

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

KARLSRUHER INSTITUTE FÜR TECHNOLOGIE

FAKULTÄT FÜR ELEKTROTECHNIK UND

INFORMATIONSTECHNIK

JOSÉ RODRIGO FURLANETTO DE AZAMBUJA

Designing and Evaluating Hybrid
Techniques to Detect Transient Faults in

Processors Embedded in FPGAs

A thesis submitted to evaluation

in partial fulfillment of the requirements for the Degree of

Doctor of Computer Science

Prof. Dr. FernandaGusmão de Lima Kastensmidt

Advisor

A thesis submitted to evaluation

in partial fulfillment of the requirements for the Degree of

Doctor of Engineering

Prof. Dr.-Ing. Dr. h. c. Jürgen Becker

Advisor

September 2013.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Azambuja, José Rodrigo Furlanetto de

Designing and Evaluating Hybrid Techniques to Detect
Transient Faults in Processors Embedded in FPGAs / José Rodrigo
Furlanetto de Azambuja – Porto Alegre: Programa de Pós-
Graduação em Computação, 2013.109 p.:il.

Thesis (doctorate) – Universidade Federal do Rio Grande do
Sul and Karlsruher Institute für Technologie. Programa de Pós-
Graduação em Computação and Fakultät für Elektrotechnik und
Informationtechnik. Porto Alegre, BR – RS, 2013. Supervisors:
Fernanda Gusmão de Lima Kastensmidt and Jürgen Becker.

1. Fault tolerance. 2. Radiation effects. 3. Processors. I.
Kastensmidt, Fernanda G. L. and Becker, J.. II. Designing and
Evaluating Hybrid Techniques to Detect Transient Faults in
Processors Embedded in FPGAs.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecário-Chefe do Instituto de Informática: Alexsander Borges Ribeiro

ACKNOWLEDGEMENTS

I would like to start by thanking my parents, Tais and Gui, and my brother, Cado,
who have always been there for me, being "there" a few meters, or a few thousand
kilometers away. Thank you for all the support you provided me, allowing me to devote
myself entirely to the studies. I also thank my grandparents, uncles and cousins for the
countless moments, which would not fit in these few lines.

I take the opportunity also to thank Georg, who despite not having any kind of
kinship with me was like a second father during the time I spent in Germany.

I would also like to thank my colleagues from UFRGS, Anelise, Carol, Eduardo,
Fernando, Jimmy, Jorge, Lucas, Samuel, William and Mauricio, for the countless hours
discussing a variety of subjects, the chimarrões, and the terrible football championships
(and let there be Radecs!), and from KIT, Christoph, Falco, Mahtab and Oliver, for the
indoor sports, FPGA boards resuscitation and hat making.

To all my friends who took me out of the lab during the weekends - and also to the
ones who kept me in it during the week - and my apologies for not being able to quote
you all. To FDC, for all the poorly planned adventures, and to the band, for not letting
rock die - and still allowing me to play in it.

To the great friends who I rediscovered and to the great friendships I made during
my stay in Germany, who made my day much better and my job much easier, Ari,
Bruna, Cilene, Cláudio, Elian, Fada, Irigas, Paola, Pedrão, Gabriel, Oliver, Sharon and
Zatt, and to those who I barely saw in person, but have always been fighting evil with
me in the fields of justice, Christoph, Dirk, Fabio and Julian.

To my entrepreneurs friends who came to believe in a small project and today are
richer than Eike Batista: Inácio and Werner.

Especially to Fernanda, for putting up with me during 7 years. Thank you for the
confidence and freedom of research on the most varied subjects. I also thank Professor
Jürgen Becker for the many research opportunities inside - and outside - of KIT, as well
as for providing me with a great work environment. To Professors Álvaro, Lisboa,
Luigi, Michael, Paolo, Reis and Weber, for all their help during my PhD.

To Elisiane, Leivo and to the coordination of PPGC, Instituto de Informática, ITIV,
UFRGS, and KIT and to the financial support provided by CNPq, CAPES and HIRST.

Finally, I would like to thank the supernatural forces - in which I do not believe, but
I know they exist - that make us go forward and until the end.

To all of you, my sincere Thanks.

TABLE OF CONTENTS

LIST OF ABREVIATIONS AND ACRONYMS .. 7

LIST OF FIGURES.. 10

LIST OF TABLES ... 11

ABSTRACT .. 12

RESUMO .. 13

ZUSAMMENFASSUNG .. 14

1 INTRODUCTION ... 15

1.1 Motivation and Problem Definition ... 15

1.2 Overview .. 17

2 BACKGROUND .. 19

2.1 Basic Concepts of Dependable and Secure Computing .. 19
2.1.1 Defect, Upset and Fault Definitions... 19

2.1.1.1 Single Event Effect (SEE):... 20
2.1.1.2 Total Ionizing Dose (TID): .. 20

2.1.2 Error and Failure Definitions ... 21

2.2 MIPS Architecture .. 23

2.3 SEE in MIPS Processors ... 24
2.3.1 SEEs Divided by Sensitive Areas of a Processor... 24
2.3.2 SEEs Divided by Effect on a Processor ... 25

2.4 Fault Injection and Testing... 26

2.4.1 Fault Injection by Simulation... 27
2.4.2 FPGA Memory Configuration Bitstream Fault Injection .. 27
2.4.3 Irradiation Experiments ... 28

3 FAULT TOLERANCE TECHNIQUES FOR PROCESSORS 29

3.1 Software-Based Techniques.. 31

3.2 Hardware-Based Techniques ... 33

3.3 Hybrid Techniques .. 35

3.4 Summary .. 37

4 PROPOSED TECHNIQUES TO DETECT TRANSIENT FAULTS IN
PROCESSORS .. 39

4.1 Hardening Post Compiling Tool (HPCT) .. 39

4.2 Improved Variables Technique (VAR).. 41

4.2.1 Implementation Details .. 41

4.3 Improved Inverted Branches Technique (BRA) ... 43
4.3.1 Implementation Details .. 43

4.4 PODER Technique .. 45

4.4.1 Software-based Side .. 46
4.4.1.1 Jumps to the Beginning of a Basic Block... 46
4.4.1.2 Jumps to the Same Basic Block ... 48

4.4.2 Hardware-based Side ... 49
4.4.3 Implementation Details .. 50

4.4.3.1 PODER’s Software Transformation Implementation... 50
4.4.3.2 Hardware Module Implementation .. 54

4.5 On-line Control Flow Checker Module (OCFCM) .. 54

4.5.1 Hardware-based Side ... 55
4.5.2 Software-based Side .. 57
4.5.3 Implementation .. 58

4.6 Hybrid Error-detection Technique using Assertions ... 60

4.6.1 Terminology .. 61
4.6.2 Software-based Side .. 62

4.6.2.1 Description Details ... 62
4.6.2.2 Signature checking algorithms ... 63

4.6.3 Hardware-based Side ... 65
4.6.4 Implementation Details .. 66

4.6.4.1 HETA Software Transformation .. 66
4.6.4.2 Hardware Module Implementation .. 68

5 SIMULATION FAULT INJECTION EXPERIMENTAL RESULTS 70

5.1 PODER ... 71

5.2 OCFCM.. 73

5.3 HETA ... 74

6 CONFIGURATION BITSTREAM FAULT INJECTION EXPERIMENTAL
RESULTS... 75

6.1 PODER ... 76

6.2 OCFCM.. 78

6.3 HETA ... 79

7 RADIATION EXPERIMENTAL RESULTS .. 81

7.1 MIPS in Flash-based FPGAs .. 81
7.1.1 TID Experiment ... 81
7.1.2 Neutron Experiment... 85

7.2 MIPS in SRAM-based FPGAs ... 86

7.2.1 TID Experiment ... 86
7.2.2 Neutron Experiment... 86

8 CONCLUSIONS AND FUTURE WORK.. 91

REFERENCES.. 93

APENDIX - PROPOSTA DE DOUTORADO... 99

7

LIST OF ABREVIATIONS AND ACRONYMS

ACCE Automatic Correction of Control Flow Errors

ACCED Automatic Correction of Control Flow Errors with Duplication

ALU Arithmetic and Logic Unit

ASIC Application Specific Integrated Circuits

AUT Area Under Test

BB Basic Block

BID Block Identifier

BRA Inverted Branches Technique

BRAM Block Random Access Memory

CAEN Chemically Assembled Electronic Nanotechnology

CCA Control Flow Checking using Assertions

CEDA Control-flow Error Detection through Assertions

CFCSS Control Flow Checking by Software Signatures

CFID Control Flow Identifier

CLB Configurable Logic Block
COTS Commercial Off The Shelf

CUT Circuit Under Test

CWSP Code Word State Preserving

DUT Design Under Test

DWC Duplication With Comparison

ECC Error Correcting Codes

ECCA Enhanced Control Flow Checking using Assertions

EDAC Error Detection And Correction

ED4I Error Detection by Data Diversity and Duplicated Instructions

EHP Electron-Hole-Pairs

ENSERG Ecole Nationale Supérieure d'Electronique et de Radioélectricité de
Grenoble

EoE End of Execution

8

FIT Failure In Time

FF Flip-Flop

FP Frame Pointer

FPGA Field Programmable Gate Array

GUI Graphic User Interface

GP Global Pointer

GPP General Purpose Processor

GPU Graphic Processing Unit

GSR Global Signature Register

HDL Hardware Description Language

HETA Hybrid Error-detection Technique using Assertions

HPCT Hardening Post Compiling Translator

IC Integrated Circuit

Icc Power Supply Current

ICAP Internal Configuration Access Port

I-IP Infrastructure Intellectual Property

IP Intellectual Property

ISA Instruction Set Architecture

ITAR International Traffic in Arms Regulation

JALR Jump And Link to Register

JR Jump to Register

JRE Java Runtime Environment

KIT Karlsruhe Institute of Technology

LANSCE Los Alamos Nuclear Science Center

LANL Los Alamos National Laboratory

LUT Look-Up Table

MeV Mega-electron Volts (106 electron Volts)

MIPS1 Microprocessor without Interlocked Pipeline Stages

MIPS2 Mega (106) Instructions Per Second

NES Node Exit Signature

NGL Next Generation Lithography

NIS Node Ingress Signature

NoC Network-on-Chip

NOP No Operation

NRE Non-recurring engineering

9

NT Node Type

OCFCM Online Control Flow Checker Module

PC Program Counter

PLL Phase-Locked Loop

RA Return Address

RadHard Radiation Hardened

RAM Random Access Memory

RISC Reduction Instruction Set Computer

RTL Register Transfer Level

SEE Single Event Effect

SEL Single Event Latch-up

SET Single Event Transient

SEU Single Event Upset

SIC Structural Integrity Checking

SIHFT Software Implemented Hardware Fault Tolerance

SoC System-on-Chip

SP Stack Pointer

SRAM Static Random Access Memory

TCL Tool Command Language

TID Total Ionizing Dose

TMR Triple Modular Redundancy

UFRGS Universidade Federal do Rio Grande do Sul

USML United States Munitions List

VAR Variables Technique

VHDL Very-high-speed integrated circuits Hardware Description Language

XOR Exclusive OR

XTMR Xilinx Triple Modular Redundancy

10

LIST OF FIGURES

Figure 2.1: SEU and SET effects on a circuit. ... 20
Figure 2.2: Upset, fault, error and failure chain-effect for SET and SEU. .. 21
Figure 2.3: Logical masking. ... 22
Figure 2.4: Electrical masking. .. 22
Figure 2.5: Latch window masking. ... 22
Figure 2.6: Pipeline architecture of the miniMIPS. ... 23
Figure 2.7: miniMIPS sensitive areas under SEE. ... 26
Figure 3.1: COTS x RadHard processor throughput (KEYS, 2008). ... 30
Figure 4.1: HPCT’s workflow. ... 40
Figure 4.2: Variables technique’s transformation. .. 42
Figure 4.3: Inverted Branches technique’s transformation. .. 44
Figure 4.4: Examples of Incorrect jumps to the same BB (1) and to the beginning of a BB (2). 46
Figure 4.5: PODER technique’s BB graph. ... 48
Figure 4.6: Incorrect jumps to unused memory addresses (3) and control flow loops (4). 49
Figure 4.7: PODER technique’s system architecture. ... 50
Figure 4.8: PODER technique transformation for queue management. .. 51
Figure 4.9: PODER technique transformation for XOR value... 52
Figure 4.10: PODER technique transformation after optimization. .. 53
Figure 4.11: OCFCM’s system architecture. ... 56
Figure 4.12: Automatic hardware generation flow. ... 58
Figure 4.13: Program graph with both NT types. .. 62
Figure 4.14: Algorithm for the signature’s lower half. .. 64
Figure 4.15: NIS, NS and NES signatures.. 65
Figure 4.16: HETA’s system architecture. ... 66
Figure 4.17: HETA transformation. ... 67
Figure 5.1: Fault injector's role. .. 70
Figure 5.2: Fault injection example of a SET in signal add_reg1 bit 3. .. 71
Figure 6.1: Configuration bitstream fault injector system overview (NAZAR, 2012a). 76
Figure 7.1: Architecture of the embedded system. ... 82
Figure 7.2: Experimental setup. ... 83
Figure 7.3: Accumulated dose for each signal output. ... 84
Figure 7.4: Measured current and temperature. .. 85
Figure 7.5: PLL clock output measurements: frequency, duty cycle and delay compared to the external
40 MHz clock.. 85
Figure 7.6: ISIS spectrum compared to those of the LANSCE and TRIUMF facilities and to the terrestrial
one at sea level multiplied by 107 and 108. ... 86
Figure 7.7: DUT’s architecture with the test control unit. ... 87
Figure 7.8: FPGA’s module placement.. 88

11

LIST OF TABLES

Table 2.1: MIPS’ instruction format .. 24
Table 3.1: Fault tolerance techniques summary .. 38
Table 4.1: Characteristics for the variables technique program transformation 42
Table 4.2: Characteristics for the Inverted Branches technique program transformation 44
Table 4.3: Characteristics for the PODER program transformation to the matrix multiplication 53
Table 4.4: Characteristics for the PODER program transformation to the bubble sort 53
Table 4.5: Area and performance of miniMIPS and the hardware module used by PODER technique
synthesized in 0.18µ CMOS process technology .. 54
Table 4.6: OCFCM technique area results for a set of applications and the percentage of the area
compared to the miniMIPS microprocessor synthesized into FPGA.. 59
Table 4.7: Partial reconfiguration time for SRAM-based FPGA (Virtex 4 xc4vlx80-12ff1148) 59
Table 4.8: Characteristics for the HETA program transformation to the matrix multiplication 68
Table 4.9: Characteristics for the HETA program transformation to the bubble sort 68
Table 4.10: Original and modified architecture characteristics for HETA technique synthesized in 0.18µ
CMOS process technology ... 69
Table 5.1: Percentage of number of error from fault injection results for PODER fault tolerant technique
in miniMIPS running the matrix multiplication.. 72
Table 5.2: Percentage of number of error from fault injection results for PODER fault tolerant technique
in miniMIPS running the bubble sort ... 72
Table 5.3: Number of faults injected by simulation fault injection in miniMIPS protected by OCFCM and
the percentage of detected errors. .. 74
Table 5.4: Number of faults injected by simulation fault injection in miniMIPS protected by HETA and
the percentage of detected errors. .. 74
Table 6.1: Classification of the total 48,323 faults in the miniMIPS protected by PODER technique with
VAR and BRA ... 77
Table 6.2: Diagnosis of detected faults and errors for PODER with VAR and BRA 78
Table 6.3: Classification of the total 54,024 faults in the miniMIPS protected by OCFCM technique with
VAR and BRA ... 78
Table 6.4: Diagnosis of detected faults and errors for OCFCM with VAR and BRA................................. 79
Table 6.5: Classification of the total 75,619 faults in the miniMIPS protected by HETA technique with
VAR and BRA ... 80
Table 6.6: Diagnosis of detected faults and errors for HETA with VAR and BRA..................................... 80
Table 7.1: Classification of the total 958 faults in FPGA design tested under neutrons 89
Table 7.2: Fault injection by partial reconfiguration in SRAM-based FPGA.. 89

12

Designing and Evaluating Hybrid Techniques to Detect
Transient Faults in Processors Embedded in FPGAs

ABSTRACT

Recent technology advances have provided faster and smaller devices for
manufacturing circuits that while more efficient have become more sensitive to the
effects of radiation. Smaller transistor dimensions, higher density integration, lower
voltage supplies and higher operating frequencies are some of the characteristics that
make energized particles an issue when dealing with integrated circuits in harsh
environments. These types of particles have a major influence in processors working in
such environments, affecting both the program’s execution flow by causing incorrect
jumps in the program, and the data stored in memory elements, such as data and
program memories, and registers. In order to protect processor systems, fault tolerance
techniques have been proposed in literature using hardware-based and software-based
approaches, which decrease the system’s performance, increase its area, and are not able
to fully protect the system against such effects. In this context, we proposed a
combination of hardware- and software-based techniques to create hybrid techniques
aimed at detecting all the faults affecting the system, at low performance degradation
and memory overhead. Five techniques are presented and described in detail, from
which two are known software-based only techniques and three are new hybrid
techniques, to detect all kinds of transient effects caused by radiation in processors. The
techniques are evaluated according to execution time, program and data memories, and
area overhead and operating frequency degradation. To verify the effectiveness and the
feasibility of the proposed techniques, fault injection campaigns are performed by
injecting faults by simulation and performing irradiation experiments in different
locations with neutrons and a Cobalt-60 sources. Results have shown that the proposed
techniques improve the state-of-the-art by providing high fault detection rates at low
penalties on performance degradation and memory overhead.

Keywords: fault tolerance, radiation effects, processors.

13

Desenvolvendo e Avaliando Técnicas Híbridas para Detectar
Falhas Transientes em Processadores Embarcados em FPGAs

RESUMO

Os recentes avanços tecnológicos proporcionaram dispositivos menores e mais
rápidos para a fabricação de circuitos que, apesar de mais eficientes, se tornaram mais
sensíveis aos efeitos de radiação. Menores dimensões de transistores, mais densidade de
integração, tensões de alimentação mais baixas e frequências de operação mais altas são
algumas das características que tornaram partículas energizadas um problema, quando
lidando com sistemas integrados em ambientes severos. Estes tipos de partículas tem
uma grande influencia em processadores funcionando em tais ambientes, afetando tanto
o fluxo de execução do programa ao causar desvios incorretos, bem como os dados
armazenados em elementos de memória, como memórias de dados e programas e
registradores. A fim de proteger sistemas processados, técnicas de tolerância a falhas
foram propostas na literatura usando propostas baseadas em hardware, software, que
diminuem o desempenho do sistema, aumentam a sua área e não são capazes de
proteger totalmente o sistema destes efeitos. Neste contexto, propomos a combinação de
técnicas baseadas em hardware e software para criar técnicas híbridas orientadas a
detectar todas as falhas que afetam o sistema, com baixa degradação de desempenho e
aumento de memória. Cinco técnicas são apresentadas e descritas em detalhes, das quais
duas são conhecidas técnicas baseadas puramente em software e três são técnicas
híbridas novas, para detectar todos os tipos de efeitos transientes causados pela radiação
em processadores. As técnicas são avaliadas de acordo com o aumento no tempo de
execução, no uso das memórias de dados e programa e de área, e degradação da
frequência de operação. Para verificar a eficiência e aplicabilidade das técnicas
propostas, campanhas de injeção de falhas são realizadas ao se simular a injeção de
falhas e realizar experimentos de irradiação em diferentes localidades com nêutron e
fontes de Cobalto-60. Os resultados mostraram que as técnicas propostas aprimoraram o
estado da arte ao fornecer altas taxas de detecção de falhas com baixas penalidades em
degradação de desempenho e aumento de memória.

Palavras-Chave: tolerância a falhas, efeitos de radiação, processadores.

14

Entwurf und Auswertung von Hybrid-Techniken zur Erkennung
von transienten Fehlern in FPGA eingebetteten Prozessoren

ZUSAMMENFASSUNG

Der aktuelle Stand der Technologie bringt schnellere und kleinere Bausteine für die
Herstellung von integrierten Schaltungen mit sich, die während sie effizienter sind auch
anfälliger für Strahlung werden. Kleinere Abmessungen der Transistoren, höhere
Integrationsdichte, geringere Versorgungsspannungen und höhere Betriebsfrequenzen
sind einige der Charakteristika, die energiegeladene Partikel zu einer Herausforderung
machen, wenn man integrierte Schaltungen in rauen Umgebungen einsetzt. Diese Art
der Partikel hat einen sehr großen Einfluss auf Prozessoren, die in einer solchen
Umgebung eingesetzt werden. Sowohl die Ausführung des Programms, welche durch
fehlerhafte Sprünge in der Programmsequenz beeinflusst wird, als auch Daten, die in
speichernden Elementen wie Programmspeicher, Datenspeicher oder in Registern
abgelegt sind, werden verfälscht. Um solche Prozessorsysteme abzusichern, wird in der
Literatur Fehlertoleranz empfohlen, welche die Systemperformanz verringert, einen
größeren Flächenverbrauch mit sich bringt und das System dennoch nicht komplett
schützen kann. Diese Fehlertoleranz kann sowohl durch software- als auch durch
hardwarebasierte Ansätze umgesetzt werden. In diesem Zusammenhang schlagen wir
eine Kombination aus Hardware- und Software- Lösung vor, welche die
Systemperformanz nur sehr wenig beeinflusst und den zusätzlichen Speicheraufwand
minimiert. Diese Hybrid-Technologie zielt darauf ab, alle Fehler in einem System zu
finden. Fünf solcher Techniken werden beschrieben und erklärt, zwei der vorgestellten
Techniken sind bekannte Software-Lösungen, die anderen drei sind neue Hybrid-
Lösungen, um alle transienten Effekte von Strahlung in Prozessoren erkennen zu
können. Diese unterschiedlichen Ansätze werden anhand ihrer Ausführungszeit,
Programm-, Datenspeicher, Flächenvergrößerung und Taktfrequenz analysiert und
ausgewertet. Um die Effizienz und die Machbarkeit des vorgeschlagenen Ansatzes
verifizieren zu können, werden Fehlerinjektionstests sowohl durch Simulation als auch
durch Bestrahlungsexperimente in unterschiedlichen Positionen mit einer Cobalt-60
Quelle durchgeführt. Die Ergebnisse des vorgeschlagenen Ansatzes verbessern den
Stand der Technik durch die Bereitstellung einer höheren Fehlererkennungsrate bei sehr
geringer negativer Beeinflussung der Performanz und des Speicherverbrauchs.

Stichworte: Fehlertoleranz, Strahlungseffekte, Prozessoren.

15

1 INTRODUCTION

Since the 1950’s, when computers were made with vacuum tubes and the personal
computer was nothing more than a dream, fault tolerance has been an important topic of
interest. In the early ages of computers, their usage was very specific, aimed at activities
such as military applications, precise calculations and space missions. An error in these
applications working in such harsh environments, and sometimes even in remote places
like as the space, could completely jeopardize the mission, since the repair and, in some
cases, the available time to repair the system was impractical. From then until nowadays
many things have changed. The technology no longer relies on vacuum tubes, but on
transistors, computers became ubiquitous and a personal computer can be found in any
cell phone. One the other hand, a few things remained the same, such as the old topic on
how to give a system the ability to cope with a fault and continue its correct operation,
or in other words, fault tolerance.

The technology did not only advance in the past, but it is constant progress. Today
we can observe new trends, such as the continued reduction in transistor sizes, new
fabrication processes and materials, low-power systems to fit small ubiquitous
microprocessors and medical applications and, as always, the need for more processing
power through higher frequencies of operation and more processing cores per die. At
the same time that these advances push technology forward, they increase the system’s
susceptibility to noises that are present in the environment. One well-known effect is the
radiation effect present in space applications but also at avionic and at ground-level.
Due to the reduced transistor size and low voltages, the fault effect in integrated circuits
is increasing in magnitude; consequently, fault tolerant techniques will become
mandatory in all devices in the close future.

This document exposes the reasons behind the concerns surrounding a system’s fault
tolerance. Some of the most important fault tolerant techniques presented in the
literature are analyzed and three hybrid techniques to detect faults in processors are
proposed as the thesis work. In order to prove the effectiveness of the proposed
techniques, fault injection campaigns were performed, including configuration bitstream
fault injection, and neutron and Cobalt-60 beams irradiation experiments.

1.1 Motivation and Problem Definition

The recent advances in the semiconductor industry have led in the development of
more complex components and systems’ architectures by allowing fabrication processes
to place a higher number of transistors per area of the silicon die. The CMOS
technology has developed according to Moore’s law (MOORE, 1965), where the
number of transistors on Integrated Circuits (IC) doubles every two years. Nowadays,
with factories fabricating transistors with 32nm, we are reaching the physical limits of a
couple atoms to form the transistor’s gate (KIM, 2003), (HOMPSON, 2005). Still, new

16

technologies arise, such as Next Generation Lithography (NGL) and Chemically
Assembled Electronic Nanotechnology (CAEN), promising to reduce feature sizes to
20nm and less.

However, the same technology that made possible all this progress has also reduced
the transistor reliability by reducing threshold voltages, node capacitances and
tightening the noise margins (BAUMANN, 2001). These have made transistors more
susceptible to faults caused by radiation interference, which can be energized particles
presented on space or secondary particles such as alpha particles, generated by
interaction of neutron and materials at ground level. As a consequence, mission-critical
applications, such as space applications or avionics, demand fault tolerant techniques
capable of recovering the system from a fault with minimum implementation and
performance overhead.

Processors working in harsh environments can be upset by such energized particles.
They affect processors by modifying values stored in memory elements (such as
registers and data memory), by leading the processor to incorrectly execute an
application by jumping or re-executing some instructions, or even by entering in a loop
and never finishing the application. Such faults can also modify some computed data
values, generating errors in the data results. Therefore, the use of fault tolerance
techniques is mandatory to detect and/or correct these types of faults. Since processors
run software on top of their hardware, fault tolerance techniques used to harden them
can be based on software, hardware or hybrid solutions.

Fault tolerance techniques based on software rely on adding extra instructions to the
original program code to detect or correct faults (BOLCHINI, 2005). They may be able
to detect faults that affect the data and the control flow. Software-based techniques
provide high flexibility, low development time and cost, since there is no need to
modify the hardware. In addition, new generations of microprocessors that do not have
Radiation Hardened (RadHard) versions can be used. As a result, aerospace applications
can use commercial off the shelf (COTS) microprocessors with RadHard software.
However, some results from random fault injection have shown the impossibility of
achieving complete fault coverage when using only software-based techniques, due to
control flow errors (AZAMBUJA, 2011b). This limitation is due to the inability of the
software in protecting against all possible control flow effects errors that can occur in
the microprocessor. One example would be a fault in the Program Counter (PC), where
only a single No OPeration (NOP) instruction can execute. In this case, it does not
matter how many instructions or data are added to the original code, because none of
them will be executed by the processor and no fault will be detected.

As a consequence of the redundant instructions inserted in the original program
code, software-based techniques have as drawbacks overheads in both data and program
memory, and degradation in performance, due to an increased computation time
required to execute the program. The program memory increases due to additional
instructions inserted in the original program code, while the data memory may increase
due to variable replication, which can be, for example, the replication of all stored data
in the memory. Performance degradation comes from the execution of redundant
instructions.

Hardware-based techniques usually change the original processor architecture by
adding redundant logic, such as module replication with majority voters, information
redundancy, such as Error Correcting Codes (ECC), or time redundancy, such as the
one presented by Anghel (2000). Hardware-based techniques can also be based on

17

hardware monitoring devices that are inserted to the system’s architecture, such as a
verification hardware module, and therefore change the system’s architecture, but not
the processor’s architecture and in this case are non-intrusive. They exploit special
purpose hardware modules, called watchdog processors, to monitor memory accesses.

As a consequence of the extra logic or information redundancy, hardware-based
techniques increase the processor’s area up to more than three times the original size,
which leads to more power consumption and production costs. Time redundancy
usually does not have a big impact in area, but decreases considerably the performance,
since they affect the execution time and, in some cases, the operation clock frequency.
Non-intrusive hardware modules, such as watchdogs, may have a smaller impact in area
and operating clock frequency, but they require access to processor’s connections, such
as access to the data and code memory connections. Watchdogs do not detect faults that
are latent inside the microprocessor, as faults in the register bank, because they do not
have access to the processor’s internal buses (in order to be non-intrusive).

1.2 Overview

In order to provide reliable systems that can cope with radiation effects, we believe
that the solution lies in combining software-based and hardware-based techniques. The
main objective of this work is finding the best trade-off between software-based and
hardware-based techniques to increase existing fault detection rates up to 100%, while
maintaining low overheads in performance, in the means of operating clock frequency
and application execution time, and area, in the sense of both program and data memory
overhead, and extra hardware modules.

The first step to achieve our goal was to analyze the radiation effects on integrated
circuits. In a second step, we performed an analysis on the influence of such effects in
processors, such as the effects of a fault at a given part of the processor and its influence
on the results of a running program. To do so, we checked the affected area in processor
in the sense of which areas are more sensitive to which types of effects, and also the
effect of a particle in the processor, in the sense of control or data flow effects. Then,
we searched the literature for existing fault tolerant techniques using hardware-based
techniques, software-based techniques and hybrid ones. As a result, none of the
available techniques in the literature could fully protect a processor against transient
effects without huge drawbacks, such as performance degradation and area overhead.

We started by implementing two known software-based techniques, called Variables
and Inverted Branches (AZAMBUJA, 2010b). From there, we proposed three hybrid
techniques, based both on software and hardware replication characteristics. The
implemented techniques are generic and could be implemented to any application, but
in order to focus this work in the techniques, instead of the application, we chose a few
case-study applications and implemented the techniques for each of them. Results
showed low performance degradation and memory overhead, when compared to
techniques in presented in the literature.

In order to check the effectiveness and feasibility of the proposed techniques, we
performed three fault injection campaigns. The first one consisted of simulating faults
through a commercial simulator, where we injected hundreds of thousands of faults in
the chosen case-study applications. For the second injection campaign, we used a Field
Programmable Gate Array (FPGA) based on Static Random Access Memory (SRAM)
configuration bitstream and exhaustively injected millions of faults in the configuration
memory bitstream. For the third fault injection campaign, we used cyclotrons around

18

the world to hit the integrated circuit hardened by our techniques with neutron and
cobalt-60 beam sources. For the last campaign, we used SRAM-based and flash-based
FPGAs to implement the Design Under Test (DUT) and test them for radiation effects.

Preliminary results have shown interesting results, when compared to related works
in the literature. The performance degradation combined with area and memory
overhead improved the state-of-the-art. These results have been backed by intense fault
injection campaigns, performed both by simulation and irradiation experiments in the
sense that the proposed techniques can indeed be applied to protecting processors in
harsh environments.

Chapter 2 presents the terminology and general concepts used in this work. Chapter
3 describes existing fault tolerant techniques for processors presented in the literature.
Chapter 4 describes the fault tolerant techniques implemented in this work to detect
transient faults in processors, from which two are known software-based and three are
new hybrid techniques. Chapter 5 presents experimental fault injection campaigns for
the implemented fault tolerant techniques. Chapter 6 presents the configuration
bitstream fault injection campaign and results. Chapter 7 presents radiation experiments
on some of the proposed techniques. Chapter 8 describes future work and concludes the
thesis.

19

2 BACKGROUND

In this chapter, we introduce the main technical terms used in the text, describe the
microprocessor architecture used as a case study and discuss background information
required for better enlightenment of the topics in this thesis.

2.1 Basic Concepts of Dependable and Secure Computing

This section presents the basic set of definitions that will be used throughout this
work. The definitions encompass from defects and upsets that occur in individual logic
gates to fault, error and failure.

2.1.1 Defect, Upset and Fault Definitions

Defect or upset is defined as unintended differences between the implemented
system and its intended function. It can be commonly a manufacture defect, for
example, or transient upsets that happen during some perturbation of the environment.

Fault is then defined as a logic level abstraction of a physical defect or upset. It is
used to describe the change in the logic function of a device caused by the defect or
upset. Fault can be described as a deviation from the expected behavior of logic. Faults
can be transient, intermittent or permanent. Transient faults occur and then disappear.
They are transient effects that may occur during the lifetime of the component and it
exists for a short period of time. Intermittent faults are characterized by a fault
occurring, then vanishing, and then reoccurring and so on. An example of intermittent
faults is signal interferences such as cross-section between connection lines. Permanent
faults continue to exist in the system until the faulty component is repaired or replaced.
They are usually due to manufacturing problems. Some defects or upsets may be
masked by the electrical properties of the device and no fault may be observed. Usually
when there is a fault in the circuit, there will be an error. However, some faults may be
masked by some logic, electric or application and no error will be observed. Error is
considered a wrong output signal produced by a defective system.

With nanometer dimension technologies, transistors have become more susceptible
to faults caused by radiation interference due to reduced threshold voltages, reduced
node capacitances and tightened noise margins (BAUMANN, 2001). Such faults can be
caused by energized particles present in space or secondary particles such as alpha
particles, generated by the interaction of neutron and materials at ground level
(INTERNATIONAL, 2005). Integrated circuits operating in a space environment are
sensitive to these particles and can be affected mainly by transient ionization and long
term ionizing damage.

In the following, we will discuss the main effects from radiation interference that
cause upsets in integrated circuits.

20

2.1.1.1 Single Event Effect (SEE):

Transient ionization may occur when a single radiation ionizing particle strikes the
silicon, creating a transient voltage pulse, or a Single Event Effect (SEE). This effect
can be destructive or non-destructive. An example of destructive effect is Single Event
Latchup (SEL) that results in a high operating current, above device specifications, that
must be corrected by a power reset. Non-destructive effects, also known as soft errors,
are transient effects provoked by the interaction of a single energized particle in the PN
junction of an off-state transistor (DODD, 2004). When the transient pulse occurs in a
memory element, such as a register, it is classified as Single Event Upset (SEU). When
the particle hits a combinational element, inducing a pulse in the combinational logic,
the upset is classified as Single Event Transient (SET).

Figure 2.1 shows examples of SEU and SET effects in a circuit. On the left, one can
see the SEU effect. A particle, represented by the bolt, hits the sequential logic (which
could be seen as a register), changing the store value from “0010” to “0110”. This effect
directly affects the rest of the circuit, changing the value stored in the sequential logic
on the right from “1” to “0”. In the middle, one can see a particle hitting the NOR gate
and causing a voltage pulse in the combinational logic. When propagated, the pulse hits
the sequential latch window on the sequential logic to the right, which registers the
incorrect value “0”, instead of a “1”. Such effects may be masked by the circuit, as
discussed in the following subsections.

Figure 2.1: SEU and SET effects on a circuit.

Soft errors can be detected and corrected by the system’s logic, meaning that it does
not require a hard reset to recover from an error. Sections 7.1.2 and 7.2.2 present
neutron irradiation experiments simulating the effect of SEE in Flash-base and SRAM-
based FPGAs, while Chapters 5 and 6 present fault injection simulation experiments
simulating SEEs at RTL level and in the configuration memory bitstream, respectively.
In this thesis, SEUs and SETs will be used to describe transient faults that the
techniques presented here can cope with.

2.1.1.2 Total Ionizing Dose (TID):

The long term ionizing damage is also known as Total Ionizing Dose (TID). It is
caused by the interaction of energized particles with atoms of the silicon. Photon-
induced damage is initiated when Electron-Hole-Pairs (EHP) are generated along the
track of secondary electrons emitted via photon-material interactions. EHPs are created
from a fraction of the kinetic energy of the incident particles. Some of them are

21

annihilated due to recombination, but a few remain in the silicon. The remaining EHPs
may fall into deep traps in the oxide bulk or near the Si/SiO2 interface, forming trapped
positive charges (BARNABY, 2006), (OLDHAM, 2003). By doing so, TID can affect
the system by shifting the threshold voltage, generating leakage current and timing
skews and even leading to functional failures. Sections 6.1.2 and 6.2.2 present neutron
irradiation experiments using Flash- and SRAM-based FPGAs, respectively, while
Section 6.1.1 discusses the effects of TID in SRAM-based FPGAs.

In this thesis, we will refer fault as the single event transient (SET) pulse that may
occur in the combinational logic and as the single event upset (SEU) that is the bit-flip
that may occur in the memory element.

2.1.2 Error and Failure Definitions

The design of fault tolerant systems consists in preventing a fault to cause an error
and consequently a failure in the implemented system. Therefore, there is a cause-effect
relationship from the particle hit (fault) to the erroneous result (system failure), as
demonstrated in Figure 2.2. In this work, we will use the definition presented in
Avizienis (2004).

In order to define error and failure, we first have to define a system. A system is an
entity that interacts with other entities, such as other systems, hardware, software, and
the physical world. A system follows a functional specification, composed of several
different functions. The behavior of a system is what it does to implement its functions
and is described by a sequence of states. Finally, the service delivered by a given system
is its behavior, as it is perceived by its users.

Failure is the abbreviation of service failure and is defined as a system malfunction,
or in other words, when the delivered service deviates from the correct one. The
delivered service is considered correct when it is according to the system specification.
When the service specification includes a set of several functions, the failure of one or
more of the services implementing the functions may lead the system to a degraded
mode that still offers a subset of needed services. We define this case as a partial failure.

Error is defined as the deviation in one of the system’s sequence of states. Such
deviation may compromise a system service, thus leading to a service failure. It is
important to note that an error not always leads to a failure.

Figure 2.2: Upset, fault, error and failure chain-effect for SET and SEU.

By defining fault, error and failure, one can notice that a failure can always be seen
by the user, since it leads to a system malfunction. Faults can be latent in the circuit

22

until manifested as an error. There are detection techniques that can detect faults and
there are techniques that can detect errors.

Faults can also be masked by three different ways in the circuit: logical masking,
electrical masking and latch window masking. Figures 2.3, 2.4 and 2.5 show each of
them, respectively. The logical masking is when the logic of the gate being hit by a fault
masks its effect. Figure 2.3 shows a NOR gate being hit by a particle and forcing its
output to “1”. As one can see the fault cannot propagate through the circuit as the other
NOR gate has one of the inputs at value ‘1’, which is dominant forcing the output of
that gate to ‘0’. Electrical masking happens when the propagation of the pulse is
weakened by the logic, such as the one shown in Figure 2.4. A NOT gate is hit by a
particle, generation a high voltage pulse in its output. When propagating through the
other three NOT gates, the pulse is weakened until electrically masked. Latch window
masking happens when the pulse does not hit the latching window of a sequential logic.
Figure 2.5 shows a clock cycle with its latching window. When the voltage pulse lasts
for the whole latching window, the errors are stored in the logic. When the pulse does
not last until the latch window (as shown in the bottom), the fault is masked.

Figure 2.3: Logical masking.

Figure 2.4: Electrical masking.

Figure 2.5: Latch window masking.

23

2.2 MIPS Architecture

The case study microprocessor used in this work is the Microprocessor without
Interlocked Pipeline Stages (MIPS). It has a standard processor architecture based on
the Reduced Instruction Set Computing (RISC) instruction set. The basic idea behind
RISC is that using simple instructions, which enable easier pipelining and larger caches,
the performance can be largely boosted. The MIPS architecture can be seen since 1985
in commercial applications, from workstations to Windows CE devices, routers,
gateways and PlayStation gaming devices.

Among the different MIPS architecture processors, there is the miniMIPS
(HANGOUT, 2013), which will be used in the work as case-study microprocessor. The
miniMIPS is an open source processor that has a reduced instruction set from the
original MIPS architecture, with 52 instructions. It is described in the hardware
description language, Very-high-speed integrated circuits Hardware Description
Language (VHDL). Consequently, it can be logically simulated and it can be
synthesized into programmable circuits as FPGAs. The miniMIPS can be implemented
using the Harvard memory model, where the program and data memory are separated in
two different memories, or the Von Neumann, where program and data memory share
the same memory. It has five stages pipeline: Instruction Address Calculation,
Instruction Fetch, Instruction Decode, Execution and Memory Access. A model of the
miniMIPS pipeline is shown in Figure 2.6.

The miniMIPS microprocessor has thirty-two 32-bit registers in the register bank. It
also has a PC with a simplistic logic, since it has fixed size instructions and static
branch prediction. Besides the PC, the microprocessor has other special purpose
registers, such as the Stack Pointer (SP), Global Pointer (GP), Frame Pointer (FP),
Return Register (RA) and Zero (always has the value 0), which can all be found in the
register bank. The miniMIPS uses a gcc cross-compiler to translate C code into
executable code.

Figure 2.6: Pipeline architecture of the miniMIPS.

The instruction set used by miniMIPS has a fixed size of 32 bits, from which only
two have access to the memory: the load instruction and the write instruction.
Instructions have a 6-bit opcode and are divided in three classes: type-R, which specify
three registers (rs, rt and rd), plus a shift value (shamt), and a function field (funct),
type-I, which specify two registers (rs and rt) and a 16-bit immediate value, and type-J,

24

which do not specify any register, only a 26-bit address. Figure 2.7 shows these classes
in detail.

Table 2.1: MIPS’ instruction format

Type -31- format (bits) -0-

R

opcode (6)

rs (5)

rt (5)

rd (5)

shamt (5)

funct (6)

I opcode (6) rs (5) rt (5) immediate (16)

J opcode (6) address (26)

The miniMIPS microprocessor has been chosen as a case-study to this work due to
the following reasons. The first one is that it is largely used in the literature (also
because it has been in development since 1985). It also has a simple, but efficient,
architecture with RISC architecture and a 5-stage pipeline, which follows modern
microprocessor models, such as Intel’s and ARM’s. The miniMIPS version has a very
stable version, since 2009, and has been simulated and implemented in various
platforms, from FPGAs (both Flash- and SRAM-based) to ASICs. The miniMIPS
version used in this work was initially developed by the Ecole Nationale Supérieure
d'Electronique et de Radioélectricité de Grenoble (ENSERG), made open source in
Hangout (2013), and slightly improved at UFRGS (modules such as the branch
prediction, as well as memory controllers).

In this thesis, we use a VHDL model of the mini-MIPS that can be logical simulated
and synthesized to ASIC and to programmable platforms as FPGAs.

2.3 SEE in MIPS Processors

A processor is nothing more than a group of sequential and combinational circuits
combined in one component. This combination of different circuits induces processors
to be sensitive to different radiation in different areas with different effects. A processor
could be roughly divided in five logical groups according to the area (program memory,
data memory, register bank, control path, and data path) and in two logical groups when
relating to the effect of a fault (data flow and control flow). In the following
subsections, we will address how SEEs affect each part of a processor and theirs effects.

2.3.1 SEEs Divided by Sensitive Areas of a Processor

Memories are sequential circuits and therefore very sensitive to SEUs. Due to their
regular physical structure, they are optimized to fit in smaller die areas than normal
circuits and normally with higher operation frequencies. That means that the radiation
effects, such as multiple-bit upset due to a single particle, are intensified in memory
components. There are two main types of available memory: flash and SRAM memory.
The first one is less sensitive to radiation effects, because it requires a high voltage to be
written (change their current state), typically higher than 5V. Its main drawbacks are
that it has a finite number of program-erase cycles, meaning that a memory position can
only be written around 100,000 times before deteriorating its integrity, and because of
the fact that normally the write circuit needs to pump up the voltage in order to reach

25

the high voltage for writing, and this circuit is sensitive to radiation effects. The SRAM
memory is more sensitive to radiation effects, since it operates in normal voltages, but
has better performance and power consumption. Besides, it doesn’t have the finite
number of program-erase cycles.

The memory organization of a processor can be with program and data memory
combined in the same memory element (Von Neumann), or separated (Harvard). When
separated, the program memory is usually stored in a flash memory and the data
memory in an SRAM memory. By doing so, it is possible to reduce the number of
upsets in the program memory, while the data memory can be protected by fault tolerant
techniques. When sharing the same memory, program and data memories are typically
implemented on SRAM memory. Because of the fact that fault tolerance techniques are
too expensive to protect the program memory, low-level approaches, such as Error
Detection And Correction (EDAC) must be implemented on the memory.

The register bank is mostly a sequential circuit, just like the program and data
memory. Because of that, it is very sensitive to SEUs. The register bank can be
implemented over an SRAM memory or by using flip-flops. In the first case, the same
principles from the data program are applied. In the second case, hardware replication
can be used, or even software-based technique to replicate the information stored in the
registers. The miniMIPS has thirty-two 32-bit registers, resulting in a total of 1024 bits,
which is a big number, when considering radiation effects.

The data path represents the computing circuit of the processor. It is defined as the
circuit leading from a stored value (in the memory or in the register bank), through the
Arithmetic and Logic Unit (ALU), and back to a store element. It is composed of both
combinational and sequential logic, since the data path not only processes data, but also
crosses the register barriers from the pipeline stages. Because of that, it is sensitive to
SEUs (in the pipeline registers) and SETs (in the computing logic, such as the ALU).
The effect of a fault in the data path usually leads to an erroneous result in the end of the
computation, but hardly leads to an infinite loop, or a control flow error.

The control path is defined as the decision logic of a processor. It is responsible for
calculating the next instruction to be fetched and setting the internal flags, such as to
command the ALU to sum or subtract and a branch to be taken or not. The control path
is mostly combinational, but since it has to cross the pipeline stages, also has sequential
logic. The main difference between the control path and the data path is that an error in
the control path leads to control flow errors, such as a branch being taken, when it
should not have. Such control flow errors may lead to an erroneous result in the end of
the computation.

Figure 2.8 shows a detailed view of the architecture of the miniMIPS with the
sensitive areas.

2.3.2 SEEs Divided by Effect on a Processor

Faults can be classified as having data or control flow effect in a processor. Data
flow effect is defined as an error in a variable during the computation. It means that the
program was correctly executed, but with an erroneous result. An example would be the
instruction “Registers A = Register B + Register C”, where the value stored in A would
be “Register B + (Register C + 1)”, due to an SEU that happened in Register C. It
means that the processor correctly performed the sum in the ALU, but register C had an
incorrect value. Control flow effect is defined as an error in the program execution. It
means that the variables were correct, but the computation was incorrect. An example

26

would be the same instruction, “Registers A = Register B + Register C”, where the
value store in A would be “Register B - Register C”, due to an SET in the ALU that
subtracted the registers, instead of summing them.

In order to differentiate a control flow from a data flow error, we check the PC
evolution and compare it with a golden module. In case of a mismatch, the fault is
classified as a control flow effect. If not, it is classified as a data flow effect. In some
cases, a fault with a data flow effect may cause a control flow effect. An example could
be an error in a register used to decide whether a branch should be taken or not. In such
cases, we consider it as a control flow effect.

The relation between the location of a fault and its effect is not direct. A fault in the
register bank not necessarily will have a data flow effect on a processor. Likewise, a
fault in the control path will have a control flow effect.

Figure 2.8 shows the difference between a control flow and a data flow effect in a
processor. On the left, one can see a control flow effect, where a jump in the program
execution causes an error. On the bottom right, one can see the data memory with errors
due to a data flow effect fault.

Figure 2.7: miniMIPS sensitive areas under SEE.

2.4 Fault Injection and Testing

Although the effect of faults is increasing at ground level, the rate is not yet
sufficient to test fault tolerant techniques. In order to do so, fault emulation and testing
is necessary. In this Section, we will go over a few options to do so, such a software
fault injection by simulation, fault injection in the FPGA’s memory configuration
bitstream and irradiation experiments.

27

2.4.1 Fault Injection by Simulation

Fault injection by simulation can be done by injecting faults at logical or electrical
level in commercial simulators, such as ModelSim, from Mentor, or open source
simulators, such as Spice. The main idea behind fault injection by simulation is to add
interferences to the circuit. The good side about it is that it offers a huge control over
the fault injection because it can be clock cycle accurate and therefore big amounts of
data as a result. The drawback is that the description of the circuit is needed. If at
electrical level, SPICE level description is used. If at logical level, Register Transfer
Level (RTL) hardware description level can be used or logical level description. By
simulating at RTL hardware description, one can get all values from all the signals
implementing the circuit (and memory values) during simulation. Also, it is possible to
stop the simulation, access any value inside the circuit, and resume the simulation. The
main drawback is that fault injection by simulation requires huge computational power.
The injection of 100,000 faults, depending on the abstraction level, may take a few days
to finish.

One example was presented in Azambuja (2010b), where a fault injector by logical
simulation was introduced. It was implemented in Java and could generate a script to be
run in ModelSim. The software had as inputs the list of signals describing the DUT, a
definition file containing the description of the faults to be injected and a definition file
containing the description of the application, with information such as runtime, correct
output values and the memory used by it.

2.4.2 FPGA Memory Configuration Bitstream Fault Injection

In this type of fault injection, the FPGA board is used to replace the simulator. The
circuit is implemented using the FPGA, which can emulate the circuit behavior at RTL
level. By doing so, instead of using the simulator, a much faster hardware circuit is
used. The mechanisms to inject faults and controlling the process are more complex and
harder to be implemented, but the speed improvement makes it possible to inject faults
in much higher rates than by injecting faults by simulation.

There are mainly two techniques to perform fault injection in FPGA emulation.
Using FPGA reconfiguration mechanisms, a fault is injected by loading a new bitstream
into the FPGA, which corresponds to the original bitstream with one or more bits
flipped (faulty circuit). Partial reconfiguration can be used to reduce the size of the
bitstream. In this case, faults are injected in all configuration bits of the FPGA
emulating upsets in the bits that control the routing, the user flip-flops and the bits that
program the combinational circuits, the well-known lookup tables (LUT). Examples of
FPGA fault injectors in the bitstream are FT-Unshades (NAPOLES, 2007) and the one
introduced by Nazar (2012b).

Alternatively, circuit instrumentation can be used for fault injection. Circuit
instrumentation consists in inserting some hardware modules, also called instruments.
They can provide external controllability and observability to inject a fault and observe
its effects. Circuit instrumentation is an automatic process that is basically performed by
substituting cells of the DUT by their equivalent instrumented cells. Then, the
instrumented circuit is prototyped in the FPGA. An example is AMUSE (ENTRENA,
2010).

28

2.4.3 Irradiation Experiments

The last and closest to real space radiation are irradiation experiments. It is possible,
at ground level, to use energized particles to emulate the particles present in space. In
order to do so, particles are accelerated and thrown at the circuit under test. Such
equipment is called Cyclotron and can be found in different places in the world, using
different types of energized particles. They can accelerate heavy ions, protons and
neutrons.

Such experiments require a facility that can accelerate particles at high energies,
such as 10MeV, with a constant flux of particles. Equipment to measure the flux, time
of exposure and energy of particles is also required. Due to the complexity of the
experiment, costs for renting the facilities and the danger involved, irradiation
experiments can be very expensive. Because of that, irradiation campaigns take a long
preparation time, in order to guarantee that the tested circuit will work, as well as the
measurements. On the other hand, irradiation experiments are the closest we can get to
simulate the space environment at ground level.

Examples of cyclotrons are the heady ions source in Leuven, Belgium, the proton
source in Karlsruhe, Germany, and neutron sources in Didcot, United Kingdom, and
Los Alamos, USA. For TID testing, a cyclotron can be found in Sao Jose dos Campos,
Brazil, with a Cobalt-60 as radioactive source.

29

3 FAULT TOLERANCE TECHNIQUES FOR
PROCESSORS

Fault tolerance techniques aiming to detect transient effects can be mainly divided in
three broad categories: (1) software-based techniques, (2) hardware-based techniques
and (3) hybrid techniques. Fault tolerance techniques can be applied at different levels
of implementation, starting from the software level down to the architecture description
level, the logical and transistor level, until the layout level. In this thesis, we will focus
on techniques applied at software level and hybrid techniques.

Fault tolerance techniques based on software rely on adding extra instructions to the
original program code to detect and/or correct faults (GOLOUBEVA, 2003), (OH,
2002b). They may be able to detect faults that affect the data and/or the control flow.
Software-based techniques provide high flexibility, low development time and cost,
since there is no need to modify the hardware. In addition, new generations of
microprocessors that do not have RadHard versions can be used. As a result, aerospace
applications can use Commercial Off-The-Shelf (COTS) processors with RadHard
software. However, results from random fault injection campaigns have shown the
impossibility of software-based techniques alone in achieving complete fault coverage
for SEU (BOLCHINI, 2005), (AZAMBUJA, 2011a). This limitation is due to the
inability of the software to protect all the possible control flow effects that can occur in
the microprocessor.

As a consequence of the redundant instructions inserted in the original program
code, software-based techniques have as drawbacks high overheads in program memory
footprint and a significant increase in the execution time. The program memory
increases due to the additional instructions inserted into the original code, while the data
memory increases due to variable replication (in some cases, variables store in the data
memory are duplicated). Performance degradation comes from the execution of
redundant instructions (GOLOUBEVA, 2003), (OH, 2002).

Hardware-based techniques change the original architecture of the system or its
components by adding extra hardware modules. Such techniques must be implemented
during the design of the system to be hardened. Therefore, they are not suited for
hardening COTS processors or closed Intellectual Property (IP) components. Their main
market is Application Specific Integrated Circuits (ASICs) and FPGA based systems.
Hardware-based techniques can be intrusive, when they modify the architecture of a
processor, or non-intrusive, when they do not modify the processor's architecture, but
the system's architecture, through communication buses or by adding extra hardware
modules that do not require changes inside the components from the system. The most
common non-intrusive technique is called watchdog processor (MAHMOOD, 1988),
where a small hardware module uses the access between processor and memory to

30

check the processor's transitions and then monitor its behavior. Intrusive techniques are
mainly related to replicating hardware and adding logical and arithmetic checkers.

As a consequence, hardware-based techniques can be very expensive duo to changes
in the design project, or Non-Recurring Engineering (NRE) costs, development time,
verification time, and testing. Also, besides the price in extra die area to fit the
redundant hardware modules, it is very common that RadHard processors have lower
performances than non-hardened components because they also are fabricated in older
technologies compared to the state-of-the-art COTS processors due to the cost of
developing new RadHard processors at any new technology release. Figure 3.1 shows a
graphic comparing RadHard with COTS processors according to the processor
throughput, or Mega (106) Instructions Per Second (MIPS). As one can see, the graphic
shows an approximate 10 year gap. It is true that MIPS is not a fair comparison between
processors with different architectures (which is the case of the figure), but is still valid
to show that there is a gap in performance between COTS and RadHard processors. It
may not be as large as 10 years, but it exists.

Figure 3.1: COTS x RadHard processor throughput (KEYS, 2008).

Hardware based techniques can be based on duplication with comparison, EDAC
codes to protect registers and some other logical parity techniques to protect the logic.
But all of them have some limitation on fault detection coverage. Without duplicating
the whole processor, hardware-based techniques cannot achieve full fault detection
against SEE, since part of the processor will always be unhardened. Non-intrusive
modules, such as watchdogs, also cannot achieve full fault tolerance, since they do not
have access to internal information from the microprocessor, like register values, for
example. On the other hand, watchdogs and intrusive hardware-based techniques are the
only fault tolerant techniques that can detect an infinite loop in an instruction, such as a
persistent error, since software-based techniques require that the system is executing its
instructions in order to detect an error.

31

Hybrid techniques combine software-based techniques with hardware-based
techniques. The design space for hybrid techniques is quite large, since it multiplies all
hardware-based possibilities per the software-based options.

The result from the use of hybrid technique is a high effectiveness, since they can
provide high levels of dependability while minimizing the introduced overhead. They
also offer low development time (from the software-based techniques) and small
performance degradation (from the hardware-based techniques). As drawbacks, they
require the application source code (in order to transform it), which is not always
available, and require changes, at least, in the system’s architecture.

In the following subsections, the main techniques in each category are commented
and their strengths and weaknesses concerning this scenario are discussed.

3.1 Software-Based Techniques

Software-based techniques, or Software Implemented Hardware Fault Tolerance
(SIHFT) techniques, use the concepts of operation, time and information redundancy to
detect the occurrence of faults during program execution. In the past years techniques
have been proposed so that can be automatically applied to the source code of a
program, reducing significantly the development time and costs (RHOD, 2008). By
doing so, the hardening is applied during software construction. The main drawbacks
are the performance degradation, due to the extra instructions that will be executed by
the processor, slowing the overall application runtime, and the overhead in program
memory due to the extra instructions. As far as the fault tolerance is the only concern,
the overhead in memory is not an issue, since EDAC techniques can be used to protect
the memory. On the other hand, when power is also a concern, memory may become a
constraint, since memories are responsible for most of the power dissipation and area
within a chip.

Software-based techniques can be divided into two groups, according to their aim at
detecting faults: (1) data flow checking techniques, which aim to detect faults affecting
the data flow and (2) control flow checking techniques, which aim at detecting faults
affecting the program's execution control flow. The first group comprises faults in the
data structures of the processor, such as variables, registers and the data memory. Such
faults may lead the processor to calculate an incorrect result, but they do not change the
program flow. The second group is related to faults that affect the normal execution of a
program. Such errors can be a deviation from the normal program flow, which can
cause an infinite loop in a subroutine, for example, or even in an instruction. Software-
based techniques usually aim to detect only one of these two groups of faults.

Among the most important solutions to detect data flow errors, there are a few
techniques that exploit information and operation redundancies, such as Error Detection
by Data Diversity and Duplicated Instructions (ED4I) (OH, 2002a), the transformation
technique proposed in Cheynet (2000) and Variables 1 (VAR1), Variables 2 (VAR2)
and Variables 3 (VAR3) techniques proposed in Azambuja (2011b).

ED4I consists in modifying the original version of the program by multiplying (or
dividing) all variables by a constant value. The replicated version is then executed along
with the unmodified program. After executing both versions, their results are compared
for consistency (considering the constant value added to the replicated version). An
error is detected if a mismatch is found. By running two versions of the code, instead of

32

one, and comparing the results, this technique introduces overheads in memory and
execution time.

The technique proposed in Cheynet (2000) introduces several code transformations
to modify the original program code. Rules are applied in order to duplicate all variables
and operations among them. By doing so, this technique replicates the whole data path
by software. With a duplicated data path, Cheynet (2000) adds instructions to the code
to compare the values stored in the variables and jump to a subroutine in case of
mismatch. The comparisons happen every time a variable is read.

Azambuja (2011b) proposed three techniques to cope with data effect errors. The
techniques were implemented at assembly level, so that they are compiler independent,
and duplicate all the values stored in registers into spare registers (register unused by
the compiler). If there are not enough spare registers, the techniques choose the most
important registers and replicate them, leaving the others unhardened (CHIELLE,
2012). As another option, the compiler can be set to use only half of the registers, which
could introduce execution time overheads, due to the lack of registers. The main
difference between the techniques is that VAR1 checks the consistency every time a
register is read, while VAR2 checks when a registers is written and VAR3 checks only
when the memory is accessed.

Techniques to detect data flow errors introduce overheads in memory (both program
and data) and execution time, due to extra instructions in the original code and variable
and registers replication. On the other hand, results presented at Azambuja (2010a) have
shown 100% fault detecting for all SEU and SET injected directly in the processor's
description.

Software-based techniques to detect control flow errors differ from data flow
because of one main reason, which is: control flow techniques can be optimized. Data
flow techniques always have to replicate data (registers, variables or memory positions)
and compare it, while control flow techniques can analyze the code, comprehend it and
optimize the replication and comparison. Most control flow techniques perform an
analysis on the program's execution flow, divide the program into Basic Blocks (BB)
and parse the program flow as a graph between different nodes (BBs). A BB is defined
as a sequence of consecutive instructions that are always executed sequentially,
meaning that the control flow always enters a BB in the first instructions and leaves at
the end.

A set of software-based techniques has been proposed in the literature aiming at
detecting control flow errors. Among the most important, there are the techniques called
Control-Flow Checking using Assertions (CCA) (MCFEARIN, 1995), Enhanced
Control-Flow Checking using Assertions (ECCA) (ALKHALIFA, 1999), Control-Flow
Checking by Software Signatures (CFCSS) (OH, 2002b), Control-flow Error Detection
through Assertions (CEDA) (VEMU, 2011) and Automatic Correction of Control Flow
Errors (ACCE) (VEMU, 2007).

CCA introduced the concept of Block Identifier (BID) and Control Flow Identifier
(CFID). The first identifier is a unique value for each BB, while the second is used to
identify transitions between BBs. The technique uses both identifiers to monitor the
behavior of the control flow, using global registers to store their values. Whenever the
control flows enters a BB, the BID register is set to the BB’s unique value. The CFID is
stored in a two-position array (implemented over two registers) that stores the transition
between two BBs. By analyzing these values, CCA could detect most of the errors when
moving from one BB to another. The main problem in this technique was that some

33

BBs shared the same CFID value, which led to undetected errors. In order to improve it,
ECCA was proposed by Alkhalifa (1999). Alkhalifa (1999) improved CCA into ECCA
by adding a new identifier and dividing the BBs into groups. He was then able to
improve CCA detection rates, but without being able to detect intra-block errors (inside
the BB).

CFCSS was proposed in 2002 to complement ED4I in its fault detection rates. It
presented a Global Signature Register (GSR) to keep track of the control flow. By
assigning BB values to GSR, he was able to detect most control flow errors, but still had
issues with BB identifiers sharing the same value (which also happens to CCA).

In Vemu (2011), a new technique called CEDA was proposed. CEDA uses a global
register to store a control flow identifier, called Node Signature (NS). The main
difference between CEDA and the other techniques is that it performs a deeper analysis
on the program code, identifying networks of BBs and possible transitions between
them. By doing so, it creates a transition signature to guarantee that the transition
between BBs is valid. It assigns a node signature and a node exit signature to each basic
block, every time the control flow enters and leaves a basic block, respectively. Results
show that CEDA can detect 90% of faults that cause an incorrect transition between
BBs. On the other hand, CEDA cannot detect control flow errors inside a BB.

In order to improve CEDA, Vemu (2007) proposed ACCE and ACCE with
Duplication (ACCED). They use the same detection capabilities from CEDA, but
improve it by allowing error correction. Despite being unable to mitigate all control
flow errors, ACCE imposes low latency for error correction with performance overhead
of about 20%. The only issue that remains is that neither ACCE nor any software-based
technique is able to detect intra-node control flow errors, or in other words, faults
causing control flow errors inside the same BB.

3.2 Hardware-Based Techniques

Hardware-based techniques must be implemented during the design phase. Because
of that, such techniques cannot be applied to COTS processors or restricted IPs targeted
at the general purpose market. Their use is mainly restricted to ASICs or FPGA based
designs (that do not use restricted IPs). In some cases, hardware-based techniques
applied to components may suffer commercial embargos, such as the International
Traffic in Arms Regulation (ITAR), which is a set of United States government
regulations that control the export and import of defense-related articles and services on
the United States Munitions List (USML). As an example, Brazil is not able to buy
RadHard Xilinx FPGAs from the United States of America. These techniques can be
classified in two main groups: redundancy based, and hardware monitors. The first
group relies on time or space redundancy, while the second uses watchdogs, checkers or
IPs to monitor the main processor.

Techniques based on space redundancy are grounded in the single fault model,
where only one of the hardware redundant copies is affected by transient upsets
(ROSSI, 2005). It means that only one of the modules will be affected by a transient
fault and therefore the fault detection rate should be 100%. On the other hand, studies
have shown that a single fault may affect two hardware modules in case of SRAM-
based FPGAs (KASTENSMIDT, 2005) due to the routing architecture, or in adjacent
standard cells in ASICs as shown by Almeida (ALMEIDA, 2012).

34

The most well-known technique is called Duplication With Comparison (DWC)

(WAKERLY, 1978). It duplicates the whole hardware and adds a comparator module to
detect a mismatch between both modules. Another option would be to triplicate the
hardware by using Triple Modular Redundancy (TMR), which not only detects an error,
but also indicates which module generated the error, allowing correction. In case of an
FPGA, the erroneous module could be partially reprogramed in the board, correcting
both transient and permanent errors. The granularity of the replication may change,
according to the designer’s constraints (PILOTTO, 2008).

The literature also presents other approaches, such as the one proposed in
Nieuwland (2006), where the critical path of combinational circuits is hardened through
the duplication of gates and transient errors are masked due to the extra capacitance
available in the node. It is also very common to find microprocessors partially hardened,
where only the most critical registers are replicated, such as the PC and the SP.

Differently from space redundancy, space redundancy uses the same computing
hardware modules to compare its value shifted in time. Usually extra hardware is added
to introduce a fixed time delay δ. Anghel (2000) proposed an architecture where the
outputs of a combinational circuit were duplicated and stored with different time delays
(0 and δ). A comparator was then introduced to compare the stored results after δ,
flagging an error in case of mismatch. It is important to mention that δ equals to the
maximum transient pulse length.

Although such techniques can provide high fault detection rates, they introduce huge
area overheads (a circuit hardened with TMR has about 3.5 times the size of the original
circuit), which leads to higher power consumption as well. Such overheads are not
acceptable in embedded systems. When using time redundancy, the value of δ tends to
increase due to technology aspects. This increase impacts directly in every operation
cycle, leading to unbearable performance overheads.

As an alternative to time and space redundancy, hardware-based techniques offer
monitoring blocks. The second group of techniques adds special hardware modules to
the system’s architecture, called watchdog processors (MAHMOOD, 1988), checkers
(AUSTIN, 1999) or Infrastructure Intellectual Properties (I-IP) (LISBOA, 2007). Such
devices monitor the control flow of the programs inside the processors and memory
accesses performed by them. In order to do that, the behavior of the processor running
the application may be monitored using three types of operations: (1) Memory access
checks, which look for unexpected memory accesses, such as unused memory areas and
restricted function memory areas (NAMJOO, 1982), (2) Consistency checks, where the
monitor checks if the value a register hold is acceptable, by exploiting information
about the task performed by the program (MAHMOOD, 1983) and (3) Control flow
checks, consisting in checking if the branches taken are consistent with the program
graph of the application running in the processor (NAMJOO, 1983), (OHLSSON,
1995), (SCHUETTE, 1987), and (WILKEN, 1990).

Watchdog processors have one characteristic that is hardly found in other fault
tolerance techniques, which is the ability to detect stuck-at errors in the execution flow,
such as when a processor loops in one single instruction only. When considering
watchdog processors, two types may be envisioned: active and passive watchdog
processors. The active watchdog processor executes a program concurrently with the
main processor, checking whether its program evolves accordingly to the one executed
by the main processor. It continuously checks both programs and flags an error in case
of mismatch (NAMJOO, 1983). The result is a simplified DWC approach, but still

35

introducing area overheads to implement the watchdog processor and small

performance overhead to compare both modules.

The passive watchdog processor does not run any program. Instead, it computes a
signature by observing the main processor’s buses so that it can perform consistency
checks. An interesting approach was proposed in Wilken (1990), where a watchdog
processor observes the instructions executed by the main processor and computes a
runtime signature. The code running on the main processor is modified so that when
entering a basic block, an instruction is issued to inform the watchdog processor a pre-
calculated signature, while the main processor executes a NOP instruction. The
watchdog processor then compares the received signature with its pre-computed
signature and flags an error in case of mismatch. Another similar watchdog processor
was proposed in Ohlsson (1995), where it computed a signature based on the addresses
of the instruction that the main processor fetched. Watchdogs are interesting
approaches, since they can be implemented intrusively, by adding a new instruction to
the processor’s Instruction Set Architecture (ISA), for example, or non-intrusively, by
making the watchdog processor to observe the buses between processor and its memory.
The overheads in area can be small, depending on the watchdog processor’s complexity
and they usually have a small impact on the system.

As another alternative, one can use checkers as a hardware-based technique. An
architecture called DIVA was proposed in Austin (1999), using a simple functional
checker to verify the correctness of all computation being executed in the main
processor. The technique added a functional checker to the execution stage of the
pipeline, so that it allowed only correct results to reach the register barrier. The
implementation of the checker was done so that it was simpler than the core processor,
since it received the instruction to be executed together with the values of the input
operands and the result from the main processor. By doing so, the checker did not have
to care about address calculations and therefore could be implemented in a simpler way
than the processor core.

Instead of only detecting an error, the authors decided for the risky assumption that
the checker is always correct. The assumption came from the fact that they used
oversized transistors in its construction and also that they performed an extensive
verification in the design phase. By doing so, in case of a mismatch between the core
processor and the checker, DIVA could send the result of the checker to the register
barrier. If a new instruction would not be released for the checker after a given number
of clock cycles, the core processor’s pipeline would be flushed and the processor
restarted from a given point. The main drawback of this technique is that the assumption
that the checker is always correct is not always true. A second drawback is that this
technique, unlike the monitors, requires deep changes in the processor architecture.

3.3 Hybrid Techniques

Hybrid techniques are very effective, since they offer the designer a tradeoff
between hardware- and software-based techniques. They provide low cost software
transformations, high detection rates and small area overheads from the software-based
techniques and also high performance and high detection rates from the hardware-based
techniques. The possibility to choose among the available techniques and how much of
each technique to use (partially of fully) expand the design space and offer the
implementation of hardening techniques targeted to specific applications.

36

As well as the advantages that hybrid techniques inherit from software- and

hardware-based techniques, come also a few disadvantages. Among the drawbacks, one
can notice the requirement of the source code of the application that processor core
should run (which cannot be always fulfilled), performance degradation and memory
overhead from the software-based techniques and area overhead from the hardware-
based techniques. On the other hand, these drawbacks are normally smaller than when
using a pure software- or hardware-based technique.

They combine software-based techniques with hardware-based techniques. A hybrid
technique can be a simple combination of a software-based technique with a hardware-
based technique, such as in Cuenca-Asensi (2011) and Lindoso (2012), or a
combination where software- and hardware-based techniques interact with each other,
such as in Schialli (2006), Rhod (2008), Bernardi (2006) and Nicolaidis (1999). The
first group is more easily implemented, since it’s a pure combination of techniques. It
can be optimized by analyzing overheads and detection rates to better choose the
techniques to be used, but it has a limited design space, since it does not consider the
techniques where software- and hardware-based techniques share information. The
second group, on the other hand, has a larger design space and therefore offers the
designer more hardening options, when considering performance degradation and area
overhead.

In Cuenca-Asensi (2011), a hardware/software co-design methodology is proposed
to detect SEUs in microprocessors. The proposed hardening infrastructure receives a
specification of the system requirements that takes into account constraints related to
silicon area, performance, power consumption, hardware cost, reliability, availability,
safety, security and recovery time. It then chooses a set of the best techniques for the
given system and tests them in the real processor implementation. By doing so, it can
then choose the best combination from the available design space. The proposed
hardening infrastructure offers the technique called SWIFT-R (REIS, 2007) as a
software-based technique and selective TMR as a hardware-based technique.

The methodology proposed by Cuenca-Asensi (2011) was then improved by
Lindoso (2012) into a methodology to correct SET in microprocessors. The
methodology follows the same principles and offers the same software- and hardware-
based techniques. The main difference is that the system to test the chosen set of fault
tolerance techniques was improved from FT-Unshades (NAPOLES, 2007) to AMUSE
(ENTRENA, 2010), offering faster test results. The main drawback of both these
techniques is that they are intrusive, meaning that they cannot be applied to a COTS
microprocessor. Also, if the program code is protected, none of the techniques could be
applied. On the other hand, they offer a methodology to choose and test different
techniques from a given design space.

As an alternative to these intrusive approaches, Schialli (2006) introduced the idea
of an Infrastructure IP (I-IP). He proposed a very simple I-IP to be put between the main
processor and its instruction memory, so that it could substitute the fetched code with
hardened one, on-the-fly. The main problem of his proposal is that the I-IP did not
contain an ALU or a control unit and therefore introduced significant performance
overheads without being supported by a suitable design flow environment.

Another hybrid technique was presented in Bernardi (2006) adopting software-based
techniques in a minimal version along with the introduction of an I-IP. The software
was modified so that it implemented instruction duplication and information
redundancy. Also, instructions to communicate to the I-IP were added to exchange

37

information about the control flow execution. This I-IP worked concurrently with the

main processor performing consistency checks among duplicated instructions and
verifying the correctness of the program flow by monitoring the addresses.

An approach to minimize the overhead was then proposed in Rhod (2008). It
combined the main ideas behind Schialli (2006) and DIVA by introducing a new I-IP
between the main processor and its program memory with an architecture that could be
customized by the main processor. It also implemented an ALU and a control unit, so
that it also could compute the instruction fetched from the memory. By doing so, it
could monitor the buses between the microprocessor and its program memory, get the
operands of the original data processing instructions, compute them and compare to the
results from the microprocessor for correctness. Also, it could check the feasibility of
the address accessed by the processor (characteristic from hardware monitoring
devices). Although the I-IPs could provide the ability to harden the program even
without the source code, they still require intrusive changes in the main processors.

In Nicolaidis (1999), a hybrid technique based on duplication, time redundancy, and
Code Word State Preserving (CWSP) was proposed. The CWSP introduced a gate
topology to replace the last gates of a combinational circuit, so that it would be able to
pass the correct value in the combinational logic in the presence of a SET. When
concerning the duplication and the time redundancy, CWSP compared both outputs for
correctness. When identical, the next state would be equal to the corresponding output
function. When different, the next state would remain equal to the present state. By
using time redundancy, CWSP introduced a delay δ to the circuit’s outputs. As one can
notice, the main disadvantage is the need to change the CMOS logic in the next stages
by inserting extra transistors. Also, the time redundancy introduced significant
overheads in performance.

3.4 Summary

This subsection summarizes all faults tolerant techniques mentioned in this section.
Table 3.1 evaluates them according to intrusiveness, fault detection, fault correction,
fault coverage and overheads in area, execution time, program memory and data
memory. Classifications LOW, MEDIUM and HIGH are used when the value is not
specific.

38

Table 3.1: Fault tolerance techniques summary

Fault
Tolerance
Technique

Intrusive

Fault
Correction

Fault
Coverage

Area
Overhead

Execution
Time

Overhead

Memory
Overhead

ED4I NO NO MEDIUM - HIGH HIGH

Cheynet
(2000)

NO

NO

HIGH

-

HIGH

HIGH

VAR3 NO NO HIGH - MEDIUM MEDIUM

CCA NO NO MEDIUM - HIGH HIGH

ECCA NO NO MEDIUM - HIGH HIGH

CFCSS NO NO MEDIUM - HIGH HIGH

CEDA NO NO HIGH - LOW LOW

ACCE NO YES HIGH - LOW LOW

DWC YES NO HIGH 2 times - -

TMR YES MASK HIGH 3 times - -

Nieuwland
(2006)

YES

MASK

HIGH

2 times

-

-

Anghel (2000) YES NO LOW LOW - -

Wilken (1990) YES NO LOW LOW - -

Ohlsson
(1995)

YES

NO

LOW

LOW

-

-

DIVA YES NO LOW MEDIUM - -

Cuenca-Asensi
(2011)

YES

YES

HIGH

HIGH

HIGH

HIGH

Lindoso
(2012)

YES

YES

HIGH

HIGH

HIGH

HIGH

Schialli (2006) YES NO MEDIUM LOW HIGH -

Bernardi
(2006)

YES

NO

MEDIUM

LOW

MEDIUM

MEDIUM

Rhod (2008) NO NO MEDIUM LOW - -

Nicolaidis
(1999)

YES

MASK

HIGH

2 times

HIGH

-

39

4 PROPOSED TECHNIQUES TO DETECT TRANSIENT
FAULTS IN PROCESSORS

This part of the thesis describes the developed techniques to detect transient errors
affecting processors. As stated in the previous chapter, software-based techniques are
unable to detect all faults affecting the control flow, while hardware-based techniques
cannot protect processors without a huge area overhead. Hybrid techniques have
presented a better tradeoff between overhead and fault detection. This chapter focuses in
presenting and discussing three new hybrid fault tolerant techniques that can achieve
high fault detection in processors, at small area overhead and performance degradation.

Software-based techniques have shown to be the best approach to dealing with data
flow errors, since they don’t require any extra hardware and offer full fault detection at
a cost around 40% performance degradation (AZAMBUJA, 2011b). Because of that,
this chapter presents mainly techniques to detect control flow errors, since they can be
combined with software-based techniques presented in previous works (AZAMBUJA,
2011a).

This section presents the HPCT tool to transform program code, two known
software-based techniques (Variables and Inverted Branches), and three innovative
hybrid techniques to detect transient faults in embedded microprocessors: PODER,
OCFCM and HETA. These techniques include the benefits proposed in the Variables
method and in the Inverted Branch method.

4.1 Hardening Post Compiling Tool (HPCT)

Code transformation is a complex task that requires code analysis and processing,
instruction replication, and instruction address correction. The code analysis and
processing is required to find out code characteristics, such as branch instruction
addresses, registers being used (and in some cases, the ones that are more important to
be hardened), subroutines, memory area where the program and data are located, branch
instruction destination address, and the program flow graph (basic block structure). The
instruction replication uses the analysis and processing to insert instructions to the
original program code, considering which registers are currently not being used. When
instructions are added or moved, the destination addresses of branch instructions may
change and they must be updated, including relative addresses, which must be
recalculated. Such modifications are very hard to be done by hand, especially when
dealing with large program codes with lots of branch instructions.

In order to automate the program code transformation, we used a tool called
Hardening Post Compiling Translator (HPCT), introduced by Azambuja (2010b), and
improved to implement the proposed hybrid techniques. It was implemented in Java,
due to its portability to any operating system with Java Runtime Environment (JRE),

40

and easy string parsing and manipulation. It implements a class for each technique and
therefore could be extended to implement the proposed hybrid techniques, including the
generation of hardware modules, when necessary.

The tool receives as inputs the program’s binary code, which makes it compiler and
language independent, the hardening techniques to be applied, ISA definitions and some
characteristics of the processor’s architecture. The user is allowed to choose the
hardening techniques in a Graphical User Interface (GUI), while ISA definitions and
processor’s architecture are described in classes. Current available processors are the
miniMIPS and Leon II. The tool outputs a binary code, processor dependent, which can
be directly interpreted by the target processor. This workflow can be seen in Figure 4.1.

Figure 4.1: HPCT’s workflow.

From the original program code, the HPCT tool extracts all the necessary
information to transform the code, such as branch instruction memory locations and
destination addresses, program execution flow graph, relations between the nodes of the
flow graph, registers used and available, among other characteristics. Using this
information, it is able to insert, remove and move instructions and blocks of
instructions, such as procedures.

The extraction of branch instruction memory locations, destination addresses, used
and spare registers can be easily done by reading the original program code and
calculating the destination addresses for the branch instructions. The extraction of the
program execution flow graph, on the other hand, can be more difficult. The control
flow graph is divided in basic blocks (nodes) and control flow transitions (edges).
Initially the tool adds the first non-branch line of code. The program code is than
iterated until a branch instruction is found. When that happens, a node is finished and
two new nodes begin in the instruction after the branch instruction and at the branch
instruction’s destination address. In some cases, instructions store the destination
address in a register known only at runtime, such as Jump to Register (JR) or Jump and
Link Register (JALR) instructions. When that happens, the code must be further
analyzed in order to try to find the runtime value of the register. When the value is not
found, the control flow graph can still be partially extracted and used by the techniques,
but with vulnerabilities in such points.

41

The insertion of new instructions to the program code must take into account the
control flow graph. Whenever an instruction is added or removed, all the addresses,
relative or absolute, must be checked for consistency. When replicating an instruction
using spare registers, such registers must also be accounted for and removed from the
available registers list.

4.2 Improved Variables Technique (VAR)

The idea behind the Variables technique is to protect the data path of the processor.
It does so by replicating all the registers used by the processor on spare ones (registers
not used by the application running).

In order to replicate the registers, this technique assigns a spare register to each used
register and replicates all write instructions performed on the original register to its
copy. Also, every read operation is duplicated, so as to duplicate the data path. At given
points, consistency checks are performed through branch instructions. Whenever a
mismatch between the register and its copy is found, the program execution flow
branches to a predefined subroutine that flags the error.

Considering that users are only interested in the values stored in the data memory (or
coming out of the processor), the Variables technique assumes that if they are correct,
so is the system. Because of that, consistency checks are only performed when a register
is used to load or store a value in the memory. Also, in order to keep the control flow
consistent, registers are also checked before branch instructions. The result is that the
data being stored and read from memory is correct, as well as the data being used by the
branch instructions.

4.2.1 Implementation Details

In order to evaluate the Variables techniques, four algorithms were used: 6x6 matrix
multiplication, bubble sort, tiny encryption and run length algorithms were used. We
used the HPCT tool to harden each application according to the Variables
transformation.

The transformation follows three rules:

• Every variable x must be duplicated. Consider x1 and x2 the original variable
and its copy;

• Every operation performed on a variable x must be performed on x1 e x2;

• Before every branch instruction or instruction that accesses the memory,
variables by the instruction must be checked for consistency with their
copies. In case of mismatch, and error should be flagged.

Figure 4.2 illustrates a piece of code protected by Variables technique. The original
code has three instructions that operate with registers and memory elements.
Instructions 1 and 3 are inserted to protect the load instruction located in position 2 (ld
r1, [r4]), where the first instruction verifies the register containing the base address for
the load instruction (r4) and its replica (r4'). The second instruction replicates the load
instruction, using the replicated memory position (r4' + offset) and loads the value into
the replicated register (r1'). Instructions 8, 9 and 11 are inserted to protect the store
instruction. While instructions 8 and 9 verify values stored in the base and data registers
(r1 and r2, respectively) against their replicas (r1' and r2', respectively). Instruction 11

42

R
un

 L
en

gt
h

En
co

de

B
ub

bl
e

So
rt

M
at

rix

M
ul

tip
lic

at
io

n
En

cr
yp

tio
n

replicates the original store instruction located in position 10 (st [r1], r2) using the
replicated registers r1' and r2' over a replicated memory address (r1' + offset).

Original Code Hardened Code

1: ld r1, [r4] 1: bne r4, r4', error

2: ld r1, [r4]

3: ld r1', [r4' + offset]

4: add r2, r3, 4 4: add r2, r3, 4

5: add r2', r3', 4

10: st [r1], r2

6: bne r1, r1', error

7: bne r2, r2', error

8: st [r1], r2

9: st [r1' + offset], r2'

Figure 4.2: Variables technique’s transformation.

The original add instruction located in position 6 (add r1, r2, r4) operates only over
registers and therefore does not need any offset. In order to protect this instruction,
instruction 7 is inserted, which performs the original instruction, but using the replicated
registers (r2' and r4') and writing over the replicated destination register (r1').

Table 4.1: Characteristics for the variables technique program transformation

Application Original Variables

 Execution Time (μs) 1,257 1,821 (1.45×)

 Code Size (bytes) 1,548 2,644 (1.71×)

 Data Size (bytes) 524 1,048 (2.00×)

 Execution Time (μs) 231 375 (1.62×)

 Code Size (bytes) 1,212 1,916 (1.58×)

 Data Size (bytes) 120 240 (2.00×)

 Execution Time (μs) 157 266 (1.69×)

 Code Size (bytes) 896 1,688 (1.88×)

 Data Size (bytes) 28 56 (2.00×)

 Execution Time (μs) 2,372 3,914 (1.65×)

 Code Size (bytes) 2,772 5,608 (2.02×)

 Data Size (bytes) 236 472 (2.00×)

43

This transformation duplicates the data being stored, i.e., the number of registers and
memory addresses. Consequently, the applications are limited to a portion of the
available registers and memory address. In some cases, compilers can restrict the
application to a small set of registers and memory addresses, allowing the duplication.
In other cases, the rules can be applied to a subset of the used registers and memory
positions, although it may compromise the fault detection rate.

Table 4.1 shows the results after the Variables transformation on four different case-
study applications. As one can see, the performance overhead varies from 1.45 to 1.69
the original execution time, which is a small performance degradation, when compared
to other techniques to detect errors in the data flow, such as ED4I and Cheynet (2000).
The memory overhead, on the other hand, is considerably big, since it varies from 1.58
to 2.02 times the original one.

4.3 Improved Inverted Branches Technique (BRA)

The Inverted Branches technique (AZAMBUJA, 2010a) was proposed to detect
faults affecting the decision of branch instructions. Such errors affect the transition
between different BBs and are hard to be detected, since both paths (branch taken or
not) are acceptable in the program flow graph. A simple way of doing that is to replicate
the branch instructions.

Branch instructions are more difficult to replicate than non-branch instructions,
since they are not linear (they always have two possible next addresses). When the
branch is not taken, a branch instruction can be simply replicated and inserted right after
the original branch instruction, but with a destination address pointing to an error
subroutine. If the branch was not taken in the original instruction, is must also not be
taken in the replicated instruction, which will be executed right after the original.

In the possibility that the branch was taken, the replicated branch instruction must be
inserted on the branch destination address, which is the next instruction to be executed
by the microprocessor. The difference is that if the original branch was taken, the same
branch must be taken again. In order to keep the original program flow, the replicated
branch instruction is inverted and its destination address pointed at the error subroutine.

4.3.1 Implementation Details

In order to evaluate both the effectiveness and the feasibility of the Inverted
Branches techniques, four applications were chosen: a 6x6 matrix multiplication, a
bubble sort, a bit count and a Dijkstra’s algorithms. The matrix multiplication and
Dijkstra’s algorithms require a large data processing with only a few loops and therefore
uses mostly the datapath from the microprocessor. On the other hand, the bubble sort
and the bit count algorithms use a large number of loops, control registers and branch
instructions and therefore use mostly the controlpath, since all the data processing is
related to the control registers. Each version was hardened using the HPCT.

The transformation follows three rules:

• Every branch instruction is replicated after the original instruction, with a
new destination address pointing to an error subroutine;

• Every branch instruction is duplicated, inverted and inserted at the
destination address of the original instruction;

44

B
ub

bl
e

So
rt

M
at

rix

M
ul

tip
lic

at
io

n
D

ijk
st

ra

B
it

C
ou

nt

• A jump instruction is added before the inverted branch instruction, pointing
to the instruction after the inverted branch.

Original Code Hardened Code

1: beq r1, r2, 6 1: beq r1, r2, 5

2: beq r1, r2, error

3: add r2, r3, 1 3: add r2, r3, 1

 4: jmp 6

5: bne r1, r2, error

6: add r2, r3, 9

7: jmp end

6: add r2, r3, 9

7: jmp end

Figure 4.3: Inverted Branches technique’s transformation.

Figure 4.3 illustrates the Inverted Branches transformation applied to a program
code. The conditional branch instruction Branch if Equal located in position 1 (beq r1,
r2, 6) will jump to instruction 6 if registers r1 and r2 contain the same value. Initially,
the branch will be replicated and inserted right after the original instruction, in position
2. The original branch instruction is then inverted and inserted in the original branch
destination address (5) by using the Branch if Not Equal instruction (bne r1, r2, error).
In this process, original branch instruction destination addresses must be adjusted to the
new address (5, in the transformed code).

Table 4.2: Characteristics for the Inverted Branches technique program transformation

Application Original Inverted Branches

Execution Time (μs) 1,190 1,221 (1.03×)

Code Size (bytes) 668 792 (1.19×)

Data Size (bytes) 524 524 (–)

Execution Time (μs) 231 250 (1.08×)

Code Size (bytes) 992 1384 (1.40×)

Data Size (bytes) 120 120 (–)

Execution Time (μs) 4,073 4,593 (1.13×)

Code Size (bytes) 460 548 (1.19×)

Data Size (bytes) 28 28 (–)

Execution Time (μs) 1,785 1,920 (1.08×)

Code Size (bytes) 1,784 2,144 (1.20×)

45

Data Size (bytes) 236 236 (–)

The insertion of the replicated inverted branch instruction may affect other
execution flows. For example, instruction 5 cannot be executed after the add instruction
located in position 3 (add r2, r3, 1), since it could modify the value stored in the r2
register and cause a false fault detection. In order to protect the other execution flows,
the inverted branch must be protected with instruction 4, an unconditional branch that
does not allow instruction 5 to be executed after instruction 3, but only after branch
instruction with destination address pointing to its position.

Table 4.2 shows the original and transformed program characteristics, according to
execution time, code size and data size. As one can see, the overheads in execution time
vary from 1.03 (matrix multiplication) to 1.13 (bit count) times the original execution
times. The overheads in program code are larger than execution time, varying from 1.13
to 1.40 times the original value, for the matrix multiplication and bubble sort
algorithms, respectively.

4.4 PODER Technique

PODER is the first hybrid technique proposed in this thesis. It was based in CCA
and its two-element queue to keep track of the changes in the program’s control flow,
BID and CFID. The technique aims at detecting a few types of control flow errors, such
as: (1) incorrect jumps to the beginning of a BB, (2) incorrect jumps inside the same
BB, (3) incorrect jumps to unused memory addresses and (4) control-flow loops. It is
important to note that PODER cannot detect errors in branch instructions, where the
execution flow should have gone to one BB, but went another. In order to do so, it must
be combined with the Inverted Branches software-based technique, described in Section
4.3.

The technique is divided in software-based and hardware-based sides, which
communicate through memory writes at predefined memory addresses. In order to do
so, PODER exploits two main concepts:

• Software-based program code transformation: the original program code is
transformed based on a set of rules and additional instructions are inserted in
order to communicate with the hardware module.

• Hardware-based non-intrusive module: an additional non-intrusive hardware
module is added to the architecture. This module implements watchdog and
decoder characteristics in order to analyze the processor's control-flow and
decode instructions sent from the inserted software instructions.

PODER starts by dividing the program’s execution flow into a BB graph. In a
second step, it assigns unique BID and CFID values for each BB, according to rules
further described. It then starts manipulating these values, during program execution, by
storing them in a two-element queue and performing operations on them to check for
consistency. The main advantage of PODER is that it can be easily divided in software
and hardware, so that we can improve the fault detection and reduce the overheads in
memory usage and performance degradation.

The innovation of this approach relies on the use of a signature mechanism
technique that works in tandem with a hardware module to be able to detect all upsets

46

that affect the control flow. In the following, we describe in detail how these two
concepts work.

4.4.1 Software-based Side

The software-based side of PODER relies on adding extra instructions into the
original program code. So it can send data to the hardware-module and, by doing so,
controlling it. From the four types of control flow errors that PODER aims at, the
software-base side is responsible for protecting the system against incorrect jumps to
the same BB (1) and incorrect jumps to the beginning of a BB (2).

Figure 4.4 shows seven instructions divided into four BBs. Case (1) happens when a
jump occurs with destination address as the first instruction of a BB (addresses 0, 3, 4,
7). Case (2) happens when a jump originates and has as destination address the same
BB (addresses 0 to 2, 1 to 2, 7 to 7, for example).

Address BB - Instruction type

0 BB1 - First instruction

BB1 - Instruction

BB1 - Last instruction

1

2

3 BB2 - Instruction

4 BB3 - First instruction

BB3 - Last instruction 5

6

Branch instruction

7

BB4 - Normal instruction

Figure 4.4: Examples of Incorrect jumps to the same BB (1) and to the beginning of a

BB (2).

The queue management as well as the operations performed on top of BID and
CFID values require a huge amount of computational time, which would lead to
increased performance degradation. In order to reduce drawback, PODER migrates as
much of the computation as possible to the hardware module, being responsible only for
controlling the module. It is important to note that all the program transformation
happens during compilation time, and not at runtime. In the following, we describe in
detail how PODER detects errors (1) and (2).

4.4.1.1 Jumps to the Beginning of a Basic Block

A jump to the beginning of a basic block is a real problem because of the fact that
the initialization of a BB usually contains extra instructions for control flow error
detection. In some cases, the first instruction of a BB resets the control flow assertion,

47

which can lead to undetected errors. Because of that, the detection of control flow errors
to the beginning of a BB is mandatory.

The first step to protect the system against jumps to the beginning of a BB is to
analyze the program’s execution flow and extract a graph containing all the BB and
their transitions. By doing so, we have access to the number of BB in the program code
and their sources and destinations BBs. On a second step, every BB is assigned with
two identifiers: a BID and a CFID. The BID represents each BB with a unique prime
number, while the CFID represents the control flow, by storing the multiplication
product of its destinations’ BBs.

The fact that each BID is a unique prime number combined with the fact that the
CFID is the multiplication of the destination BBs’ BIDS, gives PODER an interesting
characteristic: the operation rest of division of the dequeued CFID by the destination
BB’s BID always returns zero. When the value is different than zero, some control flow
error happened, causing an incorrect transition in the program’s execution flow.

In order to improve the detection, CFIDs are stored in a two-element queue,
initialized with the first BB’s CFID. When the program flow enters a BB, its CFID is
stored in the queue. When it exits a BB, the first CFID is removed from the queue and
divided by the BID. Errors are detected when one of these situations occur:

• The remainder of the division is not zero;

• The queue overflows;

• The queue underflows.

Four BB are presented in Figure 4.5, that shows an example of a BB graph. BB A is
the starting BB and therefore receives the BID value 3. BBs B, C and D receive the
following prime numbers as BID. A has as destination BBs B and C. By multiplying
B’s BID value per C’s BID value, we get A’s CFID, which is 35. The same applies to
the CFID value of BBs B and C. D does not have a CFID value, since it is the execution
flow ends in in. When transitioning from B to A, PODER will divide 35 (A’s CFID,
stored in the two-element queue) by 5 (B’s BID) and the rest of division will be 0,
stating that a correct transition was performed. An incorrect transition from A to D
would result in the division of 35 (stored in the queue during A’s execution) by 11 (D’s
BID) and the rest of division would be 2, which differs from 0, therefore detecting an
error.

48

Figure 4.5: PODER technique’s BB graph.

As mentioned before, the queue management is a heavy task to be performed purely
in software and would result in huge memory and performance losses. Therefore, the
instructions added to the original program code only control the hardware module,
pushing the computation to the hardware module. By doing so, it performs the queue
management when informing CFID and BID values through store instructions.

4.4.1.2 Jumps to the Same Basic Block

An incorrect jump to the same BB is an issue that cannot be solved purely by
software-based techniques. The main problem is that the granularity required for that is
at instruction level, while jumps to different BB require BB granularity. In order to
detect errors inside the same BB, software-based technique would have to duplicate
every instruction, which would lead to huge performance loss. From the related
software-based techniques, none could detect such kind of error.

In order to detect such errors, PODER uses the communication between software-
based techniques and hardware-based techniques. It does so by calculating a second
signature for each BB, called XOR, during compilation time (by the software-based
techniques), and during runtime (by the hardware module). The XOR value equals to
the result of the operation eXclusive OR (XOR) between all the instructions from the
BB.

XOR values are pre-computed by the compiler during the compilation phase and
sent to the hardware module during runtime. The compiler adds additional instructions
to send a reset value to the hardware module when the execution flow enters a BB and
the calculated XOR value when the execution flow exits a BB. This is done by
performing store instruction at predefined memory addresses.

By doing so, the hardware module receives a flag (when the execution flow enters a
BB) to start calculating the XOR value at runtime and a check flag with the compiler-
phase-computed XOR (when the execution flow exits a BB) to compare its calculated
value with the one sent from the program code. When a mismatch is found, an error is
notified.

49

4.4.2 Hardware-based Side

PODER’s hardware-based side aims at complementing the software-based side in
detecting incorrect jumps to the beginning of a BB (1) and incorrect jumps to the same
BB (2), but also detecting incorrect jumps to unused memory addresses (3) and control
flow loops (4).

Figure 4.6 shows ten instructions divided into 4 BBs. Case (3) happens when a jump
occurs with destination address as the unused memory space (between addresses 8 an
the end of the memory). Case (4) happens when a jump originates and has as destination
address the same memory address (addresses 0 to 0, 1 to 1, 7 to 7, for example).

Address BB - Instruction type

0 BB1 - First instruction

BB1 - Instruction

BB1 - Last instruction

1

2

3 BB2 - Instruction

4 BB3 - First instruction

BB3 - Last instruction 5

6

Branch instruction

7

BB4 - Normal instruction

8-end of
memory

Unused memory space

Figure 4.6: Incorrect jumps to unused memory addresses (3) and control flow loops (4).

As mentioned before, the hardware module implements a two-element queue and its
management circuit, and a rest of division operator to detect incorrect jumps to the
beginning of a BB (1). To detect incorrect jumps to the same BB (2), it implements a
XOR operator and registers. Also, it implements a small decoding unit, so that it can
decode store instructions coming from the software-based side at given memory
addresses. In order to have access to the instructions between the processor and the
program memory, the hardware module sits between the memory buses, so that it can

50

read the data and address being exchanged. The overall architecture can be seen in
Figure 4.7.

Figure 4.7: PODER technique’s system architecture.

To detect incorrect jumps to unused memory addresses (3), the hardware module
receives information of the memory area used by the program code (both program and
data). When the processor tries to access an address that is out of range, an error is
flagged.

The last kind of detection is control flow loops (4). In order to detect this kind of
error, a watchdog timer is implemented. The counter is reset every time the execution
flow enters a BB, with the “reset XOR” instruction, from subsection 4.4.1.2. When the
counter overflows, an error is flagged. By doing so, the hardware module can detect a
control flow loop that causes the execution flow to be stuck at a single instruction.

Although PODER can theoretically detect all control flow errors, it has two
drawbacks. The first one is related to the BID and CFID values. Prime numbers increase
at a fast pace, meaning that there is a limited quantity of BIDs that can fit in one 32-bit
register. A bigger issue is that the CIFD value equals to the multiplication of BID
numbers. If BIDs have a limited quantity, CFID soon reaches the 32-bit limit. When it
happens, two registers must be used, increasing the complexity of the technique, as well
as the performance degradation and memory usage.

The second drawback is that the hardware module has to have access to the memory
buses. The buses used by some processors which use on-chip embedded cache
memories may not be accessible by the hardware module. In such cases, PODER cannot
be used.

4.4.3 Implementation Details

PODER is composed of two separated implementations: the software transformation
implementation and the hardware module implementation. Both will be described in
detail in the following.

4.4.3.1PODER’s Software Transformation Implementation

The software transformation is responsible for implementing in the program code
the operations required for detecting jumps to the beginning of a BB and for detecting
jumps to the same BB. The first one can be seen at the two-element queue management,
while the second can be seen as the XOR value calculation management.

In order to do the first, PODER has to implement three operations: (1) to send to
hardware module the BID value of the BB being executed, (2) to store the CFID of the

51

current BB being executed in the two-element queue, and (3) to load the older CFID
from the two-element queue and compare it with its BID value, previously sent by
operation 1. Operation 1 and 2 must be performed in the beginning of the BB execution,
while operation 3 has to be performed when exiting the BB.

The transformation follows two rules:

• A "send BID" and a "enqueue CFID" instructions are inserted at the
beginning of each BB;

• A "dequeue CFID" is inserted at the end of each BB.

Figure 4.8 shows an example of the code transformation required to apply these
three operations. It shows two BBs, from instructions 2 to 5 and 6 to 10. One the left
column, one can see the original program code, while the right column shows the result
of the transformation. Operation 1, or “send BID”, can be seen in the beginning of both
BBs, represented by instructions 2 and 6. It is followed by operation (2), or “enqueue
CFID”, represented by instructions 3 and 7. Operation 3, or “dequeue CFID”, can be
seen in the end of both basic blocks. When comparing to the original program code, one
can see that operation 1 and 2 are applied before the execution of the original
instructions, while instruction 3 is inserted after.

Original Code Hardened Code

1: beq r1, r2, 8 1: beq r1, r2, 6

4: add r2, r3, 1

2: send BID

3: enqueue CFID

4: add r2, r3, 1

5: dequeue CFID

8: add r2, r3, 4

9: st [r1], r2

6: send BID

7: enqueue CFID

8: add r2, r3, 4

9: st [r1], r2

10: dequeue CFID

11: jmp end 11: jmp end

Figure 4.8: PODER technique transformation for queue management.

Operations “send BID” and “enqueue CFID” are implemented in assembly, by
storing the BID or CFID value at given predefined memory addresses. By doing so, the
hardware module can decode the store instruction and read the values from the memory
buses. The operation “dequeue CFID” does not have to send any data and therefore is
performed by a store instruction with an unknown value to a given predefined memory
address.

The XOR value management also requires transformations in the program code. In
order to do that, PODER implements another two operations, which are: (4) to reset the
XOR value in the hardware module, and (5) to check a given XOR value with the

52

calculated by the hardware module. Operation 4 has to be performed in the beginning of
the BB, like operations 1 and 2, while operation 5 has to be performed in the end of the
BB, like operation 3.

The transformation follows two rules:

• A "reset XOR" is inserted at the beginning of each BB;

• A "check XOR" is inserted at the end of each BB.

Figure 4.9 shows the same example from Figure 4.8 applied to operations 4 and 5.
Operation 4, or “reset XOR”, can be seen in the beginning of both BB, represented by
instructions 2 and 5, while operation 5, or “check XOR”, can be seen in the end of both
BB, by instructions 4 and 8.

Original Code Hardened Code

1: beq r1, r2, 6 1: beq r1, r2, 5

3: add r2, r3, 1

2: reset XOR

3: add r2, r3, 4

4: check XOR

6: add r2, r3, 4

7: st [r1], r2

5: reset XOR

6: add r2, r3, 4

7: st [r1], r2

8: check XOR

11: jmp end 9: jmp end

Figure 4.9: PODER technique transformation for XOR value.

Both operations are implemented by using store instruction at predefined memory
addresses. The only difference between them is that “check XOR” has to send a value to
the hardware module, so that it can compare to its calculated one, while “reset XOR” is
a simple store instruction with an unknown value.

Original Code Hardened Code

1: beq r1, r2, 8 1: beq r1, r2, 6

4: add r2, r3, 1

2: reset XOR/send BID

3: enqueue CFID

4: add r2, r3, 1

5: check XOR/dequeue CFID

53

8: add r2, r3, 4

9: st [r1], r2

6: reset XOR/send BID

7: enqueue CFID

8: add r2, r3, 4

9: st [r1], r2

10: check XOR/dequeue CFID

11: jmp end 11: jmp end

Figure 4.10: PODER technique transformation after optimization.

When combining all operations, one can notice that instructions 1, 2 and 4 are
performed in the beginning of the BB, while instruction 3 and 5 are inserted in the end
of the BB. In order to optimize the technique, we combine a few instructions. The
bottleneck in implementing these operations lays in the value that have to be sent to the
hardware module, since only one value can be sent per instruction. The “reset XOR”
does not have to send any data and therefore can be combined with “send BID” or
“enqueue CFID”. The same applies to “dequeue CFID”, which can be combined with
“check XOR”. The result of both techniques applied to the same example code can be
seen in Figure 4.10.

As case-study applications, we chose two algorithms: matrix multiplication and
bubble sort. The first application is data flow oriented, while the second is control flow
oriented. We transformed the code using the HPCT by using as inputs the original
program code, the ISA definition and a file describing the microprocessor’s
architecture. Using these inputs, the HPC-Translator was able to generate a hardened
program code.

Tables 4.3 and 4.4 show the original and modified program’s execution time, code
size and data size for the matrix multiplication and bubble sort algorithms, respectively.
They present results for the original unhardened program, as well as the version
hardened with PODER and hardened with PODER combined with Inverted Branches
and Variables software-based techniques (Combined Techniques).

As one can see, PODER’s execution time varies from 1.33, when applied to the
matrix multiplication, to 1.61, when applied to the bubble sort, times the original
unhardened program code.

Table 4.3: Characteristics for the PODER program transformation to the matrix

multiplication

 Original
Unhardened

PODER Technique

Combined Techniques

Execution Time (μs) 1,257 1,670 (1.33×) 2,943 (2.34×)

Code Size (bytes) 1,548 3,372 (2.18×) 5,576 (3.60×)

Data Size (bytes) 524 528 (–) 1052 (2.00×)

Table 4.4: Characteristics for the PODER program transformation to the bubble sort

54

 Original
Unhardened

PODER Technique

Combined Techniques

Execution Time (μs) 233 374 (1.61×) 588 (2.52×)

Code Size (bytes) 1,212 2,440 (2.01×) 3,960 (3.27×)

Data Size (bytes) 120 124 (–) 244 (2.00×)

4.4.3.2 Hardware Module Implementation

The hardware module was implemented in VHDL language based on a timer that
signals an error if not reset after a given number of clocks. Its enhancement was
performed by adding a 16-bit register to store the real-time calculated XOR value, a 64-
bit register to store the 2-element queue, a rest of division module (which is as big as a
divider) and a simple decoder module.

The decoder module reads the data and address buses between the processor and the
memory looking for store instruction in the program memory area. Whenever a store
instruction is found, it reads the address bus to check which address the processor is
accessing, in order to decode the instruction from the software-based side, and reads the
data bus to read the value being sent. It then manages to perform the operation
requested from the software-based side, such as a “reset XOR/send BID” or a “check
XOR/dequeue CFID”.

Table 4.5 shows the size and performance of the implemented microprocessor and
the hardware module. The hardware module implementation has a total of 128 registers.
It was not protected against SEEs because of the fact that the worst case scenario is a
incorrect fault detection, which would not compromise the system. The implemented
hardware module occupies 15% of the total area of the miniMIPS microprocessor, while
maintaining the same operating frequency. It is important to note that the hardware
module has a fixed size, independent of the processor being used. That means that a
bigger processor would lead to a smaller hardware module percentage, when compared
to the processor.

Table 4.5: Area and performance of miniMIPS and the hardware module used by

PODER technique synthesized in 0.18µ CMOS process technology

Source miniMIPS Hardware Module

Area (µm) 24,261.32 3,640.21

Frequency (MHz) 66.7 66.7

4.5 On-line Control Flow Checker Module (OCFCM)

The On-line Control Flow Checker Module (OCFCM) technique was based on
checkers, watchdog processors and on the reconfigurability offered by modern FPGAs.
It addresses reconfigurable systems with hardcore processors, such as FPGAs with
embedded processors (for example, the Virtex an Excalibur families, from Xilinx and
Altera, respectively) or closed IP processors, such as the Microblaze. It can also be
applied to ASICs, but with a few restrictions.

55

This technique improves PODER because it can detect all errors detected by
PODER (incorrect jumps to the beginning of a BB, incorrect jumps inside the same BB,
incorrect jumps to unused memory addresses and control-flow loops) only by using a
non-intrusive hardware module. The main drawback is that it is application-specific and
therefore is not as simple to be applied to a General Purpose Processor (GPP) as
PODER.

OCFCM itself is defined as a non-intrusive hardware module and therefore could be
considered a pure hardware-based technique. Instead, OCFCM alone cannot achieve its
main objective, which is detecting control flow errors. To do so, it has to be
complemented by the Inverted Branches software-based technique (described in Section
4.3) and configured by the application running in the processor. Because of these
characteristics, it is considered as a hybrid fault tolerant technique.

The technique has a clearer division between software and hardware than PODER,
since the communication between them is very restricted. The division follows two
main concepts:

• Software-based program code transformation: is used to configure the
OCFCMs and perform small transformations in the program code, if
necessary. Also, other software-based techniques are used to complement
OCFCM’s detection capabilities.

• Hardware-based non-intrusive module: an additional non-intrusive hardware
module is added to the architecture. This module implements watchdog and
decoder characteristics in order to analyze the processor's control-flow and
decode instructions sent from the inserted software instructions.

OCFCM starts by analyzing the application’s program code and extracting all the
branch instructions and their addresses. By doing so, it creates an application-specific
hardware module containing all the branch addresses and a decoder that can extract
from these instructions the destination addresses. Then, during runtime, OCFCM can
check the addresses that the processor is accessing and perform checks on the program’s
execution flow. Its main advantages are that it can be automatically generated during
compilation time at small costs of area and performance degradation.

Its main drawback is that each application running on the processor requires its own
OCFCM. It means that a GPP running ten different applications also requires ten
OCFCMs. In order to decrease the area required to implement all the OCFCMs, we use
partial reconfigurability, so that the system stores only the bitstream of each module and
reprograms it on the FPGA’s logic according to the running application. It is also
possible to keep programmed on the FPGA a set of OCFCMs, switching between them
by using software-based techniques. Since ASICS do not have reconfigurable logic,
they must implement all possible OCFCMs from the start, which may lead to a huge
drawback when considering such approach.

The innovation of this approach relies on the use reconfigurability and software-
based techniques to use different application-specific non-intrusive hardware modules
to detect all upsets that affect the control flow. In the following, we describe in detail
how the technique works.

4.5.1 Hardware-based Side

OCFCM’s hardware-based side aims at detecting faults that cause incorrect
deviations in the execution program’s flow. In order to do that, the hardware module

56

combines most of the non-intrusive hardware-based techniques, such as checking if the
processor is accessing correct memory areas for data and program, the consistency of
some variables, control flow checkpoints and also the PC evolution during runtime.

OCFCM is capable of doing that by storing some application oriented information.
It sits between the processor and its memory. The hardware module, just likes
PODER’s, monitors the address and data buses between the microprocessor and its
memory. OCFCM checks the memory accesses, branches and control flow checkpoints
performed by the microprocessor. Figure 4.11 shows a set of OCFCM implemented to a
processor system.

Figure 4.11: OCFCM’s system architecture.

As mentioned before, OCFCM is an application specific module and has
information about the portion of memory that the application is allowed to access. By
doing so, it is capable of detecting incorrect memory accesses, both for data and
instructions. Some variables, such as the PC and the SP are also checked through the
data and address buses during runtime.

By checking the PC evolution during runtime and the number of clock cycles spent
on a single instruction, OCFCM can detect if the software execution is stuck at the same
memory address. Such detection is very important in processor-based systems, because
software-based techniques cannot achieve such detection (in order to detect errors,
redundant instructions must be executed, and a loop may hold the microprocessor in a
single instruction).

In addition to these fault detection capabilities, OCFCM has the ability to check
branch instructions during runtime and verify if they performed a correct branch in the
program flow. To do so, OCFCM checks the PC evolution through the address bus.
The program executes the instruction stored in program memory sequentially until a
branch instruction is found. When performing a branch instruction, a new path becomes
possible, other than the normal sequential execution. In this case, the OCFCM decodes
the new possible path and checks if the microprocessor is still following the program
graph. It is important to mention that the OCFCM can only check branch instructions
with fixed target addresses. Branch instructions with dynamic addresses (Jump to
Register, for example) must be replaced by branch instructions with fixed addresses
(Jump to Address, for example).

In order to detect an inconsistency in the program flow, the instructions fetched by
the microprocessor must also be fetched and decoded by the hardware module, to
identify branch instructions and locate their destination address. Instead of

57

implementing a full generic decoder, the proposed hardware module, implements a
reduced decoder composed of a list of physical memory positions of all the branch
instructions in the program. The decoder can be automatically generated during
compilation time and allows the OCFCM to calculate each instruction’s consistent
destination address based only on the address and the data buses. This leads to a
significant area reduction, as well as the maintenance of the original processor’s timing
characteristics, such as the clock frequency.

In order to adapt the proposed technique to general-purpose microprocessors,
reconfiguration must be used, so that the system can reconfigure the same area with
different modules, each one specifically designed for each application. Depending on
the area available on chip, designers may build more than one module on the FPGA. In
this case, the system can have a set of pre-defined OCFCMs, which can be switched
between different programs without affecting the overall final computation time.

OCFCM is expected to detect control flow faults that either causing the PC to freeze
at the same memory address (through the watchdog) or the ones that break the
sequential evolution of the PC with an inconsistent destination address. Unfortunately,
these two cases do not comprehend all types of control flow errors. An incorrect
decision, whether to take or not the branch, cannot be detected by the module.
Therefore, a software-based side is required, with the Inverted Branches technique.

One drawback of OCFCM is that, like PODER, it has to have access to the memory
buses. The buses used by some processors which use on-chip embedded cache
memories may not be accessible by the hardware module. In such cases, OCFCM
cannot be used.

4.5.2 Software-based Side

The software-based side on OCFCM is responsible for choosing which module will
be active (when using a group of OCFCM) and performing the transformation on the
software that implements the Inverted Branches software-based technique. It also has to
guarantee that the program code does not use jumps with dynamic destination
addresses. In such cases, a transformation must be performed to convert them into jump
with static destination addresses. These characteristics are mandatory for achieving
better performances and higher fault detection rates.

The first task is performed by predefining the memory address. Whenever an
application starts, it writes in a given memory address the identifier of the OCFCM
module to run. The active OCFCM modules decode that store instruction and put
themselves on hold (if the value does not match their value) or start operating (when the
value matches). The Inverted Branches transformation is described in Section 4.3.

The replacement of dynamic address branches per static address branches has to be
performed by analyzing the program code and calculating the fixed address behind the
register used as target. In most cases, the compiler loads a value to a given register and
then performs the dynamic jump. In such cases, it is possible to replace both
instructions by a fixed address branch, like Jump to Address, where the address is the
one calculated by the transformation tool. When the destination address does not fit the
instruction, two or more jumps can be performed. In cases where the target register
value is unknown, the replacement is not possible and the technique will not be able to
protect the instruction.

58

4.5.3 Implementation

The OCFCM implementation can be done automatically during compilation time. It
inputs a C code, which is compiled into an architecture-dependent machine code file
and submitted to HPC-Translator, which then generates a hardened program code (to be
executed by the processor) and a Verilog file describing the customized hardware
module. The Verilog description is then synthesized to generate the final FPGA
configuration bitstream. The complete program transformation and hardware module
generation flow is shown in Figure 4.12.

Figure 4.12: Automatic hardware generation flow.

In order to generate the OCFCMs, we input HPCT with each case-study application
and receive as output a Verilog description of the hardware module. The Verilog
description mainly consists of a list of every branch instruction address in the code,
application definitions (such as which memory area is allowed for data and program
access) and some processor definitions (such as the maximum number of clock cycles
allowed to execute the same instruction).

In order to evaluate both the effectiveness and the feasibility of the presented
approach, a benchmark consisting of six applications was created. As case-studies
applications, we chose the following six applications: a 6x6 matrix multiplication, a
bubble sort, a Dijkstra, a short encryption, a run length encoding and a bit count. The
matrix multiplication requires a large amount of data processing with only a few loops
and therefore uses mostly the datapath from the microprocessor. The bubble sort
algorithm, on the other hand, has a large amount of loops and branch instructions and
therefore uses mostly the controlpath. The Dijkstra algorithm is able to find the shortest
distance between two nodes in a network and therefore is used in communication of
systems on chip. The run length encoding and the short encryption are algorithms
normally used in satellites in order to reduce the size of transmitted data by compressing
it and to secure the communication by encrypting the transmitted data, respectively. The
bit count is a small application that counts the number of bits set to ‘1’ in a configurable
fixed loop.

59

OCFCM’s were generated for both an SRAM-based FPGA and a Flash-based
FPGA, considering all six case-study applications. The area required for each of them is
presented in Table 4.6, represented by the number of Look-Up Tables (LUTs) and Flip-
Flops (FFs) for SRAM-based FPGAs and VersaTiles for Flash-based FPGAs. The area
required for the modules is up 240 LUTs and 33 FFs, or 7.8% of the miniMIPS
implemented in the SRAM-based FPGA board, and up to 528 VersaTiles, or 2.9% of
minimIPS implemented in the flash-based FPGA board.

Table 4.6: OCFCM technique area results for a set of applications and the percentage
of the area compared to the miniMIPS microprocessor synthesized into FPGA

 SRAM-based FPGA

(Virtex 4 xc4vlx80-12ff1148)
Flash-based FPGA

(ProAsic3 1500)

OCFCMs LUTs FFs VersaTiles

Matrix
Multiplication

200 (6.5%)

33 (2.2%)

349 (1.9%)

Bubble Sort 213 (6.9%) 33 (2.2%) 516 (2.9%)

Bit Count 192 (6.2%) 33 (2.2%) 331 (1.8%)

Dijkstra 216 (7.1%) 33 (2.2%) 424 (2.4%)

Encryption 197 (6.4%) 33 (2.2%) 340 (1.9%)

Encoding 240 (7.8%) 33 (2.2%) 528 (2.9%)

Table 4.7 compares the size of the OCFCM modules to the size of the miniMIPS
microprocessor. It is important to notice that each OCFCM depends only on the
application and the microprocessor’s Instruction Set Architecture (ISA) and therefore is
microprocessor independent. It means that more complex microprocessors would
require the same resource usage for each OCFCM and therefore a smaller percentage of
its total area.

Considering the possibility to dynamically reprogram the SRAM-based FPGA, we
also verified the reconfiguration time required for each module, by loading the partial
bitstream from the external memory and writing it into the ICAP port. The time
consumed to reconfigure the modules was measured by software, using the XTime.h
library, based on a Virtex-II Pro (2vp30ff896-7) platform. In the case of the ProASIC3
FPGA, there is no partial reconfiguration, so the entire system must be reconfigured in
the FPGA.

Table 4.7: Partial reconfiguration time for SRAM-based FPGA (Virtex 4 xc4vlx80-

12ff1148)

Source

Reconfiguration Time (ms)

Full FPGA (2vp30ff896-7) 960.0

Matrix Multiplication 8.5

60

Bubble Sort 9.0

Bit Count 8.1

Dijkstra 9.2

Encryption 8.3

Encoding 9.9

As shown in Table 4.7, the time required to partially reprogram an OCFCM on a
SRAM-based FPGA varied from 8.1ms to 9.9ms. This value is directly proportional to
the size of each OCFCM. The reconfiguration is only necessary when the module is not
implemented on the board, meaning that it is not required when using the architecture
shown in Figure 4.11.

4.6 Hybrid Error-detection Technique using Assertions

Hybrid Error-detection Technique using Assertions (HETA) is the third and final
hybrid technique presented in this thesis. It was based in CEDA and its ability to
efficiently detect control flow errors between different BBs, and PODER and its ability
to detect control flow errors inside the same BB. HETA is aimed at both FPGAs and
ASICs, since it implements a non-intrusive hardware module combined with
transformation rules on the program code.

As mentioned before, PODER has as main drawbacks scalability issues, since the
prime numbers combined with CFID grow at a fast pace, and performance and area
overheads. CEDA, on the other hand, is scalable (at a given point it starts losing fault
detection capabilities due to signature aliasing) and offers low performance degradation,
but cannot achieve full fault detection against transient errors. HETA improves both
techniques, by offering higher fault detection rates than CEDA, scalability (at a given
point it also starts having aliasing issues) and small performance and area overhead.

Like PODER, HETA combines hardware- software-based techniques into a hybrid
technique. Its main objective is to protect the system against control flow errors, which
comprises: (1) incorrect jumps to the beginning of a BB, (2) incorrect jumps inside the
same BB, (3) incorrect jumps to unused memory addresses and (4) control-flow loops.
It is important to note that HETA, just like PODER and OCFCM, cannot detect errors in
branch instructions, where the execution flow should have gone to one BB, but went
another. In order to do so, it must be combined with the Inverted Branches software-
based technique, described in Section 4.3.

The technique is divided in software-based and hardware-based sides, which
communicate through memory writes at predefined memory addresses. HETA divides
the computational load by exploiting two main concepts:

• Software-based program code transformation: the original program code is
transformed based on a set of rules and additional instructions are inserted in
order to communicate with the hardware module.

• Hardware-based non-intrusive module: an additional non-intrusive hardware
module is added to the architecture. This module implements watchdog and
decoder characteristics in order to analyze the processor's control-flow and
decode instructions sent from the inserted software instructions.

61

The main idea behind HETA is to compute the same signature during compilation
time, by the compiler, and during runtime, by the hardware module. By doing so, it is
possible to compare the resulting signatures and detect errors in the control flow. The
calculation during compilation time does not lead to performance or memory overheads
and is inexpensive, since it can be done automatically. By performing the comparison in
the hardware module, the overheads in performance are reduced, when comparing to
software-based techniques, leaving only a few extra instruction in the program code to
control the hardware module.

HETA divides the program’s execution flow into a BB graph. It then assigns
different signatures for each BB, according to rules discussed later in this Section. It
then stores these signatures in a global register during runtime. At given points in the
code, the software-based side sends these values to the hardware-module that compares
with its own calculated value. The main advantage of HETA is that it offers high fault
detection rates at low costs on performance and area overhead.

In the next subsections, the terminology used for HETA is presented, as well as the
hardware- and software-based sides of the technique.

4.6.1 Terminology

In order to better explain this technique, we will first introduce some terminology.

Program Graph (P): P = {V, E} is a control flow graph with a set of nodes, V = {N1,
N2, N3, ..., Nm} and a set of directed edges, E = {e1, e2,, en}.

Node (N): A sequence of instructions in a program for which execution always begins
with the first instruction and ends with the last instruction of the sequence. There is no
branching instruction inside the node except possibly the last instruction and there is no
possible branching into the node except to the first instruction of the node.

Edge: A directed edge between nodes Ni and Nj (denoted Ni → Nj) representing a
possible execution of Nj after execution of Ni in the absence of any errors.

Successor set (Succ): The set of all successors of N. Nj ∈ Succ(Ni) ⇐⇒ Ni → Nj ∈ E
Predecessor set (Pred): The set of all predecessors of N. Ni ∈ Pred(Nj) ⇐⇒ Nj ∈ succ(Ni)
Node type (NT): A node is of type A if it has multiple predecessors and at least one

of its predecessors has multiple successors. A node is of type X if it is not of type A.
Signature register (S): A run-time register, which is continuously updated to monitor

the execution of the program.
Node Ingress Signature (NIS): The expected value of S on ingressing the node on

correct execution of the program.
Node Signature (NS): The expected value of S at any point within the node on

correct execution of the program.
Node Exit Signature (NES): The expected value of S on exiting the node on correct

execution of the program.
Network (Net): A network is a non-empty set of nodes such that Ni ∈ Net =⇒ (∀Nj :

pred(Ni) ∩ pred(Nj) = φ : Nj ∈ Net), i.e., all the successors of each of the predecessors
 of Ni are also in the network, and is minimal, i.e., an empty subset of Net follows the

above property. Each node in the program belongs to one and only one network. It can
be seen on Figure 4.13.

Network predecessors (Net_pred): The set network predecessors is the union of
predecessors of all its elements. net_pred(Net)={∪pred(Ni) : Ni ∈ Net}. It can be seen

62

on Figure 4.13.
Related signature set (A_sig): This set is the union of NES of all the nodes in the

network predecessors set and the NIS of all nodes of type A in the network.
A_sig(Net) = {∪NES(Ni) : Ni ∈ net_pred(Net)}∪{∪NIS(Ni) : Ni ∈ Net NT(Ni) = A}

Figure 4.13: Program graph with both NT types.

4.6.2 Software-based Side

The software-based side from HETA is responsible for parsing the code and
generating the assertions to be added to the program code. Also, it transforms the
program code so that it keeps a global register updated with the current signature in
effect and sends periodically the value stored in the register to the hardware module. By
doing so, the software-based side can detect, in cooperation with the hardware module,
all incorrect jumps to the beginning of a BB (1) and incorrect jumps inside the same BB
(2).

HETA’s software-side technique can be divided in steps that parse, analyze and add
static instructions to the program code. The first step parses the program code and
generates a program graph, dividing the program into nodes and edges connecting them.
Each node represents a block of instructions that is always executed sequentially, while
the edges are the control flow branches that interconnect them. On a second step, each
node is analyzed and receives an NT value, according to its incoming and outgoing
edges. The third step assigns NIS, NS and NES values to each node, according to some
rules discussed later. In the final step, instructions are inserted into the original program
code.

In the following subsections, the overall technique will be explained, as well as the
algorithms used to choose the signatures of the proposed technique.

4.6.2.1 Description Details

As mentioned before, HETA generates signatures based on a program graph
representing the application control flow. Figure 4.13 shows the generated program
graph and the two types of nodes (NT type A and NT type X). As one can notice, the
nodes where NT equals to A have multiple predecessors and at least one of the
predecessors has another successor. The node where NT equals to X has one single
predecessor.

Instructions are statically inserted into the program code to continuously update the
value of S during runtime, as to monitor the program flow. When the program execution

63

reaches a new node, S is assigned with the node’s NIS value. During its execution, the
node’s NS value is assigned to S. When leaving the node, S is assigned with the node’s
NES value. NES and NIS values can detect control flow errors caused by jumps between
different nodes (internode errors). The NS value is responsible for detecting control flow
errors with incorrect jumps inside the same node (intranode errors).

At run-time, S can be updated up to three times in each node transition. It varies
because NIS and NS, and also NES and NIS values may be the same and, therefore, not
require an update on S. The updates on S follow the sequence: (1) NS to NES – when
leaving a node, (2) NES to NIS – when entering a node, and (3) NIS to NS – when
executing a node. The updates 1 and 3 (NS to NES and NIS to NS, respectively) are a
straight transformation based on the XOR operator, performed by the following
instruction:

S = S XOR invariant (Ni)

The update 2 (NES to NIS), on the other hand, depends on the NT value of the
current node. When NT equals to A, the instruction performed is an XOR; otherwise,
the instruction performed is an AND, according to the following rule:

S = S AND invariant (Ni) if NT(Ni) = A

S = S XOR invariant (Ni) if NT(Ni) = X

At certain points of the code, which can be defined by the user, consistency checks
can be added through store instructions. Such instructions store the value of S in a given
preset memory address that can be identified by the hardware module.

4.6.2.2 Signature checking algorithms

This subsection explains how to assign values to the signatures NIS, NS and NES for
each node of the program graph.

In order to allow the hardware module to perform consistency checks, NS must be
assigned with a value that can be calculated by the module. It also must be a unique
value, preventing aliasing. Therefore, each node’s NS is set with the XOR of all its
instructions plus the memory address of its first instruction. Depending on the
microprocessor’s architecture, only a set of the instructions can be used to generate the
NS value, in order to avoid aliasing. As an example, only the 16 less significant bits of
the instructions can be used to generate NS. Considering that S is never reset, but always
updated, the hardware module can also detect incorrect values affecting NIS and NES.

NES and NIS values are divided in two parts, the upper half and the lower half. Each
part is calculated differently and has a different objective. Therefore, their sizes can
vary according to the program code requirements to avoid aliasing.

The upper half is used to identify the program networks (Nets), generating an unique
value to each Net, called A_sig(Net). That means that its minimum size, in order to
avoid aliasing is log2(#networks) bits. Once generated, A_sig(Net) is assigned for every
node’s NIS that belong to Net and every node’s NES that belong to network predecessor
Net_pred. By doing so, one guarantees the detection of control flow errors between
different networks.

The lower half is used to identify the nodes inside the networks (nodes with the
same upper half). This algorithm has to guarantee that (1) the NES value must be
accepted by all the successor nodes and (2) an incorrect jump from a node to one of its

64

successor nodes must be detected. The algorithm to generate these values is described in
Figure 4.14.

01. FOR each Network Net {

02. FOR each node N from Net_pred {

03. FOR each node F from Net that is not successor of N {

04. IF F.NIS has a bit in 1

05. SET bit 1 to 0 in P.NES and in P's successor's NIS

06. ELSE IF P.NES has any bit in 0

07. SET bit 0 to 1 in F.NS and in F's predecessor's NES

08. ELSE {

09. SET a free bit position in F.NS and in its predecessor's NES to 1

10. SET the same bit position in its successor's P.NES and NS to 0

11. }

12. }

13. SET the free bit in P.NES to 1

14. }

15. FOR each node N with NT=A

16. SET the fee bits from NIS to 1

17. FOR each node N with NT=X

18. SET NIS to its predecessor's NES

19.}

Figure 4.14: Algorithm for the signature’s lower half.

Figure 4.15 shows an example of the assignment of values to NIS, NS and NES and
the operations involved in the signature updating. The example shows only the lower
half of the signatures. The main idea of the technique is to allow a transition from a
node’s NS to its successor’s NS. The transition from node A to node D, for example is
quite easy, since NS(a), NES(a) and NIS(d) are the same. In this case, only one XOR
operation is necessary, to transform NIS(d) into NS(d) (NS(d) = NIS(d) xor 0111). The
transition from node B to E is a bit more complicated, since node B can also branch to
node F. In this case, the NES(b) differs from NS(b) and NIS(e). Because of this, two
operations are required to transform NS(b) into NES(b) (NES(b) = NS(b) xor 1101) and
to transform NES(b) into NIS(e) (NIS(e) = NES(b) xor 1110). The most complex case is
the transition from node B to node F, where all values are different. In this case, three
transformations are necessary, from NS(b) to NES(b) (NES(b) = NS(b) xor 1101); from
NES(b) to NIS(f) (NIS(f) = NES and 1100); and NIS(f) to NS(f) (NS(f) = NIS(f) XOR
1000). It is important to mention that the transformation NES(b) to NIS(f) has to be
performed with an AND because node E has NT = A.

65

Figure 4.15: NIS, NS and NES signatures.

Another interesting fact about the above example is the possible optimizations. If
NS(f) was equal to NIS(f), a transformation would be removed, leading to performance
gain and less program memory area. The same applies to NS(b) and NES(b), NS(c) and
NES(c), NES(b) and NIS(e) and NES(b) and NIS(f). NS(d) cannot have the same value as
NIS(d), because NS(a) already has that value, and it would lead to aliasing.

It is important to note that HETA, like PODER and OCFCM, cannot detect incorrect
but legal jumps (according to the program graph). In order to do that, the Inverted
Branches software-based technique, described in Section 4.3 is required. Also, HETA
may present aliasing, when the program code has many BBs. With big applications,
some signatures may start to repeat themselves and an error may not be detected by the
technique.

4.6.3 Hardware-based Side

The hardware-based side of HETA is responsible for complementing the software-
based side in detecting incorrect jumps to the beginning of a BB (1) and incorrect jumps
to the same BB (2), but also detecting incorrect jumps to unused memory addresses (3)
and control flow loops (4).

HETA only updates the value of the S, which means that it is never reset. By
removing the reset present in PODER, for example, the beginning of a BB does not
have any initialization and therefore is equal to any other instruction. Because of that,
the checking performed by the hardware module can detect incorrect jumps to the
beginning of a BB (1).

As mentioned in the previous subsection, a BB’s value of NS equals to the XOR
operation of all its instructions plus the memory address of its first instruction. This
operation is very important, since the hardware module can calculate the same value, by
XOR’ing all instruction read from the program memory by the processor. It only needs
two flags that indicate the beginning and the end of a BB. By adding the NS value to the
S that stores the signature values, HETA can detect incorrect jumps to the same BB (2).

In order to calculate the XOR and perform the checks, HETA relies on a small
decoder that reads data and address buses and the read/write signal between the
microprocessor and the memory in order to perform the instructions sent by the
software-based side. The decoder reads the buses searching for two instructions: (1)
Reset XOR, which resets the hardware module register that store the XOR value and (2)
Check XOR, which performs a consistency check, by verifying the value in the data bus

66

with the internal module’s registers storing the current XOR value. To perform the
XOR instruction, the hardware module implements a simple accumulator which XORs
itself with every new value. In order to have access to the memory buses, it sits between
the processor and its memory. Figure 4.16 shows the overall architecture, with the
hardware module connected to a processor.

Figure 4.16: HETA’s system architecture.

The watchdog characteristics allow the hardware module to detect incorrect jumps
to unused memory addresses (3), by receiving information of the memory area used by
the application’s program code (both program and data). When the processor tries to
access an address that is out of range, an error is flagged.

Like PODER and OCFCM, HETA can also detect control flow loops (4). In order to
detect this kind of error, a watchdog timer is implemented. The counter is reset every
time the software-based technique side enters a BB, by performing a Reset XOR
instruction. When the counter overflows, an error is flagged. By doing so, the hardware
module can detect a control flow loop that causes the execution flow to be stuck at a
single instruction.

HETA has to main drawbacks. The first one is the signature aliasing issue that may
lead to undetected errors, when the protected application has a huge number of BBs.
The second one is that the technique requires access to the memory buses. Processors
with on-chip embedded cache memories may not allow access of its memory buses to
the hardware module. In such cases, another approach should be used.

4.6.4 Implementation Details

The implementation of HETA consists of the hardware module implementation and
the software transformation. We have used the miniMIPS microprocessor as platform to
implement the technique. The following subsections describe the implementations
required to harden two case-study applications with HETA.

4.6.4.1 HETA Software Transformation

The software transformation is responsible for implementing two main roles:
updating S to NIS, NS and NES, and controlling the hardware module. The first task is
performed by adding XOR and AND instructions to the program code, according to the
rules described in the previous sections. The second is performed with XOR instructions
in the beginning of BBs and store instructions to predefined memory addresses placed
in the end of BBs.

67

When the program’s execution flow enters a BB, HETA adds a “xor S” instruction,

which can be seen by the hardware module, informing it that a new BB has started. In
order to the control the hardware module to compare its calculated signature value with
the one calculated by the software-based side, HETA add a “store S” instruction in the
end of a BB. By doing so, it sends S’s value to the hardware module, which then
compares it, flagging an error if a mismatch is found.

Figure 4.17 shows an example transformation performed when HETA is applied to an
unprotected code. It presents a program code divided into two BBs, from instructions 2
to 5 and 6 to 10 in the hardened code, where the first is of has NT type X and the
second has NT type A. The left column shows the original program code, while the
right column shows the transformed hardened program code.

To perform the updates on S, HETA uses XOR instructions, represented by
instructions 2, 5, 7 and 10, and ADD instructions, represented by instruction 7. As one
can see, instruction 2 performs the update on S from NES to NS (since the BB is NT
type C, the NIS equals to the NS value). The second basic block requires two
instructions to update S into its NS value, represented by instruction 6 and 7. Finally,
instructions 5 and 10 are used to update S from NS to NES and prepare them for the
execution flow transition.

In order to control the hardware module, HETA uses the “xor S” operations,
represented by instructions 2 and 7, to inform that the program’s execution flow has
entered a new BB. The “store S” operations, represented by instructions 4 and 9 are
used to send S’s value to the hardware module, so that it can compare them. The stored
is performed in a predefined memory address.

Original Code Hardened Code

1: beq r1, r2, 8 1: beq r1, r2, 6

4: add r2, r3, 1

NT = X

2: xor S, constant

4: add r2, r3, 1

3: store S

5: xor S, constant

8: add r2, r3, 4

NT = A

6: and S, constant

7: xor S, constant

8: add r2, r3, 4

9: store S

10: xor S, invariant

11: jmp end 11: jmp end

Figure 4.17: HETA transformation.

In order to evaluate both the effectiveness and the feasibility of the presented
approaches, two applications based on two algorithms: 6x6 matrix multiplication and
bubble sort classification were chosen to be hardened.

One hardened program for each case study was generated using the HPCT

68

implementing HETA. Tables 4.8 and 4.9 show the overhead in execution time, code

size and data size for the matrix multiplication and bubble sort algorithms, respectively,
when comparing the original unhardened program with the version hardened with only
HETA and with HETA plus variables and inverted branches (Combined Techniques).

As one can see, HETA’s overhead varies from 1.08 to 1.34 times the original
execution time and has 1.5 times the original unhardened code size. When combining
the techniques, the overhead varied from 1.43 to 1.55 times the original code. The
observed difference is because the matrix multiplication requires a large data processing
with only a few loops, while the bubble sort algorithm uses a large number of loops and
branch instructions. In the code size, the overhead was 2.9 and 2.8 times the original, to
the matrix multiplication and bubble sort algorithms, respectively.

Table 4.8: Characteristics for the HETA program transformation to the matrix

multiplication

 Original
Unhardened

HETA Technique

Combined Techniques

Execution Time (μs) 1,257 1,361 (1.08×) 1,951 (1.55×)

Code Size (bytes) 1,140 1,692 (1.48×) 3,328 (2.91×)

Data Size (bytes) 288 292 (–) 580 (2.04×)

Table 4.9: Characteristics for the HETA program transformation to the bubble sort

 Original
Unhardened

HETA Technique

Combined Techniques

Execution Time (μs) 201 272 (1.34x) 288 (1.43×)

Code Size (bytes) 780 1,136 (1.46x) 2,180 (2.79×)

Data Size (bytes) 40 44 (–) 84 (2.1×)

4.6.4.2 Hardware Module Implementation

The hardware module was implemented in VHDL language, based on a timer that
signals an error if not reset. To calculate the XOR value, we added a 16-bit accumulator
register that performs a XOR operation between its current and new values so that it is
not only able to calculate the real-time XOR value, but also to store it. A decoder was
also added to identify instructions from the software-based side.

The decoder module keeps reading the memory buses looking for store instruction at
given predefined memory addresses. Whenever a store instruction is found, it reads the
address bus to check which address the processor is accessing, in order to decode the
instruction from the software-based side, and reads the data bus to read the value being
sent. It then manages to perform the operation requested from the software-based side,
such as a “xor S” or “store S”.

The hardware implementation has a total of 64 flip-flops and is not protected against
faults, since the worst case scenario is an incorrect error detection. Table 4.10 shows the

69

size and performance of the implemented microprocessor and the hardware module. As
one can see, the hardware module has 11% of the area of the miniMIPS, while
maintaining the same operation frequency.

Table 4.10: Original and modified architecture characteristics for HETA technique

synthesized in 0.18µ CMOS process technology

Source miniMIPS Hardware Module

Area (µm) 24,261.32 2,717.26

Frequency (MHz) 66.7 66.7

It is important to note that the hardware module size is fixed. When using a bigger
processor, the hardware module should remain the same and therefore with a smaller
percentage of the total area of the processor. The size of the miniMIPS is used only to
contextualize the actual size of the hardware module.

70

5 SIMULATION FAULT INJECTION EXPERIMENTAL
RESULTS

We used the fault injector described in Azambuja (2010b) and simulated the circuits
using different versions at ModelSim, from Mentor.

The ModelSim software, from Mentor Graphics, is a simulation tool that simulates
architectures written in Hardware Description Languages (HDL), such as VHDL and
Verilog. It has a Graphic User Interface (GUI) for easy access as well as a console to
run scripts with Tool Command Language (TCL). It allows read and write access to any
logic signal describing the system during any time of the simulation. With these
commands, it is possible to inject faults with precision higher than nanoseconds and full
control over the simulation time. On the other hand, ModelSim does not have a fault
injection environment capable of injecting faults automatically and collecting the
results. In order to do so, we used a fault injector developed by Azambuja (2010b),
where it automatically generates TCL scripts that run on top of ModelSim.

The fault injector has three files as inputs: (1) fault definition file, that contains the
number of faults to be injected and for how long they will be active in the system, (2)
processor definition file, that contains the operating clock frequency, the signals to be
upset and detection capabilities, and (3) application definition file, that contains the total
runtime of the application and the memory position where the results are stored. As
output, the fault injector creates a single TCL file describing the fault injection and
result collection to be executed in ModelSim. Figure 5.1 shows the fault injector's role
in the simulation fault injection campaign.

Figure 5.1: Fault injector's role.

71

The fault injector starts by generating a set of bits from the signals that describe the
architecture (from the processor definition file) and a set of times, from the start of the
application until its end (from the application definition file). It then combines these two
sets and injects a fault in the architecture for the duration described in the fault
definition file by using the command "force", from ModelSim. A fault is injected by
running the application until the chosen time, performing the "force" command, and
then running the application until the end. Figure 5.2 shows the injection of a fault in
signal adr_reg1(3) with the duration of two time units.

Figure 5.2: Fault injection example of a SET in signal add_reg1 bit 3.

After each fault injection and application run, results are collected and analyzed by
the script. As a result, we have the number of injected faults and their effect on the
system.

In the following, we describe the simulation fault injection campaign for each
technique.

5.1 PODER

In order to start the fault injection campaign, 50 thousand faults were injected in all
signals of the non-protected miniMIPS (including registered signals), one per program
execution for the matrix multiplication and bubble sort applications. The SEU and SET
types of faults were injected directly in the microprocessor VHDL code by using
ModelSim XE/III 6.3c. SEUs were injected in registered signals, while SETs were
injected in combinational signals, both during one and a half clock cycle. The fault
injection campaign is performed automatically. At the end of each execution, the results
stored in memory were compared with the expected correct values. If the results
matched, the fault was discarded. The amount of faults masked by the program is
application related and it should not interfere with the analysis. In the end, only faults
not masked by the application were considered in the analysis. When 100% signal
coverage was achieved and at least 4 faults per signal were detected we normalized the
faults, varying from 4 to 5 faults per signal. Those faults were used to build the test case
list.

The faults were classified by their source and effect on the system. We defined four
groups of fault sources to inject SEU and SET types of faults: datapath, controlpath,
register bank and ALU. Program and data memories are assumed to be protected by
EDAC and therefore faults in the memories were not injected.

The fault effects were classified into two different groups: data effect and control
effect, according to the fault effect. To sort the faults among these groups, we
continuously compared the PC of a golden microprocessor with the PC of the faulty
microprocessor. In case of a mismatch, the injected fault was classified as control effect.
If the PC matched with the golden’s, the fault was classified as a data effect.

72

Table 5.1: Percentage of number of error from fault injection results for PODER fault
tolerant technique in miniMIPS running the matrix multiplication

Source

Data
Effect

Hardened program
version

Control
Effect

Hardened program
version

PODER PODER
Combined

PODER PODER
Combined

SE
T

Reg. Bank 9 0 100 1 0 100

ALU 27 9 100 10 0 100

Control 83 7 100 33 56 100

Data 42 3 100 2 100 100

Total 131 6 100 46 44 100

SE
U

Reg. Bank 25 0 100 13 15 100

ALU 4 - 100 0 - -

Control 67 13 100 36 68 100

Data 18 0 100 7 0 100

Total 114 7 100 56 47 100

Table 5.2: Percentage of number of error from fault injection results for PODER fault
tolerant technique in miniMIPS running the bubble sort

Source

Data
Effect

Hardened program
version

Control
Effect

Hardened program
version

PODER PODER
Combined

PODER PODER
Combined

SE
T

Reg. Bank 3 67 100 4 0 100

ALU 7 100 100 14 14 100

Control 22 83 100 89 42 100

Data 14 69 100 28 0 100

Total 46 80 100 135 29 100

SE
U

Reg. Bank 2 0 100 33 18 100

ALU 0 - - 0 - -

Control 24 5 100 81 35 100

Data 4 0 100 19 6 100

Total 30 4 100 133 27 100

73

When transforming the program, new instructions were added and as a result the
time in which the faults were injected changed. Since the injection time is not
proportional to the total execution time, we mapped each fault locating the instruction
where the fault was injected (by locating its new PC) and pipeline stage where the fault
was manifested. Around 1% of the total number of faults could not be mapped and were
replaced by new faults.

Tables 5.1 and 5.2 present results for the fault injection in the miniMIPS running the
matrix multiplication and the bubble sort applications, respectively. Results show that
PODER does not have a high detection rate, when used alone (up to 80%, when
considering SETs with data effect on the bubble sort). On the other hand, when
combined with Variables and Inverted Branches techniques, the result was 100% fault
detection for all cases.

5.2 OCFCM

To test OCFCM, we performed a fault injection campaign where faults were
injected in all signals of the non-protected microprocessor, one per program execution.
The SEU and SET types of faults were injected directly in the microprocessor VHDL
code by using ModelSim SE 6.6b. SEUs were injected in registered signals, while SETs
were injected in combinational signals. Faults remained on the system during one and a
half clock cycle, so that SETs would hit both rising and falling clock edges. The fault
injection campaign was performed automatically by simulation. At the end of each
execution, the results stored in memory were compared with the expected correct
values.

The experiment continuously compared the PC of a golden microprocessor with the
PC of the faulty microprocessor and the generated data results. Fault injection results
are presented in Table 5.3. It shows the number of injected faults (Faults Injected) for
each application, the number of faults that caused an error in the microprocessor
(Incorrect Result) and the detection rate achieved by the proposed solution (Errors
Detected). The system was simulated with a clock period of 42ns and a total of 2459
signals describing it. 40,000 faults represent 16 times the number of signals, but only
0.4% of the extensive possibilities of faults for the encryption algorithm.

This fault injection campaign simulates the effects of transient faults in the case-
study system is implemented in a Flash-based FPGA, the ProASIC3 from Actel, where
the user’s logic (VersaTiles) can be upset by SEU and SET.

Table 5.3 shows a fault injection campaign of 40,000 faults for each application.
From the total amount of faults injected, around 20% affected the system and caused an
error in the final result. When protected by the OCFCM techniques, 100% of the faults
were detected. In order to confirm these results, we injected more 140,000 faults in the
PC (which is the most sensitive area of the microprocessor with respect to control-flow
errors) of the bubble sort application, due to its low execution time and got 100% fault
detection. These results mean that the studied hardening approach was able to fully
protect the microprocessor system, by detecting every transient fault injected in the
case-study applications. Aside from these results, an average of 1% faults with no errors
per application was detected.

74

Table 5.3: Number of faults injected by simulation fault injection in miniMIPS
protected by OCFCM and the percentage of detected errors.

Source

Faults Injected

Incorrect Results

Errors Detected

Matrix Multiplication 40,000 8,021 100%

Bubble Sort 40,000 8,746 100%

Bit Count 40,000 8,960 100%

Dijkstra 40,000 8,312 100%

Encryption 40,000 8,995 100%

Encoding 40,000 8,712 100%

5.3 HETA

In this fault injection campaign, we ran two case-study application 100,000 times
each and injected one fault per execution. Faults were chosen from all signals of the
non-protected microprocessor (including registered signals). The SEU and SET types of
faults were injected directly in the microprocessor VHDL code by using the ModelSim
simulator. SEUs were injected in registered signals, while SETs were injected in
combinational signals, both during one and a half clock cycles. The fault injection
campaign was performed automatically. At the end of each execution, the results stored
in memory were compared with the expected correct values.

The experiment continuously compared the PC of a golden miniMIPS with the PC
of the miniMIPS under fault injection and the generated data results. Fault injection
results are presented in Table 5.4. It shows the number of injected faults (Faults
Injected) for each application, the number of faults that caused an error in the
microprocessor (Incorrect Result) and the detection rate achieved by the proposed
solution (Errors Detected). The system was simulated with a clock period of 42ns and a
total of 2459 signals describing it. To prove the effectiveness of the proposed technique,
we also injected 100,000 faults in the PC for the bubble sort application. It represents
around 21 times the total number of clock cycles that the microprocessor takes to run
the application. The result was 100% fault detection.

Table 5.4: Number of faults injected by simulation fault injection in miniMIPS

protected by HETA and the percentage of detected errors.

Source

Faults Injected

Incorrect Results

Errors Detected

Matrix Multiplication 100,000 12,246 12,246

Bubble Sort 100,000 10,948 10,948

75

6 CONFIGURATION BITSTREAM FAULT INJECTION
EXPERIMENTAL RESULTS

FPGAs have their functionality defined by a large configuration memory. Faults
affecting this memory, such as SEUs, can alter the device functionality, therefore
changing both the function of individual components, e.g., LUTs and FFs, and the
routing between them. The bitstream is defined as the sequence of bits that loads data
into the configuration memory, and by changing one of its bits, we can simulate an SEU
in the FPGA.

The fault injection by configuration bitstream allows fast injection time, as the
Circuit Under Test (CUT) executes at the full FPGA speed, while the simulation fault
injection runs at the simulator speed. When compared to radiation experiments, the
amount of faults injected is much greater, as the bit flip is directly written to the
memory cell. The controllability of the process is inferior to the simulation fault
injection, where the designer has access to all internal signals from the implemented
design, but superior to radiation experiments, since the exact location of each fault is
known.

In order to inject faults in the configuration bitstream, we used the fault injector
described in Nazar (2012a). Faults were injected in the configuration bitstream for
PODER, OCFCM, and HETA, all combined with VAR and BRA.

The fault injection system was implemented on a Xilinx Virtex 5 device, part
XC5VLX110T (XILINX, 2013a), the same device later used for radiation experiments
with neutrons. When using the Internal Configuration Access Port (ICAP) to program
the configuration memory, and therefore perform the fault injections, one must note not
to harm the experiment control configuration. In order to avoid this problem, placement
constraints were used to restrict the area occupied by the CUT. Faults were then injected
only to the area defined as the Area Under Test (AUT), which is the area of the FPGA
where the CUT was implemented.

The configuration memory of the used Virtex 5 is divided into frames. Each frame
contains 41 words of 32 bits each, for a total of 1312 bits. Frames are accessed by their
individual addresses, through the Frame Address Register (FAR), and are divided into
block type, top/bottom bit, row, major address and minor address. Each frame row
comprises several rows of the basic FPGA components, such 20 rows of Configurable
Logic Blocks (CLBs) and 4 block RAMs.

For all techniques, we injected faults in the configuration memory in an exhaustive
fashion, where all bits, from all frames, from the AUT have been changed, one per
execution. By doing so, we affected CLBs, block RAMs, I/O blocks, among others. To
do so, the frame was read using the ICAP in a burst access mode and stored in the frame
memory. A single bit would then be bit flipped and rewritten in the FPGA's

76

configuration memory. It is important to note that some very specific bit positions may
lead to multiple bit errors in other frames, since LUTs may be used to implement
components that store user data.

Results are then transmitted to a PC for analysis. The connection is done using a
serial cable. After each run, a signature is generated from the implemented fault
tolerance techniques informing if any of the techniques detected an error and is the
result was correct. Figure 6.1 shows the configuration bitstream fault injector system
overview. As one can see, it is divided in the AUT with the CUT, the CUT I/O Ctrl,
where the working, golden and init memories are located, the SEU Injector that controls
the read/write on the ICAP and the System Control and Report Unit.

Figure 6.1: Configuration bitstream fault injector system overview (NAZAR, 2012a).
In order to compare the results from fault bitstream fault injection with radiation

experiments, we can take into consideration the Virtex5 static cross section per bit from
the Xilinx Reliability Report (XILINX, 2013b) measured under neutrons at the Los
Alamos Nuclear Science Center (LANSCE) of 6.7x10-15 cm2/bit. We can then calculate
the dynamic cross section by multiplying the static cross section per bit by the number
of bits that affected the design for each technique. It is important to notice, though, that
faults are injected only in the configuration bits before running the application, leaving
Block RAM (BRAM) memories and user flip-flops not affected.

In the following, results for PODER, OCFCM, and HETA combined with VAR and
BRA are described in detail.

6.1 PODER

In order to perform the configuration bitstream fault injection campaign, we used the
same hardware implementation from Chapter 5, running the 6x6 matrix multiplication
algorithm. We injected 2,944,640 faults in the AUT of the FPGA board. From those
faults, 48,323 caused an error in the circuit's output when considering no fault tolerance
detection. Since the fault injection was exhaustive, we can assume that, except for
placement and routing differences, the microprocessor core has 48,323 sensitive bits,

77

which represents 1.6% of the injected faults. This represents a proportion of 61 bit-flips
in the configuration memory bits to cause a functional error in the design.

When considering the detection capabilities of PODER combined with VAR and
BRA, we can further analyze the results from the fault injection campaign. We divided
the faults that affected the resulting matrix of the application into three categories:

1. Detected faults: errors detected by PODER combined with VAR and BRA
that did not affect the matrix multiplication result;

2. Detected errors: errors detected by PODER combined with VAR and BRA
that corrupted the matrix multiplication results. In this case, the TMR also
could detect those errors by the majority voters placed at the output.

3. Not detected errors: errors not detected by PODER combined with VAR and
BRA.

Table 6.1 summarizes the bitstream fault injection campaign. As one can see, 48,323
errors affected the DUT, and only 808 faults (1.6%) were not detected by the proposed
hardening approach, achieving an overall fault detection coverage of 98.4%.

Table 6.1: Classification of the total 48,323 faults in the miniMIPS protected by PODER

technique with VAR and BRA

Classification

Occurences

Detected Faults 49

Detected Errors 47,466

Not Detected Errors 808

Taking into account the static cross section per bit of 6.7x10-15 cm2/bit (XILINX,
2013b), we can calculate the dynamic cross section by multiplying it per the number of
sensitive bits (48,274), resulting in a dynamic cross section of 3.2 x10-10 cm2. After
applying PODER, the number of sensitive bits drops to 808, decreasing the dynamic
cross section to 5.4x10-12 cm2. One can notice a reduction of 59 times in the dynamic
cross section when using PODER.

Such results show that VAR and BRA combined with PODER can be used in harsh
environments and allow designers to reach fast fault diagnosis and correction. When
comparing to hardware-based techniques, such as TMR, we can notice an area reduction
higher than 66% and still acceptable fault coverage of 98.3%. On the other hand, the
hardened application takes 2.34 times the original execution time and requires 15%
extra area for the hardware module.

In terms of diagnosis, Table 6.2 shows the number of faults and errors in the DUT
that were detected by the implemented techniques. PODER was the technique that
presented the highest detection capability, with 30,336 exclusive error detections and
42,863 errors detected only with PODER-Control. The highest number of exclusive
errors detected was achieved by PODER-Control, showing that it is mandatory for the
hardening techniques in order to increase the fault coverage. The Variables technique
also showed high error detection, with 13,527 detected errors. The Inverted Branches,
on the other hand, could not exclusively detect a single error, although it was able to
detect 5,614 errors.

78

Table 6.2: Diagnosis of detected faults and errors for PODER with VAR and BRA

Source

Incorrect Results

Errors Detected

Flag Classification

Occurrences Exclusive
Detection

Occurrences Exclusive
Detection

Variables 0 0 13,527 2,910

Inverted Branches 0 0 5,614 0

PODER-Control 2 0 42,863 30,249

PODER-Data 0 0 0 0

PODER-Timeout 49 47 7,074 87

6.2 OCFCM

We injected 2,944,640 faults in the AUT of the FPGA board running a 6x6 matrix
multiplication protected with OCFCM, VAR and BRA. From those faults, 54,024
caused an error in the circuit's output when considering no fault tolerance detection.
Since the fault injection was exhaustive, we can assume that, except for placement and
routing differences, the microprocessor core has 54,024 sensitive bits, which represents
1.8% of the injected faults. This represents a proportion of 54 bit-flips in the
configuration memory bits to cause a functional error in the design.

We divided the errors in the same three categories as in Section 6.1. Table 6.3
summarizes the bitstream fault injection campaign. As one can see, 54,024 errors
affected the DUT, and only 1,670 faults (3.1%) were not detected by the proposed
hardening approach, achieving an overall fault detection coverage of 96.9%.

Table 6.3: Classification of the total 54,024 faults in the miniMIPS protected by

OCFCM technique with VAR and BRA

Classification

Occurences

Detected Faults 69

Detected Errors 52,285

Not Detected Errors 1,670

Taking into account the static cross section per bit of 6.7x10-15 cm2/bit (XILINX, 2013b),
we can calculate the dynamic cross section by multiplying it per the number of sensitive
bits (53,955), resulting in a dynamic cross section of 3.6 x10-10 cm2. After applying
OCFCM, the number of sensitive bits drops to 1,670, decreasing the dynamic cross
section to 1.1x10-11 cm2. One can notice a reduction of 32 times in the dynamic cross
section when using OCFCM.

Such results show that software-based techniques combined with HETA can be used
in harsh environments and allow designers to reach fast fault diagnosis and correction.

79

When comparing to hardware-based techniques, such as Xilinx Triple Modular
Redundancy (XTMR) with scrubbing, that require modifications to the
microprocessor’s hardware, we can notice an area reduction higher than 66% and still
acceptable fault coverage of 96.9%. On the other hand, the hardened application takes
1.48 times the original time to execute and 6.5% more area to implement the OCFCM
hardware module.

In terms of diagnosis, Table 6.4 shows the number of faults and errors in the DUT
that were detected by the proposed technique. OCFCM was the technique that presented
the highest detection capability, with 41,671 exclusive error detections and 48,576
errors detected only with OCFCM-Control. The highest number of exclusive errors
detected was achieved by OCFCM-Control, showing that it is mandatory for the
hardening techniques in order to increase the fault coverage. The Variables technique
also showed high error detection, with 1,809 detected errors. The Inverted Branches, on
the other hand, could not detect a single error.

Table 6.4: Diagnosis of detected faults and errors for OCFCM with VAR and BRA

Source

Incorrect Results

Errors Detected

Flag Classification

Occurrences Exclusive
Detection

Occurrences Exclusive
Detection

Variables 0 0 1,809 16

Inverted Branches 0 0 0 0

OCFCM-Control 44 6 48,576 38,311

OCFCM-Data 2 0 2,216 1,185

OCFCM-Timeout 63 25 11,162 2,175

6.3 HETA

As for PODER and OCFCM, a total of 2,944,640 faults were injected in the AUT of
the FPGA board. From those faults, 75,619 caused an error in the circuit's output when
considering no fault tolerance detection. Since the fault injection was exhaustive, we
can assume that, except for placement and routing differences, the microprocessor core
has 75,507 sensitive bits, which represents 2.6% of the injected faults. This represents a
proportion of 40 bit-flips in the configuration memory bits to cause a functional error in
the design.

When further analyzing the results, according to the same three categories from
Section 6.1, one can see in Table 6.5 that 75,619 errors affected the DUT, and only
3,247 faults (4.3%) were not detected by the proposed hardening approach, achieving an
overall fault detection coverage of 95.7%.

80

Table 6.5: Classification of the total 75,619 faults in the miniMIPS protected by HETA
technique with VAR and BRA

Classification

Occurences

Detected Faults 102

Detected Errors 72,270

Not Detected Errors 3,247

Taking into account the static cross section per bit of 6.7x10-15 cm2/bit (XILINX, 2013b),

we can calculate the dynamic cross section by multiplying it per the number of sensitive
bits (75,517), resulting in a dynamic cross section of 5.1x10-10 cm2. After applying
HETA, the number of sensitive bits drops to 3,247, decreasing the dynamic cross
section to 2.1x10-11 cm2. One can notice a reduction of 24 times in the dynamic cross
section when using HETA.

Such results show that software-based techniques combined with HETA can be used
in harsh environments and allow designers to reach fast fault diagnosis and correction.
When comparing to hardware-based techniques, such as XTMR with scrubbing, that
require modifications to the microprocessor’s hardware, we can notice an area reduction
higher than 66% and still acceptable fault coverage of 95.7%. On the other hand, the
hardened application takes 56% more time to execute and the hardware module requires
extra 11.2% of area.

Table 6.6: Diagnosis of detected faults and errors for HETA with VAR and BRA

Source

Incorrect Results

Errors Detected

Flag Classification

Occurrences Exclusive
Detection

Occurrences Exclusive
Detection

Variables 68 63 61,913 980

Inverted Branches 2 0 6,962 1

HETA-Control 4 1 23,620 4475

HETA-Data 28 26 19,657 448

HETA-Timeout 0 0 63,131 806

In terms of diagnosis, Table 6.6 shows the number of faults and errors in the DUT that
were detected by the proposed technique. HETA was the technique that presented the
highest detection capability, with 5,769 exclusive error detections and 63,131 errors
detected only with HETA-Timeout. The highest number of exclusive errors detected
was achieved by HETA-Control, showing that it is mandatory for the hardening
techniques in order to increase the fault coverage. The Variables technique also showed
high error detection, with 61,913 detected errors. The Inverted Branches, on the other
hand, could exclusively detect one single error, although it theoretically complements
HETA in control flow error detection (AZAMBUJA, 2012a) and therefore should be
maintained in the system.

81

7 RADIATION EXPERIMENTAL RESULTS

This chapter presents radiation experimental results performed to evaluate the
efficiency of the proposed techniques under an accelerated particle test. We tested
FPGAs based on Flash and SRAM memory, implementing the miniMIPS
microprocessor hardened with HETA, for static and dynamic test.

7.1 MIPS in Flash-based FPGAs

Flash-based FPGAs use flash memory as the configuration memory. Flash memory
has low sensitiveness to radiation effects, because it requires a high voltage to be
written (change its current state), typically higher than 5V. Such voltages are rarely
obtained with energized particles, making flash-based FPGA a good platform to test
how an ASIC would respond to the irradiation, without taking into account SEUs in the
configuration memory. On the other hand, the circuit responsible for pumping up the
operation voltage to the writing voltage (5V or higher) is sensitive to radiation effects
and therefore reconfiguration should not be done under radiation.

The miniMIPS is implemented in flash-based FPGAs with two memories: program
and data (Harvard architecture). The program memory is implemented on a flash
memory and the data memory on SRAM blocks inside the FPGA, being sensitive to
radiation effects.

In the following, two irradiation experiments on flash-based FPGAs are described.

7.1.1 TID Experiment

This first experiment was performed at the Instituto de Estudos Avançados (IEAv),
in São José dos Campos, Brazil. We built a full-embedded system implemented in a
commercial flash-based FPGA part A3P250-PQ208 fabricated in 130-nm flash-based CMOS
process that retains programmed design when powered off. The aim was to analyze TID
effects in a complete embedded system and to observe in detail its response to external
inputs. Signal degradations were also observed during the measurements, as well as
temperature increase and power supply current (Icc).

The chosen embedded system was composed of a MIPS microprocessor hardened
with HETA, an unhardened SRAM memory embedded in the FPGA, two SpW links
(TARRILLO, 2011) and the FPGA embedded Phase-Locked Loop (PLL) clock module.
The system has some fault tolerant capabilities that are able to detect transient faults,
but not necessary TID effects as radiation results will show. Figure 7.1 shows the
architecture of the embedded system.

82

20 Mhz

Init_mem mode
selector

Hardened
Microprocessor

miniMIPS

rd_data,
rd_addr,
wr_data,
wr_addr,
wr

Init
memory

rd_data,
rd_addr,
wr_data,
wr_addr,
wr

SRAM

Memory

Ram_RW

Ram_addr

8

Ram_data
14
PC_mips

Self-checking and

6
Actel_out

RESET

watch dog module
wr_data,
wr_addr,
wr

SpW block

Control

13

SpW_error
6

SpW_Ready

SpW_Busy

SpW Tx

Rx SpW
SpW_Data

40 Mhz PLL Link 1 Rx Tx Link 2
6

PLL_out

Figure 7.1: Architecture of the embedded system.

The input signals for the embedded system are supplied from an on-chip 40MHz
pulse generator, divided by the PLL module into 20MHz. This signal is then connected
to a global clock that reaches all modules in the system. The electrical parameters of the
output signals were observed and recorded on the scope on-beam during DUT
irradiation. The full system has an occupation of 88% core cells, 75% ram blocks and
70% IO cells of the FPGA. The device was irradiated with a collimated gamma-ray
beam up to 68 krad(Si) with a dose rate of 2 krad per hour (0.555 rad/s) at room
temperature (24.5±0,5°C) using IEAv’s Co-60 source. The chip was covered with a
5mm layer of acrylic to reach the electronic equilibrium condition in order to calculate
the absorbed dose in silicon from the dose in air measured with an ion chamber.
Functional measurements were taken with a 1GHz oscilloscope and a 2GHz logical
analyzer. The core current and noise was continuously measured with a digital
multimeter. Figure 7.2 shows the experimental setup. The control of the entire
experiment, including the acquisition and data storage, was performed remotely. Data
acquisitions were carried through at each interval of 30 minutes, corresponding to a step
of 1 krad(Si) between acquisitions, until the first functional failure at 47 krad(Si). After
the first functional failure, data acquisitions were performed at each interval of 15
minutes, corresponding to a 0.5 krad(Si) acquisition step. Data was stored in text
archives for posterior analyses.

83

Figure 7.2: Experimental setup.

Data from all signals showed in Figure 7.1 were acquired, in order to check the
systems behavior. In a fault-free environment, the microprocessor runs accessing the
memory through the memory signals Ram_adr, Ram_data, and Ram_RW, while the
signal PC_mips increases itself. At the end of the program’s execution, the
microprocessor sends the result to the SpW link through the memory data bus. The SpW
link 1 then raises the signal SpW_Busy and starts transmitting data to link 2 through
signal Tx1 (link 1) and Rx2 (link 2). At the end of transmission, the signal SpW_Ready
informs that the signal SpW_Data_Out has a valid data output. While executing, signals
Actel_Out and SpW_error_Flag inform if any error was detected in the microprocessor
and in the SpW links, respectively.

Figure 7.3 shows the activity of the observed signals (black when active), according
to the amount of accumulated dose. By analyzing this graphic, one can deduce the
maximum accumulated dose in which each module of the circuit stop working. At 47
krad(Si) the signals SpW_Ready, SpW_Busy and SpW_Data_out stopped their
activity, while the SpW_error_flag signal stopped its activity in a dose of 49 krad(Si).
However, during all this period the SpW_error_flag was not able to signalize an error.

84

This is because the SpW error protocol was designed to detect errors such as permanent,
intermittent and transient faults, delayed faults as observed under TID. In the case of the
embedded SRAM memory, it is noticed that the microprocessor kept writing in the
memory until 47 krad(Si) (through signal RAM_WR) and accessing it until 63
krad(Si), through signals RAM_data and RAM_adr. The fault detection HW module
worked properly until 55 krad(Si), when it stopped its activity, as one can see through
signal Actel_out. However, this module also was not able to detect any degradation in
the propagation delay, as this module also is used to tolerate transient faults. The PLL
module and the microprocessor’s PC were the last parts of the embedded system to stop
their activities, at 65 krad(Si) through signals PLL_Out and PC_mips, respectively.

Figure 7.3: Accumulated dose for each signal output.

The Icc was measured during radiation. Figure 7.4 shows Icc and Temperature. As
shown, Icc started to change after 45 krad(Si), close to the moment when some modules
start stopping working. Note also that the current increases promptly and reaches 1.5
times the original current just before 65 krad(Si). Temperature and current drops
abruptly when the majority of the modules fail around 65 krad(Si). The PLL output was
measured in terms of frequency, duty cycle and delay compared to the board clock of
40Mhz. Figure 7.5 show the main degradations. It important to notice that the PLL
maintained very well the clock output frequency up to 65 krad(Si). After 65 krad(Si),
many glitches pulses were observed in the PLL clock output.

85

Figure 7.4: Measured current and temperature.

Figure 7.5: PLL clock output measurements: frequency, duty cycle and
delay compared to the external 40 MHz clock.

7.1.2 Neutron Experiment

This experiment was performed at CCLRC Rutherford Appleton Laboratory, in
Didcot, UK. We implemented the same embedded circuit from Section 7.1.1, shown in
Figure 7.1: MIPS microprocessor hardened with HETA, an unhardened SRAM memory
embedded in the FPGA, two SpW links (TARRILLO, 2011) and the FPGA embedded
PLL clock module. The part used was also the same as the one used on the previous
experiment: a commercial flash-based FPGA part A3P250-PQ208 fabricated in 130-nm
flash-based CMOS process.

86

We irradiated the device with a fluence of approximately 1.5•1010 n/(cm2) with the
available spectrum (shown in Figure 7.6), which has already been demonstrated to be
suitable to emulate the atmospheric neutron flux (VIOLANTE, 2007). The available
flux was of approximately 4.5•104 n/(cm2•s) for energies above 10 MeV. The beam was
focused on a spot with a diameter of 3 cm plus 1cm of penumbra, which is enough to
cover the whole FPGA chip. Irradiation was performed at room temperature with
normal incidence.

Figure 7.6: ISIS spectrum compared to those of the LANSCE and TRIUMF facilities
and to the terrestrial one at sea level multiplied by 107 and 108.

No errors were observed in the outputs.

7.2 MIPS in SRAM-based FPGAs

SRAM-based FPGAs use SRAM memory as the configuration memory. Differently
from flash memories, SRAM are very sensitive to radiation effects. It happens due to
low write voltages, the high density of memory cells and small transistor sizes. The
miniMIPS is implemented in SRAM-based FPGAs with one single memory containing
program and data (Von Neumann architecture). The memory is implemented on SRAM
blocks inside the FPGA, being sensitive to radiation effects.

In the following, one irradiation experiment on SRAM-based FPGAs is described.

7.2.1 TID Experiment

As would be expected from the thin gate oxides contained in these technologies,
little or no parametric shift was noted during any of the radiation exposures were
observed in previous tested by Xilinx (FABULA, 2000). The current was constant up to
80 krads(Si).

7.2.2 Neutron Experiment

This irradiation experiment was performed at the LANSCE facility, in Los Alamos,
USA. We implemented the miniMIPS microprocessor in a Virtex5 SRAM-based FPGA,
part XC5VLX110T. The main goal was to check the response of HETA when applied to SEEs
in SRAM-based FPGAs.

87

The case-study circuit is composed of three soft-core microprocessors with hardware
module and embedded memory (BRAM). Each TMR module of the DUT is a soft-core
microprocessor miniMIPS using shared data and program memory. Each soft-core is
connected to an embedded memory BRAM used to store the program code and data.
The soft-core is protected by HETA, a non-intrusive hybrid technique that uses software
redundancy in the application that is run in this processor and an extra hardware module
used to monitor the communication between the processor and the BRAM. The test case
application is a 32-bit 6x6 sequential matrix multiplication algorithm. After each run,
the microprocessor sends the error flags from the hardware module and an End of
Execution (EoE) flag to all the interface control units. The DUT circuit was
implemented into the XC5VLX110T Virtex5 FPGA. Figure 7.7 shows the architecture
of the embedded system and the connections between the different modules.

Figure 7.7: DUT’s architecture with the test control unit.

The HETA’s hardware module is implemented without modifying the
microprocessor architecture (non-intrusive) as a logic block that works in tandem with
the microprocessor. The module can monitor the data exchanged through the buses
between the microprocessor and the embedded memory (BRAM) and detect unexpected
deviations in the control flow and microprocessor timeouts. 5 error flags are generated,
being helpful to diagnose of the error and to improve the technique itself. Flag 1, or
Variables, corresponds to an error detected by the Variables technique, flag 2, or
Inverted Branches, corresponds to an error in the Inverted Branches technique and flags
3 (HETA-Control), 4 (HETA-Data) and 5 (HETA-timeout) are related to errors from
HETA (control flow error, data flow error and timeout, respectively). Each soft-core
miniMIPS module has an occupation of 2,411 slice LUTs and 1,570 slice registers and,
additionally, three 36k BRAM memories. From that area, 75 slice LUTs and 98 slice
registers belong to HETA’s hardware module, which corresponds to around 4% of the
total area.

In order to collect results from the DUTs and send them to a computer, we
implemented in the FPGA a control unit. The control unit is composed of a Finite State
Machine (FSM) capable of reading the BRAMs from the DUT and comparators to
detect if a fault occurred in one of the TMR modules. Once the EoE flag is received
from one of the microprocessors, the FSM puts it on hold and reads its BRAM. Once
the data from each of the three BRAM is read, the control unit generates the following
flags: (1) difference between modules #0 and #1 – bit(0), (2) difference between
modules #0 and #2 – bit(1), (3) difference between modules #1 and #2 – bit(2), (4)
HETA’s error flags – bit(3-7) (5) ready sign – bit(8), and (4) matrix multiplication result
– 1152 bits. This module also implements a watchdog to detect if one of the TMR
microprocessors is not responding and a serial interface circuit, responsible for sending
the data collected during the radiation test through a serial cable to a computer. Since

88

our main objective is analyzing faults in the DUT, the whole control unit’s circuit was
duplicated and an extra error flag was added, so that we could diagnose faults affecting
the control unit.

Figure 7.8 shows the FPGA placement after the routing performed by the Xilinx’s
tool. The top three squares represent each miniMIPS + HETA’s hardware + BRAM
module. The bottom three modules are the control unit, which was divided in three
smaller modules: the serial interface (in the middle) and the two duplicated circuits.
Boxes were added to highlight the area of each module and the real modules occupancy
is represented by the dots inside the boxes (the serial interface has approximately 30%
of the size of the box). Note that each redundant domain is placed far apart to minimize
interference and shortcuts in presence of SEE in the configuration bits.

Figure 7.8: FPGA’s module placement.

Radiation test was performed at Los Alamos National Laboratory’s (LANL) - Los
Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electronics (ICE
II) House II in September 2012. We irradiated the devices with the available spectrum
that emulates the atmospheric neutron flux. The available neutron flux was about 9x105

n/(cm2•s) for energies above 10 MeV. The beam was focused on a spot with a diameter
of 2cm plus 1cm of penumbra, thus enough for uniformly irradiate the FPGA.
Irradiation was performed at room temperature with normal incidence.

Table 7.1 summarizes the neutron experiment results. As one can see, 958 errors
affected the DUT after more than 97 hours of irradiation, and only 48 faults (5.3%)
were not detected by the proposed hardening approach, achieving an overall fault
coverage of 94.7%. We can further analyze the experimental data by dividing the errors
in three subclasses (see Tab. III):

4. Detected faults: errors detected by the software-based technique and HETA’s
hardware module that did not affect the matrix multiplication result;

5. Detected errors: errors detected by the software-based technique and
HETA’s hardware module that corrupted the matrix multiplication results. In
this case, the TMR also could detect those errors by the majority voters
placed at the output.

6. Not detected errors: errors not detected by the software-based technique and
HETA’s hardware module, but detected by the TMR.

89

The cross-section of the application, calculated by dividing the amount of observed
output errors by the fluence (about 3.5x1011n/cm2), is 9.14x10-9cm2. If we consider that
there were three modules of the miniMIPS, the cross-section per miniMIPS is the result
of the cross-section divided by three, which is 3.05 x10-9cm2.

Table 7.1: Classification of the total 958 faults in FPGA design tested under neutrons

Classification

Occurences

Detected Faults 157

Detected Errors 753

Not Detected Errors 48

As the available spectrum of energy resemble the atmospheric one, multiplying the
experimental cross-section per miniMIPS by an average flux of 14 n/(cm2•h) at New
York City (NORMAND, 1996), we can estimate the neutron-induced error rate at sea
level per miniMIPS to be 4.27 x10-17 Failure In Time (FIT). As reported in Table 7.1,
the proposed technique detected most of the errors. The cross-section of the hardened
application, defined as the undetected output errors divided by the fluence, is of
1.73x10-10cm2. The undetected error rate at sea level per miniMIPS is then reduced to
8.07 x10-19 FIT, being two order or magnitude lower with respect to the unhardened
design.

Such results show that software-based techniques combined with HETA can be used
in harsh environments and allow designers to reach fast fault diagnosis and correction.
When comparing to hardware-based techniques, such as XTMR with scrubbing, that
require modifications to the microprocessor’s hardware, we can notice an area reduction
higher than 66% and still acceptable fault coverage of 94.7%. On the other hand, the
hardened application takes 56% more time to execute.

In terms of diagnosis, Table 7.2 shows the number of faults and errors in the DUT
that were detected by the proposed techniques and the correspondent flag classification.

Table 7.2: Fault injection by partial reconfiguration in SRAM-based FPGA

Source

Incorrect Results

Errors Detected

Flag Classification

Occurrences Exclusive
Detection

Occurrences Exclusive
Detection

Variables 0 0 502 30

Inverted Branches 0 0 38 0

HETA-Control 142 139 168 53

HETA-Data 14 14 112 104

HETA-Timeout 4 1 521 6

90

As shown in Table 7.2, HETA was the technique that presented the highest detection
capability, with 157 fault detections, 163 exclusive error detections and 521 errors
detected only with HETA-Timeout. The highest number of exclusive errors detected
was achieved by HETA-Data, showing that it is mandatory for the hardening techniques
in order to increase the fault coverage. The Variables technique also showed high error
detection, with 502 detected errors. The Inverted Branches, on the other hand, could not
exclusively detect a single error, although it theoretically complements HETA in control
flow error detection and therefore should be maintained in the system.

91

8 CONCLUSIONS AND FUTURE WORK

In this thesis, hybrid fault tolerant techniques to detect SEE in processors were
developed and verified under fault injection and radiation experiment. In chapter 3 we
presented the related works through fault tolerant techniques. These works showed
different approaches to deal with transient faults at hardware, software and hybrid
levels. They presented interesting concepts and proved the advantage of using fault
tolerant techniques at different levels to achieve high fault detection rates. In spite of
that, the main disadvantages were the intrusiveness of most of hardware-based and
hybrid techniques and the performance degradations and memory overhead of software-
based techniques.

Chapter 4 presented our proposed fault tolerant techniques to detect transient errors
in processors. Two previously known techniques were presented, called Variables and
Inverted Branches. In addition, three new hybrid techniques were proposed, called
PODER, OCFCM and HETA. The techniques, as well as the theory and origin behind
them, were discussed in detail. Their implementations, including program
transformation and hardware implementation (when required), were presented and
results according to execution time (performance degradation), program memory and
data memory overheads were shown. Results showed for all techniques a performance
degradation varying from 1.08 to 1.69, data memory overhead up to 2 times (when
using the Variables technique), and program memory overheads up to 2.18 the original
one.

In Chapter 5, we presented the fault injection experimental results by simulation. A
fault injector implemented in Java was used and faults were injected by running a script
on top of the simulator ModelSim, from Mentor. Faults were injected, one per program
execution, in all VHDL signals describing the DUT, at RTL level. Techniques PODER,
OCFCM and HETA showed high detection rates for faults affecting the program’s
execution flow. On the other hand, as expected, they could not detect some faults
affecting the data flow. In order to increase the detection, the techniques were combined
with the Variables and Inverted Branches software-based techniques. The combination
resulted in 100% fault detection for all techniques applied to all case-study applications.
Such results show that the proposed techniques could not only be combined with data
flow techniques, but also reach high detection rates when applied to real applications.

In Chapter 6, we described the fault injection campaign by modifying the
configuration bitstream of a Virtex 5 SRAM-based FPGA. By doing so, we injected
faults that were not guaranteed to be detected by the proposed techniques, when
modifying the functions implemented in the FPGA through its configuration memory.
All the proposed techniques were implemented and analyzed according to faults
detected, errors detected and errors not detected. Results showed that PODER was the
hybrid technique with higher detecting, reaching 98.4% error detection, which is

92

considered a high detection rate, especially for techniques that do no aim to protect the
configuration memory of the FPGA. HETA, with the lowest detection rate, reached
95.7% error detection.

Chapter 7 presented three irradiation experimental results. FPGAs with memory
configuration based on flash and SRAM were used. We analyzed the hybrid HETA
technique applied to a miniMIPS microprocessor and combined with the Variables and
Inverted Branches software-based techniques. We used neutron beam sources from
LANSCE and CCLRC Rutherford Appleton Laboratory to test the parts XC5VLX110T
(SRAM-based), from Xilinx, and A3P250-PQ208 (flash-based), from Actel,
respectively. Results showed a low sensitiveness to radiation effects for the flash-based
FPGA and a cross-section of 9.14x10-9cm2 for the SRAM-based FPGA. When HETA
was applied to the SRAM-based FPGA, the cross-section was reduced by two orders of
magnitude. We also performed TID experiments using a Co-60 source from IEAV. The
part tested was a flash-based FPGA, part A3P250-PQ208, from Actel. Results showed
functional failures at 45 krad(Si).

The techniques proposed in this thesis have shown interesting results, when
compared to related works in the literature. The achieved detection rates combined with
the performance degradation and area and memory overheads improved the state-of-the-
art, by providing new ways of protecting processor system with higher fault tolerance at
smaller costs of performance degradation and area overhead. These results have been
backed by intense fault injection campaigns, performed by simulating upsets at RTL
level and by injecting faults in the configuration memory bitstream, and TID and
neutron irradiation experiments. By doing so, we tested the techniques from their early
development stages until real case scenarios.

As future work, we intend to expand the techniques to cope with faults in the
configuration bitstream, in order to increase the detection rates for SRAM-based FPGAs
and analyze the response of the proposed techniques to multiple faults. Also, we would
like to apply the techniques to more complex applications, such as operating systems
and real time benchmarks. So far, we have implemented the techniques on the
miniMIPS and have previous results on the LEON3 (GAISLER, 2013). We would like
to extend it to and ARM architecture, such as the ARM Cortex-A9 and expand it to
cope with Graphic Processing Units (GPU) and superscalar architectures.

93

REFERENCES

AEROFLEX Gaisler. LEON3 [Online]. Available at: http://www.gaisler.com/index.php
/products/processors/leon3?task=view&id=13, 2013.

ALKHALIFA, Z.; NAIR, V.; KRISHNAMURTHY, N.; ABRAHAM, J. Design and
evaluation of system-level checks for on-line control flow error detection. IEEE
Transactions on Parallel and Distributed Systems, New York, USA: IEEE Computer
Society, 1999, v. 10, n. 6, p. 627-641.

ALMEIDA, F.; KASTENSMIDT, F.; PAGLIARINI, S.; ENTRENA, L.; LINDOSO,
A.; MILLAN, E.; CHIELLI, E.; NAVINER, L.; NAVINER, J. Single-event-induced
charge sharing effects in TMR with different levels of granularity. In: RADIATION
EFFECTS ON COMPONENTS AND SYSTEMS, RADECS 2012. Proceedings… Los
Alamitos, USA: IEEE Computer Society, 2012.

ANGHEL, L.; NICOLAIDIS, M. Cost reduction and evaluation of a temporary faults
detection technique. In: DESIGN, AUTOMATION AND TEST IN EUROPE
CONFERENCE, 2000, DATE 2000, Paris, FRA. Proceedings… New York, USA:
ACM Press, 2000, p. 591-598.

AUSTIN, T. DIVA: a reliable substrate for deep submicron microarchitecture design.
In: ACM/IEEE INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE,
32., 1999, MICRO32, Haifa, ISR. Proceedings… Los Alamitos, USA: IEEE Computer
Society, 1999, p. 196-207.

AVIZIENIS, A.; LAPRIE, J-C.; RANDELL, B; LANDWEHR, C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, vol.1, no.1, 2004.

AZAMBUJA, J.; LAPOLLI, A.; ROSA, L.; KASTENSMIDT, F. Detecting SEEs in
Microprocessors through a Non-Intrusive Hybrid Technique. IEEE Transactions On
Nuclear Science, Los Alamitos, USA: IEEE Computer Society, 2011, v. 58, n. 3, p.993–
1000.

AZAMBUJA, J.; SOUSA, F.; ROSA, L.; KASTENSMIDT, F. The limitations of
software signature and basic block sizing in soft error fault coverage. In: LATIN
AMERICAN TEST WORKSHOP, LATW 2010. Proceedings… Los Alamitos, USA:
IEEE Computer Society, 2010.

AZAMBUJA, J. Análise de técnicas de tolerância a falhas baseadas em software para a
proteção de microprocessadores. Master Thesis. 2010.

http://www.gaisler.com/index.php

94

AZAMBUJA, J.; PAGLIARINI, S.; ROSA, L.; KASTENSMIDT, F. Exploring the
limitations of software-only techniques in SEE detection coverage. Journal of
Electronic Testing, Vol. 27, p. 541-550, 2011.

AZAMBUJA, J.; PAGLIARINI, S.; ALTIERI, M.; KASTENSMIDT, F.; HUBNER,
M.; BECKER, J.; FOUCARD, G.; VELAZCO, R. A Fault Tolerant Approach to Detect
Transient Faults in Microprocessors Based on a Non-Intrusive Reconfigurable
Hardware. IEEE Transactions On Nuclear Science, Los Alamitos, USA: IEEE
Computer Society, 2012, v. 59, n. 4, p.1117–1124.

AZAMBUJA, J.; ALTIERI, M.; BECKER, J.; KASTENSMIDT, F. HETA: hybrid
error-detection technique using assertions. IEEE Transactions On Nuclear Science,
Los Alamitos, USA: IEEE Computer Society, 2013.

BAUMANN, R. Soft errors in advanced semiconductor devices-part I: the three
radiation sources. IEEE Transactions on Device and Materials Reliability, Los
Alamitos, USA: IEEE Computer Society, 2001, v. 1, n. 1, p.17–22.

BARNABY, H. Total-ionizing-dose effects in modern CMOS technologies. IEEE
Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer Society,
2006, v. 53, n. 6, p.3103–3121.

BERNARDI, L.; BOLZANI, L.; REBAUDENGO, M.; REORDA, M.; RODRIGUEZ-
ANDINA, J.; VIOLANTE, M. A new hybrid fault detection technique for systems-on-
a-chip. IEEE Transactions on Computers, New York, USA : IEEE Computer Society,
2006, v. 55, n. 2, p. 185-198.

BOLCHINI, C.; MIELE, A.; SALICE, F.; SCIUTO, D. A model of soft error effects in
generic IP processors. In: INTERNATIONAL SYMPOSIUM ON DEFECT AND
FAULT TOLERANCE IN VLSI, 2005. Proceedings… Los Alamitos, USA: IEEE
Computer Society, 2005.

BUCHNER, S.; CAMPBELL, A.; REED, R.; FODNESS, B.; KUBOYAMA, S.
Angular Dependence of Multiple-Bit Upsets Induced by Protons in a 16 Mbit DRAM.
IEEE Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer
Society, 2004, v. 51, n. 6, p.3270–3277.

CHEYNET, P.; NICOLESCU, B.; VELAZCO, R.; REBAUDENGO, M.; REORDA, S.;
VIOLANTE, M. Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors. IEEE Transactions On
Nuclear Science, [S.l.]: IEEE Nuclear and Plasma Sciences Society, 2000, v. 47, n. 6
(part 3), p. 2231-2236.

CHIELLE, E.; AZAMBUJA, J.; BARTH, R.; ALMEIDA, F.; KASTENSMIDT, F.
Evaluating Selective Redundancy in Data-flow Software-based Techniques. IEEE
Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer Society,
2013.

CUENCA-ASENSI, S.; MARTINEZ-ALVAREZ, A.; RESTREPO-CALLE, F.;
PALOMO, F.; GUZMAN-MIRANDA, H.; AGUIRRE, M. A novel co-design approach
for soft errors mitigation in embedded systems. IEEE Transactions On Nuclear
Science, Los Alamitos, USA: IEEE Computer Society, 2011, v. 58, n. 3, p.1059-1065.

95

DODD, P.; SHANEYFELT, M.; FELIX, J.; SCHWANK, J. Production and propagation
of single-event transients in high-speed digital logic ics. IEEE Transactions On
Nuclear Science, Los Alamitos, USA: IEEE Computer Society, 2004, v. 51, n. 6 (part
2), p.3278–3284.

DONASSOLO, B.; AZAMBUJA, J.; KUAMOTO, L.; DIVERIO, T.; NAVAUX, P.
Aplicação de Curso na Área de Cluster de Alto Desempenho. In: WORKSHOP DE
PROCESSAMENTO PARALELO DISTRIBUÍDO, 2005, v. 1, p. 115-116.

ENTRENA, L.; GARCIA-VALDERAS, M.; FERNANDEZ-CARDENAL, R.;
LINDOSO, A.; LOPEZ-ONGIL, C. Soft error sensitivity evaluation of microprocessors
by multilevel emulation-based fault injection. IEEE Transactions on Computers,
2010, v. 61, n. 3, p. 313- 322.

FABULA, J.; BOGROW, H. Total ionizing dose performance of SRAM-based FPGAs
and supporting PROMs. In: MILITARY AND AEROSPACE APPLICATIONS OF
PROGRAMMABLE DEVICES AND TECHNOLOGIES INTERNETIONAL
CONFERENCE, 2000. Proceedings… Los Alamitos, USA: IEEE Computer Society,
2000.

GOLOUBEVA, O.; REBAUDENGO, M.; SONZA REORDA, M.; VIOLANTE, M.
Soft-error detection using control flow assertions. In INTERNATIONAL
SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI, 2003.
Proceedings… Los Alamitos, USA: IEEE Computer Society, 2003.

HANGOUT, L.; JAN, S: The minimips project [Online]. Available at: http://www.
http://opencores.org/project,minimips, 2013.

HOMPSON, S.; CHAU, R.; GHANI, K.; MISTRY, K.; TYAGI, S.; BOHR, M. In
search of forever: continued transistor scaling one new material at a time. IEEE
Transactions on Semiconductor Manufacturing, New York, USA: IEEE Computer
Society, 2005, v. 18, n.1, p. 26-36.

HUANG, K.; ABRAHAM, J. Algorithm-based fault tolerance for matrix operations.
IEEE Transactions on Computers, New York, USA: IEEE Computer Society, 1984,
v. 33, p. 518-528

INTERNATIONAL Technology Roadmap for Semiconductors: 2005 Edition, Chapter
Design, 2005, pp. 6-7.

KASTENSMIDT, F.; STERPONE, L.; CARRO, L.; SONZA REORDA, M. On the
optimal design of triple modular redundancy logic for SRAM-based FPGAs. In:
DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE, 2005, DATE
2005. Proceedings… New York, USA: ACM Press, 2005, p. 1290-1295.

KEYS, A.; ADAMS, J.; CRESSLER, J; DARTY, C.; JOHNSON, A.; PATRICK, C.
High-performance, radiation-hardened electronics for space and lunar environments.
AIP Space Technology and Applications International Forum. Proceedings...
Albuquerque, NM: American Institute of Physics. 2008. p. 749-756.

KIM, N.; AUSTIN, T.; BAAUW, D.; MUDGE, T.; FLAUTNER, K.; HU, J.;
IRWIN, M; KANDEMIR, M.; NARAYANAN, V. Leakage current: moore's law

http://www/
http://www/
http://opencores.org/project%2Cminimips

96

meets static power. Computer, Los Alamitos, USA : IEEE Computer Society, 2003, v.
36, p. 68-75.

LINDOSO, A.; ENTRENA, L.; MILLAN, E.; CUENCA-ASENSI, S.; MARTINEZ-
ALVAREZ, A.; RESTREPO-CALLE, F. A co-design approach for SET mitigation in
embedded systems. IEEE Transactions On Nuclear Science, Los Alamitos, USA:
IEEE Computer Society, 2012, v. 59, n. 4, p.1034–1039.

LISBOA, C.; ERIGSON, M.; CARRO, L. System level approaches for mitigation of
long duration transient faults in future technologies. In: IEEE EUROPEAN TEST
SYMPOSIUM, 12., ETS 2007, Freiburg, DEU. Proceedings… Los Alamitos, USA:
IEEE Computer Society, 2007, p. 165-170.

LU, D. Watchdog processors and structural integrity checking. IEEE Transactions On
Computers, Los Alamitos, USA: IEEE Computer Society, 1982, v. 31, n. 7, p.681–685.

MCFEARIN, L; NAIR, V. Control-flow checking using assertions. In CONFERENCE
ON DEPENDABLE COMPUTING FOR CRITICAL APPLICATIONS, Urbana-
Champaign, USA: Proceedings... Washington, USA: IEEE Computer Society, 1995, p.
103-112.

MAHMOOD, A.; LU, D.; McCLUSKEY, E. Concurrent fault detection using a
watchdog processor and assertions. In: IEEE INTERNATIONAL TEST
CONFERENCE, ITC’83, 1983, [S.l.]. Proceedings… [S.l.: s.n.], 1983, p. 622-628.

MAHMOOD, A.; McCLUCKEY, E. Concurrent error detection using watchdog
processors-a survey. IEEE Transactions on Computers. [S.l.]: 1988, v. 37, n. 2, p.
160-174.

MOORE, G. Cramming More Components onto Integrated Circuits. Electronics
Magazine, 38, 114-117, 1965.

NAMJOO, M.; McCLUSKEY, E. Watchdog processors and capability checking. In:
INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT COMPUTING, 12.,
1982, FTCS-12, Santa Monica, USA. Proceedings… [S.l.: s.n.], 1982, p. 245-248.

NAMJOO, M. CERBERUS-16: An architecture for a general purpose watchdog
processor. In: INTERNATIONAL SYMPOSIUM ON FAULT-TOLERANT
COMPUTING, 13., 1983, FTCS-13, Milan, ITA. Proceedings… [S.l.: s.n.], 1983, p.
216-219.

NAPOLES, J.; GUZMAN, H.; AGUIRRE, M.; TOMBS, J.; MUNOZ, F.; BAENA, V.;
TORRALBA, A.; FRANQUELO, L. Radiation environment emulation for VLSI
designs A low cost platform based on xilinx FPGAs. In INTERNATIONAL
SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2007. Proceedings… Los
Alamitos, USA: IEEE Computer Society, 2007.

NAZAR, G.; CARRO, L. Fast single-fpga fault injection platform. In: IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS, 20., DFT 2012, 2012, Monterey, USA. Proceedings… Los Alamitos,
USA: IEEE Computer Society, 2012, p. 152-157.

NAZAR, G.; RECH, P.; FROST, C.; CARRO, L. Experimental evaluation of an
efficient error detection technique for FPGAs. In: RADIATION EFFECTS ON

97

COMPONENTS AND SYSTEMS, RADECS 2012. Proceedings… Los Alamitos,
USA: IEEE Computer Society, 2012.

NICOLAIDIS, M. Time redundancy based soft-error tolerance to rescue nanometer
technologies. In: IEEE VLSI TEST SUMPOSIUM, 17., VTS 1999, Dana Point, USA.
Proceedings… Washington, DC, USA: IEEE Computer Society, 1999. p. 86-94.

NIEUWLAND, A.; JASAREVIC, S.; JERIN, G. Combinational logic soft error analysis
and protection. In: IEEE INTERNATIONAL ON-LINE TEST SYMPOSIUM, 12.,
IOLTS 2006, Lake of Como, ITA. Proceedings… Los Alamitos, USA: IEEE Computer
Society, 2006. p. 99-104.

NORMAND, E. Single event effects in avionics. IEEE Transactions On Nuclear
Science, Los Alamitos, USA: IEEE Computer Society, 1996, v. 43, n. 2, p. 461-474.

OH, N.; MITRA, S.; McCLUSKEY. ED4I: error detection by diverse data and
duplicated instructions. IEEE Transactions on Computers, 2002, v. 51, n. 2, p. 180-
199.

OH, N.; SHIRVANI, E.; McCLUSKEY, E. Control-flow checking by software
signatures. IEEE Transactions on Reliability. [S.l.]: IEEE Computer Society?], 2002,
v. 51, n. 2, p. 111-122.

OLDAM, T.; MCLEAN, F. Total ionizing dose effects in MOS oxides and devices.
IEEE Transactions On Nuclear Science, Los Alamitos, USA: IEEE Computer
Society, 2003, v. 50, n. 3, p.483–499.

PATTERSON, D. A.; HENNESSY, J. L. Computer organization and design: the
hardware/software interface. Morgan Kaufmann, 2009.

PILOTTO, C.; AZAMBUJA, J.; KASTENSMIDT, F. Synchronizing triple modular
redundant designs in dynamic partial reconfiguration applications. In: SYMPOSIUM
ON INTEGRATED CIRCUITS AND SYSTEM DESIGN, 2008, SBCCI 2008,
Gramado, BRA. Proceedings… New York, USA: IEEE Computer Society, 2007,
p.199-204.

ROSSI, D.; OMANA, M.; TOMA, F.; METRA, C. Multiple transient faults in logic: an
issue for next generation ICs? In: IEEE INTERNATIONAL SYMPOSIUM ON
DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, 20., DFT 2005, 2005,
Monterey, USA. Proceedings… Los Alamitos, USA: IEEE Computer Society, 2005, p.
352-360.

REIS, G.; CHANG, J.; AUGUST, D. Automatic instruction-level software-only
recovery. IEEE Micro, vol. 27, no. 1, pp. 36–47, 2007.

RHOD, E.; LISBOA, C.; CARRO, L.; SONZA REORDA, M. Hardware and software
transparency in the protection of programs against SEUs and SETs. Journal of
Electronic Testing: theory and applications. Norwell, USA: Kluwer Academic
Publishers, 2008, v. 24, n. 1-3, p. 45-56.

O'GORMAN, J.; ROSS, J.; TABER, A.; ZIEGLER, J.; MUHLFELD, H.;
MONTROSE, H.; CURTIS, W.; WALSH, J. Field testing for cosmic ray soft errors in
semiconductor memories. IBM Journal of Research and Development, 1996, p. 41-
49.

98

OHLSSON, J.; RIMEN, M. Implicit signature checking. In: INTERNATIONAL
SYMPOSIUM ON FAULT-TOLERANT COMPUTING, 25., 1995, FTCS-25,
Pasadena, USA. Digest of papers… [S.l.: s.n.], 1995, p. 218-227.

SCHILLACI, M.; REORDA, M.; VIOLANTE, M. A new approach to cope with single
event upsets in processor-based systems. In: IEEE LATIN-AMERICAN TEST
WORKSHOP, 7., 2006, LATW 2006, Buenos Aires, ARG. Proceedings… [S.l.: s.n.],
2006, p. 145-150.

SCHUETTE, M.; SHEN, J. Processor control flow monitoring using signature
instruction streams. IEEE Transactions on Computer, [S.l.: s.n.], 1987, v. 36, n. 3, p.
264-276.

TARRILLO, J.; AZAMBUJA, J.; KASTENSMIDT, F.; FONSECA, E.; GALHARDO,
R.; GONCALEZ, O. Analyzing the effects of TID in an embedded system running in a
flash-based FPGA. IEEE Transactions On Nuclear Science, Los Alamitos, USA:
IEEE Computer Society, 2011, v. 58, n. 6, p.2855–2862.

VEMU, R.; ABRAHAM, J. CEDA: control-flow error detection through assertions. In:
INTERNATIONAL ON-LINE TEST SYMPOSIUM, 12., 2006, IOLTS 06, Lake of
Como, ITA. Proceedings… Washington, USA: IEEE Computer Society, 2006, p. 151-
158.

VEMU, R.; GURUMURTHY, S.; ABRAHAM, J. ACCE: automatic correction of
control-flow errors. In: INTERNATIONAL TEST CONFERENCE, 2007, ITC 2007,
[Otawa, CAN]. Proceedings… New York, USA: IEEE Computer Society, Oct. 2007,
paper 227.2, p. 1-10.

VEMU, R.; ABRAHAM, J. CEDA: control-flow error detection using assertions. IEEE
Transactions On Computers, Los Alamitos, USA: IEEE Computer Society, 2011, v.
60, n. 9, p.1233–1245.

VIOLANTE, M.; STERPONE, L.; MANUZZATO, A.; GERARDIN, S.; RECH, P.;
BAGATIN, M. PACCAGNELLA, A.; ANDREANI, C.; GORINI, G.;
PIETROPAOLO, A.; CARDARILLI, G.; PONTARELLI, S.; FROST, C. A new
hardware/software platform and a new 1/E neutron source for soft error studies: testing
FPGAs at the ISIS facility. IEEE Transactions On Nuclear Science, Los Alamitos,
USA: IEEE Computer Society, 2007, v. 54, n. 4, p.1184–1189.

WAKERLY, J. Error detecting codes, self-checking circuits and applications. New
York, USA: North-Holland, 1978.

WILKEN, K.; SHEN, J. Continuous Signature Monitoring: low-cost concurrent
detection of processor control errors. IEEE Transactions on Computers Aided
Design of Integrated Circuits and Systems, New York, USA: IEEE Computer
Society, 1990, v. 9, n. 6, p. 629-641.

XILINX Corp., Xilinx University Program XUPV5-LX110T Development System
[Online]. Available: http://www.xilinx.com/univ/xupv5-lx110t.htm, 2013.

XILINX Corp., Device Reliability Report, UG116 (v9.4), 2013.

http://www.xilinx.com/univ/xupv5-lx110t.htm

99

APENDIX - PROPOSTA DE DOUTORADO

Universidade Federal do Rio Grande do Sul

Programa de Pós-Graduação em Computação

Instituto de Informática

Plano de Trabalho: Doutorado 2010

Projetando Técnicas Eficientes e Não-Intrusivas

Para a Tolerância de Soft Errors em

Microprocessadores.

Proponente: José Rodrigo Furlanetto de Azambuja

Orientadora: Profa. Dra. Fernanda Kastensmidt

Janeiro, 2010

100

1. Introdução

Os avanços da última década na indústria de semicondutores aumentaram

exponencialmente o desempenho dos microprocessadores. Grande parte destes ganhos

em desempenho foi devido a dimensões menores e voltagens mais baixas de operação

dos transistores, que levaram a arquiteturas mais complexas com maior grau de

paralelismo combinado com uma alta freqüência de relógio. Entretanto, a mesma

tecnologia que possibilitou todo este progresso também reduziu a confiabilidade dos

transistores, reduzindo a voltagem de limiar e estreitando as margens de ruído

(Baumann et al., 2001), (O’Gorman et al., 1996) e assim tornando-os mais suscetíveis a

falhas causadas por partículas energizadas (O’Gorman et al., 1996). Como

conseqüência, aplicações de alta confiabilidade necessitam técnicas de proteção de

falhas capazes de recuperar o sistema de uma falha com um custo mínimo de

implementação e desempenho.

Uma das maiores preocupações é conhecida como soft error, que é definido

como uma falha com efeito transiente provocado pela iteração entre uma partícula

energizada com a junção PN no silício. Esta perturbação carrega temporariamente os

nodos do circuito, gerando pulsos de voltagem transiente que podem ser interpretados

como sinais internos e assim provocando um resultado errôneo (Dodd et al., 2003). Os

erros mais típicos relacionados à soft errors são Single Event Upsets (SEU),

caracterizados pela mudança de estado da lógica seqüencial (registradores, flip-flops,

memória, etc.) e Single Effect Transient (SET), que são pulsos transientes de voltagem

na lógica combinacional, podendo ser registrados pela lógica seqüencial. A figura 1.1

mostra uma partícula energizada acertando a junção PN de um transistor e causando um

soft error.

Figura 1.1: Partícula energizada ao acertar um transistor.

101

Técnicas de tolerância a falhas baseadas em sofware podem resultar em alta

flexibilidade e baixo tempo de desenvolvimento e custos para sistemas computacionais.

Sistemas de alto desempenho chamados System-on-Chip (SoC) compostos de um

grande numero de microprocessadores e outros núcleos conectados através de uma

Network-on-Chip (NoC) estão se tornando mais populares em muitas aplicações que

requerem alta confiabilidade, como servidores de dados, veículos de transporte,

satélites, entre outros. Ao utilizar estes sistemas, a proteção contra falhas fica a cargo do

projetista. A tolerância a falhas através de software tem recebido muita atenção nestes

sistemas, visto que não é necessário alterar o hardware. A figura 1.2 mostra uma NoC

3x3, conectando diferentes tipos de componentes através de nove roteadores.

Figura 1.2: Exemplo de uma NoC 3x3.

As técnicas baseadas somente em software exploram a redundância de

informação, instrução e tempo para detectar e até mesmo corrigir erros durante o fluxo

do programa. Todas estas técnicas utilizam instruções adicionais na área de código para

ou recomputar instruções ou para gravar e checar informações nas estruturas de

hardware. Nos últimos anos, foram apresentadas ferramentas para automaticamente

injetar tais instruções no código C ou assembly, reduzindo significativamente os custos

de implementação.

Trabalhos relacionados apontaram problemas de técnicas baseadas somente em

software, como a impossibilidade de alcançar uma cobertura completa de falhas do tipo

SEU (Bolchini et al., 2005), alto custo de memória e degradação de desempenho. A

memória aumenta devido às instruções adicionais e duplicação de memória. A

degradação do desempenho acontece devido à execução repetida de instruções

(Goloubeva et al., 2003), (Huang et al., 1984), (Oh et al., 2002). Entretanto, não existe

estudo na literatura que analisou tanto falhas do tipo SEU quanto SET e correlacionou a

localização e os efeitos das falhas injetadas com o estado de detecção. Esta informação

é muito para guiar projetistas para melhorar a eficiência e as taxas de detecção de soft

errors das técnicas de mitigação de falhas baseadas somente em software.

102

2. Estado da Arte

O estado-da-arte da área de técnicas de tolerância a falhas puramente em

software classifica as técnicas em dois grupos: (1) que protegem erros de dados, como

as técnicas propostas por (Rebaudengo et al., 1999), (Cheynet et al., 2000), (Nicolescu

et al., 2003), e (2) que protegem contra erros de controle, como Structural Integrity

Checking (SIC) (Lu, 1982), Control-Flow Checking by Software Signatures (CFCSS)

(Oh et al., 2002), Control Flow Checking using Assertions (CCA) (Mcfearin et al.,

1995) e Enhanced Control Flow Checking using Assertions (ECCA) (Alkhalifa et al.,

1999).

As técnicas de proteção de dados se baseiam na replicação e comparação de

instruções, registradores e memória, aumentando consideravelmente os custos com

memória de programa e de dados e reduzindo o desempenho do microprocessador, visto

que é necessário executar diversas instruções replicadas e de checagem. A maioria das

técnicas de proteção do fluxo de programa, por outro lado, divide o código de programa

em blocos básicos (partes sequenciais de programa) e atribuem valores a cada bloco

básico, para então realizar checagens de fluxo de programa com variáveis globais com o

mesmo fim.

As técnicas propostas obtiveram tolerância total de erros de dados do tipo SEU,

conseguindo detectar todas as falhas afetando os dados, tanto em memória quanto em

registradores, que fossem levar o sistema a um resultado errôneo. Entretanto, as técnicas

do segundo grupo ainda não obtiveram 100% de detecção de falhas.

A técnica ECCA estende a CCA e é capaz de detectar todos os erros de desvios

entre diferentes blocos básicos, mas não é capaz de detectar nem falhas de desvios

dentro do mesmo bloco básico (origem e destino do desvio incorreto de fluxo) nem

falhas que causam uma decisão incorreta numa instrução de desvio. A técnica CFCSS,

por outro lado, consegue detectar erros dentro do mesmo bloco básico, mas não

consegue detectar erros de desvio se múltiplos blocos básicos possuem o mesmo bloco

básico de destino, situação muito comum em algoritmos do tipo controlflow.

Atualmente, as técnicas existentes na literatura conseguem proteger sistemas

contra todos os tipos de erro de dados e a maioria dos erros de fluxo de programa.

Entretanto, esta proteção vem com um grande custo em desempenho e em área de

memória. As proteções de dados podem chegar a aumentar o tempo de computação de

um algoritmo em duas vezes, enquanto a proteção completa pode ultrapassar três vezes

103

o tempo do algoritmo sem proteção. A memória de programa também tem um aumento

considerável, chegando a três vezes o tamanho inicial.

A literatura ainda desconhece um trabalho com uma coleção de técnicas com

detalhamento suficiente para o projetista combinar e proteger o seu sistema conforme a

sua vontade, podendo chegar a detectar todas as falhas e com um conhecido custo em

desempenho e área física.

3. Motivação

O estado da arte na área de proteção de microprocessadores está muito aquém do

desejado pelos projetistas, mesmo com o esforço de grandes grupos de pesquisa, como

das Universidades de Chung-Hua, de Torino, de Milão, de Atlanta, dentre outras e o

grupo de pesquisa TIMA, sediado na França. Embora tenha alcançado um alto nível de

detecção de falhas, as técnicas existentes ainda não obtiveram a detecção total de falhas

injetadas nem traçaram uma relação entre o local das falhas injetadas com o efeito no

microprocessador e o resultado de detecção de cada técnica.

Durante o seu mestrado, o candidato desenvolveu um trabalho sobre a proteção

de microprocessadores através de técnicas puramente em hardware e software. Foram

implementadas e simuladas diversas arquiteturas através da replicação de diferentes

partes do microprocessador e adição de módulos intrusivos e extrusivos de checagem de

estado e construída uma ferramenta chamada Hardening Post-Compiling Tool

(HPCTool) para automaticamente proteger códigos em linguagem de máquina, ficando

a cargo do projetista a escolha das técnicas a serem utilizadas. Apesar de ter tomado

oito meses de implementação, a construção desta ferramenta foi extremamente

importante, visto que a proteção de códigos-fonte é uma tarefa extremamente difícil

quando realizada a mão.

Para automatizar a injeção de falhas, foi implementado um injetor de falhas

capaz de injetar falhas simples ou múltiplas em qualquer sinal, em qualquer momento

da execução e pelo tempo escolhido pelo projetista de forma massiva. Além de injetar e

executar o programa escolhido pelo usuário, o programa gera automaticamente a coleta

de resultados, compara os resultados obtidos com os esperados (corretos) e faz uma

classificação das falhas.

Os resultados obtidos, a ferramenta HPCTool e o injetor de falhas, juntamente

com outros aplicativos de menor expressão (classificador de falhas com relação a efeito,

classificador de desvio de fluxo de programa, mapeador de falhas para

104

microprocessadores com pipeline, dentre outros), formam uma base sólida para o

desenvolvimento e teste de novas técnicas em software, hardware e, principalmente,

híbridas. Além disso, os resultados obtidos e a classificação de falhas oferecem uma

ótima base para comparação de resultados.

4. Objetivo

O principal objetivo deste trabalho é estender o estudo realizado durante a tese

de mestrado do candidato e desenvolver uma técnica híbrida de tolerância a falhas para

microprocessadores capaz de detectar até 100% das falhas, ficando a cargo do projetista

a melhor relação de detecção por custo. O desenvolvimento prevê a combinação de

técnicas puramente em software e a adaptação das mesmas para um módulo não-

intrusivo desenvolvido em hardware.

O teste da técnica híbrida, bem como a comparação com as outras técnicas,

envolverá pelo menos duas aplicações de teste, sendo uma dataflow e outra controlflow.

Entretanto, o ideal é que sejam implementadas todas as aplicações de um benchmark

utilizado na indústria. Como componentes de processamento, serão utilizados os

microprocessadores miniMIPS e PowerPC 405 ou superior, sendo o primeiro

largamente utilizado na literatura e nos grupos de pesquisa da UFRGS e o segundo

amplamente utilizado na indústria de sistemas embarcados. O processador PowerPC

possui uma arquitetura diferente do miniMIPS, com caches L1 de memória e dados,

pipeline de instruções modificado, interfaces para unidades de processamento auxiliar,

além de uma Instruction Set Architecture (ISA) completamente diferente.

Atualmente, o candidato dispõe das seguintes ferramentas para a realização do

trabalho:

• HPCTool (injetor de proteção em códigos em linguagem de máquina);

• Injetor de falhas completo (injeção e coleta de dados);

• Mapeador de falhas para processadores com pipeline;

O HPCTool deverá ser modificado para proteger o código de programa com a

parte em software da técnica hibrida, ao mesmo tempo em que deverá ser estendido para

ser compatível com o microprocessador PowerPC. O mapeador de falhas também

deverá ser modificado, visto que o PowerPC este possui um pipeline de instruções

muito diferente do utilizado pelo miniMIPS.

Ao final do processo de implementação, simulação e da campanha de injeção de

105

falhas, espera-se realizar um estágio no exterior com o fim de realizar uma campanha

física de injeção de falhas, ou seja, irradiar ambos os processadores com partículas

energizadas. Os grupos de pesquisa TIMA e da Universidade Politécnica de Torino

possuem o material necessário para a injeção e histórico de parceria com a UFRGS,

através da colaboração de pesquisas e intercambio de alunos.

Ao final do estudo, espera-se ter uma vasta gama de ferramentas para a proteção

de códigos de programa e injeção de falhas disponível para todos os grupos de pesquisa

da UFRGS e uma técnica híbrida e configurável, implementada e validada, capaz de

detectar falhas em microprocessadores. Espera-se, ainda, obter dados aprofundados

sobre a aplicação de tais técnicas a microprocessadores voltados para a indústria, com

diferentes níveis de cache, com múltiplos núcleos de processamento e múltiplas

memórias de dados e instruções.

5. Plano de Trabalho

Nesse capítulo são apresentadas as disciplinas cursadas durante o mestrado, para

as quais será solicitado pedido de reaproveitamento dos créditos. Também é

apresentado o plano de disciplinas a serem cursadas durante o doutorado. Finalmente,

um cronograma com todas as atividades a serem realizadas nos quatro anos de

doutorado.

5.1. Revalidação de Créditos
O pedido de reaproveitamento de disciplinas possui um total de 26 créditos. As

disciplinas cursadas no mestrado são apresentadas na tabela abaixo.

Código Disciplina Créditos Ano/Semestre
CMP410 Atividade Didática I 1 2009/01
CMP117 Arquitetura e Projeto de Sistemas VLSI II 4 2008/02
CMP231 Sistemas Embarcados 4 2008/02
CMP246 Teste e Confiabilidade de Sistemas de Hardware 3 2008/02
CMP401 Trabalho Individual I 2 2008/02
CMP237 Arquitetura e Organização de Processadores 3 2008/01
CMP238 Projeto e Teste de Sistemas VLSI 4 2008/01
CMP182 Redes de Computadores I B 4 2008/01
--- Proficiência em Inglês --- 2008/01

5.2. Créditos a serem realizados

Para completar os 36 créditos necessários para o doutorado, o candidato

pretende cursar as seguintes disciplinas:

http://ppgc.inf.ufrgs.br/index.php?option=com_content&task=view&id=75&Itemid
http://ppgc.inf.ufrgs.br/index.php?option=com_content&task=view&id=75&Itemid

106

Código Disciplina Créditos Ano/Semestre
CMP134 Introdução ao Processamento Paralelo e

Distribuído
4 2010/01

CMP115 Concepção de Circuitos VLSI 4 2010/01
CMP651 Projeto Avançado de Pesquisa I 2 2010/02
CMP411 Atividade Didática II 1 2010/02

Assim, será cursado um total de 8 créditos em disciplinas e 3 créditos em

projeto de pesquisa e atividade didática. Para o doutorado será realizado um total de 37

créditos (26 créditos obtidos no mestrado e mais 11 créditos cursados durante o curso de

doutorado).

5.3. Cronograma

ATIVIDADES/SEMESTRE 2010/01 2010/02 2011/01 2011/02 2012/01 2012/02 2013/01 2013/02

Disciplinas

Revisão Bibliográfica

Exame de Qualificação

Elaboração da
Arquitetura Híbrida
Tolerante a Falhas

Defesa da Proposta de
Tese

Estágio no Exterior

Implementação de
Arquitetura Proposta

Escrita da Tese

Defesa da Tese

Os grupos mais renomados na área de técnicas de tolerância a falhas para

microprocessadores são os grupos do Instituto Tecnológico de Karlsruhe, coordenado

pelo professor Jürgen Becker, a Universidade Politécnica de Torino, coordenada pelo

professor Massimo Violante, e o laboratório de pesquisa TIMA, coordenado pelo

professor Raul Velazco. Estes grupos de pesquisa são os mais indicados para realizar o

estágio, visto que ambos possuem instalações para a injeção física de partículas

energizadas.

Estes laboratórios de pesquisa possuem parcerias com a UFRGS, facilitando

assim o estágio do candidato e trazendo melhores resultados para o curso de doutorado.

107

6. Experiência de Pesquisa

Durante a Graduação no curso de Engenharia de Computação pela UFRGS, o

candidato participou do Programa de Formação de Treinadores Dell, onde participou

ativamente do grupo de clusters de alto desempenho. Durante os vinte meses de duração

do projeto, o candidato pesquisou e desenvolveu um curso abordando a construção e

configuração de um cluster de alto desempenho. Este trabalho foi submetido e aceito no

workshop WSPPD 2005 (Donassolo et al., 2005).

Durante o último ano da Graduação, o candidato foi aceito para o estágio de um

ano numa parceria entre a UFRGS e a Teschnisch Universität Kaiserslautern

(Universidade Técnica de Kaiserslautern), onde permaneceu um ano sob a tutela do

professor Christophe Bobda e pesquisou e desenvolveu uma ferramenta para a

configuração automática de sistemas multiprocessados. Como resultado desta

experiência, foi submetido e aceito um trabalho para ReCoSoC 2007 (Azambuja et al.,

2007).

Após o curso de Graduação, o candidato ingressou no Programa de Pós

Graduação em Computação da UFRGS, tendo escolhido a linha de pesquisa de sistemas

embarcados. No primeiro ano, o candidato desenvolveu um trabalho sobre a

reconfiguração parcial de dispositivos programáveis (Field Programable Gate Arrays -

FPGA) na presença de falhas. Como resultado, foi obtida uma redução no tempo de

reconfiguração do sistema superior a 98% e a possibilidade de manter o sistema

operando sem interrupção, mesmo durante a reconfiguração do sistema, fato esse ainda

desconhecido pela literatura. Este trabalho foi inicialmente submetido, aceito e

apresentado no congresso SBCCI 2008 (Pilotto et al., 2008).

Ainda no primeiro ano, este trabalho foi estendido com a aplicação da técnica a

um sistema mais complexo para ser então submetido e aceito ao workshop RADECS

2008 (Azambuja et al., 2008).

Durante o segundo ano do mestrado, o trabalho apresentado no SBCCI 2008 e

RADECS 2008 foi novamente estendido, com a adição de novas técnicas para melhorar

seu desempenho ao se recuperar de um erro de controle. Esta extensão resultou na

submissão e aceitação para o congresso IOLTS 2009 (Azambuja et al., 2009).

Além deste trabalho, o candidato adotou uma segunda linha de pesquisa. O seu

interesse por microprocessadores o levou buscar um modelo ideal para a injeção de

falhas e teste de técnicas de tolerância a falhas. Tendo estudado a fundo o

108

microprocessador miniMIPS e sua estrutura, o candidato desenvolveu um injetor de

falhas, definiu grupos de falhas por local de injeção e efeito e testou diferentes técnicas

de tolerância a falhas puramente em software através da criação do HPCTool. O

resultado deste trabalho foi submetido e aceito para o congresso LASCAS 2010

(Azambuja et al., LASCAS 2010).

Utilizando-se das ferramentas implementadas, o candidato propôs uma nova

técnica puramente em software para solução de erros de fluxo de programa e a testou,

comparando com as demais apresentadas em (Azambuja et al., LASCAS 2010). O

resultado deste estudo foi submetido e aceito para o congresso LATW 2010 (Azambuja

et al., LATW 2010).

Para o curso de doutorado, espera-se aprimorar os trabalhos de ambas as linhas

de pesquisa. Para a linha de pesquisa de reconfiguração parcial de FPGAs, buscar-se-á o

teste físico, com a aplicação de partículas energizadas em parceria com a Universidade

da Espanha (). Quanto à linha de pesquisa de proteção de microprocessadores, existe o

interesse de criar uma técnica híbrida, para então aplicá-la ao microprocessador

miniMIPS e ao processador PowerPC utilizado pela Universidade de Torino para testes

físicos de injeção de falhas. Ao final deste trabalho, almeja-se estender os trabalhos

realizados, buscando as melhores alternativas para a proteção de sistemas

reprogramáveis baseados em FPGAs e para a proteção de sistemas baseados em

componentes COTS, oferecendo assim uma vasta gama de possibilidades para os

projetistas de sistemas.

Referências

(Baumann et al., 2001) R. C. Baumann. Soft errors in advanced semiconductor devices-part I: the three
radiation sources. IEEE Transactions on Device and Materials Reliability, 1(1):17–22, March 2001.

(O’Gorman et al., 1996) T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld, I. C. J.
Montrose, H. W. Curtis, and J. L. Walsh. Field testing for cosmic ray soft errors in semiconductor
memories. In IBM Journal of Research and Development, pages 41–49, January 1996.

(Dodd et al., 2003) P. E. Dodd, L. W. Massengill, “Basic Mechanism and Modeling of Single-Event
Upset in Digital Microelectronics”, IEEE Transactions on Nuclear Science, vol. 50, 2003, pp. 583-602.

(Bolchini et al., 2005) C. Bolchini, A. Miele, F. Salice, and D. Sciuto. A model of soft error effects in
generic ip processors. In Proc. 20th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems,
pages 334–342, 2005.

(Goloubeva et al., 2003) O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante (2003) Soft-error
detection using control flow assertions. In: Proceedings of the 18th IEEE international symposium on
defect and fault tolerance in VLSI systems—DFT 2003, November 2003, pp 581–588.

109

(Huang et al., 1984) K. H. Huang, Abraham JA (1984) Algorithm-based fault tolerance for matrix
operations. IEEE Trans Comput 33:518–528 (Dec).

(Oh et al., 2002) N. Oh, P. P.Shirvani, E. J. McCluskey (2002) Control flow Checking by Software
Signatures. IEEE Trans Reliab 51(2):111–112 (Mar).

(Rebaudengo et al., 1999) M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and M. Violante. Soft-error
detection through software fault-tolerance techniques. In Proc. IEEE Int. Symp. on Defect and Fault
Tolerance in VLSI Systems, pages 210–218, 1999.

(Cheynet et al., 2000) Cheynet P, Nicolescu B, Velazco R, Rebaudengo M, Sonza Reorda M, Violante M
(2000) Experimentally evaluating na automatic approach for generating safety-critical software with
respect to transient errors. IEEE Trans Nucl Sci 47(6 part 3): 2231–2236 (Dec).

(Nicolescu et al., 2003) B. Nicolescu and R. Velazco, “Detecting soft errors by a purely software
approach: method, tools and experimental results”, Proceedings of the Design,Automation and Test
Europe Conference and Exhibition, 2003.

(Lu, 1982) D.J. Lu, “Watchdog processors and structural integrity checking,” IEEE Trans. on Computers,
Vol. C-31, Issue 7, July 1982, pp. 681-685.

(Oh) N. Oh, P.P. Shirvani, and E.J. McCluskey, “Control-flow checking by software signatures,” IEEE
Trans. on Reliability, Vol. 51, Issue 1, March 2002, pp. 111-122.

(Mcfearin et al., 1995) L.D. Mcfearin and V.S.S. Nair, “Control-flow checking using assertions,” Proc. of
IFIP International Working Conference Dependable Computing for Critical Applications (DCCA-05),
Urbana-Champaign, IL, USA, September 1995.

(Alkhalifa et al., 1999) Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy and J.A. Abraham, “Design and
evaluation of system-level checks for on-line control flow error detection,” IEEE Trans. on Parallel and
Distributed Systems, Vol. 10, Issue 6, June 1999, pp. 627 – 641.

(Donassolo et al., 2005) J. R. Azambuja, L. S. Kuamoto, B. Donassolo. Aplicação de Curso na Área de
Cluster de Alto Desempenho In: Workshop de Processamento Paralelo Distribuído, 2005, Porto Alegre.
WSPPD. Porto Alegre: GPPD, 2005. v.1. p.115 - 116

(Azambuja et al., 2007) J. R. Azambuja, T. Haller, C. Bobda. Automatic Generation of Adaptive
Multiprocessor Systems In: Reconfigurable Communication-centric SoCs, 2007, Montpellier. ReCoSoC,
2007.

(Pilotto et al., 2008) C. Pilotto, J. R. Azambuja, F. Kastensmidt. Synchronizing Triple Modular
Redundant Designs in Dynamic Partial Reconfiguration Applications In: Symposium on Integrated
Circuits and Systems Design, 2008, Gramado. Proceedings of SBCCI, 2008. p.199 – 204.

(Azambuja et al., 2008) J. R. Azambuja, C. Pilotto, F. L. Kastensmidt. Mitigating Soft Errors in SRAM -
based FPGAs by Using Large Grain TMR with Selective Partial Reconfiguration In: European Workshop
on Radiation Effects on Components and Systems, 2008. Proceedings of The 8th RADECS, 2008.

(Azambuja et al., 2009) J. R. Azambuja, F. Sousa, L. Rosa, F. L. Kastensmidt. Evaluating large grain
TMR and selective partial reconfiguration for soft error mitigation in SRAM-based FPGAs In: 15th IEEE
International On-Line Testing Symposium, 2009. 15th IEEE IOLTS, 2009. p.101 – 106.

(Azambuja et al., LASCAS 2010) J. R. Azambuja, F. Sousa, L. Rosa, F. L. Kastensmidt. Evaluating the
Efficiency of Software-only Techniques to Detect SEU and SET in Microprocessors In: 15th IEEE Latin
American Symposium on Circuits and Systems, 2010, Foz do Iguacu. 1st IEEE LASCAS, 2010.

(Azambuja et al., LATW 2010) J. R. Azambuja, F. Sousa, L. Rosa, F. L. Kastensmidt. The Limitations of
Software Signature and Basic Block Sizing in Soft Error Fault Coverage In: 11th IEEE Latin-American
Test Workshop, 2010, Punta del Este. 11th IEEE LATW, 2010.

