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Photocount fluctuation problems, treated previously for Gaussian statistics only, or in
the limit of short measurement times, have been extended to arbitrary times (compared
with the intensity correlation time) and to general Markoffian processes. In particular,
we calculate the distribution function of the time-integrated light intensity for a laser op-
erated near threshold.

The statistical distribution W(0) of 0, the light
intensity integrated over a time T, is studied ex-
perimentally in terms of the probability'

gm
p (m, T) = jt 0, e "W(0)dQ

of achieving m photocounts in a time T. These
distributions, even for small m, are interesting
and difficult to compute because they contain in-
formation concerning general multitime correla-
tions of intensity fluctuations. For short times
compared with an intensity correlation time, the
probability density W(0) is determined by the
steady-state distribution of light intensity, and
is relatively uninteresting. For larger times,
only the case of a Gaussian distribution of light
amplitudes has been calculated. ' 4 These results
are appropriate to a laser well below threshold.
For a laser near threshold, whose behavior is
clearly nonlinear, the vacuum of available theory
will be filled by this Letter. Our procedure
applies to general Markoffian processes, of
which our laser model is a special case.

The distribution p(m, T) depends on three pa-

rameter s: s = A, T, the linewidth of the spectrum
of intensity fluctuations times measurement time;
p, the net pumping rate, which defines the oper-
ating point of the laser; and (m), the mean
counting rate, which depends on counter efficien-
cy and geometry. The probability density W(0)
is a more favorable quantity to deal with in that
it can be scaled to eliminate the dependence on
(m) = (0):

W(0, s,p, (0))= (0) 'V(cu, s,p);

&u = 0/(0).
Our method consist:s of calculating the Laplace
transform of V(&e) and then inverting this trans-
form.

We start from the work by Kelley and Kleiner'
who showed that, for conditions that can be well
approximated experimentally, the probability
p(m, T) of measuring m photocounts in a time T
with an absorption detector is given by the multi-
time quantum -mechanical average

p(m, T) = (T~(Q,p
'e "ov/m!)),

0.,= ef, b'(t)b(f)df,
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where T& is the time and normally ordering op-
erator, ' b~(t) and b(t) are the creation and anni-
hilation operators of the (single-mode) electro-
magnetic field, and e takes account of the effi-
ciency of the detector and the geometry of the ex-
periment. Lax and Louisell' showed that for
lasers for which the atomic rate constants are
fast compared with the photon-decay constants,
b ~ and b have a random Markoffian behavior and

obey equations of motion of the form of a rotat-
ing-wave Van der Pol (RWVP) oscillator, with
quantum noise sources that can be calculated
from first principles. A dynamic correspon-
dence was also established' between the average
of time and normally ordered multitime quantum-
mechanical Markoffian operators, and the clas-
sical average of the classical random variables
corresponding to these operators. Defining P(t)
and its complex conjugate P*(t) as the classical
variables corresponding to b(t) and b~(t), the
complicated Eq. (3) reduces to Eq. (1), the fa-
miliar Mandel' formula, where W(Q) now stands
for

W(Q) = g(Q-~ f, p(t)dt)); p(t) = IP(t)I'. (4)

Instead of calculating W(Q), we shall find it more
convenient to calculate

M(A') = fe "W(Q)dQ

and then invert the Laplace transform. Scaling
W(Q) according to Eq. (2), Eq. (5) becomes,
writing iY = XT(p),

M(A, s,p) = fexp(-iT (p)(u) V((u, s, p)d(o

= (exp [-Xf p(t)dt]). (5)
Eq. (1) becomes

p(m, T =J( ((m) (u)"'

&& exp(-(m)(u) V((u, s, p)d(u. (7)

Following techniques used by Kac and Siegert,
Lax showed that for random Markoffian process-
es in a set of variables a. = [a» a„],where p
is an arbitrary function of the set a., Eq. (6) can
be calculated from

M(a, s, p) = ada, P, (a, ) fdaP(a, t~a„t,),
where P, and P satisfy the equations

LPO = 0, &P/at = —(L+ Xp)P,

subject to the condition

(I +zp)P, =A, P, (L'+&*p*)i;=A;*i;. (»)
The Green's function solution of Eqs. (9) and (10)
~ s10

P(a, t~a„t, ) =Q„e "'P.(a)j „+(a,),

I;-t0 —T -o (12)

For ordinary Fokker-Planck processes (which
include our RWVP oscillator) it was shown' that
time reversibility in the form of detailed balance
is sufficient to guarantee that

q' P/Po; y-* P/Po. - (13)

[In fact, it is possible to show that for general-
ized Fokker-Planck processes, detailed balance"
is both a necessary and sufficient condition for
Eqs. (13) to be valid. ] Substituting Eqs. (12) and
(13) in Eq. (8),

M(A, s,p) =Q„exp( —A s/A, )[fP„(a)da]'. (14)

Our Fokker-Planck operator can be written in
the form'

8 82 1 82L= (2P' -2pP —4) + .-(4P) -+-
8p 8p P 8P (15)

Although L is not separable, its eigenfunctions
have the form f (p)exp(ily). The integral over y
in Eq. (14) assures that only the I = 0 or pure
amplitude fluctuation modes contribute to p(m, T).
Writing these t = 0 eigenfunctions of L as PJ (p),
we can solve for the corresponding P (p) by
setting P (p ) =Q~PJ (p)C,, to obtain the secular
equations for CJ and the associated eigenvalues
A

Q, [(w, -A.)5,, +zp, , ] c,.=0,

p;, = fdpP;(p)pP; (p)/P. (p) (17)

The use of the biorthogonality of PJ (p) against
yo(p) = 1 permits one to reduce Eq. (14) to the
simple form

cess and P is a conditional probability for a
modified process in which "particles" disappear
at a rate ~p. In our case of the RSVP oscillator,
a, =P, a, =P*, and P=p" exp( —ip). We will as-
sume that I., generally a non-Hermitian opera-
tor in the Sturm-Liouville sense, and its adjoint
L~ (and likewise L+Ap and its adjoint) have com-
plete sets of biorthogonal eigenfunctions:

LPq' AJPJ ' L y1 AI yj

P(a. , t, ~a„ t,)
= 5(a-a, ). (10)

M(X, s, p) = Q.exp]-sA. (X,p)/a, (p)]
Here I. is the generalized Fokker-Planck dif-
ferential operator of the original random pro-

938



VOLUME 24, NUMBER 17 PHYSICAL REVIEW LETTERS 27 APRIL 1970

(A;j and A, were given by Risken and Vollmer"
and by Hempstead and Lax." The latter also
computed p;J for i,j = 0, 1, ~ ~ ~, 10."

The standard inversion of the Laplace trans-
form requires knowledge of M(A) for A. —+i~,
and for large ~ the 11&11 matrix procedure of
Eq. (16) is no longer valid. We therefore tried
the real-axis techniques of Bellman et al." in
which the Laplace integral is replaced by a
summation formula involving V(v;), i = 1, 2,
n E. valuating M(A) at A=X~, j =1, 2, , n, leads
to n simultaneous equations for the V(~;). Since
we are performing an "unsmoothing" operation,
the matrix to be inverted will be ill conditioned
(i.e. , significant figures are lost on inversion)
unless the points XJ and co; are chosen judicious-
ly. We found the Gauss-Laguerre integration
formula to work well, with the ~, at carefully
chosen uniform spacing.

To obtain a continuous function V(&u) rather
than a discrete set of values V(~;), we intro-
duced the new procedure of representing V(&u) by
a judiciously chosen function times a polynomial.
The n polynomial coefficients were determined
to satisfy n values of the Laplace transform.
Continuous solutions consistent with the previous-
ly obtained discrete results were achieved in
the region —10 ~p ~ 1 with

V(&u, s,p) = [I'(a)] 'a'&u' 'e '~g„b u, (19)

OO

OO

— V(~)

2.

s =.I

s= I.

s = lo.

and in the region 1 &p & 10 with
OO l.5

V(a&, s,p)

=N(o/P) exp{o,&u-(t)ur/2)'jQ d, a . (20)

The functions multiplying the polynomials were
themselves initially normalized and of unit mean,
and their second moment was set to be nearly
equal to that of V(~) itself. " Five terms in the
polynomials were usually sufficient. Equation
(7) can now be expressed as a sum of simple
functions with appropriate coefficients.

Figure I summarizes some of our results for
the density function V(v, s, p) for various values
of s and p. Laser threshold is defined by p = 0.

In the past, the special case of a Gaussian
random Markoffian variable P has been studied
in detail. The exact W(Q) was computed by
Slepian2 for real P, and by Zakeman and Pike4
for complex p. The exact p(m, T) for complex
P was calculated by Bedards and also computed
in Ref. 4. We use this Gaussian case as a check
on the accuracy of our techniques by computing
V(~) in two ways: (1) We omit the p' term in

FIG. 1. Probability density V(~, s,p) vs ~ of the
normalized time-integrated light intensity ~ =

f& p(t) dt/
T(p) of a laser operating near threshold. Here s =A~T,
A~ =((ap)') /fo (Dp(t)&p(0)) dt is the linewidth of the
spectrum of intensity fluctuations, and p defines the
operation point of the rotating-wave Van der Pol oscil-
lator assumed as the laser model. Threshold is given
byp =0.

Eq. (15) and obtain closed-form solutions for
I', A, and p;j. We then follow the procedure
of this paper using Eq. (19). (2) We start from
the closed-form expression for M(X) [see Eq.
(8.63) of Ref. 9, and Ref. 4] and invert the La-
place transform by the usual residue methods.
These two procedures were found to agree to
about one percent.

Experiments" support the RWVP oscillator
model for a laser in single-mode operation near
threshold. A few factorial moments of p(m, T)
for finite T were measured" at p = -10 and
—3.5, but detailed measurements of p(m, T) in
the threshold region have not yet been reported.
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The calculations of Eilenberger and Buttner are misleading in the regime where A. and

$ are complex. %e study the regime of validity of linear-response theory in calculating
the asymptotic properties of plane boundary and vortex structure. On this basis, it is
not possible to predict if a sufficiently clean low-K type-II superconductor such as nio-
bium or vanadium will exhibit field reversal at low temperatures.

One of the most exciting of recent developments
in BCS theory is the creation of formalism that
renders feasible the calculation of fluxoid and
plane-boundary structure throughout the entire
H, T plane. " As a first step in a rigorous, self-
consistent BCS calculation of vortex structure,
Eilenberger and Buttner have calculated the as-
ymptotic behavior of the magnetic field and order
parameter far from the vortex axis. They ob-
tain a functional form, basically exponential,
characterized by a, length r, Similar .behavior is
exhibited in the plane-boundary problem with oc-
currence of an identical x', .

Linear-response theory predicts that the vector
potential A and order-parameter perturbation 64
satisfy the equations

v x V x A(r) = fK(r F')A(r')dr—',

M, (r) = fD(r r')M, (r')—dr', (2)

~ x~ xA(r)

8 R[R A(r'))J(R, O)dr'
c'A(, g4

a solution of which is simply e ' if the integra-
tion dr' is carried out over all space. In Eq. (1),
s=1/A. , and in Eci. (2), s=i/$. It is a simple
matter to show, using conventional linear-re-
sponse theory for a BCS superconductor contain-
ing a random array of impurities, that A. and $

satisfy Eqs. (2.17) and (2.18) of Ref. 8 identical-
4

We limit ourselves to the magnetic case for a
pure superconductor at T =0. From BCS, we
have
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