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"Scientists investigate that which already is;  
Engineers create that which has never been."  

Albert Einstein 
 

“Scientists dream about doing great things.  
Engineers do them.” 
James A. Michener 

  



 

 

 

RESUMO 

Avaliação rápida e precisa de aplicações embarcadas para 
sistemas de muitos núcleos 

Sistemas embarcados multiprocessados (Many-cores) são apontados com a solução 

mais viável para abordar as emergentes restrições de design em custo, potência e 

performance [Borkar and Chien 2011]. Todavia, conceber estes sistema impõe novos 

desafios para engenheiros de software, compreendendo entre outros: (i) definição de 

protocolos de comunicação entre processos, (ii) analisar e portar sistemas operacionais, 

(iii) possiblidade de melhor explorar modelos de programação para tratar de questões 

para processamento paralelo. [Marongiu and Benini 2012], (iv) desenvovilmento de 

drivers [Gray and Audsley 2012], (v) traduzir aplicações entre sistemas 

multiprocessados. 

Esta crescente complexidade de software faz com que a verificação funcional torne-

se mais difícil, como resultado, engenheiros de software estão dedicando-se para escalar 

a performance. Tornado a simulação critica durante o desenvolvimento de software, 

principalmente nas fases inicias, durante a exploração do espaço de design. 

Plataforma virtuais Event-driven e quasi-cycle accurate como GEM5 tem como 

objetivo o desenvolvimento micro arquitetural uma vez que modelos detalhados são 

fornecidos (e.g. protocolo de coerência de cache) [Binkert et al. 2011 p. 5]. Este tipo de 

simuladores não é escalável a um grande número de processadores, especialmente 

quando se trata de usabilidade, facilidade de criação de modelos e tempo de simulação. 

O contexto resultante leva a adoção de plataformas virtuais que são capazes de 

simular sistemas embarcadas executando código de aplicações reais a velocidade de 

centenas de milhões de instruções por segundo  [Sanchez and Kozyrakis 2013]. Nestes 

cenários o Open Virtual Plataforms (OVP) [Imperas 2014] está emergindo com um 

poderoso framework de simulação provendo dezenas de arquiteturas (e.g. ARM, MIPS, 

MicroBraze, etc.) e vários periféricos (e.g. memória cache). No entanto, o simulador 

OVP semelhantemente a outros simuladores JIT-based não provem modelos precisos 

mas, em modelos com precisão em nível de instruções, o qual provem estimativas 

incorretas de software (e.g. estimativas de energia e tempo de execução). 

  



 

 

Este trabalho objetiva começar a tratar os desafios impostos na construção de 

simuladores JIT-Based adequados para estimativas de software, aprimorando a 

capacidade de engenheiros de software melhor explorar o espaço de design em estágio 

inicial de desenvolvimento de sistemas. Nesta tese, será apresentado um modelo 

chamado Watchdog visando fornecer estimativas de energia e tempo de execução em 

uma metodologia integrável em qualquer simulador baseado em JIT 

A metodologia proposta foca em um modelo baseado em eventos, baseada nas 

instruções individualmente executadas, simplificando a construção entorno do 

simulador. Adicionalmente, a abordagem proposta nesta tese é puramente run-time, isto 

significa que toda a computação necessária para implementar o modelo é realizada 

concomitante com a simulação, evitando enorme quantidade de uso de memória 

necessária para abordagens baseadas em trace-driven ao mesmo tempo que mantém a 

escalabilidade para sistemas many-core. 

A fim de demonstrar a validade do modelo proposto, várias conjuntos de aplicações 

populares foram selecionados, dentre elas MiBench [Guthaus et al. 2001], Mälardalen 

WCET [Jan Gustafsson 2010], SPLASH-2 [Woo et al. 1995]. 

Os resultados mostram que a precisão do nosso modelo de tempo de execução varia 

de 0,6% a 11,5%, com 4,35% em de erro média. O modelo de energia atinge 0,01% a 

8,6% de precisão dependendo do perfil de referência com um erro médio de 4,33%. 

Além disso, o modelo foi submetido a cenários de 1000 processadores mantendo um 

desempenho estável de 1,8 MIPS. 

 

Palavras-chave: Sistemas multiprocessados. Estimativas de Energia. Estimativa de 

tempo de execução. Sistemas Embarcados.  

  



 

 

 

ABSTRACT 
 

Many-core embedded systems are pointed to be the most viable solution to 

addressing emerging design constraints on cost, power and performance scalability 

[Borkar and Chien 2011]. Nevertheless, conceive and design many-core systems impose 

new challenges to software engineers, comprising among other: (i) inter- processor 

communication protocol stacks definition, (ii) operating system (OS) porting and 

analysis, (iii) exploration of better programming model facilities to address parallel 

programming [Marongiu and Benini 2012], (iv) drivers development [Gray and Audsley 

2012], (v) application software portability for heterogeneous multiprocessing hardware. 

This increasing software complexity makes the software functional verification 

more difficult, as result, software engineers are struggling to scale up the system 

performance. Simulation becomes critical to software development, principally in early 

stage during space design exploration where many design decisions must be taken.  

This work address the challenge of making JIT-Based simulator as OVP suitable for 

software performance estimation, providing to software engineers better means to 

explore the design space at early stage of system development. This Bachelor Thesis 

proposes two instruction-driven performance models, which can be used for early 

software performance evaluation, which were integrated into a JIT-based simulator. The 

proposed approach is a purely run-time based, i.e. the entire computation necessary to 

implement the model is concomitant with the simulation, avoiding huge amount of 

memory usage.  

The proposed models were validated by using several benchmarks suits MiBench 

[Guthaus et al. 2001], Mälardalen WCET [Jan Gustafsson 2010], SPLASH-2 [Woo et 

al. 1995]. Results show that the accuracy of our timing model varies from 0.6% to 

11.5% with 4.35% in average. In turn, the energy model provides an accuracy of 0.01% 

to 8.6% depending on the benchmark profile with a mean error of 4.33%. Additionally, 

the model was submitted to 1000 CPU’s scenarios maintaining a stable performance of 

1.8 MIPS. 

 

Keywords: Many-Core Systems. Energy Estimation. Timing Estimation Embedded 

Systems. 
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1  INTRODUCTION 
 
Many-core embedded systems are pointed to be the most viable solution to 

addressing emerging design constraints on cost, power and performance scalability 
[Borkar and Chien 2011]. Such embedded systems increase performance by scaling the 
number of cores, which vary in terms of structure, performance and energy-efficiency, 
to execute system application tasks. However, employing a large number of cores will 
be restricted by the so-called power wall [Bose 2013; Esmaeilzadeh et al. 2011; Zhang 
et al. 2013].  

Under this scenario, a significant number of cores must remain inactive or in 
low-consumption state at some point in time, in order to preserve the system activity 
within the available energy budget. Further, important challenges inherent to the design 
of such systems are: 

 
• reliability: the transistors reach the physical limits of operation, thus becomes 

increasingly difficult for the hardware components to achieve reliable 
operation [Papanikolaou et al. 2008]; 

• energy efficiency: in battery-driven devices, it is becoming more critical than 
high-speed operation, and dark silicon era is imposing more power-oriented 
constraints to the design of such systems [Miura et al. 2013]; 

• programmability: ease of programming is a feature of paramount importance 
in large-scale systems composed of different processors, resulting in different 
platform libraries (e.g. APIs), compilers, instruction set architecture (ISAs) 
[Marongiu and Benini 2012]; 

• simulation: To achieve efficient exploration of emerging many-core systems, 
the use of flexible and scalable simulators becomes mandatory. Such 
simulators should combine efficient modeling, debugging and simulation 
capabilities for verifying the both software and hardware development, 

 
In addition to such challenges, software development becomes one of the major 

challenges in many-core system design. Software development comprises, among other: 
(i) inter- processor communication protocol stacks definition, (ii) operating system (OS) 
porting and analysis, (iii) exploration of better programming model facilities to address 
parallel programming [Marongiu and Benini 2012], (iv) drivers development [Gray and 
Audsley 2012], (v) application software portability for heterogeneous multiprocessing 
hardware. 

Such challenges make the software functional verification more difficult, 
resulting into increased development cost [Borkar 2007; Ceng et al. 2009]. IBS [IBS 
2013] projects that software development consumes at least 50% of the system’s design 
cost, and that percentage is rising, as illustrated in Figure 1.1. Developing and 
evaluating complex software stacks (OS, drivers, etc.), require fast and effective means 
for assessment of the performance-oriented and energy-efficiency practices. For 
instance, to assess the energy impact of software stacks, several software and hardware 
parameters must be tuned and evaluated properly, considering a large design space. 
With 200-core chips available in the market [MPPA 2014], the use of analytical models 
and prototyping boards is inadequate, especially for many-core architectures. 
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Figure 1.1 - Software and architectural design costs for embedded systems at 
advanced process technologies. Figure extracted from IBS 2013 [IBS 2013]. 

Analytical models undergo substantial development effort to identify behaviors 
that can be estimated by employing equations without compromising the model 
purpose. In turn, while specialized board designs produce accurate results, they require a 
substantial development effort to setup/port the software stacks. Further, physical 
boards can be expensive, with limited resources (e.g. number of CPUs, memory), as well 
as poor debuggability due the lack of internal observability and controllability of its 
components. 

The resulting context leads to the adopting of virtual platform frameworks that 
are capable of simulating embedded systems running real application code at the speed 
of hundreds of MIPS [Imperas 2014]. While accelerating the software development, 
such simulators usually offer a set of CPU models and memory system models, 
allowing the analyses of executing different application/OSs onto multiprocessor 
architectures without modifications, which gives flexibility to explore more features at 
earlier design phase. Examples of such simulators are Simics [Magnusson et al. 2002], 
PTLsim [Yourst 2007], SimpleScalar [Austin et al. 2002], GEM5 [Binkert et al. 2011] 
and OVPSim [Imperas 2014]. Such simulators differ in terms of accuracy, simulation 
speed, as well as modeling and debugging support (e.g. GDB).  

For example, event-driven and quasi-cycle accurate virtual platform frameworks 
like GEM5 target microarchitecture exploration since specific modeling details are 
provided (e.g. instruction pipeline details, cache coherence protocols, etc.). Such 
simulators are not scalable to a large number of CPUs, specifically when it comes to 
usability, ease-of-modeling and simulation time (around 200 KIPS [Sanchez and 
Kozyrakis 2013]). In contrast, simulators such as the Open Virtual Platforms (OVP) 
OVPsim that rely on just-in-time (JIT) dynamic binary translation can achieve 
simulation speeds of up to 100 MIPS. However, such simulation speed comes at the 
expense of accuracy; OVPsim provides instruction accuracy only, which results in 
inaccurate software performance estimation (e.g. application execution time). 

The foregoing context provides the motivation for this Bachelor Thesis, which 
aims at making JIT-based simulators suitable for software performance and energy 
evaluation. The original contribution of this thesis is enhancing OVPSim capability by 
including energy and timing models, making it suitable for software performance and 
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energy analysis. With the underlying contribution, this Thesis advocates that software 
engineers can validate the functional behavior of the entire software stack executing it 
onto a given CPU architecture, using the original OVPSim. Then, software engineers 
may use the proposed OVPSim extension in a still reasonable simulation speed to 
investigate if target software stack can be executed according to the performance and 
energy requirements. 

 
The contributions of the paper are summarized as follows: 
 

• the implementation and integration of a quasi-cycle accurate timing model 
into OVPSim simulator; 

• the extensive timing model evaluation by using several benchmarks, while 
comparing it to a real hardware platform; 

• the development of a fast and accurate instruction-driven energy model; 
• integration of proposed energy model into a NoC-based MPSoC platform; 

 

1.1 Outline of this thesis 
This work is organized in 7 chapters. Chapter 2 describes the state-of-the-art in 

timing and energy estimation models, taking into account approaches that are developed 
into JIT-based simulators. Additionally, a survey considering the most popular virtual 
platforms is also presented. Chapter 3 introduces the proposed run-time instruction-
driven timing CPU model. After, Chapter 4 presents the development of a fast and 
accurate energy model. Chapter 5 contains a thread extension for the model in order to 
improve the simulation speed. In 6 the experimental setups and related results to timing 
and energy models were presented. Finishing with conclusion in the chapter 7. 
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2 RELATED WORK 
 
Due the different simulation speed/accuracy tradeoffs, it's difficult to cover all 

modeling (e.g. flexibility, debuggability) and simulation (e.g. accuracy, scalability) 
requirements into one single simulator. This Chapter starts by providing an extension of 
the survey proposed in [Butko et al. 2012], considering the most popular virtual 
platforms. Such virtual platform simulators, also called full-system simulators, are 
compared according to different criteria: (i) accuracy, (ii) flexibility in terms of 
supported processor architectures, (iii) licensing, and (iv) support activity. Table 2.1 
summarizes the reviewed work according to the four criteria mentioned. 

 
Table 2.1 - Related works on full-system simulation. 

Reference Simulator Accuracy 
Supported processor 

architectures 
License 

Active 

support 

[Magnusson et al. 2002] Simics 
Functionally- 

accurate 

Alpha, ARM, MIPS, 
PowerPC, SPARC, and 

x86 
Private Yes 

[Yourst 2007] PTLsim Cycle-accurate X86 Open Yes 

[Austin et al. 2002] SimpleScalar Cycle-accurate 
Alpha, ARM, PowerPC, 

and x86 
Open No 

[Binkert et al. 2011] GEM5 Cycle-accurate 
Alpha, ARM, MIPS, 

PowerPC, SPARC, and 
x86 

Open Yes 

[Bellard 2005] QEMU 
Instruction-

accurate 

ARM, MicroBraze ,MIPS, 
PowerPC, SPARC, x86, 

and others 
Open yes 

[Imperas 2014] OVPsim 
Instruction-

accurate 

Alpha, ARC, ARM, MIPS, 
PowerPC, MicroBraze, and 

others 

Open and 
Private 

Yes 

 
The Simulation Software Engineer (Simics) is simulator that enables unmodified 

target software (e.g. operating system, applications) to run onto a platform model 
similar to a real physical implementation. A wide range of processor architectures (e.g. 
ARM, MIPS, PowerPC), as well as operating systems (e.g. Linux, VxWorks, Solaris, 
FreeBSD, QNX, RTEMS), can be adopted to model the desired systems. This simulator 
includes SystemC interoperability, debuggers, software and hardware analysis views, as 
well. Simics has one main disadvantage, it is not claimed to be open source, and thus, 
commercial license is required by Wind River Systems. 

In turn, PTLsim also supports simulation of different processor architectures 
[Yourst 2007]. PTLsim is a cycle accurate microprocessor simulator, thus the complete 
cache hierarchy, memory subsystem and supporting hardware devices are offered. 
PTLsim presents two main drawbacks; only x86 architectures are supported and the tool 
suite is not actively maintained anymore. 

SimpleScalar [Austin et al. 2002] is an open source infrastructure for simulation 
and architectural modeling. As previous simulator, software engineers can use 
SimpleScalar to develop applications and execute them onto a range of processor 
architectures, which varies from simple unpipelined processors to detailed 
microarchitectures with multiple-level memory hierarchies. However, SimpleScalar is 
not actively maintained anymore (last update was in March 2011), and other faster 
solutions, like GEM5 are available.  

GEM5 is a modular discrete event simulator, which is open-source and supports 
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a rich set of ISAs [Binkert et al. 2011 p. 5]. Moreover, this simulator has an active 
development and support team. As mentioned before, GEM5 target microarchitecture 
exploration, which incurs in huge simulation overheads due the number of modeled 
aspects. Further, the amount of memory required by these approaches is too high, 
making their use infeasible when exploring a large design space exploration.  

QEMU [Bellard 2005] is an open source and a functional simulator that relies on 
dynamic binary translation. QEMU can be used to simulate several CPUs (e.g. x86, 
PowerPC, ARM, and Sparc). Nevertheless, QEMU is designed to single-processor 
platforms and virtualization purposes. Thus the lack of documentation on the APIs or 
standardized methodology for creating many-core platform models limits its use. 

Excluding PTLSim that only supports x86, reviewed simulators are composed of 
several processor architectures. Quasi clock accurate simulators such as SimpleScalar 
and GEM5 entail high-simulation time, thereby limiting its applicability to the 
exploration of large many-core systems. Further, while Simics has a private license. 
Further, SimpleScalar does not provide support or development anymore. 

OVPsim supports the larger number of processor architectures (ISAs) among 
reviewed simulators. OVP supports dozens of architectures (e.g. MIPS, ARM, x86, 
PowerPC) ramifying in several model variants (e.g. arm cortex-A5, cortex-A9, cortex-
M4F, etc.), as well peripherals (e.g. DMAs, TIMERs), and integration with System-C 
modules. Besides, of supplied models, the user is able to create customized models 
easily integrated with the platform, justifying our choice. 

As mentioned before, the lack of accuracy inherent to JIT-based simulators is 
motivating research in alternatives performance / accuracy tradeoffs. The next Section 
presents approaches that are instrumenting JIT-based simulators with timing models. In 
this context, instructions, basic architecture block models and their inter-operations (e.g. 
read and write) are calibrated according to a reference platform. Thus, software 
performance evaluation can be estimated by, for instance, summing up the annotated 
timing numbers along execution of given application. 

2.1 Related work in Timing CPU models in JIT-based Simulators  
Chiang et al. [Chiang et al. 2011] utilize the integration of QEMU and SystemC 

in order to allow faster clock-accurate evaluation when compared to RTL-based. 
Attaching a SystemC co-processor in the simulator framework, using the information 
extracted from the DBT interface. This approach reduces the simulation speed of 
QEMU, capable to reached approximate 38 MIPS, to approximate near 0.46 MIPS 
using the full simulation with SystemC. A pipeline model was included into QEMU in 
[Thach et al. 2012], where the authors proposed a two-phase approach an offline and an 
online phase to estimate the application performance. In the offline phase, a cycle pre-
estimation of the application execution time is performed. Using the computed 
information at dynamic adaption phase when CPU status and execution time of critical 
instructions are also taken in account, improving the approach accuracy presenting a 
mismatch around 10%.  

A similar approach is presented in [Stattelmann et al. 2012], where worst-case 
execution time (WCET) analysis and QEMU are combined for a LEON3 processor. In 
this work, the offline phase is composed by four steps, which produce a timing database 
that is used during the QEMU simulation. The proposed work in [Bohm et al. 2010] 
modified an ARC instruction set simulator based on JIT DBT to improve the simulation 
accuracy. A complex pipeline and execution state models were constructed direct in the 
DBT framework, taking advantage from the direct access of JIT Translation block.  
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2.2 Timing CPU model in JIT-based Simulators - Closing Remarks 
Making an overview of the reviewed researches, it is noticeable that QEMU is 

largely employed due its free GNU licensing. It is possible to verify that almost all 
related approaches are based on a reconstruct pipeline model that update its internal 
state according to executed instructions during the simulation. There are different 
abstraction levels of implementations and consequently, the necessary amount of data 
information considered before and during the simulation. Complex models may 
implement several abstract queues, internal pipeline state, etc.  

The drawback of the approach proposed in [Stattelmann et al. 2012], is the prior 
application profiling phase, which restricts its use when exploring large scenarios 
composed of diverse applications. Another disadvantage of this work is that any 
software modification (e.g. changing the OS scheduling algorithm) implies in re-
running offline phases. 

Different from the reviewed work, the proposed approach (described in section 
3.4) relies on OVP and run-time basis, eliminating huge trace files, as well as pre- or 
post-processing software/application profiling. Despite the low-memory usage, the 
proposed approach can be easily configured to observe as many CPUs as desired. 
Another contribution of the proposed timing CPU model, when compared to the 
reviewed works, is the easy portability to other CPU architectures. 

2.3 Related work in Instruction-driven Energy Models in JIT-based Simulators 
In the case of prototyping boards, the power information is captured from a 

precision resistor positioned between the power supply and the power input pin [Bazzaz 
et al. 2013; Konstantakos et al. 2008; Lee et al. 2001; Nikolaidis et al. 2003]. The use of 
physical information can aggregate precision to the high-level models (error varying 
from 2.5% to 7% as presented in the third column of Table I). However, to measure the 
power of each instruction, additional and expensive hardware (e.g. high-performance 
oscilloscopes) are required. Another drawback of this approach is the difficulty of 
accessing/isolating individual modules inside the processor due to internal structure and 
connections (e.g. Flash, Rom, SPI, AD, and DC). 

In simulated-based techniques, the required information is extracted from low-
level simulators (e.g. SPICE, gate-level), in which a hardware description is used to 
execute input benchmark applications and to profile the power of each instruction. For 
example, in [Abril Garcia et al. 2002] an instruction set simulator (ISS) is enriched with 
an energy model based on the mean switching activity of the processor, which is 
modeled by two states, active and NOP. A similar approach is presented in [Sultan and 
Masud 2009], which considers the average switching activity of an LEON3 processor 
simulated at RTL level. In this work, the power is computed according to the number of 
transitions generated in response to a certain instruction that is fetched from BootROM 
of LEON3. 

Authors in [Castillo et al. 2007] propose obtaining energy values directly from 
the analysis of the source-code without requiring simulation or even compilation. A 
further higher-level approach is proposed in [Callou et al. 2011], in which the source-
code is converted in a Colored Petri net model, which is used to estimate the energy cost 
of a given application. 
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Table 2.2 - State-of-Art in instruction-driven energy models. 

Reference 
Reference 

model 
Claimed 
Accuracy 

Benchmark suite Description 

[Lee et al. 
2001] 

ARM7TDMI 
Average 2,5% 
and worst case 

6,33% 

36 randomly-
generated 

instructions 

Model based in a linear regression 
analysis. 

[Abril Garcia et 
al. 2002] 

Gate-level 
estimation using 

an ARM920 
Not available 

MPEG-4 video 
decoder 

Inclusion of a power model calibrated in 
gate-level activity in a System-level 
Cycle-Accurate simulator 

[Kalla et al. 
2003] 

Synthesizable 
RTL of a 
SPARC 

Energy less than 
5% and per-
cycle power 

inside 15% of 
error 

Bubble Sort, Heap 
Sort, Insertion Sort, 
Key 3 and 3D image 

processing 

Model based in Active and Stall 
consumption for each module of the 
architecture, refined with inter-instruction 
effect. Additionally provides the 
maximum and the minimum of power. 

[Nikolaidis et 
al. 2003] 

ARM7TDMI 5% A few instructions 
Abstract model for pipeline with static, 
inter-instruction, and pipeline power. 

[Konstantakos 
et al. 2008] 

Motorola  
HC908GP32 

Not available Not available 
The instructions are divided into groups 
by the cycle’s length. 

[Lee et al. 
2006] 

Gate-level 
estimation for 
M32R-II and 

SH3-DSP 

Average 3% and 
worst case 16% 

JPEG and MPEG2 
encoders, compress, 

FFT and DCT 

Training benchmarks are used in 
conjunction with a gate-level simulator 
and linear optimization to generate 
several parameters to describe frames of 
instructions. Afterward this parameters 
are utilize together with ISS. 

[Castillo et al. 
2007] 

Arm ISS, arm-
elf-gdb, for a 
ARM9TDMI 

and ARM TRM 

Less than 11% 
Bubble Sort, FIR, 
Array, Fibonacci 

and Quicksort 

An online analysis of the source-code 
without requiring simulation or even 
compilation. Based in the mean energy 
per instruction calculated from values 
provide by ARM Manual. Detailed study 
about the operators in C e.g. + = >> and 
their costs in meter of instructions. 

[Sultan and 
Masud 2009] 

Synthesizable 
RTL of a 
LEON3 

Not available Not available 

Propose of an instruction level power 
model profiling each instruction in 
different stages of a pipelined processor. 
The aim is to measure the activity 
generate in the processor and taking in 
count the capacitance to calculate the 
power. 

[Callou et al. 
2011] 

NXP LPC2106 
with an 

ARM7TDMI-S 
7% in average 5 applications 

Stochastic approach based on Coloured 
Petri nets and source code analysis 

[Bazzaz et al. 
2013] 

AT91 Less than 6% 
8 MiBench 
benchmark 

ISS Model calibrated from real measures. 
Complete model with static, inter-
instruction, and pipeline power. 

Proposed 
approach 

2014 

Gate-level 
estimation 

Between 0,06% 
and 8% 

19 benchmarks from 
WCET and in-house 

applications 

Instruction-driven model calibrated from 
the switching activity of the processor 
internal components.  Run-time model 
developed on the basis of OVP API that 
monitors the instructions executed by a 
given CPU. 
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2.4 Instruction-driven Energy Models - Closing Remarks 
Reviewed approaches focus on creating instruction-driven models, which 

compute energy/power values by observing the sequence of executed instructions. One 
difference between such approaches is the calibration process. For instance, in [Bazzaz 
et al. 2013] authors evaluate instructions individually to feed the instruction-driven 
model, while in [Lee et al. 2001] fixed length instruction groups are used. Authors argue 
that different transition scenarios may significantly affect the energy estimation. For 
that reason, some works such as [Bazzaz et al. 2013; Kalla et al. 2003; Nikolaidis et al. 
2003] also calculate the inter-instruction energy, i.e. the energy required to switch from 
one to another. 

Another distinction lies in the energy evaluation process. For instance, the 
approach proposed in [Castillo et al. 2007], differs from the other works in the sense 
that it translates the source code in an intermediary code representation, which is used to 
estimate the application energy consumption. This approach does not require simulation 
that may decrease the energy evaluation effort. However, to predict the behavior of loop 
and branches only by code inspection is not a trivial task that may pose other 
design/evaluation challenges. 

Our contribution distinguishes from previous works by enhancing the OVPSim 
(JIT-based simulator) with energy evaluation capability allowing faster and accurate 
exploration of energy-efficiency software development. Contrary to the most of 
reviewed approaches, our approaches cover both timing and energy evaluations. 
Another advantage of our approach is that once calibrated whatever OS/application can 
be ported, modified, and its timing and energy-efficiency can be evaluated without any 
code modification or re-calibration phase. To accomplish these features, a common 
foundation for monitoring at run-time the instructions executed by each CPU, while 
presenting the system functionality was developed. This foundation is described in the 
next Chapter. 
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3 INSTRUCTION DRIVEN TIMING CPU MODEL 
 
This Chapter describes the proposed timing CPU model in OVP. The following 

Section presents the basic concepts and features related to OVP.  

3.1 Open Virtual platforms (OVP) 
Open Virtual platforms is a simulation framework marketed Imperas [Imperas 

2014]. OVP is composed of three main components: (i) APIs that enable modeling in 
C/C++ hardware components, (ii) library with a large number of CPU architectures, 
peripheral, memory, and sub-system models, and (iii) the OVPsim simulator. 

As illustrated in Figure 3.1, OVPsim employs a Just-In-Time Code Morphing 
binary translation simulator engine that dynamically translates target instructions to the 
host machine instructions. In this context, OVPSim is capable to handle virtual memory 
simulation with minimal performance penalty. OVPsim also supports non-intrusive 
semihosting using dynamically loaded libraries that are completely separate to 
processor models. As defined in [Davidmann and Graham 2014], there is no need to 
compile application code using special flags to support semihosting: given an 
appropriate semihost library, OVPsim can run unmodified binary. OVPsim semihosting 
works by allowing semihosting libraries to take special actions either when particular 
functions are executed in the simulated application (e.g. write) or when particular 
instructions are executed (e.g. break instructions). 
 

Figure 3.1 - OVP Virtual Platform Simulation Interfaces. Figure extracted from 
[Davidmann and Graham 2014]. 

OVPsim has been developed for the maximum simulation throughput and 
includes several optimizations enabling simulation of platforms utilizing many 
homogeneous and heterogeneous processors with many complex memory hierarchies. 
Also includes several models of MMUs, caches, and TLBs.OVP framework features 
four API: Innovative CPU Manager (ICM), Virtual Machine Interface (VMI), 
Behavioral Hardware Modeling (BHM), and Peripheral Programming Mode (PPM). 
Each of which has a specific purpose, for instance the ICM is intended to create and to 
simulate the target platform, including any number of processor, busses, memories and 
peripherals models. Busses, memories and processors can be interconnected in arbitrary 
topologies and arbitrary multiprocessor shared memory configurations. Further, ICM 
functions also encapsulate OVPsim models in SystemC or TLM 2.0 simulations. OVP 
models also include processors and peripherals wrappers for use with SystemC 
TLM2.0. The ICM is responsible for merging all four APIs in a single environment 
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providing interoperability between then. OVPSim platform is composed of one C file 
containing few lines of code compiled with Imperas libraries to create an executable 
file. 

3.1.1 Simulation Capability 

In order to support multi–core simulations, OVPsim implements a Round-Robin 
scheduling algorithm similar to a typical used in OS schedulers. Thus, each processor 
entity (PE) has a  time slice variable, typically 0.001 seconds. Note that it is possible to 
define a common time slice for all processors of a given scenario. Such variable is 
converted into a number of instructions that should be executed by each processor in the 
defined time slice. The number of simulated instructions is obtained multiplying the 
time slice by the processor nominal MIPS, which is defined 100 per default. OVPSim 
works in sequential way (i.e. simulating a unique processor at time, even if the 
simulator is hosted in a multi-core host machine). Nevertheless, this algorithm inserts an 
issue related to the synchronization between simultaneous events related to different 
processors. For instance, if a processor sends a message to another in the middle of their 
time slices, the receiver only will be aware of the message at the begin of his time slice. 
In simulation scenarios tightly based in intercommunications between processor (e.g. 
NoC-based MPSoC), the precision of results may be affected. 

A possible solution could be resizing the time slice, decreasing the number of 
instruction executed each time by the each processor. In order to observe this behavior a 
series of experiments was conducted, using the same application (FFT), varying the 
time slice from 1 to 0.000001 and the instructions per window from 1.000.000 to 1. 
Figure 3.2 shows the degradation in terms of simulation speed vs. time slice. It can be 
observed that the simulation slows down dramatically when less than 5 thousand 
instructions per round are executed. Notwithstanding, the modification impacts in the 
performance obtain by the simulator due the cost in the context switch between the 
processors. 

 
 

 
Figure 3.2- Scalability of Time Slice. 
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3.2 Instruction-driven Timing CPU Model 
This Section describes the development and the integration of the proposed 

timing CPU model into OVPSim. As mentioned before, our timing CPU model relies on 
monitoring at run-time the instructions executed by a target CPU. The proposed 
approach requires an instruction set profile as mean to determine cycle count (timing 
information), which can be captured from datasheet, physical boards, low-level 
simulation, etc. In order to diminish development complexity, we propose to combine 
instructions in groups according timing costs similarity. Separating ISA in classes and 
groups according different timing behaviors and other representing constant one-cycle 
instructions. While simulating, unless the model identifies an instruction as belonging to 
one of defined groups, it is considered as one-cycle instruction. In order to demonstrate 
the timing calibration process, let’s consider the Cortex-M4F ISA as study case.  

3.3 Timing Calibration Process 
Timing Behavior of ARMv7-M Thumb instruction set implantation in Cortex-

M4F can be grouped according their similarities, for instance, almost all logical and 
arithmetic instructions are single cycle. Notwithstanding, division has a dependable 
cycle count imposed by the early termination accelerator based on the number of 
leading ones and zeroes in the input operands. In this case, one division can take from 2 
to 12 cycles.  

While not taken branch instruction execution requires a single cycle, taken 
breaches lead to 3 cycles as result of pipeline flushing. Semaphore cycle count is 
usually two, and for push and pop the exact cycle count relies on the number of registers 
in the register list, increasing in one cycle per register. Additionally, instructions that 
use PC as destination register have three cycle’s penalty. 

In the case of load and store, the timing analysis is the most complex one. Load 
and store are normally two cycle’s instructions, as result of neighboring load and store. 
Single instructions may pipeline their address and data phases affecting cycle’s count, 
leading to one cycle’s instructions. The instructions are pipelined when the next 
instruction is an LDR or STR, and the destination of the first is not used to compute the 
address for the next instruction, then one cycle is removed from the cost of the next 
instruction (e.g. LDR R0,[R1,R5]; LDR R1,[R2]; LDR R2,[R3,#4] - normally four 
cycles total instead six). Further, other environmental factors that could modify the 
cycle count can be found in the TRM [ARM 2013]. This document has important timing 
information, which are fundamental to the proposed timing model. Nevertheless, the 
document not exposes detailed information concerning timing behavior. In order to 
verify the collected timing information, several experiments were conducted using the 
platform [STM32F4 2014], considering the interleaving between instructions, as load 
and stores.  

3.4 Run-time based Approach 
 

The monitoring process was developed on the basis of OVP APIs and integrated 
in a component called Watchdog, comprising three main modules: (i) disassembly and 
parser, (ii) a hash table containing pre-characterized groups of instruction, and (iii) 
timing information computation, in the Figure 3.3 and descripted in sections 3.4.1, 
3.4.2, and 3.4.3. 
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Figure 3.3 - Block diagram and the main flow of the run-time based approach. 

3.4.1 Disassembly and Parser (i) 

In this module, an instruction binary code is disassembled into a string and 
afterwards subdivided in other substrings. The purpose is to isolate the instruction 
mnemonic from the instruction registers arguments to feed both hash table (ii) and 
timing computation module (iii). As a means to disassemble binary code instructions, 
our implementation employs a function provide in the ICM API called icmDisassemble. 
This function call disassembles an arbitrary memory position for an arbitrary CPU 
instance at any moment of the simulation. The function arguments are the CPU model 
object and the target memory address. This function returns a string containing the 
address, the mnemonic, and the arguments of the disassembled instruction (e.g. 0X2550 

STR r3, [r7, #20]). 
In icmDisassemble function is important to note issues related to concurrent 

access, consequently this calls are necessary exclusive, cause by internal buffers when 
storing partial results. The model describes in this chapter is sequential, i.e. the 
instructions are guaranteed to be exclusively resulting in mutual exclusion for all access. 
Nevertheless, with the purpose of increase simulation speed was developed a POSIX 
Thread version. As a consequence, concurrent access is possible, necessitating assure 
mutual exclusion, subsequently, is necessary to parse the string, separating in different 
sub-strings in order to correctly update internal structures and supply the next module. 
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3.4.2 Hash table (ii) 

With the purpose of efficiently store the timing information, it was employed a 
hash table, instructions mnemonic are the key for the data, which relates the instruction 
group and the key. Thus, in a single access, using the mnemonic as key is possible 
retrieve the information for the timing computation. The hash table is created and 
initialized at simulation begin, inserting all mnemonic in the hash. 

In the early model version was not used a hash table, instead a linked list due the 
implementation simplicity. Occasionally, was noticeable this storage access as 
performance bottleneck during simulation. As result of our methodology, every 
executed instruction is processed sequentially after the fetch event; consequently an 
access is performed after each fetch. Therefore, the search in linked list is not scalable 
and do not have a fixed time cost, leading to performance loss. In order to overcome 
this situation, a hash table replaces the linked list as storage solution in newer version. 

3.4.3 Timing information computation (iii) 

This module is responsible for processing information provide by previous 
modules together with processor state information. Structured as switch, using returned 
value from the hash table as a selector variable. A null pointer signifies a single-cycle 
instruction, accordingly to our methodology when assume one cycle per default. 
Estimate cycle’s count requires several chained tasks, separate in two groups: Those 
performed to every group and those restricted to individual group. For instance, all 
instructions possessing registers list requires several verifications: Instructions 
modifying the program counter need to be identified, as well inline shifters. 

Each profile class requires a specific treatment after been identified. For 
instance, at any time a load occurs it is necessary verify if the precedent instruction was 
a store or load, the same for stores. To implement this verification, a buffer of one 
instruction is maintained during the simulation and verify when is necessary. In 
instructs as pop or push requires count the number of registers contained in the register 
list of the instruction, each one adds one cycle to cycle count. To correct estimate 
division cycles is necessary acquire the two operands, verifying the number of leading 
zeros in the operands. According to the number of zeros, the cycle count is estimated.  

 

3.4.4 Callback  

The monitoring process bases in a special function supply by the ICM API 
called Callback. Triggering when a predefined particular event occurs, and subsequently 
the simulator call a handler function provided by the designer. Trigger configuration 
events, as memory access or as bus access, take place at compilation-time. Additionally 
allowing restrict this event a memory range instead entire address space. Restricting 
address range impacts in the simulation speed as a result of the algorithm employed by 
the simulator. 

Callaback instantiation requires two steps, shows in Figure 3.4. First, an ICM 
function (i.e. icmAddFetchCallback) (a) located in the platform creator inserts callback 
trigger. This specific function adds a fetch event trigger. Handler function construct as 
ICM specific wrapper (b) perform any task desire. Is important note that simulation 
stops during callback treatment and handler execution. 
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Figure 3.4 - Callback example code. 

3.5 Simulation behavior 
As propriety of OVPsim all processor, busses, and memory are created at run-

time using linked libraries. The same process is applied to our Watchdog module and its 
internal components. Also is possible define different constraint to the model, as an 
CPU instance that will be monitored. Figure 3.3 shows a block diagram of the watchdog 
associated with the platform. Numbers from 1 to 4 are used to describe the model 
behavior. 

After the platform simulation begins, whenever an instruction is fetched from 
the memory (1) is triggered a callback, thus starting the Watchdog. Inside the first 
module, the binary code of the instruction is acquired using the program counter (PC) 
register. Thus, the binary code is disassembled, divided into sub-strings, and identifies 
the instruction that must be executed (2). The identified instruction is employed as a 
hash table key to discovering which class (e.g. arithmetic, load, store) such instruction 
belongs (3). Thus, computing the necessary number of cycles to perform this 
instruction, considering the predefined timing information. Once, computed the cycle 
count, each instruction is executed in the CPU (4). At simulation end is possible retrieve 
the cycle estimation separated by CPUs, additionally, the statistics concerning the 
number of executed instruction per mnemonic. 

Our methodology can be extended and applied to other simulator frameworks. 
Nevertheless, to achieve better simulation performance, the development demonstrated 
in section 3.4 takes full advantage of OVP functions and methods. Additionally, as 
result of the OVP APIs extensive use diminishes developing time and cost, improving 
productivity. 

The proposed methodology lies in a single-event model, based on the 
individually executed instruction, simplifying construction around the simulator. 
Capturing as an event, identifying the instruction, processing properly, and storing the 
computation. The proposed approach in this thesis is a purely run-time based, i.e., full 
computation is executed concomitantly with the simulation, avoiding a huge amount of 
memory usages needed by trace-driven based approaches and maintaining scalability, as 
well as pre- or post-processing software/application profiling. 
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4 INSTRUCTION-DRIVEN ENERGY MODEL 
Proven the flexibility of previous timing model, in this chapter, is introduced an 

instruction-level energy estimation model. It is important to highlight that the proposed 
profiling method is simple and transparent, applicable in any other processor cores with 
no considerable rework. 

The Proposed energy model maintains a methodology presented in chapter 3 to 
timing estimation. Focusing in a single-event model, based in the individually executed 
instruction, simplifying construction around the simulator. Capturing as an event, 
identifying the instruction, processing properly, and storing the computation.  

However, in the first case, almost information about cycle duration was available 
in the documentation, for this energy approach, the manufacturer does not offer the 
information about energy consumption. In order to overcome this problem is necessary 
acquire information through a calibration phase. As a result, dividing the process flow 
in two: a Characterization phase and the simulation phase. 

4.1 Characterization 
The first and most important phase is the characterization, which profiles the 

energy spent by each instruction belong with the target ISA. The proposed 
characterization flow is validated taking as reference the Plasma processor [Plasma 2014], 
a 32-bit RISC processor based in the MIPS architecture with a 3-stage pipeline. The 
characterization flow is executed once per ISA architecture, and it comprises four main 
steps: (i) benchmark development; (ii) activity measurement; (iii) power acquisition; 
(iv) energy computation. In Figure 4.1, the numbers from 1 to 10 are used to describe 
intermediary files, while the letters from A to D represent the adopted tools. 

4.1.1 Benchmark conception 

The first step of the characterization flow encompasses developing the 
benchmarks that will be used to profile the energy consumption for each instruction (1 
in Figure 4.1). To reduce the computation cost of our model, we classified the 
instructions in seven groups due their behavior in the processor data-path: (i) arithmetic, 
(ii) logical, (iii) move, (iv) branches, (v) load/store, (vi) nops, and (vii) shifts. One 
practical example is the close relationship between instructions such as add and addiu 
or between lw and sw. Note that the mnemonic move is considered in this work as 
arithmetic instruction through a pseudo-instruction implementation (performed by a lui 

and ori).  
To profile the energy consumption of each instruction group (1 in Figure 4.1), an 

application was carefully developed, in a way, that at least 90% of the executed 
instructions would belong with the target group, including the possible variations of the 
same instruction (e.g. add, addi, addiu, etc.). Previous experiments using higher 
percentages (e.g. 95%), showed a negligible difference. Note that multiplication and 
division instructions are modeled as 12 arithmetic instructions each, since our Plasma 
version takes 12 cycles to execute them. Further, an application benchmark was created 
to characterize the pipeline stall as a nop instruction. 

Each application is executed in the OVPSim simulator (C in Figure 4.1) to verify 
its correctness and to extract the exact number of executed instructions (8 in Figure 4.1). 
Each application executes, in average, 35 thousand instructions, which requires less 
than one 1 second of simulation. The Plasma is synthesized with Cadence RTL 
Compiler tool (2 in Figure 4.1) targeting a 65nm low-power library from ST 
Microelectronics. Then, each application is simulated using Cadence Incisive simulation 
tool (B), taken as inputs: the Plasma netlist (2), the application object code (3), a tcl 
script (4), and the sdc file containing the timing constraints (5). The simulating is 
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executed until the end of the application. 
 

Figure 4.1 - Proposed instruction-driven evaluation flow 

4.1.2 Activity measurement  

Each application is simulated using Cadence Incisive simulation tool (B in 
Figure 4.1), taken as inputs: the Plasma netlist (2 in Figure 4.1), the application object 
code (3), a tcl script (4), and the sdc file containing the timing constraints (5). The 
simulating is executed until the end of the application. As a result, a tcf file (6) is 
generated. This file contains statistic information about the switching activity of each 
cell and wire in the netlist. In addition, the exact execution time of each application is 
collected (7). 
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4.1.3 Power acquisition 

Finally, the power evaluation is executed. Cadence RTL Compiler (D Figure 
4.1) also performs this task; the tool reads the netlist (2 Figure 4.1) and computes de 
average power consumed by each cell based in their switching activity information in 
the tcf (6) file. Subsequently, the tool produces a report containing the average power 
consumption (9) for the application. 

4.1.4 Energy per group 

The final step computes the average energy spent by each characterized group 
(10 in Figure 4.1). Associating the average power (9) and execution time (7) collected 
in the previous step with the number of instructions (8), the energy consumed per 
instruction group is obtained using Equation 4.1. This flow is repeated for each 
instruction class. 

Equation 4.1 - Formula to calculate the energy spend by each group. 

Averageenergy =
execution time(µs) x power (mw)

executed instructions
(nJ)

 

 

Table 4.1. Summarizes the energy results for each instruction group. Results in 
the column “number of instructions” are obtained through the OVPSim simulation. 
Results in the columns “power” and “execution time” are obtained through the gate 
level simulation. The total energy consumption (“energy” column) is obtained by 
multiplying the number of instructions by the total execution time. Then, with the 
number of executed instructions and the total energy consumed, it is possible to 
compute the energy consumed by each instruction (“Energy per Inst.” column).  

 

Table 4.1 - Energy groups profiled. 

Groups Power (mW) Exec Time (us) Energy (nJ) # of inst Energy per Inst (nJ) 

Arithmetic 6,456 342,755 2212,826 34764 0,0636528098 

Jump 6,046 102,600 620,320 10224 0,0606728873 

Load-Store 4,094 1042,800 4269,223 48561 0,0879146476 

Logical 4,469 349,735 1562,966 35462 0,0440743815 

Move 3,129 480,725 1504,189 39363 0,0382132593 

NOP 2,141 257,155 550,569 26130 0,0210703733 

Shift 3,824 298,735 1142,363 30362 0,0376247494 

 

4.2 Application Estimation 
After the characterization phase is finished, the next phase comprises building 

the energy model in the instruction-set simulator. Developing the monitoring process by 
modifying the previous cycle estimation model presented in the section 3.4, extending 
and enriching with energy models. Figure 4.2 shows the three main Watchdog modules: 
(i) disassembler, (ii) a hash table with pre-characterized groups of instructions, and (iii) 
internal data structures. In energy model, the hash-table contains the belonging class 
(e.g. arithmetic, load, store) to each instruction mnemonic (e.g. add, or, lw, etc.). 
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4.3 Simulation Behavior 
During the simulation, whenever an instruction is fetched from the memory (1) 

is triggered a callback, thus activating the Watchdog. Inside the first module, the binary 
code of the instructions is acquired using the program counter (PC) register, thus the 
binary code is disassembled, divided into sub-strings, and identifies the instruction that 
must be executed (2). The identified instruction is employed as a hash table key to 
discovery which class (e.g. arithmetic, load, logical) such instruction belongs (3). Thus, 
computing the necessary energy to perform this instruction, considering the predefined 
energy information. Once, storage the information, each instruction is executed in the 
CPU (4). At simulation ends is possible retrieve the cycle estimation separated by 
CPUs, additionally, the statics concerning the number of executed instruction per 
mnemonic or grouped by class. 
 

Figure 4.2 - Block diagram of the energy approach. 
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5 THREAD EXTENSION  
In order to improve the simulation speed of proposed timing and energy models, 

a thread-based implementation (i.e. POSIX Thread library) is proposed. We select 
POSIX Thread due its portability to multiple host machines in different operation 
systems (i.e. Windows and Linux), its availability in standard compilers as GCC, and its 
low footprint. The model describes in chapter 3 will be further referred as sequential 
version while be named thread-based. 

Proposed extension maintains a methodology presented in the previous chapter, 
based in individually executed instruction, every fetched instruction is disassembled, 
parsed, identified, and processed. The sequential version accomplishes all tasks in the 
interval between two fetches producing speed degradation. In this context, every task 
inserted in the model causes significant computation, preventing the addition of more 
complex features. However, is impossible to parallelize the entire model to achieve 
better workload distribution. This extension proposes divide cycle estimation in two 
phases: a concomitant and parallel. The first occurs in the fetch event treatment (i.e. the 
callback), and the other is asynchrony using the OVPsim natural flow as referential. 
Figure 5.1 shows the thread-based version block diagram. The propose extension aim 
transfer as much as possible workload to parallel phase, introducing a buffer between 
concomitant and parallel phases in order to accumulate information before processing. 
Note, this buffer differs of other works exist a post-processing moment, in this proposed 
model the buffer consumption is concurrent with the simulation. Described in section 
5.2. 

The concomitant phase is responsible to intercept instructions, binary code 
disassemble, buffer management, and thread creation. Instruction trace is mandatory 
belong to this phase, is impossible create a satisfactory trace using functions 
asynchronous to OVP CPU model in the adopted framework. Consequentially is 
necessary store the trace in a temporary buffer, adding buffer management cost to this 
phase. Binary code disassemble theoretically is compulsory in the concomitant phase, 
nevertheless, while development was discovered a problems related to icmDisassemble 
function presented in section 3.4.1. Thus, was necessary maintain disassembly and 
consequently the buffer was redesign to contain a string (32 bytes) instead 32 bits 
operation code increasing memory consumption. However, the proposed approach has a 
smart buffer management in order to reduce memory footprint during execution. 

5.1 Modules modification 
Insertion of explicit parallelism certainly increases model complexity, as so, 

creating other and modifying previous modules presented in sections 3.4.1, 3.4.2, and 
3.4.3. Figure 5.1 shows the module in roman algorisms (from i to vi). Disassembly and 
Parser module are organized in two modulus, (i) and (vii) respectively. Comprising 
sequential phase, disassembly module (i) utilize icmDisassemble function, generating a 
string. Buffer module (ii) is responsible to storage the generate strings to posterior 
processing. Buffer implementation follows a queue data type, i.e. making bottom 
insertions and top removals. Module (iii) manages both buffer and thread. Buffers 
creation is on demand (i.e. they are dynamic created when certain conditions are 
satisfied and detailed in the next section). In thread side, the buffer (v) module sources 
the string in the same order they are stored. Timing computation (vi) is almost identical 
with the sequential version. Differing only by the division cycle counting due 
unavailability of operands, required to calculate early termination algorithm. Hash table 
(iv) was not modified. Parser module (vii) process the string arising from the buffer, 
supplying sub-string to module (iv) and (vi). 
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5.2 Buffer Management 
The proposed extension requires a buffer as provisory trace storage as means to 

separate timing estimation in two phases. In order to preserve scalability, focusing 
many-core systems, is impossible maintain a static buffer as previous discussed. We 
propose take benefit of compartmentalized OVPsim nature (see section 3.1), using time-
slice switching as size referential and as trigger event. A buffer receives instructions 
arriving from one processor until the OVP scheduler switch its model, per default at 
each 100K instructions. At this moment, an event creates a thread and passes buffer 
pointer as an argument. Therefore, through one model is simulated other threads can 
profit from host processor parallelism.  

The time-slice event is triggered even when the platform simulates only one 
CPU. Nevertheless, this event is configurable, enabling insert an index trigger, besides 
time-slice transitions is possible provoke thread creation during the time-slice of a 
processor. For instance, if the CPU is configured with a 10K instructions index in a 
100K time-slice, will be generated 10-work threads during each simulate time-slice for 
this CPU with the processing beginning immediately after thread creation. As a result, 
workload is separate in more threads although several tests not demonstrate a 
measurable gain.  

Buffer allocation occurs when a processor try store an instruction and discover a 
null pointer in the buffer handler, and the size is by default a time-slice (100K). 
Additionally, buffers are independent of others, i.e. a processor in a determined instant 
may have several buffers been consumed, however, just one buffer is receiving data at 
any moment. Notwithstanding the number of simultaneous buffers is unpredictable due 
thread scheduling, experimental data show not more than four buffer existing 
simultaneously. As a result of host parallelism, for example, in a quad-core host 
OVPSim use only one leaving the other three to work threads. This behavior is due the 
duration of timing estimation of a chunk of instructions, been faster than simulate these 
instructions in OVPsim with the concomitant phase attached due the necessity of 
simulation interrupt at every fetch. 

5.3 Thread Management 
This extension also requires  thread management, and in order to benefit better 

from host parallelism threads are independent of simulation main flow, i.e. there will be 
not a join calls after. The use of detached threads improves performance, while 
decreases the memory usage, since resources are immediately released as soon as a 
thread execution is completed. 

When simulations come to end is not guarantee to all worker threads already 
finished, as result is necessary synchronize all threads. The synchronization is 
performed through a barrier like mechanism insert at simulation main flow end. As 
previous mentioned, threads are detached; consequently, thread join function is not an 
option and is not truly imperative since is necessary wait all threads finishes, not a 
specific one.  

We use a global thread count variable, responsible by control the active threads 
number. Whenever a thread is created, the counter is incremented. Just after a work 
thread updates internal data, counter is decremented. The barrier is developed as a loop 
statement until thread counters reach zero, to avoid busy waiting and release resources a 
sleep call is realized inside the loop.  
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5.4 Simulation behavior 
This extension also requires  thread management, and in order to benefit better 

from host parallelism threads are independent of simulation main flow, i.e. there will be 
not a join calls after. The use of detached threads improves performance, while 
decreases the memory usage, since resources are immediately released as soon as a 
thread execution is completed. 

When simulations come to end is not guarantee to all worker threads already 
finished, as result is necessary synchronize all threads. The synchronization is 
performed through a barrier like mechanism insert at simulation main flow end. As 
previous mentioned, threads are detached; consequently, thread join function is not an 
option and is not truly imperative since is necessary wait all threads finishes, not a 
specific one.  

We use a global thread count variable, responsible by control the active threads 
number. Whenever a thread is created, the counter is incremented. Just after a work 
thread updates internal data, counter is decremented. The barrier is developed as a loop 
statement until thread counters reach zero, to avoid busy waiting and release resources a 
sleep call is realized inside the loop. 

 

Figure 5.1 - Block diagram of developed watchdog module thread extension. 
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6 EXPERIMENTAL SETUP AND RESULTS 

6.1 Timing CPU model results 
In order to demonstrate the effectiveness of our approach, a 32-bit ARM Cortex-

M4F processor, which is based on the ARMv7M architecture, was used as a case study. 
In the study case are used benchmarks from different domains, demonstrating the 
benefits towards the software evaluation facilities inherent to the proposed approach.  

For our experiments, the STM32F4-Discovery board was used as reference 
platform, as illustrated in Figure 6.1. The reference STM32F4 Discovery board is built 
around a 32-bit ARM Cortex-M4F core running a FreeRTOS kernel version V.7.4.21 at 
168 MHz. Among other features, ARM Cortex-M4F supports single precision floating-
point unit (FPU) and power saving modes, which can be used for the development of 
energy-efficient embedded systems. Both Cortex-M4F and FreeRTOS are highly used 
in high-performance embedded system design, justifying the choice. 

 

Figure 6.1 - Adopted reference board platform. Proposed illustration integrates 
figures captured from their owner’s websites. 

As means to verify model accuracy is fundamental expose the watchdog to real 
scenarios, diversifying possible instructions patterns encountered during simulation. 
Benchmark execution is composed by three phases. First, port chosen benchmarks to 
our framework, real board and OVP. Committed to ensuring both platform runs most 
similar code as possible, although is not feasible execute exactly the same binary duo 
platform related initialization. However, this discrepancy is less than 500 instructions. 
Assuring a compilation using same cross-compile, libraries, compilation flags is 
possible create almost identical binaries.  

Using the Mentor Graphics Sourcery Tools version 4.8.1 and flags -
mcpu=cortex-m4; -mfpu=fpv4-sp-d16; -mfloat-abi=softfp; -mthumb; -Wall; -ffunction-
sections; -g; -O0; -w; -lm; -DSTM32F407VG; -DSTM32F4XX. Second, execute in the 
adopted board to acquire cycles count, use as referential. Finally, run all applications in 
the Timing CPU mode and variants. Realizing both execution, in the board and OVP 
several times. 

To provide relevant metrics, selecting application benchmarks that permit 
exploiting and assessing performance of embedded CPUs from different research 
domains. Such diversity allows observing the accuracy of the proposed approach under 
different conditions. Applications from several suites were used, such as MiBench 
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[Guthaus et al. 2001], Mälardalen WCET [Jan Gustafsson 2010], SPLASH-2 [Woo et 
al. 1995], and other benchmarks created in house. Table 6.1 presents, the benchmarks 
number, the benchmarks name, origin, and a brief description. 

Among the benchmarks, some are not appropriate to execution in this 
microarchitecture. Factors as memory usage and execution time may require code 
modifications, for instance, matrix sizes are dimensioned according available memory. 
Other had loop smoothed or remove not crucial functions as debug to diminish 
execution time.  

6.1.1 Timing CPU model - Experimental Setup 

As means to capture execution time (i.e. cycles) directed in the reference board, 
was necessary create an infrastructure. In order to development, compile, and test the 
applications in the host machine and transfer the binary code generated to the chip was 
employed the CooCox CoIDE Version 1.7.6. A free software development environment 
for ARM Cortex MCU based microcontrollers. Adopt the CoIDE instead of more 
popular platforms, as instance Keil uVision5, as driven by CoIDE liberty to selected and 
configure a third-party compiler. As a result, the same cross-compiler was used in the 
OVP platform as in the board platform. Ensuring maximum fidelity between OVP and 
real board binary code. 

Subsequently, acquire the number of cycles for each application. The ARMv7 
provides an internal logic that provides information about execution time called Data 
Watchpoint and Trace (DWT) Unit. Among them are three registers of special interest, 
the Control Register DWT_CTRL located at the address 0xE0001000, the Debug 
Exception and Monitor Control Register SCB_DEMCR at the address 0xE000EDFC, 
and the Cycle Count Register DWT_CYCCNT located at the address 0xE0001004. 
With this information, it is possible to manage and acquire the number of cycles of the 
application using the three registers. Figure 6.2 shows a sample code to acquire the 
clock count.  

 

 
Figure 6.2 - Sample code necessary to access the DWT registers. 
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Table 6.1 - List of used benchmarks to cycle estimation. 

# Name Suite Description 

1 Adpcm Mälardalen WCET  Adaptive pulse modulation algorithm. 

2 Barnes SPLASH 2 Performing an n-body simulation. 

3 BasicMath MiBench Series of sums, divisions, and multiplications 

4 Bfsh House production Blowfish is a symmetric-key block cipher 

5 BinarySearch Mälardalen WCET  Binary search 

6 BitManipulation Mälardalen WCET  
(ndes) Bit manipulation, shifts, array, and matrix 

calculations. 

7 Bubble Mälardalen WCET  Bubble sort program 

8 Compress Mälardalen WCET  
Data compression program (Adopted from SPEC95 for 

WCET) 

9 Counts Mälardalen WCET  Counts non-negative numbers in a matrix. 

10 Crc House production Cyclic redundancy check computation 

11 Dijkstra MiBench Dijkstra's algorithm 

12 Edn Mälardalen WCET  Integer Finite Impulse Response (FIR) filter calculations 

13 Expint Mälardalen WCET  
Series expansion for computing an exponential integral 

function. 

14 Factorial House production Factorial calculation 

15 Fdct Mälardalen WCET  Fast Discrete Cosine Transform 

16 Fft Mälardalen WCET  
Fast Fourier Transform using the Cooly-Turkey 

algorithm. 

17 Fib House production Fibonacci algorithm 

18 Fir Mälardalen WCET  Finite impulse response filter  

19 Hanoi House production Tower of Hanoi solver 

20 Harm House production Harmonics calculations 

21 InsertSort Mälardalen WCET  Insertion sort algorithm 

22 Jfdctint Mälardalen WCET  Discrete-cosine transformation on a 8x8 pixel block 

23 Lms Mälardalen WCET  
LMS adaptive signal enhancement. The input signal is a 

sine wave with added white noise. 

24 Lu SPLASH 2 LU decomposition 

25 MatrixInver Mälardalen WCET  Inversion of floating point matrix 

26 Mdc House production minimum common divisor 

27 Patricia MiBench PATRICIA tree insert and search 

28 Peakspeed Impearas Imperas development 

29 Petri Mälardalen WCET  (nsichneu) Simulate an extended Petri Net 

30 Prime Mälardalen WCET  Calculates whether numbers are prime. 

31 Qsolver Mälardalen WCET  Quadratic equation solver 

32 Qsort MiBench Non-recursive version of quick sort algorithm. 

33 Sha MiBench Secure Hash Algorithm 

34 Statistic Mälardalen WCET  
Computes for two arrays of numbers the sum, the mean, 
the variance, and standard deviation, and the correlation 

coefficient between the two arrays. 

35 Stringsearch MiBench Sub-string search 

36 Sw SPLASH 2 Smith-Waterman algorithm 

37 Tree House production Binary  tree insert and search 

38 Ud Mälardalen WCET  Integer Calculation of matrixes 

39 Usqrt Mälardalen WCET  Integer Square root function 
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6.1.2 Accuracy results and comparisons 

After collect all data from the board and OVP models, Figure 6.3 shows a 
comparison between referential board time execution, timing estimation from the 
sequential version, and thread version. Left y-axis presents the number of cycles to each 
execution in a logarithmic scale. Background bars expose perceptual mismatch between 
each model variant and referential board in right y-axis. The x-axis show the number of 
each benchmark associated with Table 6.1. 

 

 
Figure 6.3 - Execution time comparison between real board and proposed timing model. 

 
The major error contribution is due miss prediction over load/store execution. As 

mentioned in section 3.3, the timing behavior related to these instructions is complex 
and has several possibilities during hardware execution. In benchmarks as FIR heavily 
IO bounded that presents an intricate load/store patterns can insert incorrect cycles. For 
instance, our FIR implementation has 753.994 loads, 329.835 stores in a total of 
1.624.604 representing almost 67% of executed instructions 

Division instructions is another possible error source, as result of the variable 
number of cycles, 2 to 12, due the early termination algorithm implemented. The model 
covers the cases describe by the ARM Cortex M4 technical reference manual, although 
the exact algorithm is not provided, the document does supply some information into 
each instruction via a couple footnotes. Divide instructions use an early termination 
based on the number of leading zeros and ones in the input arguments the high accuracy 
achieved is an important contribution, hence flexible and accurate system modeling 
becomes imperative to the software development of today’s MPSoCs. 

To further investigate the accuracy of timing model, we evaluate the effect of 
increasing application execution time by having successive iterations of a loop. The 
chosen applications for such experiments were: (i) FFT (Fast Fourier Transform) and 
(ii) harmonic. The graphs in Figure 6.4 (a) and (b) shows that even changing the number 
of loops, the mismatch between the real board and the simulated OVP remains 
negligible (less than 0.6% in the worst case). Such small variations could be explained 
by the incidence of a given instruction that was not well characterized.  
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(a) (b) 

Figure 6.4 - Benchmark execution time comparison between real board and 
timing CPU model (OVP), varying the number of loops. Left a FFT (a) and in right a 

Harmonic (b) application. 

6.1.3 Scalability 

As demonstrated in section 3.1.1, OVPSim preserves the performance when 
exposed to scenarios composed of hundreds of cores. As the proposed model alters the 
traditional execution flow, the performance decrease is expected. As mentioned before, 
OVP relies on in Dynamic Binary Translation to active the claimed high speed by the 
direct relationship between host and target ISA. Subsequently, in the quasi-cycle 
accurate model is mandatory to stop the simulation at every fetched instruction. At this 
point in time, several instructions related to the Watchdog must be executed in the host 
machine. 

The Watchdog model has two main variants, each one divided in four variants. 
First presented was the sequential, following the flow of OVPSim as describe in the 
section 3.1. Two other variants were evaluated, the sequential with memory count and 
the sequential with the full report. The memory count deploys callbacks to count the 
number of memory access, including fetched instructions and read and write 
transactions. When full report is enabled, every executed instruction is stored into an 
internal data struct, which requires more processing time during its execution. 

The fourth variant is the union these two variants to create the sequential with 
the full report and memory count. In order to characterize the scalability of the parallel 
branch, chapter 5, was create three subtypes, Thread with the full report, Thread with 
memory count and the union of these two. The full report is performed parallel. As a 
result, and its impact is negligible when compares with a Thread version without the full 
report, totaling seven variants. 

In order to demonstrate the scalability of all proposed model variants, the 
number of CPUs was varied from one to a thousand. In each CPU executes an instance 
of FFT. Noting the average MIPS remains constant to all models and variants, around 
1.8 to threads extension, 1.2 to the sequential, and 1 to the sequential with the full 
report. Is notifiable also the great improving in thread extension when passing from 1 to 
100 PE, when the individual PE becomes less active compared with total simulation 
time given more time to worker thread finishes. Proving the capacity of the model to 
simulate large many-core systems without loss performance. 
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Figure 6.5 - Simulation performance as the simulated MPSoC scales from 1 to 
1000 CPUs. 

6.1.4 Thread extension accuracy 

In order to verify the accuracy in this thread extension, presented in chapter 5, 
and if remains close to the sequential version described in chapter 3 all benchmarks 
were re-executed using this extension. Figure 6.6 shows the cycles from the referential 
board in red, in blue the estimation from the thread estimation, in yellow bars is visible 
the mismatch between the two. 

Figure 6.6 - Execution time comparison between real board and proposed thread 
extension. 
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Figure 6.7 shows the comparison between the timing model mismatch and the 
thread extension mismatch, remarking the majority of the 39 remains close to sequential 
estimation. The average error in this extension is 4.35 % while sequential version is 
approximately 4.31%. 
 

Figure 6.7 - Comparison between the timing model mismatch and the thread 
extension mismatch. 

The mismatch between implementations occurs due the division cycle 
estimation, as already mentioned, section 3.3, the early termination algorithm deployed 
in ARM Cortex-M4F requires acquiring booth operands in order to estimate the cycle 
count. Nevertheless, when the thread-based version realizes the computation 
asynchronously, the operands may not be available in the register bank to comparison. 

6.1.5 Thread extension speedup 

Tread extension was intent to increase simulation speed by diving the work in 
several threads, as means to verify the gains obtained the individual speed to all 
benchmark was recorded. Figure 6.8 shows simulation speed in MIPS for each 
benchmark in booth main versions: Sequential in grey bars and thread-based extension 
in orange bars. Upon each benchmark is the speedup from one version to another. 
Noting an average speed of 1.5 MIPS presented by the thread extension and 1 MIPS in 
the sequential version. 

The relative speed gain is due work migration from simulation flow to 
independent worker threads, minimizing the time spend in each fetch treatment. 
However, the speed gain was limited by the amount of work transferable to these 
threads, limitations imposed by the methods provide on the OVP to disassemble binary 
code, as seeing in section 3.4.1. These methods are not constructed to be thread safe, 
generating issues related to data races in multiple concurrent invocations. 

Possible solutions were investigated across the model development, among than 
was suggested the creation of a custom disassemble function. However, this decision 
would imply in a large amount of work diverting from our main focus, additionally, the 
model is intent to be the most flexible as possible and easily ported to other 
architectures. Was considered the use of an extern disassemble program, for instance 
the provided by GCC compiler, despite the reasonably flexibility provide each 
disassemble operation would require an invocation of an extern program been extremely 
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slowly to our implementation purposes. 
The most promisor solution encountered is embedded the proposed model 

directly in OVPSim engine. JIT-based simulators require a morphing phase to operate, 
in this phase the binary code is translated from the target machine to host machine 
binary, additionally during this phase the instructions are identified with enough 
information to implements our proposed OVP model. Also, the OVP morphing phase 
possesses a table containing the previous translations used to accelerate the simulation. 
However, in order to deploy this solution is necessary access to the privileged source 
code. 

 

Figure 6.8 - Speedup comparison between timing model in sequential and thread 
extension versions. 

 

6.2 ENERGY EXPERIMENTAL SETUP AND RESULTS 

6.2.1 Test Planning  

In order to demonstrate the effectiveness of the proposed approach, several 
benchmarks were selected and use to compare the accuracy of the model when 
compared with the Plasma RTL gate-level description. Application benchmarks that 
permit exploiting and assessing performance of embedded CPUs were selected from 
different research domains. For instance, the 11-selected applications of the Mälardalen 
WCET [Jan Gustafsson 2010] benchmarks vary in terms of execution time, number of 
loops, matrixes, and array size. The others are produced in-house using well-known 
algorithms. Since OVPSim uses the target CPU’s binary code to perform the emulation 
on a host machine, all simulation scenarios were executed multiple times in order to 
capture meaningful results. 

Executing each one in the OVPSim using the Watchdog energy model, and 
subsequently execute the benchmark in the Cadence Incisive and Cadence RTL 
compiler to acquire the energy spend, similar to made in characterization phase in 
section 4.1 and 4.2. Using the same metrics possible acquire the energy to each one of 
the 19 benchmarks displayed in Table 6.2. 

Committed to ensure both platform runs most similar code as possible, although 
is not feasible execute exactly the same binary duo platform related initialization. 
However, this discrepancy is less than 500 instructions. Assuring a compilation using 
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same cross-compile, libraries, compilations flags is possible create almost identical 
binaries. Used compiler Mentor Graphics Sourcery Tools version 4.8.1 and flags -mips1 
-g -Ttext 00000000. 

 
Table 6.2 - List of used benchmarks in energy estimation. 

# Name Suite Description 

A Bfsh House production Blowfish is a symmetric-key block ciphe 

B BinarySearch 
Mälardalen 

WCET  
Binary search 

C BitManipulation 
Mälardalen 

WCET  
(ndes) Bit manipulation, shifts, array, and matrix calculations. 

D Bubble 
Mälardalen 

WCET  
Bubblesort program 

E Counts 
Mälardalen 

WCET  
Counts non-negative numbers in a matrix. 

F Crc House production Cyclic redundancy check computation 

G Edn 
Mälardalen 

WCET  
Integer Finite Impulse Response (FIR) filter calculations 

H Expint 
Mälardalen 

WCET  
Series expansion for computing an exponential integral function. 

I Factorial House production Factorial calculation 

J Fft 
Mälardalen 

WCET  
Fast Fourier Transform using the Cooly-Turkey algorithm. 

K Fib House production Fibonacci algorithm 

L Hanoi House production Tower of Hanoi solver 

M Harm House production Harmonics calculations 

N InsertSort 
Mälardalen 

WCET  
Insertion sort algorithm 

O MatrixInver 
Mälardalen 

WCET  
Inversion of floating point matrix 

P Mdc House production minimum common divisor 

Q Peakspeed Impearas Imperas development 

R Ud 
Mälardalen 

WCET  
Integer Calculation of matrixes 

S Usqrt 
Mälardalen 

WCET  
Integer Square root function 

6.2.2 Accuracy results and comparisons 

Figure 6.9 compares the energy consumption for each application benchmark, 
considering results obtained from gate-level simulation (i.e. Cadence RTL Compiler) 
and the proposed instruction-driven energy model in OVP. Gray bars correspond to the 
difference between each result, showing the high accuracy achieved with the proposed 
model (error below 8%).  
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Figure 6.9 - Application benchmark energy consumption: gate-level simulation 

versus proposed instruction-driven energy model in OVP. 

6.2.3 Relative speedup gain  

Figure 6.10 presents the achieved simulation speeds in MIPS when comparing 
both the instruction-driven energy model in OVP and the gate-level simulation. 

 
Figure 6.10 - Gain in terms of speedup: gate-level simulation versus proposed 

OVP energy model. 

Results show that the gain in terms of speedup is in a wide range of 10x – 1500x 
(gray bars) depending on the application benchmark nature. Note that all analysis using 
our proposed energy model in OVP required less than a minute of simulation. 

6.2.4 Application to Large Scale Systems  

The proposed instruction-driven energy model was integrated into a NoC-based 
MPSoC model proposed in [Mandelli et al. 2013], in order to verify the its application 
to large  scale systems. The underlying energy model was employed to evaluate the 
mapping process cost regarding different mapping heuristics by calculating the energy 
consumption during the execution of each of them. This experiment comprises 
exclusively the energy spend by the proposed mapping heuristics, providing to the 
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software engineer the ability to observe different algorithms to solve the same problem. 
Different scenarios were evaluated using the OVP model to compare three different 
heuristics: Nearest Neighbor (NN), first free (FF) and LECDN. The heuristics are 
distribute in scenarios using an 8x8 MPSoC size instance with 4x4 clusters. Each 
scenario executes 5 applications instances: 4 instances of a partial MPEG decoder (real 
application coded in C language), containing 5 tasks; and one instance of the Digital 
Time Warping (DTW, real application coded in C language), application, with 10 tasks. 

 

 
Figure 6.11 – Platform with four clusters used in the evaluation. 

Nearest Neighbor (NN) heuristic was proposed by [De Souza Carvalho et al. 
2010] considers only the proximity of an available resource to execute a given task. The 
LEC-DN heuristic [Mandelli et al. 2011] employs two cost functions: (i) proximity, in 
number of hops; (ii) communication volume among tasks. Differently from NN, which 
map the target task as close as possible to its source task, the LECDN considers the 
proximity of the target task to all tasks it communicates with already mapped. The last 
one, first free (FF) [Carvalho et al. 2009] selects the first free resource available.  

 
Figure 6.12 – Energy cost of the three mapping heuristics.  
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Results show that the LEC-DN is the heuristic with the highest energy 
consumption due to its complex algorithm. This increase (62.9% related to the NN) is 
considered by the Authors a small cost considering the benefits obtained by distributing 
the load in the system. The FF is the lowest energy consumption due his simplicity, 
however may generate the worst results when compared to the other heurist. 

This experiment shows a potential application of the proposed energy model. 
We claim here, that this energy model can be used by software engineers to quickly 
modify and analyze, early at the design process, different software stack configurations, 
aiming to satisfy particular requirements of energy for specific functions (e.g. mapping 
heuristics), or even for a great variety of applications. 
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7 CONCLUSION 
In this work, we have begun to address the challenge of making JIT-based 

simulators suitable for software performance estimation. In light of this, a watchdog 
model, incorporating timing and energy analysis were proposed and integrated into 
OVPSim simulator. The resulting approach offers the same design flexibility, setup and 
debugging features inherent to OVP, while enabling accurate timing and energy 
software evaluation. Thus, programmers can use the same simulator to have fast 
simulation and accurate software evaluation. As result, software engineers are able to 
estimate execution time and energy in early stages of development, improving the 
commitment with project constraints and reducing time to market. Additionally, the 
model is adequate to manage 1000-cores scenarios maintaining the scalability both to 
simulation speed and memory usage.  
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Abstract. Many-core systems will be the embedded projects future, however 

this hardware-software architectures as the only viable solution if addressing 

designs constraints on cost, performance and power. With the purpose of 

provide these necessary tools, this work propose a rapid timing and power 

estimation model for many-core system. Results show that the accuracy of our 

timing model varies from 0,6% to 10,5% and for power 0,01% to 7,6% 

depending on the benchmark profile. Still reaching simulation average of 1.8 

MIPS 

Resumo. Sistema multiprocessados serão o futuro dos projetos de sistemas 

embarcados, no entretanto estas arquiteturas de hardware-software são 

viáveis soluções se atenderem as restrições de design em custo, desempenho e 

potência. Com o propósito de prover este ferramental necessário, este 

trabalho propõem um modelo de potência e temporal para sistemas 

multiprocessados. Os resultados mostram um precisão para o modelo 

temporal entre 0,6% e 10,5% e para o modelo de potência entre 0,01% e 7,6% 

dependendo do perfil do benchmark. Mantendo uma velocidade de simulação 

de 1.8 MIPS.  

1. Introduction 

The many-core embedded systems will become the dominant hardware-software 
architecture. This is the most viable solution to addressing future designs constraints on 
cost, performance and power. The move to many-core paradigm as result of end of the 
single-core performance scaling principally pushed over the past couple of decades by 
increasing instruction-level parallelism (ILP) using several stratagems as: super 
pipeline, Out-of-Order architect, Speculative execution. However, simply leveling out 
ILP has little effect on most applications leading the performance versus silicon area 
cost unaffordable. Resulting in multicore systems shift.  

This paradigm shift will increasing dramatically software design complexity is, 
resulting in new design challenges, such as improving the system’s performance and 
programmability, these challenges impose more time and cost on the system’s software 
development. In this context, software engineers are investigating alternatives to scale 
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up the system performance, while dealing with new challenges in many-core software 
development. Leading to the adopting of virtual platform frameworks aimed at 
functional verification like [“Open Virtual Platforms (OVP)” [S.d.]], capable of 
simulating embedded systems running real application code at the speed of hundreds of 
MIPS. Such simulators can achieve speeds approaching actual execution time, e.g. 
thousands MIPS at the cost of limited accuracy. They often focus on functional 
validation rather than architectural exploration. In light of this, the present work focuses 
on enhancing OVP capability by including power and timing models, making it suitable 
for software performance and power analysis.  

The presented work is divided in 7 sections. In section 2 a state of the art in power and 
timing estimation. In 3, we introduce is discussed simulators performance, in more 
detail Open Virtual Platforms. Section 4 presents the timing estimation model and 
related results, as in 5 the power estimation model. Finishing with conclusion in the 
section 6 and referees in 7. 

2. Related Work 

In this section presents a state-of-art. Power and timing estimation is a broad field of 
exploration, in this work we will focus in models extensions of rapid frameworks (e.g. 
ISS and more higher levels of abstractions) in order to improve accuracy estimation. 
Almost no works, in this scope, cover both areas. As result, power and timing are 
separated in section 2.1 and 2.2 respectively.  

2.1 Cycles. 

Chiang et al. [Chiang et al. 2011] utilize the integration of QEMU and SystemC in order 
to allow faster clock-accurate evaluation when compared to RTL-based. Attaching a 
SystemC co-processor in the simulator framework, using the information coming from 
the DBT interface. A pipeline model was included into QEMU in [Thach et al. 2012], 
where authors proposed a two-phase approach (offline and online phases) to estimate 
the application performance. In the offline phase a cycle pre-estimation of the 
application execution time is performed. Using the computed information at dynamic 
adaption phase when CPU status and execution time of critical instructions are also 
taken in account, improving the approach accuracy (mismatch around 10%). A similar 
approach is presented in [Stattelmann et al. 2012], where worst-case execution time 
(WCET) analysis and QMEU are combined. In this work, the offline phase is composed 
by four steps, which produce a timing database that is used during the QEMU 
simulation. The drawback of such approaches is that they rely based on prior application 
profiling phases, which restricts its use when exploring large scenarios composed of 
diverse applications. Another disadvantage of them is that any software modification 
(e.g. changing the OS scheduling algorithm) implies re-running offline phases.  
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2.2 Power 

Over the years, considerable number of different approaches have been proposed to 
create high-level power models aiming help software and systems engineers better 
explorer larger design spaces. They can be separated in two main groups taking into 
consideration their initial calibration low-level abstraction: Measurement-based 
methods and Simulation-based methods. 

Measurement-based methods use data originated from field experiments usually using a 
precision resistor positioned between the power supply and the power input pin, thus 
instantaneous power is calculated. For example, [Bazzaz et al. 2013; Konstantakos et al. 
2008; Sheayun Lee et al. 2001; Nikolaidis et al. 2003] applies this approach. The use of 
physical information aggregate precision, in order of 3%, however is needed additional 
hardware as high performance oscilloscopes and associated several different 
benchmarks to calibrate each instruction. Furthermore, another drawback of this 
technique is the difficulty to isolate separated modules inside the processor package duo 
the internal structure (e.g. Flash, Rom, SPI, AD, and DC). 

In simulated-based techniques, the required information is extracted from low-level 
simulators (e.g. SPICE), using a hardware model to run the applications and calculate 
the energy consumption of each part of the system. In [Abril Garcia et al. 2002] an ISS 
as enriched with energy models based in the mean active in gate level and the energy by 
gate. In a similar work, [Sultan and Masud 2009] implements a model based in activity 
for a LEON3 processor. 

[Kalla et al. 2003] create a tool called SEA in order to provide estimation of power and 
energy in a SPARC processor. This work uses a gate-level simulation to provide energy 
information to their model. The instructions were classified in memory, not-memory 
and specials, with a precision that is inside 5% for energy and inside 15% for power.  

[Lee et al. 2001] combines linear programming, gate-level simulation and ISS to extract 
several parameters. However, instead of profiling separated instructions, the instructions 
were clustered in significant frames of fixed number of instructions. 

Some approaches the level of abstraction are more behavioral like. For instance, by 
[Castillo et al. 2007] propose obtaining power estimations directly from the analysis of 
the source-code without requiring simulation or even compilation. A further higher-
level approach is propose by [Callou et al. 2011] transforming the source code in 
Coloured Petri nets and combining with stochastic analysis to estimate an application 
power consumption. This couple of work presents a new level of abstraction that do not 
require a real hardware simulation, working only by the source code analyses. 
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3. Simulators 

Test and debuggability becomes critical in embedded software development as designs 
complexity increase through heterogeneous multiprocessor System-on-Chip (MPSoC), 
resulting in the necessity of simulation before real implementation. Designers have the 
liberty to choose an abstraction level to simulate, managing performance and accuracy 
tradeoffs. Among then Circuit-level and Logic-level simulators are extremely time-
consuming, demanding adoption of a fast platform simulator to suit time-to-market and 
cost constraints. 

Event-driven and quasi-cycle accurate virtual platform frameworks like GEM5 target 
microarchitecture exploration since provides specific modeling details (e.g. instruction 
pipeline details, cache coherence protocols, etc.) [Binkert et al. 2011 p. 5]. Such 
simulators are not scalable to a large number of CPUs, specifically when it comes to 
usability, easy-of-modeling and simulation time (around 200 KIPS [Sanchez and 
Kozyrakis 2013]). 

In contrast, simulators such as OVP that relies on just-in-time (JIT) dynamic binary 
translation (DBT) can achieve simulation speeds of up to 100 MIPS. DTB depend on 
emulation of one instruction set architecture (ISA) in another, through machine code 
online translation, enhancing performance in comparison to other simulation schemes. 
This performance gain comes at the expense of accuracy.  

Due the limited simulation speed of event-driven cycle-accurate frameworks, simulators 
based on DBT become decisive to deal with today’s application challenges, as well as to 
enable large scenarios evaluation. Simics  [“Full System Simulation with Wind River 
Simics” [S.d.]], QEMU [“QEMU” [S.d.]] and the adopted OVPSim are examples of 
virtual platform frameworks that rely on DBT. Such simulators/emulators vary in 
modeling flexibility, simulation speed and accuracy.  

3.1 Open Virtual platforms 

OVP supports dozens of architectures (e.g. MIPS, ARM, x86, PowerPC) ramifying in 
several model variants (e.g. arm cortex-A9, cortex-M4F, etc.), as well peripherals (e.g. 
DMA, TIMER), and integration with System-C modules. Besides, of supplied models, 
the user is able to create customized models easily integrated in the platform.  

OVP is composed of three main components: (i) APIs that enable modeling in C/C++ 
hardware components, (ii) library with a large number of CPU architectures and 
peripheral models, and (iii) the OVPsim simulator. OVPsim is a dynamic linked library 
marketed by Imperas, which supports the simulation of bus-based multiprocessor 
platforms only. OVPsim does provide instruction-level accuracy only resulting into 
inaccurate software performance. 

In order to deploy this Multiprocessor capability, OVPsim implements a Round-Robin 
scheduling algorithm similar to a typical used in OS schedulers. The processor entity 
(PE) has time slice variable, typically 0.001 seconds, commonly equal shares are set to 
all PE. Converting this variable into a number of instructions that should be executed by 
that processor in a time slice, and then simulating for that number of instructions. The 
number is obtain multiplying the time slice by the processor nominal MIPS, 100 per 
default. OVP works in sequential way (i.e. simulating a unique processor at time, even 
if is hosted in a multi-core). Nevertheless, this algorithm inserts an issue related to the 
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synchronization between simultaneous events in different PE. For instance, if a PE 
sends a message to other in the middle of their time slice, the receiver PE only will be 
aware of the message at the begin of his time slice. In simulation tightly based in 
intercommunications between processor (e.g. HPC, NOC), the precision of results may 
be affected. 

A possible addressable solution could be resizing the time slice, consequently the 
number of instruction execute each time by the PE. Decreasing the window size 
increases the precision, thus the level of fidelity in the simulation. Notwithstanding, the 
modification impacts in the performance obtain by the simulator due the cost in the 
context switch between PE. In order to observe this behavior a series of tests are 
prepared, using the same application in different scenarios. Ranging the time slice in 1 
to 0.000001, therefore the instructions per window as between 1.000.000 to 1. Figure 1 
shows the degradation in terms of simulation speed vs. time slice, notice a severe drop 
when the number of instructions per round approximate 5 thousand. 
  

Figure 1 Scalability of Time Slice 
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4. Timing estimation 

This section describes the proposed timing CPU model extension. As previously 
mentioned, OVPsim does not model cycle-accurate processors but rather instruction 
accurate processors, which provides inaccurate application execution time. In order to 
overcome this, the proposed model integrate a quasi-cycle accurate functionality in 
OVPsim. It relies on monitoring at run-time the instructions executed by a target CPU, 
employing a purely run-time based approach avoid huge amount of memory usage 
needed by trace-driven based approaches.  

Developing the monitoring process based on OVP IPIs and integrated in a component 
called Watchdog, comprising three main modules: (i) assembly parser, (ii) a hash table 
with pre-characterized groups of instruction, and (iii) timing information. Calibrating 
both hash table and timing information according to an instruction set architecture 
(ISA).  

4.1 Cycles Watchdog 

The monitoring process bases in a special function supply by the OVP API called 
Callback. It is triggered when a predefined particular event occur and subsequently the 
simulator call a handler pointing to function provided by the programmer. The 
configuration of trigger events as memory access, bus access, etc. occurs at 
compilation-time, additionally allowing restrict this event a memory range instead entire 
address space. 

After the simulation begin, whenever an instruction is fetched from the memory (1) is 
triggered a callback, thus activating the Watchdog. Inside the first module, the binary 
code of the instructions is acquired using the program counter (PC) register, thus the 
binary code is disassemble, divided in sub-strings, and identifies the instruction that 
must be executed (2). The identified instruction is employed as a hash table key to 
discovery which class (e.g. arithmetic, load, store) such instruction belongs (3). Thus, 
computing the necessary number of cycles to perform this instruction, considering the 
predefined timing information. Once, computed the cycle count, each instruction is 
executed in the CPU (4).  

The number of cycles needed to execute each instruction can be affected by several 
conditions, such as content in the registers, last instructions executed, and address 
accessed, among others. Cycle timing for single load and store are examples of 
operations that affected by such environmental conditions. In such cases a normally 2 
cycles load can be executed in a single cycle, since their address and data phases may be 
pipelined when the next instruction is an load or store, additionally this behavior can be 
chained thru multiple instructions (e.g. LDR R0,[R1,R5]; LDR R1,[R2]; LDR 
R2,[R3,#4] - normally four cycles total instead six.) [“ARM® Cortex-M4 Processor 
Technical Reference Manual” [S.d.]]. Treating these conditions with addition of internal 
logic and data structures, enabling to determine precise cycle counts even under such 
circumstances. 

At the end of the simulation is possible retrieve the cycle estimation, besides about 
number of instructions grouped per class or individually, the entire information 
separated by PE. Practically realized entire online during the simulation, as result, the 
post-processing stage is almost negligible when compared with simulation.  
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In order to increase the simulation speed the timing model a parallelization level as 
inserted by porting the model to a thread based implementation (i.e. POSIX thread 
library). In order to achieve this goal, the cycle estimation was separated in two phases: 
A sequential and parallel using the OVPsim natural flow as referential. Fig. 2 shows the 
block if the parallelized version. 

The first and sequential phase is execute concomitantly with the simulation, similarly 
whenever an instruction is fetched from the memory(1) a module is called, the binary 
code of the instruction is disassembled (2), and different of previous solution the result 
is stored in a buffer (3). This module is also responsible for manage the buffer, 
allocating memory chunks and when the buffer reach the predefined limit, create a new 
thread (4) passing the buffer an as argument. 

Comprising the parallel phase, the new thread created is completely independent of the 
rest of the simulation, using local variables in most of the computation, however when it 
is necessary update the main data structure, which is shared, a mutex variable is use to 
implement a data mutual exclusion. The work realized is parser the instructions, 
analyzing each instruction of the buffer, extracting the mnemonic (5) and using as a key 
in the hash table (6). In this hash table is storage the information about what class 

Figure 2 shows the block diagram and main flow of the run-time 

based approach. 
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belongs the mnemonic of the instruction, equally as previous mentioned (7). Thus, is 
computed the necessary number of cycles to perform this. Once, the cycle count is 
computed, the buffer index moves to the next instruction. When the data contained ends, 
the main data struct is update and consequently the thread is destroyed, deallocating the 
buffer.  

Finished the simulation a thread barrier is use to synchronize all thread, thus similarly 
with the sequential way, the cycle estimation is available. From the viewpoint of the 
user booth approaches are transparent, therefore, the only perceptible change is the 
considerable speedup achieved.  

4.2 Results 

In order to demonstrate the effectiveness of proposed approach, a 32-bit ARM Cortex-
M4 processor based on the ARMv7M architecture. In the case of study are used 
benchmarks from different domains, demonstrating the benefits towards the software 
evaluation facilities inherent to the proposed approach.  

Measuring the accuracy comparing the estimation of the model with a STM32F4 
Discovery board as illustrated in Figure 4; the reference platform board is built around a 
32-bit ARM Cortex-M4F core running a FreeRTOS kernel version V.7.4.21 at 1 GHz. 
Among other features, ARM Cortex-M4F supports single precision floating-point unit 
(FPU) and power saving modes, which can be used for the development of energy-
efficient embedded systems. Both Cortex-M4F and FreeRTOS are highly used in high-
performance embedded system design, justifying the choice. 

To provide relevant metrics, selecting application benchmarks that permit exploiting 
and assessing performance of embedded CPUs from different research domains. For 

Figure 3 shows the block diagram with thread 
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instance, the 13 selected application (i.e. from A to L, Fig. 6) of worst-case execution 
time (WCET) benchmarks vary in terms of execution time, number of loops, matrixes 
and array size [Jan Gustafsson 2010]. Such diversity allows observing the accuracy 
evaluation of the proposed approach under different conditions. Remaining applications 
also originates from different categories like biological (e.g. Smith Watermann) and 
telecommunication (e.g. CRC32). 

A - Fibonacci F - Binary Sort K - Factorial P - SmithWaterman 
B - FIR G - Compression L - FDCT Q - Btree 
C - FFT H- CNT M - InsertSort R - BFSH 
D - BubbleSort I - EDN N - MDC S – Hanoi Tower 
E - ADPCM J - Expint O - USQRT T – Harmonic 
U – CRC32    
Figure 5 Benchmark execution time comparison between real board and 

proposed timing CPU model (OVP) 

Figure 4 Adopted reference board platform. Proposed 
illustration integrates figures captured from their owners’ 

websites 
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To evaluate the accuracy of the proposed timing CPU model, in most cases each 
application benchmark was executed for at least 0.7 million instructions. Figure 5 shows 
that the benchmarks execution mismatch between the real board platform and the 
simulated timing CPU model in OVP is between 0.01% and 10.5%. Note that execution 
time mismatch is below 5% in 16 out of the 20 adopted benchmarks. 
 

4.3 Scalability  

The simulator has already demonstrate when expose to scenarios of hundreds of cores 
retaining the expected performance. As the proposed model alters the traditional 
execution flow, a performance decrease is expected. Previous mentioned OVP bases in 
Dynamic Binary Translation to active the speed demonstrated, extraction the velocity 
from this direct relationship between host and target ISA. Subsequently the instruction 
of the quasi-cycle accurate model is mandatory stop the execution at every executed 
instruction. Furthermore, executing several instructions in the host machine to 
implement the model.  

The model has two main variants, each one divided in four variants. First presented was 
the sequential, following the flow of OVPSim as describe in the section 5.1. Two others 
variants tested was sequential with memory count and sequential with full report. The 
memory count deploy callbacks in order to count the number of memory access in the 
memory, including fetched instructions, reads and writes. When full report is enable, 
every executed instructions is stored in data struct, demanding more processing time 
during the executing. The fourth variant is the union these two variants to create the 
sequential with full report and memory count. In order to characterize the scalability of 

Figure 6 Simulation performance as the simulated MPSoC scales from 1 to 1000 CPUs 
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the parallel branch was create three subtypes, Thread with full report, Thread with 
memory count and the union of these two. The full report is performed is parallel, as 
result its impact is negligible when compares with a Thread version without full report, 
totaling seven variants. 

In order to demonstrate the scalability of all proposed model variants and considering 
many-core systems scenarios, the number of CPUs as varied from one to a thousand. In 
each PE executes an instance of FFT. Results show in the Figure 6. 

 

5 Power Analysis 

In this section, is introduce a new instruction-level energy estimation model a for a 
Plasma processor [“Plasma CPU” [S.d.]].The Plasma processor is a 32-bit RISC 
processor based in the MIPS architecture with a 3-stage pipeline. It is important to 
highlight that the proposed profiling method is simple and transparent, applicable in any 
other processors cores with no considerable rework.  

Contrary to most of the approaches, our methodology can be applied in optimize IP 
cores without previous knowledge of internal architecture our access to source code. 
Also in the propose energy model, the profiling phase is highly dynamic and easily 
migrate to others platforms in counterpoint to measurement-based method.  

The approach applied is similar to the presented in the section 5, were the watchdog was 
presented. A run-time approach based in monitoring instructions executed by a target 
CPU. However, in the first case, almost information about cycle duration was available 
in the documentation, for this energy approach, the manufacturer does not offer the 
information about energy consumptions. As result, dividing the process flow in two: a 
profiling phase and the execution phase.  

5.1 Characterization 

First and most important phase is the characterization, the objective is measure the 
energy spent by each instruction belonging to the ISA. Three main steps compose the 
characterization flow: First step comprises developing benchmarks in order to profile 
the energy consumption for each instruction, noting the similarity between instructions 
it is possible divide the instructions in groups, taking into account their behavior in the 
data-path. For instance, there is a close relationship between instructions add and addiu 
and between lw and sw. Thus, dramatically decreasing the complexity and time spent in 
the instruction profiling stage.  
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For the micro-architecture used in this work, we propose to split the instructions in 
seven groups: arithmetic, logical, move, branches, load/store and shifts. Furthermore, 

Figure 7 Characterization Flow 
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placing the mnemonic 'move' among arithmetic instructions because it is a pseudo-
instruction (performed by an addi). In addition, the multiplication and division 
instructions, which are arithmetic instructions, modeling as 12 arithmetic instructions 
each, since this Plasma version take 12 cycles to execute them. Nevertheless, a 
benchmark was created to characterize the pipeline stall as a nop instruction. 

Next, one application was developed for each instruction group. These applications 
execute almost the instructions present in their respective group, including the several 
variations of the same instruction (e.g. add, addi, addiu, etc.). Although, to create an 
executable code is necessary blend instructions from different groups. Therefore, 
codding carefully these applications in a way that at least 90% of the executed 
instructions belong to the application target group. Previous experiments using higher 
percentages (e.g. 95%), showed a negligible difference. Each application executes, in 
average, 35 thousands instructions. Finally, the application is executed in the OVP 
simulator to verify its  

correctness and to extract the exact number of executed instructions. After validating 
the application behavior in RTL simulation, passing to the second step. Still, before 
executing the second step, performing the Plasma logic synthesis with Cadence RTL 

Compiler tool targeting a 65nm low power library from ST Microelectronics. 
Subsequently , the Plasma netlist (i.e. gate-level description), the application object 
code, a tcl script and the sdc file containing the timing constraints are loaded into the 
Cadence Incisive simulation tool. Next, simulating until the application finishes its 
execution. As result, a tcf file is generated. This file contains statistic information about 
the switching activity of each cell and wire in the netlist. In addition, the exact 
execution time of each application is collected. 

Finally, in the last step, the power evaluation takes as input the netlist, the sdc and the 
tcf files. Cadence RTL Compiler also performs this task; the tool reads the netlist and 
computes de power consumed by each cell based in their switching activity information 
in the tcf file. Subsequently, produces a report containing the average power 
consumption for the application. This information, associated with the execution time 
collected in the previous step, the total energy consumed is obtained. Then, with the 

Groups
Power 

(mW)

Exec 

Time 

(us)

Energy 

(nJ)
# of inst

Energy 

per Inst 

(nJ)

Arithme

tic
6,456 342,755 2212,826 34764,000 0,064

Jump 6,046 102,600 620,320 10224,000 0,061

Load-

Store
4,094 1042,800 4269,223 48561,000 0,088

Logical 4,469 349,735 1562,966 35462,000 0,044

Move 3,129 480,725 1504,189 39363,000 0,038

NOP 257,155 2,141 550,569 26130,000 0,021

Shift 3,824 298,735 1142,363 30362,000 0,038

Table 1 Energy groups profiled 
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number of executed instructions and the total energy consumed, it is possible to 
calculate the energy consumed for each instruction. Reproducing this process for all 
instruction groups. The results of the characterization are shown in TABLE I. 

After the characterization phase is finished, the next phase comprises building the 
energy model in the instruction-set simulator. The energy model relies on monitoring at 
run-time the instructions executed by the target CPU. Developing the monitoring 
process modifying the presented in the section 5, extending and enriching with energy 
models. The main modification inserted is the modification of the hash-table and the 
information contained. 

 

 

5.2 Experimental Setup 

To demonstrate the accuracy of the instruction-level energy model, comparing the 
estimated energy consumption with a commercial tool for 19 benchmarks. The 
experimental tests were performed in the same way that was utilized in the 
characterization phase, in three steps, first run the target application in the OVP 
simulator and collect the prediction of our model, second run the targeted code in the 
Incisive Simulator and by last with help of RC compiler acquire the mean power of the 
application. With the previous knowledge of the number executed instructions, is 
possible measure the power consumption of the application. 

OVP simulations, Incisive and RC compiler were executed in an Intel Xeon CPU 
W5580 8 cores x 3.20GHz – 32GB RAM. OVP release 20131018.0 and adopted 
scenarios were all compiled by gcc version 4.1.2 with full optimization enabled (i.e. -
O3). Note that the code executed in the reference Incisive differs from the one executed 
in OVPSim in few instructions (less than a hundred), which are related to the boot 

Name Energie 

(mW)

Elapsed time 

(us)

Total consumption 

(nj)

Instructions Estimated power 

(nj)

Error (%)

A Bfsh 4,830 15235,505 73587,489 1035188,000 73581,398 0,0%

C Binary search 5,092 2630,475 13394,379 196531,000 13503,721 0,8%

B Bit Manipulation 5,388 4407,555 23747,906 380318,000 25974,705 8,6%

D Bubble 5,296 4617,405 24453,777 336883,000 23079,633 6,0%

E Counts 4,851 5147,435 24970,207 331364,000 24188,576 3,2%

F Crc 5,327 2985,515 15903,838 254596,000 17284,408 8,0%

G Edn 4,563 3437,145 15683,693 208368,000 17126,121 8,4%

H Expint 3,730 11072,250 41299,493 448356,000 39551,980 4,4%

I Factorial 4,724 8859,465 41852,113 493032,000 41173,594 1,6%

J Fft 4,897 803,115 3932,854 54659,000 4256,579 7,6%

K Fibonacci 5,141 6060,000 31154,460 418029,000 30180,719 3,2%

L Hanoi 5,027 13108,105 65894,444 885305,000 66008,188 0,2%

M Harm 4,075 9527,265 38823,605 435278,000 40763,266 4,8%

N Insertsort 5,379 3953,825 21267,625 309159,000 20451,490 4,0%

O MatrixMult 4,958 10446,895 51795,705 665043,000 49646,188 4,3%

P Mdc 3,573 6597,485 23572,814 238784,000 24461,912 3,6%

Q Peakspeed 5,164 471,545 2435,058 30108,000 2300,600 5,8%

R UD 4,770 10464,475 49915,546 732831,000 53415,395 6,6%

S Usqrt 5,107 4090,785 20891,639 298166,000 20105,066 3,9%

Table 2 Energy groups profiled 
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sequence in different platforms. An application set of 19 benchmarks that permit 
exploiting and assessing performance of embedded CPUs were selected from different 
research domains, shows in the Table 2. Observing the results, the mean error is 
approximately 4.33%. The comparison between gate-level and watchdog estimation is 
presented in figure 8, as is the mismatch. 

 

 

 

 

 

 

6. Conclusion 

This work presented extensions to the OVP framework by including an accurate timing 
and power estimation CPU model. The resulting approach provides the same design 
flexibility, setup and debugging features inherent to OVP, while enabling accurate 
software evaluation in design phase. Thus, programmers can use the same simulator to 
have fast simulation and accurate software evaluation.  

The insights gained from these preliminary results call for improvements towards the 
following aspects: simulation time optimization, inclusion of instruction-based power 
models for CPUs, exploration of new techniques for online system management. 
  

Figure 8 Mismatch, gate-level and watchdog evaluation.  
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