

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

FELIPE ROCHA DA ROSA

Fast and Accurate Evaluation of Embedded
Applications for Many-core Systems

Bachelor Thesis presented in partial
fulfillment of the requirements for the degree
of Computer Engineer.

Advisor: Prof. Dr. Ricardo Reis

Co-advisor: Prof. Dr. Luciano Ost

Porto Alegre
2014

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do Curso de Engenharia de Computação: Prof. Marcelo Götz
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

"Scientists investigate that which already is;
Engineers create that which has never been."

Albert Einstein

“Scientists dream about doing great things.
Engineers do them.”
James A. Michener

RESUMO

Avaliação rápida e precisa de aplicações embarcadas para
sistemas de muitos núcleos

Sistemas embarcados multiprocessados (Many-cores) são apontados com a solução

mais viável para abordar as emergentes restrições de design em custo, potência e

performance [Borkar and Chien 2011]. Todavia, conceber estes sistema impõe novos

desafios para engenheiros de software, compreendendo entre outros: (i) definição de

protocolos de comunicação entre processos, (ii) analisar e portar sistemas operacionais,

(iii) possiblidade de melhor explorar modelos de programação para tratar de questões

para processamento paralelo. [Marongiu and Benini 2012], (iv) desenvovilmento de

drivers [Gray and Audsley 2012], (v) traduzir aplicações entre sistemas

multiprocessados.

Esta crescente complexidade de software faz com que a verificação funcional torne-

se mais difícil, como resultado, engenheiros de software estão dedicando-se para escalar

a performance. Tornado a simulação critica durante o desenvolvimento de software,

principalmente nas fases inicias, durante a exploração do espaço de design.

Plataforma virtuais Event-driven e quasi-cycle accurate como GEM5 tem como

objetivo o desenvolvimento micro arquitetural uma vez que modelos detalhados são

fornecidos (e.g. protocolo de coerência de cache) [Binkert et al. 2011 p. 5]. Este tipo de

simuladores não é escalável a um grande número de processadores, especialmente

quando se trata de usabilidade, facilidade de criação de modelos e tempo de simulação.

O contexto resultante leva a adoção de plataformas virtuais que são capazes de

simular sistemas embarcadas executando código de aplicações reais a velocidade de

centenas de milhões de instruções por segundo [Sanchez and Kozyrakis 2013]. Nestes

cenários o Open Virtual Plataforms (OVP) [Imperas 2014] está emergindo com um

poderoso framework de simulação provendo dezenas de arquiteturas (e.g. ARM, MIPS,

MicroBraze, etc.) e vários periféricos (e.g. memória cache). No entanto, o simulador

OVP semelhantemente a outros simuladores JIT-based não provem modelos precisos

mas, em modelos com precisão em nível de instruções, o qual provem estimativas

incorretas de software (e.g. estimativas de energia e tempo de execução).

Este trabalho objetiva começar a tratar os desafios impostos na construção de

simuladores JIT-Based adequados para estimativas de software, aprimorando a

capacidade de engenheiros de software melhor explorar o espaço de design em estágio

inicial de desenvolvimento de sistemas. Nesta tese, será apresentado um modelo

chamado Watchdog visando fornecer estimativas de energia e tempo de execução em

uma metodologia integrável em qualquer simulador baseado em JIT

A metodologia proposta foca em um modelo baseado em eventos, baseada nas

instruções individualmente executadas, simplificando a construção entorno do

simulador. Adicionalmente, a abordagem proposta nesta tese é puramente run-time, isto

significa que toda a computação necessária para implementar o modelo é realizada

concomitante com a simulação, evitando enorme quantidade de uso de memória

necessária para abordagens baseadas em trace-driven ao mesmo tempo que mantém a

escalabilidade para sistemas many-core.

A fim de demonstrar a validade do modelo proposto, várias conjuntos de aplicações

populares foram selecionados, dentre elas MiBench [Guthaus et al. 2001], Mälardalen

WCET [Jan Gustafsson 2010], SPLASH-2 [Woo et al. 1995].

Os resultados mostram que a precisão do nosso modelo de tempo de execução varia

de 0,6% a 11,5%, com 4,35% em de erro média. O modelo de energia atinge 0,01% a

8,6% de precisão dependendo do perfil de referência com um erro médio de 4,33%.

Além disso, o modelo foi submetido a cenários de 1000 processadores mantendo um

desempenho estável de 1,8 MIPS.

Palavras-chave: Sistemas multiprocessados. Estimativas de Energia. Estimativa de

tempo de execução. Sistemas Embarcados.

ABSTRACT

Many-core embedded systems are pointed to be the most viable solution to

addressing emerging design constraints on cost, power and performance scalability

[Borkar and Chien 2011]. Nevertheless, conceive and design many-core systems impose

new challenges to software engineers, comprising among other: (i) inter- processor

communication protocol stacks definition, (ii) operating system (OS) porting and

analysis, (iii) exploration of better programming model facilities to address parallel

programming [Marongiu and Benini 2012], (iv) drivers development [Gray and Audsley

2012], (v) application software portability for heterogeneous multiprocessing hardware.

This increasing software complexity makes the software functional verification

more difficult, as result, software engineers are struggling to scale up the system

performance. Simulation becomes critical to software development, principally in early

stage during space design exploration where many design decisions must be taken.

This work address the challenge of making JIT-Based simulator as OVP suitable for

software performance estimation, providing to software engineers better means to

explore the design space at early stage of system development. This Bachelor Thesis

proposes two instruction-driven performance models, which can be used for early

software performance evaluation, which were integrated into a JIT-based simulator. The

proposed approach is a purely run-time based, i.e. the entire computation necessary to

implement the model is concomitant with the simulation, avoiding huge amount of

memory usage.

The proposed models were validated by using several benchmarks suits MiBench

[Guthaus et al. 2001], Mälardalen WCET [Jan Gustafsson 2010], SPLASH-2 [Woo et

al. 1995]. Results show that the accuracy of our timing model varies from 0.6% to

11.5% with 4.35% in average. In turn, the energy model provides an accuracy of 0.01%

to 8.6% depending on the benchmark profile with a mean error of 4.33%. Additionally,

the model was submitted to 1000 CPU’s scenarios maintaining a stable performance of

1.8 MIPS.

Keywords: Many-Core Systems. Energy Estimation. Timing Estimation Embedded

Systems.

LIST OF FIGURES
FIGURE 1.1 - SOFTWARE AND ARCHITECTURAL DESIGN COSTS FOR EMBEDDED SYSTEMS AT ADVANCED PROCESS

TECHNOLOGIES. FIGURE EXTRACTED FROM IBS 2013 [IBS 2013]... 12
FIGURE 3.1 - OVP VIRTUAL PLATFORM SIMULATION INTERFACES. FIGURE EXTRACTED FROM [DAVIDMANN AND GRAHAM

2014]. .. 19
FIGURE 3.2- SCALABILITY OF TIME SLICE. ... 20
FIGURE 3.3 - BLOCK DIAGRAM AND MAIN FLOW OF THE RUN-TIME BASED APPROACH. .. 22
FIGURE 3.4 - CALLBACK EXAMPLE CODE. .. 24
FIGURE 4.1 - PROPOSED INSTRUCTION-DRIVEN EVALUATION FLOW ... 26
FIGURE 4.2 - BLOCK DIAGRAM OF THE ENERGY APPROACH... 28
FIGURE 5.1 - BLOCK DIAGRAM OF DEVELOPED WATCHDOG MODULE THREAD EXTENSION. .. 31
FIGURE 6.1 - ADOPTED REFERENCE BOARD PLATFORM. PROPOSED ILLUSTRATION INTEGRATES FIGURES CAPTURED FROM THEIR

OWNER’S WEBSITES. ... 32
FIGURE 6.2 - SAMPLE CODE NECESSARY TO ACCESS THE DWT REGISTERS. .. 33
FIGURE 6.3 - EXECUTION TIME COMPARISON BETWEEN REAL BOARD AND PROPOSED TIMING MODEL. 35
FIGURE 6.4 - BENCHMARK EXECUTION TIME COMPARISON BETWEEN REAL BOARD AND TIMING CPU MODEL (OVP), VARYING

THE NUMBER OF LOOPS. LEFT A FFT (A) AND IN RIGHT A HARMONIC (B) APPLICATION. .. 36
FIGURE 6.5 - SIMULATION PERFORMANCE AS THE SIMULATED MPSOC SCALES FROM 1 TO 1000 CPUS. 37
FIGURE 6.6 - EXECUTION TIME COMPARISON BETWEEN REAL BOARD AND PROPOSED THREAD EXTENSION. 37
FIGURE 6.7 - COMPARISON BETWEEN THE TIMING MODEL MISMATCH AND THE THREAD EXTENSION MISMATCH................. 38
FIGURE 6.8 - SPEEDUP COMPARISON BETWEEN TIMING MODEL IN SEQUENTIAL AND THREAD EXTENSION VERSIONS. 39
FIGURE 6.9 - APPLICATION BENCHMARK ENERGY CONSUMPTION: GATE-LEVEL SIMULATION VERSUS PROPOSED INSTRUCTION-

DRIVEN ENERGY MODEL IN OVP. ... 41
FIGURE 6.10 - GAIN IN TERMS OF SPEEDUP: GATE-LEVEL SIMULATION VERSUS PROPOSED OVP ENERGY MODEL. 41
FIGURE 6.11 – PLATFORM WITH FOUR CLUSTERS USED IN THE EVALUATION. ... 42
FIGURE 6.12 – ENERGY COST OF THE THREE MAPPING HEURISTICS. ... 42

LIST OF TABLES

TABLE 2.1 - RELATED WORKS ON FULL-SYSTEM SIMULATION. ... 14
TABLE 2.2 - STATE-OF-ART IN INSTRUCTION-DRIVEN ENERGY MODELS. .. 17
TABLE 4.1 - ENERGY GROUPS PROFILED. .. 27
TABLE 6.1 - LIST OF USED BENCHMARKS TO CYCLE ESTIMATION. ... 34
TABLE 6.2 - LIST OF USED BENCHMARKS IN ENERGY ESTIMATION. .. 40

LIST OF ABBREVIANTIONS AND ACRONYMS

API Application programming interface

BHM Behavioral Models

CPU Central processing unit

DBT Dynamic Binary Translation

GCC GNU Compiler Collection

GDB GNU Debugger

HPC High-performance computing

IBS International business strategy

ICM Innovative CPU Manager

ILP Instruction-level Parallelism

ISA Instruction Set Architecture

ISS Instruction set simulator

ITRS International Technology Roadmap for Semiconductors

JIT Just In Time

KIPS Thousand Instructions per Second

MIPS Million Instructions per Second

MPSoC Multiprocessor System-on-Chip

NoC Network on a chip

NOP No Operation

OS Operating System

OVP Open Virtual Platforms

OVPsim Open Virtual Platforms Simulator

PE Processing element

RTL Register-transfer level

TRM Technical Reference Model

UFRGS Universidade Federal do Rio Grande do Sul

WCET Worst-case execution time

CONTENT

RESUMO .. 4

ABSTRACT .. 6

LIST OF FIGURES .. 7

LIST OF TABLES ... 8

LIST OF ABBREVIANTIONS AND ACRONYMS ... 9

1 INTRODUCTION ... 11
1.1 Outline of this thesis .. 13

2 RELATED WORK ... 14
2.1 Related work in Timing CPU models in JIT-based Simulators .. 15
2.2 Timing CPU model in JIT-based Simulators - Closing Remarks 16
2.3 Related work in Instruction-driven Energy Models in JIT-based Simulators 16
2.4 Instruction-driven Energy Models - Closing Remarks .. 18

3 INSTRUCTION DRIVEN TIMING CPU MODEL 19
3.1 Open Virtual platforms (OVP) ... 19
3.1.1 Simulation Capability ... 20
3.2 Instruction-driven Timing CPU Model ... 21
3.3 Timing Calibration Process .. 21
3.4 Run-time based Approach .. 21
3.4.1 Disassembly and Parser (i) ... 22
3.4.2 Hash table (ii) .. 23
3.4.3 Timing information computation (iii) ... 23
3.4.4 Callback ... 23
3.5 Simulation behavior .. 24

4 INSTRUCTION-DRIVEN ENERGY MODEL ... 25
4.1 Characterization .. 25
4.1.1 Benchmark conception ... 25
4.1.2 Activity measurement ... 26
4.1.3 Power acquisition .. 27
4.1.4 Energy per group .. 27
4.2 Application Estimation ... 27
4.3 Simulation Behavior .. 28

5 THREAD EXTENSION .. 29
5.1 Modules modification .. 29
5.2 Buffer Management .. 30
5.3 Thread Management ... 30
5.4 Simulation behavior .. 31

6 EXPERIMENTAL SETUP AND RESULTS ... 32
6.1 Timing CPU model results .. 32
6.1.1 Timing CPU model - Experimental Setup .. 33
6.1.2 Accuracy results and comparisons .. 35
6.1.3 Scalability .. 36
6.1.4 Thread extension accuracy .. 37
6.1.5 Thread extension speedup .. 38
6.2 ENERGY EXPERIMENTAL SETUP AND RESULTS .. 39
6.2.1 Test Planning .. 39
6.2.2 Accuracy results and comparisons .. 40
6.2.3 Relative speedup gain ... 41
6.2.4 Application to Large Scale Systems .. 41

7 CONCLUSION .. 44

REFERENCES .. 45

APPENDIX A- TRABALHO DE CONCLUSÃO I .. 49

11

1 INTRODUCTION

Many-core embedded systems are pointed to be the most viable solution to

addressing emerging design constraints on cost, power and performance scalability
[Borkar and Chien 2011]. Such embedded systems increase performance by scaling the
number of cores, which vary in terms of structure, performance and energy-efficiency,
to execute system application tasks. However, employing a large number of cores will
be restricted by the so-called power wall [Bose 2013; Esmaeilzadeh et al. 2011; Zhang
et al. 2013].

Under this scenario, a significant number of cores must remain inactive or in
low-consumption state at some point in time, in order to preserve the system activity
within the available energy budget. Further, important challenges inherent to the design
of such systems are:

• reliability: the transistors reach the physical limits of operation, thus becomes

increasingly difficult for the hardware components to achieve reliable
operation [Papanikolaou et al. 2008];

• energy efficiency: in battery-driven devices, it is becoming more critical than
high-speed operation, and dark silicon era is imposing more power-oriented
constraints to the design of such systems [Miura et al. 2013];

• programmability: ease of programming is a feature of paramount importance
in large-scale systems composed of different processors, resulting in different
platform libraries (e.g. APIs), compilers, instruction set architecture (ISAs)
[Marongiu and Benini 2012];

• simulation: To achieve efficient exploration of emerging many-core systems,
the use of flexible and scalable simulators becomes mandatory. Such
simulators should combine efficient modeling, debugging and simulation
capabilities for verifying the both software and hardware development,

In addition to such challenges, software development becomes one of the major

challenges in many-core system design. Software development comprises, among other:
(i) inter- processor communication protocol stacks definition, (ii) operating system (OS)
porting and analysis, (iii) exploration of better programming model facilities to address
parallel programming [Marongiu and Benini 2012], (iv) drivers development [Gray and
Audsley 2012], (v) application software portability for heterogeneous multiprocessing
hardware.

Such challenges make the software functional verification more difficult,
resulting into increased development cost [Borkar 2007; Ceng et al. 2009]. IBS [IBS
2013] projects that software development consumes at least 50% of the system’s design
cost, and that percentage is rising, as illustrated in Figure 1.1. Developing and
evaluating complex software stacks (OS, drivers, etc.), require fast and effective means
for assessment of the performance-oriented and energy-efficiency practices. For
instance, to assess the energy impact of software stacks, several software and hardware
parameters must be tuned and evaluated properly, considering a large design space.
With 200-core chips available in the market [MPPA 2014], the use of analytical models
and prototyping boards is inadequate, especially for many-core architectures.

12

Figure 1.1 - Software and architectural design costs for embedded systems at
advanced process technologies. Figure extracted from IBS 2013 [IBS 2013].

Analytical models undergo substantial development effort to identify behaviors
that can be estimated by employing equations without compromising the model
purpose. In turn, while specialized board designs produce accurate results, they require a
substantial development effort to setup/port the software stacks. Further, physical
boards can be expensive, with limited resources (e.g. number of CPUs, memory), as well
as poor debuggability due the lack of internal observability and controllability of its
components.

The resulting context leads to the adopting of virtual platform frameworks that
are capable of simulating embedded systems running real application code at the speed
of hundreds of MIPS [Imperas 2014]. While accelerating the software development,
such simulators usually offer a set of CPU models and memory system models,
allowing the analyses of executing different application/OSs onto multiprocessor
architectures without modifications, which gives flexibility to explore more features at
earlier design phase. Examples of such simulators are Simics [Magnusson et al. 2002],
PTLsim [Yourst 2007], SimpleScalar [Austin et al. 2002], GEM5 [Binkert et al. 2011]
and OVPSim [Imperas 2014]. Such simulators differ in terms of accuracy, simulation
speed, as well as modeling and debugging support (e.g. GDB).

For example, event-driven and quasi-cycle accurate virtual platform frameworks
like GEM5 target microarchitecture exploration since specific modeling details are
provided (e.g. instruction pipeline details, cache coherence protocols, etc.). Such
simulators are not scalable to a large number of CPUs, specifically when it comes to
usability, ease-of-modeling and simulation time (around 200 KIPS [Sanchez and
Kozyrakis 2013]). In contrast, simulators such as the Open Virtual Platforms (OVP)
OVPsim that rely on just-in-time (JIT) dynamic binary translation can achieve
simulation speeds of up to 100 MIPS. However, such simulation speed comes at the
expense of accuracy; OVPsim provides instruction accuracy only, which results in
inaccurate software performance estimation (e.g. application execution time).

The foregoing context provides the motivation for this Bachelor Thesis, which
aims at making JIT-based simulators suitable for software performance and energy
evaluation. The original contribution of this thesis is enhancing OVPSim capability by
including energy and timing models, making it suitable for software performance and

13

energy analysis. With the underlying contribution, this Thesis advocates that software
engineers can validate the functional behavior of the entire software stack executing it
onto a given CPU architecture, using the original OVPSim. Then, software engineers
may use the proposed OVPSim extension in a still reasonable simulation speed to
investigate if target software stack can be executed according to the performance and
energy requirements.

The contributions of the paper are summarized as follows:

• the implementation and integration of a quasi-cycle accurate timing model
into OVPSim simulator;

• the extensive timing model evaluation by using several benchmarks, while
comparing it to a real hardware platform;

• the development of a fast and accurate instruction-driven energy model;
• integration of proposed energy model into a NoC-based MPSoC platform;

1.1 Outline of this thesis
This work is organized in 7 chapters. Chapter 2 describes the state-of-the-art in

timing and energy estimation models, taking into account approaches that are developed
into JIT-based simulators. Additionally, a survey considering the most popular virtual
platforms is also presented. Chapter 3 introduces the proposed run-time instruction-
driven timing CPU model. After, Chapter 4 presents the development of a fast and
accurate energy model. Chapter 5 contains a thread extension for the model in order to
improve the simulation speed. In 6 the experimental setups and related results to timing
and energy models were presented. Finishing with conclusion in the chapter 7.

14

2 RELATED WORK

Due the different simulation speed/accuracy tradeoffs, it's difficult to cover all

modeling (e.g. flexibility, debuggability) and simulation (e.g. accuracy, scalability)
requirements into one single simulator. This Chapter starts by providing an extension of
the survey proposed in [Butko et al. 2012], considering the most popular virtual
platforms. Such virtual platform simulators, also called full-system simulators, are
compared according to different criteria: (i) accuracy, (ii) flexibility in terms of
supported processor architectures, (iii) licensing, and (iv) support activity. Table 2.1
summarizes the reviewed work according to the four criteria mentioned.

Table 2.1 - Related works on full-system simulation.

Reference Simulator Accuracy
Supported processor

architectures
License

Active

support

[Magnusson et al. 2002] Simics
Functionally-

accurate

Alpha, ARM, MIPS,
PowerPC, SPARC, and

x86
Private Yes

[Yourst 2007] PTLsim Cycle-accurate X86 Open Yes

[Austin et al. 2002] SimpleScalar Cycle-accurate
Alpha, ARM, PowerPC,

and x86
Open No

[Binkert et al. 2011] GEM5 Cycle-accurate
Alpha, ARM, MIPS,

PowerPC, SPARC, and
x86

Open Yes

[Bellard 2005] QEMU
Instruction-

accurate

ARM, MicroBraze ,MIPS,
PowerPC, SPARC, x86,

and others
Open yes

[Imperas 2014] OVPsim
Instruction-

accurate

Alpha, ARC, ARM, MIPS,
PowerPC, MicroBraze, and

others

Open and
Private

Yes

The Simulation Software Engineer (Simics) is simulator that enables unmodified

target software (e.g. operating system, applications) to run onto a platform model
similar to a real physical implementation. A wide range of processor architectures (e.g.
ARM, MIPS, PowerPC), as well as operating systems (e.g. Linux, VxWorks, Solaris,
FreeBSD, QNX, RTEMS), can be adopted to model the desired systems. This simulator
includes SystemC interoperability, debuggers, software and hardware analysis views, as
well. Simics has one main disadvantage, it is not claimed to be open source, and thus,
commercial license is required by Wind River Systems.

In turn, PTLsim also supports simulation of different processor architectures
[Yourst 2007]. PTLsim is a cycle accurate microprocessor simulator, thus the complete
cache hierarchy, memory subsystem and supporting hardware devices are offered.
PTLsim presents two main drawbacks; only x86 architectures are supported and the tool
suite is not actively maintained anymore.

SimpleScalar [Austin et al. 2002] is an open source infrastructure for simulation
and architectural modeling. As previous simulator, software engineers can use
SimpleScalar to develop applications and execute them onto a range of processor
architectures, which varies from simple unpipelined processors to detailed
microarchitectures with multiple-level memory hierarchies. However, SimpleScalar is
not actively maintained anymore (last update was in March 2011), and other faster
solutions, like GEM5 are available.

GEM5 is a modular discrete event simulator, which is open-source and supports

15

a rich set of ISAs [Binkert et al. 2011 p. 5]. Moreover, this simulator has an active
development and support team. As mentioned before, GEM5 target microarchitecture
exploration, which incurs in huge simulation overheads due the number of modeled
aspects. Further, the amount of memory required by these approaches is too high,
making their use infeasible when exploring a large design space exploration.

QEMU [Bellard 2005] is an open source and a functional simulator that relies on
dynamic binary translation. QEMU can be used to simulate several CPUs (e.g. x86,
PowerPC, ARM, and Sparc). Nevertheless, QEMU is designed to single-processor
platforms and virtualization purposes. Thus the lack of documentation on the APIs or
standardized methodology for creating many-core platform models limits its use.

Excluding PTLSim that only supports x86, reviewed simulators are composed of
several processor architectures. Quasi clock accurate simulators such as SimpleScalar
and GEM5 entail high-simulation time, thereby limiting its applicability to the
exploration of large many-core systems. Further, while Simics has a private license.
Further, SimpleScalar does not provide support or development anymore.

OVPsim supports the larger number of processor architectures (ISAs) among
reviewed simulators. OVP supports dozens of architectures (e.g. MIPS, ARM, x86,
PowerPC) ramifying in several model variants (e.g. arm cortex-A5, cortex-A9, cortex-
M4F, etc.), as well peripherals (e.g. DMAs, TIMERs), and integration with System-C
modules. Besides, of supplied models, the user is able to create customized models
easily integrated with the platform, justifying our choice.

As mentioned before, the lack of accuracy inherent to JIT-based simulators is
motivating research in alternatives performance / accuracy tradeoffs. The next Section
presents approaches that are instrumenting JIT-based simulators with timing models. In
this context, instructions, basic architecture block models and their inter-operations (e.g.
read and write) are calibrated according to a reference platform. Thus, software
performance evaluation can be estimated by, for instance, summing up the annotated
timing numbers along execution of given application.

2.1 Related work in Timing CPU models in JIT-based Simulators
Chiang et al. [Chiang et al. 2011] utilize the integration of QEMU and SystemC

in order to allow faster clock-accurate evaluation when compared to RTL-based.
Attaching a SystemC co-processor in the simulator framework, using the information
extracted from the DBT interface. This approach reduces the simulation speed of
QEMU, capable to reached approximate 38 MIPS, to approximate near 0.46 MIPS
using the full simulation with SystemC. A pipeline model was included into QEMU in
[Thach et al. 2012], where the authors proposed a two-phase approach an offline and an
online phase to estimate the application performance. In the offline phase, a cycle pre-
estimation of the application execution time is performed. Using the computed
information at dynamic adaption phase when CPU status and execution time of critical
instructions are also taken in account, improving the approach accuracy presenting a
mismatch around 10%.

A similar approach is presented in [Stattelmann et al. 2012], where worst-case
execution time (WCET) analysis and QEMU are combined for a LEON3 processor. In
this work, the offline phase is composed by four steps, which produce a timing database
that is used during the QEMU simulation. The proposed work in [Bohm et al. 2010]
modified an ARC instruction set simulator based on JIT DBT to improve the simulation
accuracy. A complex pipeline and execution state models were constructed direct in the
DBT framework, taking advantage from the direct access of JIT Translation block.

16

2.2 Timing CPU model in JIT-based Simulators - Closing Remarks
Making an overview of the reviewed researches, it is noticeable that QEMU is

largely employed due its free GNU licensing. It is possible to verify that almost all
related approaches are based on a reconstruct pipeline model that update its internal
state according to executed instructions during the simulation. There are different
abstraction levels of implementations and consequently, the necessary amount of data
information considered before and during the simulation. Complex models may
implement several abstract queues, internal pipeline state, etc.

The drawback of the approach proposed in [Stattelmann et al. 2012], is the prior
application profiling phase, which restricts its use when exploring large scenarios
composed of diverse applications. Another disadvantage of this work is that any
software modification (e.g. changing the OS scheduling algorithm) implies in re-
running offline phases.

Different from the reviewed work, the proposed approach (described in section
3.4) relies on OVP and run-time basis, eliminating huge trace files, as well as pre- or
post-processing software/application profiling. Despite the low-memory usage, the
proposed approach can be easily configured to observe as many CPUs as desired.
Another contribution of the proposed timing CPU model, when compared to the
reviewed works, is the easy portability to other CPU architectures.

2.3 Related work in Instruction-driven Energy Models in JIT-based Simulators
In the case of prototyping boards, the power information is captured from a

precision resistor positioned between the power supply and the power input pin [Bazzaz
et al. 2013; Konstantakos et al. 2008; Lee et al. 2001; Nikolaidis et al. 2003]. The use of
physical information can aggregate precision to the high-level models (error varying
from 2.5% to 7% as presented in the third column of Table I). However, to measure the
power of each instruction, additional and expensive hardware (e.g. high-performance
oscilloscopes) are required. Another drawback of this approach is the difficulty of
accessing/isolating individual modules inside the processor due to internal structure and
connections (e.g. Flash, Rom, SPI, AD, and DC).

In simulated-based techniques, the required information is extracted from low-
level simulators (e.g. SPICE, gate-level), in which a hardware description is used to
execute input benchmark applications and to profile the power of each instruction. For
example, in [Abril Garcia et al. 2002] an instruction set simulator (ISS) is enriched with
an energy model based on the mean switching activity of the processor, which is
modeled by two states, active and NOP. A similar approach is presented in [Sultan and
Masud 2009], which considers the average switching activity of an LEON3 processor
simulated at RTL level. In this work, the power is computed according to the number of
transitions generated in response to a certain instruction that is fetched from BootROM
of LEON3.

Authors in [Castillo et al. 2007] propose obtaining energy values directly from
the analysis of the source-code without requiring simulation or even compilation. A
further higher-level approach is proposed in [Callou et al. 2011], in which the source-
code is converted in a Colored Petri net model, which is used to estimate the energy cost
of a given application.

17

Table 2.2 - State-of-Art in instruction-driven energy models.

Reference
Reference

model
Claimed
Accuracy

Benchmark suite Description

[Lee et al.
2001]

ARM7TDMI
Average 2,5%
and worst case

6,33%

36 randomly-
generated

instructions

Model based in a linear regression
analysis.

[Abril Garcia et
al. 2002]

Gate-level
estimation using

an ARM920
Not available

MPEG-4 video
decoder

Inclusion of a power model calibrated in
gate-level activity in a System-level
Cycle-Accurate simulator

[Kalla et al.
2003]

Synthesizable
RTL of a
SPARC

Energy less than
5% and per-
cycle power

inside 15% of
error

Bubble Sort, Heap
Sort, Insertion Sort,
Key 3 and 3D image

processing

Model based in Active and Stall
consumption for each module of the
architecture, refined with inter-instruction
effect. Additionally provides the
maximum and the minimum of power.

[Nikolaidis et
al. 2003]

ARM7TDMI 5% A few instructions
Abstract model for pipeline with static,
inter-instruction, and pipeline power.

[Konstantakos
et al. 2008]

Motorola
HC908GP32

Not available Not available
The instructions are divided into groups
by the cycle’s length.

[Lee et al.
2006]

Gate-level
estimation for
M32R-II and

SH3-DSP

Average 3% and
worst case 16%

JPEG and MPEG2
encoders, compress,

FFT and DCT

Training benchmarks are used in
conjunction with a gate-level simulator
and linear optimization to generate
several parameters to describe frames of
instructions. Afterward this parameters
are utilize together with ISS.

[Castillo et al.
2007]

Arm ISS, arm-
elf-gdb, for a
ARM9TDMI

and ARM TRM

Less than 11%
Bubble Sort, FIR,
Array, Fibonacci

and Quicksort

An online analysis of the source-code
without requiring simulation or even
compilation. Based in the mean energy
per instruction calculated from values
provide by ARM Manual. Detailed study
about the operators in C e.g. + = >> and
their costs in meter of instructions.

[Sultan and
Masud 2009]

Synthesizable
RTL of a
LEON3

Not available Not available

Propose of an instruction level power
model profiling each instruction in
different stages of a pipelined processor.
The aim is to measure the activity
generate in the processor and taking in
count the capacitance to calculate the
power.

[Callou et al.
2011]

NXP LPC2106
with an

ARM7TDMI-S
7% in average 5 applications

Stochastic approach based on Coloured
Petri nets and source code analysis

[Bazzaz et al.
2013]

AT91 Less than 6%
8 MiBench
benchmark

ISS Model calibrated from real measures.
Complete model with static, inter-
instruction, and pipeline power.

Proposed
approach

2014

Gate-level
estimation

Between 0,06%
and 8%

19 benchmarks from
WCET and in-house

applications

Instruction-driven model calibrated from
the switching activity of the processor
internal components. Run-time model
developed on the basis of OVP API that
monitors the instructions executed by a
given CPU.

18

2.4 Instruction-driven Energy Models - Closing Remarks
Reviewed approaches focus on creating instruction-driven models, which

compute energy/power values by observing the sequence of executed instructions. One
difference between such approaches is the calibration process. For instance, in [Bazzaz
et al. 2013] authors evaluate instructions individually to feed the instruction-driven
model, while in [Lee et al. 2001] fixed length instruction groups are used. Authors argue
that different transition scenarios may significantly affect the energy estimation. For
that reason, some works such as [Bazzaz et al. 2013; Kalla et al. 2003; Nikolaidis et al.
2003] also calculate the inter-instruction energy, i.e. the energy required to switch from
one to another.

Another distinction lies in the energy evaluation process. For instance, the
approach proposed in [Castillo et al. 2007], differs from the other works in the sense
that it translates the source code in an intermediary code representation, which is used to
estimate the application energy consumption. This approach does not require simulation
that may decrease the energy evaluation effort. However, to predict the behavior of loop
and branches only by code inspection is not a trivial task that may pose other
design/evaluation challenges.

Our contribution distinguishes from previous works by enhancing the OVPSim
(JIT-based simulator) with energy evaluation capability allowing faster and accurate
exploration of energy-efficiency software development. Contrary to the most of
reviewed approaches, our approaches cover both timing and energy evaluations.
Another advantage of our approach is that once calibrated whatever OS/application can
be ported, modified, and its timing and energy-efficiency can be evaluated without any
code modification or re-calibration phase. To accomplish these features, a common
foundation for monitoring at run-time the instructions executed by each CPU, while
presenting the system functionality was developed. This foundation is described in the
next Chapter.

19

3 INSTRUCTION DRIVEN TIMING CPU MODEL

This Chapter describes the proposed timing CPU model in OVP. The following

Section presents the basic concepts and features related to OVP.

3.1 Open Virtual platforms (OVP)
Open Virtual platforms is a simulation framework marketed Imperas [Imperas

2014]. OVP is composed of three main components: (i) APIs that enable modeling in
C/C++ hardware components, (ii) library with a large number of CPU architectures,
peripheral, memory, and sub-system models, and (iii) the OVPsim simulator.

As illustrated in Figure 3.1, OVPsim employs a Just-In-Time Code Morphing
binary translation simulator engine that dynamically translates target instructions to the
host machine instructions. In this context, OVPSim is capable to handle virtual memory
simulation with minimal performance penalty. OVPsim also supports non-intrusive
semihosting using dynamically loaded libraries that are completely separate to
processor models. As defined in [Davidmann and Graham 2014], there is no need to
compile application code using special flags to support semihosting: given an
appropriate semihost library, OVPsim can run unmodified binary. OVPsim semihosting
works by allowing semihosting libraries to take special actions either when particular
functions are executed in the simulated application (e.g. write) or when particular
instructions are executed (e.g. break instructions).

Figure 3.1 - OVP Virtual Platform Simulation Interfaces. Figure extracted from
[Davidmann and Graham 2014].

OVPsim has been developed for the maximum simulation throughput and
includes several optimizations enabling simulation of platforms utilizing many
homogeneous and heterogeneous processors with many complex memory hierarchies.
Also includes several models of MMUs, caches, and TLBs.OVP framework features
four API: Innovative CPU Manager (ICM), Virtual Machine Interface (VMI),
Behavioral Hardware Modeling (BHM), and Peripheral Programming Mode (PPM).
Each of which has a specific purpose, for instance the ICM is intended to create and to
simulate the target platform, including any number of processor, busses, memories and
peripherals models. Busses, memories and processors can be interconnected in arbitrary
topologies and arbitrary multiprocessor shared memory configurations. Further, ICM
functions also encapsulate OVPsim models in SystemC or TLM 2.0 simulations. OVP
models also include processors and peripherals wrappers for use with SystemC
TLM2.0. The ICM is responsible for merging all four APIs in a single environment

20

providing interoperability between then. OVPSim platform is composed of one C file
containing few lines of code compiled with Imperas libraries to create an executable
file.

3.1.1 Simulation Capability

In order to support multi–core simulations, OVPsim implements a Round-Robin
scheduling algorithm similar to a typical used in OS schedulers. Thus, each processor
entity (PE) has a time slice variable, typically 0.001 seconds. Note that it is possible to
define a common time slice for all processors of a given scenario. Such variable is
converted into a number of instructions that should be executed by each processor in the
defined time slice. The number of simulated instructions is obtained multiplying the
time slice by the processor nominal MIPS, which is defined 100 per default. OVPSim
works in sequential way (i.e. simulating a unique processor at time, even if the
simulator is hosted in a multi-core host machine). Nevertheless, this algorithm inserts an
issue related to the synchronization between simultaneous events related to different
processors. For instance, if a processor sends a message to another in the middle of their
time slices, the receiver only will be aware of the message at the begin of his time slice.
In simulation scenarios tightly based in intercommunications between processor (e.g.
NoC-based MPSoC), the precision of results may be affected.

A possible solution could be resizing the time slice, decreasing the number of
instruction executed each time by the each processor. In order to observe this behavior a
series of experiments was conducted, using the same application (FFT), varying the
time slice from 1 to 0.000001 and the instructions per window from 1.000.000 to 1.
Figure 3.2 shows the degradation in terms of simulation speed vs. time slice. It can be
observed that the simulation slows down dramatically when less than 5 thousand
instructions per round are executed. Notwithstanding, the modification impacts in the
performance obtain by the simulator due the cost in the context switch between the
processors.

Figure 3.2- Scalability of Time Slice.

21

3.2 Instruction-driven Timing CPU Model
This Section describes the development and the integration of the proposed

timing CPU model into OVPSim. As mentioned before, our timing CPU model relies on
monitoring at run-time the instructions executed by a target CPU. The proposed
approach requires an instruction set profile as mean to determine cycle count (timing
information), which can be captured from datasheet, physical boards, low-level
simulation, etc. In order to diminish development complexity, we propose to combine
instructions in groups according timing costs similarity. Separating ISA in classes and
groups according different timing behaviors and other representing constant one-cycle
instructions. While simulating, unless the model identifies an instruction as belonging to
one of defined groups, it is considered as one-cycle instruction. In order to demonstrate
the timing calibration process, let’s consider the Cortex-M4F ISA as study case.

3.3 Timing Calibration Process
Timing Behavior of ARMv7-M Thumb instruction set implantation in Cortex-

M4F can be grouped according their similarities, for instance, almost all logical and
arithmetic instructions are single cycle. Notwithstanding, division has a dependable
cycle count imposed by the early termination accelerator based on the number of
leading ones and zeroes in the input operands. In this case, one division can take from 2
to 12 cycles.

While not taken branch instruction execution requires a single cycle, taken
breaches lead to 3 cycles as result of pipeline flushing. Semaphore cycle count is
usually two, and for push and pop the exact cycle count relies on the number of registers
in the register list, increasing in one cycle per register. Additionally, instructions that
use PC as destination register have three cycle’s penalty.

In the case of load and store, the timing analysis is the most complex one. Load
and store are normally two cycle’s instructions, as result of neighboring load and store.
Single instructions may pipeline their address and data phases affecting cycle’s count,
leading to one cycle’s instructions. The instructions are pipelined when the next
instruction is an LDR or STR, and the destination of the first is not used to compute the
address for the next instruction, then one cycle is removed from the cost of the next
instruction (e.g. LDR R0,[R1,R5]; LDR R1,[R2]; LDR R2,[R3,#4] - normally four
cycles total instead six). Further, other environmental factors that could modify the
cycle count can be found in the TRM [ARM 2013]. This document has important timing
information, which are fundamental to the proposed timing model. Nevertheless, the
document not exposes detailed information concerning timing behavior. In order to
verify the collected timing information, several experiments were conducted using the
platform [STM32F4 2014], considering the interleaving between instructions, as load
and stores.

3.4 Run-time based Approach

The monitoring process was developed on the basis of OVP APIs and integrated
in a component called Watchdog, comprising three main modules: (i) disassembly and
parser, (ii) a hash table containing pre-characterized groups of instruction, and (iii)
timing information computation, in the Figure 3.3 and descripted in sections 3.4.1,
3.4.2, and 3.4.3.

22

Figure 3.3 - Block diagram and the main flow of the run-time based approach.

3.4.1 Disassembly and Parser (i)

In this module, an instruction binary code is disassembled into a string and
afterwards subdivided in other substrings. The purpose is to isolate the instruction
mnemonic from the instruction registers arguments to feed both hash table (ii) and
timing computation module (iii). As a means to disassemble binary code instructions,
our implementation employs a function provide in the ICM API called icmDisassemble.
This function call disassembles an arbitrary memory position for an arbitrary CPU
instance at any moment of the simulation. The function arguments are the CPU model
object and the target memory address. This function returns a string containing the
address, the mnemonic, and the arguments of the disassembled instruction (e.g. 0X2550

STR r3, [r7, #20]).
In icmDisassemble function is important to note issues related to concurrent

access, consequently this calls are necessary exclusive, cause by internal buffers when
storing partial results. The model describes in this chapter is sequential, i.e. the
instructions are guaranteed to be exclusively resulting in mutual exclusion for all access.
Nevertheless, with the purpose of increase simulation speed was developed a POSIX
Thread version. As a consequence, concurrent access is possible, necessitating assure
mutual exclusion, subsequently, is necessary to parse the string, separating in different
sub-strings in order to correctly update internal structures and supply the next module.

23

3.4.2 Hash table (ii)

With the purpose of efficiently store the timing information, it was employed a
hash table, instructions mnemonic are the key for the data, which relates the instruction
group and the key. Thus, in a single access, using the mnemonic as key is possible
retrieve the information for the timing computation. The hash table is created and
initialized at simulation begin, inserting all mnemonic in the hash.

In the early model version was not used a hash table, instead a linked list due the
implementation simplicity. Occasionally, was noticeable this storage access as
performance bottleneck during simulation. As result of our methodology, every
executed instruction is processed sequentially after the fetch event; consequently an
access is performed after each fetch. Therefore, the search in linked list is not scalable
and do not have a fixed time cost, leading to performance loss. In order to overcome
this situation, a hash table replaces the linked list as storage solution in newer version.

3.4.3 Timing information computation (iii)

This module is responsible for processing information provide by previous
modules together with processor state information. Structured as switch, using returned
value from the hash table as a selector variable. A null pointer signifies a single-cycle
instruction, accordingly to our methodology when assume one cycle per default.
Estimate cycle’s count requires several chained tasks, separate in two groups: Those
performed to every group and those restricted to individual group. For instance, all
instructions possessing registers list requires several verifications: Instructions
modifying the program counter need to be identified, as well inline shifters.

Each profile class requires a specific treatment after been identified. For
instance, at any time a load occurs it is necessary verify if the precedent instruction was
a store or load, the same for stores. To implement this verification, a buffer of one
instruction is maintained during the simulation and verify when is necessary. In
instructs as pop or push requires count the number of registers contained in the register
list of the instruction, each one adds one cycle to cycle count. To correct estimate
division cycles is necessary acquire the two operands, verifying the number of leading
zeros in the operands. According to the number of zeros, the cycle count is estimated.

3.4.4 Callback

The monitoring process bases in a special function supply by the ICM API
called Callback. Triggering when a predefined particular event occurs, and subsequently
the simulator call a handler function provided by the designer. Trigger configuration
events, as memory access or as bus access, take place at compilation-time. Additionally
allowing restrict this event a memory range instead entire address space. Restricting
address range impacts in the simulation speed as a result of the algorithm employed by
the simulator.

Callaback instantiation requires two steps, shows in Figure 3.4. First, an ICM
function (i.e. icmAddFetchCallback) (a) located in the platform creator inserts callback
trigger. This specific function adds a fetch event trigger. Handler function construct as
ICM specific wrapper (b) perform any task desire. Is important note that simulation
stops during callback treatment and handler execution.

24

Figure 3.4 - Callback example code.

3.5 Simulation behavior
As propriety of OVPsim all processor, busses, and memory are created at run-

time using linked libraries. The same process is applied to our Watchdog module and its
internal components. Also is possible define different constraint to the model, as an
CPU instance that will be monitored. Figure 3.3 shows a block diagram of the watchdog
associated with the platform. Numbers from 1 to 4 are used to describe the model
behavior.

After the platform simulation begins, whenever an instruction is fetched from
the memory (1) is triggered a callback, thus starting the Watchdog. Inside the first
module, the binary code of the instruction is acquired using the program counter (PC)
register. Thus, the binary code is disassembled, divided into sub-strings, and identifies
the instruction that must be executed (2). The identified instruction is employed as a
hash table key to discovering which class (e.g. arithmetic, load, store) such instruction
belongs (3). Thus, computing the necessary number of cycles to perform this
instruction, considering the predefined timing information. Once, computed the cycle
count, each instruction is executed in the CPU (4). At simulation end is possible retrieve
the cycle estimation separated by CPUs, additionally, the statistics concerning the
number of executed instruction per mnemonic.

Our methodology can be extended and applied to other simulator frameworks.
Nevertheless, to achieve better simulation performance, the development demonstrated
in section 3.4 takes full advantage of OVP functions and methods. Additionally, as
result of the OVP APIs extensive use diminishes developing time and cost, improving
productivity.

The proposed methodology lies in a single-event model, based on the
individually executed instruction, simplifying construction around the simulator.
Capturing as an event, identifying the instruction, processing properly, and storing the
computation. The proposed approach in this thesis is a purely run-time based, i.e., full
computation is executed concomitantly with the simulation, avoiding a huge amount of
memory usages needed by trace-driven based approaches and maintaining scalability, as
well as pre- or post-processing software/application profiling.

25

4 INSTRUCTION-DRIVEN ENERGY MODEL
Proven the flexibility of previous timing model, in this chapter, is introduced an

instruction-level energy estimation model. It is important to highlight that the proposed
profiling method is simple and transparent, applicable in any other processor cores with
no considerable rework.

The Proposed energy model maintains a methodology presented in chapter 3 to
timing estimation. Focusing in a single-event model, based in the individually executed
instruction, simplifying construction around the simulator. Capturing as an event,
identifying the instruction, processing properly, and storing the computation.

However, in the first case, almost information about cycle duration was available
in the documentation, for this energy approach, the manufacturer does not offer the
information about energy consumption. In order to overcome this problem is necessary
acquire information through a calibration phase. As a result, dividing the process flow
in two: a Characterization phase and the simulation phase.

4.1 Characterization
The first and most important phase is the characterization, which profiles the

energy spent by each instruction belong with the target ISA. The proposed
characterization flow is validated taking as reference the Plasma processor [Plasma 2014],
a 32-bit RISC processor based in the MIPS architecture with a 3-stage pipeline. The
characterization flow is executed once per ISA architecture, and it comprises four main
steps: (i) benchmark development; (ii) activity measurement; (iii) power acquisition;
(iv) energy computation. In Figure 4.1, the numbers from 1 to 10 are used to describe
intermediary files, while the letters from A to D represent the adopted tools.

4.1.1 Benchmark conception

The first step of the characterization flow encompasses developing the
benchmarks that will be used to profile the energy consumption for each instruction (1
in Figure 4.1). To reduce the computation cost of our model, we classified the
instructions in seven groups due their behavior in the processor data-path: (i) arithmetic,
(ii) logical, (iii) move, (iv) branches, (v) load/store, (vi) nops, and (vii) shifts. One
practical example is the close relationship between instructions such as add and addiu
or between lw and sw. Note that the mnemonic move is considered in this work as
arithmetic instruction through a pseudo-instruction implementation (performed by a lui

and ori).
To profile the energy consumption of each instruction group (1 in Figure 4.1), an

application was carefully developed, in a way, that at least 90% of the executed
instructions would belong with the target group, including the possible variations of the
same instruction (e.g. add, addi, addiu, etc.). Previous experiments using higher
percentages (e.g. 95%), showed a negligible difference. Note that multiplication and
division instructions are modeled as 12 arithmetic instructions each, since our Plasma
version takes 12 cycles to execute them. Further, an application benchmark was created
to characterize the pipeline stall as a nop instruction.

Each application is executed in the OVPSim simulator (C in Figure 4.1) to verify
its correctness and to extract the exact number of executed instructions (8 in Figure 4.1).
Each application executes, in average, 35 thousand instructions, which requires less
than one 1 second of simulation. The Plasma is synthesized with Cadence RTL
Compiler tool (2 in Figure 4.1) targeting a 65nm low-power library from ST
Microelectronics. Then, each application is simulated using Cadence Incisive simulation
tool (B), taken as inputs: the Plasma netlist (2), the application object code (3), a tcl
script (4), and the sdc file containing the timing constraints (5). The simulating is

26

executed until the end of the application.

Figure 4.1 - Proposed instruction-driven evaluation flow

4.1.2 Activity measurement

Each application is simulated using Cadence Incisive simulation tool (B in
Figure 4.1), taken as inputs: the Plasma netlist (2 in Figure 4.1), the application object
code (3), a tcl script (4), and the sdc file containing the timing constraints (5). The
simulating is executed until the end of the application. As a result, a tcf file (6) is
generated. This file contains statistic information about the switching activity of each
cell and wire in the netlist. In addition, the exact execution time of each application is
collected (7).

27

4.1.3 Power acquisition

Finally, the power evaluation is executed. Cadence RTL Compiler (D Figure
4.1) also performs this task; the tool reads the netlist (2 Figure 4.1) and computes de
average power consumed by each cell based in their switching activity information in
the tcf (6) file. Subsequently, the tool produces a report containing the average power
consumption (9) for the application.

4.1.4 Energy per group

The final step computes the average energy spent by each characterized group
(10 in Figure 4.1). Associating the average power (9) and execution time (7) collected
in the previous step with the number of instructions (8), the energy consumed per
instruction group is obtained using Equation 4.1. This flow is repeated for each
instruction class.

Equation 4.1 - Formula to calculate the energy spend by each group.

Averageenergy =
execution time(µs) x power (mw)

executed instructions
(nJ)

Table 4.1. Summarizes the energy results for each instruction group. Results in
the column “number of instructions” are obtained through the OVPSim simulation.
Results in the columns “power” and “execution time” are obtained through the gate
level simulation. The total energy consumption (“energy” column) is obtained by
multiplying the number of instructions by the total execution time. Then, with the
number of executed instructions and the total energy consumed, it is possible to
compute the energy consumed by each instruction (“Energy per Inst.” column).

Table 4.1 - Energy groups profiled.

Groups Power (mW) Exec Time (us) Energy (nJ) # of inst Energy per Inst (nJ)

Arithmetic 6,456 342,755 2212,826 34764 0,0636528098

Jump 6,046 102,600 620,320 10224 0,0606728873

Load-Store 4,094 1042,800 4269,223 48561 0,0879146476

Logical 4,469 349,735 1562,966 35462 0,0440743815

Move 3,129 480,725 1504,189 39363 0,0382132593

NOP 2,141 257,155 550,569 26130 0,0210703733

Shift 3,824 298,735 1142,363 30362 0,0376247494

4.2 Application Estimation
After the characterization phase is finished, the next phase comprises building

the energy model in the instruction-set simulator. Developing the monitoring process by
modifying the previous cycle estimation model presented in the section 3.4, extending
and enriching with energy models. Figure 4.2 shows the three main Watchdog modules:
(i) disassembler, (ii) a hash table with pre-characterized groups of instructions, and (iii)
internal data structures. In energy model, the hash-table contains the belonging class
(e.g. arithmetic, load, store) to each instruction mnemonic (e.g. add, or, lw, etc.).

28

4.3 Simulation Behavior
During the simulation, whenever an instruction is fetched from the memory (1)

is triggered a callback, thus activating the Watchdog. Inside the first module, the binary
code of the instructions is acquired using the program counter (PC) register, thus the
binary code is disassembled, divided into sub-strings, and identifies the instruction that
must be executed (2). The identified instruction is employed as a hash table key to
discovery which class (e.g. arithmetic, load, logical) such instruction belongs (3). Thus,
computing the necessary energy to perform this instruction, considering the predefined
energy information. Once, storage the information, each instruction is executed in the
CPU (4). At simulation ends is possible retrieve the cycle estimation separated by
CPUs, additionally, the statics concerning the number of executed instruction per
mnemonic or grouped by class.

Figure 4.2 - Block diagram of the energy approach.

29

5 THREAD EXTENSION
In order to improve the simulation speed of proposed timing and energy models,

a thread-based implementation (i.e. POSIX Thread library) is proposed. We select
POSIX Thread due its portability to multiple host machines in different operation
systems (i.e. Windows and Linux), its availability in standard compilers as GCC, and its
low footprint. The model describes in chapter 3 will be further referred as sequential
version while be named thread-based.

Proposed extension maintains a methodology presented in the previous chapter,
based in individually executed instruction, every fetched instruction is disassembled,
parsed, identified, and processed. The sequential version accomplishes all tasks in the
interval between two fetches producing speed degradation. In this context, every task
inserted in the model causes significant computation, preventing the addition of more
complex features. However, is impossible to parallelize the entire model to achieve
better workload distribution. This extension proposes divide cycle estimation in two
phases: a concomitant and parallel. The first occurs in the fetch event treatment (i.e. the
callback), and the other is asynchrony using the OVPsim natural flow as referential.
Figure 5.1 shows the thread-based version block diagram. The propose extension aim
transfer as much as possible workload to parallel phase, introducing a buffer between
concomitant and parallel phases in order to accumulate information before processing.
Note, this buffer differs of other works exist a post-processing moment, in this proposed
model the buffer consumption is concurrent with the simulation. Described in section
5.2.

The concomitant phase is responsible to intercept instructions, binary code
disassemble, buffer management, and thread creation. Instruction trace is mandatory
belong to this phase, is impossible create a satisfactory trace using functions
asynchronous to OVP CPU model in the adopted framework. Consequentially is
necessary store the trace in a temporary buffer, adding buffer management cost to this
phase. Binary code disassemble theoretically is compulsory in the concomitant phase,
nevertheless, while development was discovered a problems related to icmDisassemble
function presented in section 3.4.1. Thus, was necessary maintain disassembly and
consequently the buffer was redesign to contain a string (32 bytes) instead 32 bits
operation code increasing memory consumption. However, the proposed approach has a
smart buffer management in order to reduce memory footprint during execution.

5.1 Modules modification
Insertion of explicit parallelism certainly increases model complexity, as so,

creating other and modifying previous modules presented in sections 3.4.1, 3.4.2, and
3.4.3. Figure 5.1 shows the module in roman algorisms (from i to vi). Disassembly and
Parser module are organized in two modulus, (i) and (vii) respectively. Comprising
sequential phase, disassembly module (i) utilize icmDisassemble function, generating a
string. Buffer module (ii) is responsible to storage the generate strings to posterior
processing. Buffer implementation follows a queue data type, i.e. making bottom
insertions and top removals. Module (iii) manages both buffer and thread. Buffers
creation is on demand (i.e. they are dynamic created when certain conditions are
satisfied and detailed in the next section). In thread side, the buffer (v) module sources
the string in the same order they are stored. Timing computation (vi) is almost identical
with the sequential version. Differing only by the division cycle counting due
unavailability of operands, required to calculate early termination algorithm. Hash table
(iv) was not modified. Parser module (vii) process the string arising from the buffer,
supplying sub-string to module (iv) and (vi).

30

5.2 Buffer Management
The proposed extension requires a buffer as provisory trace storage as means to

separate timing estimation in two phases. In order to preserve scalability, focusing
many-core systems, is impossible maintain a static buffer as previous discussed. We
propose take benefit of compartmentalized OVPsim nature (see section 3.1), using time-
slice switching as size referential and as trigger event. A buffer receives instructions
arriving from one processor until the OVP scheduler switch its model, per default at
each 100K instructions. At this moment, an event creates a thread and passes buffer
pointer as an argument. Therefore, through one model is simulated other threads can
profit from host processor parallelism.

The time-slice event is triggered even when the platform simulates only one
CPU. Nevertheless, this event is configurable, enabling insert an index trigger, besides
time-slice transitions is possible provoke thread creation during the time-slice of a
processor. For instance, if the CPU is configured with a 10K instructions index in a
100K time-slice, will be generated 10-work threads during each simulate time-slice for
this CPU with the processing beginning immediately after thread creation. As a result,
workload is separate in more threads although several tests not demonstrate a
measurable gain.

Buffer allocation occurs when a processor try store an instruction and discover a
null pointer in the buffer handler, and the size is by default a time-slice (100K).
Additionally, buffers are independent of others, i.e. a processor in a determined instant
may have several buffers been consumed, however, just one buffer is receiving data at
any moment. Notwithstanding the number of simultaneous buffers is unpredictable due
thread scheduling, experimental data show not more than four buffer existing
simultaneously. As a result of host parallelism, for example, in a quad-core host
OVPSim use only one leaving the other three to work threads. This behavior is due the
duration of timing estimation of a chunk of instructions, been faster than simulate these
instructions in OVPsim with the concomitant phase attached due the necessity of
simulation interrupt at every fetch.

5.3 Thread Management
This extension also requires thread management, and in order to benefit better

from host parallelism threads are independent of simulation main flow, i.e. there will be
not a join calls after. The use of detached threads improves performance, while
decreases the memory usage, since resources are immediately released as soon as a
thread execution is completed.

When simulations come to end is not guarantee to all worker threads already
finished, as result is necessary synchronize all threads. The synchronization is
performed through a barrier like mechanism insert at simulation main flow end. As
previous mentioned, threads are detached; consequently, thread join function is not an
option and is not truly imperative since is necessary wait all threads finishes, not a
specific one.

We use a global thread count variable, responsible by control the active threads
number. Whenever a thread is created, the counter is incremented. Just after a work
thread updates internal data, counter is decremented. The barrier is developed as a loop
statement until thread counters reach zero, to avoid busy waiting and release resources a
sleep call is realized inside the loop.

31

5.4 Simulation behavior
This extension also requires thread management, and in order to benefit better

from host parallelism threads are independent of simulation main flow, i.e. there will be
not a join calls after. The use of detached threads improves performance, while
decreases the memory usage, since resources are immediately released as soon as a
thread execution is completed.

When simulations come to end is not guarantee to all worker threads already
finished, as result is necessary synchronize all threads. The synchronization is
performed through a barrier like mechanism insert at simulation main flow end. As
previous mentioned, threads are detached; consequently, thread join function is not an
option and is not truly imperative since is necessary wait all threads finishes, not a
specific one.

We use a global thread count variable, responsible by control the active threads
number. Whenever a thread is created, the counter is incremented. Just after a work
thread updates internal data, counter is decremented. The barrier is developed as a loop
statement until thread counters reach zero, to avoid busy waiting and release resources a
sleep call is realized inside the loop.

Figure 5.1 - Block diagram of developed watchdog module thread extension.

32

6 EXPERIMENTAL SETUP AND RESULTS

6.1 Timing CPU model results
In order to demonstrate the effectiveness of our approach, a 32-bit ARM Cortex-

M4F processor, which is based on the ARMv7M architecture, was used as a case study.
In the study case are used benchmarks from different domains, demonstrating the
benefits towards the software evaluation facilities inherent to the proposed approach.

For our experiments, the STM32F4-Discovery board was used as reference
platform, as illustrated in Figure 6.1. The reference STM32F4 Discovery board is built
around a 32-bit ARM Cortex-M4F core running a FreeRTOS kernel version V.7.4.21 at
168 MHz. Among other features, ARM Cortex-M4F supports single precision floating-
point unit (FPU) and power saving modes, which can be used for the development of
energy-efficient embedded systems. Both Cortex-M4F and FreeRTOS are highly used
in high-performance embedded system design, justifying the choice.

Figure 6.1 - Adopted reference board platform. Proposed illustration integrates
figures captured from their owner’s websites.

As means to verify model accuracy is fundamental expose the watchdog to real
scenarios, diversifying possible instructions patterns encountered during simulation.
Benchmark execution is composed by three phases. First, port chosen benchmarks to
our framework, real board and OVP. Committed to ensuring both platform runs most
similar code as possible, although is not feasible execute exactly the same binary duo
platform related initialization. However, this discrepancy is less than 500 instructions.
Assuring a compilation using same cross-compile, libraries, compilation flags is
possible create almost identical binaries.

Using the Mentor Graphics Sourcery Tools version 4.8.1 and flags -
mcpu=cortex-m4; -mfpu=fpv4-sp-d16; -mfloat-abi=softfp; -mthumb; -Wall; -ffunction-
sections; -g; -O0; -w; -lm; -DSTM32F407VG; -DSTM32F4XX. Second, execute in the
adopted board to acquire cycles count, use as referential. Finally, run all applications in
the Timing CPU mode and variants. Realizing both execution, in the board and OVP
several times.

To provide relevant metrics, selecting application benchmarks that permit
exploiting and assessing performance of embedded CPUs from different research
domains. Such diversity allows observing the accuracy of the proposed approach under
different conditions. Applications from several suites were used, such as MiBench

33

[Guthaus et al. 2001], Mälardalen WCET [Jan Gustafsson 2010], SPLASH-2 [Woo et
al. 1995], and other benchmarks created in house. Table 6.1 presents, the benchmarks
number, the benchmarks name, origin, and a brief description.

Among the benchmarks, some are not appropriate to execution in this
microarchitecture. Factors as memory usage and execution time may require code
modifications, for instance, matrix sizes are dimensioned according available memory.
Other had loop smoothed or remove not crucial functions as debug to diminish
execution time.

6.1.1 Timing CPU model - Experimental Setup

As means to capture execution time (i.e. cycles) directed in the reference board,
was necessary create an infrastructure. In order to development, compile, and test the
applications in the host machine and transfer the binary code generated to the chip was
employed the CooCox CoIDE Version 1.7.6. A free software development environment
for ARM Cortex MCU based microcontrollers. Adopt the CoIDE instead of more
popular platforms, as instance Keil uVision5, as driven by CoIDE liberty to selected and
configure a third-party compiler. As a result, the same cross-compiler was used in the
OVP platform as in the board platform. Ensuring maximum fidelity between OVP and
real board binary code.

Subsequently, acquire the number of cycles for each application. The ARMv7
provides an internal logic that provides information about execution time called Data
Watchpoint and Trace (DWT) Unit. Among them are three registers of special interest,
the Control Register DWT_CTRL located at the address 0xE0001000, the Debug
Exception and Monitor Control Register SCB_DEMCR at the address 0xE000EDFC,
and the Cycle Count Register DWT_CYCCNT located at the address 0xE0001004.
With this information, it is possible to manage and acquire the number of cycles of the
application using the three registers. Figure 6.2 shows a sample code to acquire the
clock count.

Figure 6.2 - Sample code necessary to access the DWT registers.

34

Table 6.1 - List of used benchmarks to cycle estimation.

Name Suite Description

1 Adpcm Mälardalen WCET Adaptive pulse modulation algorithm.

2 Barnes SPLASH 2 Performing an n-body simulation.

3 BasicMath MiBench Series of sums, divisions, and multiplications

4 Bfsh House production Blowfish is a symmetric-key block cipher

5 BinarySearch Mälardalen WCET Binary search

6 BitManipulation Mälardalen WCET
(ndes) Bit manipulation, shifts, array, and matrix

calculations.

7 Bubble Mälardalen WCET Bubble sort program

8 Compress Mälardalen WCET
Data compression program (Adopted from SPEC95 for

WCET)

9 Counts Mälardalen WCET Counts non-negative numbers in a matrix.

10 Crc House production Cyclic redundancy check computation

11 Dijkstra MiBench Dijkstra's algorithm

12 Edn Mälardalen WCET Integer Finite Impulse Response (FIR) filter calculations

13 Expint Mälardalen WCET
Series expansion for computing an exponential integral

function.

14 Factorial House production Factorial calculation

15 Fdct Mälardalen WCET Fast Discrete Cosine Transform

16 Fft Mälardalen WCET
Fast Fourier Transform using the Cooly-Turkey

algorithm.

17 Fib House production Fibonacci algorithm

18 Fir Mälardalen WCET Finite impulse response filter

19 Hanoi House production Tower of Hanoi solver

20 Harm House production Harmonics calculations

21 InsertSort Mälardalen WCET Insertion sort algorithm

22 Jfdctint Mälardalen WCET Discrete-cosine transformation on a 8x8 pixel block

23 Lms Mälardalen WCET
LMS adaptive signal enhancement. The input signal is a

sine wave with added white noise.

24 Lu SPLASH 2 LU decomposition

25 MatrixInver Mälardalen WCET Inversion of floating point matrix

26 Mdc House production minimum common divisor

27 Patricia MiBench PATRICIA tree insert and search

28 Peakspeed Impearas Imperas development

29 Petri Mälardalen WCET (nsichneu) Simulate an extended Petri Net

30 Prime Mälardalen WCET Calculates whether numbers are prime.

31 Qsolver Mälardalen WCET Quadratic equation solver

32 Qsort MiBench Non-recursive version of quick sort algorithm.

33 Sha MiBench Secure Hash Algorithm

34 Statistic Mälardalen WCET
Computes for two arrays of numbers the sum, the mean,
the variance, and standard deviation, and the correlation

coefficient between the two arrays.

35 Stringsearch MiBench Sub-string search

36 Sw SPLASH 2 Smith-Waterman algorithm

37 Tree House production Binary tree insert and search

38 Ud Mälardalen WCET Integer Calculation of matrixes

39 Usqrt Mälardalen WCET Integer Square root function

35

6.1.2 Accuracy results and comparisons

After collect all data from the board and OVP models, Figure 6.3 shows a
comparison between referential board time execution, timing estimation from the
sequential version, and thread version. Left y-axis presents the number of cycles to each
execution in a logarithmic scale. Background bars expose perceptual mismatch between
each model variant and referential board in right y-axis. The x-axis show the number of
each benchmark associated with Table 6.1.

Figure 6.3 - Execution time comparison between real board and proposed timing model.

The major error contribution is due miss prediction over load/store execution. As

mentioned in section 3.3, the timing behavior related to these instructions is complex
and has several possibilities during hardware execution. In benchmarks as FIR heavily
IO bounded that presents an intricate load/store patterns can insert incorrect cycles. For
instance, our FIR implementation has 753.994 loads, 329.835 stores in a total of
1.624.604 representing almost 67% of executed instructions

Division instructions is another possible error source, as result of the variable
number of cycles, 2 to 12, due the early termination algorithm implemented. The model
covers the cases describe by the ARM Cortex M4 technical reference manual, although
the exact algorithm is not provided, the document does supply some information into
each instruction via a couple footnotes. Divide instructions use an early termination
based on the number of leading zeros and ones in the input arguments the high accuracy
achieved is an important contribution, hence flexible and accurate system modeling
becomes imperative to the software development of today’s MPSoCs.

To further investigate the accuracy of timing model, we evaluate the effect of
increasing application execution time by having successive iterations of a loop. The
chosen applications for such experiments were: (i) FFT (Fast Fourier Transform) and
(ii) harmonic. The graphs in Figure 6.4 (a) and (b) shows that even changing the number
of loops, the mismatch between the real board and the simulated OVP remains
negligible (less than 0.6% in the worst case). Such small variations could be explained
by the incidence of a given instruction that was not well characterized.

36

(a) (b)

Figure 6.4 - Benchmark execution time comparison between real board and
timing CPU model (OVP), varying the number of loops. Left a FFT (a) and in right a

Harmonic (b) application.

6.1.3 Scalability

As demonstrated in section 3.1.1, OVPSim preserves the performance when
exposed to scenarios composed of hundreds of cores. As the proposed model alters the
traditional execution flow, the performance decrease is expected. As mentioned before,
OVP relies on in Dynamic Binary Translation to active the claimed high speed by the
direct relationship between host and target ISA. Subsequently, in the quasi-cycle
accurate model is mandatory to stop the simulation at every fetched instruction. At this
point in time, several instructions related to the Watchdog must be executed in the host
machine.

The Watchdog model has two main variants, each one divided in four variants.
First presented was the sequential, following the flow of OVPSim as describe in the
section 3.1. Two other variants were evaluated, the sequential with memory count and
the sequential with the full report. The memory count deploys callbacks to count the
number of memory access, including fetched instructions and read and write
transactions. When full report is enabled, every executed instruction is stored into an
internal data struct, which requires more processing time during its execution.

The fourth variant is the union these two variants to create the sequential with
the full report and memory count. In order to characterize the scalability of the parallel
branch, chapter 5, was create three subtypes, Thread with the full report, Thread with
memory count and the union of these two. The full report is performed parallel. As a
result, and its impact is negligible when compares with a Thread version without the full
report, totaling seven variants.

In order to demonstrate the scalability of all proposed model variants, the
number of CPUs was varied from one to a thousand. In each CPU executes an instance
of FFT. Noting the average MIPS remains constant to all models and variants, around
1.8 to threads extension, 1.2 to the sequential, and 1 to the sequential with the full
report. Is notifiable also the great improving in thread extension when passing from 1 to
100 PE, when the individual PE becomes less active compared with total simulation
time given more time to worker thread finishes. Proving the capacity of the model to
simulate large many-core systems without loss performance.

37

Figure 6.5 - Simulation performance as the simulated MPSoC scales from 1 to
1000 CPUs.

6.1.4 Thread extension accuracy

In order to verify the accuracy in this thread extension, presented in chapter 5,
and if remains close to the sequential version described in chapter 3 all benchmarks
were re-executed using this extension. Figure 6.6 shows the cycles from the referential
board in red, in blue the estimation from the thread estimation, in yellow bars is visible
the mismatch between the two.

Figure 6.6 - Execution time comparison between real board and proposed thread
extension.

38

Figure 6.7 shows the comparison between the timing model mismatch and the
thread extension mismatch, remarking the majority of the 39 remains close to sequential
estimation. The average error in this extension is 4.35 % while sequential version is
approximately 4.31%.

Figure 6.7 - Comparison between the timing model mismatch and the thread
extension mismatch.

The mismatch between implementations occurs due the division cycle
estimation, as already mentioned, section 3.3, the early termination algorithm deployed
in ARM Cortex-M4F requires acquiring booth operands in order to estimate the cycle
count. Nevertheless, when the thread-based version realizes the computation
asynchronously, the operands may not be available in the register bank to comparison.

6.1.5 Thread extension speedup

Tread extension was intent to increase simulation speed by diving the work in
several threads, as means to verify the gains obtained the individual speed to all
benchmark was recorded. Figure 6.8 shows simulation speed in MIPS for each
benchmark in booth main versions: Sequential in grey bars and thread-based extension
in orange bars. Upon each benchmark is the speedup from one version to another.
Noting an average speed of 1.5 MIPS presented by the thread extension and 1 MIPS in
the sequential version.

The relative speed gain is due work migration from simulation flow to
independent worker threads, minimizing the time spend in each fetch treatment.
However, the speed gain was limited by the amount of work transferable to these
threads, limitations imposed by the methods provide on the OVP to disassemble binary
code, as seeing in section 3.4.1. These methods are not constructed to be thread safe,
generating issues related to data races in multiple concurrent invocations.

Possible solutions were investigated across the model development, among than
was suggested the creation of a custom disassemble function. However, this decision
would imply in a large amount of work diverting from our main focus, additionally, the
model is intent to be the most flexible as possible and easily ported to other
architectures. Was considered the use of an extern disassemble program, for instance
the provided by GCC compiler, despite the reasonably flexibility provide each
disassemble operation would require an invocation of an extern program been extremely

39

slowly to our implementation purposes.
The most promisor solution encountered is embedded the proposed model

directly in OVPSim engine. JIT-based simulators require a morphing phase to operate,
in this phase the binary code is translated from the target machine to host machine
binary, additionally during this phase the instructions are identified with enough
information to implements our proposed OVP model. Also, the OVP morphing phase
possesses a table containing the previous translations used to accelerate the simulation.
However, in order to deploy this solution is necessary access to the privileged source
code.

Figure 6.8 - Speedup comparison between timing model in sequential and thread
extension versions.

6.2 ENERGY EXPERIMENTAL SETUP AND RESULTS

6.2.1 Test Planning

In order to demonstrate the effectiveness of the proposed approach, several
benchmarks were selected and use to compare the accuracy of the model when
compared with the Plasma RTL gate-level description. Application benchmarks that
permit exploiting and assessing performance of embedded CPUs were selected from
different research domains. For instance, the 11-selected applications of the Mälardalen
WCET [Jan Gustafsson 2010] benchmarks vary in terms of execution time, number of
loops, matrixes, and array size. The others are produced in-house using well-known
algorithms. Since OVPSim uses the target CPU’s binary code to perform the emulation
on a host machine, all simulation scenarios were executed multiple times in order to
capture meaningful results.

Executing each one in the OVPSim using the Watchdog energy model, and
subsequently execute the benchmark in the Cadence Incisive and Cadence RTL
compiler to acquire the energy spend, similar to made in characterization phase in
section 4.1 and 4.2. Using the same metrics possible acquire the energy to each one of
the 19 benchmarks displayed in Table 6.2.

Committed to ensure both platform runs most similar code as possible, although
is not feasible execute exactly the same binary duo platform related initialization.
However, this discrepancy is less than 500 instructions. Assuring a compilation using

40

same cross-compile, libraries, compilations flags is possible create almost identical
binaries. Used compiler Mentor Graphics Sourcery Tools version 4.8.1 and flags -mips1
-g -Ttext 00000000.

Table 6.2 - List of used benchmarks in energy estimation.

Name Suite Description

A Bfsh House production Blowfish is a symmetric-key block ciphe

B BinarySearch
Mälardalen

WCET
Binary search

C BitManipulation
Mälardalen

WCET
(ndes) Bit manipulation, shifts, array, and matrix calculations.

D Bubble
Mälardalen

WCET
Bubblesort program

E Counts
Mälardalen

WCET
Counts non-negative numbers in a matrix.

F Crc House production Cyclic redundancy check computation

G Edn
Mälardalen

WCET
Integer Finite Impulse Response (FIR) filter calculations

H Expint
Mälardalen

WCET
Series expansion for computing an exponential integral function.

I Factorial House production Factorial calculation

J Fft
Mälardalen

WCET
Fast Fourier Transform using the Cooly-Turkey algorithm.

K Fib House production Fibonacci algorithm

L Hanoi House production Tower of Hanoi solver

M Harm House production Harmonics calculations

N InsertSort
Mälardalen

WCET
Insertion sort algorithm

O MatrixInver
Mälardalen

WCET
Inversion of floating point matrix

P Mdc House production minimum common divisor

Q Peakspeed Impearas Imperas development

R Ud
Mälardalen

WCET
Integer Calculation of matrixes

S Usqrt
Mälardalen

WCET
Integer Square root function

6.2.2 Accuracy results and comparisons

Figure 6.9 compares the energy consumption for each application benchmark,
considering results obtained from gate-level simulation (i.e. Cadence RTL Compiler)
and the proposed instruction-driven energy model in OVP. Gray bars correspond to the
difference between each result, showing the high accuracy achieved with the proposed
model (error below 8%).

41

Figure 6.9 - Application benchmark energy consumption: gate-level simulation

versus proposed instruction-driven energy model in OVP.

6.2.3 Relative speedup gain

Figure 6.10 presents the achieved simulation speeds in MIPS when comparing
both the instruction-driven energy model in OVP and the gate-level simulation.

Figure 6.10 - Gain in terms of speedup: gate-level simulation versus proposed

OVP energy model.

Results show that the gain in terms of speedup is in a wide range of 10x – 1500x
(gray bars) depending on the application benchmark nature. Note that all analysis using
our proposed energy model in OVP required less than a minute of simulation.

6.2.4 Application to Large Scale Systems

The proposed instruction-driven energy model was integrated into a NoC-based
MPSoC model proposed in [Mandelli et al. 2013], in order to verify the its application
to large scale systems. The underlying energy model was employed to evaluate the
mapping process cost regarding different mapping heuristics by calculating the energy
consumption during the execution of each of them. This experiment comprises
exclusively the energy spend by the proposed mapping heuristics, providing to the

 0

 20

 40

 60

 80

 100

A B C D E F G H I J K L M N O P Q R S
 0

 2

 4

 6

 8

 10
E

ne
rg

y
C

on
su

m
p

tio
n

(m
ic

ro
jo

ul
e)

M
is

m
a

tc
h

(%
)

Mismatch
Gate-level Evaluation

OVP Model Evaluation

 0

 200

 400

 600

 800

 1000

A B C D E F G H I J K L M N O P Q R S
 0

 500

 1000

 1500

 2000

S
im

ul
at

io
n

T
im

e
(s

e
co

nd
s)

G
ai

n
in

 te
rm

s
of

 r
el

at
iv

e
sp

ee
du

p

Benchmarks

Speedup
Gate-level Simulation Time

OVP Model Simulation Time

42

software engineer the ability to observe different algorithms to solve the same problem.
Different scenarios were evaluated using the OVP model to compare three different
heuristics: Nearest Neighbor (NN), first free (FF) and LECDN. The heuristics are
distribute in scenarios using an 8x8 MPSoC size instance with 4x4 clusters. Each
scenario executes 5 applications instances: 4 instances of a partial MPEG decoder (real
application coded in C language), containing 5 tasks; and one instance of the Digital
Time Warping (DTW, real application coded in C language), application, with 10 tasks.

Figure 6.11 – Platform with four clusters used in the evaluation.

Nearest Neighbor (NN) heuristic was proposed by [De Souza Carvalho et al.
2010] considers only the proximity of an available resource to execute a given task. The
LEC-DN heuristic [Mandelli et al. 2011] employs two cost functions: (i) proximity, in
number of hops; (ii) communication volume among tasks. Differently from NN, which
map the target task as close as possible to its source task, the LECDN considers the
proximity of the target task to all tasks it communicates with already mapped. The last
one, first free (FF) [Carvalho et al. 2009] selects the first free resource available.

Figure 6.12 – Energy cost of the three mapping heuristics.

 0

 500

 1000

 1500

 2000

 2500

 3000

FF NN LECDN

E
ne

rg
y

A
na

lis
ys

 (
na

no
 J

au
le

s)

43

Results show that the LEC-DN is the heuristic with the highest energy
consumption due to its complex algorithm. This increase (62.9% related to the NN) is
considered by the Authors a small cost considering the benefits obtained by distributing
the load in the system. The FF is the lowest energy consumption due his simplicity,
however may generate the worst results when compared to the other heurist.

This experiment shows a potential application of the proposed energy model.
We claim here, that this energy model can be used by software engineers to quickly
modify and analyze, early at the design process, different software stack configurations,
aiming to satisfy particular requirements of energy for specific functions (e.g. mapping
heuristics), or even for a great variety of applications.

44

7 CONCLUSION
In this work, we have begun to address the challenge of making JIT-based

simulators suitable for software performance estimation. In light of this, a watchdog
model, incorporating timing and energy analysis were proposed and integrated into
OVPSim simulator. The resulting approach offers the same design flexibility, setup and
debugging features inherent to OVP, while enabling accurate timing and energy
software evaluation. Thus, programmers can use the same simulator to have fast
simulation and accurate software evaluation. As result, software engineers are able to
estimate execution time and energy in early stages of development, improving the
commitment with project constraints and reducing time to market. Additionally, the
model is adequate to manage 1000-cores scenarios maintaining the scalability both to
simulation speed and memory usage.

45

REFERENCES

Abril Garcia, A. B., Gobert, J., Dombek, T., Mehrez, H. and Petrot, F. (2002). Cycle-
accurate energy estimation in system level descriptions of embedded systems. In 9th

International Conference on Electronics, Circuits and Systems, 2002.

ARM (2013). ARM® Cortex-M4 Processor Technical Reference Manual.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439d/index.html,
[accessed on Apr 21].

Austin, T., Larson, E. and Ernst, D. (feb 2002). SimpleScalar: an infrastructure for
computer system modeling. Computer, v. 35, n. 2, p. 59–67.

Bazzaz, M., Salehi, M. and Ejlali, A. (jul 2013). An Accurate Instruction-Level Energy
Estimation Model and Tool for Embedded Systems. IEEE Transactions on

Instrumentation and Measurement, v. 62, n. 7, p. 1927–1934.

Bellard, F. (2005). QEMU, a Fast and Portable Dynamic Translator. In Proceedings of

the Annual Conference on USENIX Annual Technical Conference. , ATEC ’05.
USENIX Association. http://dl.acm.org/citation.cfm?id=1247360.1247401, [accessed
on Jul 3].

Binkert, N., Beckmann, B., Black, G., et al. (aug 2011). The Gem5 Simulator.
SIGARCH Comput. Archit. News, v. 39, n. 2, p. 1–7.

Bohm, I., Franke, B. and Topham, N. (jul 2010). Cycle-accurate performance modelling
in an ultra-fast just-in-time dynamic binary translation instruction set simulator. In 2010

International Conference on Embedded Computer Systems (SAMOS).

Borkar, S. (2007). Thousand Core Chips: A Technology Perspective. In Proceedings of

the 44th Annual Design Automation Conference. , DAC ’07. ACM.
http://doi.acm.org/10.1145/1278480.1278667, [accessed on Jun 19].

Borkar, S. and Chien, A. A. (1 may 2011). The future of microprocessors.
Communications of the ACM, v. 54, n. 5, p. 67.

Bose, P. (feb 2013). Is Dark Silicon Real?: Technical Perspective. Commun. ACM, v.
56, n. 2, p. 92–92.

Butko, A., Garibotti, R., Ost, L. and Sassatelli, G. (jul 2012). Accuracy evaluation of
GEM5 simulator system. In 2012 7th International Workshop on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC).

Callou, G., Maciel, P., Tavares, E., et al. (jun 2011). Energy Consumption and
Execution Time Estimation of Embedded System Applications. Microprocess.

Microsyst., v. 35, n. 4, p. 426–440.

Carvalho, E., Calazans, N. and Moraes, F. (oct 2009). Investigating runtime task
mapping for NoC-based multiprocessor SoCs. In 2009 17th IFIP International

Conference on Very Large Scale Integration (VLSI-SoC).

46

Castillo, J., Posadas, H., Villar, E. and Martínez, M. (nov 2007). Energy Consumption
Estimation Technique in Embedded Processors with Stable Power Consumption based
on Source-Code Operator Energy Figures.

Ceng, J., Sheng, W., Castrillon, J., et al. (2009). A High-level Virtual Platform for Early
MPSoC Software Development. In Proceedings of the 7th IEEE/ACM International

Conference on Hardware/Software Codesign and System Synthesis. , CODES+ISSS
’09. ACM. http://doi.acm.org/10.1145/1629435.1629438, [accessed on Jun 20].

Chiang, M.-C., Yeh, T.-C. and Tseng, G.-F. (apr 2011). A QEMU and SystemC-Based
Cycle-Accurate ISS for Performance Estimation on SoC Development. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 30, n. 4,
p. 593–606.

Davidmann, S. and Graham, D. (2014). Learning From Advanced Hardware
Verification for Hardware Dependent Software.

De Souza Carvalho, E. L., Calazans, N. L. V. and Moraes, F. G. (sep 2010). Dynamic
Task Mapping for MPSoCs. IEEE Design Test of Computers, v. 27, n. 5, p. 26–35.

Esmaeilzadeh, H., Blem, E., St.Amant, R., Sankaralingam, K. and Burger, D. (jun
2011). Dark silicon and the end of multicore scaling. In 2011 38th Annual International

Symposium on Computer Architecture (ISCA).

Gray, I. and Audsley, N. C. (oct 2012). Challenges in software development for
multicore System-on-Chip development. In 2012 23rd IEEE International Symposium

on Rapid System Prototyping (RSP).

Guthaus, M. R., Ringenberg, J. S., Ernst, D., et al. (dec 2001). MiBench: A free,
commercially representative embedded benchmark suite. In 2001 IEEE International

Workshop on Workload Characterization, 2001. WWC-4.

IBS (2013). International Business Strategies, Inc.2013.

Imperas (2014). Open Virtual Platforms (OVP). http://www.ovpworld.org/, [accessed
on Apr 21].

Jan Gustafsson, A. B. (2010). The Mälardalen WCET Benchmarks: Past, Present And
Future. p. 136–146.

Kalla, P., Henkel, J. and Hu, X. S. (oct 2003). SEA: fast power estimation for micro-
architectures. In 5th International Conference on ASIC, 2003. Proceedings.

Konstantakos, V., Chatzigeorgiou, A., Nikolaidis, S. and Laopoulos, T. (apr 2008).
Energy Consumption Estimation in Embedded Systems. IEEE Transactions on

Instrumentation and Measurement, v. 57, n. 4, p. 797–804.

Lee, D., Ishihara, T., Muroyama, M., Yasuura, H. and Fallah, F. (oct 2006). An Energy
Characterization Framework for Software-Based Embedded Systems. In Proceedings of

the 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multimedia.

47

Lee, S., Ermedahl, A., Min, S. L. and Chang, N. (2001). An Accurate Instruction-Level
Energy Consumption Model for Embedded RISC Processors. In Proceedings of the

ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems.
, LCTES ’01. ACM. http://doi.acm.org/10.1145/384197.384201, [accessed on Mar 31].

Magnusson, P. S., Christensson, M., Eskilson, J., et al. (feb 2002). Simics: A Full
System Simulation Platform. Computer, v. 35, n. 2, p. 50–58.

Mandelli, M. G., Da Rosa, F. R., Ost, L., Sassatelli, G. and Moraes, F. G. (dec 2013).
Multi-level MPSoC modeling for reducing software development cycle. In 2013 IEEE

20th International Conference on Electronics, Circuits, and Systems (ICECS).

Mandelli, M., Ost, L., Carara, E., et al. (may 2011). Energy-aware dynamic task
mapping for NoC-based MPSoCs. In 2011 IEEE International Symposium on Circuits

and Systems (ISCAS).

Marongiu, A. and Benini, L. (feb 2012). An OpenMP Compiler for Efficient Use of
Distributed Scratchpad Memory in MPSoCs. IEEE Transactions on Computers, v. 61,
n. 2, p. 222–236.

Miura, N., Koizumi, Y., Take, Y., et al. (nov 2013). A Scalable 3D Heterogeneous
Multicore with an Inductive ThruChip Interface. IEEE Micro, v. 33, n. 6, p. 6–15.

MPPA (2014). MPPA MANYCORE: a multicore processors family - Many-core
processors - KALRAY. http://www.kalray.eu/products/mppa-manycore/, [accessed on
Jun 25].

Nikolaidis, S., Kavvadias, N., Laopoulos, T., Bisdounis, L. and Blionas, S. (2003).
Instruction Level Energy Modeling for Pipelined Processors. In: Chico, J. J.; Macii,
E.[Eds.]. Integrated Circuit and System Design. Power and Timing Modeling,

Optimization and Simulation. Lecture Notes in Computer Science. Springer Berlin
Heidelberg. p. 279–288.

Papanikolaou, A., Wang, H., Miranda, M., Catthoor, F. and Dehaene, W. (2008).
Reliability Issues in Deep Deep Submicron Technologies: Time-Dependent Variability
and its Impact on Embedded System Design. In: Micheli, G. D.; Mir, S.; Reis, R.[Eds.].
VLSI-SoC: Research Trends in VLSI and Systems on Chip. IFIP International Federation
for Information Processing. Springer US. p. 119–141.

Plasma (2014). Plasma CPU. http://plasmacpu.no-ip.org/, [accessed on Apr 21].

Sanchez, D. and Kozyrakis, C. (2013). ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-core Systems. In Proceedings of the 40th Annual International

Symposium on Computer Architecture. , ISCA ’13. ACM.
http://doi.acm.org/10.1145/2485922.2485963, [accessed on Apr 20].

Stattelmann, S., Ottlik, S., Viehl, A., Bringmann, O. and Rosenstiel, W. (jun 2012).
Combining instruction set simulation and WCET analysis for embedded software
performance estimation. In 2012 7th IEEE International Symposium on Industrial

Embedded Systems (SIES).

48

STM32F4 (2014). STM32F4DISCOVERY Discovery-STMicroelectronics.
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419, [accessed on
May 18].

Sultan, S. and Masud, S. (jul 2009). Rapid software power estimation of embedded
pipelined processor through instruction level power model. In International Symposium

on Performance Evaluation of Computer Telecommunication Systems, 2009. SPECTS

2009.

Thach, D., Tamiya, Y., Kuwamura, S. and Ike, A. (mar 2012). Fast cycle estimation
methodology for instruction-level emulator. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2012.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P. and Gupta, A. (jun 1995). The SPLASH-
2 programs: characterization and methodological considerations. In , 22nd Annual

International Symposium on Computer Architecture, 1995. Proceedings.

Yourst, M. T. (apr 2007). PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator. In IEEE International Symposium on Performance

Analysis of Systems Software, 2007. ISPASS 2007.

Zhang, Y., Peng, L., Fu, X. and Hu, Y. (may 2013). Lighting the dark silicon by
exploiting heterogeneity on future processors. In 2013 50th ACM / EDAC / IEEE

Design Automation Conference (DAC).

49

APPENDIX A- TRABALHO DE CONCLUSÃO I

Fast and Accurate Evaluation of Embedded Applications for
Many-core Systems

Felipe Rosa 1, Ricardo Reis1, Luciano Ost2

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

2Lirmm– University of Montpellier 2
Montpellier, Fr

{frdarosa,reis}@inf.ufrgs.br, ost@lirmm.fr

Abstract. Many-core systems will be the embedded projects future, however

this hardware-software architectures as the only viable solution if addressing

designs constraints on cost, performance and power. With the purpose of

provide these necessary tools, this work propose a rapid timing and power

estimation model for many-core system. Results show that the accuracy of our

timing model varies from 0,6% to 10,5% and for power 0,01% to 7,6%

depending on the benchmark profile. Still reaching simulation average of 1.8

MIPS

Resumo. Sistema multiprocessados serão o futuro dos projetos de sistemas

embarcados, no entretanto estas arquiteturas de hardware-software são

viáveis soluções se atenderem as restrições de design em custo, desempenho e

potência. Com o propósito de prover este ferramental necessário, este

trabalho propõem um modelo de potência e temporal para sistemas

multiprocessados. Os resultados mostram um precisão para o modelo

temporal entre 0,6% e 10,5% e para o modelo de potência entre 0,01% e 7,6%

dependendo do perfil do benchmark. Mantendo uma velocidade de simulação

de 1.8 MIPS.

1. Introduction

The many-core embedded systems will become the dominant hardware-software
architecture. This is the most viable solution to addressing future designs constraints on
cost, performance and power. The move to many-core paradigm as result of end of the
single-core performance scaling principally pushed over the past couple of decades by
increasing instruction-level parallelism (ILP) using several stratagems as: super
pipeline, Out-of-Order architect, Speculative execution. However, simply leveling out
ILP has little effect on most applications leading the performance versus silicon area
cost unaffordable. Resulting in multicore systems shift.

This paradigm shift will increasing dramatically software design complexity is,
resulting in new design challenges, such as improving the system’s performance and
programmability, these challenges impose more time and cost on the system’s software
development. In this context, software engineers are investigating alternatives to scale

50

up the system performance, while dealing with new challenges in many-core software
development. Leading to the adopting of virtual platform frameworks aimed at
functional verification like [“Open Virtual Platforms (OVP)” [S.d.]], capable of
simulating embedded systems running real application code at the speed of hundreds of
MIPS. Such simulators can achieve speeds approaching actual execution time, e.g.
thousands MIPS at the cost of limited accuracy. They often focus on functional
validation rather than architectural exploration. In light of this, the present work focuses
on enhancing OVP capability by including power and timing models, making it suitable
for software performance and power analysis.

The presented work is divided in 7 sections. In section 2 a state of the art in power and
timing estimation. In 3, we introduce is discussed simulators performance, in more
detail Open Virtual Platforms. Section 4 presents the timing estimation model and
related results, as in 5 the power estimation model. Finishing with conclusion in the
section 6 and referees in 7.

2. Related Work

In this section presents a state-of-art. Power and timing estimation is a broad field of
exploration, in this work we will focus in models extensions of rapid frameworks (e.g.
ISS and more higher levels of abstractions) in order to improve accuracy estimation.
Almost no works, in this scope, cover both areas. As result, power and timing are
separated in section 2.1 and 2.2 respectively.

2.1 Cycles.

Chiang et al. [Chiang et al. 2011] utilize the integration of QEMU and SystemC in order
to allow faster clock-accurate evaluation when compared to RTL-based. Attaching a
SystemC co-processor in the simulator framework, using the information coming from
the DBT interface. A pipeline model was included into QEMU in [Thach et al. 2012],
where authors proposed a two-phase approach (offline and online phases) to estimate
the application performance. In the offline phase a cycle pre-estimation of the
application execution time is performed. Using the computed information at dynamic
adaption phase when CPU status and execution time of critical instructions are also
taken in account, improving the approach accuracy (mismatch around 10%). A similar
approach is presented in [Stattelmann et al. 2012], where worst-case execution time
(WCET) analysis and QMEU are combined. In this work, the offline phase is composed
by four steps, which produce a timing database that is used during the QEMU
simulation. The drawback of such approaches is that they rely based on prior application
profiling phases, which restricts its use when exploring large scenarios composed of
diverse applications. Another disadvantage of them is that any software modification
(e.g. changing the OS scheduling algorithm) implies re-running offline phases.

51

2.2 Power

Over the years, considerable number of different approaches have been proposed to
create high-level power models aiming help software and systems engineers better
explorer larger design spaces. They can be separated in two main groups taking into
consideration their initial calibration low-level abstraction: Measurement-based
methods and Simulation-based methods.

Measurement-based methods use data originated from field experiments usually using a
precision resistor positioned between the power supply and the power input pin, thus
instantaneous power is calculated. For example, [Bazzaz et al. 2013; Konstantakos et al.
2008; Sheayun Lee et al. 2001; Nikolaidis et al. 2003] applies this approach. The use of
physical information aggregate precision, in order of 3%, however is needed additional
hardware as high performance oscilloscopes and associated several different
benchmarks to calibrate each instruction. Furthermore, another drawback of this
technique is the difficulty to isolate separated modules inside the processor package duo
the internal structure (e.g. Flash, Rom, SPI, AD, and DC).

In simulated-based techniques, the required information is extracted from low-level
simulators (e.g. SPICE), using a hardware model to run the applications and calculate
the energy consumption of each part of the system. In [Abril Garcia et al. 2002] an ISS
as enriched with energy models based in the mean active in gate level and the energy by
gate. In a similar work, [Sultan and Masud 2009] implements a model based in activity
for a LEON3 processor.

[Kalla et al. 2003] create a tool called SEA in order to provide estimation of power and
energy in a SPARC processor. This work uses a gate-level simulation to provide energy
information to their model. The instructions were classified in memory, not-memory
and specials, with a precision that is inside 5% for energy and inside 15% for power.

[Lee et al. 2001] combines linear programming, gate-level simulation and ISS to extract
several parameters. However, instead of profiling separated instructions, the instructions
were clustered in significant frames of fixed number of instructions.

Some approaches the level of abstraction are more behavioral like. For instance, by
[Castillo et al. 2007] propose obtaining power estimations directly from the analysis of
the source-code without requiring simulation or even compilation. A further higher-
level approach is propose by [Callou et al. 2011] transforming the source code in
Coloured Petri nets and combining with stochastic analysis to estimate an application
power consumption. This couple of work presents a new level of abstraction that do not
require a real hardware simulation, working only by the source code analyses.

52

3. Simulators

Test and debuggability becomes critical in embedded software development as designs
complexity increase through heterogeneous multiprocessor System-on-Chip (MPSoC),
resulting in the necessity of simulation before real implementation. Designers have the
liberty to choose an abstraction level to simulate, managing performance and accuracy
tradeoffs. Among then Circuit-level and Logic-level simulators are extremely time-
consuming, demanding adoption of a fast platform simulator to suit time-to-market and
cost constraints.

Event-driven and quasi-cycle accurate virtual platform frameworks like GEM5 target
microarchitecture exploration since provides specific modeling details (e.g. instruction
pipeline details, cache coherence protocols, etc.) [Binkert et al. 2011 p. 5]. Such
simulators are not scalable to a large number of CPUs, specifically when it comes to
usability, easy-of-modeling and simulation time (around 200 KIPS [Sanchez and
Kozyrakis 2013]).

In contrast, simulators such as OVP that relies on just-in-time (JIT) dynamic binary
translation (DBT) can achieve simulation speeds of up to 100 MIPS. DTB depend on
emulation of one instruction set architecture (ISA) in another, through machine code
online translation, enhancing performance in comparison to other simulation schemes.
This performance gain comes at the expense of accuracy.

Due the limited simulation speed of event-driven cycle-accurate frameworks, simulators
based on DBT become decisive to deal with today’s application challenges, as well as to
enable large scenarios evaluation. Simics [“Full System Simulation with Wind River
Simics” [S.d.]], QEMU [“QEMU” [S.d.]] and the adopted OVPSim are examples of
virtual platform frameworks that rely on DBT. Such simulators/emulators vary in
modeling flexibility, simulation speed and accuracy.

3.1 Open Virtual platforms

OVP supports dozens of architectures (e.g. MIPS, ARM, x86, PowerPC) ramifying in
several model variants (e.g. arm cortex-A9, cortex-M4F, etc.), as well peripherals (e.g.
DMA, TIMER), and integration with System-C modules. Besides, of supplied models,
the user is able to create customized models easily integrated in the platform.

OVP is composed of three main components: (i) APIs that enable modeling in C/C++
hardware components, (ii) library with a large number of CPU architectures and
peripheral models, and (iii) the OVPsim simulator. OVPsim is a dynamic linked library
marketed by Imperas, which supports the simulation of bus-based multiprocessor
platforms only. OVPsim does provide instruction-level accuracy only resulting into
inaccurate software performance.

In order to deploy this Multiprocessor capability, OVPsim implements a Round-Robin
scheduling algorithm similar to a typical used in OS schedulers. The processor entity
(PE) has time slice variable, typically 0.001 seconds, commonly equal shares are set to
all PE. Converting this variable into a number of instructions that should be executed by
that processor in a time slice, and then simulating for that number of instructions. The
number is obtain multiplying the time slice by the processor nominal MIPS, 100 per
default. OVP works in sequential way (i.e. simulating a unique processor at time, even
if is hosted in a multi-core). Nevertheless, this algorithm inserts an issue related to the

53

synchronization between simultaneous events in different PE. For instance, if a PE
sends a message to other in the middle of their time slice, the receiver PE only will be
aware of the message at the begin of his time slice. In simulation tightly based in
intercommunications between processor (e.g. HPC, NOC), the precision of results may
be affected.

A possible addressable solution could be resizing the time slice, consequently the
number of instruction execute each time by the PE. Decreasing the window size
increases the precision, thus the level of fidelity in the simulation. Notwithstanding, the
modification impacts in the performance obtain by the simulator due the cost in the
context switch between PE. In order to observe this behavior a series of tests are
prepared, using the same application in different scenarios. Ranging the time slice in 1
to 0.000001, therefore the instructions per window as between 1.000.000 to 1. Figure 1
shows the degradation in terms of simulation speed vs. time slice, notice a severe drop
when the number of instructions per round approximate 5 thousand.

Figure 1 Scalability of Time Slice

54

4. Timing estimation

This section describes the proposed timing CPU model extension. As previously
mentioned, OVPsim does not model cycle-accurate processors but rather instruction
accurate processors, which provides inaccurate application execution time. In order to
overcome this, the proposed model integrate a quasi-cycle accurate functionality in
OVPsim. It relies on monitoring at run-time the instructions executed by a target CPU,
employing a purely run-time based approach avoid huge amount of memory usage
needed by trace-driven based approaches.

Developing the monitoring process based on OVP IPIs and integrated in a component
called Watchdog, comprising three main modules: (i) assembly parser, (ii) a hash table
with pre-characterized groups of instruction, and (iii) timing information. Calibrating
both hash table and timing information according to an instruction set architecture
(ISA).

4.1 Cycles Watchdog

The monitoring process bases in a special function supply by the OVP API called
Callback. It is triggered when a predefined particular event occur and subsequently the
simulator call a handler pointing to function provided by the programmer. The
configuration of trigger events as memory access, bus access, etc. occurs at
compilation-time, additionally allowing restrict this event a memory range instead entire
address space.

After the simulation begin, whenever an instruction is fetched from the memory (1) is
triggered a callback, thus activating the Watchdog. Inside the first module, the binary
code of the instructions is acquired using the program counter (PC) register, thus the
binary code is disassemble, divided in sub-strings, and identifies the instruction that
must be executed (2). The identified instruction is employed as a hash table key to
discovery which class (e.g. arithmetic, load, store) such instruction belongs (3). Thus,
computing the necessary number of cycles to perform this instruction, considering the
predefined timing information. Once, computed the cycle count, each instruction is
executed in the CPU (4).

The number of cycles needed to execute each instruction can be affected by several
conditions, such as content in the registers, last instructions executed, and address
accessed, among others. Cycle timing for single load and store are examples of
operations that affected by such environmental conditions. In such cases a normally 2
cycles load can be executed in a single cycle, since their address and data phases may be
pipelined when the next instruction is an load or store, additionally this behavior can be
chained thru multiple instructions (e.g. LDR R0,[R1,R5]; LDR R1,[R2]; LDR
R2,[R3,#4] - normally four cycles total instead six.) [“ARM® Cortex-M4 Processor
Technical Reference Manual” [S.d.]]. Treating these conditions with addition of internal
logic and data structures, enabling to determine precise cycle counts even under such
circumstances.

At the end of the simulation is possible retrieve the cycle estimation, besides about
number of instructions grouped per class or individually, the entire information
separated by PE. Practically realized entire online during the simulation, as result, the
post-processing stage is almost negligible when compared with simulation.

55

In order to increase the simulation speed the timing model a parallelization level as
inserted by porting the model to a thread based implementation (i.e. POSIX thread
library). In order to achieve this goal, the cycle estimation was separated in two phases:
A sequential and parallel using the OVPsim natural flow as referential. Fig. 2 shows the
block if the parallelized version.

The first and sequential phase is execute concomitantly with the simulation, similarly
whenever an instruction is fetched from the memory(1) a module is called, the binary
code of the instruction is disassembled (2), and different of previous solution the result
is stored in a buffer (3). This module is also responsible for manage the buffer,
allocating memory chunks and when the buffer reach the predefined limit, create a new
thread (4) passing the buffer an as argument.

Comprising the parallel phase, the new thread created is completely independent of the
rest of the simulation, using local variables in most of the computation, however when it
is necessary update the main data structure, which is shared, a mutex variable is use to
implement a data mutual exclusion. The work realized is parser the instructions,
analyzing each instruction of the buffer, extracting the mnemonic (5) and using as a key
in the hash table (6). In this hash table is storage the information about what class

Figure 2 shows the block diagram and main flow of the run-time

based approach.

56

belongs the mnemonic of the instruction, equally as previous mentioned (7). Thus, is
computed the necessary number of cycles to perform this. Once, the cycle count is
computed, the buffer index moves to the next instruction. When the data contained ends,
the main data struct is update and consequently the thread is destroyed, deallocating the
buffer.

Finished the simulation a thread barrier is use to synchronize all thread, thus similarly
with the sequential way, the cycle estimation is available. From the viewpoint of the
user booth approaches are transparent, therefore, the only perceptible change is the
considerable speedup achieved.

4.2 Results

In order to demonstrate the effectiveness of proposed approach, a 32-bit ARM Cortex-
M4 processor based on the ARMv7M architecture. In the case of study are used
benchmarks from different domains, demonstrating the benefits towards the software
evaluation facilities inherent to the proposed approach.

Measuring the accuracy comparing the estimation of the model with a STM32F4
Discovery board as illustrated in Figure 4; the reference platform board is built around a
32-bit ARM Cortex-M4F core running a FreeRTOS kernel version V.7.4.21 at 1 GHz.
Among other features, ARM Cortex-M4F supports single precision floating-point unit
(FPU) and power saving modes, which can be used for the development of energy-
efficient embedded systems. Both Cortex-M4F and FreeRTOS are highly used in high-
performance embedded system design, justifying the choice.

To provide relevant metrics, selecting application benchmarks that permit exploiting
and assessing performance of embedded CPUs from different research domains. For

Figure 3 shows the block diagram with thread

57

instance, the 13 selected application (i.e. from A to L, Fig. 6) of worst-case execution
time (WCET) benchmarks vary in terms of execution time, number of loops, matrixes
and array size [Jan Gustafsson 2010]. Such diversity allows observing the accuracy
evaluation of the proposed approach under different conditions. Remaining applications
also originates from different categories like biological (e.g. Smith Watermann) and
telecommunication (e.g. CRC32).

A - Fibonacci F - Binary Sort K - Factorial P - SmithWaterman
B - FIR G - Compression L - FDCT Q - Btree
C - FFT H- CNT M - InsertSort R - BFSH
D - BubbleSort I - EDN N - MDC S – Hanoi Tower
E - ADPCM J - Expint O - USQRT T – Harmonic
U – CRC32
Figure 5 Benchmark execution time comparison between real board and

proposed timing CPU model (OVP)

Figure 4 Adopted reference board platform. Proposed
illustration integrates figures captured from their owners’

websites

58

To evaluate the accuracy of the proposed timing CPU model, in most cases each
application benchmark was executed for at least 0.7 million instructions. Figure 5 shows
that the benchmarks execution mismatch between the real board platform and the
simulated timing CPU model in OVP is between 0.01% and 10.5%. Note that execution
time mismatch is below 5% in 16 out of the 20 adopted benchmarks.

4.3 Scalability

The simulator has already demonstrate when expose to scenarios of hundreds of cores
retaining the expected performance. As the proposed model alters the traditional
execution flow, a performance decrease is expected. Previous mentioned OVP bases in
Dynamic Binary Translation to active the speed demonstrated, extraction the velocity
from this direct relationship between host and target ISA. Subsequently the instruction
of the quasi-cycle accurate model is mandatory stop the execution at every executed
instruction. Furthermore, executing several instructions in the host machine to
implement the model.

The model has two main variants, each one divided in four variants. First presented was
the sequential, following the flow of OVPSim as describe in the section 5.1. Two others
variants tested was sequential with memory count and sequential with full report. The
memory count deploy callbacks in order to count the number of memory access in the
memory, including fetched instructions, reads and writes. When full report is enable,
every executed instructions is stored in data struct, demanding more processing time
during the executing. The fourth variant is the union these two variants to create the
sequential with full report and memory count. In order to characterize the scalability of

Figure 6 Simulation performance as the simulated MPSoC scales from 1 to 1000 CPUs

59

the parallel branch was create three subtypes, Thread with full report, Thread with
memory count and the union of these two. The full report is performed is parallel, as
result its impact is negligible when compares with a Thread version without full report,
totaling seven variants.

In order to demonstrate the scalability of all proposed model variants and considering
many-core systems scenarios, the number of CPUs as varied from one to a thousand. In
each PE executes an instance of FFT. Results show in the Figure 6.

5 Power Analysis

In this section, is introduce a new instruction-level energy estimation model a for a
Plasma processor [“Plasma CPU” [S.d.]].The Plasma processor is a 32-bit RISC
processor based in the MIPS architecture with a 3-stage pipeline. It is important to
highlight that the proposed profiling method is simple and transparent, applicable in any
other processors cores with no considerable rework.

Contrary to most of the approaches, our methodology can be applied in optimize IP
cores without previous knowledge of internal architecture our access to source code.
Also in the propose energy model, the profiling phase is highly dynamic and easily
migrate to others platforms in counterpoint to measurement-based method.

The approach applied is similar to the presented in the section 5, were the watchdog was
presented. A run-time approach based in monitoring instructions executed by a target
CPU. However, in the first case, almost information about cycle duration was available
in the documentation, for this energy approach, the manufacturer does not offer the
information about energy consumptions. As result, dividing the process flow in two: a
profiling phase and the execution phase.

5.1 Characterization

First and most important phase is the characterization, the objective is measure the
energy spent by each instruction belonging to the ISA. Three main steps compose the
characterization flow: First step comprises developing benchmarks in order to profile
the energy consumption for each instruction, noting the similarity between instructions
it is possible divide the instructions in groups, taking into account their behavior in the
data-path. For instance, there is a close relationship between instructions add and addiu
and between lw and sw. Thus, dramatically decreasing the complexity and time spent in
the instruction profiling stage.

60

For the micro-architecture used in this work, we propose to split the instructions in
seven groups: arithmetic, logical, move, branches, load/store and shifts. Furthermore,

Figure 7 Characterization Flow

61

placing the mnemonic 'move' among arithmetic instructions because it is a pseudo-
instruction (performed by an addi). In addition, the multiplication and division
instructions, which are arithmetic instructions, modeling as 12 arithmetic instructions
each, since this Plasma version take 12 cycles to execute them. Nevertheless, a
benchmark was created to characterize the pipeline stall as a nop instruction.

Next, one application was developed for each instruction group. These applications
execute almost the instructions present in their respective group, including the several
variations of the same instruction (e.g. add, addi, addiu, etc.). Although, to create an
executable code is necessary blend instructions from different groups. Therefore,
codding carefully these applications in a way that at least 90% of the executed
instructions belong to the application target group. Previous experiments using higher
percentages (e.g. 95%), showed a negligible difference. Each application executes, in
average, 35 thousands instructions. Finally, the application is executed in the OVP
simulator to verify its

correctness and to extract the exact number of executed instructions. After validating
the application behavior in RTL simulation, passing to the second step. Still, before
executing the second step, performing the Plasma logic synthesis with Cadence RTL

Compiler tool targeting a 65nm low power library from ST Microelectronics.
Subsequently , the Plasma netlist (i.e. gate-level description), the application object
code, a tcl script and the sdc file containing the timing constraints are loaded into the
Cadence Incisive simulation tool. Next, simulating until the application finishes its
execution. As result, a tcf file is generated. This file contains statistic information about
the switching activity of each cell and wire in the netlist. In addition, the exact
execution time of each application is collected.

Finally, in the last step, the power evaluation takes as input the netlist, the sdc and the
tcf files. Cadence RTL Compiler also performs this task; the tool reads the netlist and
computes de power consumed by each cell based in their switching activity information
in the tcf file. Subsequently, produces a report containing the average power
consumption for the application. This information, associated with the execution time
collected in the previous step, the total energy consumed is obtained. Then, with the

Groups
Power

(mW)

Exec

Time

(us)

Energy

(nJ)
of inst

Energy

per Inst

(nJ)

Arithme

tic
6,456 342,755 2212,826 34764,000 0,064

Jump 6,046 102,600 620,320 10224,000 0,061

Load-

Store
4,094 1042,800 4269,223 48561,000 0,088

Logical 4,469 349,735 1562,966 35462,000 0,044

Move 3,129 480,725 1504,189 39363,000 0,038

NOP 257,155 2,141 550,569 26130,000 0,021

Shift 3,824 298,735 1142,363 30362,000 0,038

Table 1 Energy groups profiled

62

number of executed instructions and the total energy consumed, it is possible to
calculate the energy consumed for each instruction. Reproducing this process for all
instruction groups. The results of the characterization are shown in TABLE I.

After the characterization phase is finished, the next phase comprises building the
energy model in the instruction-set simulator. The energy model relies on monitoring at
run-time the instructions executed by the target CPU. Developing the monitoring
process modifying the presented in the section 5, extending and enriching with energy
models. The main modification inserted is the modification of the hash-table and the
information contained.

5.2 Experimental Setup

To demonstrate the accuracy of the instruction-level energy model, comparing the
estimated energy consumption with a commercial tool for 19 benchmarks. The
experimental tests were performed in the same way that was utilized in the
characterization phase, in three steps, first run the target application in the OVP
simulator and collect the prediction of our model, second run the targeted code in the
Incisive Simulator and by last with help of RC compiler acquire the mean power of the
application. With the previous knowledge of the number executed instructions, is
possible measure the power consumption of the application.

OVP simulations, Incisive and RC compiler were executed in an Intel Xeon CPU
W5580 8 cores x 3.20GHz – 32GB RAM. OVP release 20131018.0 and adopted
scenarios were all compiled by gcc version 4.1.2 with full optimization enabled (i.e. -
O3). Note that the code executed in the reference Incisive differs from the one executed
in OVPSim in few instructions (less than a hundred), which are related to the boot

Name Energie

(mW)

Elapsed time

(us)

Total consumption

(nj)

Instructions Estimated power

(nj)

Error (%)

A Bfsh 4,830 15235,505 73587,489 1035188,000 73581,398 0,0%

C Binary search 5,092 2630,475 13394,379 196531,000 13503,721 0,8%

B Bit Manipulation 5,388 4407,555 23747,906 380318,000 25974,705 8,6%

D Bubble 5,296 4617,405 24453,777 336883,000 23079,633 6,0%

E Counts 4,851 5147,435 24970,207 331364,000 24188,576 3,2%

F Crc 5,327 2985,515 15903,838 254596,000 17284,408 8,0%

G Edn 4,563 3437,145 15683,693 208368,000 17126,121 8,4%

H Expint 3,730 11072,250 41299,493 448356,000 39551,980 4,4%

I Factorial 4,724 8859,465 41852,113 493032,000 41173,594 1,6%

J Fft 4,897 803,115 3932,854 54659,000 4256,579 7,6%

K Fibonacci 5,141 6060,000 31154,460 418029,000 30180,719 3,2%

L Hanoi 5,027 13108,105 65894,444 885305,000 66008,188 0,2%

M Harm 4,075 9527,265 38823,605 435278,000 40763,266 4,8%

N Insertsort 5,379 3953,825 21267,625 309159,000 20451,490 4,0%

O MatrixMult 4,958 10446,895 51795,705 665043,000 49646,188 4,3%

P Mdc 3,573 6597,485 23572,814 238784,000 24461,912 3,6%

Q Peakspeed 5,164 471,545 2435,058 30108,000 2300,600 5,8%

R UD 4,770 10464,475 49915,546 732831,000 53415,395 6,6%

S Usqrt 5,107 4090,785 20891,639 298166,000 20105,066 3,9%

Table 2 Energy groups profiled

63

sequence in different platforms. An application set of 19 benchmarks that permit
exploiting and assessing performance of embedded CPUs were selected from different
research domains, shows in the Table 2. Observing the results, the mean error is
approximately 4.33%. The comparison between gate-level and watchdog estimation is
presented in figure 8, as is the mismatch.

6. Conclusion

This work presented extensions to the OVP framework by including an accurate timing
and power estimation CPU model. The resulting approach provides the same design
flexibility, setup and debugging features inherent to OVP, while enabling accurate
software evaluation in design phase. Thus, programmers can use the same simulator to
have fast simulation and accurate software evaluation.

The insights gained from these preliminary results call for improvements towards the
following aspects: simulation time optimization, inclusion of instruction-based power
models for CPUs, exploration of new techniques for online system management.

Figure 8 Mismatch, gate-level and watchdog evaluation.

64

7. References

Abril Garcia, A. B., Gobert, J., Dombek, T., Mehrez, H. and Petrot, F. (2002). Cycle-
accurate energy estimation in system level descriptions of embedded systems. In 9th

International Conference on Electronics, Circuits and Systems, 2002.

ARM® Cortex-M4 Processor Technical Reference Manual ([S.d.]).
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439d/index.html,
[accessed on Apr 21].

Bazzaz, M., Salehi, M. and Ejlali, A. (jul 2013). An Accurate Instruction-Level Energy
Estimation Model and Tool for Embedded Systems. IEEE Transactions on

Instrumentation and Measurement, v. 62, n. 7, p. 1927–1934.

Binkert, N., Beckmann, B., Black, G., et al. (aug 2011). The Gem5 Simulator.
SIGARCH Comput. Archit. News, v. 39, n. 2, p. 1–7.

Callou, G., Maciel, P., Tavares, E., et al. (jun 2011). Energy Consumption and
Execution Time Estimation of Embedded System Applications. Microprocess.

Microsyst., v. 35, n. 4, p. 426–440.

Castillo, J., Posadas, H., Villar, E. and Martínez, M. (nov 2007). Energy Consumption
Estimation Technique in Embedded Processors with Stable Power Consumption based
on Source-Code Operator Energy Figures.

Chiang, M.-C., Yeh, T.-C. and Tseng, G.-F. (apr 2011). A QEMU and SystemC-Based
Cycle-Accurate ISS for Performance Estimation on SoC Development. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 30, n. 4,
p. 593–606.

Full System Simulation with Wind River Simics ([S.d.]).
http://www.windriver.com/products/simics/, [accessed on Apr 21].

Jabbar, M. H., Houzet, D. and Hammami, O. (sep 2013). Impact of 3D IC on NoC
Topologies: A Wire Delay Consideration. In 2013 Euromicro Conference on Digital

System Design (DSD).

Jan Gustafsson, A. B. (2010). The Mälardalen WCET Benchmarks: Past, Present And
Future. p. 136–146.

Kalla, P., Henkel, J. and Hu, X. S. (oct 2003). SEA: fast power estimation for micro-
architectures. In 5th International Conference on ASIC, 2003. Proceedings.

Konstantakos, V., Chatzigeorgiou, A., Nikolaidis, S. and Laopoulos, T. (apr 2008).
Energy Consumption Estimation in Embedded Systems. IEEE Transactions on

Instrumentation and Measurement, v. 57, n. 4, p. 797–804.

Lee, S., Ermedahl, A., Min, S. L. and Chang, N. (2001). An Accurate Instruction-Level
Energy Consumption Model for Embedded RISC Processors. In Proceedings of the

65

ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems.
, LCTES ’01. ACM. http://doi.acm.org/10.1145/384197.384201, [accessed on Mar 31].

Nikolaidis, S., Kavvadias, N., Laopoulos, T., Bisdounis, L. and Blionas, S. (2003).
Instruction Level Energy Modeling for Pipelined Processors. In: Chico, J. J.; Macii,
E.[Eds.]. Integrated Circuit and System Design. Power and Timing Modeling,

Optimization and Simulation. Lecture Notes in Computer Science. Springer Berlin
Heidelberg. p. 279–288.

Open Virtual Platforms (OVP) ([S.d.]). http://www.ovpworld.org/, [accessed on Apr
21].

Plasma CPU ([S.d.]). http://plasmacpu.no-ip.org/, [accessed on Apr 21].

QEMU ([S.d.]). http://wiki.qemu.org/Main_Page, [accessed on Apr 21].

Sanchez, D. and Kozyrakis, C. (2013). ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-core Systems. In Proceedings of the 40th Annual International

Symposium on Computer Architecture. , ISCA ’13. ACM.
http://doi.acm.org/10.1145/2485922.2485963, [accessed on Apr 20].

Stattelmann, S., Ottlik, S., Viehl, A., Bringmann, O. and Rosenstiel, W. (jun 2012).
Combining instruction set simulation and WCET analysis for embedded software
performance estimation. In 2012 7th IEEE International Symposium on Industrial

Embedded Systems (SIES).

Sultan, S. and Masud, S. (jul 2009). Rapid software power estimation of embedded
pipelined processor through instruction level power model. In International Symposium

on Performance Evaluation of Computer Telecommunication Systems, 2009. SPECTS

2009.

Thach, D., Tamiya, Y., Kuwamura, S. and Ike, A. (mar 2012). Fast cycle estimation
methodology for instruction-level emulator. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2012.

