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Two-cell correlations in biological tissues
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We present two-cell correlation functions mi(n), which give the average number of t-sided cells
adjacent to n-sided ones, obtained experimentally from vegetable tissues and through a numerical
simulation that includes mitosis of biological-tissue growth. The correlation functions are not always
linear in n, but the Aboav-Weaire law is obeyed, indicating that it is valid for biological tissues and
that recent arguments applied to purely topological models are not valid for all natural systems.

PACS number(s): 87.10.+e, 82.70.Rr

Soap bubbles, polycrystalline grains, and biological tis-
sues present many similar features, in spite of arising
from diferent natural phenomena. The common char-
acteristics become apparent when they are mapped onto
two-dimensional, space-filling, disordered cellular struc-
tures that are described through distribution functions
(and their moments) that give, for example, the relative
number of cells with a given number of sides n, area a and
perimeter p. This common behavior is expected because
topology, geometry, and also growth dynamics impose
some constraints that definitely influence the final pat-
tern [1—3]: topology requires that every two-dimensional,
space-filling cellular net of coordination number three on
a fiat surface presents an average number of sides (n)
equal to six, geometry imposes a maximum possible area
for a cell with given perimeter, and growth dynamics re-
quires minimization of a cost function that can be either
the grain boundary energy for polycrystalline grains, or
the optimization of the (area)/(perimeter) ratio in the
case of biological tissues [4]. While the growth dynamics
of soap froths favors the formation of an inhomogeneous
system with a few large many-sided cells embedded in
a big number of small, 3-, 4-, or 5-sided cells, topology
requires (n) = 6, hence favoring a relatively homoge-
neous system. On the other hand, the growth dynamics
of vegetable tissues, where mitosis plays the main role,
generates systems with low area dispersion. This inter-
dependence of topology, geometry, and growth dynam-
ics determines the final pattern of the cellular structure.
Of course a very diferent growth dynamics may lead to
other distributions functions, but similarities in natu-
ral systems indicates that the final structure is robust
against minor changes in growth dynamics, that is, it
seems that the minimization of total interface and a ban
on collapsed (zero area) cells are sufficient conditions to
reproduce the cellular patterns found in nature [3).

Some theoretical work has been done on the subject
(see [3,5—7] and references therein); also, a striking em-
pirical universality appears in numerical simulations [8—
15] and in experimental results [16—19]: consider m(n),
the average number of sides of the neighbors of an n-sided
cell. It is observed that

nm(n) = (6 —a)n+ (6a+ p2),

where a is always close to 1 in experiments, yielding a
slope near 5, and p2 is the second moment of side distri-
bution, with the average (n) = 6, imposed by topological
constraints [2]. This relation is known as the Aboav-
Weaire law and reveals a strong correlation between the
number of sides of neighboring cells. Its origin is not
completely understood; some authors have provided ar-
guments for the form of this law based on geometry [2]
or local screening of the topological charge [20].

In a recent paper, Peshkin, Strandburg, and Rivier
[21] assert that the microreversibility argument for the
universality, generally accepted as a theoretical support
for the Aboav-Weaire law, may be incorrect. Their
"disproof" considers two elementary topological trans-
forrnations (three-sided cell disappearance and neighbor-
switching processes) and two-cell correlation functions
mi(n), associated with the probability of finding an l-
sided cell neighboring an n-sided one. They showed that
only in the case of independent rates of each elemen-
tary topological transformation do the two-cell correla-
tion functions yield a linear dependence of nm(n) vs n,
as stated by the Aboav-Weaire law, with slopes that vary
from 5 to 7.12. But independent rates are highly improb-
able precisely because of the correlation between adjacent
cells imposed by Eq. (1).

In biological tissues a third elementary topological
transformation may also happen: mitosis. The origin of
mitosis is a competition between the capacity of the cel-
lular membrane to absorb nutrients [ (perimeter)] and
the required amount of these nutrients to keep the cell
alive [~ (area) in two-dimensional tissues]. The mitosis
process guarantees an optimal ratio of area to perime-
ter and implies a constant average cell area. Following
the same reasoning as in Ref. [21] it is straightforward to
show that the constraints required by the Aboav-Weaire
law are even more severe when mitosis is taken into ac-
count: in this case three elementary topological trans-
formations must have independent rates to yield a linear
dependence of nm(n) vs n.

Equation (1) can be calculated from the two-cell cor-
relation functions mi(n) that give the average number of
t-sided cells neighboring n-sided ones. These correlation
functions have received increasing attention as a possi-
ble reason for the universality of the Aboav-Weaire law,
and clearly experimental and numerical data are inter-
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esting. Here we present the two-cell correlation functions
mt(n) for biological tissues obtained in experiments and
through numerical simulations.

Experimental data have been obtained from vegetable
leaves, following the procedures described in Ref. [19].
Vegetable tissues may present cellular structures with
different patterns, signaling the efFect of additional con-
straints, probably originated in the particular growth
mechanism, as shown in Fig. 1: typical samples of the
observed tissues from Ref. [19] may present either ex-
tended cells, differing from soap froths or metallurgical
aggregates, or isotropic structures, indicating that the
particular growth mechanism does not favor a given di-
rection. The plot of nm(n) vs n for all five samples is
shown in Fig. 2: it is evident that, in spite of the differ-
ence between the tissues, the Aboav-Weaire law is obeyed
in all cases.

We also present, for the G.rst time for biological tissues,
the two-cell correlation functions m~(n). Figure 3 shows
the plots of ms(n), ms(n), and m7(n) for A. arborescens
and A. attenuata; data regarding m4(n) and ms(n) were
not statistically satisfactory and are not shown. In Fig. 4
we present the experimental data for cf. Anthurium,
numerical-simulation results (both structures have simi-
lar p2), and two-cell correlation functions for soap froths
(pz = 2.49), calculated from the experimental correlated-
side distributions obtained by Glazier, Anderson, and
Grest [8]: the three sets of data show similar behaviors.
A. sativum and A. cepa [Figs. 1(a) and 1(b)), which
were also investigated in Ref. [19], presented too few
cells to allow any reliable measures of two-cell correla-
tion functions. However, they showed the same tendency
in spite of their anisotropic features. This anisotropy
probably originated in additional biological mechanisms
in the growth dynamics, i.e. , some kind of global symme-
try axis. In that sense biological tissues differ from soap
froths where the network rapidly reorganizes to recre-
ate isotropic bubbles when subjected to shear [22]. But

two-cell correlations seem not to be afFected when the
two-dimensional space embedding the cellular structure
is stretched in one given direction: the cells get longer in
that direction but the number of neighbors of each cell
remains the same. The anisotropy clearly affects distri-
butions in area and perimeter [19]: the structure is more
homogeneous and minimization of interfacial area is not
a major factor to explain those patterns. On the other
hand, isotropic samples are well described by a simula-
tion based on surface-energy minimization that will be
discussed in what follows.

Numerical simulations have been performed by con-
sidering a square lattice with a label being associated to
each site. Zero sites are associated to empty space. Any
connected set of sites with the same label is considered as
one cell, the area being the number of sites of the set and
perimeter being the number of edges separating two dif-
ferently labeled sites. The simulation was performed in
a Sun Sparcstation 2 and the initial state is a unique cell
of about 100 sites, surrounded by empty space (zeros).

In each simulation step a site and a first neighbor
are randomly chosen. When the neighbor is empty a
new site and neighbor are chosen. When the neigh-
bor is not empty (and the site may or not be empty)
a local-energy difFerence AE is calculated, energy being
proportional to the number of different neighbors sur-
rounding a site (a zero-labeled neighbor implies zero en-
ergy). A local-energy difference determines the proba-
bility (min[1, exp PAE]) th—at the site label switches to
the neighbor label and P is an external noise parameter
or temperature: P = T ~. The present results were ob-
tained with T = 0.4. A Monte Carlo step is completed
when the number of simulation steps is equal to the num-

ber of sites. During the growth process a cell may split
into two or more pieces. After each Monte Carlo step a
routine is run to locate all pieces of a given cell and at-
tribute different labels. This procedure guarantees that
cells are simply connected for all temperatures. Details
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FIG. 1. Representative im-

ages of the epidermal tissue [1.9]
for (a) A. sativum, (b) A.
cepa, (c) A. attenuata, (d)
A. arborescens, and (e) cf
An, tbur ium.
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FIG. 2. Plot of nm(n) as a function of
n, obtained experimentally from A. sativum
(triangles up), A. cepa (triangles down),
A. attenuata (diamonds), A. arborescens
(squares), cf Ant. hurium (circles) samples,
and from simulation (filled squares). The
Aboav-Weaire distribution is verified with a
slope of 4.9, 4.6, 4.8, 4.8, and 5, respectively,
for vegetable samples [19] and 4.8 for simula-
tion results.
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about the simulation procedure and an extended discus-
sion of the results will be published elsewhere [15].

A recent work by Graner and Glazier [23] also con-
siders a Potts model to simulate biological-cell sorting;
there a constant average cell area is obtained through
an additional energy term that constrains the cell areas
around a given value, but no cell division is performed.
Here we explicitly consider cell division, which is trig-
gered when the perimeter length is insufficient to sup-
ply the required amount of nutrients. After every Monte
Carlo step a mitosis routine is run: the center of mass,
area a, and perimeter p of each cell are measured and
whenever the ratio a/p exceeds a given mitosis parame-
ter k (here k = 3), the cell suff'ers mitosis, i.e. , it is di-
vided in two different cells by an edge crossing the center
of mass in the direction of the least diameter, as occurs
in real tissues [4]. This procedure has some similarities

with the Potts-model simulation by Srolovitz and collab-
orators [9,10], but it accounts for the difFerences between
polycrystalline-grain and biological-tissue growth: a zero
site may only become alive if it has a live neighbor and
the cells may suffer mitosis. A stationary state is attained
with invariant distribution functions and a constant av-
erage cell area.

Our interest here is two-cell correlations. The second
moment of the tissue in this simulation is p, q

——1.2 + 0.1
for T = 0.4 and the distribution function nm(n) versus n
obeys the Aboav-Weaire law as shown in Fig. 2. In Fig. 4,
the simulated two-cell correlation functions are plotted
together with the experimental results for cf Anthuriu. m
samples, which have pz = 1.1 [19] showing a reasonable
agreement. Two-cell correlation functions for the other
two samples, A. arborescens and A. attenuata, that are
shown in Fig. 3, have not been superposed to simula-

FIG. 3. Two-cell correlation functions
mi(n), the average number of l-sided cells
neighboring n-sided ones. Data obtained
experimentally for A. attenuata (diamonds)
and A. arborescens (squares). The error bars
stand for one standard deviation of the aver-
age.
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FIG. 4, Numerical simulation results
(squares) of two-cell correlation functions
m~(n), the average number of l-sided cells
neighboring n-sided ones. For comparison,
we plotted also experimental results for cf
Anthurium (open circles) and soap froth (full
circles).
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tion data because they present very different values for
the second moment p2, 0.7, and 0.9, respectively. The
difference between the values of p, 2 of different biological
samples should be attributed to specific details of the cell
growth, as previously discussed [19]. On the other hand,
one can obtain a lower value of p, 2 in numerical results if
the simulation is performed on a triangular lattice where
pinning effects are less important.

However, in the absence of a specific mechanism to de-
scribe anisotropy, besides the general ones —optimization
of the (area) j(perimeter) ratio and minimization of the
total perimeter —biological tissues and simulation results
reproduce the cellular patterns of soap bubbles or poly-
crystalline grains, with an important difFerence: constant
average cell area. Also, all the structures, experimental
or simulated, clearly verify the Aboav-Weaire law with
a slope very near 5 and some of the two-cell correlation
functions mi(n) are clearly nonlinear with n

In Ref. [21] it has been argued that the Aboav-Weaire
law is a consequence of linear correlation functions,
mi (n) = Ai +B~n, which obviously yield a linear relation
between nm(n) and n for all t, and that maximize fur-
ther the entropy, by reducing the number of constraints.
These results are based on purely topological arguments,
where the area and perimeter of the cells are not consid-
ered. A topological simulation confirmed their results.

On the other hand, the simulation and experimental
data we presented above show that the Aboav-Weaire
law is obeyed by structures that do not always present
linear two-cell correlations. The main difference between
most of the real cellular systems and topological models
lies in the explicit consideration of area, perimeter, and
number of sides. These three variables cannot be trivially
decoupled because they must fulfill a nonholonomic con-
straint: there is a maximum possible area for a cell with
given perimeter and number of sides [3]. Thus, it seems
that diverse real cellular systems may correspond to a sin-
gle topological structure. Also, cellular patterns are very
similar in spite of the differences they may present, but all
of them seem to have sufFered some growth process where

topological constraints compete with some cost function,
whose minimization results in decreasing the interfaces or
increasing average cell area. There is then a strong inter-
dependence between the number of sides, perimeter, and
area. As stated before, this cost function is the surface
energy for polycrystalline grains or soap bubbles, but it
could be another dynamical mechanism for biological tis-
sues. Purely topological models do not incorporate this
competition between topology, geometry, and growth dy-
namics, and seems not to be suitable to describe natural
cellular systems. Further evidence is given in Ref. [3]: a
constraint preventing zero-area cells is required to avoid
the maximum-entropy solution of many (infinite) zero-
area cells. Topological models do not prevent zero-area
cells.

Summarizing, we presented the two-cell correlation
functions of biological systems obtained experimentally
and through numerical simulations. The simulation re-
sults show reasonable agreement with isotropic experi-
mental data and all structures, isotropic or not, obey the
Aboav-Weaire law with slopes very near 5. Two-cell cor-
relation functions are not linear, neither in real systems,
nor in simulated ones, where the interface minimization
have been explicitly considered, indicating that topology
alone is not sufficient to describe natural cellular net-
works. Therefore, both the universal experimental slope
5 and the linear dependence of nm(n) with n remain open
problems.
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