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The collective interaction in a free-electroii laser with combined helical wiggler and uni- 
form axial guide fields is presented in the linearized regime. The analysis involves a pertur- 
bation of the Vlasov-Maxwell equations about the constant-velocity helical trajectories, and 
the general driving currents are derived for this configuration. The complete dispersion 
equation is then obtained for a monoenergetic beam. Analytic solutions are obtained in tlie 
strong pump and space-charge dominated regimes, and an extensive numerical analysis is 
presented for a wide range of operating parameters. The results indicate that substantial 
enhancements in the gain are possible when the relativistic axial gyrofrequency is compar- 
able to the free-electron laser doppler upshift. In addition, there is a range of parameters 
for which the ponderomotive potential acts to destabilize the electron beam. In this regime, 
we find both unstable electrostatic beam modes and largely electromagnetic modes with 
broad bandwidths. 

The physical process which gives rise to wave 
amplification in free-electron lasers stems from the 
interaction of a relativistic electron beam with a 
spatially periodic magnetic field (i.e., the wiggler or 
pump field) applied largely transverse to the direc- 
tion of bulk electron motion. The effect of the 
wiggler field is to provide a coupling between the 
electron beam and electromagnetic radiation fields 
which results in a ponderomotive force along the 
axis of the beam. The form of the interaction can 
be classified in a variety of ways depending upon 
such parameters as the magnitude of the electron 
current, the strength of the pump field, the bulk en- 
ergy and energy spread of the beam, and the length 
of the interaction region. For example, on the one 
hand, thermal effects can be neglected when the en- 
ergy spread in the beam AE « E o / N ,  where E. is 
the bulk beam energy and N is the number of 
wiggler periods in the interaction region. In this re- 
gime the entire electron beam participates in the in- 
teraction; however, collective (i.e., electrostatic) ef- 
fects are important only when the fluctuatirig 
space-charge potential is comparable to the pon- 
deromotive potential. The interaction in this collec- 
tive regime is referred to as stimulated Raman 
scattering, and describes the coupling of a 
negative-energy space-charge wave and a positive- 
energy electromagnetic wave through the presence 

of the wiggler. On the other hand, when thermal 
effects are important, the radiation is resonant with 
only a small fraction of the beam and the process is 
termed stimulated Compton scattering. We shall be 
concerned in this paper with the cold-beam lirnit, 
and deal with both the single-particle and collective 
regimes. 

An additional factor in the interaction is intro- 
duced by practical limitations in the propagation of 
intense electron beams; specifically, that an axial 
guide field is required to collimate intense beams in 
the transverse direction. This is of primary impor- 
tance to free-electron laser experiments operating at 
millimeter ~ a v e l e n ~ t h s l - ~  which employ relatively 
high-current ( > 1 kA) arid low-energy ( - 1 MeV) 
electron beams. In contrast, an axial guide field is 
not a practical necessity for infrared free-electron 
laser experiments6--' which typically operate at 
much lower ambient currents ( -  1 A) but higher en- 
ergies ( - 50 MeV). However, the effect of the axial 
guide field on the free-electron laser mechanism 
may be relevant in the latter case as well because of 
enhancements in the gain which may resullt when a 
guide field is present. 

The effects of an axial guide field have been 
treated from the standpoints of both a fluid9-l3 2nd 
a kinetic14-l6 theory. It is our purpose in this work 
to treat the question 01 the free-electron laser insta- 
bility in the presence of an axial guide field in both 
the tenuous (i.e., single-particle regime) anci dense 
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(i.e., Raman regime) beam limits by means of a 
solution of the Vlasov-Maxwell equations. In the 
interest of analytic tractability a cold-beam approxi- 
mation is imposed, and the contributions due to cy- 
clotron mode interactions are included. The organi- 
zation of the paper is as follows. In Sec. 11, we 
develop the fluctuating source currents by solution 
of the Vlasov equation. The unperturbed orbits are 
assumed to be constant axial velocity (helical) trajec- 
t~ries,""~ and the source currents are found for a 
general equilibrium distribution. The general 
dispersion equation is obtained in Sec. 111, and 
solved in severa1 analytically accessible regimes for 
a cold-beam limit. A detailed numerical solution is 
presented in Sec. IV for a wide range of operating 
parameters. A summary and discussion appears in 
Sec. v. 

11. THE SOURCE CURRENT 

In this section we derive the fluctuating source 
current by means of solution of the linearized 
Vlasov equation. The physical configuration we 
consider is that of a relativistic electron beam pro- 
pagating through an ambient magnetic field com- 
posed of a periodic helical wiggler field and a uni- 
form axial guide field 

where the wiggler field is assumed to be generated 
with a bifilar helix and is derived from a vector po- 
tential of the formI9 

-1; (k,r )sin(B-kwz)êo (2) 1 
in cylindrical coordinates. In Eq. (2), B, and 
k, ( =2a/Aw, where A, i$ the wiggler period) are 
assumed to be constant and Il and I ;  are the modi- 
fied Bessel function of the first kind and its deriva- 
tive, respectively. Since for most free-electron laser 
experiments the initial beam radius is a small frac- 
tion of the wiggler period, we shall expand in 
powers of k,r and write 

The single-particle orbits in these combined fields 
have been amply discussed in the l i t e ra t~re . '~ , '~  and 
will not be discussed in depth here. We shall re- 
strict consideration to orbits which are given ap- 

proximately by stable helical trajectories, and 
write~5,~8 

px = ymv,cosk,z +Pxcosflot -PysinRot , 

p, = ymv,sink,z + PxsinRot + PycosCIOt , (4) 

pr=ymvll -Pw[Pxcos(kwz-flot) 

-P,sin(k,z -Qot I] , 

where v, R,.u 1 1  /( Qo - k, v 1 1  ) and v 1 are the trans- 
verse and axial velocities corresponding to the 
helical trajectories, a , ,  I eBo,, /ymc I , 
y=(l-v2/~2)-1 '2 ,  B u ~ ~ w / ~ I l  is the pump 
strength parameter, and Px and P, are constants 
which correspond to the canonical momenta in the 
limit as Bo-+O. Equations (4) are valid as long as 
I PwPx,, / « / ymvli I and require that v, and vil 

are related via 

2 2 u l l  + ~ , = ( l - y - ~ ) c ~  , (5) 

which constitutes a quartic equation for U I I .  Equa- 
tion (5) describes at most four distinct classes of tra- 
jectories, of whizh one is characterized by motion 
antiparallel to Bo and will be ignored. Of the 
remaining trajectories having motion parallel to Bo, 
we restrict consideration to those which are 
~ tab le , '~~"  i.e., for which 

The typical dependence of the axial velocity on 
B, is shown in Fig. 1, in which we plot Pii ( -v1 1 /c) 
versus Do (=flo/k,c) for a kinetic energy of 1.5 
MeV and wiggler amplitude and period such that 
Rw/kwc =0.05. There are two classes of stable or- 
bits. One class (referred to as group I) of orbits is 

80 
FIG. 1 .  Graph of the axial velocity vs /Io ( =CLo/kwc) 

for a beam energy of 1.5 MeV and a wiggler amplitude 
and period such that O, /kwc  =0.05. 
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characterized by high axial velocities and has 
k,vi > ( 1 +& )ao. For these trajectories the axial 
velocity decreases monotonically with increasing Bo 
until vil = ( l+p; )&c which is the orbital stability 
boundary. For the parameters shown, this occurs 
for B0e0.765. The second class of orbits (group 11) 
is characterized by an axial velocity which increases 
monotonically from zero with increasing Bo, and 
high axial velocities are, typically, found only when 
Do' 1. In contrast to group I trajectories, the stabil- 
.ity criteríon (6) is satisfied for these orbits because 
k,vil < a 0 .  It will be shown in Sec. 111 that the re- 
lative magnitude of k,vli and ao for group I and I1 

I 

orbits has important consequences on the excited 
spectrum. Finally, it is important to note that 
k,v,l#flo for either class of orbits. Were the 
equality to hold it would imply an infinite v,  which 
would violate the conservation of energy represent- 
ed by Eq. ( 5 ) .  

The source current is obtained from the velocity 
moments of the perturbed distribution function 
8fb(z,$,t)=fb(z,j3,e )-Fb(px,Py,p), where fb  is the 
complete distribution, Fb is the equilibrium distri- 
bution, and 8fb is assumed to be first order in the 
radiation fields. The formal solution of the Vlasov 
equation to this order is 

where the solution is para~etrized in terms of the axial position relative to the start of the interaction region 
(at z =O) and t (z) =to + dzl/u,(z') is the sum of the time required for an electron to transverse the distance 
z and the entry time to. 

Jo 

We assume plane-wave solutions of the form exp( -iwt) and choose to work with the scalar and vector po- 
tentials 

and 

8Â(z, t ) =  ;8Â(z)exp( -iwt )+c.c. , 

where êZ.8A^(z)=0. Hn addition, since the assumption of small P, and Py are implicit in the analysis, we adopt 
an equilibrium distribution of the form 

Fb(Px,Py,p)=nb8(Px )8(Py )Gb(p) , (8) 

where nb is t&e number density of the beam, and Gb(p) is an arbitrary function subject to the normalization 
condition Jo dppG,(p)/p, = 1. Observe that the choice of a distribution of this form (8) confines the equili- 
brium trajectories to be those constant axial velocity (helical) orbits described by ( 5 ) .  The interested reader is 
referred to Freund et a1.l5 for a detailed derivation of the perturbed distqbution and source current. We con- 
fine ourselves here to the final result. With respect to the basis ê+ = i(êxkiéj,), the source current can be 
written in the form 

where 

(10) 
and 
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In Eqs. (10) and (1 11, wb is the beam plasma frequency, p +  =p, ~ ip , , ,  
h 

D+ = - e~p[k i i2~ t ( z ) ] (  6Âi(z)-6~+(0)exp[i(wT~o)~íz,0)] 

- +inoJo ~ s R ^ i ( z l l e x p [ i ( ~ T ~ o ) ~ ( z , z ' ) ]  dz' ) , 

and 

where r(z,zl)=t (2) -t(zl). Finally, we assume the spatial dependence of the fields to be 
h 

6 Â + ( z ) = 6 ~ ~ ( 0 ) e x ~ ( i k ~ z )  

and 

6~(z)=6$(0)exP(ikz) . 
As a result, the source currents can be expresed as 

and 

and it has been assumed that Gb(p) =O for p =O, co . Observe that Eqs. (14) - (19) are equivalent to the result 
found by Sprangle and smith20 in the limit as Bo-+O. 

111. THE DISPERSION EQUATION 

The dispersion equation is obtained by substitution of the source currents [Eqs. (14) - (19)] into Maxwell's 
equations 
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This results in a set of three coupled equations for the initial field amplitudes 

where the wavelength matching conditions imply that k* = k ~ k ~ ,  and 

describes the dispersion properties of the pure electromagnetic modes in the combined wiggler and axial guide 
fields. The dispersion equation itself is found by setting the determinant of the matrix of coefficients of Eqs. 
(21) to zero, which yields 

It is evident that Eq. (23) describes the coupling between the electrostatic beam mode with each of the elec- 
tromagnetic modes. 

In the interest of analytic tractability, we shali now assume that the electron beam is sufficiently cold that a 
monoenergetic distribution of the form 

can be employed. As mentioned previously, this is generally valid as long as the momentum spread 
Ap «po/N. Combination of (23) and (24) yields a dispersion equation of the form 

, , , Pk o: a+(k-kw,w) a - (k  +kw,a )  
( a -kv l I )  - K  v i l=  

2 y I r+ (k  -k,,o) i- r-(k +kw,o)  

to second order in the wiggler amplitude, where all orbit quantities (i.e., U I I ,  yz, Pw, etc.) are computed using 
Po, 

and 
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In addition, we have defined 

and 

In Eq. (251, ~ + ( k ~ k , , w )  describes the circularly polarized electromagnetic modes in the absence of the 
wiggler, and the left-hand side describes the electrostatic beam modes. Observe, however, that the presence of 
the wiggler modifies the natural electrostatic response frequency by a factor of Q defined in (29). 

The wiggler field, therefore, provides a coupling between the space-charge wave and either polarization shte  
of the electromagnetic wave. We choose, without loss of generality, to focus on the coupling with the 6A+ 
mode. As a consequence, we shall assume that I ~ + ( k  -kw,w) I << I E-(k+kw,w) 1 and neglect the t e m  in 
E I ' ( ~  +kw,w) in (25). If we assume in addition that wb/yw2 << 1, then the dispersion equation can be cast 
into the substantially simpler form 

where we have written k +  =k  -kw for simplicity. Peak gain in (31) can be expected to occur near the inter- 
sections of the electrostatic and electromagnetic dispersion curves. A schematic representation of the disper- 
sion relation is shown in Fig. 2 for a o >  wb/y"2. Evidently, high-frequency interactions with the electrostatic 
beam mode can occur only in the positive w and k +  quadrant when v11 > 0, and we shall restrict the analysis 
to this regime. It should be observed that the slope of the space-charge modes (w = k + v i l  + kwvl + K V I I  is 
identical to the pure cyclotron mode (w = k + v 1 +Oo), and the relative magnitudes of the k + = O  intercepts of 
these curves determine which branch of the electromagnetic dispersion curve participates in the interaction. 
This point will be discussed in more depth at a later stage of the analysis. 

The dispersion equation represented by (31) is a fifth-degree polynomial in k. If we make the restriction 
that k + > 0, then (31) can be reduced to the following quartic equation: 
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FIG. 2. Schcmatic representation of the dispersion 
curves for the 6A + mode showing the passive interaction 
between the cyclotron and the pure electromagnetic mode 
at 1-,61 )-'CIO. 

where (=wb/y'/2ckw is the beam strength, 
C ~ K ~ = W ~ - W ; / ~ ,  

and AK=K - ( o - C l o ) / v l .  It is clear that tlie na- 
ture of the interaction is strongly dependent upon 
the sign of Q,, which affects the natural electrostatic 
response frequency of the plasma as well as mediat- 
ing the ponderomotive force.2 In the limit as 
Bo-+O, Q, approaches unity and (32) reduces to the 

-2L 

FIG. 3. Graph of <D vs /30 for both group I and group 
I1 orbits for a beam energy of 1.5 MeV and a wiggler am- 
plitude and period such that n , / k , c  =0.05. 

well-known results in the limit of zero axial 
field.20-22 The behavior of Q, when the guide field 
is finite, however, is strongly dependent on the type 
of orbit under consideration, The variation of Q> 
with po is shown in Fig. 3 for the parameters used 
to generate the orbits in Fig. 1. As shown in the 
figure, Q, 2 1 for group I orbits and contains a 
singularity when O,( 1 +&, ) = kwv I which is the or- 
bital stability boundary. In the case of group I1 or- 
bits the magnitude of Q> is, typically, less than or of 
the order of unity, but Q> is negative for axial guide 
fields less than a critical magnitude given by 
[ 1 +&,( 1 - y:)]Oo= kwv l l .  As Bo increases beyond 
this critica1 value Q, approaches unity; however, it 
should be noted that P, decreases monotonically 
with increasing Bo in this regime. In either case in 
which Q> > O, the interaction is basically one in 
which a positive-energy electromagnetic wave is 
coupled to a negative-energy space-charge wave by 
the action of the wiggler. Neither wave is intrinsi- 
cally unstable and growth occurs when the wiggler 
amplitude is above threshold. However, when Q> is 
less than zero, K is imaginary and the space-charge 
waves, themselves, comprise a complex-conjugate 
pair o= kvll +i I K I V I , ,  one of which is unstable. As 
a result, we shall distinguish between these two pos- 
sibilities and treat the solution to the dispersion 
equation when Q> is positive and negative separately. 

In this regime we observe that the orbital stability 
criterion implies that 

for group I orbits, and the requirement that Q> be 
positive leads to the condition that 

for group I1 orbits. As a consequence, the intersec- 
tion between the space-charge and electromagnetic 
moda occurs at frequencies greater (less) than 
O 1 - for group I (11) orbits when 
K U I I  << / kWuil  -O0 / . This condition is satisfied as 
long as (P < y z g - ' ( ~ w / ~ o ) 2 / 3  and, since lj « 1 is 
irnplicitly assumed in order to neglect self-field ef- 
fects, is a relatively weak constraint. A schematic 
representation of the interaction is shown in Figs. 
4(a) and 4(b) for group I and I1 orbits in which we 
plot w versus k +  and the dotted line represents 
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k + 
2y,Zkw Pll 

FIG. 4.  Schematic representation of the interaction for 
group I (a) and group I 1  (b) orbits when @>O. Dotted 
line denotes complex-conjugate roots. 

complex-conjugate roots. It is the lower (i.e., 
a = kv I - KU 1 I ) space-charge mode which produces 
the active coupling and wave growth since this is 
the negative-energy mode. We note that from (34) 
and (39, the intersections are not close to the 
cyclotron line and occur approximately for 
a-ck + e ( k  + + kw )v 1 .  This is the well-known 
free-electron laser resonance at k + - 2 d k , ~ ~  1 .  

If the beam strength parameter is sufficiently 
small that (<< ~ , ( B , / B ~ ) ~ / ~  and y Z ( ~ w / ~ o ) 2 / 3  

X @'I2,  then the cyclotron resonance effects can be 
neglected and the dispersion equation reduces to the 
cubic 

where we have chosen Sk k - w/v -K, and 

Ak = k ,  + K  - w /v 1 ,  - K is the frequency mismatch 
parameter. Equation (36) reduces to the result 
found by Sprangle and smith20 in the limit as 
Bo-+O, and corresponds to the limit discussed by 
Friedland and ~ ruch tman . ' ~  

The single-particle or "strong-pump" regime oc- 
curs when I Sk 1 >> / 2~ / . In this regime, (36) can 
be approximated by 

Peak growth occurs when Ak-O, for which the 
complex roots are 

Therefore, self-consistency imposes the requirement 
that 

in order for Eq. (37) to be valid. It is important to 
recognize that in this regime the coupling between 
the electrostatic beam mode and the 6A+ mode is 
relatively uninnportant, and the strength of the 
pump and ponderomotive potential completely 
dominate the interaction. Because of this, (37) can 
be recovered i11 a much more direct manner by ig- 
noring the space-charge potential in (21) and setting 
A+(k -k,,w)=O . 

In the opposite, or space-charge dominated 
(or stimulated Raman scattering), regime, 

/ 6k I << / 2~ 1 and space-charge effects are 
predominant. Here, the dispersion equation is of 
the form 

which has the solutions 

~ k ~ i ~ k ~ i ( ~ k ~ - p i d ~ ~ ~ ~ k , ) ~ / ~  . (41) 

Peak gain is found for Ak=O in this regime as well 
and is 

The Raman regime, therefore, occurs when 

and requires relatively large beam currents. 
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As mentioned previously, the space-charge waves 
are intrinsically unstable in this regime and a 
relatively broadhanded spectrum of excited 
electrostatic-electromagnetic waves is expected to 
occur. In addition, since we are dealing with group 
I1 orbits 

and the possibility of a cyclotron mode interaction 
exists when yZ - 1 << (Bo/Bw 12. 

In the high frequency w >> ( 1 -Pil )-'ao and high 
k » k, regime, the space-charge waves are charac- 
terized by frequencies w «ck+, and the cyclotron 
resonance contributions can be ignored when 

In this regime we recover the cubic dispersion Eq. 
(36) found earlier (when @>O). For frequencies 
such that I Ak 1 «Sk the free-electron laser 
solutions are obtained; however, for high-frequency 
space-charge modes 1 Ak I e w  ( 1 - 8 I ) /v  i 
>> 16k I . For these waves, the dispersion equation 
can be approximated by the quadratic 

GROUP I ORBITS fio = 0.75 y = 3.94 

10 14 18 22 26 
w/k,c 

FIG. 5. Graph of Imk/k ,  vs w/k,c  for group I or- 
bits. 

IV. NUMERICAL ANALYSIS 

In this section, we conduct an extensive numeri- 
cal analysis of the quartic dispersion Eq. (32) for a 
beam characterized by y=3.94 (1.5 MeV) and 
6=0.1, and a wiggler such that Ow/kwc =0.05. 
Our procedure is to solve (32) for a wide range of 
axial field strengths in the vicinity of f ioekwc by 
self-consistently calculating v 1  for each case and for 
both types of stable trajectory. As in Sec. 111, we 
distinguish between the regimes for which @ is pos- 
itive and negative. 

In the limits in which @ is positive, the disper- 
sion properties of (32) are qualitatively represented 

GROUP II ORBITS: 0>0 
y = 3.94 

Q,/k,c = 0.05 

-0,  (46) 

which has been expressed in terms of k rather than 
6k for convenience. The solution 

w 
k--+i / r  l - 4 8 1 1 ~ ( l + P i l )  I O' 

] I 2  (17) 

is obviously a modified space-charge wave. Pt 
should be observed that the presence of the wiggler 
acts as a stabilizing influence, and for sufficiently 
strong pumps [i.e., /3$PII& 1 +BI ) > 41 the mode is 
stable. 

In the opposite limit in which w « ( 1 -81 1 ) -  ' ao ,  
it is more difficult to satisfy condition (43, and the 
cyclotron resonance is of greater importance. This 

20 22 24 26 
regime will be discussed in depth in Sec. IV in the w/k,c 

context of a complete numerical solution of the FIG. 6. Graph of Imk / k ,  vs w / k ,  for group I1 orbits 
dispersion equation. (Q > O). 
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in Fig. 4 for orbits in groups I and 11. The growth 
rates (Im k/kw) are plotted versus frequency for 
severa1 appropriate values of Do in Figs. 5 and 6 for 
the two types of trajectory. Instability is found to 

I I 
, I ,  

6 GROUP II ORBITS: @<O 

I y = 3.94 
Rw/kwc = 0.05 

4 = 0.1 

I I I 

occur for 04 1 -OI I )-lkWv I I which corresponds to 
the well-known free-electron laser resonance condi- 
tion. The observation of decreasing (increasing) fre- 
quencies of instability with increasing axial field for 
group I (11) orbits can, therefore, be explained by ex- 
amination of Fig. 1 in which it is seen that vil de- 
creases (increases) with increasing &. 

The behavior of the peak growth rates for the 
two classes of orbits can also be readily explained. 
As shown in Fig. 7, the peak growth rate for group 
I orbits is a monotonically increasing function of Bo 
up to the singularity at the orbital stability boun- 
dary (at D0?0.765 for this choice of parameters). 
This behavior is due to increases in both Pw and @ 
with the axial field which results in increases in the 
effects of both the electrostatic/electromagnetic 
coupling and the ponderomotive potential. Observe, 
however, that the singularity is due solely to the 
character of @ since D, is everywhere finite. The 
scaling of the maximum growth rate with Do is also 
shown in Fig. 7 for group I1 trajectories. In this 
case, however, Q> is bounded by unity and increases 
monotonically from zero (at D o e  1.25) with increas- 
ing axial fields. In addition, Dw decreases monoton- 
ically to zero with increasing Bo for group I1 orbits 
since limBo,,Dw =Bw /Bo As a consequence, the 
peak growth can be expected to initially increase 
from zero at D0=1.25, and to decrease again slowly 
to zero as the axial field becomes large. This 
behavior for the growth rates of each class of orbit 
is in qualitative agreement with that found previ- 
ously in the context of a low gain theory.15 Finally, 
since it is our intention to treat the collective re- 

1 2 

B o  

FIG. 7. Graph of (Imk /kw ),,, as a function of the ax- 
ia1 guide field for group I and group I1 (a > 0) orbits. 

I I I I 

3 6 9 
Re k+/k, 

FIG. 8. Graph of w /ckw vs Rek, /kw for group I1 or- 
bits (a <O) and Po=o.5. 

o / c k ,  

FIG. 9. Graph of Imk/kw vs w/ckw for group I1 
(@ < 0) orbits and Po=O 5. 

GROUP II ORBITS: @<O 

y = 3.94 

Qw/kwc = 0.05 
5 = 0.1 

3 
Y . 
Y 

E - 
0.1 

2 4 6 

- 

I 

fio = 0.5 

I I I 



2014 H. P. FREUND et al. 

gime, the parameters have been chosen to corre- 
spond to the space-charge dominated limit dis- 
cussed in Sec. I11 and the numerical results for the 
peak gain can be recovered from Eq. (40) to within 
an error of a few percent. 

Some care must be taken in the characterization 
of the dispersion properties of (32) when @ <O. For 
low axial fields (po<0.7 for the parameters under 
consideration) both vil and I @ I are low and condi- 
tion (43) is not well satisfied when 
w < ( l - - ~ ~ ~ ) - ' f l ~  This regime is illustrated in Figs. 
8 and 9 in which we plot w/ckw versus Rek, /kw 
and Imk/kw versus w/ckw, respectively, for 
Po=0.5. The dashed line in Fig. 8 corresponds to 
complex-conjugate roots. Evidently, two instability 
regimes exist. At high frequencies, the modified 
space-charge wave discussed in Sec. IIIB is ob- 
tained with an asymptotic value (i.e., high-w limit 
of Imk/kw) which agrees to within 1% of the 
predicted value in Eq. (45). The instability found at 
lower frequencies is difficult to treat analytically, 
and corresponds to a modified cyclotron mode. 

For higher axial fields (p0'0.71, the character of 
the unstable modes is altered. As shown in Fig. 10, 
in which we plot w/ckw versus Rek+/kw for 
Do= i, there are still two unstable regimes. While 
the higher frequency regime corresponds to the 
modified space-charge mode in this case as well, the 
lower frequency instability requires some discus- 
sion. The growth rate in this regime is plotted as a 
function of frequency in Fig. 1 1 for Po = O. 8, 1, and 

20( GROUP II ORBITS: @<O 
y = 3.94 

QW/kwc = 0.05 

5 = 0.1 

Re k+/k, 

FIG. 10. Graph of w/ckw vs Rek+/kw for group I 1  
(@ < 0) orbits and fio= 1. 

GROUP II ORBITS: @<O 
y = 3.94 

Qw/kwc = 0.05 

5 = 0.1 

FIG. 11. Graph of Imk/kw vs w/ckw for group I 1  
(@ < 0) orbits and fiO=O. 8, 1, and 1.2. 

1.2. In each case, the peak in Imk /kw observed for 
the lower frequency instability corresponds to the 
region shown in Fig. 10 in which the real part of 
the complex modes (dashed line) exceeds that of the 
waves which are purely real. Near the peak AkzO, 
and the instability which results is a largely elec- 
tromagnetic free-electron laser interaction which 
(for our choice of parameters) agrees to within a 
few percent of the analytic expression for the peak 
growth rate (40) in the collective, or stimulated Ra- 
man scattering, limit. As the frequency decreases, 

1 Ak I increases and the character of the instability 
becomes increasingly electrostatic and we find an 
unstable modified space-charge wave for frequen- 
cies w 2 no. 

V. SUMMARY AND DISCUSSION 

In this paper we have analyzed the linear growth 
rate in both the single-particle and collective re- 
gimes of operation of a free-electron laser configu- 
ration which contains a uniforrn axial guide field. 
The technique employed consists, essentially, of a 
Vlasov theory of the perturbations about constant- 
v11 helical trajectories, and includes the effects of 
both stimulated Raman scattering with electrostatic 
beam modes and the effect of the ponderomotive 
potential due to the exited radiation. Analytic ex- 
pressions for the growth rate in these two regimes 
are found and a comparison is made with a numeri- 
cal solution of the full dispersion equation. Sub- 
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stantial agreement is found between the analytical 
and numerical treatments. In addition, substantial 
qualitative agreement also exists between the 
present work, which is in the high gain regime, and 
the small signal the~ries.""~ 

The results indicate that substantial enhance- 
ments in the growth rate of the free-electron laser 
instability may be obtained by the inclusion of an 
axial guide field in which f i o ~ c k w ,  as a result of in- 
creases both in the transverse velocity and the pon- 
deromotive potential. It should be pointedl out, 
however, that the presence of the guide fielci also 
gives rise to instability in the electrostatic beam 
mode for group I1 orbits when @<O. Since this 
may have a degrading effect on beam quality and, 
in turn, on the operating efficiency, further stiidy of 
this question is required. 

A cyclotron mode interaction in the collective re- 
gime has been found only where the axial velocity 
and I 0 I are relatively small. However, two fac- 
tors should be noted. The first is that our chaice of 

equilibrium orbits (i.e., with P, =P, =O) has intrin- 
sically ignored the random (or Larmor) component 
of the transverse velocity which can be expected to 
be the primary source of a gyrotron type of instabil- 
ity. The second is our choice of an idealized mag- 
netic field structure in which transverse gradients in 
the wiggler field have been neglected, which is valid 
only for orbits in which kwr << 1. Since small v 1 i 
implies large transverse velocities and excursions 
from the axis of symmetry, the choice of an ideal 
wiggler ultimately breaks down in this limit. 
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