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Theory and simulations are used to study collisionless relaxation of a gravitational N-body system. It is
shown that when the initial one-particle distribution function satisfies the virial condition—potential energy is
minus twice the kinetic energy—the system quickly relaxes to a metastable state described quantitatively by
the Lynden-Bell distribution with a cutoff. If the initial distribution function does not meet the virial require-
ment, the system undergoes violent oscillations, resulting in a partial evaporation of mass. The leftover par-
ticles phase-separate into a core-halo structure. The theory presented allows us to quantitatively predict the
amount and the distribution of mass left in the central core, without any adjustable parameters. On a longer
time scale �G�N, collisionless relaxation leads to a gravothermal collapse.

DOI: 10.1103/PhysRevE.78.021130 PACS number�s�: 05.20.�y, 04.40.�b, 05.70.Ln

Since the pioneering works of Boltzmann and Gibbs, sys-
tems with long-range interactions have been a major stum-
bling block to the development of statistical mechanics �1�.
The difficulty was already well appreciated by Gibbs, who
has noted that the equivalence between statistical ensembles
breaks down when the interparticle potentials decay with ex-
ponents smaller than the dimensionality of the embedding
space �2�. When this happens, systems exhibit some very
unusual properties that appear to violate the second law of
thermodynamics. For example, confined non-neutral plasmas
are found to phase-separate into coexisting phases of differ-
ent temperatures �3�, while the self-gravitating systems, such
as elliptical galaxies, are characterized by a negative specific
heat �4�. The explanation for these counterintuitive results
lies in the fact that when the interactions are long-ranged,
thermodynamic equilibrium is never reached �5� and the
laws of equilibrium thermodynamics do not apply.

In the limit in which the number of particles goes to in-
finity �N→��, while the total mass and charge are kept
fixed—the so called thermodynamic limit—the collision du-
ration time diverges, and the dynamical evolution of non-
neutral plasmas and gravitational systems is governed ex-
actly by the collisionless Boltzmann, or as it is known in
plasma physics, Vlasov equation �6�. This equation never
reaches a stationary state—the spatiotemporal evolution con-
tinues ad infinitum on smaller and smaller length scales,
while the one particle position and velocity distribution func-
tion evolves in time as an incompressible fluid. In practice,
however, since there is always a minimum resolution, most
systems do appear to evolve to a well defined stationary
state. This state, however, is very different from the normal
thermodynamic equilibrium characterized by the Maxwell-
Boltzmann distribution—it depends explicitly on the initial
distribution of the particle positions and velocities.

Forty years ago �7�, Lynden-Bell argued that although the
fine-grained distribution function of positions r and veloci-
ties v, f�t ,r ,v�, never reaches equilibrium, the coarse-

grained distribution function f̄�t ,r ,v�, averaged on micro-
scopic length scales, relaxes to a meta-equilibrium with

f̄�r ,v�. Since in practice the very small length scales cannot
be resolved experimentally, observations and simulations can
only provide us with the information about the coarse-

grained distribution function f̄�r ,v�. To obtain f̄�r ,v�, we
divide the phase space into macrocells of volume d3rd3v,
which are in turn subdivided into � microcells, each of vol-
ume h3. The initial distribution function f0�r ,v� is discretized
into a set of levels � j, with j=1, . . . , p. The incompressibility
of the Vlasov dynamics requires that at any time t, each
microcell contains at most one discretized level � j and that
the overall hypervolume of each level ��� j�=��(f�t ,r ,v�
−� j)d

3rd3v be preserved by the dynamics. We denote the
fraction of the volume of the macrocell at �r ,v� occupied by
the level j as � j�r ,v�. Using a standard combinatorial proce-
dure �3,7,8�, it is now possible to associate a coarse-grained
entropy S with the distribution of �� j�. Lynden-Bell argued
that the collisionless relaxation should lead to the density
distribution of levels that is the most likely, i.e., the one that
maximizes the coarse-grained entropy, consistent with the
conservation of all the dynamical invariants—energy, mo-
mentum, angular momentum, and the hypervolumes ��� j�.
In terms of the volume fractions �� j�, the stationary distribu-

tion function becomes f̄�r ,v�=	 j� j� j�r ,v�. If the initial dis-
tribution has only one level p=1 �is a water-bag�,

f0�r,v� = �1	�rm − r�	�vm − v� , �1�

where 	�x� is the Heaviside step function and �1
=9 /16
2rm

3 vm
3 —the maximization procedure is particularly

simple, yielding a Fermi-Dirac distribution,

f̄�r,v� = �1��r,v� =
�1

e����r,v�−
� + 1
. �2�

In the expression above, � is the mean energy of particles at
position r with velocity v. � and 
 are two Lagrange multi-
pliers required by the conservations of energy and the num-
ber of particles,


 d3rd3v��r,v� f̄�r,v� = �0,
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 d3rd3v f̄�r,v� = 1, �3�

where �0 is the energy per particle of the initial distribution
and the units are such that h=1. By analogy with the usual
Fermi-Dirac statistics, we define the effective temperature of
a stationary state T as �=1 /kBT. This temperature should not
be confused with the standard definition of temperature in
terms of the average kinetic energy, the latter being valid
only for classical systems in thermodynamic equilibrium. In
the thermodynamic limit, the gravitational potential � of N
particles with the total mass M satisfies the Poisson equation

�2� = 4
Gmn�r� , �4�

where m=M /N and n�r�=N� f̄d3v is the particle number
density. Equations �2�–�4� form the basis of Lynden-Bell’s
violent relaxation theory �7,9,10�. The idea is that the origi-
nal distribution f0—which is far from equilibrium, i.e., is

statistically unlikely—will relax rapidly to f̄�r ,v�, thus maxi-
mizing the coarse-grained entropy. In practice, however,
what is found is that self-gravitating systems usually relax to
structures characterized by dense cores surrounded by dilute
halos, the distribution functions of which are quite different

from Lynden-Bell’s f̄ . The failure of the theory was attrib-
uted to the fact that the violent relaxation occurs on a very
fast dynamical time scale and the system does not have time
to explore all of the phase space to find the most probable
configurations �11�. Recent work on non-neutral plasmas �3�,
however, provides a very different picture. It has been found
that confined non-neutral plasmas also relax to a core-halo
structure. In that case, however, the halo production has been
clearly shown to be the result of parametric resonances aris-
ing from the macroscopic bulk oscillations �12�. If the initial
distribution is constructed in such a way as to suppress mac-
roscopic oscillations, the resulting stationary state was found
to be precisely the one predicted by the Lynden-Bell theory
�3�. It is reasonable, therefore, to suppose that a similar
mechanism will be at work for the self-gravitating systems as
well. Strong oscillations will lead to parametric
resonances—a form of a nonlinear Landau damping �13�—
which will transfer a large amount of energy to some par-
ticles at the expense of the rest. These particles will either
escape to infinity �evaporate� or will form a dilute halo that
will surround the central core.

To test this theory, we first consider the case in which the
macroscopic oscillations are suppressed. This can be
achieved by forcing the original distribution to satisfy the
virial condition 2K=−U, where K is the total kinetic energy
and U is the total potential energy. For such distributions the
virial number defined as R�−2K /U is one. To simplify the
discussion, we will restrict our attention to the initial distri-
butions of the water-bag form �p=1�. For these distributions,
the virial condition reduces to the requirement that vm

=�GM /rm and the average energy per particle is �0

= 3
10mvm

2 − 3
5

GMm
rm

. We expect that under these conditions, f0

will relax to the distribution given by Eq. �2�, with ��r ,v�

=mv2 /2+m��r�, subject to constraints of Eqs. �3�. There is,
however, one difficulty. Since the gravitational potential de-
cays to zero at large distances, Eq. �2� requires that at any
finite temperature there should be a nonvanishing particle
density over all space. The normalization conditions �3�,
therefore, cannot be satisfied in an infinite space. However, if
we confine our attention to sufficiently short times, before a
significant number of particles has a chance to escape from
the main clusters—in practice this time is very large when
the virial condition is satisfied—the normalization problem
can be avoided by artificially restricting the particle positions
to lie within a sphere of radius R. The situation here is very
similar to the one encountered in the theory of electrolyte
solutions �14�. In that case, the canonical partition function
of an ionic cluster is found to diverge and a cutoff has to be
introduced to obtain finite results. The divergence is a natural
consequence of the fact that at any finite temperature, ionic
clusters are unstable and will fall apart after a sufficiently
long time. On short time scales, however, the dynamics of
ionic clusters is well described by a statistical theory with a
cutoff. Furthermore, the thermodynamics of electrolyte solu-
tions at low temperatures is found to be completely insensi-
tive to the precise value of the cutoff used �15�. We find the
same is true for the gravitational systems as well. In the
infinite time limit, a gravitational cluster satisfying a virial
condition is unstable and some particles will slowly evapo-
rate. On “short” time scales, however, the cluster properties
are well described by a statistical theory with a cutoff. The
precise value of the cutoff is unimportant—as long as it is
not too large. In our calculations, we have taken the cutoff to
be at R=10rm, but all the results remain visibly unaffected if
we replace this by 5rm or 100rm. The cutoff-Lynden-Bell

distribution �cLB� �9� is then given by f̄cLB�r ,v�
= f̄�r ,v�	�R−r�. It is also possible to use an energy cutoff
�16�, but for the purposes of the present calculation this is
not necessary. We now iteratively solve the Poisson equation

�Eq. �4�� with the distribution f̄cLB subject to the conserva-
tion equations �3�. Integrating the Fermi-Dirac distribution
over all velocities and taking advantage of the radial symme-
try of the distribution �1�, Poisson’s equation �4� takes the
form

1

r2

�

�r
r2��

�r
= − 16GM
2�1� 


2�̃3
Li3/2�− e�̃�
̃−��r��� , �5�

where �̃=�m, 
̃=
 /m, and Lin�x� is the nth polylogarithm
function of x. This nonlinear equation is solved numerically
with the boundary conditions ���r=0�=0 and ��r→��=0.
The gravitational potential ��r� depends parametrically on 
̃

and �̃, which are determined using the conservation equa-
tions �3�. Integrating over the velocities, these become

− 8
2�1�


2



0

R 
 3

�̃5/2
Li5/2�− e�̃�
̃−��r���

+
��r�

�̃3/2
Li3/2�− e�̃�
̃−��r����r2dr = �0,
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16
2�1� 


2�̃3



0

R

r2Li3/2�− e�̃�
̃−��r���dr = 1. �6�

To compare the theory with the simulations, we calculate
the number of particles inside shells located between r and

r+dr, N�r�dr=4
Nr2dr�d3v f̄�r ,v�. In the simulations,
20 000 particles were initially distributed according to the
water-bag distribution Eq. �1� and then allowed to evolve in
an infinite space in accordance with Newton’s equations of
motion. To avoid the collisional effects and to speed up the
simulations, the forces were calculated using the mean-field
Gauss law. As discussed earlier, this procedure becomes ex-
act in the thermodynamic limit. In Fig. 1, the solid lines are
the values of N�r� /N obtained using the theory above, while
the points are the results of the dynamics simulation, the
distances are measured in units of rm, and the dynamical time
scale is �D=�rm

3 /GM. An excellent agreement is found be-
tween the theory and the simulations, without any adjustable
parameters.

To further explore the dynamics of the relaxation process,
we define the temporal deviation of the density distribution
N�r , t� from the stationary cLB value, NcLB�r�,

��t� =
1

N2

0

�

�N�r,t� − NcLB�r��2. �7�

The inset of Fig. 2�a� shows that after a very short time
interval of �R��D, the original distribution f0 quickly re-
laxes to the cLB form. Furthermore, the relaxation time �R is
independent of the number of particles in the system—this is
precisely Lynden-Bell’s violent relaxation regime. The meta-
stable cLB distribution persists until a finite fraction of par-
ticles evaporates from the main cluster. Following the violent
relaxation, � begins to increase again. The rate of this in-
crease depends strongly on the number of particles in the
system, Fig. 2�a�. We define �G as the time at which the
�violently� relaxed distribution begins to deviate from the
cLB form by 1%, �=0.01. This time depends on N as �G
�4N�D. Scaling the simulation time with �G gives an excel-
lent collapse of the data on a single universal curve; see Fig.
2�b�.

The fact that �G diverges with N implies that in the ther-
modynamic limit, the cLB distribution will last forever. We
conclude that if the virial condition is satisfied and the mac-

roscopic oscillations are suppressed, the phase-mixing—
linear Landau damping �17�—mechanism is extremely effi-
cient to produce a local ergodicity. For times larger than �G,
the phase-space incompressibility condition �1�r ,v��1 is
violated and the system undergoes a slow gravothermal col-
lapse. We note, however, that since the time scale �G is larger
than the Chandrasekhar time �Ch��DN / ln�N�, the binary
collisions omitted in our simulations must be explicitly taken
into account to study this regime.

Small deviations from the virial condition 0.8�R�1.2
result only in weak oscillation that is not sufficient to pro-
duce significant parametric resonances. Thus, we find that for
this range of virial numbers, the cLB theory remains in good
agreement with the dynamics simulations. For larger devia-
tions from R=1, the situation changes dramatically. In these
cases, the initial distribution undergoes violent oscillations
resulting in a partial mass evaporation and a halo production.
A fraction of the particles quickly gains enough energy from
the resonances to completely escape from the main cluster
�evaporate�, while the other fraction gains only enough en-
ergy to move away from the core, remaining gravitationally
bound to it. This latter class forms a dilute halo surrounding
the dense central core. The evaporation and halo production
progressively cool down the cluster until all the collective
oscillations cease at T=0. The particles left in the core
should then be in the energy ground state, with their distri-
bution function given by that of a fully degenerate Fermi gas

f̄ c�r ,v�=�1	�
−��. This is precisely what is found when
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FIG. 1. Mass distribution for R=1: solid curve is obtained using
the cLB distribution and the points are the result of dynamics simu-
lation. There is no halo; all mass is in the core.
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FIG. 2. �a� ��t� for different number of particles in the system.
Inset shows the violent relaxation regime, which occurs on a very
short time scale �D and is independent of N. Following the violent
relaxation, the system undergoes small oscillations that die out after
about 100�D. At this time, the distribution is precisely of the cLB
form. On a longer time scale �G, the system undergoes a gravother-
mal collapse. The rate of this collapse is a linear function of N. �b�
When the time is scaled with �G, all the data in �a� collapse on one
universal curve.
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the cutoff R in the cLB distribution is extended to infinity. In
this limit, the cLB distribution splits into two domains—a

compact zero-temperature core described by f̄ c�r ,v� plus an
evaporated fraction of zero-energy particles at infinity. Inte-
grating over velocities, the Poisson equation becomes

1

r2

�

�r
r2��

�r
=

32GM
2�2�1

3
�
̃ − ��r��3/2	�
̃ − ��r�� ,

�8�

where the value of 
̃ is determined by the energy conserva-
tion,

−
32
2�2�1

5



0

�

r2�
̃ − ��r��5/2	�
̃ − ��r��dr = �0. �9�

The norm of f̄ c then gives the amount of mass left in the
central core after the process of collisionless relaxation is

completed. Figure 3 shows that the theoretically predicted f̄ c
is in excellent agreement with the core mass distribution ob-
tained using the dynamics simulations. However, in order to
have a complete account of the halo mass distribution, a
more detailed dynamical study is necessary. The work in this
direction is now in progress. On a time scale larger than �G,
the core is, once again, found to undergo a gravothermal
collapse.

Traditionally the failure of Lynden-Bell’s theory was at-
tributed to the fact that for gravitational systems, relaxation
occurs on a short dynamical time scale �D so that the system
has no time to explore all of the phase space to find the most
“probable” configuration. The present work, however, pro-

vides a very different picture. Strong oscillations lead to
propagating density waves �18� and to parametric resonances
which force some particles into statistically improbable re-
gions of the phase space. These regions do not mix with the
rest of the system. When the oscillations �parametric reso-
nances� are suppressed, the mixing is very efficient and the
predictions of the Lynden-Bell theory are verified quantita-
tively. Outside the virial condition, strong oscillations lead to
a partial mass evaporation and a core-halo coexistence. The
theory presented here gives a quantitatively accurate account
of the core. It also allows us to predict the amount of mass
that will be lost to the halo production and evaporation.
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FIG. 3. Mass distribution for R=1.9—points are the result of

the simulation. Solid curve obtained using f̄ c gives the mass distri-
bution inside the core. The theory predicts that 54% of the mass will
be in the halo or will evaporate, which is in agreement with the
simulations. There are no adjustable parameters
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