
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

INSTITUTO DE INFORMÁTICA 

CURSO DE ENGENHARIA DE COMPUTAÇÃO 

 

 

 

 

 

 

 

 

FELIPE VOGEL DALCIN 

 

 

 

 

 

A Deblocking Filter Architecture for High 

Efficiency Video Coding Standard (HEVC) 
 

 

 

 

 

 

 

Final report presented in partial fulfillment of 

the Requirements for the degree in Computer 

Engineering. 

 

 

Advisor: Prof. Dr. Sergio Bampi 

Co-advisor: MSc. Cláudio Machado Diniz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Porto Alegre 

2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

Reitor: Prof. Carlos Alexandre Netto 

Vice-Reitor: Prof. Rui Vicente Oppermann 

Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling 

Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb 

Coordenador do Curso de Engenharia de Computação: Prof. Marcelo Götz 

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Docendo discimus.” 

Seneca 



 

 

AKNOWLEDGEMENTS 

 

I would like to express my gratitude to my advisor, Prof. Dr. Sergio Bampi, who 

accepted me as lab assistant in 2010 to work for the research group under his 

supervision, bringing me the opportunity to stay in touch with a high-level academic 

environment. 

A very special thanks goes out to my co-advisor, MSc. Cláudio Machado Diniz, 

whose expertise, understanding, patience and unconditionall support were vital to the 

accomplishment of this work, specially taking into considerations the reduced amount 

of time he had to review this work. 

Last but not least, I would like to thank my parents and friends for their 

unconditional support throughout my degree. A special remark goes to my girlfriend, 

who kept me motivated during the last weeks of work to get this report done. 

In conclusion, I recognize that this research would not have been possible 

without the opportunities offered by both the Universidade Federal do Rio Grande do 

Sul, in Brazil, and the Technische Universität Kaiserslautern, in Germany. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

The new video compression standard High Efficiency Video Coding (HEVC) 

contains a variety of new encoding tools to provide higher compression rate compared 

to previous H.264/AVC standard. The higher compression rate achieved in HEVC 

results in an increase in computational complexity for video encoding and decoding. 

The need to encode and decode ultra-high definition video sequences under real-time 

constraints demands hardware architectures to accelerate execution time of certain 

HEVC tools, due to their high computational complexity and to the huge amount of data 

that needs to be processed. In this work we discuss the complexity of HEVC tools and 

we propose a hardware architecture for Deblocking Filter. We discuss in details the 

implementation of the hardware datapaths that implement the filtering conditions and 

the filtering operations, as well as the control unit of our architecure. 
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RESUMO 

 

O novo padrão de compressão de video HEVC (High Efficiency Video Coding) 

contém uma variedade de ferramentas de codificação que fornecem taxas de 

compressão mais altas em comparação com o antigo padrão H.264/AVC. As taxas de 

compressão mais altas atingidas pelo HEVC resultam em um aumento da complexidade 

computacional para codificar e decodificar vídeo. A necessidade de codificar e 

decodificar vídeos de definição ultra alta (UHD) atendendo a restições de aplicações 

tempo-real exigem que arquiteturas de hardware sejam desenvolvidas para acelerar o 

tempo de execução de algumas ferramentas do HEVC, devido a suas altas 

complexidades computacionais e ao grande volume de dados que necessita ser 

processado. Neste trabalho, nós discutimos algumas das ferramentas do HEVC e as 

complexidades de algumas delas, a fim de propor uma arquitetura para o filtro de 

deblocagem (Deblocking Filter). Nós discutimos em detalhes a implementação dos 

datapaths do hardware que implementam as condições e operações de filtragem, além 

da unidade de controle de nossa arquitetura.  
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1 INTRODUCTION 

 

The increasing number of multimedia devices capable of recording and 

reproducing video has stimulated the growth and dissemination of digital video. 

Consumers can find a wide variety of these devices in the market, such as tablets, 

smartphones, camcorders, high definition televisions, among others. The increasing 

popularity of digital video can also be noted due to the increase in internet traffic. 

Projections foresee that about 700 billion minutes of video will be downloaded in 2015 

(Bull, et al., 2011). 

 Since new coming devices are capable of capturing high resolution (HD) and 

ultra-high resolution (UHD) video in real time, huge amount of data is produced for 

video storage or transmission. Therefore, video compression plays an important role in 

order to reduce the required amount of video data to be stored or transmitted, whilst 

preserving high visual quality video.  

 Among the different existing video coding standards, the H.264/Advanced 

Video Coding (AVC) (ITU, 2003), which has been developed by the Joint Video Team 

(JVT), is the video coding standard currently used in the market. It has been released in 

2003 and produced double compression rate if compared to the previous dominant 

standard in the market, the MPEG-2 (ITU, 1994).  

 Even though the H.264/AVC represented an important breakthrough in video 

encoding, the demand for ultra-high resolution video requires even higher compression 

rates. To address this demand, the Joint Collaborative Team on Video Coding (JCT-

VC) was created in 2010 aiming to develop a new video encoding standard. High-

Efficiency Video Coding (HEVC/H.265) (ITU-T, 2013) achieves approximately 50% 

bit-rate reduction compared with H.264/AVC (Sullivan, 2012).  

 Such a compression improvement results in an increase of computational 

complexity, since each of the video coding tools are improved compared with 

H.264/AVC. Therefore, dealing with more complex data structures and the addition of a 

much more complex decision tree has to be considered when implementing this new 

standard. 
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 Hardware acceleration is often employed to address the high complexity of 

video coding tools when targeting ultra-high resolution video encoding in real time 

(Diniz, 2013) (Afonso, 2012). The objective of this work is to analyze the HEVC 

standard and propose a dedicated hardware architecture for a selected tool (the in-loop 

deblocking filter). In this work we analyzed and proved that the deblocking filter 

represents a computational hot spot in the software implementation of the HEVC 

standard, thus requiring dedicated hardware in order to meet throughput and power 

consumption constraints. 

This work is organized as follows. Chapter 2 reviews video coding concepts and gives 

an overview of the new HEVC standard. Chapter 3 shows a detailed overview about 

deblocking filter, the focus of this work. Chapter 4 introduces the proposed hardware 

architecture for deblocking filter. Chapter 5 shows results a comparisons with related 

work. Chapter 6 concludes this work. 
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2 VIDEO CODING CONCEPTS AND THE HEVC STANDARD 

 

2.1 Video capturing and representation 

 

Recording and transmitting digital uncompressed video require a huge amount 

of data storage capability and a very large bandwidth, which represents a wastage of 

resources and lead to increasing cost. 

 A digital video is a set of digital sequential pictures. Each picture is divided into 

blocks, constituted by pixels. The pixel is the smallest element of an image, and it is 

usually represented by samples in three different color components, i.e. red (R), green 

(G) and blue (B), when considering a RGB color space. For video compression purpose, 

video is often represented in YCbCr color space, in which Y is luminance component, 

Cb is the chrominance blue component and Cr is the chrominance red component (more 

details in Section 2.4). 

 In order to achieve the motion feeling, each picture has to be sequentially 

displayed at a determined picture-rate. The smoothness of video display strongly 

depends on the picture rate that is being used. Figure 2.1 shows the sequentially ordered 

pictures, as well as each block inside of a picture. 

Figure 2.1 - Picture sequence of a video and the division of a picture into blocks

 

Source: Porto, 2008 

Considering a 10-minutes raw video sequence with 1024x768 pixels resolution 

and 24 bits per pixel (8-bits for each component) recorded at a 30 pictures per second 
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rate, 19 GB would be needed for it to be stored. By using video compression 

techniques, such amount of data can be substantially reduced. 

 

2.2 Lossless and lossy compression 

 

Video compression is divided into 2 different categories: (i) lossless 

compression and (ii) lossy compression. The first technique achieves compression 

preserving the same video at the end of a compression/decompression process, i.e. the 

original video remains unmodified and can be recovered by decompressing the 

compressed video. On the other hand, lossy compression techniques consist on the 

elimination of some of the video data available in the input during the compression 

process. This technique eliminates part of data of video, in a way that the quality of 

video is satisfactory after decompression. Considering the huge amount of data that 

ultra-high resolution video applications require, lossy compression techniques are the 

most used ones in order to achieve low bit-rates. 

  

2.3 Redundancies in video 

 

Videos exhibit a lot of redundancy. In videos, data is considered redundant if it 

does not contribute with new information to the representation of the content (Agostini, 

2007). Video encoding techniques take advantage of three forms of redundancy: (i) 

spatial redundancy, (ii) temporal redundancy and (iii) entropic redundancy.  

 Spatial redundancy is the correlation of pixels within the same picture, i.e. pixels 

close to each other tend to be similar. It is also called intra-picture redundancy. This 

redundancy is higher with the increase in video resolution. Spatial redundancy exists 

both in spatial domain (among pixels) and in the frequency domain (among coefficients 

after transform). 

 Temporal redundancy exists in videos due to the high picture capturing rates. 

The regions within a picture do not considerably change when comparing to the next 

picture in the video sequence. The exploitation of this kind of redundancy is the one that 

achieves the highest compression rates in video coding standards. 
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 Unlike previous discussed kinds of redundancy, the entropic redundancy is not 

directly dependent on video content, but on the way video is represented in encoded 

form after prediction and transform. Symbols of the video coding representation and the 

probability of occurrence of each symbol are exploited by lossless compression 

techniques. 

 

2.4 Color Spaces 

  

The most common way of representing one pixel is with three different color 

components: red (R), green (G) and blue (B). This color space is called RGB. Each 

combination of intensity of these colors represents one color within the visible spectrum 

perceived by human eye. This mathematical system is widely used by a variety of 

multimedia devices. However, the high degree of data correlation between its 

components imposes a difficulty to video coding. 

 In order to provide better compression capacity by using a system with a minor 

degree of correlation among its components, the YCbCr system was conceived. Instead 

of having 3 components that represent the intensity of three main colors present in each 

pixel, the YCbCr system has one component to represent the luminance information (Y) 

and two components to represent the chrominance information: Cb for blue and Cr for 

red. This model suits better for representing pixel information when it comes to video 

compression, since it allows encoding algorithms to deal separately with most relevant 

information, the luminance in this case, which is more sensibly perceived by human 

eye. 

 Since the human eye needs less resolution on chrominance information 

(compared with luminance), video encoding process performs color sub-sampling in 

order to achieve data compression. This technique consists on the reduction of the 

sample rate of the chrominance information when compared to the luminance 

information. There are three basic profiles of color sub-sampling: (i) 4:4:4, (ii) 4:2:2 and 

(iii) 4:2:0. In the first profile, sub-sampling is not performed. At the second profile, for 

every 4 samples of luminance, there are 2 respective blue and red chrominance samples 

each. At the third profile, for every four samples of luminance information, there is only 

one sample of blue and one sample of red chrominance (see Figure 2.2). 
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Figure 2.2 - Three different downsampling profiles 

 

Source: Afonso, 2012 

 The sub-sampling is the first step in order to achieve high compression rates. It 

dramatically reduces the required information that has to be processed by the video 

encoders. The HEVC was primarily designed to be used with the third sub-sampling 

profile (4:2:0). The support for other profiles is going to be considered in future 

extensions of the standard. 

 Another important information is the number of bits used to represent each 

component of a pixel. The HEVC standard requires components to be represented by 8 

bits, thus enabling 2
8
 = 256 possible intensities for each color component. Sample 

representation with 10 bits are also supported by the standard (ITU-T, 2013). 

 

2.5 The HEVC standard  

 

The video coding layer of the HEVC employs essentially the same hybrid 

approach (inter- and intra-picture prediction and two-dimensional transform coding) 

used in all video compression standards since H.261. Figure 2.3 depicts the block 

diagram of a hybrid video encoder, which creates a bit stream that conforms to the 

HEVC standard.  
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Figure 2.3 - Block diagram of an HEVC encoder. 

 

Source: Sullivan, 2012 

 

2.5.1 Video coding layer 

 

Like its predecessor, the HEVC also has his codification units based on blocks. 

In the H.264/AVC standard, the basic structure is a macroblock, which is composed by 

one luminance block with size of 16x16 pixels and two chrominance blocks (8x8 pixels 

size), when considered the downsampling 4:2:0 profile. The HEVC standard has 

generalized the concept of the block to the coding unit (CU). The CU consists of a 

squared area of 8, 16, 32 or 64 pixels width. The largest coding unit (LCU) is the 

maximum size that a CU is allowed to have. This parameter is signalized in the 

bitstream by the encoder. Besides that, a CU can be recursively partitioned into smaller 

squared-form CUs. This partitioning style generates a quad-tree data structure, called 

Coding Tree Unit (CTU), as depicted in Figure 2.4. Each CU is composed by one 

luminance Coding Block (CB), and the corresponding two blue and red CBs. Whether 

to use inter-frame or intra-frame prediction to encode the CU is decided at this level. 
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Figure 2.4 - Subdivision of CTUs into CUs and PUs and its corresponding quadtree. Solid 

lines indicate CU boundaries and dashed lines indicate TU boundaries. 

 

Source: Sullivan, 2012 

 The basic unit of the prediction processes is called prediction unit (PU). It is 

obtained thorough the partitioning of a CU according to different possible formats. A 

PU can assume (i) symmetric formats and (ii) asymmetric formats. Symmetric formats 

can be square or rectangular. Squared PU formats are used both in inter-prediction and 

intra-prediction. Rectangular and asymmetric formats can be used only in inter-

prediction. Figure 2.5 illustrates the different formats that PUs can assume.  

Figure 2.5 - Modes for splitting a CU into PUs. 

 

Source: Sullivan, 2012 

 

2.5.2 High-level syntax 

 

Slice is a partition of a picture already used in H.264/AVC and is also used in 

HEVC. Slices contain a number of CUs that are processed in a raster scan order, as 

illustrated in Figure 2.6. One video picture is allowed to contain one or more slices. 
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Slices in each picture can be encoded and decoded independently. In H.264/AVC it was 

previously used to enable parallel processing.  

Figure 2.6 - Division of a picture into different slices 

 

Source: Sullivan, 2012 

 

A new data structure named tiles has been introduced in the HEVC standard to 

specifically target the use of parallel processing techniques. Tiles (as shown in Figure 6) 

are self-contained rectangular structures composed by a number of CUs that can be 

independently decoded.  

Figure 2.7 - Division of a picture into rectangular tiles 

 

Source: Sullivan, 2012 



20 

 

 

 

 

 

2.5.3 Intra-picture prediction 

As mentioned in section 2.3, the intra-picture prediction aims to exploit the 

spatial redundancy present at video data in order to achieve high compression rates. The 

HEVC standard introduces a directional prediction, as in H.264/AVC. It uses 

information of samples in the borders of previously encoded PUs in the neighborhood 

of the PU to be encoded. The goal is to reproduce a prediction following the directional 

borders found in the picture of the video. Unlike the 9 directional orientations in 

H.264/AVC, HEVC standard introduces 33 different directional prediction orientations, 

besides planar and DC modes, as depicted in Figure 2.8.  

Figure 2.8 - Modes and directional orientation for intra-picture prediction. 

 

Source: Sullivan, 2012 

 

2.5.4 Inter-picture prediction 

 

As mentioned section 2.3, the inter-picture prediction aims to explore temporal 

redundancy present at video data. In order to do so, it is divided in two different stages: 

(i) Motion Estimation (ME) and (ii) Motion Compensation (MC). The inter-picture 

prediction produces the most compression rates of video encoder, at the cost of huge 

computational complexity. 

 ME process is detailed in Figure 8. It predicts the current picture (to be encoded) 

by comparing it to previously encoded and reconstructed pictures, called reference 

pictures. It is performed for each PU inside a search area formed around the current PU 

to be encoded. The similar PU in the reference picture is used as prediction. The 

comparison to find the similar PU (a.k.a matching) is performed with the use of a 
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distortion metric, e.g. Sum of Absolute Differences (SAD). For the best matching, a 

Motion Vector (MV) is generated. Only the MV and the residue, i.e. the difference 

between the current PU and the reference PU, is transmitted in the bitstream. 

Figure 2.9 - Details of the ME searching process. 

 

Source: Porto, 2008 

 MC is performed in the decoder side to generate a reconstructed picture from the 

MV generated by ME. In order to do so, it accesses the reference pictures stored in the 

memory and fetches the PU pointed by the MV, thus reconstructing the picture. MC is 

also performed in the encoder side, to reconstruct a picture exactly equivalent to the one 

reconstructed in the decoder, to avoid mismatch between encoder and decoder. The 

current reconstructed picture can be used as a reference picture to encode other pictures. 

 

2.5.5 Transforms and Quantization 

 

The transforms module is responsible for transforming residue block to the 

frequency domain. In order to do so, it applies Direct Cosine Transformation (DCT) on 

the residue block. There are different sizes of possible residue blocks, called Transform 

Unit (TU) In HEVC: 4x4, 8x8, 16x16 and 32x32 (Sullivan, 2012). 

 After that application of the DCT, high frequency information is then discarded 

by the application of the quantization process. The quantization process is exactly the 

same as in H.264/AVC. It is parameterized by the Quantization Parameter (QP). QP has 

52 levels (from 0 to 51). Each of these levels is mapped to a quantization step (Qstep), 

and only the first six ones are explicitly defined by the HEVC according to Table 2.1. 

From the seventh on, it is calculated by taking the double of the current Qstep index 

minus 6. 
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Table 2.1 – Different QPs values and their respective Qstep values. 

 QP 0 1 2 3 4 5 6 ... 10 11 12 

Qstep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 .. 2 2.25 2.5 

Source: Agostini, 2007 

2.5.6 Entropy coding 

 

The HEVC standard supports only one entropy coding algorithm: Context 

Adaptive Binary arithmetic Coding (CABAC). It selects the probability models of each 

of the syntax elements, based on the context of each one. The core algorithm is the same 

as in H.264/AVC with reduced contexts and modified coefficient scanning (Sullivan, 

2012). 

 

2.5.7 In-Loop Filter 

 

After reconstruct the CU, the pictures are filtered by the In-Loop Filter, to 

reduce the blocking effects introduced by block partitioning and quantization. Two 

different filters are defined in HEVC: (i) the Deblocking Filter (DBF) and (ii) Sample 

Adaptive Offset (SAO). They are applied to reduce blocking artifacts that may appear 

after a picture is reconstructed, greatly compromising the visual quality of the video. 

 Unlike DBF, which is applied only on the samples in the edge of a block, SAO 

utilizes a predefined table in order to perform an adaptive offset. In doing so, SAO 

reduces the appearance of false borders, contributing to a general improvement of the 

visual video quality. The in-loop deblocking filter is the main focus of this worked. It 

will be explained in details in chapter 3, along with a proposed architecture in chapter 4. 

 

2.6 Discussion on computational complexity 

 

Through the use of a larger and more complex set of coding tools, when 

compared to its predecessor H.264/AVC, HEVC achieves higher coding efficiency at 

the cost of a significant increase in the computational complexity (Bossen, 2012). 

Therefore, real-time encoding and decoding for HEVC require hardware acceleration. 

 During the encoding process, 50%-70% of encoding time is spent in Rate-

Distortion Optimized Mode Decision for Integer-/Fractional-pel Motion Estimation and 

intra-picture prediction using a software-based encoder (Diniz, 2013). 
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 In the decoder side, motion compensation takes about half of the decoding time, 

followed by in-loop filters (DBF and SAO take about 20% of decoding time) and 

entropy decoding, which also takes around 20% of total decoding time (Bossen, 2012).  

 Therefore, there is a large set of tools which can be accelerated in order to 

improve both encoding and decoding processes. Despite Fractional-pel Motion 

Estimation acceleration (Diniz, 2013)(Afonso, 2012), other tools that consume 

significant portion in execution time are the in-loop filters (DBF and SAO), motion 

compensation (MC) and entropy decoding. In the next chapter, there is an entire section 

dedicated to discuss the importance of the deblocking filter in terms of computational 

complexity (section 3.3), based on results obtained from the profiling of the HM 

software reference code. 
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3 DEBLOCKING FILTER IN HEVC 

 

This chapter describes the in-loop deblocking filter of the HEVC standard, 

which has the goal to reduce the occurrence of visible blocking artifacts at block 

boundaries that leads to a lower subjective quality of video. To achieve this goal, the 

deblocking filter performs the detection of blocking artifacts at block boundaries and 

attenuates them by applying the selected filter. 

 The block artifacts appear due to the block-based transform coding. As 

mentioned in the chapter 2, the HEVC standard is based on a hybrid coding scheme 

using block-based prediction and transform coding.  In order to achieve lossy 

compression on video data, the input video signal is divided into rectangular blocks that 

are predicted from previously decoded data by either motion-compensated prediction or 

intra-prediction. The resulting prediction error, which is obtained by the difference 

between the original and the reconstructed frames, is further used as input to a transform 

operation (an integer approximation of the discrete cosine transform in HEVC). The 

transformed coefficients of the blocks are then quantized, resulting in data loss. Because 

the quantization process is applied in a block-by-block basis, neighboring blocks can 

quantize coefficients differently, leading to discontinuities at the block boundaries. 

Those discontinuities (called blocking artifacts) are more visible in flat areas of the 

image, where there is little detail to mask the loss of data generated by quantization 

process. Moreover, in a motion-compensated prediction process, predictions from 

adjacent blocks in a given frame does not necessarily come from adjacent blocks in the 

previously coded frames, which might lead to discontinuities at the block boundaries of 

the prediction signal. 

 Two approaches can be applied in order to reduce the appearance of blocking 

artifacts: (1) apply post-filtering to the video after it has been completely decoded, 

which is not standardized by HEVC, leaving to the designer some freedom to determine 

which algorithm to use, and (2) in-loop filtering, which is performed within the coding 

process and is part of the HEVC standard in order to avoid drifts between coding and 

decoding processes. 



25 

 

 

 

 

 

The deblocking filter in HEVC has been designed to improve the subjective 

quality while reducing the computational complexity, when compared to deblocking 

filter of the H.264 standard (Norkin, 2014). Even though, the in-loop deblocking filter is 

considered a computational hot spot, requiring dedicated hardware architectures, as we 

demonstrate in section 3.3. Furthermore, the HEVC the deblocking filter is more 

suitable for parallelization when compared its corresponding in H.264 standard, since it 

is designed in a way to prevent spatial dependencies across the picture. It facilitates 

easing the instantiation of multiple hardware accelerators to work simultaneously within 

the same frame. 

 

3.1 Filtering decisions 

 

3.1.1 Block boundaries for Deblocking 

 

The main difficulty while designing a deblocking filter is to decide whether the 

filtering process will be applied or not for a particular block boundary, as well as to 

decide the strength of the filtering to be applied. Two opposite cases can happen if the 

filtering decisions are not well designed. On one hand, excessive filtering may lead to 

an excessive smoothing of the picture details, implying in loss of data and reduction of 

the subjective quality. On the other hand, lack of filtering may lead to blocking artifacts 

that are easily identified by the human visual system, resulting in decrease of video 

subjective quality. This later problem is precisely the problem that the filter is designed 

to deal with. 

The filtering decision process in HEVC is presented in the next sections. It uses 

as input the reconstructed samples on both sides of the block boundary to be filtered and 

some additional parameters to predict if a blocking artifact was created by the encoding 

process (must be filtered), or it is present in the original image (must not be filtered). 
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Figure 3.1 – 1-D example of block boundary with blocking artifact. 

 

Source: Norkin (2012) 

 

To better explain the block boundaries, we show in Figure 3.2 an example of a 

picture partitioned into blocks of 8x8 samples. Each block boundary of four-sample 

length (as shown in Figure 3.3) must be tested against all the conditions and, if 

necessary, deblocking filter must be applied to them. Only boundaries on the 8x8 grid 

that are either prediction unit or transform unit boundaries are subjected to deblocking. 

Figure 3.2 also describes which block boundaries can be filtered independently. 

Figure 3.2 – Pictures samples and horizontal and vertical block boundaries on the 8x8 grid, and 

the non-overlapping blocks of the 8x8 samples, which can be filtered in parallel 

 

Source: Norkin (2012) 
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Figure 3.3 – Four-sample length block boundary, formed by two adjacent blocks P and Q. 

Deblocking decisions are based on the samples marked with the dashed line. 

p1,1 p0,1p3,1 p2,1 q1,1 q0,1q3,1 q2,1

p1,2 p0,2p3,2 p2,2 q1,2 q0,2q3,2 q2,2

p1,3 p0,3p3,3 p2,3 q1,3 q0,3q3,3 q2,3

P Q

p1,0 p0,0p3,0 p2,0 q1,0 q0,0q3,0 q2,0

 

 

Therefore, deblocking filter is applied to the samples on the boundary of the 8x8 

block if the following conditions are satisfied: (1) the block unit is a prediction unit or a 

transform unit boundary; (2) the boundary strength is greater than zero; and (3) 

variation of the signal on both sides of a block boundary is below a specified threshold. 

 

3.1.2 Boundary Strenght (Bs) and Edge level adaptativity 

 

The Boundary strength (Bs), which is a parameter calculated for boundaries that 

are either prediction units or transform unit boundaries, can assume 3 values: 0, 1 or 2, 

as described in the table 3.1.  

Table 3.1 – Definition of the Bs for the boundaries between two luma blocks. 

 Conditions Bs 

At least one of the blocks is Intra 2 

At least one of the blocks in non-zero coded residual coefficient and 

boundary is a transform boundary 
1 

Absolute differences between corresponding spatial motion vector 

components are greater than or equal to 1 in units of integer pixels 
1 

Motion-compensated prediction for the two blocks refers to different 

reference pictures or the numbers of motion vectors is different for 

two blocks 

1 

Otherwise 0 
Source: Norkin (2012) 

 

For luma components, only block boundaries with Bs equal to one or two are 

filtered. This implies that usually no filtering is applied in flat areas of the image. It 

helps to avoid multiple subsequent filtering in areas of the image where samples are 
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copied from one part to another with a residual equals to zero, which could lead to an 

unnecessary over-smoothing of the area. The deblocking filter is first applied to all sets 

of two 4x4 neighboring blocks that fall into the conditions explained in the next sections 

and share a vertical boundary. After all vertical block boundaries have been filtered, all 

blocks belonging to the frame sharing a horizontal boundary are then tested and filtered. 

 For chroma components, only block boundaries with Bs equal to 2 are subject of 

filtering operations. Therefore, only blocks boundaries containing at least one intra 

block are filtered. 

 

3.1.3 Local adaptivity and filtering decisions 

 

 When Bs is greater than zero, further conditions are checked in order to 

determine if the filtering operation is going to be applied to the block boundaries or not. 

Blocking artifacts are characterized by low spatial activity on both sides of the block 

boundary, whereas there is discontinuity at both sides of the block boundary, as shown 

in Figure 3.1. The equation 1 shows the condition used to determine this property. This 

condition is applied for each 4x4 block (see Figure 3.3) which conforms to the 

conditions mentioned in the section 3.1.1. 

|               |  |               |   

|               |  |               |      (1) 

The variable   in Equation 1 defines the threshold for the condition and depends 

on the quantization parameter QP that is used to adapt the quantization step for 

quantizing the prediction error coefficients. 

Equation 1 is responsible for evaluating how much the signal on both sides of 

the block boundary deviates from a straight line. The decision of HEVC to test samples 

of only the first and the last lines of the 4x4 block is to reduce the computational 

complexity. Deblocking filter can be applied to the 4x4 block inside the 8 x 8 grid in 

two directions: horizontally (as explained before) and vertically.  In order to test the 

vertical conditions, Figure 3.1 must be rotated 90° in the clockwise direction and rows 

and columns subscripts must be permutated. 
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For blocks with a corresponding Bs greater than zero and for which condition in 

Equation 1 holds, deblocking filter is applied. Further decisions must be considered in 

order to determine the filtering strength to be used to each 4x4 block according to the 

local signal characteristics. The HEVC standard defines two deblocking filter modes: 

normal and strength modes. Decisions to apply normal and strength filters are shown in 

section 3.1.2 and 3.1.3, respectively. 

 

3.1.4 Decisions between normal and strength filter 

 

The decision of which mode of the deblocking filter will be applied also depends 

on samples of the first and on the last row of the block boundary.  

Conditions in Equations 2 and 3 assure that there is low spatial activity on both 

sides of the block boundary for the first and last lines across the 4x4 block boundary, 

respectively. This decision is similar to condition in Equation 1, but using a lower 

threshold value. 

|               |  |               |   
 

 
    (2) 

|               |  |               |   
 

 
    (3) 

Conditions in Equations 4 and 5 check if the signal on both sides of the block 

boundary is flat for the first and the last lines across the 4x4 block boundary, 

respectively 

|         |  |         |  
 

 
    (4) 

|         |  |         |  
 

 
    (5) 

Conditions in Equations 6 and 7 check that the difference in intensities of 

samples on both sides of the block boundary does not exceed the threshold, which is a 

multiple of the clipping value        and depends on QP. 

|         |           (6) 

|         |           (7) 

The variable   is used to determine the threshold of the conditions shown in 

Equations 6 and 7. It depends on QP as defined in Table 3.4. If conditions in Equations 
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2, 3, 4, 5, 6 and 7 hold, deblocking filter with strength mode is applied to the given P 

and Q 4x4 blocks. Otherwise, deblocking filter with normal mode is applied.  

 

3.1.5 Deblocking decisions in normal filter mode 

 

Normal filtering has two modes of filtering applications, differing in the number 

of pixels that are modified in the 4x4 block. Whether to apply first mode or second 

mode of the normal mode of the deblocking filter depends on Equations 8 and 9. 

|               |  |               |   
 

  
     (8) 

|               |  |               |   
 

  
     (9) 

If condition in Equation 8 holds, pixels       and      for       in the 4x4 

block P are modified, i.e. the first two columns of samples that are closer to the block 

boundary in block P. Otherwise, only the column which are closer to the block 

boundary, represented by samples      for      , has its samples modified. 

Similarly for block Q, if condition in Equation 9 is true, pixels       and      for     

    are modified. Otherwise, only samples      for         are modified. 

The values of the thresholds used in Equations 8 and 9 are lower than the values 

of the threshold used in condition Equation 1, but greater than the threshold values used 

in Equations 4 and 5, assuring that a longer (stronger) filtering operation will be 

performed in the block boundaries with lower spatial activity on the sides of the 

boundaries. 

For normal filtering operation, filtering may be applied for each row of samples 

closer of the 4x4 block boundary, based on Equation 10. 

|    |                  (10) 

The value of the variable   is defined in the next section. It can be considered as 

the value of the offset that has to be added to each original sample in order to perform 

the filtering operation, resulting on the filtered sample. 

Therefore, when condition in Equation 10 holds for row    , for example, 

normal filtering operation will be applied to row    , whereas condition in Equation 
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10 does not hold for row     (both rows lie on the same 4x4 block),  row     will 

not have its samples value altered by the normal filter. 

 

3.2 Filtering operations 

 

 We have seen in the previous section the tests that each row from blocks P and 

Q must be tested against. Figure 3.4 summarizes all the tests. In this section, we will see 

how to calculate the offset values that will be added to the original sample values in 

order to generate the final filtered samples. 

Figure 3.4 – Decision diagram showing the tests that need to be evaluated and the possible 

filtering modes. 

PU or TU 
Boundary?

Bs > 0

Condition (1) 
true?

Condition (2), (3), (4), 
(5), (6) and (7) true?

No filtering required

Apply Strong Filter

Condition (10) true?

Condition (8)
true?

Apply Normal Filter
Modify p0 and p1

Apply Normal Filter
Modify p0

yes

yes

yes

yes

yes no

no

no

no

no

no

Condition (9)
true?

Apply Normal Filter
Modify q0 and q1

Apply Normal Filter
Modify q0

yes

yes no

yes (row from block P) yes (row from block Q)

 

 

3.2.1 Normal Filter 
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Whenever normal filtering operation has to be applied to a row of samples of a 

4x4 block, an offset value must be calculated, based on the values of the samples on 

both sides of the row (P and Q blocks). Then, if the required conditions for normal 

filtering presented in the previous section hold, this offset is added to the original 

sample value resulting in the value of the filtered sample. The filtered sample values  

    
  and     

  are calculated for each row line    across the block boundary,      , as 

shown in Equations 11 and 12. 

    
              (11) 

    
              (12) 

The value       is obtained by performing a clipping operation on     , which is 

calculated as described by Equation 13. 

      (         )   (         )        (13) 

The clipping operation is described in section 3.2.4. Additionally, if condition in 

Equation 8 holds,      should also have its value modified by the filtering operation 

shown in Equation 14. 

    
               (14) 

Analogously, if condition in Equation 9 holds,      should be modified as shown 

in Equation 15. 

    
               (15) 

Like before explained,       and        are also calculated by performing a 

clipping operation to       and       respectively. Those two values are calculated as 

shown in Equations 16 and 17. 

      (((           )   )           )      (16) 

      (((           )   )           )      (17) 

 

3.2.2 Strong Filter 
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The strong filtering mode affects 3 pixels of both sides of the  P and Q 4x4 

blocks:     ,       and      for block P and     ,       and      for block Q.  For each row of 

block P, the samples are modified as shown in Equations 18, 19 and 20. 

    
               (18) 

    
               (19) 

    
               (20) 

Analogously to block P, each line of block Q is modified as shown in Equations 

21, 22, and 23. 

    
               (21) 

    
               (22) 

    
               (23) 

The values       ,      , and       are obtained by clipping the values of       , 

      and       respectively. Those values can be calculated as described by the 

Equations 24, 25 and 26. 

      (                             )      (24) 

      (                      )      (25) 

      (                            )      (26) 

 

3.2.3 Chroma Filter 

 

As mentioned in section 3.1.1, chroma deblocking filter is only performed when 

Bs is equal to 2, and no further decisions need to be evaluated. Only the samples      

and      closer to the block boundary are modified, as described by the Equations 27 and 

28. 

    
              (27) 

    
              (28) 

The offset value      is obtained by clipping the value of     , which is calculated 

as shown in Equation 29. 

     (((         )   )             )      (29) 
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3.2.4 Clipping operation 

 

To prevent excessive blurriness, the result of the offsets that are calculated based 

on the samples of a given row of a 4x4 block are subject to a QP-dependent clipping 

operation, before the addition to the original sample value in order to compose the 

filtered sample. The clipping operation is described by Equation 30. 

                     (30) 

The parameter   of the clipping operation is adapted according to the type of the 

filter. The type of prediction used to reconstruct the block (inter or intra-prediction) also 

affects the clipping operation, as described in Table 3.2 and Table 3.3. 

 

 

Table 3.2 – Definition of the value   used as threshold for the clipping operation 

 Conditions   

Normal filtering       for           and          for           

Strong filtering        

Source: Norkin (2012) 

 

Table 3.3 – Definition of the value   used as input to determine the value of    

 Conditions   

Both blocks P and Q are inter-predicted        
One of the blocks P or Q are intra-predicted          

Source: Norkin (2012) 

 

The relation between the values of QP and    and   are defined in Table 3.4. 

 

Table 3.4 – Derivation of threshold variables    and   for each QP 

QP 0 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

  0 … 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 24 26 28 

   0 .. 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 

QP 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 

  30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 - - 

   3 4 4 4 5 5 6 6 7 8 9 40 11 13 14 16 18 20 22 24 

Source: HEVC recommendation (ITU-T, 2013) 
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3.3 Profiling on HEVC reference software 

 

In order to verify the contribution of deblocking filter in to the total execution 

time of HEVC encoder/decoder, we have profiled HEVC Test Model (HM) 10.0 

encoder and decoder software using GNU gprof (Fenlason, 2000). 

A total of 11 video sequences with different resolutions from the Common Test 

Conditions document (Bossen, 2012) have been analyzed. The sequences are shown in 

Table 3.5. We choose 5 video sequences from class B (1920x1080 pixels), 3 video 

sequences from class C (832x480 pixels) and 3 video sequences from class D (416x480 

pixels). Each video sequence was encoded and then decoded using 4 different QP values 

(22, 27, 32 and 37). We have analyzed more video sequences of higher resolutions 

because they are used more often in advanced video applications. 

Table 3.4 – Video sequences used for profiling 

 Class Sequence Resolution 

B 

Kimono 1920x1080 

ParkScene 1920x1080 

Cactus 1920x1080 

BQTerrace 1920x1080 

BasketballDrive 1920x1080 

C 

PartyScene 832x480 

BasketballDrill 832x480 

BQMall 832x480 

D 

BlowingBubbles 416x214 

BQSquare 416x214 

BasketballPass 416x214 

 

3.3.1 Conclusions regarding the profiling of HEVC decoder  

 

The results of the profiling of the HM decoder code using the class B, C and D 

video sequences are shown in Figures 3.4, 3.5 and 3.6 respectively. 
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Figure 3.4 – Results for the execution time of code related to deblocking filter operations of 

class B videos in the decoder 

 

 

Figure 3.5 – Results for the execution time of code related to deblocking filter operations of 

class C videos in the decoder 
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Figure 3.5 – Results for the execution time of code related to deblocking filter operations of 

class D videos in the decoder 

 

 

In a general way, higher resolutions result in more deblocking filter operations, 

because it implies that more boundaries need to be tested and, if necessary, filtered.  

There is also a correlation between the QP and the number of filtering operations. 

Higher QPs often result in more filtering operations, because the loss of information 

during the quantization process is higher. Hence, it results in more probable signal 

discontinuities across block boundaries. This is the reason why the threshold values    

and   depend on QP. 

The software operations regarding the deblocking filter in the HM reference 

code can reach up to 20% of execution time while decoding a video sequence for high 

resolutions (1920x1080). It is expected that it corresponds to similar rates in video 

sequences with higher resolutions, which are trending do be adopted by new consumer 

devices. Therefore, in order to improve throughput and reduce power consumption, 

dedicated hardware architectures for the HEVC deblocking filter must be considered 

while implementing a decoder that is compliant to the HEVC standard. 
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 The HM encoder reference software was also profiled using as inputs the video 

sequences from Table 3.4. The profiling results showed that deblocking filter operations 

can reach up to 4% of encoding time for some video sequences, which is a value far less 

significant if compared to the time spent in the decoding process. However, a HEVC 

compliant encoder also performs deblocking filter operations in the encoding loop, in 

order to remove blocking artifacts from reconstructed reference frames. Furthermore, it 

must be considered that the HEVC encoder has a set of more complex tools if compared 

to the decoder, while the entire encoding process demands far more computation time 

than the decoding process. Therefore, a dedicated hardware architecture for the 

deblocking filter can also be considered while designing a HEVC compliant encoder, in 

order to reduce the total time of the encoding process, achieving real-time requirements 

for encoding high-resolution video sequences. 
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4 DEBLOCKING FILTER HARDWARE ARCHITECHTURE 

 

 This chapter describes the proposed in-loop deblocking filter hardware 

architecture for the HEVC standard. Figure 4.1 illustrates the top-level architecture, 

along with its inputs and outputs. 

Figure 4.1 – Top-level diagram of the proposed HEVC Deblocking Filter hardware architecture 
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The proposed architecture receives as input 8-bit samples from 2 neighboring 

4x4 blocks, each one belonging to a different adjacent 8x8 block on the grid (see Figure 

3.2) that needs to be tested in order to decide: (1) if filtering is required and (2) the 

strength of the filtering to be applied if this is the case. If filtering is required, the 

filtered samples are provided in the output, along with some control signals to specify 

that valid output data is available. 

The organization of the data and the size of the channel that will handle the I/O 

communication of our architecture are explained in Figure 4.2. Along with the samples, 

the architecture requires some flags that are needed for filtering decision (mainly 

threshold values used in the equations of the conditions described in chapter 3), as well 

as some control signals to establish a handshake between the master (e.g. a CPU that 

runs the HEVC encoder/decoder application) and our architecture (which plays the 

slave role). 
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Figure 4.2 – Wave-form diagram representing the complete filtering cycle (2 clock cycles) of 

two 4x4 sample blocks that need to be filtered 
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The input channel through which the input data is transmitted is 256-bit wide. 

Therefore, 32 samples can be transmitted within one clock cycle, with the most 

significant byte containing the sample belonging to the first row of block P which lies 

furthest from the block boundary. The second most significant byte contains the second 

sample from the first row which lies furthest from the P block boundary and so on, 

following a raster scan order. The least significant byte contains the sample from the 

last line of block Q, which lies furthest from the block boundary. The organization of 

the data inside the I/O channel is detailed in Figure 4.2. 

 Since each row of the each 4x4 block contains 4 samples, and the first and last 

row lines of both 4x4 blocks are required in order to perform the filtering testing, we 

can transmit both row lines of both 4x4 adjacent blocks at the first clock cycle and have 
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all the required data to test the filtering decision (see the dashed lines of Figure 3.3).

  

Figure 4.3 – Wave-form diagram representing the complete filtering cycle testing (1 clock 

cycle) of three 4x4 sample blocks that do not need to be filtered 
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... XX XX XXXX ... ... XX XX XXXX ...

... p0,0 q3,0 q1,0p3,0

clock

data_in_valid

data_out_valid

data_in

data_out

... ... p0,3 q3,3 q1,3p3,3 ...

... XX XX XXXX ... ... XX XX XXXX ...

... XX XX XXXX ... ... XX XX XXXX ...

Legend

Samples from the first filtering cycle

Samples from the second filtering cycle

Samples from the third filtering cycle

 

After the first load cycle, the conditions datapaths will be able to decide whether 

filtering is required or not. If it is not the case, there is no necessity of transmitting the 

second and third row lines of the blocks P and Q, as they are only required for 

generating their respective filtered samples (see Figure 4.3). Therefore, at the next clock 

cycle, the architecture is ready to receive the first and last rows of further 4x4 blocks in 

order to compute the filtering testing conditions and the filtered samples. 

 

4.1 Hardware datapaths 

 

4.1.1 Decision datapaths 

 

In order to determine the necessity of filtering of two given 4x4 blocks, all 

condition equations of the previous chapter must be computed. The architecture of the 

hardware datapaths to do this task are explained in this sub-section. 
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4.1.1.1 Datapath for conditions 1, 2, 3, 8 and 9 

 

The datapath that implements conditions 1, 2, 3, 8 and 9 is shown in Figure 4.4. 

Since these five conditions have similar equations and same inputs (as described in 

chapter 3), we developed one single datapath that implements all of them. The condition 

equations require some multiplication by constants, which was implemented by shifting 

and adding the operand to its shifted value. 

Figure 4.4 – Block diagram of the datapath responsible for calculation conditions 1, 2, 3, 8 and 

9. 
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4.1.1.2 Datapath for conditions 4 and 5 

 

This datapath implements conditions 4 and 5 and  is detailed in Figure 4.5. There 

are two instances of this datapath in the architecture. One instance is responsible for the 

calculation of the first row of two adjacent 4x4 blocks, i. e. for condition 4. The other 
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instance is responsible for the calculation of the last row, resulting in condition 5. Both 

conditions are calculated in parallel, in the first clock cycle of a filtering cycle, since all 

the required samples in order to perform this task have already been transmitted to the 

architecture. 

Figure 4.5 – Block diagram of the datapath responsible for calculation conditions 4 and 5. 
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4.1.1.3 Datapath for conditions 6 and 7 

 

This datapath is responsible for implementing conditions 6 and 7. Like the 

previous datapath, this module is instantiated twice in the architecture. The first instance 

is responsible for the calculation of the first row of two adjacent 4x4 blocks, resulting in 

condition 6. The other instance is responsible for the calculation of the last row, 

resulting in condition 7. As the previous datapath, both conditions are computed in 

parallel by each instance of this datapath. 
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Figure 4.6 – Block diagram of the datapath responsible for calculation conditions 6 and 7. 
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4.1.1.4 Datapath for Condition 10  

 

This datapath implements condition 10. Like the previous two datapaths, two 

instances of this datapath are present in the architecture. However, unlike all previous 

conditions, all four rows have to be tested against condition 10 if normal filtered is 

required, i.e. conditions 2, 3, 4, 5, 6 and 7 are false. Therefore, at the first clock cycle of 

a filtering cycle, one instance of the datapath is responsible for checking the first row of 

samples of blocks P and Q, while the other instance is responsible for the last row of 

samples. At the second clock cycle, however, the first instance checks condition 10 

using as input the second row of samples and the other datapath the third one. This 

assures that all 4 rows of samples are tested against condition 10. 

Figure 4.7 – Block diagram of the datapath responsible for calculation condition 10. 
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4.1.2 Edge filter datapaths 

 

In order to calculate the filtered samples, an offset value must be generated 

according to the sample values belonging to both adjacent 4x4 blocks. After the offset 

value is calculated, it must be added to the original sample value in order to generate the 

final filtered sample. 

 

4.1.2.1 Normal Filter datapaths 

 

There are two instances of each of the datapaths shown in Figure 4.8, 4.9 and 

4.10 in the architecture. Each instance is responsible for calculation of one row of the 

4x4 block at a given clock cycle. The second subscripts have been omitted in the 

following diagrams, for they represent the row-line, which can be 0 or 3, at the first 

clock cycle of a filtering cycle, or 1 or 2, at the second clock cycle of a filtering cycle (if 

filtering is required). 

Figure 4.8 – Block diagram of the datapath responsible for calculation      
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Figure 4.9 – Block diagram of the datapath responsible for calculation       
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Figure 4.10 – Block diagram of the datapath responsible for calculation       
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The datapaths from Figure 4.9 and Figure 4.10 are responsible for generating the 

data that will be added if the strongest mode of normal filter mode is required for a 

given row. 

 

4.1.2.2 Strong Filter datapaths 

 

 The datapaths illustrated in Figures 4.11, 4.12 and 4.13 are responsible for 

generating the offset values when strong filter mode is required. Each datapath was 

instantiated twice in the architecture (each instantiation is responsible for one of the 

incoming row of the input blocks at each clock cycle). The second subscripts have been 

omitted in the following diagrams, for they represent the row-line, which can be 0 or 3, 
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at the first clock cycle of a filtering cycle, or 1 or 2, at the second clock cycle of a 

filtering cycle (if filtering is required). 

Figure 4.11 – Block diagram of the datapath responsible for calculation       
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Figure 4.12 – Block diagram of the datapath responsible for calculation      
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Figure 4.13 – Block diagram of the datapath responsible for calculation       
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4.3 Clipping 

 

To perform the clipping operation, the architecture includes a small memory 

block that receives as input a QP value and results as output the corresponding   and    

values, as specified in Table 3.4. The clipping threshold values must conform to the 

ones presented in Table 3.2, as it may assume different values depending on the 

decision between the normal filter or the strong filter. Moreover, the clipping value also 

depends of the prediction type of blocks P and Q, as specified in Table 3.3. 

 

4.4 Filtered sample generation 

 

After the conditions have been evaluated and the necessity of filtering and its 

corresponding mode is known for a given row, we must add the values generated by the 

filter datapaths to their corresponding original values. In order to decide that, we have a 

simple multiplexer for each output sample, as follows. 

Tables 4.1 and 4.2 defines the values of the filtered samples, which lie closer to the 

boundary between blocks P and Q and are always affected when filtering is required. In 

the tables below, ‘1’ stands for the logical concept of ‘true’, ‘0’ for ‘false’ and ‘x’ for 

‘don’t care’. 
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Table 4.1 – Definition of the filtered     
  sample final value, based on the evaluated 

conditions 

    
  value Condition 1 

Conditions 2, 3, 

4, 5, 6 and 7 
Condition 10 Description 

     0 x x Filter off 

           1 1 x Strong filter 

     1 0 0 Normal filter off 

          1 0 1 Normal filter 

 

Table 4.2 – Definition of the filtered     
  sample final value, based on the evaluated 

conditions 

    
  value Condition 1 

Conditions 2, 3, 

4, 5, 6 and 7 
Condition 10 Description 

     0 x x Filter off 

           1 1 x Strong filter 

     1 0 0 Normal filter off 

          1 0 1 Normal filter 

 

Tables 4.3 and 4.4 define the values of the filtered samples, which lie at the 

second closest columns from the block boundary of blocks P and Q. These samples are 

modified whenever strong filter or normal filter in longer mode is required (condition 8 

for block P and condition 9 for block Q is true). 

Table 4.3 – Definition of the filtered     
  sample final value, based on the evaluated 

conditions 

    
  value Condition 1 

Conditions 2, 3, 

4, 5, 6 and 7 
Condition 8 Condition 10 Description 

     0 x x x Filter off 

    
        1 1 x x Strong filter 

     1 0 
0 x Long normal 

filter off 

    
        1 0 

1 1 Long normal 

filter on 

     1 0 1 0 Normal filter off 

 

Table 4.4 – Definition of the filtered     
  sample final value, based on the evaluated 

conditions 

    
  value Condition 1 

Conditions 2, 3, 

4, 5, 6 and 7 
Condition 9 Condition 10 Description 

     0 x x x Filter off 

    
        1 1 x x Strong filter 
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     1 0 
0 x Long normal 

filter off 

    
        1 0 

1 1 Long normal 

filter on 

     1 0 1 0 Normal filter off 

 

Tables 4.5 and 4.6 define the values of the filtered samples, which lie at the third 

closest columns from the block boundary of blocks P and Q. These samples are 

modified only when strong filter mode is applied. 

Table 4.5 – Definition of the filtered     
  sample final value, based on the evaluated 

conditions 

    
  value Condition 1 

Conditions 2, 3, 

4, 5, 6 and 7 
Description 

     0 x Filter off 

     1 0 Strong filter off 

    
        1 1 Strong filter on 

 

Table 4.6 – Definition of the filtered     
  sample final value, based on the evaluated 

conditions 

    
  value Condition 1 

Conditions 2, 3, 

4, 5, 6 and 7 
Description 

     0 x Filter off 

     1 0 Strong filter off 

    
        1 1 Strong filter on 

 

4.5 Control module 

 

The control module of the architecture is relatively simple, since the deblocking 

filter is a dataflow application. Thus, complex datapaths were designed but controlled 

with a simple finite state machine (FSM). 

The control module is responsible for handling the handshake protocol between 

master and slave, as well as selecting the correct filtered output samples based on the 

conditions described in the previous chapter. 
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Figure 4.14 – State diagram illustrating the states of the main FSM, as well as the conditions for 

state changes. 

initial_state test_filter

data_in_valid = 0

filter_required = 0

data_in_valid = 1

test/do_filter do_filter

filter_required = 1filter_required = 0

data_in_valid = 1

filter_required = 1

data_in_valid = 1

data_in_valid = 0

 

The main FSM has 4 states (see Figure 4.14), whose outputs are described in 

Table 4.7. As soon as the master starts a transmission, by signalizing with 

‘data_in_valid’ signal, the deblocking filter architecture reads the input in the ‘data_in’ 

port. At the next clock cycle, if filtering of the given input is required, the filtered 

samples are available at the ‘data_out’ port and ‘data_out_valid’ signal changes to ‘1’. 

The deblocking filter architecture expects to receive the next 2 rows of samples, in order 

to filter them. At the next clock cycle, these samples will be available at the ‘data_out’ 

port. This process can be repeated, resulting in new blocks at every 2 clock cycles or no 

filtered block (whenever filtering is not necessary) at every clock cycle. The master can 

stop transmitting data at the end of the second clock cycle, by signalizing 

‘data_in_valid’ with ‘0’. 

Table 4.7 – Definition of the output control signal of the FSM for each state. 

 State ‘data_out_valid’ value 

initial_state 0 

test_filter 0 

do_filter 1 

test/do_filter 1 
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5 RESULTS AND COMPARISONS WITH RELATED WORK 

 

5.1 Synthesis Results and Performance Estimation 

  

 The proposed hardware architecture for the HEVC Deblocking Filter was 

implemented using VHDL, synthesized and mapped to a Xilinx XC7K160TL-ffg676 

Kintex-7 FPGA with speed grade 3 using Xilinx Vivado Tools Suite 2014.2. The timing 

constraint used is 100MHz. The implementation results are detailed in Table 5.1. 

Table 5.1 – Implementation results for Xilinx Kintex-7 FPGA device 

 Resource Utilization Available Utilization [%] 

Slice LUTs 921 101400 0.91 

Slice Registers 117 202800 0.06 

I/O 274 442 61.99 

Clocking 2 32 6.25 

 

In order to achieve real time video encoding or decoding requirements, the 

detailed characteristics of the desired video sequence must be analyzed in order to 

determine the minimum necessary frequency that the architecture must operate. To 

estimate the minimum clock frequency, we must consider the following worst-case 

scenario: every boundary between all 8x8 blocks within a video frame will have to be 

filtered both horizontally and vertically. 

Assuming a video sequence with 1920x1080 pixels resolution with 30 frames 

per second (1920x1080@30fps), there are 64,800 vertical block boundaries and 64,800 

horizontal block boundaries. Assuming all of the boundaries must be filtered, the 

architecture has to filter 129,600 block boundaries. Each block boundary demands 2 

clock cycles to be filtered, which will lead us to 259,200 clock cycles, plus 1 clock 

cycle until the pipeline is filled and 1 until it is emptied, resulting in 259,202 clock 

cycles in order to filter a single video frame. Since we have 30 frames per second, we 

need to filter an entire frame at every 33,33ms. Therefore, our target clock frequency for 

a video of the above mentioned characteristics is 7.776 MHz. 

We can generalize the above formula, as described by equation 1, where      

stands for the minimum targeted frequency,   for the video horizontal resolution 
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(width),   for the video vertical resolution (height) and     for the frame rate of the 

video (measured in frames per second). 

     (
   

  
  )      (1) 

Assuming a 4096x2304@60fps video sequence, we need a minimum frequency 

of 35.39 MHz in order to comply with real-time requirements. It must be also 

considered that we can apply the deblocking filter in parallel to a given video frame, as 

there are some blocks that do not share any data dependency. Therefore, a higher 

throughput can be achieved at a cost of multiplying the final on-chip area by the number 

of desired instances. However, since our architecture is I/O bound (we have a 256-bit 

input channel and another 256-bit output channel), memory access would become a 

limitation factor. 

 

5.2 Comparison with Related Work 

 

Related work about hardware architectures for HEVC deblocking filter can be 

found in Ozcan (2013) and Shen (2013). Shen (2013) also considered a memory 

architecture in order to deal with the transmission of data to the deblocking filter and to 

transmit the filtered outputs to an external memory in an efficient way, trying to reduce 

bandwidth. They proposed several BRAM blocks to store specific parts of the quarter-

LCU (32x32 block), achieving a smaller amount of required of I/O bandwidth. They 

adopted a four stage pipeline, which handles two 4x4 blocks (namely P and Q) at a 

time. Their architecture requires four clock cycles to test and filter all four lines from 

blocks Q and P, while we need only 2 clock cycles. However, their architecture also 

implements chroma-deblocking filter, while ours does not. Nevertheless, our technique 

to design luma datapaths can be easily applied to design chroma datapaths with a 

increase in FPGA resource usage (by instantiating the chroma datapaths in parallel). 

The architecture proposed by Ozcan (2013) follows a similar approach, 

proposing a memory architecture to handle I/O of a 64x64 LCU, and a datapath capable 

of processing 4 samples in parallel. All conditions and offset filter values are calculated 

simultaneously by the datapath. In order to increase throughput, more than one datapath 

can be instantiated. All instances of the datapath read data from the same memory, 
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which stores the 64x64 LCU. Therefore, the necessary total time to filter a 64x64 LCU 

can be decreased. 

Differently from the two above mentioned works, our proposed architecture did 

not take into consideration a memory architecture to store the values of the samples. We 

chose to have a straight 256-bit wide input and output channels and a simple handshake 

protocol to control data transfers between master and slave. Therefore, we can reduce 

complexity and ease integration of our architecture to a heterogeneous SoC, where the 

implementer would choose how to integrate our module to the existing memory 

architecture and processor. 

Table 5.2 compares the results of our implementation with (Ozcan, et al., 2013). 

Compared to Ozcan (2013) our architecture achieves 13X performance with a reduction 

in 83% of the number of Slice LUTs used. We cannot stablish a valid comparison with 

(Shen, et al., 2013) because their work was only synthesized to ASIC and do not present 

synthesis results for FPGA 

Table 5.2 – Comparisons with Related Work 

 Ozcan (2013) This work 

FPGA device Xilinx Virtex 6  Xilinx Kintex 7  

Slice LUTs 5236 921 

Slice Registers 1547 117 

BRAM count 8 0 

Frequency to process 

1920x1080@30fps 

108 MHz 7.76MHz 
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6 CONCLUSIONS 

 

The HEVC standard aims to produce higher data compression in comparison to 

the previous H.264 standard (Fu, et al, 2012) being specially designed to deal with the 

new generation of high resolution videos (4Kx2K) (Sullivan, 2012). In order to increase 

bitstream compression rates, a set of tools that implement algorithms with high 

computational complexity are executed in order to encode and decode a video sequence. 

Therefore, not only the amount of data of video sequences has greatly increase with the 

popularization of beyond high-definition (1920x1080) videos, but also have the tools of 

the encoder become more complex, aiming to produce higher compression rates. 

This work presents an evaluation of the HEVC standard, proving that among all 

tools, the in-loop deblocking filter has an important role in terms of execution time, 

being considered a computational hot spot for the HEVC decoder as presented in the 

profiling section. 

In order to deal with that, we presented a hardware architecture that implements 

the deblocking filter, which intends to provide a higher throughput of filtered data when 

compared to a software implementation. 

We achieved that goal, as our hardware implementation requires a smaller 

amount of clock cycles to filter a frame of a video sequence, when compared to the 

amount of clock cycles that a processor running a software based implementation of the 

deblocking filter would need. Our architecture achieves 13X performance gain over 

related work with 83% reduction in resource usage. 

Our architecture also scales well with the HEVC parallel capabilities (tiles and 

WPP) because we can instantiate more than a filtering unit in order to process 

independent frames in parallel. In addition to tiles and WPP, the HEVC deblocking 

filter has also been designed to be executed in parallel, by not allowing overlapping of 

samples from different blocks within a video frame, like happened in the H.264 

standard (Ozcan, et al., 2013). 

However, there is a limit of parallel running instances of our architecture. Our 

deblocking filter hardware implementation requires large memory access bandwidth, for 

it needs two 256-bits ports for data transferring between memory and the hardware 
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datapaths. Therefore, memory access is our main constraint when aiming higher 

throughput by adding parallel deblocking filter units. 

As future work, a prototype of our architecture can be developed, by integrating 

it to a processor. We can use our deblocking filter module to accelerate execution time 

of the HEVC deblocking filter, while other tools can still be executed by the processor 

with a software implementation. 
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