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We report an investigation of a systemMfglobally coupled maps able to support multiattractors. For these
systems the mean field dynamics is controlled by the number of elements in the initial partition of each basin
of attraction. This behavior is in strong contrast with coupled systems of maps with a single attractor, where the
mean field dynamics is usually simple for weak couplings. In spite of the increased local complexity, the global
dynamics can be reduced to a simple two-dimensional map up to the first bifurcation point of the coexisting
attractors[S1063-651X99)50601-9

PACS numbd(s): 05.45—-a

Coupled map lattice$CML) provide perhaps the most striking feature: The partition of initial configurations
popular type of complex dynamical systems for studying the{x;(n=0)} can play the role of control parameters in deter-
generic properties and basic mechanisms of spatiotemporalining the global dynamics.
chaos[1]. There are two extreme classes of CML's which  Similar to GCMLs, other complex systems can also pos-
differ fundamentally in their behavior. The first type is con- sess a large number of coexisting attractors, like the me-
stituted by systems with short-ranggypically nearest- chanical rotor model studied in detail by Feuetlal. [11].
neighboj interaction, and low-dimensionélD, 2D) lattice  The common property of such systems is the so-called mul-
architecturd 1,2]. Its main feature is a fast decay of spatial tistability, i.e., the existence of several different long term
correlations that leads to the convergence of statistical aveasymptotic states. Examples can be given from many fields,
ages forN—«. The second class is constituted by systemsuch as neurosciendd2], chemistry[13], optics[14], or
with global interactions, where the basic model introduceccondensed matter physi¢45]. Our GCML proposed here
and studied extensively by KaneK@-4] is the globally can be considered as a prototype of multistable systems, and
coupled map latticéGCML): its simplicity can help a lot in the understanding of multiat-

tractor dynamics.
e N The local map for Eq(1) in our investigations is the
x(n+1)=(1—e)f[x(n)]+ — 2 f[x(n)]. (1) restrlct_ed_ guartic map which is simply the second iterate of
N =1 the logistic map:

Heren is a discrete time time variablé(x) is a map pre- f(x)=1—a(l—ax?)2, 2
scribing the local dynamics, anig=1,...N is the index

identifying the elements. An analogy with globally coupled The generic quartic maf(x)=1—a(1—bx?)? has a single
oscillator systems is pertinefi§]. In globally coupled sys- variable but two control parameters, and has a very complex
tems, the absence of relaxation towards statistical equilibstability domain structure, investigated in detail by one of us
rium is one of the principal differences from the case of local[16]. The restricted form of Eq2) preserves the basic bifur-
coupling. That such a behavior is a consequence of longeation structure of the logistic map in parameter space, how-
range coupling was convincingly proven by Chated ever, in sharp contrast with the logistic case, it displays
Manneville [6]: They found that in locally coupled high- coexistingstable attractorgFig. 1). The boundaries of the
dimensional lattices, where the coordination number can bbasins of attraction are given by the unstable fixed points
very large, spatiotemporal chaos takes the form of nontriviak- (/1+4a—1)/2a. Internal crisi§ 17] occurs when the un-
collective behavior without stationary probability distribu- stable fixed points coincide with the attractor, resulting in the
tions. “explosion” of the chaotic amplitudgsee Fig. 1, aa,y,

By far, the most extensively studied “standard model” of ~1.543 65 . ., which is also the band merging point for the
GCML is based on the logistic map(x)=1—ax? (x logistic map. For parametera>a,, the two attractors seem
e[—1,1], a[0,2]) as the local element in Eq1l). The to be identical, i.e., numerically indistinguishable, but math-
rich dynamics of this system is relatively well-known from ematical continuity ensures that individual trajectories start-
numerical simulation§2,3,7], even some rigorous analytical ing from different initial values cannot overlap.
results have been recently obtained for the weak coupling The separation of the basins of attraction obviously sug-
limit [8]. A few extensions of the standard model by intro- gests that the mean field dynamics should depend strongly on
ducing heterogeneity9] or noise [10] also attracted re- the initial configurations. Indeed, the GCML with quartic
cent interest as realistic models of complex phenomena imaps can be forced to follow for a while either the top or the
physics[1,5,7]. Here we introduce an extension that reveals eottom attractor by a suitable preparation of the initial val-
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FIG. 1. Bifurcation diagram for the single quartic map E2)j. 0'2_3 \
At each of thea parameters, 300 values are plotted after discarding 0.0
the first 50 000 iterations. White and gray regions show the basins  —0.2
of attraction for(a) the “top,” and (b) the “bottom” attractors, _0,4—f
respectively. 0.6 07 0.8 09 1.0 1.1 12 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

a
ues; see Fig. 2. Here the mean fieldh(n)

_ N :
=(AMN) 2=, T[xi(n)] ,\?nd the average maximum Lyap.un.ov (X) as a function of the dynamical parameterfor e=0.1 andN
eXponent/_\:(l/N)Eiﬂ)‘i are plotted forl COUP'ed lOg'St_'C =1600. Five hundred values di are plotted after discarding
and quartic maps top18—-20. We could identify approxi- 50000 iterations. The average value and the standard deviation for
mately the same dynamical ranges for the coupled quartig were determined in 50000 steps after discarding 50 000 initial
maps (coherent phase, ordered phase, partially ordered Qferations. Arrows indicate the first clustering instabilis) Logis-
glassy phase, and standard chaotic phase described in tic maps, the initial values were uniformly distributed random num-
details for logistic map$2,7,10. In Fig. 2, arrows indicate bers in the range df0,1]; (b) quartic maps, initial random values
where the first clustering instabilities arise, next we analyzeare in[0.5,1]; (c) quartic maps, random initial values [i8,1].

this question in more detail.

Clustering is one of the most common phenomena irFig. 3. Furthermore, the following reduced two-dimensional
GCML [7,21-23. The critical stability condition of a coher- map[21] gives a very good approximation for the collective
ent state, where all of the elements are moving fully synchroelynamics:
nized, is explicitly give21] as\ +In(1—¢€)<0, where\ is

FIG. 2. Average Lyapunov exponent(O) and the mean field

the Lyapunov exponent of the elementary map at the given Xhi1= (1= e (X)) +e€ F(Xp),
parametera. Note that this condition is generally valid for . . t 3
any coherent state, whatever its motion, periodic or chaotic. Xni1= (=) F(Xp) + e 1(Xp).

If the stability condition is not fulfilled, the system splits into T |
a given number of clusters, where in each cluster the stafg®®Xn andX represent the clusters on the tp and the
variable of the members is identical. The first clustering in-P0ttom (1) attractors at time-step, and e;=ke and €|
stability in coupled logistic maps is fixed by the parameters =(1—k)e are the effective coupling constants for a parti-
and e [Fig. 2@)], but not the size of the clusters. Different tioning k=K/N. The mean field is then simplyp=kX]
initial configurations can result in different number of ele- +(1—Kk)X;. In Fig. 4 we show how the first clustering pa-
ments in the two clusterf23]. In a two-cluster state, the rametera, depends on the partitionirigfor several coupling
global dynamics can be reduced to a simple two-dimensionatonstantse and system sizeN. There is a critical ratid,
map[21]; however, reduction is possible ondifter the sys- which separates the common attractor #a;: At k
tem has fallen onto two clusters. <k., the coherent state settles on the bottom attractor, while
The situation is rather different with quartic maps, sinceatk>Kk. on the top attractor. Note that the weight of the two
they support multiattractor local dynamics. M&) has two  attractors is rather different. The critical ratig.=k.(¢€)
coexisting attractors with well defined basins, a given initial=0.57—0.62 and the higher slopes kt k. show that the
configuration determines the first clustering instability; seebottom attractor represents a “deeper minimum,” by using
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FIG. 3. Mean field bifurcation diagram for coupled quartic maps L
in the periodic range. Different initial configurations were prepared 0.0 E f
by dividing the sites into two clusterk: sites(see the labejsout of
N=1600 had random starting values in the basin of the top attrac- =057
tor, N—K in the basin of the bottom attract¢see Fig. 1 After E
discarding 50 000 iterations, 100 subsequent valudésark plotted -1.04 3
for eacha. Ls () E
. . 00 02 04 06 08 1.0
an analogy from two-state systems. Since the mean field at- K=K/N

tractor from a randomized initial configuration is always dif-

ferent from that of the elementary map, the results of the FIG. 5. Bifurcation diagram for the mean fieldand average
direct simulations show a slight systematic deviation fromLyapunov exponen as a function of partitiok=K/N, whereK

the reduced map representatifq. (3)], see the nonlinear
curves ak<k, for the coupled map&symbols in Fig. 4. For
the same reason the functional form af(k;e) is not uni-
versal, although a partial data collapse can be obtained f
k>k. by the transformationa,— (a.—a,)/e, where a,
=0.75 is the first bifurcation point for the logistic mégee

elements from the total oN=5000 have random initial values
€[0.6,0.9; the rest ise[0,0.5]. For each case, 50 000 initial it-
erations were discarded and the next 200 valueshfare plotted.

O'Il',he inset shows a zoomed regiok.is obtained as in Fig. 2. The
other parameters age=1.58 ande=0.25.

Fig. 4, insel

>1.3 (cf. Fig. 3. A higher order cluster expansion, e.g., a

The two-dimensional reduced map approximation break§imilar one which was successfully developed for local cou-
down at the second clustering instability, which occuraat Pling in Ref.[24], could provide a proper description for
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FIG. 4. First clustering parameter, as a function of partition
k=K/N, whereK elements from the total dfl have initial value in

0.0 0.1 02° 03 04 05 06 07 08 09 1.0
k=K/N

small number of clusters, but in the chaotic range at weak
couplings the number of clusters can be comparable with the
number of elements itself. In our system, however, there is a
rather wide parameter range of local chaos with simple glo-
bal dynamics. Next we analyze this case.

It is known from studies with coupled logistic maps that
different partitionings even in a two-cluster state can result in
different dynamics from periodic to chaotic, considering the
motion of thesingle elementi the clusterg7,21-23. The
mean fielddynamics, however, remains usually simple in the
sense that the amplitude distribution of the mean field fluc-
tuations is Gaussiaf4]. The width of the Gaussian is de-
creasing withN up to a given critical size\., where the
emergence of coherences leads to the apparent violation of
the law of large number§25], discussed in detail in the
literature and explained by Pikovsky and Kurf{l28].

The success of the reduced two-dimensional map descrip-
tion seems to suggest that the system of globally coupled
quartic maps has a simpler dynamics than a GCML with
logistic maps, at least in the parameter range where the ba-

the basin of the top attractor. Symbols denote lattice simulation§ins of attraction are well separated. However, as we have

shown already, the two attractors of the quartic map do not

with €=0.05, N=500 (A); €=0.07, N=500 (*); €=0.09, N
=800 (+); €=0.1, N=500(O); €e=0.1, N=1500(4#); €=0.11,
N=500 (). Solid lines are obtained by the reduced ntap The
inset shows a partial data collapse; see the text.

have equal weight in the formation of the global dynamics.
This asymmetry holds also in parameter ranges where the
internal dynamics of the top and the bottom is more compli-
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cated than a simple fixed point. Thus we expect that the In summary, we have shown that the global dynamics of
collective attractors realized at the top and at the bottom caaur simple coupled multiattractor system can be effectively
be different depending on the global coupliagd the num- ~ controlled by the partitioning of initial configurations in the
ber of sitesN. Here we illustrate that this is really the case. different basins of attraction. We emphasize that this parti-
Figure 5 shows a representative bifurcation diagram fofloning does not require a very precise preparation of initial
the mean-fielddynamics as a function of partitioning of the V&lUes, in this sense the dynamics is not sensitive for small
initial configurations. We emphasize that the separation Ogmplltude noise, like other multistable systefas|.
the basins of attraction for theollective attractorsis very I.M.J. thanks FAPERGS, Porto Alegre, for the travel

good, yet, riddling[19] begins at aroundi~1.74 for the  Grant No. 200.644/98-67. This work was partially supported
given couplinge=0.25[20]. Accordingly, theglobal dynam- by the Hungarian National Science Foundati@TKA) un-

ics can be chaotic, pure periodic, and any mixture ofder Grant No. F014967. I.M.J. thanks the Foundation for
them, and the only apparent control parameter is the numResearch and Higher Education for financial support.
ber of elements in the different basins of attraction.J.A.C.G. thanks CNPq, Brazil, for partial support.
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