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We study the domain geometry during spinodal decomposition of a 50:50 binary mixture in two dimensions.
Extending arguments developed to treat nonconserved coarsening, we obtain approximate analytic results for
the distribution of domain areas and perimeters during the dynamics. The main approximation is to regard the
interfaces separating domains as moving independently. While this is true in the nonconserved case, it is not in
the conserved one. Our results can therefore be considered as a “first-order” approximation for the distribu-
tions. In contrast to the celebrated Lifshitz-Slyozov-Wagner distribution of structures of the minority phase in
the limit of very small concentration, the distribution of domain areas in the 50:50 case does not have a cutoff.
Large structures (areas or perimeters) retain the morphology of a percolative or critical initial condition, for
quenches from high temperatures or the critical point, respectively. The corresponding distributions are de-
scribed by a ¢cA™" tail, where ¢ and 7 are exactly known. With increasing time, small structures tend to have a
spherical shape with a smooth surface before evaporating by diffusion. In this regime, the number density of
domains with area A scales as A'/2, as in the Lifshitz-Slyozov-Wagner theory. The threshold between the small
and large regimes is determined by the characteristic area A ~t*3. Finally, we study the relation between
perimeters and areas and the distribution of boundary lengths, finding results that are consistent with the ones
summarized above. We test our predictions with Monte Carlo simulations of the two-dimensional Ising model.
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I. INTRODUCTION

Phase separation is the process whereby a binary mixture
of components A and B, initially in a homogeneous phase,
demix leading to the coexistence of two phases: one rich in A
and the other in B. The system, initially in an unstable spa-
tially uniform state, performs a coarsening process to ap-
proach its thermodynamically stable phase-separated state
[1].

In the case of fluids, hydrodynamic effects may be impor-
tant to the demixing process [2]; these interactions are hard
to treat analytically and the results of numerical simulations
are sometimes controversial. Some studies even claim that
dynamical scaling is broken by hydrodynamic transport [3].
In the following, we focus on the phase-separation process in
systems without hydrodynamics. A typical realization is
phase separation in binary alloys, high-viscosity fluids, and
polymer blends.

The time-dependent order-parameter characterizing the
phase-separation phenomenon is a continuous scalar field
¢(7,t) that represents the local difference in concentration of
the two phases normalized by the sum of the averaged con-
centrations. Its evolution is described by a phenomenological
Langevin-like equation,

¢ o -( 6H[ ¢]
E=V-[M(¢)V<5—¢>]+77. (1)

H[ @] is a Ginzburg-Landau-type “free energy” with an elas-
tic term and a double-well potential. The stochastic field
7(F,1) represents a thermal noise of zero average and cor-
relator given by
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while the mobility M(¢) is in general a function of the field
¢, as indicated. When M(¢)=1, Eq. (1) is known as the
Cahn-Hilliard equation [4] or model B in the Hohenberg-
Halperin classification of critical dynamics [5]. Several dis-
crete models to study the phase-separation process in binary
alloys have also been proposed and studied in the literature.
These are lattice gases that are themselves mapped onto Ising
models with locally conserved order parameter [6,7]. The
dynamics follow stochastic rules for the interchange of
nearest-neighbor A and B molecules or, in the spin language,
the reversal of a pair of neighboring antiparallel spins.

Two microscopic processes contribute to phase ordering
dynamics with locally conserved order parameter, namely,
bulk and surface diffusion. In bulk diffusion, a molecule
separates (evaporation) from the surface of a domain, dif-
fuses within the neighboring domain of the opposite phase,
and finally attaches to its original domain or another one. In
the context of an Ising-model simulation, there is an activa-
tion energy for this process and one can check that the domi-
nant growth mechanism is the transport of material through
the bulk from domain boundaries with large curvature to
domain boundaries with small curvature. In surface diffu-
sion, molecules “walk” on the interface. This mechanism
leads to the motion of whole domains in the sample and,
thus, the possibility of merging two domains together when
they collide. In the usual Kawasaki [6] spin-exchange dy-
namics or in model B’s evolution [8], the early dynamics is
surface diffusion driven and at a later time the dominant
process becomes bulk diffusion. There exist, however, modi-
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fied versions where either bulk or surface diffusion is sup-
pressed [8-10].

For deep temperature quenches M(¢)— 0, bulk diffusion
is effectively eliminated and domain growth proceeds by sur-
face motion. In quenches to moderate subcritical tempera-
tures, on the other hand, the mobility does not play an im-
portant role M(¢)=const and the domain growth is bulk
driven.

Let us now review in some detail the main features of
coarsening with locally conserved order parameter. Using the
Cahn-Hilliard equation, it can be easily shown that the radius
R(t) of a single spherical domain of negative phase
(¢p=-1) in an infinite sea of positive phase (¢p=+1) evolves
from time t=0 to time ¢ as [1]

R3(t) =R%*(0) - %at, (3)

with o a parameter that quantifies the surface tension. A
domain with initial radius R; thus evaporates in a time
t~Rf in contrast to the nonconserved order-parameter dy-
namics in which the area within a boundary simply shrinks
under the curvature force in a time t~Rl-2 [11].

Lifshitz-Slyozov [12] and Wagner [13] studied, for a
three-dimensional system, the growth and shrinkage of do-
mains of one phase embedded in one large domain of the
other phase in the limit of small minority phase concentra-
tion ¢ — 0. In their celebrated papers, they realized that do-
main growth at the late stages is limited by matter diffusion
through the majority domain. In this case, the evolution of a
domain of the minority phase with radius R; immersed in a
sea of the majority phase that is “supersaturated” with the
dissolved minority species [1,12] can follow two paths: the
domain evaporates by diffusion if R;<R. or it grows by
absorbing material from the majority phase if R;> R, where
R, is a time-dependent “critical radius.” This critical radius
turns out to be the only characteristic length scale in the
system R(f) and serves to scale all correlation functions ac-
cording to the dynamic scaling hypothesis. It grows
as R(t)=R.(t) ~1'3.

Lifshitz-Slyozov [12] also derived an expression for the
density of droplets of the minority phase with linear size R in
d=3. Three important properties of the Lifshitz-Slyozov dis-
tribution are:

(i) The distribution of droplet radii has an upper cutoff
R,..x(t), where R, (1) ~ '3 is a constant, equal to 3/2, times
the critical radius R(z).

(ii) The decay close to the cutoff is exponential.

(iii) The density of small objects R~0 satisfies scaling
and behaves as n(R,7) ~R.(t)™[R/R.(1)]?, where n(R,t)dR
is the number of droplets per unit volume with radius in the
interval (R,R+dR).

Later simulations established that the scaling functions
depend on the minority concentration [14,15].

The Lifshitz-Slyozov calculation can easily be extended
to any space dimension d>2 [16]. However, the limit
d—?2 1is singular and does not commute with the limit
¢—0. Rogers and Desai [17] showed, however, that the

PHYSICAL REVIEW E 80, 031121 (2009)

usual scaling forms apply in d=2, with R(¢) ~ "3, for large ¢
at small nonzero volume fraction c.

More recently, Huse used scaling and energetic arguments
to generalize the Lifshitz-Slyozov growth law and argued
that it should also apply to critical quenches with equal
volume fractions of the two phases [18]. Numerical simula-
tions [18,19], in agreement also with the earlier ones in [7],
suggest that the typical domain radius scales in time as
R(1)~ 1" for any value of c, even in the 50:50 case. The
scaling function for the distribution of domain areas has not
been analyzed in this case.

If we take also into account the competition between bulk
and surface diffusion, the growth law is modified at early
times. The former process is the one responsible for the
scaling of global observables with a typical domain length
R(1)~ '3, while the latter yields a slower time dependence
R(f)~ "4, that is, important only at relatively short times
after the quench [20-22]. The temperature-dependent cross-
over can be seen, for example, in numerical simulations with
Kawasaki dynamics [8]. The crossover time diverges when
T— 0. This observation has been used to develop accelerated
algorithms to simulate discrete models in which only bulk-
diffusion processes are considered, which should describe
phase separation correctly at late times after the quench.

Phase separation in the Kawasaki spin-exchange dynam-
ics is equivalent to a Cahn-Hilliard equation with order-
parameter-dependent mobility. In [10], a model with
M(¢)=1-a¢® was studied. The time-dependent structure
factor exhibits dynamical scaling, and the scaling function is
numerically indistinguishable from the Cahn-Hilliard one,
consistent with what was expected from numerical studies
with Kawasaki dynamics.

In this paper, we study the morphology of domain and
perimeter structures in the spinodal decomposition of a two-
dimensional system with equal concentrations of the two
phases. In particular, we analyze the distributions of the do-
main areas and their associated perimeters and the relation
between areas and perimeters during the evolution. We con-
sider bulk-and-surface diffusion and just-bulk-diffusion pro-
cesses.

Extending a formalism previously developed for the study
of domain growth in the nonconserved case [23-25], we pro-
pose an analytic form for the domain size distribution func-
tion in its full range of variation, and we test it with simula-
tions on the two-dimensional Ising model (2DIM). Our
analytic prediction for the distribution of small areas is the
result of one hypothesis: that interfaces move independently.
This assumption is valid for domains of any size in
curvature-driven dynamics: the fission of a big domain into
two smaller ones or the coalescence of two domains to form
a bigger one is forbidden in the continuous Allen-Cahn de-
scription [11] and is not important in the heat-bath dynamics
of the Ising model with nonconserved order parameter. In the
conserved order-parameter case, even with ¢—0, this as-
sumption does not strictly hold and corrections must, in prin-
ciple, be included. Indeed, already Lifshitz and Slyozov
made an attempt to go beyond their simple model and ac-
count for coalescence when ¢ — 0. Later, it became clear that
in locally conserved order-parameter dynamics, the dominant
effect not accounted for in the simple description that takes
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domain boundaries as independent objects was interdomain
correlations rather than coalescence. For a discussion of the
limit ¢— 0 considering interactions between droplets, see
[26].

Therefore, our analytical results are just a first-order ap-
proximation. Still, as we shall see in the main body of the
paper, this approximation yields a very good description of
numerical data obtained with Monte Carlo (MC) simulations.
The quantities on which we focus are domain areas and
“hull-enclosed areas,” where the latter is the areas enclosed
within the outer boundaries (or “hulls”) of domains and do-
main perimeters. The distribution functions for the hull-
enclosed and domain areas are ny, 4(A,t), where n;, 4(A,1)dA
is the number of hulls (1) or domains (d) per unit area of the
system with area in the range (A,A+dA).

The main properties of these distributions are:

(i) The number density of domain and hull-enclosed areas
satisfy scaling n, 4(A,1)=1"*3f, 4(A/1*3). The argument of
the scaling functions arises from the fact that the character-
istic area of hulls and domains grows as ¢*3. The prefactor
43 follows from the fact that there is of order one domain
per scale area.

(ii) The scaling functions f} 4(x) do not have any cutoff
and extend to infinite values of x falling off as (2)cj, ",
with x=A/(\; 4)*3. The constants c, 4 are the ones in the
initial (or quasi-initial; see below) area distribution,
nh,d(A,»)~(2)ch7d/A;_, for A;—o. The prefactor ¢, is known
exactly, c,=1/8m3 [27]. The factor of 2 is present when
quenching from high temperature 7,,> T, and is absent when
the initial condition is the critical Ising one 7(=T.. The ex-
ponent 7 depends on whether we consider hull-enclosed
(7=2) or domain areas and, in the latter case, on the initial
condition, i.e., infinite or critical temperature. In both cases,
it is very close to 2.

(iii) After a quench from high temperature to a sufficiently
low-working temperature 7<T,, the small-argument behav-
ior of the scaling function is f(x) = x, in agreement with the
Lifshitz-Slyozov-Wagner prediction for the small concentra-
tion limit. At higher working temperature and for critical
initial conditions, the behavior is modified in a way that we
describe in the text.

The paper is organized as follows. In Sec. II we describe
an approximate analytic derivation of the time-dependent
hull-enclosed and domain area distributions. These argu-
ments do not rely on any scaling hypothesis but rather sup-
port its validity. We compare our approach to the celebrated
Lifshitz-Slyozov-Wagner theory [12,13]. In Sec. IIT we show
our numerical results for the statistics of areas in the 2DIM
evolving with locally conserved dynamics. We use variants
[9] of the Kawasaki algorithm [6] that we briefly explain in
this section. The use of different algorithms allows us to
switch surface diffusion on and off and pinpoint the relative
importance of these processes. Section IV is devoted to the
analysis, both analytical and numerical, of the geometry of
domain walls during the dynamics and their relation to the
corresponding areas. Finally, in the conclusion, we summa-
rize our results and we discuss future studies along these
lines.
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II. STATISTICS OF AREAS: ANALYTIC RESULTS

In this section, we analyze the number density of hull-
enclosed and domain areas. A domain is a region of con-
nected aligned spins. Each domain has one external perim-
eter, which is called the hull. The hull-enclosed area is the
total area within this perimeter, i.e., the domain area plus the
area of any internal subdomains.

A. Initial distribution

We study the coarsening dynamics after a quench from
To— > and Ty=T,. The first case is very similar to critical
percolation, as we explained in [23]. Equilibrium infinite-
temperature initial conditions (fraction of up spins=1/2) are
below the critical random percolation point (p,.=0.59) for a
square lattice in d=2. After a few MC steps, however, the
system reaches the critical percolation condition, e.g., the
expected A2 tail is observed in the distribution of hull-
enclosed areas. We have checked that this is so from the
analysis of several correlation functions as well as the distri-
bution of structures. The same happens for nonconserved
order-parameter dynamics [23], where a detailed discussion
can be found. This fact justifies the use of the Cardy-Ziff
exact result for the distribution of hull-enclosed areas at criti-
cal percolation [27] as our effective initial condition from
Ty— . From a more general perspective, one can argue that
if the system is coarse grained to the scale R(r) and R(z) is
large compared to the lattice spacing, a continuum descrip-
tion becomes appropriate, for which the percolation thresh-
old is precisely 1/2. At the scale R(7), the system is disor-
dered and has the character of the percolation model at
threshold.

In Sec. II in [23], we recalled the equilibrium distribution
of hull-enclosed and domain areas, domain walls, and their
geometrical relation to their associated areas at critical per-
colation and critical Ising initial conditions. In Sec. III we
derived some generic results that follow from the use of sum
rules and the scaling hypothesis. We do not repeat the de-
scription of these properties here but we refer the reader to
[23] for further details.

For future reference, we simply list here the initial distri-
butions 7, 4(A;,7;) of hull-enclosed and domain areas
[27-29]. For critical Ising initial conditions, they are

Ch
nh(Ai’ti) = ;9

i

™2
Ay 379
Apt)=——7"—, T=—"__, 4
et =00 =g )
while those describing the critical percolation state are
2Ch
ny(Agt;) = A_iz,

2c,Af 187
nd(Ahti) = d—(/)7 T/ = (5)

AT 91

The expression for n,,(A;,1;) is asymptotically exact for areas
A; large compared to the microscopic area Ay~ a’, where a
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is the lattice spacing. The factor of 2 is present for the critical
percolation but absent for the critical Ising initial condition
[27]. In the former case, the “initial” time f; is taken to be a
few MC steps, such that the system has effectively reached
the percolative critical state. The constant ¢, is known ana-
lytically, ¢,=1/8m3 [27].

As discussed at length in [23], the domain area distribu-
tions must fall off faster than A=2 in order that the total do-
main area, per unit area of the system, be finite (and equal to
unity). Indeed the exponents 7and 7 in Egs. (4) and (5) take
the numerical values 7==2.027 and 7' =2.055.

B. Characteristic domain length

It is by now well established [12,18] that the spatial
equal-time correlation function in demixing systems is cor-
rectly described by the dynamic scaling hypothesis with a
characteristic length R(f)~¢"3 in agreement with the
Lifshitz-Slyozov-Wagner prediction [12,13] and the exten-
sion beyond the small concentration limit derived by Huse
[18]. The effect of temperature fluctuations is expected to be
described by a T-dependent prefactor R(¢,T)=[N(T)]'>. In
the following, we do not write the T dependence explicitly.

C. Large structures

It is natural to assume that at time ¢, as for nonconserved
order-parameter dynamics, large structures characterized by
a long linear dimension R;>R(¢) have not changed much
with respect to the initial condition. We shall support this
claim with the numerical results. Thus, for sufficiently large
hull-enclosed areas such that the time dependence can be
neglected, we expect

Ch
ny(A,1) = ek A (N)P, (6)
for Ising critical conditions and with a prefactor 2 for high-
temperature ones.

Similarly, for large domains, the area dependence of their

distribution follows that of the initial condition [Egs. (4) and

5]

D. Small structures

Small structures, such that R;<<R(t), are mostly embedded
in very large domains. To a first approximation, we shall
assume that they are independent. Moreover, they are not
expected to have holes of the opposite phase within, imply-
ing the equivalence between hull-enclosed and domain areas
at these scales. Indeed, any smaller structure placed within
must have evaporated by time . We then propose that the
number density of small hull-enclosed or domain areas at
time ¢ can be written as a function of the initial distribution,

HMJVEdeﬁﬂA—A@ANHMw@, (7)
0

with A; the initial area and n(A;,7;) their number density at
the initial time 7;. A(7,A;) is the area of a domain at time ¢
that had area A; at time #;. In writing this equation, we have
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implicitly assumed that an area cannot split into two and that
two such areas cannot coalesce, which is not strictly true in
conserved order-parameter dynamics.

Note that for sufficiently large areas so that the time de-
pendence is not important and A~A;, Eq. (7) immediately
yields n(A,7)=n(A;,;) and Eq. (6) is recovered. It has to be
stressed, however, that Eq. (7) does not strictly apply in this
case.

Assuming that the small areas are circular

AP (,A) = AP = N(D)(t -1y, (8)

see Eq. (3), and after a straightforward calculation, using
Egs. (4) and (5) for the initial distribution, one finds

A 1/2
@“hww}

{ A }3/2 5/3
14| ——=
()\ht)2/3

for hull-enclosed areas and Ising critical initial conditions
(for high-temperature ones, as usual, we should include the
prefactor 2). This prediction has the expected scaling form
n,(A,0)=t"3f(A/1*3) corresponding to a system with char-
acteristic area A(f)~1*® or characteristic length scale
R(1)~1"3. At very small areas, A<<(\,t)**, where our ap-
proximations are better justified, one has

(WWMMF{ )

A 12
WM%Mﬁzm%&gm}. (10)
h

As expected, taking the limit A/(\,t)**>1 in Eq. (9), one
recovers Eq. (6). Although this limit goes beyond the limit of
validity of Eq. (9), we shall propose that Eq. (10) actually
holds, at least approximately, for all values of A/(\,1)%>.

In [23], we studied nonconserved order-parameter dynam-
ics and we derived the number density of domain areas from
the one of hull-enclosed areas. The key fact in this case was
that we could treat the distribution of hull-enclosed areas
exactly and then use a small ¢;,=0.023 expansion to get the
statistical properties of domains. In the case of phase sepa-
ration, our results for hull-enclosed areas are already ap-
proximate. Still, the relation between hull-enclosed area dis-
tribution and domain area distribution obtained in [23]
should remain approximately true, as a first-order expansion
in small ¢, since small domains are not expected to have
structures within. In conclusion, for large areas and long
times such that a regularizing microscopic area Ay=M\,f, can
be neglected, we expect the same functional form as the one
given in Eq. (9) with c,=c,+O(c}), A,=N\,[1+0O(c;)], and
the power 5/3 in the denominator replaced by (27+1)/3 or
27+1)/3

A 172
2| ]

A 32 @73
1+ —5
[ ()\dt)2/3:|

(Ngt)* P (A1) = { =gx),

(11)
with x=A/(\,)?3, and
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A 172
Nat) (A = )l —5 | 12
(\at)""ny(A,1) ()d()\dt)zg (12)
for A<<(\,#)?3. This expression can be compared to Eq. (49)
in [23] valid for nonconserved order-parameter dynamics.
Let us emphasize again the main approximation of our
analytical approach: we are considering each domain area as
an independent entity. This is strictly true for the noncon-
served order parameter [23,24] but is an approximation in
the conserved order-parameter problem.

E. Superuniversality

All the results above are valid for the bulk diffusion-
driven case. What happens if we consider the case in which
bulk and surface diffusion are in competition or whether we
include quenched disorder in the couplings? If we suppose
that all these systems belong to the same dynamical univer-
sality class, the scaling functions being the same, then Eq.
(9) can be generalized in the form

A 172
@i

A 3/2 | 5/3
1+{R%ﬁ}

and similarly for the domain area distribution. The time de-
pendence in R(¢) should include all regimes (e.g., t'/# and ¢!/
in the clean case with surface and bulk diffusion) and can be
extracted from the dynamic scaling analysis of the correla-
tion functions. We shall check numerically the superuniver-
sality hypothesis.

(13)

wummmﬂ={

III. STATISTICS OF AREAS: NUMERICAL TESTS

To test our analytic results, we carried out numerical
simulations on the 2D square-lattice Ising model (2DIM)
with periodic boundary conditions,

H=-2 J,0,0;, (14)
(i)

where o;=*1. We will start considering the pure model
Jij=J>0Vij and then the random-bond model in which the
Jij’s are random variables uniformly distributed over the in-
terval [1/2, 3/2]. We used several versions of conserved
order-parameter dynamics that switch on and off surface dif-
fusion. These are Kawasaki dynamics at finite temperature,
including both surface and bulk diffusion, and accelerated
bulk diffusion in which surface diffusion is totally sup-
pressed. Bulk diffusion needs to overcome energy barriers;
thus, this variant runs at finite temperature only. In all cases,
we implemented the continuous time method and the algo-
rithms become rejection free. A detailed description of these
algorithms appeared in [9]. Domain areas are identified with
the Hoshen-Kopelman algorithm [30].

All data have been obtained using systems with size
L?>=10*Xx10% and 10° runs using independent initial condi-
tions. We ran at different temperatures specified below. We
considered two types of initial conditions, equilibrium at in-
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(b)

FIG. 1. Snapshots of the 2D Ising model evolving with a locally
conserved order parameter at t=1000 and r=16 000 equivalent MC
steps using the accelerated bulk algorithm explained in Sec. III. The
initial condition is a random configuration of *1 spins taken with
probability one half, that is to say, an infinite-temperature state.
Evolution occurs at 7=1.0.

finite temperature 7,— % and equilibrium at the critical Ising
temperature To=T7,. All results are presented in equivalent
MC times. An example, for 7,— o, is presented in Fig. 1,
with snapshots taken at different times.

Domain areas

In this section, we show data obtained with the acceler-
ated bulk-diffusion algorithm, but we checked that similar
results are obtained with finite-temperature Kawasaki dy-
namics.

1. Infinite-temperature initial condition, low T evolution

In Fig. 2 (top), we show the time-dependent domain area
distribution in double-logarithmic scale, at three different
times, following a quench from 7j— < to 7=1.0. The work-
ing temperature is very low compared to the critical value
T.=2.269.

The figure shows a strong time dependence at small areas
and a very weak one in the tail, which is clearly very close to
a power law. The curves at small areas move downward and
the breaking point from the asymptotic power-law decay
moves toward larger values of A for increasing . We include
the spanning domain in the statistics: the bump on the tail of
the distribution is a finite-size effect visible only when the
number of domain areas has already decreased by several
orders of magnitude. In the tail of the probability distribution
function, the numerical error is smaller than the size of the
data points. The discussion of finite-size effects in [23] also
applies to this case.

We test the analytic prediction: the very good agreement
between the analytical theory and the data is quite impres-
sive. In Fig. 2 (bottom), we scale the data by plotting
(N)¥3n (A1) against A/(\,)*? with \,=0.008 3. For A
larger than the “typical” value (\,)*°, the time and A, de-
pendence become less and less important. We fit the param-
eter A\yT) by analyzing the behavior at small areas
A3 <\ (T)t and we find that \,(T=1.0)=0.008 3 yields the
best collapse of data. We use the value ¢,;=0.025 [23]. The
full line is our prediction (11).
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FIG. 2. (Color online) Left panel: number density of domains areas per unit area for the 2DIM evolving at T=1.0 after a quench from
Ty— o using the accelerated algorithm. The dotted line represents the analytical prediction. Right panel: rescaled data using the typical
domain area time dependence A~ 3. The dotted line is the theoretical prediction in Eq. (11) with 7 replaced by 7', appropriate to a

disordered initial state.

In Fig. 3 we present the domain area distribution for the
evolution using the Kawasaki algorithm both for the clean
and the disordered systems. The agreement with the analyti-
cal prediction is as good as with the bulk-diffusion algo-
rithm, suggesting the validity of superuniversality between
both dynamics.

We extract the growing length R(¢) from the analysis of
the spatial correlation function [23] and we find very good
agreement between the numerical data and the scaling func-
tion suggesting that superuniversality with respect to the in-
clusion of disorder in the interactions also holds.

2. Critical temperature initial condition, low T evolution

We now use a critical Ising initial condition 7y=7,. and
show the results in Fig. 4. In this case, we have to further
distinguish large and small domain sizes. We find that the
distribution at large areas A > (\4#)*? is well described by the
initial condition form. At the crossover A ~ (A )%, the data
points leave the asymptotic power law with parameter c, to
approach the one with 2c,. For small areas, A <(\,)*> we
find that Eq. (11) is not satisfied (see Fig. 4). Although few
data point fall in this regime, the departure from Vx is clear.

We believe that the reason why the analytic prediction for
small areas fails in this case is that the assumption of inde-
pendence of small domains is not justified for a critical Ising
initial condition.

“Pure

102 |
103 |
= a4
VE1O.5 3
T 105}
5:;310'6 .
107 F
108 |
107

Dis.

107 10 10" 10®2 10° 10* 10°
AR2(t)

FIG. 3. (Color online) Simulations with the Kawasaki algo-
rithm, without and with disorder. The solid lines represent the ana-
lytic prediction with ¢;=0.025, 7'=2.055, and \;=0.3. For the dis-
ordered case, the growth law R(r) is extracted from the spatial
correlation function. Even if there are deviations from the theoreti-
cal curve, the data seem to show superuniversality.

3. Dependence on the working temperature

Up to now, we showed results obtained using a rather
low-working temperature. We now study whether and how
our results are modified when using higher values of 7. Fig-
ure 5 shows the numerical data and proves that the scaling is
well satisfied at all times and for all areas. The large scale
behavior of the distribution is not modified by 7 and all data
are well described by the initial condition form. Instead, the
small scale behavior depends strongly on temperature fluc-
tuations. The anomalous up-rising part of the distribution at
small areas is time independent, suggesting that it can be
associated with equilibrium fluctuations of the domain walls.
As shown in Fig. 5, it is possible to extract the interface
thermal fluctuations as was done in Ref. [23] with the bulk
equilibrium droplets (see Figs. 20 and 21 of that paper).

IV. STATISTICS OF PERIMETERS AND FRACTAL
PROPERTIES

The analytic argument described in Sec. II can be ex-
tended to study the distribution of domain-wall lengths or
perimeters. The domain perimeter is the total length of the
interface between the chosen domain and the neighboring
ones—including the hull and internal borders. In this section,
we present the analytic prediction for this function together
with numerical results that confirm it. We concentrate on
Tp— % and low-working temperature. In the simulations, we

107

1072

10° }

Q 10 +

= 100t

<C -6 |
< 10

< 107 t

108t

-9 | -

1(-)10 *
10

102 10" 102 10®  10*
A/t2/ 3

FIG. 4. (Color online) Number density of domain areas per unit
area for the 2DIM evolving at 7=1.0 after a quench from T(=T.
using the accelerated bulk algorithm. The lines represent Eq. (11)
with constant ¢, and 2c¢,.
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FIG. 5. (Color online) Number density of domains areas per unit
area for the 2DIM evolving at T=1.5 after a quench from 7, —
using the accelerated bulk algorithm. The prefactor A, (7) in the
growing length is chosen to be \4(7)=0.0060. Compare to the re-
sults shown in Fig. 2 obtained for a lower-working temperature.

define the length of the boundary as the number of broken
bonds.

A detailed description of the relation between the domain
areas and their boundaries in the critical Ising and critical
percolation conditions as well as the number densities of
domain perimeters was given in [23]. Here we focus on their
evolution.

After a quench from 7()— ¢, the domain areas A and their
corresponding perimeters p obey the scaling relations (see
Fig. 6)

A P )“;
~ 7, , 15
(A1) 77d< () (15)
with
a)” ~1.00=0.1 ; =10, (16
or —57 =10,
ny ~0.75 (1)
and
@)~ ~2.00=0.1 ; <10, (17
or ——ox= .
7" ~ 0.045 (na)*"?

The relation between areas and perimeters exhibits two dis-
tinct regimes with a quite sharp crossover between them.
During the coarsening process, a characteristic scale
R(1)~(N\,)"® develops such that domains with area
A>R(f) have the same exponent as in the initial condition
(structures that are highly ramified with «’<=1) and do-
mains with A <R*(f) become regular (a’~=2). Interest-
ingly, the small structures in the nonconserved order-
parameter dynamics are not completely circular, as
demonstrated by the fact that their &’ <=1.8 (see Fig. 6).

In analogy with the derivation in Sec. II for the time-
dependent number density of domain areas, the time-
dependent number density of domain-wall lengths n,(p,?) is
given by

PHYSICAL REVIEW E 80, 031121 (2009)

non-conserved * / P
4 conserved -~ e
/

/-\/1212

10° 10° 102 10° 10* 10°
p/t1/z

FIG. 6. (Color online) The time-dependent relation between the
area and the domain boundary evolving at 7=1.0 after a quench
from T)— % using conserved and nonconserved order-parameter
dynamics. The lines are fits to the data points. For the large struc-
tures, the fit yields o'~ =1 in both cases, while for the small struc-
tures it yields @'~ =2 for conserved order-parameter dynamics (cir-
cular domains) and @'~ =1.8 for nonconserved order-parameter
dynamics. Here z=2 and 3 for nonconserved and conserved dynam-
ics, respectively.

[(Ga))-2]2
r<< <<

(3ac,1<>/2 @27 +1)/3
r<y32| P
|:1 ) ()\df)m

(18)

for small areas, A/(\,£)?>< 10, and the same expression
with 7~ and = replaced by 7,” and @, for large areas
A/(\)?*>10. Note that these expressions satisfy scaling.
The scaling function f_(x), with x=p/(\,)"3, reaches a
maximum at

(Nat)ng(p,t) ~

( 3a(’1< -2
KXmax = ! ! !
2 ) e (P - D)+ 1]

2/(3a)7)
) (19)

and then falls off to zero as another power law. There is then
a maximum at a finite and positive value of p as long as
@)~ >1, that is to say, in the regime of not too large areas.
The numeric evaluation of the right-hand side yields
Xnar=Pmax! (Ngt)>~ 3, which is in the range of validity of
the scaling function f_. The time-dependent perimeter num-
ber density for long perimeters falls off as a power law

f~(x) ~xes (1=7)-1, Although the function f. also has a
maximum, this one falls out of its range of validity. The
power law describing the tail of the number density of long
perimeters is the same as the one characterizing the initial
distribution.

In Fig. 7 (top and bottom), we display the time-dependent
perimeter number densities for a system evolving at 7=1.0
after a quench from 7)— cc. Notice that the perimeter length
definition that we use on the lattice can only take even values
and, thus, when constructing the histogram we have to take
into account the extra factor of 2 in the binning. The data are
in remarkably good agreement with the analytic prediction;
the lines represent the theoretical functional forms for long
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FIG. 7. (Color online) The time-dependent number density of perimeters evolving at 7=1.0 from an initial condition at Tj)— o°. Left
panel: raw data; note that the time dependence is visible in the whole range of values of p (while in the area number densities, the large area
tails were very weakly dependent on time). Right panel: scaled data and analytic predictions for the small and large area regimes.

and short lengths and describe very well the two limiting
wings of the number density. The maximum is located at a
value that is in agreement with Eq. (19).

V. CONCLUSIONS

In this paper, we studied the statistics and geometry of
hull-enclosed and domain areas and interfaces during spin-
odal decomposition in two dimensions.

The analytical part of our work is an extension of what we
presented in [23] for the nonconserved order-parameter case.
The numerical part of it deals with Monte Carlo simulations
of the 2DIM with locally conserved magnetization. Our main
results are:

(i) We derived the scaling functions of the number density
of domain areas and perimeters with an approximate analytic
argument. The expression that we obtained has two distinct
limiting regimes. For areas that are much smaller than the
characteristic area R*(¢), the Lifshitz-Slyozov-Wagner behav-
ior is recovered after a quench from 7)— % and evolving at
sufficiently low 7. These structures are compact with smooth
boundaries, close to circular, since the area-perimeter rela-
tion is A ~ p?.

(ii) At higher T, the small area behavior departs from the
Lifshitz-Slyozov-Wagner prediction. As for nonconserved
order-parameter dynamics, once we subtracted the contribu-
tion from thermal domains within the growing structures, the
universal prediction is recovered.

(iii) For critical Ising initial conditions, large structures
keep the geometry they had initially, but small structures fail
to follow our prediction. We conjecture that the reason is that
our starting assumption, independence of domain-wall mo-
tion for small domains, is not valid due to strong correlations
in this case.

(iv) The geometrical properties and distribution of the
time-dependent areas that are larger than R*(¢) are the ones
of critical continuous percolation (for all initial conditions
equilibrated at T,>T7,) and critical Ising (for Ty=T,). The
long interfaces retain the fractal geometry imposed by the
equilibrium initial condition.

These results complement the ones that we presented in
[23-25]. Tt would be interesting to experimentally check
these results, as was done for nonconserved dynamics in

[31]. It is important to summarize the picture that emerges
from all these studies.

Large structures, with an area larger than the typical one
A>R?, keep the geometry they had initially in all respects.
The scaling functions are thus independent of the
dynamics—conserved or nonconserved—and the presence or
not of weak disorder.

Small structures do not keep the initial geometry but be-
come more circular in all cases. For a clean system with
conserved order parameter, domains are indeed circular,
while for nonconserved order parameter they become close
to circular. The scaling function of their distribution depends
on the type of dynamics considered, but it does not depend
on the presence of weak disorder once scaling by the perti-
nent growth law has been taken into account. In Fig. 8 we
illustrate this statement by comparing the number densities
of domain areas, on one hand, in the random-bond Ising
model (RBIM) with nonconserved order parameter (red data
points) and the analytic result for nonconserved order-
parameter dynamics and, on the other hand, in the clean and
disordered conserved order-parameter dynamics.

Once the superscaling of the number density with respect
to weak-quenched randomness is established numerically, we
can infer what it implies for the time evolution of the indi-
vidual small structures under the assumption of indepen-
dence discussed in the text. Indeed, starting from Eq. (7) one

0.1

0.01

f(x)

0.001 ¢

pure or disord. Model A ———
pure Model B ———

0.0001
0.01 0.1 1 10

X

FIG. 8. (Color online) Comparison between the number density
of domain areas in the clean and disordered 2D Ising model with
nonconserved dynamics and conserved dynamics in a zoom over
the small area regime. The data points are the result of the numeri-
cal simulations, while the straight lines are the analytic predictions.
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can derive Eq. (13) if one assumes that each time-dependent
area is linked to the initial value by

AP(1) = A7~ R(1), (20)

where z=2 for systems in the universality class of model A
(e.g., the nonconserved order-parameter dynamics of the
RBIM), and z=3 for systems in the universality class of
model B (e.g., the Kawasaki dynamics). Note that inside

PHYSICAL REVIEW E 80, 031121 (2009)

each universality class, the growth laws R(7) can be very
different.
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