Cl3NO Oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid	3-(2-Hydroxy-2-methylpropyl)-1,2-benzenediol	C10H14O3
Carbofuran-7-phenol C10H12O2 methylamine CH5N 5-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl C12H15NO4 methylcarbamate C12H15NO4 3-Hydroxycarbofuran C12H13NO4 Clordano C10H6Cl8 Oxychlordane C10H4Cl8O Heptachlor C10H5Cl7 trans-Nonachlor C10H5Cl9 cis-Nonachlor C10H5Cl9 1-Hydroxychlordene C10H6Cl6O Heptachlor epoxide C10H5Cl7O trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene C10H4Cl8 Chlordene chlorohydrin C10H7Cl7O Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C6H4Cl3NO O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chloros	2-Hydroxy-3-(2-hydroxy-2-methylpropyl)phenyl	C12H17NO4
methylamine 5-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate 3-Hydroxycarbofuran 3-Ketocarbofuran Clordano Clordano Clordano Clordano Clordano Clordordane Clordordane Clordordordordordordordordordordordordordo	methylcarbamate	
5-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate 3-Hydroxycarbofuran 3-Ketocarbofuran Clordano ClordsCl7 trans-Nonachlor ClordsCl9 cis-Nonachlor ClordsCl9 1-Hydroxychlordene Clord6Cl6O Heptachlor epoxide trans-Chlordane 1,2-Dichlorochlordene Clordano	Carbofuran-7-phenol	C10H12O2
methylcarbamate 3-Hydroxycarbofuran C12H13NO4 Clordano C10H6Cl8 Oxychlordane C10H4Cl8O Heptachlor C10H5Cl7 trans-Nonachlor C10H5Cl9 cis-Nonachlor C10H6Cl6O Heptachlor c10H5Cl9 1-Hydroxychlordene C10H6Cl6O Heptachlor epoxide C10H6Cl6O trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene C10H6Cl8 Chlordene chlorohydrin C10H7Cl7O Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate TCPy C5H2Cl3NO Oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid	methylamine	CH5N
3-Hydroxycarbofuran C12H13NO4 C1ordano C10H6Cl8 Oxychlordane Heptachlor C10H5Cl7 trans-Nonachlor C10H5Cl9 cis-Nonachlor C10H5Cl9 1-Hydroxychlordene C10H6Cl8 C10H5Cl7 trans-Chlordane C10H5Cl0 Heptachlor epoxide C10H5Cl7 C10H5Cl9 1-Hydroxychlordene C10H6Cl8 C10H6Cl8 C10H6Cl8 C10H6Cl8 C10H6Cl8 C10H6Cl8 C10H6Cl8 C10H7Cl7O Clopirifós C10H7Cl7O Clopirifós C9H1Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C5H4Cl3NO C-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H1Cl3NO4P O,O-Diethyl thiophosphate C4H1103PS TCPy C5H2Cl3NO Oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid	5-Hydroxy-2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl	C12H15NO4
3-Ketocarbofuran Clordano Clordano CloH6Cl8 Oxychlordane CloH5Cl7 trans-Nonachlor CloH5Cl9 cis-Nonachlor CloH5Cl9 1-Hydroxychlordene CloH6Cl6O Heptachlor epoxide CloH5Cl7 trans-Chlordane CloH6Cl6O CloH5Cl7 CloH5Cl9 1-Hydroxychlordene CloH6Cl6O CloH5Cl7O CloH5Cl7O CloH5Cl7O CloH5Cl7O CloH5Cl7O CloH6Cl8 1,2-Dichlorochlordene CloH4Cl8 Chlordene chlorohydrin CloH7Cl7O Clopirifós C9H1Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol Chlorpyrifos oxon C9H1Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid	methylcarbamate	
Clordano C10H6Cl8 Oxychlordane C10H4Cl8O Heptachlor C10H5Cl7 trans-Nonachlor C10H5Cl9 cis-Nonachlor C10H5Cl9 1-Hydroxychlordene C10H6Cl6O Heptachlor epoxide C10H5Cl7O trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene C10H4Cl8 Chlordene chlorohydrin Clopirifós C9H1Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C6H4Cl3NO O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol Chlorpyrifos oxon C9H1Cl3NO4P O,O-Diethyl thiophosphate C2H3NO3 Oxamate C2H3NO3 Oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid	3-Hydroxycarbofuran	C12H15NO4
Oxychlordane C10H4Cl8O Heptachlor C10H5Cl7 trans-Nonachlor C10H5Cl9 cis-Nonachlor C10H5Cl9 l-Hydroxychlordene C10H6Cl6O Heptachlor epoxide C10H5Cl7O trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene C10H4Cl8 Chlordene chlorohydrin C10H7Cl7O Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C6H4Cl3NO O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	3-Ketocarbofuran	C12H13NO4
Heptachlor trans-Nonachlor Cis-Nonachlor Cis-Nonachlor Cis-Nonachlor Cig-Nonachlor CioH5Cl9 1-Hydroxychlordene Ci0H6Cl60 Heptachlor epoxide Ci0H6Cl8 Ci0H6Cl8 1,2-Dichlorochlordene Ci0H4Cl8 Chlordene chlorohydrin Clopirifós Ciopirifós Ciopir	Clordano	C10H6C18
trans-Nonachlor cis-Nonachlor C10H5Cl9 1-Hydroxychlordene C10H6Cl6O Heptachlor epoxide trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene C10H4Cl8 Chlordene chlorohydrin C10H7Cl7O Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) phosphorothioate 3,6-Dichloropyridin-2-ol chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid	Oxychlordane	C10H4C18O
cis-Nonachlor 1-Hydroxychlordene C10H6Cl6O Heptachlor epoxide C10H5Cl7O trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene CloH4Cl8 Chlordene chlorohydrin Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol Chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C10H6Cl6 C10H6Cl8 C10H4Cl8 C10H4Cl8 C2H3NO3	Heptachlor	C10H5C17
1-Hydroxychlordene C10H6Cl6O Heptachlor epoxide C10H5Cl7O trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene C10H4Cl8 Chlordene chlorohydrin C10H7Cl7O Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C6H4Cl3NO O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	trans-Nonachlor	C10H5C19
Heptachlor epoxide trans-Chlordane C10H6Cl8 1,2-Dichlorochlordene C10H4Cl8 Chlordene chlorohydrin C10H7Cl7O Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C6H4Cl3NO O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol Chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H1103PS TCPy C5H2Cl3NO oxamate C2H2O4 2-Chlorosuccinic acid C10H5Cl7O C10H4Cl8 C10H4Cl8 C10H4Cl8 C6H4Cl3NO C9H11Cl3NO3PS C7H7Cl3NO3PS C7H7Cl3NO4P C7H7Cl3NO4P C4H1103PS C5H2Cl3NO C2H2O4 C2+Chlorosuccinic acid	cis-Nonachlor	C10H5Cl9
trans-Chlordane 1,2-Dichlorochlordene CloH4Cl8 Chlordene chlorohydrin Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol Chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C10H4Cl8 C10H4Cl8 C10H4Cl8 C10H4Cl8 C9H11Cl3NO3PS C7H7Cl3NO3PS C7H7Cl3NO3PS C7H7Cl3NO4P C7H7Cl3NO4P C7H7Cl3NO4P C7H1Cl3NO4P C7H1Cl3NO4P C7H1Cl3NO4P C4H11O3PS C4H11O3PS C2H2O4 C2H2O4	1-Hydroxychlordene	C10H6C16O
1,2-Dichlorochlordene Chlordene chlorohydrin Clopirifós Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C6H4Cl3NO O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid	Heptachlor epoxide	C10H5C17O
Chlordene chlorohydrin Clopirifós C9H11Cl3NO3PS 2,3,5-Trichloro-6-methoxypyridine C6H4Cl3NO O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C10H7Cl7O C9H11Cl3NO3PS C7H7Cl3NO3PS C7H7Cl3NO3PS C7H7Cl3NO3PS C7H7Cl3NO3PS C7H7Cl3NO4P C5H3Cl2NO C4H11O3PS C2H3NO3 C2H2O4	trans-Chlordane	C10H6C18
Clopirifós 2,3,5-Trichloro-6-methoxypyridine O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H103PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	1,2-Dichlorochlordene	C10H4C18
2,3,5-Trichloro-6-methoxypyridine O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen C7H7Cl3NO3PS phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	Chlordene chlorohydrin	C10H7C17O
O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	Clopirifós	C9H11Cl3NO3PS
phosphorothioate 3,6-Dichloropyridin-2-ol C5H3Cl2NO Chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	2,3,5-Trichloro-6-methoxypyridine	C6H4Cl3NO
3,6-Dichloropyridin-2-ol C5H3Cl2NO Chlorpyrifos oxon C9H11Cl3NO4P O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C5H3Cl2NO C9H11Cl3NO4P C4H11O3PS C4H11O3PS C5H2Cl3NO C2H2O4	O-Ethyl O-(3,5,6-trichloro-2-pyridinyl) hydrogen	C7H7Cl3NO3PS
chlorpyrifos oxon O,O-Diethyl thiophosphate C4H11O3PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	phosphorothioate	
O,O-Diethyl thiophosphate C4H1103PS TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	3,6-Dichloropyridin-2-ol	C5H3Cl2NO
TCPy C5H2Cl3NO oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	chlorpyrifos oxon	C9H11Cl3NO4P
oxamate C2H3NO3 Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	O,O-Diethyl thiophosphate	C4H11O3PS
Oxalic acid C2H2O4 2-Chlorosuccinic acid C4H5ClO4	TCPy	C5H2Cl3NO
2-Chlorosuccinic acid C4H5ClO4	oxamate	C2H3NO3
	Oxalic acid	C2H2O4
fumaric acid amide C4H5NO3	2-Chlorosuccinic acid	C4H5ClO4
	fumaric acid amide	C4H5NO3

4-Amino-4-oxobutanoic acid	C4H7NO3
2-Chloro-2-butenedioic acid	C4H3ClO4
Diuron	C9H10Cl2N2O
DCPMU	C8H8C12N2O
DCA	C6H5Cl2N
DCPU	C7H6C12N2O
DDT	C14H9Cl5
cis-2,3-Dihydrodiol DDT	C14H11Cl5O2
2,3-Dihydroxy DDT	C14H9Cl5O2
4-Chlorobenzoate	C7H4C1O2
4-Chlorobenzaldehyde	C7H5ClO
4'-Chloroacetophenone	C8H7C1O
4-Chlorophenylacetate	C8H6ClO2-
3,3-Dichloro-2-(4-chlorophenyl)prop-2-enoate	C9H4C13O2-
DDMU	C14H9Cl3
p,p'-DDE	C14H8Cl4
1,1-Dichloro-2-(4-chloro-2,3-dihydroxyphenyl)-2-(4-	C14H8Cl4O2
chlorophenyl)ethylene	
DDD	C14H10Cl4
DDE	C14H9Cl4
Endossulfan (α β e sais)	C9H6Cl6O3S
Endosulfan sulfate	C9H6Cl6O4S
Endosulfan lactone	C9H4Cl6O2
Endosulfan hydroxyether	C9H6Cl6O2
Endosulfan ether	C9H6Cl6O
Endodiol	C9H8Cl6O2
Endrin	C12H8Cl6O
12-Ketoendrin	C12H6Cl6O2
Syn-12-Hydroxydieldrin	C12H8Cl6O2
Endrin ketone	C12H8Cl6O
Endrin aldehyde	C12H8Cl6O
Glifosato e sais	C3H8NO5P
AMPA	CH6NO3P

Sarcosine	C3H7NO2
Glyoxylate	С2НО3
Formaldehyde	H2CO
Methylamine	CH5N
Lindano (Gama HCH)	C6H6Cl6
2,4,6-Trichlorophenol	C6H3Cl3O
2,3,4,6-Tetrachlorophenol	C6H2Cl4O
Pentachlorobenzene	C6HCl5
Pentachlorophenol	C6HCl5O
Tetrachlorocyclohexanol	C6H8Cl4O
Hexachlorobenzene	C6Cl6
2,3,4-Trichlorophenol	C6H3Cl3O
2,4-Dichlorophenol	C6H4Cl2O
1,2,4-Trichlorobenzene	C6H3Cl3
gamma-PCCH	C6H5Cl5
1,2,3-Trichlorobenzene	C6H3Cl3
1,2,3,5-Tetrachlorobenzene	C6H2Cl4
1,3-Dichlorobenzen	C6H4Cl2
1,3,5-Trichlorobenzene	C6H3Cl3
2,3,5-Trichloroanisole	C7H5Cl3O
2,3,4,6-Tetrachloroanisole	C7H4Cl4O
3,4,5-Trichlorophenol	C6H3Cl3O
2,3,6-Trichloroanisole	C7H5Cl3O
Mancozebe	C40H60Mn9N20S40Zn
Endodan	C4H4N2S3
1,3,6-Thiadiazepane-2,7-dithione	C4H6N2S3
2-Imidazolidinethione	C3H6N2S
2-Imidazolidinone	C3H6N2O
1,2-Diisothiocyanatoethane	C4H4N2S2
Metamidofós	C2H8NO2PS
Phosphate	O4P
Methanethiol	CH4S
Methylphosphate	CH3O4P

S-Methyl dihydrogen phosphorothioate	CH3O3PS
Methanol	CH4O
Methoxy(methylsulfanyl)phosphinate	C2H6O3PS
Metolacloro	C15H22CINO2
Metolachlor deschloro	C15H23NO2
Metholachlor-desmethyl	C14H20CINO2
2-Chloro-N-(2-ethyl-6-methylphenyl)acetamide	C11H14CINO
Metolachlor ethanesulfonic acid	C15H23NO5S
Metolachlor OA	C15H21NO4
4-(2-Ethyl-6-methylphenyl)-5-methylmorpholin-3-one	C14H19NO2
Molinato	C8H17NOS
Ethanethiol	C2H6S
Ethanesulfonic acid	C2H6O3S
S-Ethyl 3-hydroxy-1-azepanecarbothioate	C9H17NO2S
Azepane	C6H13N
S-Ethyl 4-oxo-1-azepanecarbothioate	C9H15NO2S
S-Ethyl 4-hydroxy-1-azepanecarbothioate	C9H17NO2S
S-(2-Hydroxyethyl) 1-azepanecarbothioate	C9H17NO2S
[(1-Azepanylcarbonyl)sulfanyl]acetic acid	C9H15NO3S
Molinate-sulfone	C9H17NO3S
Molinate sulfoxide	C9H17NO2S
S-Ethyl 2-hydroxy-1-azepanecarbothioate	C9H17NO2S
S-Ethyl-2-oxo-1-azepancarbothioate	C9H15NO2S
Parationa Metílica	C8H10NO5PS
Monomethyl phosphate	CH5O4P
Dimethylhydrogen phosphate	C2H7O4P
Dimethylthiophosphate	C2H7O3PS
Trimethylphosphate	C3H9O4P
Methylthiophosphate	C3H9O3PS
4-Aminophenol	C6H7NO
O-(4-Aminophenyl) O,O-dimethyl phosphorothioate	C8H12NO3PS
O,S-Dimethyl O-(4-nitrophenyl) phosphorothioate	C8H10NO5PS
Dimethyl-4-nitrophenyl phosphate	C8H10NO6P

O-Methyl O-(4-nitrophenyl) hydrogen phosphorothioate	C7H8NO5PS
4-Nitrophenol	C6H5NO3
Pendimentalina	C13H19N3O4
4,5-Dimethyl-3-nitro-N2-(3-pentanyl)-1,2-benzenediamine	C13H21N3O2
2-Methyl-3,5-dinitro-4-[(pentan-3-yl)amino]benzoic acid	C13H17N3O6
Permetrina	C21H20Cl2O3
3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate	C8H9Cl2O2
3-Phenoxylbenzyl alcohol	C13H12O2
3-Phenoxybenzaldehyde	C13H10O2
3-Phenoxybenzoate	C13H9O3
3,4-Dihydroxybenzoate	C7H5O4
Phenol	С6Н6О
Profenofós	C11H15BrClO3PS
O-(4-bromo-2-chloro-phenyl) monophosphate	C6H4BrClO
4-Bromo-2-chloro-1-methoxybenzene	C7H6BrClO
4-Bromo-2-chloro-1-ethoxybenzene	C8H8BrClO
4-Bromophenol	C6H5BrO
Simazina	C7H12CIN5
Deisopropylatrazine	C5H8ClN5
Hydroxysimazine	C7H13N5O
Cyanuric acid	C3H3N3O3
Deisopropylhydroxyatrazine	C5H9N5O
6-Chloro-1,3,5-triazine-2,4-diamine	C3H4ClN5
Ammeline	C3H5N5O
Ammelide	C3H4N4O2
Tebuconazol	C16H22CIN3O
Triazole alanine	C5H8N4O2
1,2,4-Triazole-1-acetic acid	C4H5N3O2
1,2-Dihydro-3H-1,2,4-triazol-3-one	C2H3N3O
4-(4-Chlorophenyl)-1-(1,2,4-triazol-1-yl)butan-2-one	C12H12CIN3O
4-(4-Chlorophenyl)-1-(1,2,4-triazol-1-yl)butan-2-ol	C12H14CIN3O
4'-Chloro-beta-tert-butyl-beta-hydroxy-gamma-(1H-1,2,4-triazole-1-yl)butyrophenone	C16H20CIN3O2

1-(4-Chlorophenyl)-4,4-dimethyl-3-(1,2,4-triazol-1-	C16H22CIN3O2
ylmethyl)pentane-2,3-diol	
5-Tert-Butyl-5-(1H-1,2,4-triazole-1-ylmethyl)-3,4-dihydrofuran-	C11H17N3O2
2(5H)-one	
4-Hydroxy-4-(1H-1,2,4-triazole-1-ylmethyl)-5,5-dimethyl-	C11H19N3O3
hexanoic acid	
3,3-Dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one	C8H13N3O
1,2,4-Triazole	C2H3N3
Terbufós	C9H21O2PS3
Diethyl phosphate	C4H11O4P
O,O-Diethyl-S-{[(2-methyl-2-	C9H21O3PS2
propanyl)sulfanyl]methyl}thiophosphat	
Terbufos-oxon-sulfoxide	C9H21O4PS2
Terbufos-oxon-sulfone	C9H21O5PS2
Terbufos-sulfone	C9H21O4PS3
Terbufos-sulfoxide	C9H21O3PS3
Diethyl dithiophosphoric acid	C4H11O2PS2
O,O-Diethyl thiophosphate	C4H11O3PS
Trifluralina	C13H16F3N3O4
2,6-Dinitro-4-(trifluoromethyl)phenol	C7H3F3N2O5
2,6-dinitro-N-propyl-4-(trifluoromethyl)aniline	C10H10F3N3O4
2-Ethyl-7-nitro-1-propyl-5-(trifluoromethyl)-1H-benzimidazole	C13H14F3N3O2
2-Ethyl-1-hydroxy-4-nitro-3-propyl-6-	C13H15F3N3O3+
(trifluoromethyl)benzimidazol-3-ium	
3-Nitro-N2-propyl-5-(trifluoromethyl)-1,2-benzenediamine	C10H12F3N3O2
2-Ethyl-5-nitro-7-trifluoromethylbenzimidazole	C10H8F3N3O2
Abamectina	C95H142O28
FT-0653970	C48H72O14
Acefato	C4H10NO3PS
O,S-Dimethyl hydrogen phosphorothioate	C2H7O3PS
Methamidophos	C2H8NO2PS
N-Acetylamidothiophosphoric acid methyl ester	C3H8NO3PS
Bifentrina	C23H22CIF3O2

## A-OH-Bifenthrin C23H22CIF3O3	TFP acid	C9H10ClF3O2
BP Aldehyde C14H12O BP Alcohol C14H14O Carbaril C12H11NO2 1,4-Naphthoquinone C10H6O2 1,4-Dihydroxynaphthalene C10H8O 1-Naphthol C10H8O Cianamida NH2CN Cyanoguanidine C2H4N4 Cipermetrina C22H19C12NO3 3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate C8H9C12O2- Permethric acid C8H10C12O2 2-Hydroxy-2-(3-phenoxyphenyl)acetonitrile C14H11NO2 3-Phenoxybenzoic acid C13H10O3 3-Phenoxybenzaldehyde C13H10O2 Phenol C6H6O [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2- dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate C13H10O4 3-(4-Hydroxyphenoxy)benzoic acid C13H10O4 Ciproconazol C15H18CIN3O 1,2,4-Triazole C2H3N3 1H-1,2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol C2H3N3O Cletodim C17H26CINO3S Clethodim oxazole sulfone C14H21NO3S	4-OH-Bifenthrin	C23H22ClF3O3
BP Alcohol C14H14O	BP Acid	C14H12O2
Carbaril	BP Aldehyde	C14H12O
1,4-Naphthoquinone 1,4-Dihydroxynaphthalene 1-Naphthol Cianamida Cyanoguanidine Cyanoguanidine Cipermetrina Cyanoguanidine Cipermetrina	BP Alcohol	C14H14O
1,4-Dihydroxynaphthalene 1-Naphthol Cianamida Cianamida Cyanoguanidine Cipermetrina	Carbaril	C12H11NO2
1-Naphthol Cianamida NH2CN Cyanoguanidine Cyanoguanidine Cipermetrina 3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate CSH9Cl2O2- Permethric acid CSH10Cl2O2 2-Hydroxy-2-(3-phenoxyphenyl)acetonitrile C14H11NO2 3-Phenoxybenzoic acid C13H10O3 3-Phenoxybenzaldehyde C13H10O2 Phenol C6H6O [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2-dichlorovethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid Ciproconazol C15H18ClN3O 1,2,4-Triazole 1-2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol Cletodim C17H26ClNO3S Clethodim oxazole sulfone C14H21NO4S Clethodim oxazole Clethodim imine sulfoxide C17H26ClNO4S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S	1,4-Naphthoquinone	С10Н6О2
Cianamida Cyanoguanidine Cipermetrina Ciperm	1,4-Dihydroxynaphthalene	С10Н8О2
Cyanoguanidine Cipermetrina Cip	1-Naphthol	С10Н8О
Cipermetrina 3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate C8H9Cl2O2- Permethric acid C8H10Cl2O2 2-Hydroxy-2-(3-phenoxyphenyl)acetonitrile 3-Phenoxybenzoic acid C13H10O3 3-Phenoxybenzaldehyde C13H10O2 Phenol [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2- dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid C13H10O4 Ciproconazol C15H18ClN3O 1,2,4-Triazole 14-1,2,4-Triazole-1-acetic acid 1H-1,2,4-Triazol-1-acetic acid C14H21NO3S Clethodim oxazole sulfone C14H21NO4S Clethodim Sulfone C17H26ClNO5S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S	Cianamida	NH2CN
3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate Permethric acid 2-Hydroxy-2-(3-phenoxyphenyl)acetonitrile 3-Phenoxybenzoic acid 3-Phenoxybenzaldehyde Phenol [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2- dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid Ciproconazol 1,2,4-Triazole 1-1,2,4-Triazole-1-acetic acid Clethodim oxazole sulfone Clethodim Sulfone Clethodim Sulfoxide Clethodim sulfoxide Clethodim oxazole sulfoxide	Cyanoguanidine	C2H4N4
Permethric acid 2-Hydroxy-2-(3-phenoxyphenyl)acetonitrile 3-Phenoxybenzoic acid 3-Phenoxybenzaldehyde Phenol [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2- dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid Ciproconazol 1,2,4-Triazole 1-1,2,4-Triazole-1-acetic acid C1+1,2,4-Triazol-3-ol Cletdodim C1+1,2,4-Triazol-3-ol Clethodim oxazole sulfone C1+121NO4S Clethodim oxazole C14H21NO4S Clethodim Sulfone C17H26CINO5S Clethodim sulfoxide C17H26CINO4S Clethodim oxazole sulfoxide C14H21NO3S	Cipermetrina	C22H19Cl2NO3
2-Hydroxy-2-(3-phenoxyphenyl)acetonitrile 3-Phenoxybenzoic acid 3-Phenoxybenzaldehyde Phenol [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2- dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid Ciproconazol Ciproconazol 1,2,4-Triazole 1H-1,2,4-Triazole-1-acetic acid CH5N3O2 1H-1,2,4-Triazol-3-ol Clethodim oxazole sulfone Clethodim Sulfone Clethodim Sulfone Clethodim Sulfoxide Clethodim oxazole sulfoxide Clethodim Sulfoxide Clethodim Sulfoxide Clethodim oxazole sulfoxide	3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate	C8H9Cl2O2-
3-Phenoxybenzoic acid 3-Phenoxybenzaldehyde C13H10O2 Phenol [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid C13H10O4 Ciproconazol C15H18CIN3O 1,2,4-Triazole C2H3N3 1H-1,2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol Cletodim C17H26CINO3S Clethodim oxazole C14H21NO2S Clethodim Sulfone C14H23NO3S Clethodim imine sulfoxide C17H26CINO4S Clethodim oxazole sulfoxide C17H26CINO4S Clethodim Sulfoxide C17H26CINO4S Clethodim oxazole sulfoxide C17H26CINO4S Clethodim oxazole sulfoxide C17H26CINO4S Clethodim oxazole sulfoxide C14H21NO3S	Permethric acid	C8H10Cl2O2
3-Phenoxybenzaldehyde C13H10O2 Phenol C6H6O [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2-dimethylcyclopropane-1-carboxylate) 3-(4-Hydroxyphenoxy)benzoic acid C13H10O4 Ciproconazol C15H18ClN3O 1,2,4-Triazole C2H3N3 1H-1,2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol C2H3N3O Cletodim C17H26ClNO3S Clethodim oxazole sulfone C14H21NO4S Clethodim Sulfone C17H26ClNO5S Clethodim imine sulfoxide C17H26ClNO4S Clethodim Sulfoxide C17H26ClNO4S Clethodim Sulfoxide C17H26ClNO4S Clethodim sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S	2-Hydroxy-2-(3-phenoxyphenyl)acetonitrile	C14H11NO2
Phenol [Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2- C22H19Cl2NO4 dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid C13H10O4 Ciproconazol C15H18ClN3O 1,2,4-Triazole C2H3N3 1H-1,2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol C2H3N3O Cletodim C17H26ClNO3S Clethodim oxazole sulfone C14H21NO4S Clethodim oxazole C14H21NO4S Clethodim Sulfone C17H26ClNO5S Clethodim imine sulfoxide C14H23NO3S Clethodim Sulfoxide C17H26ClNO4S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C14H21NO3S	3-Phenoxybenzoic acid	C13H10O3
[Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2-dicholinorethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid Ciproconazol	3-Phenoxybenzaldehyde	C13H10O2
dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate 3-(4-Hydroxyphenoxy)benzoic acid Ciproconazol 1,2,4-Triazole 1,2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol Cletodim C17H26ClNO3S Clethodim oxazole sulfone C14H21NO4S Clethodim Sulfone C17H26ClNO5S Clethodim imine sulfoxide C14H23NO3S Clethodim Sulfoxide C17H26ClNO4S Clethodim Sulfoxide C17H26ClNO4S C17H26ClNO4S C14H21NO3S	Phenol	С6Н6О
3-(4-Hydroxyphenoxy)benzoic acid Ciproconazol Ciproconazol C15H18ClN3O C2H3N3 C2H3N3 C4H5N3O2 C4H5N3O2 C4H5N3O2 C1H-1,2,4-Triazole-1-acetic acid C2H3N3O Cletodim C17H26ClNO3S Clethodim oxazole sulfone C14H21NO4S Clethodim oxazole C14H21NO5S Clethodim imine sulfoxide C17H26ClNO3S C14H23NO3S Clethodim Sulfoxide C14H23NO3S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S C17H26ClNO4S C17H26ClNO4S C17H26ClNO4S C17H26ClNO4S	[Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-(2,2-	C22H19Cl2NO4
Ciproconazol C15H18ClN3O C2H3N3 C2H3N3 C2H3N3O C4H5N3O2 C4H5N3O2 C1H-1,2,4-Triazole-3-ol C17H26ClNO3S Clethodim oxazole sulfone C14H21NO2S Clethodim Sulfone C17H26ClNO5S Clethodim imine sulfoxide C17H26ClNO3S C14H23NO3S Clethodim Sulfoxide C17H26ClNO5S C14H23NO3S Clethodim Sulfoxide C17H26ClNO4S C17H26ClNO4S C17H26ClNO4S C17H26ClNO4S C17H26ClNO4S	dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate	
1,2,4-Triazole 1H-1,2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol Cletodim C17H26ClNO3S Clethodim oxazole sulfone C14H21NO4S Clethodim Sulfone C17H26ClNO5S Clethodim imine sulfoxide C14H23NO3S Clethodim Sulfoxide C17H26ClNO4S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S	3-(4-Hydroxyphenoxy)benzoic acid	C13H10O4
1H-1,2,4-Triazole-1-acetic acid C4H5N3O2 1H-1,2,4-Triazol-3-ol Cletodim Cletodim oxazole sulfone Clethodim oxazole Clethodim oxazole Clethodim Sulfone Clethodim Sulfone Clethodim imine sulfoxide Clethodim Sulfoxide Clethodim Sulfoxide C17H26CINO4S Clethodim Sulfoxide C17H26CINO4S Clethodim oxazole sulfoxide C17H26CINO4S Clethodim oxazole sulfoxide C14H21NO3S	Ciproconazol	C15H18ClN3O
1H-1,2,4-Triazol-3-ol C2H3N3O Cletodim C17H26ClNO3S Clethodim oxazole sulfone C14H21NO4S Clethodim oxazole C14H21NO2S Clethodim Sulfone C17H26ClNO5S Clethodim imine sulfoxide C14H23NO3S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C14H21NO3S	1,2,4-Triazole	C2H3N3
Clethodim oxazole sulfone Clethodim oxazole sulfone Clethodim oxazole Clethodim Sulfone Clethodim Sulfone Clethodim imine sulfoxide Clethodim Sulfoxide Clethodim Sulfoxide Clethodim Sulfoxide Clethodim oxazole sulfoxide	1H-1,2,4-Triazole-1-acetic acid	C4H5N3O2
Clethodim oxazole sulfone Clethodim oxazole Clethodim Sulfone Clethodim Sulfone Clethodim imine sulfoxide Clethodim Sulfoxide Clethodim Sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide	1H-1,2,4-Triazol-3-ol	C2H3N3O
Clethodim oxazole Clethodim Sulfone Clethodim imine sulfoxide Clethodim Sulfoxide Clethodim Sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide	Cletodim	C17H26ClNO3S
Clethodim Sulfone Clethodim imine sulfoxide Clethodim Sulfoxide Clethodim Sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide Clethodim oxazole sulfoxide	Clethodim oxazole sulfone	C14H21NO4S
Clethodim imine sulfoxide C14H23NO3S Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C14H21NO3S	Clethodim oxazole	C14H21NO2S
Clethodim Sulfoxide C17H26ClNO4S Clethodim oxazole sulfoxide C14H21NO3S	Clethodim Sulfone	C17H26ClNO5S
Clethodim oxazole sulfoxide C14H21NO3S		C1 4H02NO2C
	Clethodim imine sulfoxide	C14H23NO38
Clorimurom-etilico C15H15ClN4O6S		
	Clethodim Sulfoxide	C17H26CINO4S

Saccharin	C7H5NO3S
2-[(Methylamino)sulfonyl]benzoic acid ethyl ester	C10H13NO4S
Ethyl 2-(carbamoylsulfamoyl)benzoate	C10H12N2O5S
Ethyl 2-[(4-chloro-6-oxo-1H-pyrimidin-2-	C14H13ClN4O6S
yl)carbamoylsulfamoyl]benzoate	
(4-Chloro-6-methoxypyrimidin-2-yl)urea	C6H7ClN4O2
2-Amino-4-chloro-6-methoxypyrimidine	C5H6ClN3O
2-Amino-6-methoxypyrimidin-4-ol	C5H7N3O2
2-Amino-6-chloro-4-pyrimidinol	C4H4CIN3O
4-hydroxy-1H-1,2-benzisothiazole-1,1,3(2H)-trione	C7H5NO4S
4-Hydroxybenzenesulfonamide	C6H7NO3S
Clorotalonil	C8C14N2
1,3-Dicarbamoyl-2,4,5,6-tetrachlorobenzene	C8H4C14N2O2
2,3,5-trichloro-4,6-dicyanobenzenesulfonic acid	C8HCl3N2O3S
2,4,5-Trichloroisophthalonitrile	C8HCl3N2
2,4,6-Trichloroisophthalonitrile	C8HCl3N2
2,4-Dichloroisophthalonitrile	C8H2Cl2N2
2,5,6-trichloro-4-(glutathion-5-yl)-isophthalonitrile	C18H16Cl3N5O7S
2,4,5-Trichloro-6-sulfanylbenzene-1,3-dicarbonitrile	C8HCl3N2S
2,5-Dichloro-4,6-dicyanobenzene-1,3-disulfonic acid	C8H2Cl2N2O6S2
2,5-Dichloroisophthalonitrile	C8H2Cl2N2
2-carbamoyl-3,4,5-trichloro-6-cyanobenzenesulfonic acid	C8H3Cl3N2O4S
2-Chloroisophthalonitrile	C8H3ClN2
3-Carbamoyl-2,4,5-trichlorobenzoic acid	C8H4Cl3NO3
5-Chloroisophthalonitrile	C8H3ClN2
2,3,6-Trichloro-5-cyanobenzamide	C8H3Cl3N2O
2,3,6-Trichloro-5-cyano-4-hydroxybenzamide	C8H3Cl3N2O2
4-carbamoyl-2,3,5-trichloro-6-cyanobenzenesulfonic acid	C8H3Cl3N2O4S
3-Oxo-4,6,7-trichloro-2,3-dihydro-1,2-benzisothiazole-5-	C8HCl3N2OS
carbonitrile	
4,6,7-Trichloro-1,3-dioxo-1,2-benzothiazole-5-carbonitrile	C8HCl3N2O2S
1,3-Dicyanobenzene	C8H4N2
4-Hydroxy-2,5,6-trichloroisophthalonitrile	C8HCl3N2O

4-Carbamoyl-2,5-dichloro-6-cyanobenzene-1,3-disulfonic acid 2,4-dicarbamoyl-3,5,6-trichlorobenzenesulfonic acid 2,4-5-Trichloro-3-cyanobenzamide 2,4,5-Trichloro-3-cyanobenzamide 2,3,4,6-Tetrachloro-5-cyanobenzamide CRH3Cl3N2O 2,3,4,6-Tetrachloro-5-cyanobenzamide CRH2Cl4N2O Cresoxim-metil 2-[[2-[(E)-C-Carboxy-N-methoxycarbonimidoyl]phenyl]methoxylbenzoic acid Kresoxim-methyl acid Diazinona Cl2H2IN2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone 2-Isopropyl-6-methyl-4-pyrimidone CRH12N2O 2-Isopropyl-6-methyl-4-pyrimidone Diazoxon Cl2H2IN2O4P Difenoconazol 4-Chlorophenol CRH2N2O 1,2,4-Triazole 2-Chloro-5-(4-chlorophenoxy)benzoic acid Cl3H8Cl2O3 1-12-Chloro-4-(4-chlorophenoxy)benyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide CRH2NO CRH2	2-Amido-3,5,6-trichloro-4-cyanobenzenesulfonic acid	C8H3Cl3N2O4S
2.4.5-Trichloro-3-cyanobenzamide C8H3CI3N2O 2.4,5-Trichloro-3-cyano-6-hydroxybenzamide C8H3CI3N2O2 2.3,4,6-Tetrachloro-5-cyanobenzamide C8H2CI4N2O Cresoxim-metil C18H19NO4 2-[[2-[(E)-C-Carboxy-N-methoxyghenyl]methoxyghenzoic acid C17H15NO6 Kresoxim-methyl acid C17H17NO4 Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)benzoic acid C16H11C12N3O2 yl)ethanone C16H13C12N3O2 Diflubenzuron C14H9C1F2N2O3 M-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6- C14H9C1F2N2O3 difluorobenzamide C7H7CIN2O 4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO N-	4-Carbamoyl-2,5-dichloro-6-cyanobenzene-1,3-disulfonic acid	C8H4Cl2N2O7S2
2,4,5-Trichloro-3-cyano-6-hydroxybenzamide C8H3CI3N2O2 2,3,4,6-Tetrachloro-5-cyanobenzamide C8H2CI4N2O Cresoxim-metil C18H19N04 2-[12-[(E)-C-Carboxy-N-methoxycarbonimidoyl]phenyl]methoxylbenzoic acid C17H15N06 Kresoxim-methyl acid C17H17N04 Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8Cl2O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone C16H11Cl2N3O2 Difflubenzuron C16H13Cl2N3O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide C14H9ClF2N2O3 4-Chlorophenylurea C7H7ClN2O 4-Chlorophenylylformamide C7H6ClNO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoic acid <td>2,4-dicarbamoyl-3,5,6-trichlorobenzenesulfonic acid</td> <td>C8H5Cl3N2O5S</td>	2,4-dicarbamoyl-3,5,6-trichlorobenzenesulfonic acid	C8H5Cl3N2O5S
2,3,4,6-Tetrachloro-5-cyanobenzamide C8H2Cl4N2O Cresoxim-metil C18H19NO4 2-[12-[(E)-C-Carboxy-N-methoxycarbonimidoyl]phenyl]methoxy]benzoic acid C17H15NO6 Kresoxim-methyl acid C17H17NO4 Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Diffenoconazol C19H17C12N3O3 4-Chlorophenol C6H5C1O 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone C16H11C12N3O2 Difflubenzuron C16H13C12N3O2 Difflubenzuron C16H13C12N3O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide C7H7CIN2O 4-Chlorophenylurea C7H7CIN2O 4-Chlorophenylylformamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoic acid C7H4F2NO3	2,4,5-Trichloro-3-cyanobenzamide	C8H3Cl3N2O
Cresoxim-metil C18H19NO4 2-[12-[(E)-C-Carboxy-N-methoxycarbonimidoyl]phenyl]methoxy]benzoic acid C17H15NO6 Kresoxim-methyl acid C17H17NO4 Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone C16H11C12N3O2 Diflubenzuron C14H9CIF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide C14H9CIF2N2O3 4-Chlorophenylurea C7H7CIN2O 4-Chlorophenylyformamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	2,4,5-Trichloro-3-cyano-6-hydroxybenzamide	C8H3Cl3N2O2
2-[[2-[(E)-C-Carboxy-N-methoxycarbonimidoyl]phenyl]methoxy]benzoic acid C17H15NO6 Kresoxim-methyl acid C17H17NO4 Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone C16H11C12N3O2 Diffubenzuron C14H9CIF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-diffluorobenzamide C14H9CIF2N2O3 4-Chlorophenylurea C7H7CIN2O 4-Chlorophenylyformamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	2,3,4,6-Tetrachloro-5-cyanobenzamide	C8H2Cl4N2O
methoxycarbonimidoyl]phenyl]methoxy]benzoic acid Kresoxim-methyl acid Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O C12H21N2O4P Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5ClO 1,2,4-Triazole 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol C16H13C12N3O2 Diflubenzuron C14H9CIF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea C7H7CIN2O 4-Chlorophenylyformamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato	Cresoxim-metil	C18H19NO4
Kresoxim-methyl acid Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O2 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol C16H13C12N3O2 Diflubenzuron C14H9CIF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylurea C7H7CIN2O 4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato	2-[[2-[(E)-C-Carboxy-N-	C17H15NO6
Diazinona C12H21N2O3PS 2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone C8H12N2O2 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylurea C7H7CIN2O 4-Chloroaniline C6H6CIN N-(4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	methoxycarbonimidoyl]phenyl]methoxy]benzoic acid	
2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol C16H13C12N3O2 Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylurea C7H7CIN2O 4-Chloroaniline C6H6CIN N-(4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C8H12N2O2 C8H12N2O2 C14H2NO3PS2	Kresoxim-methyl acid	C17H17NO4
2-Isopropyl-6-methyl-4-pyrimidone 2-Isopropyl-6-methyl-4-pyrimidone C8H12N2O Diazoxon C12H21N2O4P Difenoconazol C19H17Cl2N3O3 4-Chlorophenol C6H5ClO C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8Cl2O3 C16H11Cl2N3O2 yl)ethanone Difenoconazole-alcohol Diflubenzuron C14H9ClF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6- difluorobenzamide 4-Chlorophenylurea C7H7ClN2O 4-Chlorophenyl)formamide C7H6ClNO C,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoic acid C9H7F2NO3 Dimetoato C5H12NO3PS2	Diazinona	C12H21N2O3PS
2-Isopropyl-6-methyl-4-pyrimidone Diazoxon C12H21N2O4P Difenoconazol C19H17C12N3O3 4-Chlorophenol C2H3N3 C-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 C13H8C12O3 C1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol Diflubenzuron C14H9CIF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea C7H7CIN2O 4-Chloroaniline C6H6CIN N-(4-Chlorophenyl)formamide C7H6CINO C2,6-Difluorobenzoic acid N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C18H12N2O4 C21H2N2O4 C21H2N2O4 C3H12N2O4 C3H12	2-(1-Hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone	C8H12N2O2
Diazoxon Difenoconazol C19H17C12N3O3 4-Chlorophenol C6H5CIO 1,2,4-Triazole 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8C12O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylurea 4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5P2NO 2,6-Difluorobenzoic acid N-(2,6-Difluorobenzoyl)glycine C1H1NC12N3O2 C14H9CIF2N2O3 C14H9CIF2N2O3 C7H6CINO C7H6CINO C7H5F2NO C7H5F2NO C9H7F2NO3 Dimetoato C5H12NO3PS2	2-Isopropyl-6-methyl-4-pyrimidone	C8H12N2O
Difenoconazol 4-Chlorophenol C6H5ClO 1,2,4-Triazole 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8Cl2O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylurea C7H7ClN2O 4-Chlorophenyl)formamide C7H6ClNO 2,6-Difluorobenzamide C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine Dimetoato C19H17Cl2N3O3 C13H8Cl2O3 C16H11Cl2N3O2 C16H11Cl2N3O2 C14H9ClF2N2O2 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C7H7ClN2O C7H7ClN2O C7H6ClNO C7H6ClNO C7H6F2NO	2-Isopropyl-6-methyl-4-pyrimidone	C8H12N2O
4-Chlorophenol C6H5ClO 1,2,4-Triazole C2H3N3 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8Cl2O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol C16H13Cl2N3O2 Diflubenzuron C14H9ClF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-C14H9ClF2N2O3 difluorobenzamide 4-Chlorophenylurea C7H7ClN2O 4-Chloroaniline C6H6ClN N-(4-Chlorophenyl)formamide C7H6ClNO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	Diazoxon	C12H21N2O4P
1,2,4-Triazole 2-Chloro-5-(4-chlorophenoxy)benzoic acid C13H8Cl2O3 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol Diflubenzuron C16H13Cl2N3O2 Diflubenzuron C14H9ClF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-C14H9ClF2N2O3 difluorobenzamide 4-Chlorophenylurea C7H7ClN2O 4-Chloroaniline C6H6ClN N-(4-Chlorophenyl)formamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C2H3N3 C13H8Cl2O3 C16H11Cl2N3O2 C16H11Cl2N3O2 C14H9ClF2N2O2 C14H9ClF2N2O3 C14H9ClF2N2O3 C7H4F2O2 C7H75F2NO C7H5F2NO	Difenoconazol	C19H17Cl2N3O3
2-Chloro-5-(4-chlorophenoxy)benzoic acid 1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol C16H13Cl2N3O2 Diflubenzuron C14H9ClF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylurea C7H7ClN2O 4-Chlorophenyl)formamide C7H6ClNO 2,6-Difluorobenzamide C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C18H1Cl2N3O2 C16H13Cl2N3O2 C14H9ClF2N2O2 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C14H9ClF2N2O3 C7H4F2O2 C7H6ClNO C7H4F2O2 C7H4F2O2 C9H7F2NO3 C5H12NO3PS2	4-Chlorophenol	C6H5ClO
1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-yl)ethanone Difenoconazole-alcohol Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylurea C7H7CIN2O 4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H4F2O2 N-(2,6-Difluorobenzojl)glycine C9H7F2NO3 Dimetoato C16H11Cl2N3O2 C14H9ClF2N3O2 C14H9ClF2N2O3 C14H9ClF2N2O3 C7H7CIN2O C7H6CINO C7H6CINO C7H4F2O2 C7H4F2O2 C9H7F2NO3	1,2,4-Triazole	C2H3N3
yl)ethanone Difenoconazole-alcohol Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6- difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylyrea C7H7CIN2O 4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C16H13C12N3O2 C14H9CIF2N2O2 C14H9CIF2N2O3 C7H7CIN2O C7H6CINO C7H6CINO C7H4F2O2 C7H4F2O2 C9H7F2NO3 C5H12NO3PS2	2-Chloro-5-(4-chlorophenoxy)benzoic acid	C13H8Cl2O3
Difenoconazole-alcohol Diflubenzuron C14H9CIF2N2O2 N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6- difluorobenzamide 4-Chlorophenylurea C7H7CIN2O 4-Chloroaniline C6H6CIN N-(4-Chlorophenyl)formamide C7H5F2NO 2,6-Difluorobenzamide C7H5F2NO C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C14H9CIF2N2O2 C14H9CIF2N2O3 C7H6CINO C7H6CINO C7H5F2NO C7H5F2NO	1-[2-Chloro-4-(4-chlorophenoxy)phenyl]-2-(1,2,4-triazol-1-	C16H11Cl2N3O2
Diflubenzuron N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6- difluorobenzamide 4-Chlorophenylurea 4-Chlorophenylinea C7H7CIN2O 4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C14H9ClF2N2O2 C14H9ClF2N2O3 C7H7CIN2O C7H7CIN2O C6H6CINO C7H6CINO C7H5F2NO3 C7H4F2O2 C9H7F2NO3	yl)ethanone	
N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6- difluorobenzamide 4-Chlorophenylurea 4-Chloroaniline C6H6CIN N-(4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C14H9CIF2N2O3 C7H7CIN2O C7H6CINO C7H6CINO C7H4F2O2 C7H4F2O2 C9H7F2NO3	Difenoconazole-alcohol	C16H13Cl2N3O2
difluorobenzamide 4-Chlorophenylurea C7H7CIN2O 4-Chloroaniline C6H6CIN N-(4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	Diflubenzuron	C14H9ClF2N2O2
4-Chlorophenylurea C7H7CIN2O 4-Chloroaniline C6H6CIN N-(4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	N-[(4-Chloro-2-hydroxyphenyl)carbamoyl]-2,6-	C14H9ClF2N2O3
4-Chloroaniline N-(4-Chlorophenyl)formamide C7H6CINO 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	difluorobenzamide	
N-(4-Chlorophenyl)formamide 2,6-Difluorobenzamide C7H5F2NO 2,6-Difluorobenzoic acid C7H4F2O2 N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	4-Chlorophenylurea	C7H7CIN2O
2,6-Difluorobenzamide 2,6-Difluorobenzoic acid N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	4-Chloroaniline	C6H6CIN
2,6-Difluorobenzoic acid N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	N-(4-Chlorophenyl)formamide	C7H6CINO
N-(2,6-Difluorobenzoyl)glycine C9H7F2NO3 Dimetoato C5H12NO3PS2	2,6-Difluorobenzamide	C7H5F2NO
Dimetoato C5H12NO3PS2	2,6-Difluorobenzoic acid	C7H4F2O2
	N-(2,6-Difluorobenzoyl)glycine	C9H7F2NO3
Dimethyl thiophosphate C2H7O3PS	Dimetoato	C5H12NO3PS2

Desmethyl dimethoate	C4H10NO3PS2		
Omethoate	C5H12NO4PS		
Ditianona	C14H4N2O2S2		
5,6-Dicyano-3-(2-hydroxybenzoyl)-1,4-dithiine-2-carboxylic acid	C14H6N2O4S2		
(E)-2-(1-Hydroxy-3,4-dioxonaphthalen-2-yl)sulfanylbut-2-	C14H6N2O3S		
enedinitrile			
(Z)-2-(1,4-Dioxonaphthalen-2-yl)sulfanyl-3-hydroxybut-2-	C14H6N2O3S		
enedinitrile			
1,4-Naphthoquinone	C10H6O2		
4,9-Dioxobenzo[f][1]benzothiole-2,3-dicarbonitrile	C14H4N2O2S		
Phthalic acid	C8H6O4		
4,9-Dioxo-1H-benzo[f]indole-2,3-dicarbonitrile	C14H5N3O2		
2-Cyano-5,10-dioxobenzo[g][1,4]benzodithiine-3-carboxamide	C14H6N2O3S2		
D5 (4,11-dithia-2-aza-cyclopenta[b]anthracene-1,3,5,10-tetraone)	C14H5NO4S2		
2-(1,4-Dioxonaphthalen-2-yl)sulfanylbutanediamide	C14H12N2O4S		
2-Cyano-4,9-dioxobenzo[f][1]benzothiole-3-carboxamide	C14H6N2O3S		
Dibenzo[b,i]thianthrene-5,7,12,14-tetrone	C20H8O4S2		
D3 (CL902195)	C14H4N2O2S3		
1,2-Benzenedimethanol /	C8H10O2		
o-Phthalaldehyde	C8H6O2		
Epoxiconazol	C17H13ClFN3O		
1,2-Dihydro-3H-1,2,4-triazol-3-one	C2H3N3O		
1-(2-Chlorophenyl)-2-(4-fluorophenyl)-3-(1,2,4-triazol-1-	C17H15ClFN3O2		
yl)propane-1,2-diol			
1-[(Z)-3-(2-Chlorophenyl)-2-(4-fluorophenyl)prop-2-enyl]-1,2,4-	C17H13ClFN3		
triazole			
1-(2-Chlorophenyl)-2-(4-fluorophenyl)-3-(1,2,4-triazol-1-	C17H15ClFN3O		
yl)propan-1-ol			
1,2,4-Triazole-1-acetic acid	C4H5N3O2		
2-Amino-3-(1H-1,2,4-triazol-1-yl)propanoic acid	C5H8N4O2		
1,2,4-Triazole	C2H3N3		
Etoxisulfuron	C15H18N4O7S		
Fenitrotiona	C9H12NO5PS		

Phosphorothioic acid, O-(4-amino-3-methylphenyl) O,O-dimethyl	C9H14NO3PS
ester	
3-Methyl-4-nitroanisole	C8H9NO3
O-Demethyl fenitrothion	C8H10NO5PSc
Fenitrooxone	C9H12NO6P
Methyl (3-methyl-4-nitrosophenyl) hydrogen phosphate	C8H10NO5P
3-Methyl-4-nitrophenol	C7H7NO3
N-Formylaminofenitrothion	C10H14NO4PS
Fenoxaprop-p-etilico	C18H16ClNO5
6-Chloro-2-benzoxazolinone	C7H4CINO2
(R)-2-(4-Hydroxyphenoxy)propanoic acid	C9H10O4
Fenoxaprop-P	C16H12ClNO5
4-[(6-Chloro-1,3-benzoxazol-2-yl)oxy]phenol	C13H8CINO3
Fentiona	C10H15O3PS2
Dimethyl Thiophosphate	C2H7O3PS
Dimethyl phosphate	C2H7O4P
Fenthion oxon	C10H15O4PS
Fenthoxon sulfoxide	C10H15O5PS
Fenthoxon sulfone	C10H15O6PS
Fenthione sulfone	C10H15O5PS2
Mesulfenfos	C10H15O4PS2
O-Methyl O-[3-methyl-4-(methylsulfanyl)phenyl] hydrogen	C9H13O3PS2
phosphorothioate	
O,O,O-Trimethyl phosphorothioate	C3H9O3PS
3-Methyl-4-(methylsulfinyl)phenol	C8H10O2S
3-Methyl-4-(methylsulfonyl)phenol	C8H10O3S
Phosphoric acid	H3O4P
Fipronil	C12H4Cl2F6N4OS
5-Amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-	C12H5Cl2F6N3O2S
trifluoromethylthio-1H-pyrazole-3-carboxylic acid	
Fipronil amide	C12H6Cl2F6N4O2S
Fipronil-TP RPA 200761	C12H5Cl2F6N3O3S
Fipronil sulfone	C12H4Cl2F6N4O2S

5-Amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-	C12H6Cl2F6N4O3S				
(trifluoromethylsulfonyl)pyrazole-3-carboxamide					
5-Amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-	C12H5Cl2F6N3O4S				
(trifluoromethylsulfonyl)pyrazole-3-carboxylic acid					
Fipronil-sulfide	C12H4Cl2F6N4S				
5-Amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-	C12H6Cl2F6N4OS				
(trifluoromethylsulfanyl)pyrazole-3-carboxamide					
Flutriafol	C16H13F2N3O				
1H-1,2,4-Triazole-1-acetic acid	C4H5N3O2				
3-(1H-1,2,4-Triazol-1-yl)alanine	C5H8N4O2				
Folpet	C9H4Cl3NO2S				
Phthalimide	C8H5NO2				
Phthalamic acid	C8H7NO3				
Phthalic acid	C8H6O4				
Fomesafem	C15H10ClF3N2O6S				
2-Chloro-4-(trifluoromethyl)phenol	C7H4CIF3O				
Gama-cialotrina	C23H19ClF3NO3				
cis-3-(2-Chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-	C9H10ClF3O2				
dimethylcyclopropanecarboxylic acid					
3-Phenoxybenzoic acid	C13H10O3				
3-(4-Hydroxy-phenoxy)-benzaldehyde	C13H10O3				
Hidrazida maleica	C4H4N2O2				
Maleimide	C4H3NO2				
Maleic acid	C4H4O4				
Succinic acid	C4H6O4				
Imazetapir	C15H19N3O3				
5-(1-Hydroxyethyl)-2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-	C15H19N3O4				
1H-imidazol-2-yl)nicotinic acid					
5-Ethylnicotinic acid	C8H9NO2				
5-Ethyl-2,3-pyridinedicarboxylic acid	C9H9NO4				
2-[(1-Amino-2,3-dimethyl-1-oxobutan-2-yl)carbamoyl]-5-	C15H21N3O4				
ethylpyridine-3-carboxylic acid					
Imidacloprido	C9H10ClN5O2				

6-Chloronicotinic acid	C6H4CINO2			
1-[(6-Chloropyridin-3-yl)methyl]-2-nitroguanidine	C7H8CIN5O2			
Imidacloprid olefin	C9H8CIN5O2			
1-(6-Chloro-3-pyridylmethyl)-4-imidazoline-2-imine	C9H9ClN4			
(NZ)-N-[1-[(2-chloropyridin-4-yl)methyl]-5-	C9H10ClN5O3			
hydroxyimidazolidin-2-ylidene]nitramide				
3-[(6-Chloropyridin-3-YL)methyl]imidazolidine-2,4-dione	C9H8CIN3O2			
1-(2-Chloro-5-pyridinyl)methylimidazolidine-2,4-dione	C9H8CIN3O2			
(2z)-1-[(6-Chloropyridin-3-Yl)methyl]imidazolidin-2-Imine	C9H11ClN4			
1-[(6-Chloropyridin-3-YL)methyl]imidazolidin-2-one	C9H10ClN3O			
Imidacloprid-nitrosimine	C9H10ClN5O			
Indoxacarbe	C22H17ClF3N3O7			
(4-(Trifluoromethoxy)phenyl)urea	C8H7F3N2O2			
4-(Trifluoromethoxy)aniline	C7H6F3NO			
Methyl (4-(trifluoromethoxy)phenyl)carbamate	C9H8F3NO3			
Methyl 7-chloro-2-[[4-(trifluoromethoxy)phenyl]carbamoyl]-3,5-	C20H15ClF3N3O5			
dihydroindeno[1,2-e][1,3,4]oxadiazine-4a-carboxylate				
IN-JU 873	C20H17ClF3N3O5			
IN-KG 433	C21H17ClF3N3O7			
Iodosulfurom-metilico	C14H14IN5O6S			
N-(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)urea	C6H9N5O2			
Desmethyl Metsulfuron-methyl	C13H13N5O6S			
Metsulfuron-methyl	C14H15N5O6S			
4-Iodo-2-[(2-methyl-6-oxo-1H-1,3,5-triazin-4-	C12H10IN5O6S			
yl)carbamoylsulfamoyl]benzoic acid				
2-Amino-4-methoxy-6-methyl-1,3,5-triazine	C5H8N4O			
Methyl 2-{[(N'-	C11H13N5O6S			
carbamoylcarbamimidoyl)carbamoyl]sulfamoyl}benzoate				
Iodosulfuron	C13H12IN5O6S			
Methyl 4-hydroxy-2-[(4-methoxy-6-methyl-1,3,5-triazin-2-	C14H15N5O7S			
yl)carbamoylsulfamoyl]benzoate				
Ioxinil octanoato	C15H17I2NO2			
Hydroquinone	C6H6O2			

2,4-Diiodo-1,3-benzenediol	C6H4I2O2			
2 6-DIIODOHYDROQUINONE	C6H4I2O2			
Gallic acid	C7H6O5			
IOXYNIC ACID	C7H4I2O3			
4-Hydroxy-3,5-diiodobenzamide	C7H5I2NO2			
Ioxynil	C7H3I2NO			
Lambda-cialotrina	C23H19ClF3NO3			
3-[(Z)-2-Chloro-3,3,3-trifluoroprop-1-enyl]-2-(hydroxymethyl)-	C9H10ClF3O3			
2-methylcyclopropane-1-carboxylic acid				
3-(2-Chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-	C9H10ClF3O2			
dimethylcyclopropanecarboxylic acid				
3-Phenoxybenzoic acid	C13H10O3			
[Cyano-[3-(4-hydroxyphenoxy)phenyl]methyl] 3-[(Z)-2-chloro-	C23H19ClF3NO4			
3, 3, 3-trifluor oprop-1-enyl]-2, 2-dimethyl cyclopropane-1-carboxy late				
Cyhalothrin amide	C23H21ClF3NO4			
Mesotriona	C14H13NO7S			
2-Amino-4-(methylsulfonyl)benzoic acid	C8H9NO4S			
2-Nitro-4-methylsulfonylbenzoic acid	C8H7NO6S			
Metalaxil-m (Mefenoxam)	C15H21NO4			
N-(2,6-Dimethylphenyl)-N-glycoloyl-D-alanine	C13H17NO4			
N-(Carboxycarbonyl)-N-(2,6-dimethylphenyl)-D-alanine	C13H15NO5			
N-(2,6-Dimethylphenyl)-N-(methoxyacetyl)-D-alanine	C14H19NO4			
{(2,6-Dimethylphenyl)[(2R)-1-methoxy-1-oxo-2-	C14H17NO5			
propanyl]amino}(oxo)acetic acid				
Metalaxyl	C15H21NO4			
Metalaxyl acid	C14H19NO4			
N-(2,6-Dimethylphenyl)-2-methoxyacetamide	C11H15NO2			
N-(2,6-Dimethylphenyl)-N-(methoxyacetyl)-L-alanine	C14H19NO4			
2-{[(1R)-1-Carboxyethyl](methoxyacetyl)amino}-3-	C14H17NO6			
methylbenzoic acid				
N-(2,6-Dimethylphenyl)acetamide	C10H13NO			
N-(2,6-Dimethylphenyl)-2-hydroxyacetamide	C10H13NO2			

2-{(Methoxyacetyl)[(2R)-1-methoxy-1-oxo-2-propanyl]amino}-	C15H19NO6
3-methylbenzoic acid	
Metamitrona	C10H10N4O
Metamitron-desamino	C10H9N3O
(2Z)-(Acetylhydrazono)(phenyl)-ethanoate	C10H9N2O3-
Phenylglyoxylate	C8H5O3-
4-Amino-6-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)-3-methyl-	C10H12N4O3
1,2,4-triazin-5-one	
4-Amino-6-(2,3-dihydroxyphenyl)-3-methyl-1,2,4-triazin-5-one	C10H10N4O3
6-(4-Amino-3-methyl-5-oxo-1,2,4-triazin-6-yl)-6-oxido-2-	C10H8N4O5-2
oxohexa-3,5-dienoate	
2-Hydroxymuconate	С6Н4О5-2
4-Amino-3-methyl-1,2,4-triazin-5-one	C4H6N4O
Metidationa	C6H11N2O4PS3
Metiram	(C16H33N11S16Zn3)x
Metsulfuron metil	C14H15N5O6S
Picoxistrobina	C18H16F3NO4
Tembotriona	C17H16ClF3O6S
Tetraconazol	C13H11Cl2F4N3O
Tiametoxam	C8H10CIN5O3S
Clotianidina	C6H8CIN5O2S
N-desmetil-tiametoxam	C7H8CIN5O3S
Tiodicarbe	C10H18N4O4S3
Metomil	C5H10N2O2S
Methomyl oxime	C3H7NOS
Tiofanato-metilico	C12H14N4O4S2
Methyl N-[[2-(methoxycarbonylamino)-1,3-benzothiazol-4-	C12H12N4O5S
yl]carbamoyl]carbamate	
Methyl N-[[2-	C12H14N4O5S
(methoxycarbonylcarbamothioylamino)phenyl]carbamoyl]carbamate	
Methyl N-[[2-(methoxycarbonylamino)-1,3-benzothiazol-4-	C12H12N4O4S2
yl]carbamothioyl]carbamate	

Methyl	N-[[2-	C10H12N4O2S2
(carbamothioylamino)phenyl]carbamothioyl]carbamate		
1H-[1,3,5]Triazino[1,2-a]benzimidazole-2,4-dione		C9H6N4O2
2-Aminobenzimidazole		C7H7N3
Carbendazim		C9H9N3O2
Triciclazol		C9H7N3S
4-(2-Methyl-6-methylsulfonylphenyl)-1,2,4-triazole		C10H11N3O2S

Tabela II - Demonstração do método utilizado no *software* TASQ, para alguns compostos da segunda triagem, contendo nome do compostos, fórmula, m/z, tempo de retenção (RT) no mínimo um íon qualificador (NC =3). O identificador químico Inchi. O código smiles e o código CAS foram incluídos posteriormente para identificar a forma de busca dos íons qualificadores

name	formula	m/z	rt	CAS	Qual1	Qual2	Qual3	smiles	lnChl
									InChI=1 S/C9H7NO 4S/c11-8-6-
(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)methanesulfinic acid (Pimso2H)	indol- C9H7NO4S ilfinic	C9H8NO4S	0.62		105,0335	133,0284	160,0393	C1=CC=C2 C(=C1)C(=O)N (C2=O)CS(=O) O	3-1-2-4- 7(6)9(12)10 (8)5- 15(13)14/h1
									4H,5H2,(H, 13,14)
(2S,3R)-3-({4- Amino-6-[(1R)-1- fluoroethyl]-1,3,5- triazin-2-yl}amino)-2- methyl-5- indanecarboxylic acid	C16H18FN5O2	C16H19FN5O2	2.7						
Δ6-Prednisolone (M-XI)	C21H26O5	C21H27O5	2.27	2427-64-7	159,0804	235,1117	133,0648	C[C@]12C [C@@H]([C@	InChI=1 S/C21H26O

									<u> </u>
								H]3[C@H]([C	5/c1-19-7-5
								@@H]1CC[C	13(23)9-
								@@]2(C(=O)C	12(19)3-4-
								O)O)C=CC4=C	14-15-6-8-
								C(=O)C=C[C	21(26,17(2
								@]34C)O)11-
									22)20(15,2
									10-
									16(24)18(1
)19/h3-
									5,7,9,14-
									16,18,22,24
									26H,6,8,10
									11H2,1-
									2H3/t14-
									,15-,16-
									,18+,19-,20
									,21-/m0/s1
α - tamoxifen Sulfate	C26H28NO5S	C26H29NO5S	4.79						
1-(1,3-Dimethyl-									InChI=
5-phenoxy-1H-								CC1=NN(S/C12H131
pyrazol-4-yl)-N-			110035-28-	C(=C1C=NO)	3O2/c1-9-				
hydroxymethanimine	C12H13N3O2	C12H14N3O2	1,40	4	214,0975	187,0866	82,0657	OC2=CC=CC=	11(8-13-
(Fenpyroximate M-							C2)C	16)12(15(2	
13)								C2)C	14-9)17-10
13)									6-4-3-5-7-

									10/h3-
									8,16Н,1-
									2H3
									InChI=1
									S/C12H12N
1,3-Dimethyl-5-								CC1 NN/	2O2/c1-9-
phenoxy-1H-				100025 10				CC1=NN(11(8-
pyrazole-4-	C12H12N2O2	C12H13N2O2	1.55	109925-10-	79,0542	134,0600	95,0603	C(=C1C=O)OC	15)12(14(2)
carbaldehyde				2				2=CC=CC=C2)	13-9)16-10-
(Fenpyroximate M-6)								С	6-4-3-5-7-
									10/h3-8H,1-
									2H3
									InChI=1
									S/C15H14N
									2O3/c16-
									15(20)17-
10,11-							C1=CC=C2	11-7-3-1-5-	
Dihydroxycarbamaze	C15H14N2O3	C15H15N2O3	1.80	35079-97-1	236,0710	198,0913	210,0913	C(=C1)C(C(C3	9(11)13(18)
pine	C1311141\2O3	C1311131\2O3	1.00	33079-97-1	230,0710	190,0913	210,0913	=CC=CC=C3N	14(19)10-6
pine								2C(=O)N)O)O	2-4-8-
									12(10)17/h
									-8,13-14,18
									19H,(H2,16
									20)
10,11-								C1=CC=C2	InChI=1
Epoxycarbamazepine	C15H12N2O2	C15H13N2O2	2.05	36507-30-9	210,0913	208,0756	,0756 236,0706	C(=C1)C3C(O	S/C15H12N
-r-nj-momnazopino								0(-01)030(0	2O2/c16-

3)C4	=CC=CC=	15(18)17-
C4N	V2C(=O)N	11-7-3-1-5-
		9(11)13-
		14(19-
		13)10-6-2-
		4-8-
		12(10)17/h1
		-8,13-
		14H,(H2,16,
		18)

9. Anexos

Tabela I: Ficha de informações do local de estudo e amostragem

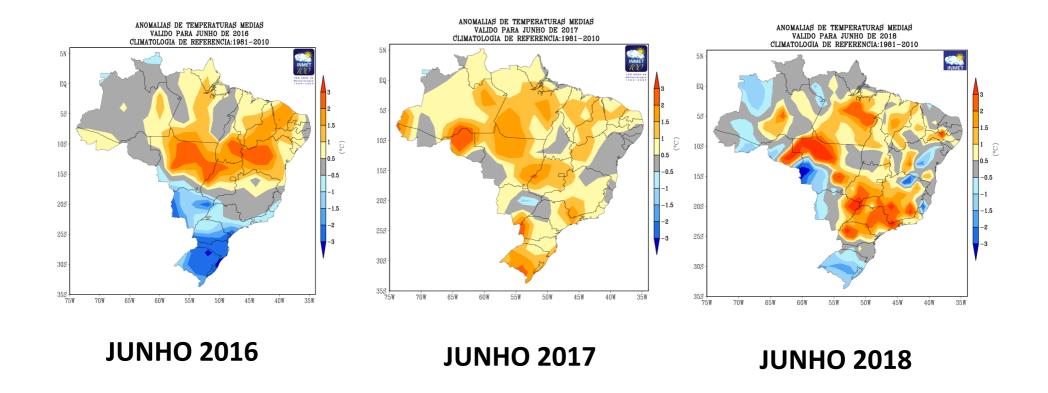

Local	Arroio Dilúvio – Porto Alegre -RS
Tipo de área	Urbana com lançamente de efluente doméstico
Extensão	28 Km
_	P1: 30°04'27.9"S 51°07'27.1"W
-	P2: 30°03'39.9"S 51°09'05.2"W
-	P3: 30°03'31.3"S 51°10'55.8"W
Pontos de coleta	P4: 30°02'43.3"S 51°11'55.6"W
-	P5: 30°02'51.1"S 51°12'51.3"W
-	P6: 30°02'49.5"S 51°13'59.5"W
Trecho coletado	12 Km
Tipo de material utilizado na coleta	Garrafa de vidro âmbar
Período do dia	Manhã
Modo	Contrafluxo
Pré análise	Condicionamento baixa temperatura (4°C ± 2)

Figura I – Pontos de amostragem das coletas realizadas no Arroio Dilúvio (Arsand et. al, 2020).

Tabela II: Condições climáticas nos períodos de coletas (Arsand et. al, 2020).

Mês /Ano	Precipitação Total (mm)	Temperatura max média (°C)	Temperatura média (°C)	Temperatura média mínima (°C)
Dec-16	128.1	30.9	24.7	20.0
Mar-17	165.6	29.1	23.4	19.3
Jun-17	196.9	22.0	15.9	12.3
Sep-17	164.7	26.4	20.5	16.5
Dec-17	153.5	30.4	24.2	19.6
Mar-18	99.4	28.6	23.1	19.2
Jun-18	149.8	18.7	13.3	9.88
Sep-18	168.0	24.3	19.3	15.7

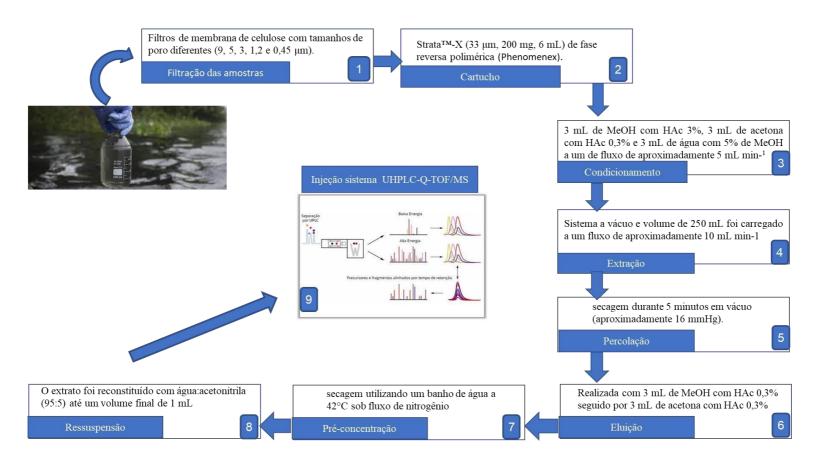
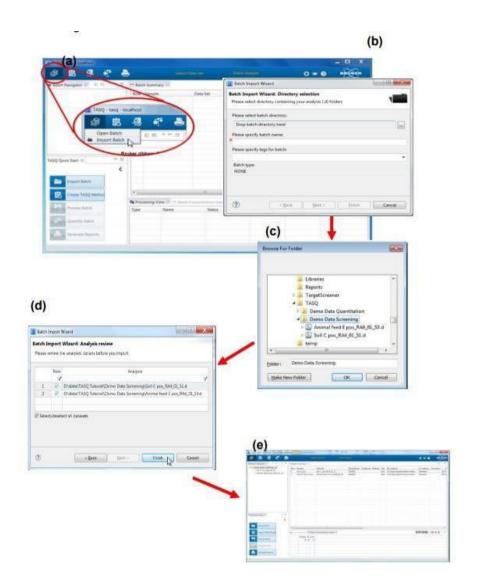
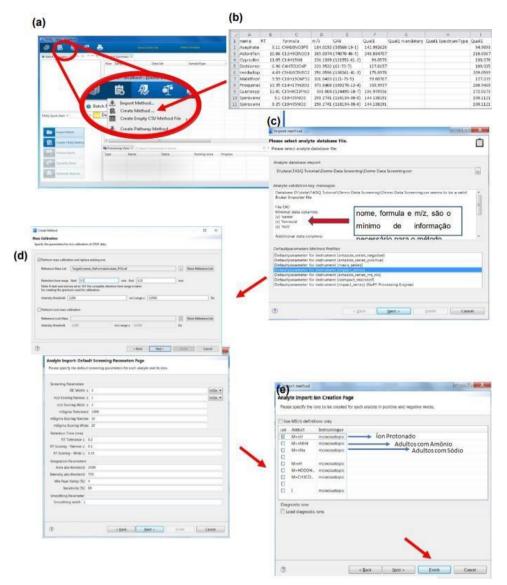


Figura II: Mapa térmico comparativo das temperaturas médias observadas na região de estudo para o mês de Junho nos anos de 2016, 2017 e 2018. **Fonte: INMET, clima.**


Tabela III: Análises complementares realizadas nas amostras: pH, condutividade, alcalinidade, turbidez e percentual de oxigênio dissolvido (OD) (Arsand et. al, 2020)..

An	nostra	pН	condutividade (μS/cm)	Alcalinidade	Turbidez (NTU)	OD (%)
	P1	6.42	376	11.7	8.42	8.6
	P2	6.62	362	9.9	8.21	8.8
Dec-16	P3	6.63	380	11.2	7.02	8.7
Ğ	P4	6.56	406	10.9	6.25	8.6
	P5	6.45	417	11.1	7.75	4.5
	P6	6.55	415	10.9	6.02	6.4
Mar-17	P1	7.54	209	5,9	15.48	8,0
	P2	7.72	234	6.0	6.48	7.9
	Р3	7.82	307	7.4	10.8	7.7
	P4	7.82	294	7.3	7.92	7.6
	P5	7.51	319	7.8	7.44	7.5
	P6	7.21	343	8.8	4.20	7.4
Jun-17	P1	6.96	232	8.8	8.52	9,0
	P2	7.08	234	6.1	7.20	7.8
	Р3	7.29	291	8.8	6.96	6.7
	P4	7.28	308	8.5	9.36	7.5
	P5	7.19	342	9.8	10.20	7.4
	P6	7.09	328	7.6	9.00	7.7
-də	P1	7.42	256	7.0	10.08	8.8


	P2	7.74	269	6.0	8.52	8.6
	Р3	7.72	335	3.3	9.24	8.6
	P4	7.54	350	6.3	6.24	8.6
	P5	7.35	388	10.0	7.68	8.6
	P6	7.16	397	8.3	5.52	8.6
	P1	7.66	178	4.3	8.21	8.8
	P2	7.41	211	4.6	7.55	8.5
Dec-17	Р3	7.76	247	6.6	6.99	8.6
Õ	P4	7.68	266	7.4	6.25	8.5
	P5	7.23	295	8.2	7.68	8.6
	P6	7.26	292	9.0	5.24	8.6
	P1	7.09	213	4.4	14.88	8.6
	P2	7.45	232	7.9	7.92	8.6
Mar-18	Р3	7.93	268	7.6	7.80	8.6
Ma	P4	7.59	282	8.7	10.32	8.6
	P5	7.47	302	10.1	9.48	8.5
	P6	7.24	300	10.4	6.48	8.5
	P1	6.90	284	6.3	6.24	8.8
	P2	6.85	283	6.4	4.80	8.7
Jun-18	Р3	6.84	343	6.5	6.00	8.7
ď	P4	6.89	339	7.2	7.44	8.7
	P5	6.85	356	7.5	13.68	8.7
	P6	6.68	360	7.0	5.76	8.7
Sep-18	P1	6.88	191	5.4	6.96	8.7
	P2	7.04	211	5.7	7.20	8.6
	Р3	7.36	254	7.5	5.76	8.6
Sej	P4	7.41	255	8.2	7.44	8.6
	P5	7.30	283	7.6	7.80	8.6
	P6	7.28	305	8.0	4.68	8.5

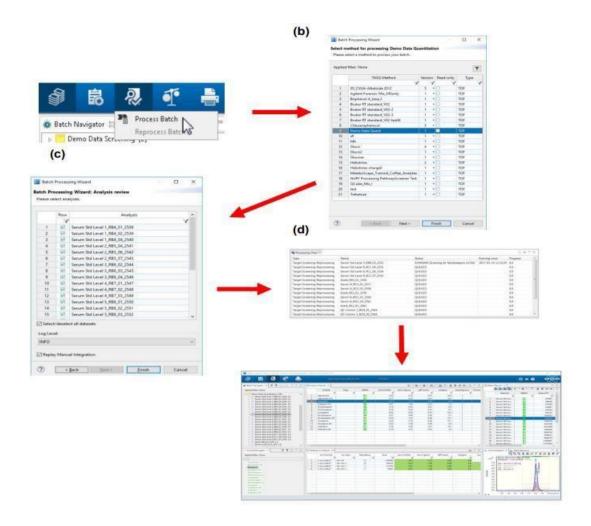

Figura III: Esquema do método de preparo de amostras de água superficial do Arroio Dilúvio pela técnica de extração em fase sólida (SPE) contendo as etapas de extração, *clean up* e concentração da amostra (Arsand et. al, 2020).

Figura IV: Esquema sequencial das telas do software TASQ demonstrando a introdução de amostras nas etapas de: (a) importar a sequência de amostras para o software (b) realizar a seleção do diretório (c) seleção de dados para importação da sequência de amostras (d) seleção das amostras a serem importadas e (e) verificar o resumo da sequência importada (elaborado por Perin, 2021).

Figura V –Esquema sequencial das telas do software TASQ demonstrando a criação do método de processamento: (a) Gerenciamento de métodos - Criar Método (b) arquivo de banco de dados no formato *.csv (c) Seleção do arquivo (*.csv) com informações dos analito (d) Definição dos parâmetros de triagem (e) Parâmetros de íons adultos (elaborado por Perin, 2021).

Figura VI – Processamento das amostras no software TASQ e geração de resultados dos compostos selecionados. (a) Comando de processamento (b) Seleção de método (c) Seleção de sequência de amostras a ser processada (d) Progressão do processamento (e) Resultado do processamento no software (elaborado por Perin, 2021)