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Anomalous diffusion in the evolution of soccer championship scores:
Real data, mean-field analysis, and an agent-based model
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Statistics of soccer tournament scores based on the double round robin system of several countries are studied.
Exploring the dynamics of team scoring during tournament seasons from recent years we find evidences of
superdiffusion. A mean-field analysis results in a drift velocity equal to that of real data but in a different
diffusion coefficient. Along with the analysis of real data we present the results of simulations of soccer
tournaments obtained by an agent-based model which successfully describes the final scoring distribution
[da Silva et al., Comput. Phys. Commun. 184, 661 (2013)]. Such model yields random walks of scores over time
with the same anomalous diffusion as observed in real data.
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I. INTRODUCTION

Soccer, commonly known as football (outside the USA), is
a sport played between two teams of typically 11 players with
a spherical ball. The game, presently played in more than 200
countries according to FIFA, is the world’s most popular sport
whose beauty is appreciated even by scientists, physicians,
and economists [1]. Recently it has even been shown that the
performance of a country’s football team influences that of
its stock market [2], indicating the vast amounts of money
involved in the sport. Several aspects regarding soccer and
its associated businesses have been the subject of interest of
the scientific community. Indeed, some statistical descriptions
related to soccer appeared in the physics literature, using
concepts of complex networks [3] and generalized functions
[4]. However, they generally focus on goal distribution (see,
for example, Refs. [5-7]) but not on the evolving properties
during a tournament season, which is precisely our intention.
Without going into greater technical details we should mention
that apart from the passion, enthusiasm, and money which
revolve around this sport, the factors that may determine
which one of the two teams is the favorite in a game are
difficult to grasp. As in any other sport, even the undoubtedly
favorite may lose the game. It has been shown that computer
models such as developed in Ref. [8] outperform expert human
tipsters in predicting the outcome of a game; in fact, the latter
are easily beaten by using a simple strategy: betting on the
home team in every game guarantees a winning chance of
47% while tipsters are right only 42% of the time. On the
other hand, such computer models cannot guarantee riches [9].
Since a random component is always present, we wonder
whether the fluctuations in the scoring process during soccer
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tournaments can be captured by a model based on a few simple
assumptions.

Focusing on the simple aspects that govern the properties of
the temporal evolution of team scores during a tournament, at
the end of a game, a team can have one of three possible results:
win (if it scored more than its opponent), draw (if the score
is tied), or loss (if it scored less than its opponent), which
counts as 3, 1, or O points, respectively, in a typical double
round robin system (DRRS). Our goal in this contribution
is to check whether a previous model presented by some of
us [10] can statistically reproduce the drift and dispersion
of the accumulated points in DRRS soccer tournaments,
in which, during the course of a season, each team plays
every other team twice, the “home” and “away” games, and
no team is eliminated until the end of the season when
the team with the most tournament points is crowned the
champion.

As we are interested in the scoring process of teams during
championship seasons to infer about its diffusive properties,
we will denote by x;(¢) the number of points accumulated
by team i = 1,...,n at time ¢ in a tournament with n teams.
We start our analysis checking the behavior of the average
number of accumulated points, i.e., (x(¢)) = % Z?:] x;(t) in
round ¢, and the dispersion o (1) = 1/ (x(¢)?) — {x(1))2. The
championship score in soccer has an intrinsic monotonic
behavior, i.e., (x(t)) > (x(t — 1)), even in the extreme event
of a generalized draw. In order to check these quantities in
a wide number of cases, we use data for all the teams from
four international and recognized soccer leagues: Brazilian,
Spanish, French, and English. All these leagues have n = 20
teams playing according to the DRRS. As an example, in
Fig. 1 we show (x(¢)) and o(¢) as functions of ¢ (round),
calculated with data from the 2007-2008 season of the Spanish
tournament (La Liga); plots for other countries and seasons
are similar (not shown). In the left panel, we display the score
evolution of each team with continuous lines (color version:
gray); symbols correspond to their average, and the continuous
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FIG. 1. (Color online) (a) Continuous thin lines correspond to
the scores of the different teams in the Spanish tournament (season
2007-2008) throughout time (round). The points correspond to the
average of the scores, (x(¢)), with their respective error bars. The
bold continuous line (color version blue) corresponds to the linear fit
for (x(¢)). (b) Time evolution of the standard deviation o (¢) of the
same scores. The continuous red line corresponds to a fit of a power
function o (t) = Dt?. Inset: log-log plot for the time evolution of the
second moment (x2(2)).

bold line (color version: blue) is a linear fit of the average.
On the right panel we show the corresponding plots for the
dispersion.

What is the expected behavior for (x(¢))? In every round,
each team will score 0, 1, or 3 points; therefore the average
above will always increase by a value between 1 (if all games
in a round end in a draw) and 1.5 (no draws, so half of the
teams score 3 and the other half, 0). The fact that Ct gives a
good fit of (x(¢)) for all championships and seasons, as can
be seen in Table I, reveals that each championship could be
classified in terms of the “drift velocity” C; the larger it is,
the lower is the number of draws, and the more attractive is
the championship. In Fig. 1(b) the continuous line corresponds
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to the fit o(r) = ~/Dt? where D is tentatively ascribed to the
diffusion constant of the tournament. The log-log plot in the
inset of the same figure shows the power law behavior of
the second moment (x2(r)) o #£. The analysis of the second
moment and the related diffusive process allow one to infer
about the properties of the complex systems.

In order to know whether a team scores in the course
of a tournament can be represented by a diffusive process
(and of what type), we analyze the four international soccer
leagues performing linear fits in the log-log scale of o (¢) and
(x*(t)). We also analyze the behavior of the third moment of
scores expected to be as (x3(t)) = E*t”, where E* and y are
parameters to be compared among the different tournaments.
The results for coefficients and exponents are presented in
Table I, where we observe a reasonable agreement for the
coefficient C for the different tournaments and seasons, with
values ranging from 1.33 (France, 2010) to 1.4 (Spain, 2010).
According to our arguments above we could say that the
Spanish championship is more attractive than the other three.

The values obtained for D have a greater dispersion, ranging
from 0.79 to 1.96. In addition, the values of the exponent
0.54 < B < 0.82 suggest a case of superdiffusion, while we
observe a universal exponent 1.83 < & < 1.94 for the second
moment. Such diffusive behavior suggests that a mean field
model could be proposed, taking into account the simplest
aspects of soccer dynamics.

Therefore, with the previous analysis at hand, the paper is
organized as follows: in the next section we propose a mean-
field analysis for the scoring process of teams in soccer leagues.
In Sec. III we present some characteristics of the agent-based
model aim to describe the dynamics of soccer tournaments
based on DRRS. A comparison among the real data, mean-field
approximation, and agent-based model is presented in Sec. I'V.
Finally, we summarize our main conclusions in Sec. V.

TABLE 1. Propagation velocity C, diffusion coefficient D, coefficient E*, and exponents obtained from fits (x(¢)) = Ct, o(t) = Dt?,

(x2(1)) o t¥1, and (x3(¢)) = E*t” to data from real tournaments.

c 3

Coefficients D Exponents S

E* y
Brazil Spain France England Brazil Spain France England
2007 1.37(2) 1.38(2) 1.34(2) 1.36(2) 1.86(2) 1.93(1) 1.89(1) 1.90(1)
1.06(16) 1.21(8) 1.41(10) 0.88(9) 0.64(3) 0.68(1) 0.61(1) 0.82(2)
7.2(7) 6.0(3) 6.7(3) 6.7(5) 2.72(3) 2.80(2) 2.73(2) 2.81(2)
2008 1.38(2) 1.38(2) 1.34(2) 1.36(2) 1.90(1) 1.92(1) 1.86(1) 1.89(1)
1.14(8) 1.18(8) 1.44(10) 0.79(11) 0.63(2) 0.71(1) 0.66(1) 0.76(2)
6.1(4) 6.3(4) 7.6(4) 6.5(5) 2.7712) 2.80(2) 2.71(2) 2.78(3)
2009 1.37(2) 1.38(2) 1.38(2) 1.37(3) 1.94(1) 1.88(1) 1.87(1) 1.83(1)
1.16(8) 1.28(7) 1.36(9) 1.34(14) 0.59(1) 0.74(1) 0.68(1) 0.71(2)
5.3(2) 8.0(3) 7.7(4) 9.5(5) 2.80(2) 2.75(2) 2.73(2) 2.68(2)
2010 1.35(2) 1.40(2) 1.33(2) 1.35(2) 1.89(1) 1.92(1) 1.90(1) 1.91(1)
1.10(8) 0.98(8) 0.90(11) 0.86(9) 0.62(1) 0.78(1) 0.66(2) 0.68(2)
6.1(4) 6.4(3) 5.5(3) 5.6(3) 2.7512) 2.83(2) 2.77(2) 2.79(2)
2011 1.36(2) 1.37(2) 1.35(2) 1.38(2) 1.85(1) 1.90(1) 1.90(1) 1.92(1)
1.96(11) 1.27(7) 1.16(9) 1.25(7) 0.54(1) 0.71(1) 0.68(1) 0.74(1)
8.2(4) 6.8(3) 6.1(4) 7.0(2) 2.68(2) 2.78(2) 2.77(2) 2.80(1)
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II. MEAN-FIELD REGIME

Defining r as the mean draw probability, the win and loss
mean probabilities are p,, = p; = (1 —r)/2. Based on the
DRRS scores 3-1-0, and defining P,,(n) as the probability for
a team to have n points (position) at round m, and supposing
a Markovian process, we have

Ppy1(n) =rPy(n — 1)+ py Pu(n = 3) + prPu(n). (1)

In order to obtain a partial differential equation that de-
scribes the diffusive process in soccer, we can think that P, (n)
denotes the probability of movement of a particle that can
either stay still or move to the right in steps of one or three units.
Using the relation between draw, win, and loss probabilities
we obtain the following relation:

Puyi(n) — Pp(n) = —r [Pu(n) — Py(n — D] = (1 — 1)/
2[Pp(n) — Ppu(n —3)]. 2
The expression in the last term can be written as
P,(n) — P,(n —3) = A?P,(n) — A®P,(n — 1)
+3AP,(n—1), 3)

where AP, (n) = P, (n) — P,(n — 1) is the first finite dif-
ference and AP P,,(n) = AP,,(n) — AP,(n — 1) = P,,(n) +
P,(n —2) — 2P, (n — 1) is the second finite difference. Using
the definition of the third finite difference, A® P, (n) =
APP,.(n) — AP P,(n — 1) and its relation to the first finite
difference in the last term in the Eq. (2), and considering a
similar finite difference for the time variable, it is possible to
arrive at the related partial differential equation (PDE)
oP CE)P D82P E83P 4
s - Cax  ax ax3’ @
where P(x,t) denotes the probability of a particle (team)
having score (position) x at time (round) ¢,and C = r + 3(1 —
r)/2,D =31 —-r)/2and E = (1 —r)/2.
At this point we want to highlight the assumptions of the
mean-field approximation:

(1) Each team i = 1,2,...,n has an scoring rate (drift
coefficient), i.e., ¢;, which is not time dependent.

(2) The individual stochastic process of each team can
be fitted as x;(z) = c¢;t + n;, which can be thought of as a
particular realization of a unique stochastic process.

(3) The constants 7; are considered identically equal to 0.

These three assumptions will be tested and discussed below.
For that we perform statistical analysis for ¢; and »;. In order
to check our hypothesis, we perform a linear fit for each team
trajectory for the different championships. In Fig. 2 we show
the distribution of parameters ¢; and 7; obtained from linear
fits. In plot (a) we exhibit the histograms of ¢; values from two
different linear fits: (1) the regular fit and (2) by fixing n; = 0.
As can be observed, both histograms are very similar, which is
confirmed by a statistical comparison performed on them and
presented in the first two columns of Table II. No significant
differences among the samples drawn by the two different fits
(regular and origin fixed) were found at level of 0.05, so the
third assumption is well supported.

Normality was tested by means of Kolmogorov-Smirnov
(KS) and Shapiro-Wilk (SW) tests. No evidence of normality
was found at a 5% level coherent with the nonsymmetric
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FIG. 2. (Color online) (a) Distribution of slopes ¢; for the
individual linear fits made by fixing n = 0 and without fixing it
(regular fit). (b) Distribution of linear coefficients 7.

distribution in Fig. 2(a). Consistently the values of skewness
are similar and different from O for both samples. This is an
indicator that soccer scores do not behave as normal diffusion.

The mean-field approximation assumes no time dependence
of coefficients c;. Is such really the case? We know that each
team can have ¢; between O (no wins in a tournament) and
3 (wins all games). However, taking all teams together, the
average C can have values between 1 and 3/2. The first
one represents the very odd situation of a whole champi-
onship with all games tied. The second one corresponds
to the other extreme situation where no draw occurred.
For a particular round the average score is calculated by

TABLE II. The first four columns describe the results from
statistical tests for the slopes ¢; performing different linear fits:
(a) x;(t) = n; + cit, (b) x;(t) = ¢;t, (c) fit of first half of seasons,
and (d) fit of second part of the seasons. The last column corresponds
to the results for the linear coefficient 7 in the fit corresponding to the
first column.

Regular First  Second
Statistics fit n = half half n
Average 1.366 1.364  1.362 1.364  —0.036
Standard 0.389 0.388 0.446  0.384 2.96
deviation

N. test 5% (SW) No No No No Yes
N. test 5% (W) No No No No Yes
Skewness 0.61 0.63 0.52 0.64 0.11
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FIG. 3. (Color online) Cumulative histograms of ¢; values for all
tournaments (Brazil, Spain, France, and English) considering linear
fits obtained for the two different parts of tournaments: Part I: 19
initial rounds; Part II: 19 final rounds. Inset plot shows the regular
histogram of data.

(x) = pdraw + 3pwin = 3 —r)/2, which is exactly the con-
stant C. Its value is 4/3 when r = 1/3. For the analyzed
tournaments we observed r < 1/3, corresponding to 1.36 <
C < 1.37. Therefore, as a final tour de force for the time
independence of ¢;, we do the following: we split all the time
series in two halves and apply a linear fitting for all trajectories
for the first 19 rounds and the second 19 rounds. Then we make
the corresponding histograms for each set and compare them.

We can see an excellent agreement (visual) between the
cumulative histograms of the two analyzed periods as shown in
Fig. 3. Such agreement is numerically checked by statistics of
the third and fourth columns in Table II. We have similar values
of average, skewness, and the normality tests, which allows us
to conclude that the hypothesis of no time dependence of the
coefficients ¢; is very well founded. By performing a simple
hypothesis test we also find evidence that there is no difference
between the two periods analyzed since the averages 1.363(22)
and 1.365(19) corresponding to the two different time intervals
are identical at a level of 5%.

We mention in passing that the agent-based model [10]
implicitly considers a time dependence of parameters by means
of the score-dependent potential of each team.

In addition, in Fig. 2(b) we display a histogram of n;
obtained by the general linear fit. In this case we can observe
a distribution centered around 0. Actually 7; = —0.04 £ 0.14
and is normally distributed since for both methods (SW and
KS) the distribution of #; is normal at 5% level (such results
are shown in the last column in Table II). Therefore this is
another indicator that the »; are not relevant for a statistical
description of ¢;.

Here it is important to comment on generalizations of
Fokker-Planck equations, of which Eq. (4) is a case. The most
embracing generalization of Fokker-Planck equations is given
by the Kramers-Moyal expansion

—=> (—ai> DW(x,t)P(x,t) = LymP(x,1),  (5)
X
n=l1

where Ly is the Kramers-Moyal operator and the differential
operators act on the product D (x,t) P(x,t). It is required
by the Pawula theorem [11] that for the probability P(x,t) to
be positive at all times, the Kramers-Moyal expansion should
either retain an infinite number of terms or be truncated after
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the first or second term, resulting in a Fokker-Planck equation
with Gaussian noise [12]. However, expansions containing
more than the first two terms can be of use to approximate
the distribution functions, even though the probability must
then have negative values at least for sufficiently small times,
since these negative values may be very small [for our results
0(10712)]. Tt should be also noted that this is not a problem in
our case (as will be discussed later), since these small negative
values occur where the probability is negligibly small and
can be approximated by zero. In a similar case, reported by
Risken (see Ref. [11], p. 79), the Kramers-Moyal expansion
truncated at a proper n > 3 isin better agreement with the exact
distribution for a Poisson process than the distribution func-
tion following from the Kramers-Moyal expansion truncated
atn = 2.

We can obtain a solution of the previous PDE by
usmg the Fourier transform method. Defining P(k 1) =
f_oo P(x,t)e'* dx, if we multiply Eq. (4) by exp(ikx) and

integrate by parts supposing that P(4o00,t) = %(:too,t) =

PP (+oo,1) = P (£00,1) =0, we obtain LPk1)=
(1Ck - Dk* — lEk3)P(k 1), for which the solution
ii P(k t) = P(k 0)expl(ick — Dk* — i Ek)t], where

P(k,0) is the transform of the initial distribution, i.e.,
ffooo P(y,0)e’* dy. Taking the inverse Fourier transformation,
we get

1 [~ : o

P(x,t):—/ e“Ck*Dkz*'Ek})’dk/ e I P(y,0)dy.
2z —00 —00

(6)

All teams start with zero points, so P(y,0) = §(y); then,
since cos(Ck — Ek?) is an even function while sin(Ck — Ek?)
is an odd function of k, we obtain a closed form for the distri-
bution P(x,t) = 5= [* cos[—Ek*t + (Ct — x)kle~P¥" dk.
Since we obtain the general solution in the mean-field regime

P(x,t) = % /oo cos ((r — Dkt /2

o0

+{lr +3(0 = r)/21t —x}k)e 3R g (7)

but we are interested only in the solution for the integer values
x=0,12,...,6(n —1Dand?t =1,...,2(n — 1), considering
soccer tournaments based on the DRRS, the scoring distribu-
tion is discrete and is therefore more properly described by

P(x,1t)

Pse(x,1) = ———0
YD PG

®)

To obtain (x(1)),(x>(¢)), and o (¢) as functions of # to compare
with the corresponding quantities from the real data, we need
to numerically estimate the integral in Eq. (7) and the moments
of the distribution Pgisc(x,7), which we perform by means of
Simpson’s rule.

Having presented the mean-field approximation for the
dynamics of soccer tournaments, the next section will be
devoted to the agent-based model previously proposed in
Ref. [10], used here to explore the diffusive properties of DRRS
soccer tournaments.
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III. AGENT-BASED MODEL

We turn now to a simple model presented by some of
us [10], which has already reproduced some statistical results
that emerge in soccer, with the aim of getting a more accurate
statistical representation of the dynamics of soccer teams’
participation in a tournament. The model is as follows: n teams
are playing a DRRS tournament where, in the game between
teams i and j at round 7, the probability that i beats j is
given by

o

( (l)+¢(]))

where <p,(’), i =1,...,n is the ith team potential at round ¢.
In the most elaborated version of the model (which will be
used in this paper and is called prescription III in Ref. [10]),
the initial condition (p(()’) is equaled to the average number of
goals per game of the team classified in the ith position in
a previous real tournament. Here rdm’ )(t) is the probability
of draw between the two teams and is calculated based on
the respective goal scoring probabilities, modeled by Poisson
distributions whose parameters are their potentials (p(’) nd

(] ) . Accordingly, given their potentials, the draw probability
1s the probability that both teams score the same number of
goals (n; = n; = n), which is calculated by

PrG > j,t) = [1 - rdra]vs(t)] ©)

(@i)n - (n )
N " ol

n! n!

*((ﬂi')Jr(p,”)I (2 /w(l) (J)) (10)

where 1,(z) = (32)" Y pe o (32D /IKIT(w +k + 1)] is the
modified Bessel function of the first kind. In case of a
victory, the winning team has its potential incremented by
its own potential divided by the total number of rounds in
a tournament k = 2(n — 1), i.e., 9 — @ + @ /2(n — 1),
and the team gains three points; the defeated team has
its potential decremented by the equivalent quantity ¢/ —
oY) — ¢ /2(n — 1) and does not receive any points. In case
of a draw, both teams gain one point and the potentials
remain unchanged. In this way, we can write the average score
obtained by team A at round ¢, when playing against team B,

(A) and (pt(f)l s

Fdraw = Pr [(n, = nj)|(g0§l)s(pt(l))] —

given that at round (¢ — 1), their potentials were ¢,
respectively, as

(et o)) = 3[1 —exp (=912} — ¢/2))
4) (B ‘P(A)l
1o(2y 0,2 0, ’—)
( 1—19: )] ((p(A)1+(pt(B)l

+exp (—o — o) 2y ot 10%).
(1)

The above recurrence formula does not allow one to solve
the time evolution of scores x,(l) analytically, because the
model captures the non-Markovian features overseen by the
mean-field approach. In order to obtain the studied quantities,
namely, (x(1)), (x2(t)), (x3(¢)), and o (¢), we must resort to
numerical computation by means of Monte Carlo simulations.
In a previous publication [10], we showed that the statistics
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of accumulated final scores matches closely that of real
tournaments (Brazilian, Italian, and Spanish). Here we are
interested in whether the temporal evolution of scores in the
model also follows that of real tournaments. That will be
discussed in the next section.

IV. RESULTS

In Fig. 4, we illustrate the moments and standard deviations
of the Brazilian and English tournaments obtained by the
different proposed methods. The tournaments of the other
countries analyzed in this work present similar behavior.
Therefore they were omitted here for the sake of brevity.
We can observe that although the mean field presents a good
matching, the agent-based model (algorithm) follows the data
from real tournaments more closely. Table III displays results
of all coefficients and exponents for the real tournaments and
the two methods described above (mean field and model)
averaged over five seasons. The parameters ()., correspond
to averages among all years of the data previously estimated in
Table I. The parameters (*)u correspond to the ones obtained
from the model (algorithm), in which case we consider the
statistics of five sequential runs of our algorithm, seeded
with the season 2006-2007 average number of goals as the
initial condition. The parameters (x)ygr correspond to the
ones calculated with the discrete distribution Pgisc(x,?) given
in Eq. (8) (using data for the 2006-2007 season for the
mean draw probability r). Finally C; and Dy, are calcu-
lated directly from the expressions C; = (r + 3(1 —r)/2),
D, = 3(1 —r)/2 derived earlier.

The results are very conclusive: all methods result in similar
values for the coefficient C, indicating that it represents a
general and fundamental behavior of the DRRS studied. On
the other hand, the value of D is consistently overestimated
by the mean-field approximation, whereas our algorithm
predicts a value closer to the real estimates. Moreover and
more importantly, our non-Markovian model provides a better
approximation to the diffusive exponents, which characterize

i 0 Real <.X'3> 10 Rrea '
109 @ Algorithm 110 @ Algorlthm
- Mean Field " Mean Field
o 5}
1) S
g1 m . 18]l @ ]
; Brazil o English
10" ; ‘
round 10 1 round 10
10 ] )
Brazil 104 English
G c
D Real D Real
14 ® Algorithm | | ® Algorithm |
— Mean Field —— Mean Field
! round ° ! round '*

FIG. 4. (Color online) Moments and standard deviations of
Brazilian and English tournaments. We can observe that although
the mean field presents a good matching, the agent-based model
(algorithm) follows the data from real tournaments more closely.
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3(1—-r)/2

(r+3(1 —r)/2)and D,

TABLE III. Coefficients and exponents obtained from real data, simulations (algorithm), mean-field (MF) approximation, and expressions Cy
given in the text. The experimental ones for each country were obtained using its corresponding five seasons in the period 2007-2012. For the algorithm, five runs were simulated using as

input the mean number of goals of the 20 teams in the 2006-2007 season. The mean-field approximation had as input r calculated for the same season.

E MF

salg
1.962(7)

1.957(4)
1.919(6)
1.933(6)
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FIG. 5. (Color online) (a) Comparison of the time evolution of
(x?) via an exact mean field [solution of finite difference Eq. (1)]
and via solution of PDE [Egs. (7) and (8)]. The inset plot shows the
same results for the first moment (x). (b) This figure illustrates the
cumulative distribution function (CDF) of scores by using real data,
agent-based model (algorithm), and mean-field solution via finite
difference. The inset plot shows that CDF via PDE corroborates the
exact solution of the mean field via finite difference.

the kind of diffusive process. The mean-field approximation
predicts a diffusive exponent ﬂll\),[%E ~ (.54, very close to the
one expected for normal diffusion, 8 = 0.5, which is obtained
by directly solving the finite difference equation, Eq. (1), with
a precision of O(10~1%). On the other hand, discarding the first
10 rounds, we obtain from the solution of the PDE [Eq. (4)],

I]\)/H:E = 0.5008 with a precision of O(10~*), which shows
that the mean-field regime yields a diffusive process different
from real data and the non-Markovian model. Anyway, the
mean-field regime yields an excellent estimate of C, and
reasonable estimates of D and &, capturing the essence of
real championships. Figure 5(a) compares the time evolutions
of (x?) and (x)(plotted in the inset) as functions of # obtained
from the solutions of the the exact finite difference equation
and from the solution of the PDE, Eq. (4), by fixing r = 0.2552
(extracted from the Brazilian championship).

In Fig. 5(b) we illustrate a comparison among three
cumulative distributions of scores in the 38th round: (1)
from real data from the same five seasons of the Brazilian
tournament previously used in this paper, (2) from the exact
mean-field difference equation, and (3) from five generated
seasons obtained from the non-Markovian algorithm. The inset
plot illustrates the comparison between the two mean-field
solutions (via PDE and via finite difference). The reader
can observe that numerical solution of the related PDE
corroborates the solution of the finite difference equation,
showing that it is an acceptable approximation for our purpose.
However, the real data suggest a case of superdiffusion, a
feature which is captured by our non-Markovian model with
a smaller percentage error. Moreover, such behavior seems to
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FIG. 6. (Color online) Behavior of exponent 8 as a function of
the number of discarded rounds (%) obtained from real data and by
agent-based model (algorithm). In this case the fit is performed for
the subsequent 2n — 1 — #g4i5p Tounds.

persist even when the exponent is calculated discarding the
first rounds (large times). In Fig. 6 we can clearly observe that
superdiffusivity is robust even when we use the 2n — 1 — t4;p
points to perform the linear fit in order to estimate 8 in In o (¢)
versus Inz. All of our estimates calculated from real data
or from non-Markovian modeling predictions indicate that
B > 0.5 independently from 1y, first steps discarded, with
a small tendency of growing as 4, grows. Recently Ribeiro
etal. [13] explored results from cricket, obtaining time series of
up to 200 steps, in which they found exponents 8 = 0.65, a fig-
ure close to the one obtained in this work for soccer time series.

Here itis important to briefly return to a discussion about the
Pawula theorem [11]. First, we observe the effects predicted
by this theorem in the solution of the PDE in the mean-field
regime. For example, we find P(x = 1,t =38) = —3.7 x
107'2 in a point where a very small probability is expected.
Rounding this value to zero introduces a negligible error. For
the subsequent probability [P(x = 2, = 38) = 8.4 x 10712
and all others (x > 2) we find positive values that closely
match the distribution expected from the solution of the finite
difference equation [Fig. 5(b)].

Finally, we explore the effect of coefficient E in Eq. (4).
Is this coefficient necessary for the mean-field description?
To answer this we present the distribution of scores obtained
by the mean-field approximations with and without the third
derivative term. Besides we compare both approaches with real
data and agent-based model results. For the sake of simplicity,
we choose one tournament, the French one and only two
rounds: eighth and 38th). The other tournaments and rounds
lead to the same conclusion.

Figure 7 shows the score distribution of the eighth round in
log scale and the 38th in linear scale to better appreciate the
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FIG. 7. (Color online) CDF in different rounds. A study of
importance of E for the mean-field approximation.

differences among the distributions. The importance of E in
the mean-field approximation is well evident; the mean-field
with the £ = 0 curve clearly departs from the others three
curves, which are close to each other, indicating that the third
derivative term in Eq. (4) has an important role in the diffusive
process.

V. CONCLUSIONS

Our agent-based model successfully mimics the anoma-
lous superdiffusive behavior (o ~ t#,8 > 1/2) of real soccer
tournaments, while the mean-field analysis gives a partial de-
scription of them. Indeed, our model reproduces the statistical
fluctuations in the time evolution of the scoring process of
teams in soccer tournaments, which is here synthesized by
two parameters related to the diffusion process: the drift speed
C and the diffusion coefficient D.
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