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We study the evolution of cooperation in evolutionary spatial games when the payoff correlates with the
increasing age of players (the level of correlation is set through a single parameter, α). The demographic
heterogeneous age distribution, directly affecting the outcome of the game, is thus shown to be responsible for
enhancing the cooperative behavior in the population. In particular, moderate values of α allow cooperators not
only to survive but to outcompete defectors, even when the temptation to defect is large and the ageless, standard
α = 0 model does not sustain cooperation. The interplay between age structure and noise is also considered, and
we obtain the conditions for optimal levels of cooperation.
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I. INTRODUCTION

The emergence and maintenance of cooperation among
self-interested individuals is a challenging problem and an ex-
ample of a social dilemma in which individual, local interests
are inconsistent with collective, global benefits. Studied within
the interdisciplinary field of evolutionary game theory [1],
this puzzle benefits from techniques borrowed from biology,
sociology, economy, computer sciences, and even physics
[1–6]. A simple, paradigmatic model to study the problem of
cooperation is the prisoner’s dilemma (PD) game, which has
attracted much attention, both theoretical and experimental
[7–12]. In its basic version, two players simultaneously have
the choice between cooperation and defection. If both coop-
erate (defect) they receive the reward R (the punishment P ).
If, however, one player chooses cooperation while the other
defects, the latter gets the temptation T and the former is
left with the sucker’s payoff S. These payoffs satisfy the
ranking T > R > P > S and 2R > T + S; thus, defection
optimizes the individual payoff, in spite of the fact that mutual
cooperation could yield a higher collective benefit. On the
other hand, when T > R > S > P , the so called snowdrift
(SD) game, it is worth it to cooperate, whatever the opponent
does, and thus the number of cooperator-defector pairs
increases. To overcome this dilemma and avoid exploitation
by defectors, several mechanisms have been proposed, among
them, network reciprocity in the presence of persistent spatial
correlations [13–17].

After the seminal ideas of Axelrod [2] and Nowak and
May [13], the role of spatial structure, and its various
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underlying promoting mechanisms, in evolutionary games
have been intensively explored. Among the many identified
conditions [5] under which cooperation can be sustained or
enhanced, we have the presence of mobile agents [18–22];
heterogeneous activity [23–25] or social diversity [26,27];
complex networks [28–34]. Furthermore, the facilitation effect
of reward mechanism [35], partner selection [36], environment
influence [37,38], and differences in evolutionary time scales
[39,40] have also been identified as boosting mechanisms for
cooperation. Other traits may adaptively co-evolve along with
the strategy distribution of the population, as the network
topology or the evolution rule, which can further enhance co-
operation [41–47]. In Ref. [48], the strategy transfer capability
was allowed to evolve from a nonpreferential setup, attaining
an optimal state that maximizes cooperation. Allowing both the
spatial topology and the strategy updating to co-evolve [49,50],
cooperation is also largely enhanced.

Perc and Szolnoki [26] introduced a modification on the
raw payoff through a random, fixed rescaling factor to take
into account extrinsic factors to each agent, finding that some
distributions (e.g., power-law) of such factors may greatly
promote cooperation. Such a variability may be related to the
age structure of a population, affecting individual capabilities
when accessing risks, competing, socializing, or generating
offspring. Particular examples are reputations or natural and
social skills that, on average, increase along lifetime and are
reflected on individual fitnesses. In addition, age correlates
with body size, which is a dominant factor when an individual
tries to impose strategy supremacy during a game.

Although it is undisputable that the age structure is a
relevant ingredient when modelling a population, there are,
however, several ways in which it may be introduced. On a
mean field level, Leslie-type models have been of widespread
use, since their introduction in the ’40s [51,52], to describe
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well-mixed populations with a (discrete) age structure. Since
well-mixed populations of pure strategy (either always or never
cooperating) agents are dominated by defectors, the general
question of whether cooperation is promoted when age is also
taken into account is studied in the context of spatial games,
in which strong spatial correlations are relevant. Szolnoki
et al. [53] introduced an age-dependent rescaling factor in the
strategy transfer capability of agents, showing that cooperators
may thrive even when the temptation to defect is large. One
important question is how robust and universal are the effects
of the age structure on the well-studied spatial version of
the PD and SD games. Thus, we consider here a different
mechanism, by modulating the raw payoff being accumulated
during combats by an age-dependent factor. How strong age
influences the outcome of a game depends on the modulation
parameter α, defined below, and the aim is to study how this
mechanism affects the evolution of cooperation. We show, by
means of Monte Carlo simulations, that this mechanism can
significantly promote cooperation and that intermediate values
of α can give optimal levels of cooperation. We explore and
interpret this facilitation mechanism and, moreover, examine
the impact of different levels of uncertainty by strategy
adoption and the possible impact of interaction topology
on cooperation. The next section details the model and the
implementation of the dynamics. Then, we present our main
results and, in the last section, summarize and discuss them.

II. THE MODEL

We consider a standard parametrization of the PD game
with: temptation to defect T > 1, reward for mutual coop-
eration R = 1, punishment for mutual defection P = 0, and
sucker’s payoff S (while S > 0 is the SD game and S < 0 is
for PD, the interface, at S = 0, is called the weak version
of the PD game). Each player can be either a cooperator
(C) or a defector (D), and the initial state is created with
equal fractions of each strategy. The contact network is the
regular, L2 square lattice with nearest-neighbor interactions
and periodic boundary conditions; although, for the sake of
comparison, we also considered the random regular graph
with z = 4 neighbors per site. Age is included in the model as
follows: to each player, at the beginning, is assigned a random
integer age Ai ∈ {0,1, . . . ,Amax}, where Amax is the maximum
possible age. At each Monte Carlo step (MCS), defined as the
amount of time in which, on average, each player is updated
once, all ages are increased by one. The updating procedure
comprises the following elementary steps. First, a randomly
chosen agent plays against all its nearest neighbors, earning
the raw payoff pi . Then, this payoff is rescaled through an
age-dependent function:

�i = pi

(
Ai

Amax

)α

, (1)

where the parameter α determines the level of heterogeneity
in the system, that is, how much the heterogeneous age
distribution influences the outcome of the game. Then, one
of its four neighbors is selected at random and has its rescaled
payoff �j evaluated in the same way. At last, player i

adopts the strategy σj from the selected player j with the

probability

W (σj → σi) = 1

1 + exp[(�i − �j )/K]
, (2)

where 1/K is a measure of noise [54,55]. After, and only
after, one player reaches the maximum age Amax, its age is
reset to 0, mimicking a birth-death process. When α = 0,
one recovers the standard PD game [5], in which age has
no effect whatsoever and no payoff rescaling is performed.
With finite values of α, however, Eq. (1) introduces an
obvious demographic heterogeneity into the system during
the evaluation process of individual payoffs. When the value
of α is large enough, the heterogeneous state will weaken
again, because the payoff differences among the majority of
players will become very tiny. Notice that, differently from
Ref. [53], here the situation is more symmetric since both
players influence the transition probabilities through their
rescaled payoffs.

The results of Monte Carlo simulations presented below
were obtained for lattices with 1002 to 4002 individuals, and
the average fraction of cooperators ρC, that is, the number
of cooperators divided by L2, was determined within the last
104 out of the total 2 × 105 MCS. Moreover, the final results
were averaged over up to 40 independent runs for each set of
parameter values.

III. RESULTS

When taking the age structure of the population into
account, there is an optimal level of α that, along with the
heterogeneous age distribution, maximally enhances coop-
eration among the individuals. Figure 1 shows how ρC, the
asymptotic fraction of cooperators, depends on the temptation
to defect T for different values of α and S both on a square
lattice (top 3 rows) and on a random regular graph (bottom
row). For all values of S considered and the α = 0, standard
version without age factors, there is not a pure C phase and
cooperators go extinct at smaller values of T when compared
with α �= 0. For finite α, on the other hand, there is a qualitative
behavioral change. For moderate α (1 and 2 in the figure),
cooperators are not only able to survive over a larger interval
of T but may even reach near-complete dominance status
(ρC = 1). Nonetheless, on further increasing α (say, 20) the
level of cooperation decreases once again. Thus, moderate
values of α allow cooperators to better thrive, optimally
enhancing cooperation, a phenomenon that is analogous to
the so-called coherence resonance [56,57]. Notice also that
persistent neighbors (existing both in the square lattice and in
the random regular graph) are essential to sustain cooperation,
while in the absence of correlations between neighbors (as in a
well-mixed population), defectors dominate. This information
is summarized in the phase diagram shown in Fig. 2 (since
the overall behavior is rather similar, we herein focus on the
S = 0 case on a square lattice). The threshold value of T

(the above curve) marks the extinction of cooperators and
the transition between the coexisting (C+D) and the pure D
phases. Notice that the initial increase, from α = 0 toward the
maximum cooperation at α � 2.5 is fast but, in contrast, the
subsequent decrease after the maximum is much slower. There
is a second transition line, separating the coexistence phase,
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FIG. 1. (Color online) Asymptotic fraction of cooperators ρC as
a function of the temptation T for different values of α and S, with
K = 0.1 and Amax = 100. The topmost row, with S = 0, is the weak
PD game while the second and third row have S > 0, that is, the SD
game. Since for higher values of S it is better, against a defector,
to cooperate, the overall increase in cooperation is not a surprise.
Notice that for the original model, α = 0, cooperation vanishes for
not too large temptations and cooperators never fully occupy the
system, ρC < 1. For finite α and small values of T , cooperators fully
invade the system and there is an optimum α for which cooperation is
enhanced. Apart the crossing between some of the curves for S > 0,
the overall behavior is the same in all cases. The last row presents
results for the weak PD on a random regular graph (the previous
figures were for the square lattice). Cooperation is enhanced when
compared with the original α = 0 case as well, showing that persistent
neighbors (in contrast to well-mixed ones) is essential, while the small
loops present in the square lattice, but absent in the random graph, do
not qualitatively change the picture.

which is quite narrow, from the pure C phase, whose behavior
roughly follows the upper line.

Figure 3 shows the temporal evolution of the density of
cooperators, ρC(t), for several values of α and T = 1.125 in
order to help understand the role of spatial heterogeneities in
promoting cooperation. Unless cooperators are organized in
compact clusters, defectors will easily predate them. Indeed,
soon after the start, since the initial state is randomly chosen,
defectors are more successful and the number of cooperators
in the population decreases. This is a general feature of
the PD game in spatially structured environments. However,
different values of α will result in diverse trends at large
times. For the above parameters, the standard, α = 0 case,
does not form clusters strong and fast enough, leading to a fast
extinction of cooperators. Similarly, for large enough α (e.g.,
20), cooperators do not survive either, though it takes them a
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FIG. 2. (Color online) Phase diagram showing the critical thresh-
old (red box symbols) above which cooperators go extinct, along
with the pure C and coexisting phases. As α increases, there is at
first a fast increase both in the cooperators dominated phase and
in the coexistence one. After the optimal cooperation happening at
α � 2.5, further increasing α is detrimental for cooperation, although
the decrease is slow.

long time to die out. For intermediate values of α, surprisingly,
the initial downfall of cooperators is halted, allowing for the
subsequent fast spreading of cooperation to complete or near
complete dominance, as shown for α = 1 and 2. Moreover, the
sooner the initial decrease of cooperators is halted, the faster
the recovery of cooperation will be, leading to a larger value
of ρC. Thus, we argue that for moderate values of α, a recovery
mechanism is in course, halting and eventually reversing the
decrease of cooperation. Indeed, by measuring the persistence
P (t), that is, the fraction of sites that did not change strategy
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FIG. 3. (Color online) Time evolution of cooperation for different
values of α, T = 1.125, S = 0, and K = 0.1. Since the initial state
is random and cooperators are not yet organized in compact groups,
many of them are easy prey for defectors and there always is an
initial decrease on their number. For α = 0 and 20, cooperators do
not recover from the initial downfall, the curves are monotonously
decreasing and they get extinct. Inset: the fraction of agents that did
not change strategy up to the time t [the persistence P (t)]. Notice that
for α = 0 the decay is exponential while it does become stretched for
α �= 0. Moreover, for the cases presenting cooperation at long times
(α = 1 and 2), the persistence decays more slowly, showing that the
initially formed clusters are more resistent (the long lasting agents
are cooperators).
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FIG. 4. (Color online) Lattice snapshots for different values of α

on a 4002 square lattice, S = 0, T = 1.2, and K = 0.1, showing the
clusterized cooperators after 105 MCS.

up to time t , one notices that in those cases where cooperation
survives (α = 1 and 2), the decay of P (t) is much slower
when compared to the α = 0 and 20 cases, in which the decay
is almost exponential. In particular, the long time tail of P (t)
corresponds to enduring cooperators.

It is also instructive to analyze typical spatial configurations
of cooperators and defectors for different values of α, as
shown in Fig. 4 for T = 1.2 and K = 0.1. Notice that for
these parameters, the original, α = 0 case does not sustain
cooperation and coexistence appears on a finite interval of α

(C+D phase) in which highly clustered cooperators survive
the exploitation by defectors [58]. The amount of cooperators
is correlated with the geometric properties of these clusters.
Indeed, it can be noticed that the average cluster size increases
with α, Fig. 5, and the maximum level of cooperation
corresponds to the maximum average size (since clusters
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FIG. 5. (Color online) Stationary average size of cooperators
clusters for a 4002 lattice with T = 1.2, S = 0, and K = 0.1. Inset:
corresponding number of cooperators clusters, NC.

merge as they grow, the number of cooperators clusters has
its maximum at a smaller value of α, as shown in the inset
of Fig. 5). Notice that these average properties of clusters
are stationary, albeit individual clusters keep evolving. For
the chosen value of T , the system does not attain complete
cooperation (see the phase diagram in Fig. 2), but for a slightly
smaller T , the pure C phase would be crossed. In this case,
since cooperation dominates, a single cluster survives. It has
been shown [25,30] that heterogeneity favors the spreading
of cooperation which, to some extent, explains the promotion
effect observed here. According to Eq. (1), large enough values
of α will lead to a heterogeneous distribution within the system
but also reduce the heterogeneous state compared with that of
smaller α, since payoff difference among majority of players
will become very tiny. Hereby, these patterns suggest that
heterogeneity is significant but not sufficient to explain the
promotion phenomenon for moderate α.

An important remaining question concerns how robust the
above effects are in the presence of noise in the process of
strategy adoption Eq. (2). Figure 6 shows the K − T phase
diagrams for α = 0, 2, and 20 (from top to bottom). The
original, α = 0 case [56], in addition to the monotonous
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FIG. 6. (Color online) Full K − T phase diagram for α = 0, 2,
and 20 and S = 0. Green circles and red boxes mark the border
between pure C and D phases and the mixed C+D phase, respectively.
For α = 0 (top panel) [56], the presence of some uncertainty in the
strategy dynamics (K > 0) leads to an optimal level of cooperation
(the upper curve has a maximum at K � 0.3). For small α (middle
panel), the optimal noise threshold shifts toward zero but, when
compared with the α = 0 case, is larger for all values of K . Upon
further increasing α, as shown in the bottom panel, the system
becomes once again more noise tolerant. However, there is a huge
difference between all these cases: the pure C phase is greatly
enhanced at the expense of the coexistence region whenever α �= 0.
Indeed, only for α = 0 the C+D regions is prominent. Moreover, the
large α case also presents an optimal value of T for the transition
between the pure and mixed phases (K � 0.25). Thus, by adjusting
the level of heterogeneity one can either increase the amount of
cooperation (small α) or the robustness to noise (large α).
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increasing border between the pure C and mixed (C+D)
phases, presents a maximum, around K � 0.3, in the line
separating the mixed and pure D phases. Thus, in this case, a
finite amount of noise increases the presence of cooperators
in the population. The introduction of age factors, through
α > 0, drastically changes this scenario. Whenever α > 0,
there is a large increase in the pure C phase, its border
now lying mostly in the T > 1 region for all values of
K (middle and bottom panels in Fig. 6). Notice that for
all cases presented, the monotonicity of the pure C phase
border strongly differ: for α = 0, 2, and 20, respectively, it is
ever increasing, ever decreasing, and nonmonotonous. Indeed,
the fully cooperative phase has its maximum for K � 1,
K → 0, and K � 0.3 for these values of α. However, even if
intermediate values of α have decreasing levels of cooperation
as the noise increases, it is not less noise tolerant than the
other reported values of α since cooperators are able to resist
in more severe conditions (larger temptation). For example,
compare the values of K around which α = 0 and 20 present its
maxima, K ∼ 0.25–0.3: the maximum value of T below which
cooperation exists is substantially larger for α = 2. It has
been conjectured that an optimal uncertainty for the evolution
of cooperation only occurs on interaction graphs lacking a
percolating cluster of overlapping triangles [5]. Therefore,
if the conjecture proves to be valid, the phase diagrams of
Fig. 6 seem to indicate that for moderate values of α, there
is a change in the effective interaction topology: previously
disconnected triplets (triangles are absent in the square lattice)
may now become effective triangles once their connections
are enhanced by α. A similar phenomenon has been observed
in public goods games [59] as well. It would be interesting to
further investigate the structure of such effective topology.

IV. CONCLUSION

We considered both the prisoner’s dilemma and the
snowdrift game, standard models for cooperation, in an age-
structured population in which the final payoff is directly
correlated to the age. Although the raw payoff obtained after
interacting with other agents depends only on the strategies
of both opponents, we consider here that the older the agent
is, the larger the fraction of the raw payoff that is actually
earned (the efficiency of an agent grows as it gets older
and more experienced). This discount parameter depends on

the parameter α through Eq. (1), which controls how the
heterogeneous distribution of ages (births are not synchro-
nized) throughout the population will be reflected on the payoff
distribution. The larger the α, the stronger the effects of age,
with the age-independent case being recovered for α = 0.
For moderate values of α, cooperation is either enhanced or
allowed in regions where the pure model is dominated by
defectors. Extensive simulations were performed in order to
determine how the behavior depends on α and on the noise K

and, moreover, to give a geometric interpretation for the results
based on the spatial distribution of cooperators. In particular,
the latter also improves the amount of cooperation even further
when compared to the optimal level for α = 0. Persistent
neighbors are necessary in order to have cooperation in this
model (the well-mixed, mean-field case does not support a
finite fraction of cooperators), although the presence of small
loops significantly increases the amount of cooperators (in
the square lattice, loops are small since the nearest neighbors
of a given site are connected through a common neighbor,
while in the random graph, loops are very large and thus
unimportant). The promotion of cooperation is also associated
with a recovery effect. Indeed, for intermediate values of α,
the initial time downfall of cooperators is hindered, helping
cooperators to form more robust clusters that are impervious
to defectors’ exploitation.

The above results help in building a comprehensive un-
derstanding of the role of age in a simple framework upon
which a co-evolutionary model can be built. Although we
take the simplest version here in which the lifespan Amax

and α are not traits, it is possible to have them co-evolving
with the strategies. Moreover, since age-related phenomena
are ubiquitous, it is an important ingredient to be included in
more realistic models of populations, in particular when other
cooperation mechanisms (e.g., kinship selection) are involved.
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