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Designing and Evaluating Hybrid Techniques to Detect 
Transient Faults in Processors Embedded in FPGAs 

 
 
 
 
 

ABSTRACT 
 
 
 
 

Recent technology advances have provided faster and smaller devices for 
manufacturing circuits that while more efficient have become more sensitive to the 
effects of radiation. Smaller transistor dimensions, higher density integration, lower 
voltage supplies and higher operating frequencies are some of the characteristics that 
make energized particles an issue when dealing with integrated circuits in harsh 
environments. These types of particles have a major influence in processors working in 
such environments, affecting both the program’s execution flow by causing incorrect 
jumps in the program,  and the data stored in  memory elements, such  as data and 
program memories, and registers. In order to protect processor systems, fault tolerance 
techniques have been proposed in literature using hardware-based and software-based 
approaches, which decrease the system’s performance, increase its area, and are not able 
to fully protect the system against such effects. In this context, we proposed a 
combination of hardware- and software-based techniques to create hybrid techniques 
aimed at detecting all the faults affecting the system, at low performance degradation 
and memory overhead. Five techniques are presented and described in detail, from 
which two are known software-based only techniques and three are new hybrid 
techniques, to detect all kinds of transient effects caused by radiation in processors. The 
techniques are evaluated according to execution time, program and data memories, and 
area overhead and operating frequency degradation. To verify the effectiveness and the 
feasibility of the proposed techniques, fault injection campaigns are performed by 
injecting faults by simulation and performing irradiation experiments in different 
locations with neutrons and a Cobalt-60 sources. Results have shown that the proposed 
techniques improve the state-of-the-art by providing high fault detection rates at low 
penalties on performance degradation and memory overhead. 

 

 
 

Keywords: fault tolerance, radiation effects, processors. 
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Desenvolvendo e Avaliando Técnicas Híbridas para Detectar 
Falhas Transientes em Processadores Embarcados em FPGAs 

 
 
 
 
 

RESUMO 
 
 
 
 

Os recentes avanços tecnológicos proporcionaram dispositivos menores e mais 
rápidos para a fabricação de circuitos que, apesar de mais eficientes, se tornaram mais 
sensíveis aos efeitos de radiação. Menores dimensões de transistores, mais densidade de 
integração, tensões de alimentação mais baixas e frequências de operação mais altas são 
algumas das características que tornaram partículas energizadas um problema, quando 
lidando com sistemas integrados em ambientes severos. Estes tipos de partículas tem 
uma grande influencia em processadores funcionando em tais ambientes, afetando tanto 
o fluxo de execução do programa ao causar desvios incorretos, bem como os dados 
armazenados em elementos de memória, como memórias de dados e programas e 
registradores. A fim de proteger sistemas processados, técnicas de tolerância a falhas 
foram propostas na literatura usando propostas baseadas em hardware, software, que 
diminuem  o  desempenho  do  sistema,  aumentam  a  sua  área  e  não  são  capazes  de 
proteger totalmente o sistema destes efeitos. Neste contexto, propomos a combinação de 
técnicas baseadas em hardware e software para criar técnicas híbridas orientadas a 
detectar todas as falhas que afetam o sistema, com baixa degradação de desempenho e 
aumento de memória. Cinco técnicas são apresentadas e descritas em detalhes, das quais 
duas são conhecidas técnicas baseadas puramente em software e três são técnicas 
híbridas novas, para detectar todos os tipos de efeitos transientes causados pela radiação 
em processadores. As técnicas são avaliadas de acordo com o aumento no tempo de 
execução, no uso das memórias de dados e programa e de área, e degradação da 
frequência de operação. Para verificar a eficiência e aplicabilidade das técnicas 
propostas, campanhas de injeção de falhas são realizadas ao se simular a injeção de 
falhas e realizar experimentos de irradiação em diferentes localidades com nêutron e 
fontes de Cobalto-60. Os resultados mostraram que as técnicas propostas aprimoraram o 
estado da arte ao fornecer altas taxas de detecção de falhas com baixas penalidades em 
degradação de desempenho e aumento de memória. 

 

 
 
 
 

Palavras-Chave: tolerância a falhas, efeitos de radiação, processadores. 
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Entwurf und Auswertung von Hybrid-Techniken zur Erkennung 
von transienten Fehlern in FPGA eingebetteten Prozessoren 

 
 
 
 
 

ZUSAMMENFASSUNG 
 
 
 
 

Der aktuelle Stand der Technologie bringt schnellere und kleinere Bausteine für die 
Herstellung von integrierten Schaltungen mit sich, die während sie effizienter sind auch 
anfälliger für Strahlung werden. Kleinere Abmessungen der Transistoren, höhere 
Integrationsdichte, geringere Versorgungsspannungen und höhere Betriebsfrequenzen 
sind einige der Charakteristika, die energiegeladene Partikel zu einer Herausforderung 
machen, wenn man integrierte Schaltungen in rauen Umgebungen einsetzt. Diese Art 
der Partikel hat einen sehr großen Einfluss auf Prozessoren, die in einer solchen 
Umgebung eingesetzt werden. Sowohl die Ausführung des Programms, welche durch 
fehlerhafte Sprünge in der Programmsequenz beeinflusst wird, als auch Daten, die in 
speichernden Elementen wie Programmspeicher, Datenspeicher oder in Registern 
abgelegt sind, werden verfälscht. Um solche Prozessorsysteme abzusichern, wird in der 
Literatur Fehlertoleranz empfohlen, welche die Systemperformanz verringert, einen 
größeren Flächenverbrauch mit sich bringt und das System dennoch nicht komplett 
schützen kann. Diese Fehlertoleranz kann sowohl durch software- als auch durch 
hardwarebasierte Ansätze umgesetzt werden. In diesem Zusammenhang schlagen wir 
eine Kombination aus Hardware- und Software- Lösung vor, welche die 
Systemperformanz nur sehr wenig beeinflusst und den zusätzlichen Speicheraufwand 
minimiert. Diese Hybrid-Technologie zielt darauf ab, alle Fehler in einem System zu 
finden. Fünf solcher Techniken werden beschrieben und erklärt, zwei der vorgestellten 
Techniken sind bekannte Software-Lösungen, die anderen drei sind neue Hybrid- 
Lösungen,  um  alle  transienten  Effekte  von  Strahlung  in  Prozessoren  erkennen  zu 
können. Diese unterschiedlichen Ansätze werden anhand ihrer Ausführungszeit, 
Programm-, Datenspeicher, Flächenvergrößerung und Taktfrequenz analysiert und 
ausgewertet. Um die Effizienz und die Machbarkeit des vorgeschlagenen Ansatzes 
verifizieren zu können, werden Fehlerinjektionstests sowohl durch Simulation als auch 
durch  Bestrahlungsexperimente  in  unterschiedlichen  Positionen  mit  einer  Cobalt-60 
Quelle  durchgeführt.  Die  Ergebnisse  des  vorgeschlagenen  Ansatzes  verbessern  den 
Stand der Technik durch die Bereitstellung einer höheren Fehlererkennungsrate bei sehr 
geringer negativer Beeinflussung der Performanz und des Speicherverbrauchs. 

 

 
 
 
 

Stichworte: Fehlertoleranz, Strahlungseffekte, Prozessoren. 
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1  INTRODUCTION 
 
 
 
 

Since the 1950’s, when computers were made with vacuum tubes and the personal 
computer was nothing more than a dream, fault tolerance has been an important topic of 
interest. In the early ages of computers, their usage was very specific, aimed at activities 
such as military applications, precise calculations and space missions. An error in these 
applications working in such harsh environments, and sometimes even in remote places 
like as the space, could completely jeopardize the mission, since the repair and, in some 
cases, the available time to repair the system was impractical. From then until nowadays 
many things have changed. The technology no longer relies on vacuum tubes, but on 
transistors, computers became ubiquitous and a personal computer can be found in any 
cell phone. One the other hand, a few things remained the same, such as the old topic on 
how to give a system the ability to cope with a fault and continue its correct operation, 
or in other words, fault tolerance. 

 

The technology did not only advance in the past, but it is constant progress. Today 
we can observe new trends, such as the continued reduction in transistor sizes, new 
fabrication processes and materials, low-power systems to fit small ubiquitous 
microprocessors and medical applications and, as always, the need for more processing 
power through higher frequencies of operation and more processing cores per die. At 
the same time that these advances push technology forward, they increase the system’s 
susceptibility to noises that are present in the environment. One well-known effect is the 
radiation effect present in space applications but also at avionic and at ground-level. 
Due to the reduced transistor size and low voltages, the fault effect in integrated circuits 
is increasing in magnitude; consequently, fault tolerant techniques will become 
mandatory in all devices in the close future. 

 

This document exposes the reasons behind the concerns surrounding a system’s fault 
tolerance.  Some  of  the  most  important  fault  tolerant  techniques  presented  in  the 
literature are analyzed and three hybrid techniques to detect faults in processors are 
proposed as the thesis work. In order to prove the effectiveness of the proposed 
techniques, fault injection campaigns were performed, including configuration bitstream 
fault injection, and neutron and Cobalt-60 beams irradiation experiments. 

 
 
1.1  Motivation and Problem Definition 

 

The recent advances in the semiconductor industry have led in the development of 
more complex components and systems’ architectures by allowing fabrication processes 
to  place  a  higher  number  of  transistors  per  area  of  the  silicon  die.  The  CMOS 
technology  has  developed  according  to  Moore’s  law  (MOORE,  1965),  where  the 
number of transistors on Integrated Circuits (IC) doubles every two years. Nowadays, 
with factories fabricating transistors with 32nm, we are reaching the physical limits of a 
couple atoms to form the transistor’s gate (KIM, 2003), (HOMPSON, 2005). Still, new 
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technologies  arise,  such  as  Next  Generation  Lithography  (NGL)  and  Chemically 
Assembled Electronic Nanotechnology (CAEN), promising to reduce feature sizes to 
20nm and less. 

 

However, the same technology that made possible all this progress has also reduced 
the  transistor  reliability  by  reducing  threshold  voltages,  node  capacitances  and 
tightening the noise margins (BAUMANN, 2001). These have made transistors more 
susceptible to faults caused by radiation interference, which can be energized particles 
presented on space or secondary particles such as alpha particles, generated by 
interaction of neutron and materials at ground level. As a consequence, mission-critical 
applications, such as space applications or avionics, demand fault tolerant techniques 
capable of recovering the system from a fault with minimum implementation and 
performance overhead. 

 

Processors working in harsh environments can be upset by such energized particles. 
They  affect  processors  by  modifying  values  stored  in  memory  elements  (such  as 
registers and data memory), by leading the processor to incorrectly execute an 
application by jumping or re-executing some instructions, or even by entering in a loop 
and never finishing the application. Such faults can also modify some computed data 
values, generating errors in the data results. Therefore, the use of fault tolerance 
techniques is mandatory to detect and/or correct these types of faults. Since processors 
run software on top of their hardware, fault tolerance techniques used to harden them 
can be based on software, hardware or hybrid solutions. 

 

Fault tolerance techniques based on software rely on adding extra instructions to the 
original program code to detect or correct faults (BOLCHINI, 2005). They may be able 
to detect faults that affect the data and the control flow. Software-based techniques 
provide high flexibility, low development time and cost, since there is no need to 
modify the hardware. In addition, new generations of microprocessors that do not have 
Radiation Hardened (RadHard) versions can be used. As a result, aerospace applications 
can use commercial off the shelf (COTS) microprocessors with RadHard software. 
However, some results from random fault injection have shown the impossibility of 
achieving complete fault coverage when using only software-based techniques, due to 
control flow errors (AZAMBUJA, 2011b). This limitation is due to the inability of the 
software in protecting against all possible control flow effects errors that can occur in 
the microprocessor. One example would be a fault in the Program Counter (PC), where 
only a single No OPeration (NOP) instruction can execute. In this case, it does not 
matter how many instructions or data are added to the original code, because none of 
them will be executed by the processor and no fault will be detected. 

 

As a consequence of the redundant instructions inserted in the original program 
code, software-based techniques have as drawbacks overheads in both data and program 
memory,  and  degradation  in  performance,  due  to  an  increased  computation  time 
required to execute the program. The program memory increases due to additional 
instructions inserted in the original program code, while the data memory may increase 
due to variable replication, which can be, for example, the replication of all stored data 
in the memory. Performance degradation comes from the execution of redundant 
instructions. 

 

Hardware-based techniques usually change the original processor architecture by 
adding redundant logic, such as module replication with majority voters, information 
redundancy, such as Error Correcting Codes (ECC), or time redundancy, such as the 
one presented by Anghel (2000). Hardware-based techniques can also  be based on 
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hardware monitoring devices that are inserted to the system’s architecture, such as a 
verification hardware module, and therefore change the system’s architecture, but not 
the processor’s architecture and in this case are non-intrusive. They exploit special 
purpose hardware modules, called watchdog processors, to monitor memory accesses. 

 

As a consequence of the extra logic or information redundancy, hardware-based 
techniques increase the processor’s area up to more than three times the original size, 
which  leads  to  more  power  consumption  and  production  costs.  Time  redundancy 
usually does not have a big impact in area, but decreases considerably the performance, 
since they affect the execution time and, in some cases, the operation clock frequency. 
Non-intrusive hardware modules, such as watchdogs, may have a smaller impact in area 
and operating clock frequency, but they require access to processor’s connections, such 
as access to the data and code memory connections. Watchdogs do not detect faults that 
are latent inside the microprocessor, as faults in the register bank, because they do not 
have access to the processor’s internal buses (in order to be non-intrusive). 

 
 
1.2  Overview 

 

In order to provide reliable systems that can cope with radiation effects, we believe 
that the solution lies in combining software-based and hardware-based techniques. The 
main objective of this work is finding the best trade-off between software-based and 
hardware-based techniques to increase existing fault detection rates up to 100%, while 
maintaining low overheads in performance, in the means of operating clock frequency 
and application execution time, and area, in the sense of both program and data memory 
overhead, and extra hardware modules. 

 

The first step to achieve our goal was to analyze the radiation effects on integrated 
circuits. In a second step, we performed an analysis on the influence of such effects in 
processors, such as the effects of a fault at a given part of the processor and its influence 
on the results of a running program. To do so, we checked the affected area in processor 
in the sense of which areas are more sensitive to which types of effects, and also the 
effect of a particle in the processor, in the sense of control or data flow effects. Then, 
we searched the literature for existing fault tolerant techniques using hardware-based 
techniques,  software-based  techniques  and  hybrid  ones.  As  a  result,  none  of  the 
available techniques in the literature could fully protect a processor against transient 
effects without huge drawbacks, such as performance degradation and area overhead. 

 

We started by implementing two known software-based techniques, called Variables 
and Inverted Branches (AZAMBUJA, 2010b). From there, we proposed three hybrid 
techniques, based both on software and hardware replication characteristics. The 
implemented techniques are generic and could be implemented to any application, but 
in order to focus this work in the techniques, instead of the application, we chose a few 
case-study applications and implemented the techniques for each of them. Results 
showed low performance degradation and memory overhead, when compared to 
techniques in presented in the literature. 

 

In order to check the effectiveness and feasibility of the proposed techniques, we 
performed three fault injection campaigns. The first one consisted of simulating faults 
through a commercial simulator, where we injected hundreds of thousands of faults in 
the chosen case-study applications. For the second injection campaign, we used a Field 
Programmable Gate Array (FPGA) based on Static Random Access Memory (SRAM) 
configuration bitstream and exhaustively injected millions of faults in the configuration 
memory bitstream. For the third fault injection campaign, we used cyclotrons around 
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the world to hit the integrated circuit hardened by our techniques with neutron and 
cobalt-60 beam sources. For the last campaign, we used SRAM-based and flash-based 
FPGAs to implement the Design Under Test (DUT) and test them for radiation effects. 

 

Preliminary results have shown interesting results, when compared to related works 
in  the  literature.  The  performance  degradation  combined  with  area  and  memory 
overhead improved the state-of-the-art. These results have been backed by intense fault 
injection campaigns, performed both by simulation and irradiation experiments in the 
sense that the proposed techniques can indeed be applied to protecting processors in 
harsh environments. 

 

Chapter 2 presents the terminology and general concepts used in this work. Chapter 
3 describes existing fault tolerant techniques for processors presented in the literature. 
Chapter 4 describes the fault tolerant techniques implemented in this work to detect 
transient faults in processors, from which two are known software-based and three are 
new hybrid techniques. Chapter 5 presents experimental fault injection campaigns for 
the  implemented  fault  tolerant  techniques.  Chapter  6  presents  the  configuration 
bitstream fault injection campaign and results. Chapter 7 presents radiation experiments 
on some of the proposed techniques. Chapter 8 describes future work and concludes the 
thesis. 
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2  BACKGROUND 
 
 
 
 

In this chapter, we introduce the main technical terms used in the text, describe the 
microprocessor architecture used as a case study and discuss background information 
required for better enlightenment of the topics in this thesis. 

 
 
2.1  Basic Concepts of Dependable and Secure Computing 

 

This section presents the basic set of definitions that will be used throughout this 
work. The definitions encompass from defects and upsets that occur in individual logic 
gates to fault, error and failure. 

 
2.1.1 Defect, Upset and Fault Definitions 

 

Defect  or  upset  is  defined  as  unintended  differences  between  the  implemented 
system  and  its  intended  function.  It  can  be  commonly  a  manufacture  defect,  for 
example, or transient upsets that happen during some perturbation of the environment. 

 

Fault is then defined as a logic level abstraction of a physical defect or upset. It is 
used to describe the change in the logic function of a device caused by the defect or 
upset. Fault can be described as a deviation from the expected behavior of logic. Faults 
can be transient, intermittent or permanent. Transient faults occur and then disappear. 
They are transient effects that may occur during the lifetime of the component and it 
exists  for  a  short  period  of  time.  Intermittent  faults  are  characterized  by  a  fault 
occurring, then vanishing, and then reoccurring and so on. An example of intermittent 
faults is signal interferences such as cross-section between connection lines. Permanent 
faults continue to exist in the system until the faulty component is repaired or replaced. 
They  are  usually due  to  manufacturing  problems.  Some  defects  or  upsets  may be 
masked by the electrical properties of the device and no fault may be observed. Usually 
when there is a fault in the circuit, there will be an error. However, some faults may be 
masked by some logic, electric or application and no error will be observed. Error is 
considered a wrong output signal produced by a defective system. 

 

With nanometer dimension technologies, transistors have become more susceptible 
to faults caused by radiation interference due to reduced threshold voltages, reduced 
node capacitances and tightened noise margins (BAUMANN, 2001). Such faults can be 
caused by energized particles present in space or secondary particles such as alpha 
particles, generated by the interaction of neutron and materials at ground level 
(INTERNATIONAL, 2005). Integrated circuits operating in a space environment are 
sensitive to these particles and can be affected mainly by transient ionization and long 
term ionizing damage. 

 

In the following, we will discuss the main effects from radiation interference that 
cause upsets in integrated circuits. 
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2.1.1.1 Single Event Effect (SEE): 
 

Transient ionization may occur when a single radiation ionizing particle strikes the 
silicon, creating a transient voltage pulse, or a Single Event Effect (SEE). This effect 
can be destructive or non-destructive. An example of destructive effect is Single Event 
Latchup (SEL) that results in a high operating current, above device specifications, that 
must be corrected by a power reset. Non-destructive effects, also known as soft errors, 
are transient effects provoked by the interaction of a single energized particle in the PN 
junction of an off-state transistor (DODD, 2004). When the transient pulse occurs in a 
memory element, such as a register, it is classified as Single Event Upset (SEU). When 
the particle hits a combinational element, inducing a pulse in the combinational logic, 
the upset is classified as Single Event Transient (SET). 

 

Figure 2.1 shows examples of SEU and SET effects in a circuit. On the left, one can 
see the SEU effect. A particle, represented by the bolt, hits the sequential logic (which 
could be seen as a register), changing the store value from “0010” to “0110”. This effect 
directly affects the rest of the circuit, changing the value stored in the sequential logic 
on the right from “1” to “0”. In the middle, one can see a particle hitting the NOR gate 
and causing a voltage pulse in the combinational logic. When propagated, the pulse hits 
the sequential latch window on the sequential logic to the right, which registers the 
incorrect value “0”, instead of a “1”. Such effects may be masked by the circuit, as 
discussed in the following subsections. 

 

 
 

Figure 2.1: SEU and SET effects on a circuit. 
 

Soft errors can be detected and corrected by the system’s logic, meaning that it does 
not require a hard reset to recover from an error. Sections 7.1.2 and 7.2.2 present 
neutron irradiation experiments simulating the effect of SEE in Flash-base and SRAM- 
based FPGAs, while Chapters 5 and 6 present fault injection simulation experiments 
simulating SEEs at RTL level and in the configuration memory bitstream, respectively. 
In  this  thesis,  SEUs  and  SETs  will  be  used  to  describe  transient  faults  that  the 
techniques presented here can cope with. 

 
2.1.1.2 Total Ionizing Dose (TID): 

 

The long term ionizing damage is also known as Total Ionizing Dose (TID). It is 
caused by the interaction of energized particles with atoms of the silicon. Photon- 
induced damage is initiated when Electron-Hole-Pairs (EHP) are generated along the 
track of secondary electrons emitted via photon-material interactions. EHPs are created 
from  a  fraction  of  the  kinetic  energy of  the  incident  particles.  Some  of  them  are 
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annihilated due to recombination, but a few remain in the silicon. The remaining EHPs 
may fall into deep traps in the oxide bulk or near the Si/SiO2 interface, forming trapped 
positive charges (BARNABY, 2006), (OLDHAM, 2003). By doing so, TID can affect 
the system by shifting the threshold voltage, generating leakage current and timing 
skews and even leading to functional failures. Sections 6.1.2 and 6.2.2 present neutron 
irradiation experiments using Flash- and SRAM-based FPGAs, respectively, while 
Section 6.1.1 discusses the effects of TID in SRAM-based FPGAs. 

 

In this thesis, we will refer fault as the single event transient (SET) pulse that may 
occur in the combinational logic and as the single event upset (SEU) that is the bit-flip 
that may occur in the memory element. 

 
2.1.2   Error and Failure Definitions 

 

The design of fault tolerant systems consists in preventing a fault to cause an error 
and consequently a failure in the implemented system. Therefore, there is a cause-effect 
relationship from the particle hit (fault) to the erroneous result (system failure), as 
demonstrated in Figure 2.2. In this work, we will use the definition presented in 
Avizienis (2004). 

 

In order to define error and failure, we first have to define a system. A system is an 
entity that interacts with other entities, such as other systems, hardware, software, and 
the physical world. A system follows a functional specification, composed of several 
different functions. The behavior of a system is what it does to implement its functions 
and is described by a sequence of states. Finally, the service delivered by a given system 
is its behavior, as it is perceived by its users. 

 

Failure is the abbreviation of service failure and is defined as a system malfunction, 
or in other words, when the delivered service deviates from the correct one. The 
delivered service is considered correct when it is according to the system specification. 
When the service specification includes a set of several functions, the failure of one or 
more of the services implementing the functions may lead the system to a degraded 
mode that still offers a subset of needed services. We define this case as a partial failure. 

 

Error is defined as the deviation in one of the system’s sequence of states. Such 
deviation may compromise a system service, thus leading to a service failure. It is 
important to note that an error not always leads to a failure. 

 

 
 

Figure 2.2: Upset, fault, error and failure chain-effect for SET and SEU. 
 

By defining fault, error and failure, one can notice that a failure can always be seen 
by the user, since it leads to a system malfunction. Faults can be latent in the circuit 
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until manifested as an error. There are detection techniques that can detect faults and 
there are techniques that can detect errors. 

 

Faults can also be masked by three different ways in the circuit: logical masking, 
electrical masking and latch window masking. Figures 2.3, 2.4 and 2.5 show each of 
them, respectively. The logical masking is when the logic of the gate being hit by a fault 
masks its effect. Figure 2.3 shows a NOR gate being hit by a particle and forcing its 
output to “1”. As one can see the fault cannot propagate through the circuit as the other 
NOR gate has one of the inputs at value ‘1’, which is dominant forcing the output of 
that gate to ‘0’. Electrical masking happens when the propagation of the pulse is 
weakened by the logic, such as the one shown in Figure 2.4. A NOT gate is hit by a 
particle, generation a high voltage pulse in its output. When propagating through the 
other three NOT gates, the pulse is weakened until electrically masked. Latch window 
masking happens when the pulse does not hit the latching window of a sequential logic. 
Figure 2.5 shows a clock cycle with its latching window. When the voltage pulse lasts 
for the whole latching window, the errors are stored in the logic. When the pulse does 
not last until the latch window (as shown in the bottom), the fault is masked. 

 

 
 

Figure 2.3: Logical masking. 
 

 
 

Figure 2.4: Electrical masking. 
 

 
 

Figure 2.5: Latch window masking. 
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2.2  MIPS Architecture 
 

The case study microprocessor used in this work is the Microprocessor without 
Interlocked Pipeline Stages (MIPS). It has a standard processor architecture based on 
the Reduced Instruction Set Computing (RISC) instruction set. The basic idea behind 
RISC is that using simple instructions, which enable easier pipelining and larger caches, 
the performance can be largely boosted. The MIPS architecture can be seen since 1985 
in commercial applications, from workstations to Windows CE devices, routers, 
gateways and PlayStation gaming devices. 

 

Among the different MIPS architecture processors, there is the miniMIPS 
(HANGOUT, 2013), which will be used in the work as case-study microprocessor. The 
miniMIPS is an open source processor that has a reduced instruction set from the 
original MIPS architecture, with 52 instructions. It is described in the hardware 
description language, Very-high-speed integrated circuits Hardware Description 
Language  (VHDL).  Consequently,  it  can  be  logically  simulated  and  it  can  be 
synthesized into programmable circuits as FPGAs. The miniMIPS can be implemented 
using the Harvard memory model, where the program and data memory are separated in 
two different memories, or the Von Neumann, where program and data memory share 
the  same  memory.  It  has  five  stages  pipeline:  Instruction  Address  Calculation, 
Instruction Fetch, Instruction Decode, Execution and Memory Access. A model of the 
miniMIPS pipeline is shown in Figure 2.6. 

 

The miniMIPS microprocessor has thirty-two 32-bit registers in the register bank. It 
also has a PC with a simplistic logic, since it has fixed size instructions and static 
branch prediction. Besides the PC, the microprocessor has other special purpose 
registers, such as the Stack Pointer (SP), Global Pointer (GP), Frame Pointer (FP), 
Return Register (RA) and Zero (always has the value 0), which can all be found in the 
register bank. The miniMIPS uses a gcc cross-compiler to translate C code into 
executable code. 

 

 
Figure 2.6: Pipeline architecture of the miniMIPS. 

 

The instruction set used by miniMIPS has a fixed size of 32 bits, from which only 
two have access to the memory: the load instruction and the write instruction. 
Instructions have a 6-bit opcode and are divided in three classes: type-R, which specify 
three registers (rs, rt and rd), plus a shift value (shamt), and a function field (funct), 
type-I, which specify two registers (rs and rt) and a 16-bit immediate value, and type-J, 
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which do not specify any register, only a 26-bit address. Figure 2.7 shows these classes 
in detail. 

 
Table 2.1: MIPS’ instruction format 

 

Type -31- format (bits) -0- 
 

R 
 

opcode (6) 
 

rs (5) 
 

rt (5) 
 

rd (5) 
 

shamt (5) 
 

funct (6) 

I opcode (6) rs (5) rt (5) immediate (16) 

J opcode (6) address (26) 

 
 

The miniMIPS microprocessor has been chosen as a case-study to this work due to 
the following reasons. The first one is that it is largely used in the literature (also 
because it has been in development since 1985). It also has a simple, but efficient, 
architecture with RISC architecture and a 5-stage pipeline, which follows modern 
microprocessor models, such as Intel’s and ARM’s. The miniMIPS version has a very 
stable  version,  since  2009,  and  has  been  simulated  and  implemented  in  various 
platforms, from FPGAs (both Flash- and SRAM-based) to ASICs. The miniMIPS 
version used in this work was initially developed by the Ecole Nationale Supérieure 
d'Electronique et de Radioélectricité de Grenoble (ENSERG), made open source in 
Hangout (2013), and slightly improved at UFRGS (modules such as the branch 
prediction, as well as memory controllers). 

 

In this thesis, we use a VHDL model of the mini-MIPS that can be logical simulated 
and synthesized to ASIC and to programmable platforms as FPGAs. 

 
 
2.3  SEE in MIPS Processors 

 

A processor is nothing more than a group of sequential and combinational circuits 
combined in one component. This combination of different circuits induces processors 
to be sensitive to different radiation in different areas with different effects. A processor 
could be roughly divided in five logical groups according to the area (program memory, 
data memory, register bank, control path, and data path) and in two logical groups when 
relating  to  the  effect  of  a  fault  (data  flow  and  control  flow).  In  the  following 
subsections, we will address how SEEs affect each part of a processor and theirs effects. 

 
2.3.1 SEEs Divided by Sensitive Areas of a Processor 

 

Memories are sequential circuits and therefore very sensitive to SEUs. Due to their 
regular physical structure, they are optimized to fit in smaller die areas than normal 
circuits and normally with higher operation frequencies. That means that the radiation 
effects, such as multiple-bit upset due to a single particle, are intensified in memory 
components. There are two main types of available memory: flash and SRAM memory. 
The first one is less sensitive to radiation effects, because it requires a high voltage to be 
written (change their current state), typically higher than 5V. Its main drawbacks are 
that it has a finite number of program-erase cycles, meaning that a memory position can 
only be written around 100,000 times before deteriorating its integrity, and because of 
the fact that normally the write circuit needs to pump up the voltage in order to reach 
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the high voltage for writing, and this circuit is sensitive to radiation effects. The SRAM 
memory is more sensitive to radiation effects, since it operates in normal voltages, but 
has better performance and power consumption. Besides, it doesn’t have the finite 
number of program-erase cycles. 

 

The memory organization of a processor can be with program and data memory 
combined in the same memory element (Von Neumann), or separated (Harvard). When 
separated,  the  program  memory is  usually stored  in  a  flash  memory  and  the  data 
memory in an SRAM memory. By doing so, it is possible to reduce the number of 
upsets in the program memory, while the data memory can be protected by fault tolerant 
techniques. When sharing the same memory, program and data memories are typically 
implemented on SRAM memory. Because of the fact that fault tolerance techniques are 
too expensive to protect the program memory, low-level approaches, such as Error 
Detection And Correction (EDAC) must be implemented on the memory. 

 

The register bank is mostly a sequential circuit, just like the program and data 
memory. Because of that, it is very sensitive to SEUs. The register bank can be 
implemented over an SRAM memory or by using flip-flops. In the first case, the same 
principles from the data program are applied. In the second case, hardware replication 
can be used, or even software-based technique to replicate the information stored in the 
registers. The miniMIPS has thirty-two 32-bit registers, resulting in a total of 1024 bits, 
which is a big number, when considering radiation effects. 

 

The data path represents the computing circuit of the processor. It is defined as the 
circuit leading from a stored value (in the memory or in the register bank), through the 
Arithmetic and Logic Unit (ALU), and back to a store element. It is composed of both 
combinational and sequential logic, since the data path not only processes data, but also 
crosses the register barriers from the pipeline stages. Because of that, it is sensitive to 
SEUs (in the pipeline registers) and SETs (in the computing logic, such as the ALU). 
The effect of a fault in the data path usually leads to an erroneous result in the end of the 
computation, but hardly leads to an infinite loop, or a control flow error. 

 

The control path is defined as the decision logic of a processor. It is responsible for 
calculating the next instruction to be fetched and setting the internal flags, such as to 
command the ALU to sum or subtract and a branch to be taken or not. The control path 
is mostly combinational, but since it has to cross the pipeline stages, also has sequential 
logic. The main difference between the control path and the data path is that an error in 
the control path leads to control flow errors, such as a branch being taken, when it 
should not have. Such control flow errors may lead to an erroneous result in the end of 
the computation. 

 

Figure 2.8 shows a detailed view of the architecture of the miniMIPS with the 
sensitive areas. 

 
2.3.2   SEEs Divided by Effect on a Processor 

 

Faults can be classified as having data or control flow effect in a processor. Data 
flow effect is defined as an error in a variable during the computation. It means that the 
program was correctly executed, but with an erroneous result. An example would be the 
instruction “Registers A = Register B + Register C”, where the value stored in A would 
be “Register B + (Register C + 1)”, due to an SEU that happened in Register C. It 
means that the processor correctly performed the sum in the ALU, but register C had an 
incorrect value. Control flow effect is defined as an error in the program execution. It 
means that the variables were correct, but the computation was incorrect. An example 
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would be the same instruction, “Registers A = Register B + Register C”, where the 
value store in A would be “Register B - Register C”, due to an SET in the ALU that 
subtracted the registers, instead of summing them. 

 

In order to differentiate a control flow from a data flow error, we check the PC 
evolution and compare it with a golden module. In case of a mismatch, the fault is 
classified as a control flow effect. If not, it is classified as a data flow effect. In some 
cases, a fault with a data flow effect may cause a control flow effect. An example could 
be an error in a register used to decide whether a branch should be taken or not. In such 
cases, we consider it as a control flow effect. 

 

The relation between the location of a fault and its effect is not direct. A fault in the 
register bank not necessarily will have a data flow effect on a processor. Likewise, a 
fault in the control path will have a control flow effect. 

 

Figure 2.8 shows the difference between a control flow and a data flow effect in a 
processor. On the left, one can see a control flow effect, where a jump in the program 
execution causes an error. On the bottom right, one can see the data memory with errors 
due to a data flow effect fault. 

 

 
Figure 2.7: miniMIPS sensitive areas under SEE. 

 
 
2.4  Fault Injection and Testing 

 

Although  the  effect  of  faults  is  increasing  at  ground  level,  the  rate  is  not  yet 
sufficient to test fault tolerant techniques. In order to do so, fault emulation and testing 
is necessary. In this Section, we will go over a few options to do so, such a software 
fault injection by simulation, fault injection in the FPGA’s memory configuration 
bitstream and irradiation experiments. 
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2.4.1 Fault Injection by Simulation 
 

Fault injection by simulation can be done by injecting faults at logical or electrical 
level in commercial simulators, such as ModelSim, from Mentor, or open source 
simulators, such as Spice. The main idea behind fault injection by simulation is to add 
interferences to the circuit. The good side about it is that it offers a huge control over 
the fault injection because it can be clock cycle accurate and therefore big amounts of 
data as a result. The drawback is that the description of the circuit is needed. If at 
electrical level, SPICE level description is used. If at logical level, Register Transfer 
Level (RTL) hardware description level can be used or logical level description. By 
simulating at RTL hardware description, one can get all values from all the signals 
implementing the circuit (and memory values) during simulation. Also, it is possible to 
stop the simulation, access any value inside the circuit, and resume the simulation. The 
main drawback is that fault injection by simulation requires huge computational power. 
The injection of 100,000 faults, depending on the abstraction level, may take a few days 
to finish. 

 

One example was presented in Azambuja (2010b), where a fault injector by logical 
simulation was introduced. It was implemented in Java and could generate a script to be 
run in ModelSim. The software had as inputs the list of signals describing the DUT, a 
definition file containing the description of the faults to be injected and a definition file 
containing the description of the application, with information such as runtime, correct 
output values and the memory used by it. 

 
2.4.2 FPGA Memory Configuration Bitstream Fault Injection 

 

In this type of fault injection, the FPGA board is used to replace the simulator. The 
circuit is implemented using the FPGA, which can emulate the circuit behavior at RTL 
level. By doing so, instead of using the simulator, a much faster hardware circuit is 
used. The mechanisms to inject faults and controlling the process are more complex and 
harder to be implemented, but the speed improvement makes it possible to inject faults 
in much higher rates than by injecting faults by simulation. 

 

There are mainly two techniques to perform fault injection in FPGA emulation. 
Using FPGA reconfiguration mechanisms, a fault is injected by loading a new bitstream 
into the FPGA, which corresponds to the original bitstream with one or more bits 
flipped (faulty circuit). Partial reconfiguration can be used to reduce the size of the 
bitstream.  In  this  case,  faults  are  injected  in  all  configuration  bits  of  the  FPGA 
emulating upsets in the bits that control the routing, the user flip-flops and the bits that 
program the combinational circuits, the well-known lookup tables (LUT). Examples of 
FPGA fault injectors in the bitstream are FT-Unshades (NAPOLES, 2007) and the one 
introduced by Nazar (2012b). 

 

Alternatively, circuit instrumentation can be used for fault injection. Circuit 
instrumentation consists in inserting some hardware modules, also called instruments. 
They can provide external controllability and observability to inject a fault and observe 
its effects. Circuit instrumentation is an automatic process that is basically performed by 
substituting cells of the DUT by their equivalent instrumented cells. Then, the 
instrumented circuit is prototyped in the FPGA. An example is AMUSE (ENTRENA, 
2010). 
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2.4.3 Irradiation Experiments 
 

The last and closest to real space radiation are irradiation experiments. It is possible, 
at ground level, to use energized particles to emulate the particles present in space. In 
order to do so, particles are accelerated and thrown at the circuit under test. Such 
equipment is called Cyclotron and can be found in different places in the world, using 
different types of energized particles. They can accelerate heavy ions, protons and 
neutrons. 

 

Such experiments require a facility that can accelerate particles at high energies, 
such as 10MeV, with a constant flux of particles. Equipment to measure the flux, time 
of exposure and energy of particles is also required. Due to the complexity of the 
experiment, costs for renting the facilities and the danger involved, irradiation 
experiments can be very expensive. Because of that, irradiation campaigns take a long 
preparation time, in order to guarantee that the tested circuit will work, as well as the 
measurements. On the other hand, irradiation experiments are the closest we can get to 
simulate the space environment at ground level. 

 

Examples of cyclotrons are the heady ions source in Leuven, Belgium, the proton 
source in Karlsruhe, Germany, and neutron sources in Didcot, United Kingdom, and 
Los Alamos, USA. For TID testing, a cyclotron can be found in Sao Jose dos Campos, 
Brazil, with a Cobalt-60 as radioactive source. 
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3  FAULT TOLERANCE TECHNIQUES FOR 
PROCESSORS 

 
 
 
 

Fault tolerance techniques aiming to detect transient effects can be mainly divided in 
three broad categories: (1) software-based techniques, (2) hardware-based techniques 
and (3) hybrid techniques. Fault tolerance techniques can be applied at different levels 
of implementation, starting from the software level down to the architecture description 
level, the logical and transistor level, until the layout level. In this thesis, we will focus 
on techniques applied at software level and hybrid techniques. 

 

Fault tolerance techniques based on software rely on adding extra instructions to the 
original program code to detect  and/or correct  faults  (GOLOUBEVA,  2003), (OH, 
2002b). They may be able to detect faults that affect the data and/or the control flow. 
Software-based techniques provide high flexibility, low development time and cost, 
since there is no need to modify the hardware. In addition, new generations of 
microprocessors that do not have RadHard versions can be used. As a result, aerospace 
applications can use Commercial Off-The-Shelf (COTS) processors with RadHard 
software. However, results from random fault injection campaigns have shown the 
impossibility of software-based techniques alone in achieving complete fault coverage 
for SEU (BOLCHINI, 2005), (AZAMBUJA, 2011a). This limitation is due to the 
inability of the software to protect all the possible control flow effects that can occur in 
the microprocessor. 

 

As a consequence of the redundant instructions inserted in the original program 
code, software-based techniques have as drawbacks high overheads in program memory 
footprint  and  a  significant  increase  in  the  execution  time.  The  program  memory 
increases due to the additional instructions inserted into the original code, while the data 
memory increases due to variable replication (in some cases, variables store in the data 
memory are duplicated). Performance degradation comes from the execution of 
redundant instructions (GOLOUBEVA, 2003), (OH, 2002). 

 

Hardware-based techniques change the original architecture of the system or its 
components by adding extra hardware modules. Such techniques must be implemented 
during the design of the system to be hardened. Therefore, they are not suited for 
hardening COTS processors or closed Intellectual Property (IP) components. Their main 
market is Application Specific Integrated Circuits (ASICs) and FPGA based systems. 
Hardware-based techniques can be intrusive, when they modify the architecture of a 
processor, or non-intrusive, when they do not modify the processor's architecture, but 
the system's architecture, through communication buses or by adding extra hardware 
modules that do not require changes inside the components from the system. The most 
common non-intrusive technique is called watchdog processor (MAHMOOD, 1988), 
where a small hardware module uses the access between processor and memory to 
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check the processor's transitions and then monitor its behavior. Intrusive techniques are 
mainly related to replicating hardware and adding logical and arithmetic checkers. 

 

As a consequence, hardware-based techniques can be very expensive duo to changes 
in the design project, or Non-Recurring Engineering (NRE) costs, development time, 
verification  time,  and  testing.  Also,  besides  the  price  in  extra  die  area  to  fit  the 
redundant hardware modules, it is very common that RadHard processors have lower 
performances than non-hardened components because they also are fabricated in older 
technologies compared to the state-of-the-art COTS processors due to the cost of 
developing new RadHard processors at any new technology release. Figure 3.1 shows a 
graphic comparing RadHard with COTS processors according to the processor 
throughput, or Mega (106) Instructions Per Second (MIPS). As one can see, the graphic 
shows an approximate 10 year gap. It is true that MIPS is not a fair comparison between 
processors with different architectures (which is the case of the figure), but is still valid 
to show that there is a gap in performance between COTS and RadHard processors. It 
may not be as large as 10 years, but it exists. 

 

 
 

Figure 3.1: COTS x RadHard processor throughput (KEYS, 2008). 
 

Hardware based techniques can be based on duplication with comparison, EDAC 
codes to protect registers and some other logical parity techniques to protect the logic. 
But all of them have some limitation on fault detection coverage. Without duplicating 
the whole processor, hardware-based techniques cannot achieve full fault detection 
against SEE, since part of the processor will always be unhardened. Non-intrusive 
modules, such as watchdogs, also cannot achieve full fault tolerance, since they do not 
have access to internal information from the microprocessor, like register values, for 
example. On the other hand, watchdogs and intrusive hardware-based techniques are the 
only fault tolerant techniques that can detect an infinite loop in an instruction, such as a 
persistent error, since software-based techniques require that the system is executing its 
instructions in order to detect an error. 
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Hybrid techniques combine software-based techniques with hardware-based 
techniques. The design space for hybrid techniques is quite large, since it multiplies all 
hardware-based possibilities per the software-based options. 

 

The result from the use of hybrid technique is a high effectiveness, since they can 
provide high levels of dependability while minimizing the introduced overhead. They 
also offer low development time (from the software-based techniques) and small 
performance degradation (from the hardware-based techniques). As drawbacks, they 
require the application source code (in order to transform it), which is not always 
available, and require changes, at least, in the system’s architecture. 

 

In the following subsections, the main techniques in each category are commented 
and their strengths and weaknesses concerning this scenario are discussed. 

 
 
3.1  Software-Based Techniques 

 

Software-based techniques, or Software Implemented Hardware Fault Tolerance 
(SIHFT) techniques, use the concepts of operation, time and information redundancy to 
detect the occurrence of faults during program execution. In the past years techniques 
have  been  proposed  so  that  can  be  automatically applied  to  the  source  code  of  a 
program, reducing significantly the development time and costs (RHOD, 2008). By 
doing so, the hardening is applied during software construction. The main drawbacks 
are the performance degradation, due to the extra instructions that will be executed by 
the processor, slowing the overall application runtime, and the overhead in program 
memory due to the extra instructions. As far as the fault tolerance is the only concern, 
the overhead in memory is not an issue, since EDAC techniques can be used to protect 
the memory. On the other hand, when power is also a concern, memory may become a 
constraint, since memories are responsible for most of the power dissipation and area 
within a chip. 

 

Software-based techniques can be divided into two groups, according to their aim at 
detecting faults: (1) data flow checking techniques, which aim to detect faults affecting 
the data flow and (2) control flow checking techniques, which aim at detecting faults 
affecting the program's execution control flow. The first group comprises faults in the 
data structures of the processor, such as variables, registers and the data memory. Such 
faults may lead the processor to calculate an incorrect result, but they do not change the 
program flow. The second group is related to faults that affect the normal execution of a 
program. Such errors can be a deviation from the normal program flow, which can 
cause an infinite loop in a subroutine, for example, or even in an instruction. Software- 
based techniques usually aim to detect only one of these two groups of faults. 

 

Among the most important solutions to detect data flow errors, there are a few 
techniques that exploit information and operation redundancies, such as Error Detection 
by Data Diversity and Duplicated Instructions (ED4I) (OH, 2002a), the transformation 
technique proposed in Cheynet (2000) and Variables 1 (VAR1), Variables 2 (VAR2) 
and Variables 3 (VAR3) techniques proposed in Azambuja (2011b). 

ED4I consists in modifying the original version of the program by multiplying (or 
dividing) all variables by a constant value. The replicated version is then executed along 
with the unmodified program. After executing both versions, their results are compared 
for consistency (considering the constant value added to the replicated version). An 
error is detected if a mismatch is found. By running two versions of the code, instead of 
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one, and comparing the results, this technique introduces overheads in memory and 
execution time. 

 

The technique proposed in Cheynet (2000) introduces several code transformations 
to modify the original program code. Rules are applied in order to duplicate all variables 
and operations among them. By doing so, this technique replicates the whole data path 
by software. With a duplicated data path, Cheynet (2000) adds instructions to the code 
to compare the values stored in the variables and jump to a subroutine in case of 
mismatch. The comparisons happen every time a variable is read. 

 

Azambuja (2011b) proposed three techniques to cope with data effect errors. The 
techniques were implemented at assembly level, so that they are compiler independent, 
and duplicate all the values stored in registers into spare registers (register unused by 
the compiler). If there are not enough spare registers, the techniques choose the most 
important  registers  and  replicate  them,  leaving  the  others  unhardened  (CHIELLE, 
2012). As another option, the compiler can be set to use only half of the registers, which 
could introduce execution time overheads, due to the lack of registers. The main 
difference between the techniques is that VAR1 checks the consistency every time a 
register is read, while VAR2 checks when a registers is written and VAR3 checks only 
when the memory is accessed. 

 

Techniques to detect data flow errors introduce overheads in memory (both program 
and data) and execution time, due to extra instructions in the original code and variable 
and registers replication. On the other hand, results presented at Azambuja (2010a) have 
shown 100% fault detecting for all SEU and SET injected directly in the processor's 
description. 

 

Software-based  techniques  to  detect  control  flow  errors  differ  from  data  flow 
because of one main reason, which is: control flow techniques can be optimized. Data 
flow techniques always have to replicate data (registers, variables or memory positions) 
and compare it, while control flow techniques can analyze the code, comprehend it and 
optimize the replication and comparison. Most control flow techniques perform an 
analysis on the program's execution flow, divide the program into Basic Blocks (BB) 
and parse the program flow as a graph between different nodes (BBs). A BB is defined 
as  a  sequence  of  consecutive  instructions  that  are  always  executed  sequentially, 
meaning that the control flow always enters a BB in the first instructions and leaves at 
the end. 

 

A set of software-based techniques has been proposed in the literature aiming at 
detecting control flow errors. Among the most important, there are the techniques called 
Control-Flow Checking using Assertions (CCA) (MCFEARIN, 1995), Enhanced 
Control-Flow Checking using Assertions (ECCA) (ALKHALIFA, 1999), Control-Flow 
Checking by Software Signatures (CFCSS) (OH, 2002b), Control-flow Error Detection 
through Assertions (CEDA) (VEMU, 2011) and Automatic Correction of Control Flow 
Errors (ACCE) (VEMU, 2007). 

 

CCA introduced the concept of Block Identifier (BID) and Control Flow Identifier 
(CFID). The first identifier is a unique value for each BB, while the second is used to 
identify transitions between BBs. The technique uses both identifiers to monitor the 
behavior of the control flow, using global registers to store their values. Whenever the 
control flows enters a BB, the BID register is set to the BB’s unique value. The CFID is 
stored in a two-position array (implemented over two registers) that stores the transition 
between two BBs. By analyzing these values, CCA could detect most of the errors when 
moving from one BB to another. The main problem in this technique was that some 
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BBs shared the same CFID value, which led to undetected errors. In order to improve it, 
ECCA was proposed by Alkhalifa (1999). Alkhalifa (1999) improved CCA into ECCA 
by adding a new identifier and dividing the BBs into groups. He was then able to 
improve CCA detection rates, but without being able to detect intra-block errors (inside 
the BB). 

CFCSS was proposed in 2002 to complement ED4I in its fault detection rates. It 
presented a Global Signature Register (GSR) to keep track of the control flow. By 
assigning BB values to GSR, he was able to detect most control flow errors, but still had 
issues with BB identifiers sharing the same value (which also happens to CCA). 

 

In Vemu (2011), a new technique called CEDA was proposed. CEDA uses a global 
register to store a control flow identifier, called Node Signature (NS). The main 
difference between CEDA and the other techniques is that it performs a deeper analysis 
on the program code, identifying networks of BBs and possible transitions between 
them. By doing so, it creates a transition signature to guarantee that the transition 
between BBs is valid. It assigns a node signature and a node exit signature to each basic 
block, every time the control flow enters and leaves a basic block, respectively. Results 
show that CEDA can detect 90% of faults that cause an incorrect transition between 
BBs. On the other hand, CEDA cannot detect control flow errors inside a BB. 

 

In order to improve CEDA, Vemu (2007) proposed ACCE and ACCE with 
Duplication (ACCED). They use the same detection capabilities from CEDA, but 
improve it by allowing error correction. Despite being unable to mitigate all control 
flow errors, ACCE imposes low latency for error correction with performance overhead 
of about 20%. The only issue that remains is that neither ACCE nor any software-based 
technique is able to detect intra-node control flow errors, or in other words, faults 
causing control flow errors inside the same BB. 

 
 
3.2  Hardware-Based Techniques 

 

Hardware-based techniques must be implemented during the design phase. Because 
of that, such techniques cannot be applied to COTS processors or restricted IPs targeted 
at the general purpose market. Their use is mainly restricted to ASICs or FPGA based 
designs  (that  do  not  use restricted  IPs).  In  some cases,  hardware-based  techniques 
applied to components may suffer commercial embargos, such as the International 
Traffic in Arms Regulation (ITAR), which is a set of United States government 
regulations that control the export and import of defense-related articles and services on 
the United States Munitions List (USML). As an example, Brazil is not able to buy 
RadHard Xilinx FPGAs from the United States of America. These techniques can be 
classified in two main groups:   redundancy based, and hardware monitors. The first 
group relies on time or space redundancy, while the second uses watchdogs, checkers or 
IPs to monitor the main processor. 

 

Techniques based on space redundancy are grounded in the single fault model, 
where  only  one  of  the  hardware  redundant  copies  is  affected  by  transient  upsets 
(ROSSI, 2005). It means that only one of the modules will be affected by a transient 
fault and therefore the fault detection rate should be 100%. On the other hand, studies 
have shown that a single fault may affect two hardware modules in case of SRAM- 
based FPGAs (KASTENSMIDT, 2005) due to the routing architecture, or in adjacent 
standard cells in ASICs as shown by Almeida (ALMEIDA, 2012). 
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The most well-known technique is called Duplication With Comparison (DWC)  

 

(WAKERLY, 1978). It duplicates the whole hardware and adds a comparator module to 
detect a mismatch between both modules. Another option would be to triplicate the 
hardware by using Triple Modular Redundancy (TMR), which not only detects an error, 
but also indicates which module generated the error, allowing correction. In case of an 
FPGA, the erroneous module could be partially reprogramed in the board, correcting 
both transient and permanent errors. The granularity of the replication may change, 
according to the designer’s constraints (PILOTTO, 2008). 

 

The  literature  also  presents  other  approaches,  such  as  the  one  proposed  in 
Nieuwland (2006), where the critical path of combinational circuits is hardened through 
the duplication of gates and transient errors are masked due to the extra capacitance 
available in the node. It is also very common to find microprocessors partially hardened, 
where only the most critical registers are replicated, such as the PC and the SP. 

 

Differently from space redundancy, space redundancy uses the same computing 
hardware modules to compare its value shifted in time. Usually extra hardware is added 
to introduce a fixed time delay δ. Anghel (2000) proposed an architecture where the 
outputs of a combinational circuit were duplicated and stored with different time delays 
(0 and δ). A comparator was then introduced to compare the stored results after δ, 
flagging an error in case of mismatch. It is important to mention that δ equals to the 
maximum transient pulse length. 

 

Although such techniques can provide high fault detection rates, they introduce huge 
area overheads (a circuit hardened with TMR has about 3.5 times the size of the original 
circuit), which leads to higher power consumption as well. Such overheads are not 
acceptable in embedded systems. When using time redundancy, the value of δ tends to 
increase due to technology aspects. This increase impacts directly in every operation 
cycle, leading to unbearable performance overheads. 

 

As an alternative to time and space redundancy, hardware-based techniques offer 
monitoring blocks. The second group of techniques adds special hardware modules to 
the system’s architecture, called watchdog processors (MAHMOOD, 1988), checkers 
(AUSTIN, 1999) or Infrastructure Intellectual Properties (I-IP) (LISBOA, 2007). Such 
devices monitor the control flow of the programs inside the processors and memory 
accesses performed by them. In order to do that, the behavior of the processor running 
the application may be monitored using three types of operations: (1) Memory access 
checks, which look for unexpected memory accesses, such as unused memory areas and 
restricted function memory areas (NAMJOO, 1982), (2) Consistency checks, where the 
monitor checks if the value a register hold is acceptable, by exploiting information 
about the task performed by the program (MAHMOOD, 1983) and (3) Control flow 
checks, consisting in checking if the branches taken are consistent with the program 
graph  of  the  application  running  in  the  processor  (NAMJOO,  1983),  (OHLSSON, 
1995), (SCHUETTE, 1987), and (WILKEN, 1990). 

 

Watchdog processors have one characteristic that is hardly found in other fault 
tolerance techniques, which is the ability to detect stuck-at errors in the execution flow, 
such as when a processor loops in one single instruction only. When considering 
watchdog processors, two types may be envisioned: active and passive watchdog 
processors. The active watchdog processor executes a program concurrently with the 
main processor, checking whether its program evolves accordingly to the one executed 
by the main processor. It continuously checks both programs and flags an error in case 
of mismatch (NAMJOO, 1983). The result is a simplified DWC approach, but still 
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introducing   area   overheads   to   implement   the   watchdog   processor and   small  

 

performance overhead to compare both modules. 
 

The passive watchdog processor does not run any program. Instead, it computes a 
signature by observing the main processor’s buses so that it can perform consistency 
checks. An interesting approach was proposed in Wilken (1990), where a watchdog 
processor observes the instructions executed by the main processor and computes a 
runtime signature. The code running on the main processor is modified so that when 
entering a basic block, an instruction is issued to inform the watchdog processor a pre- 
calculated  signature,  while  the  main  processor  executes  a  NOP  instruction.  The 
watchdog processor then compares the received signature with its pre-computed 
signature and flags an error in case of mismatch. Another similar watchdog processor 
was proposed in Ohlsson (1995), where it computed a signature based on the addresses 
of  the  instruction  that   the  main  processor   fetched.  Watchdogs   are  interesting 
approaches, since they can be implemented intrusively, by adding a new instruction to 
the processor’s Instruction Set Architecture (ISA), for example, or non-intrusively, by 
making the watchdog processor to observe the buses between processor and its memory. 
The overheads in area can be small, depending on the watchdog processor’s complexity 
and they usually have a small impact on the system. 

 

As another alternative, one can use checkers as a hardware-based technique. An 
architecture called DIVA was proposed in Austin (1999), using a simple functional 
checker to verify the correctness of all computation being executed in the main 
processor. The technique added a functional checker to the execution stage of the 
pipeline, so that it allowed only correct results to reach the register barrier. The 
implementation of the checker was done so that it was simpler than the core processor, 
since it received the instruction to be executed together with the values of the input 
operands and the result from the main processor. By doing so, the checker did not have 
to care about address calculations and therefore could be implemented in a simpler way 
than the processor core. 

 

Instead of only detecting an error, the authors decided for the risky assumption that 
the checker is always correct. The assumption came from the fact that they used 
oversized transistors in its construction and also that they performed an extensive 
verification in the design phase. By doing so, in case of a mismatch between the core 
processor and the checker, DIVA could send the result of the checker to the register 
barrier. If a new instruction would not be released for the checker after a given number 
of clock cycles, the core processor’s pipeline would be flushed and the processor 
restarted from a given point. The main drawback of this technique is that the assumption 
that the checker is always correct is not always true. A second drawback is that this 
technique, unlike the monitors, requires deep changes in the processor architecture. 

 
 
3.3  Hybrid Techniques 

 

Hybrid  techniques  are  very  effective,  since  they  offer  the  designer  a  tradeoff 
between hardware- and software-based techniques. They provide low cost software 
transformations, high detection rates and small area overheads from the software-based 
techniques and also high performance and high detection rates from the hardware-based 
techniques. The possibility to choose among the available techniques and how much of 
each technique to use (partially of fully) expand the design space and offer the 
implementation of hardening techniques targeted to specific applications. 
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As  well  as  the  advantages  that  hybrid  techniques  inherit  from  software-  and  

 

hardware-based techniques, come also a few disadvantages. Among the drawbacks, one 
can notice the requirement of the source code of the application that processor core 
should run (which cannot be always fulfilled), performance degradation and memory 
overhead from the software-based techniques and area overhead from the hardware- 
based techniques. On the other hand, these drawbacks are normally smaller than when 
using a pure software- or hardware-based technique. 

 

They combine software-based techniques with hardware-based techniques. A hybrid 
technique can be a simple combination of a software-based technique with a hardware- 
based  technique,  such  as  in  Cuenca-Asensi  (2011)  and  Lindoso  (2012),  or  a 
combination where software- and hardware-based techniques interact with each other, 
such as in Schialli (2006), Rhod (2008), Bernardi (2006) and Nicolaidis (1999). The 
first group is more easily implemented, since it’s a pure combination of techniques. It 
can be optimized by analyzing overheads and detection rates to better choose the 
techniques to be used, but it has a limited design space, since it does not consider the 
techniques where software- and hardware-based techniques share information. The 
second group, on the other hand, has a larger design space and therefore offers the 
designer more hardening options, when considering performance degradation and area 
overhead. 

 

In Cuenca-Asensi (2011), a hardware/software co-design methodology is proposed 
to detect SEUs in microprocessors. The proposed hardening infrastructure receives a 
specification of the system requirements that takes into account constraints related to 
silicon area, performance, power consumption, hardware cost, reliability, availability, 
safety, security and recovery time. It then chooses a set of the best techniques for the 
given system and tests them in the real processor implementation. By doing so, it can 
then choose the best combination from the available design space. The proposed 
hardening infrastructure offers the technique called SWIFT-R (REIS, 2007) as a 
software-based technique and selective TMR as a hardware-based technique. 

 

The  methodology  proposed  by  Cuenca-Asensi  (2011)  was  then  improved  by 
Lindoso   (2012)   into   a   methodology   to   correct   SET   in   microprocessors.   The 
methodology follows the same principles and offers the same software- and hardware- 
based techniques. The main difference is that the system to test the chosen set of fault 
tolerance techniques was improved from FT-Unshades (NAPOLES, 2007) to AMUSE 
(ENTRENA, 2010), offering faster test results. The main drawback of both these 
techniques is that they are intrusive, meaning that they cannot be applied to a COTS 
microprocessor. Also, if the program code is protected, none of the techniques could be 
applied. On the other hand, they offer a methodology to choose and test different 
techniques from a given design space. 

 

As an alternative to these intrusive approaches, Schialli (2006) introduced the idea 
of an Infrastructure IP (I-IP). He proposed a very simple I-IP to be put between the main 
processor and its instruction memory, so that it could substitute the fetched code with 
hardened one, on-the-fly. The main problem of his proposal is that the I-IP did not 
contain an ALU or a control unit and therefore introduced significant performance 
overheads without being supported by a suitable design flow environment. 

 

Another hybrid technique was presented in Bernardi (2006) adopting software-based 
techniques in a minimal version along with the introduction of an I-IP. The software 
was   modified   so   that   it   implemented   instruction   duplication   and   information 
redundancy. Also, instructions to communicate to the I-IP were added to exchange 
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information about the control flow execution. This I-IP worked concurrently with the  

 

main  processor  performing  consistency  checks  among  duplicated  instructions  and 
verifying the correctness of the program flow by monitoring the addresses. 

 

An approach to minimize the overhead was then proposed in Rhod (2008). It 
combined the main ideas behind Schialli (2006) and DIVA by introducing a new I-IP 
between the main processor and its program memory with an architecture that could be 
customized by the main processor. It also implemented an ALU and a control unit, so 
that it also could compute the instruction fetched from the memory. By doing so, it 
could monitor the buses between the microprocessor and its program memory, get the 
operands of the original data processing instructions, compute them and compare to the 
results from the microprocessor for correctness. Also, it could check the feasibility of 
the  address  accessed  by  the  processor  (characteristic  from  hardware  monitoring 
devices). Although the I-IPs could provide the ability to harden the program even 
without the source code, they still require intrusive changes in the main processors. 

 

In Nicolaidis (1999), a hybrid technique based on duplication, time redundancy, and 
Code Word State Preserving (CWSP) was proposed. The CWSP introduced a gate 
topology to replace the last gates of a combinational circuit, so that it would be able to 
pass the correct value in the combinational logic in the presence of a SET. When 
concerning the duplication and the time redundancy, CWSP compared both outputs for 
correctness. When identical, the next state would be equal to the corresponding output 
function. When different, the next state would remain equal to the present state. By 
using time redundancy, CWSP introduced a delay δ to the circuit’s outputs. As one can 
notice, the main disadvantage is the need to change the CMOS logic in the next stages 
by  inserting  extra  transistors.  Also,  the  time  redundancy  introduced  significant 
overheads in performance. 

 
 
3.4  Summary 

 

This subsection summarizes all faults tolerant techniques mentioned in this section. 
Table 3.1 evaluates them according to intrusiveness, fault detection, fault correction, 
fault coverage and overheads in area, execution time, program memory and data 
memory. Classifications LOW, MEDIUM and HIGH are used when the value is not 
specific. 
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Table 3.1: Fault tolerance techniques summary  

 

 

Fault 
Tolerance 
Technique 

 
Intrusive 

 

Fault 
Correction 

 

Fault 
Coverage 

 

Area 
Overhead 

Execution 
Time 

Overhead 

 

Memory 
Overhead 

ED4I NO NO MEDIUM - HIGH HIGH 

Cheynet 
(2000) 

 

NO 
 

NO 
 

HIGH 
 

- 
 

HIGH 
 

HIGH 

VAR3 NO NO HIGH - MEDIUM MEDIUM 

CCA NO NO MEDIUM - HIGH HIGH 

ECCA NO NO MEDIUM - HIGH HIGH 

CFCSS NO NO MEDIUM - HIGH HIGH 

CEDA NO NO HIGH - LOW LOW 

ACCE NO YES HIGH - LOW LOW 

DWC YES NO HIGH 2 times - - 

TMR YES MASK HIGH 3 times - - 

Nieuwland 
(2006) 

 

YES 
 

MASK 
 

HIGH 
 

2 times 
 

- 
 

- 

Anghel (2000) YES NO LOW LOW - - 

Wilken (1990) YES NO LOW LOW - - 

Ohlsson 
(1995) 

 

YES 
 

NO 
 

LOW 
 

LOW 
 

- 
 

- 

DIVA YES NO LOW MEDIUM - - 

Cuenca-Asensi 
(2011) 

 

YES 
 

YES 
 

HIGH 
 

HIGH 
 

HIGH 
 

HIGH 

Lindoso 
(2012) 

 

YES 
 

YES 
 

HIGH 
 

HIGH 
 

HIGH 
 

HIGH 

Schialli (2006) YES NO MEDIUM LOW HIGH - 

Bernardi 
(2006) 

 

YES 
 

NO 
 

MEDIUM 
 

LOW 
 

MEDIUM 
 

MEDIUM 

Rhod (2008) NO NO MEDIUM LOW - - 

Nicolaidis 
(1999) 

 

YES 
 

MASK 
 

HIGH 
 

2 times 
 

HIGH 
 

- 
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4  PROPOSED TECHNIQUES TO DETECT TRANSIENT 
FAULTS IN PROCESSORS 

 
 
 
 

This part of the thesis describes the developed techniques to detect transient errors 
affecting processors. As stated in the previous chapter, software-based techniques are 
unable to detect all faults affecting the control flow, while hardware-based techniques 
cannot protect processors without a huge area overhead. Hybrid techniques have 
presented a better tradeoff between overhead and fault detection. This chapter focuses in 
presenting and discussing three new hybrid fault tolerant techniques that can achieve 
high fault detection in processors, at small area overhead and performance degradation. 

 

Software-based techniques have shown to be the best approach to dealing with data 
flow errors, since they don’t require any extra hardware and offer full fault detection at 
a cost around 40% performance degradation (AZAMBUJA, 2011b). Because of that, 
this chapter presents mainly techniques to detect control flow errors, since they can be 
combined with software-based techniques presented in previous works (AZAMBUJA, 
2011a). 

 

This  section  presents  the  HPCT  tool  to  transform  program  code,  two  known 
software-based techniques (Variables and Inverted Branches), and three innovative 
hybrid techniques to detect transient faults in embedded microprocessors: PODER, 
OCFCM and HETA. These techniques include the benefits proposed in the Variables 
method and in the Inverted Branch method. 

 
 
4.1  Hardening Post Compiling Tool (HPCT) 

 

Code transformation is a complex task that requires code analysis and processing, 
instruction replication, and instruction address correction. The code analysis and 
processing is required to find out code characteristics, such as branch instruction 
addresses, registers being used (and in some cases, the ones that are more important to 
be hardened), subroutines, memory area where the program and data are located, branch 
instruction destination address, and the program flow graph (basic block structure). The 
instruction replication uses the analysis and processing to insert instructions to the 
original program code, considering which registers are currently not being used. When 
instructions are added or moved, the destination addresses of branch instructions may 
change and they must be updated, including relative addresses, which must be 
recalculated. Such modifications are very hard to be done by hand, especially when 
dealing with large program codes with lots of branch instructions. 

 

In order to automate the program code transformation, we used a tool called 
Hardening Post Compiling Translator (HPCT), introduced by Azambuja (2010b), and 
improved to implement the proposed hybrid techniques. It was implemented in Java, 
due to its portability to any operating system with Java Runtime Environment (JRE), 
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and easy string parsing and manipulation. It implements a class for each technique and 
therefore could be extended to implement the proposed hybrid techniques, including the 
generation of hardware modules, when necessary. 

 

The tool receives as inputs the program’s binary code, which makes it compiler and 
language independent, the hardening techniques to be applied, ISA definitions and some 
characteristics of the processor’s architecture. The user is allowed to choose the 
hardening techniques in a Graphical User Interface (GUI), while ISA definitions and 
processor’s architecture are described in classes. Current available processors are the 
miniMIPS and Leon II. The tool outputs a binary code, processor dependent, which can 
be directly interpreted by the target processor. This workflow can be seen in Figure 4.1. 

 

 
 

Figure 4.1: HPCT’s workflow. 
 

From  the  original  program  code,  the  HPCT  tool  extracts  all  the  necessary 
information to transform the code, such as branch instruction memory locations and 
destination addresses, program execution flow graph, relations between the nodes of the 
flow graph, registers used and available, among other characteristics. Using this 
information,  it  is  able  to  insert,  remove  and  move  instructions  and  blocks  of 
instructions, such as procedures. 

 

The extraction of branch instruction memory locations, destination addresses, used 
and spare registers can be easily done by reading the original program code and 
calculating the destination addresses for the branch instructions. The extraction of the 
program execution flow graph, on the other hand, can be more difficult. The control 
flow graph is divided in basic blocks (nodes) and control flow transitions (edges). 
Initially the tool adds the first non-branch line of code. The program code is than 
iterated until a branch instruction is found. When that happens, a node is finished and 
two new nodes begin in the instruction after the branch instruction and at the branch 
instruction’s  destination  address.  In  some  cases,  instructions  store  the  destination 
address in a register known only at runtime, such as Jump to Register (JR) or Jump and 
Link Register (JALR) instructions. When that happens, the code must be further 
analyzed in order to try to find the runtime value of the register. When the value is not 
found, the control flow graph can still be partially extracted and used by the techniques, 
but with vulnerabilities in such points. 
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The insertion of new instructions to the program code must take into account the 
control flow graph. Whenever an instruction is added or removed, all the addresses, 
relative or absolute, must be checked for consistency. When replicating an instruction 
using spare registers, such registers must also be accounted for and removed from the 
available registers list. 

 
 
4.2  Improved Variables Technique (VAR) 

 

The idea behind the Variables technique is to protect the data path of the processor. 
It does so by replicating all the registers used by the processor on spare ones (registers 
not used by the application running). 

 

In order to replicate the registers, this technique assigns a spare register to each used 
register and replicates all write instructions performed on the original register to its 
copy. Also, every read operation is duplicated, so as to duplicate the data path. At given 
points, consistency checks are performed through branch instructions. Whenever a 
mismatch between the register and its copy is found, the program execution flow 
branches to a predefined subroutine that flags the error. 

 

Considering that users are only interested in the values stored in the data memory (or 
coming out of the processor), the Variables technique assumes that if they are correct, 
so is the system. Because of that, consistency checks are only performed when a register 
is used to load or store a value in the memory. Also, in order to keep the control flow 
consistent, registers are also checked before branch instructions. The result is that the 
data being stored and read from memory is correct, as well as the data being used by the 
branch instructions. 

 
4.2.1 Implementation Details 

 

In order to evaluate the Variables techniques, four algorithms were used: 6x6 matrix 
multiplication, bubble sort, tiny encryption and run length algorithms were used. We 
used the HPCT tool to harden each application according to the Variables 
transformation. 

 

The transformation follows three rules: 
 

• Every variable x must be duplicated. Consider x1 and x2 the original variable 
and its copy; 

 

• Every operation performed on a variable x must be performed on x1 e x2; 
 

• Before every branch instruction or instruction that accesses the memory, 
variables  by  the  instruction  must  be  checked  for  consistency  with  their 
copies. In case of mismatch, and error should be flagged. 

 

Figure 4.2 illustrates a piece of code protected by Variables technique. The original 
code  has  three  instructions  that  operate  with  registers  and  memory  elements. 
Instructions 1 and 3 are inserted to protect the load instruction located in position 2 (ld 
r1, [r4]), where the first instruction verifies the register containing the base address for 
the load instruction (r4) and its replica (r4'). The second instruction replicates the load 
instruction, using the replicated memory position (r4' + offset) and loads the value into 
the replicated register (r1'). Instructions 8, 9 and 11 are inserted to protect the store 
instruction. While instructions 8 and 9 verify values stored in the base and data registers 
(r1 and r2, respectively) against their replicas (r1' and r2', respectively). Instruction 11 
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replicates the original store instruction located in position 10 (st [r1], r2) using the 
replicated registers r1' and r2' over a replicated memory address (r1' + offset). 

 
 

Original Code Hardened Code 

1: ld r1, [r4] 1: bne r4, r4', error 
 

2: ld r1, [r4] 
 

3: ld r1', [r4' + offset] 

4: add r2, r3, 4 4: add r2, r3, 4 
 

5: add r2', r3', 4 
 
 
 
 
10: st [r1], r2 

6: bne r1, r1', error 
 

7: bne r2, r2', error 
 

8: st [r1], r2 
 

9: st [r1' + offset], r2' 
 

Figure 4.2: Variables technique’s transformation. 
 

The original add instruction located in position 6 (add r1, r2, r4) operates only over 
registers and therefore does not need any offset. In order to protect this instruction, 
instruction 7 is inserted, which performs the original instruction, but using the replicated 
registers (r2' and r4') and writing over the replicated destination register (r1'). 

 
Table 4.1: Characteristics for the variables technique program transformation 

 

Application  Original  Variables 

 Execution Time (μs)  1,257 1,821 (1.45×) 

 Code Size (bytes)  1,548 2,644 (1.71×) 

 Data Size (bytes)  524 1,048 (2.00×) 

 Execution Time (μs)  231 375 (1.62×) 

 Code Size (bytes)  1,212 1,916 (1.58×) 

 Data Size (bytes)  120 240 (2.00×) 

 Execution Time (μs)  157 266 (1.69×) 

 Code Size (bytes)  896 1,688 (1.88×) 

 Data Size (bytes)  28 56 (2.00×) 

 Execution Time (μs)  2,372 3,914 (1.65×) 

 Code Size (bytes)  2,772 5,608 (2.02×) 

 Data Size (bytes)  236 472 (2.00×) 
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This transformation duplicates the data being stored, i.e., the number of registers and 
memory addresses. Consequently, the applications are limited to a portion of the 
available registers and memory address. In some cases, compilers can restrict the 
application to a small set of registers and memory addresses, allowing the duplication. 
In other cases, the rules can be applied to a subset of the used registers and memory 
positions, although it may compromise the fault detection rate. 

 

Table 4.1 shows the results after the Variables transformation on four different case- 
study applications. As one can see, the performance overhead varies from 1.45 to 1.69 
the original execution time, which is a small performance degradation, when compared 
to other techniques to detect errors in the data flow, such as ED4I and Cheynet (2000). 
The memory overhead, on the other hand, is considerably big, since it varies from 1.58 
to 2.02 times the original one. 

 
 
4.3  Improved Inverted Branches Technique (BRA) 

 

The Inverted Branches technique (AZAMBUJA, 2010a) was proposed to detect 
faults affecting the decision of branch instructions. Such errors affect the transition 
between different BBs and are hard to be detected, since both paths (branch taken or 
not) are acceptable in the program flow graph. A simple way of doing that is to replicate 
the branch instructions. 

 

Branch  instructions  are  more  difficult  to  replicate  than  non-branch  instructions, 
since they are not linear (they always have two possible next addresses). When the 
branch is not taken, a branch instruction can be simply replicated and inserted right after 
the original branch instruction, but with a destination address pointing to an error 
subroutine. If the branch was not taken in the original instruction, is must also not be 
taken in the replicated instruction, which will be executed right after the original. 

 

In the possibility that the branch was taken, the replicated branch instruction must be 
inserted on the branch destination address, which is the next instruction to be executed 
by the microprocessor. The difference is that if the original branch was taken, the same 
branch must be taken again. In order to keep the original program flow, the replicated 
branch instruction is inverted and its destination address pointed at the error subroutine. 

 
4.3.1 Implementation Details 

 

In  order  to  evaluate  both  the  effectiveness  and  the  feasibility  of  the  Inverted 
Branches techniques, four applications were chosen: a 6x6 matrix multiplication, a 
bubble sort, a bit count and a Dijkstra’s algorithms. The matrix multiplication and 
Dijkstra’s algorithms require a large data processing with only a few loops and therefore 
uses mostly the datapath from the microprocessor. On the other hand, the bubble sort 
and the bit count algorithms use a large number of loops, control registers and branch 
instructions and therefore use mostly the controlpath, since all the data processing is 
related to the control registers. Each version was hardened using the HPCT. 

 

The transformation follows three rules: 
 

• Every branch instruction is replicated after the original instruction, with a 
new destination address pointing to an error subroutine; 

 

• Every  branch   instruction   is   duplicated,  inverted   and   inserted  at   the 
destination address of the original instruction; 
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• A jump instruction is added before the inverted branch instruction, pointing 
to the instruction after the inverted branch. 

 

Original Code Hardened Code 

1: beq r1, r2, 6 1: beq r1, r2, 5 
 

2: beq r1, r2, error 

3: add r2, r3, 1 3: add r2, r3, 1 

 4: jmp 6 
 

5: bne r1, r2, error 

6: add r2, r3, 9 
 

7: jmp end 

6: add r2, r3, 9 
 

7: jmp end 
 

Figure 4.3: Inverted Branches technique’s transformation. 
 

Figure 4.3 illustrates the Inverted Branches transformation applied to a program 
code. The conditional branch instruction Branch if Equal located in position 1 (beq r1, 
r2, 6) will jump to instruction 6 if registers r1 and r2 contain the same value. Initially, 
the branch will be replicated and inserted right after the original instruction, in position 
2. The original branch instruction is then inverted and inserted in the original branch 
destination address (5) by using the Branch if Not Equal instruction (bne r1, r2, error). 
In this process, original branch instruction destination addresses must be adjusted to the 
new address (5, in the transformed code). 

 
Table 4.2: Characteristics for the Inverted Branches technique program transformation 

 
Application Original Inverted Branches 

 
Execution Time (μs) 1,190 1,221 (1.03×) 

 
Code Size (bytes) 668 792 (1.19×) 

 
Data Size (bytes) 524 524 (–) 

 
Execution Time (μs)                                     231                     250 (1.08×) 

Code Size (bytes)                                          992                   1384 (1.40×) 

Data Size (bytes)                                          120                            120 (–) 

Execution Time (μs)                                  4,073                  4,593 (1.13×) 

Code Size (bytes)                                          460                     548 (1.19×) 

Data Size (bytes)                                            28                              28 (–) 

Execution Time (μs)                                  1,785                  1,920 (1.08×) 

Code Size (bytes)                                       1,784                  2,144 (1.20×) 
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Data Size (bytes) 236 236 (–) 
 
 
 

The  insertion  of  the  replicated  inverted  branch  instruction  may  affect  other 
execution flows. For example, instruction 5 cannot be executed after the add instruction 
located in position 3 (add r2, r3, 1), since it could modify the value stored in the r2 
register and cause a false fault detection. In order to protect the other execution flows, 
the inverted branch must be protected with instruction 4, an unconditional branch that 
does not allow instruction 5 to be executed after instruction 3, but only after branch 
instruction with destination address pointing to its position. 

 

Table 4.2 shows the original and transformed program characteristics, according to 
execution time, code size and data size. As one can see, the overheads in execution time 
vary from 1.03 (matrix multiplication) to 1.13 (bit count) times the original execution 
times. The overheads in program code are larger than execution time, varying from 1.13 
to  1.40  times  the  original  value,  for  the  matrix  multiplication  and  bubble  sort 
algorithms, respectively. 

 
 
4.4  PODER Technique 

 

PODER is the first hybrid technique proposed in this thesis. It was based in CCA 
and its two-element queue to keep track of the changes in the program’s control flow, 
BID and CFID. The technique aims at detecting a few types of control flow errors, such 
as: (1) incorrect jumps to the beginning of a BB, (2) incorrect jumps inside the same 
BB, (3) incorrect jumps to unused memory addresses and (4) control-flow loops. It is 
important to note that PODER cannot detect errors in branch instructions, where the 
execution flow should have gone to one BB, but went another. In order to do so, it must 
be combined with the Inverted Branches software-based technique, described in Section 
4.3. 

 

The technique is divided in software-based and hardware-based sides, which 
communicate through memory writes at predefined memory addresses. In order to do 
so, PODER exploits two main concepts: 

 

• Software-based program code transformation: the original program code is 
transformed based on a set of rules and additional instructions are inserted in 
order to communicate with the hardware module. 

 

• Hardware-based non-intrusive module: an additional non-intrusive hardware 
module is added to the architecture. This module implements watchdog and 
decoder characteristics in order to analyze the processor's control-flow and 
decode instructions sent from the inserted software instructions. 

 

PODER starts by dividing the program’s execution flow into a BB graph. In a 
second step, it assigns unique BID and CFID values for each BB, according to rules 
further described. It then starts manipulating these values, during program execution, by 
storing them in a two-element queue and performing operations on them to check for 
consistency. The main advantage of PODER is that it can be easily divided in software 
and hardware, so that we can improve the fault detection and reduce the overheads in 
memory usage and performance degradation. 

 

The  innovation  of  this  approach  relies  on  the  use  of  a  signature  mechanism 
technique that works in tandem with a hardware module to be able to detect all upsets 
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that affect the control flow. In the following, we describe in detail how these two 
concepts work. 

 
4.4.1 Software-based Side 

 

The software-based side of PODER relies on adding extra instructions into the 
original program code.  So it can send data to the hardware-module and, by doing so, 
controlling it. From the four types of control flow errors that PODER aims at, the 
software-base side is responsible for protecting the system against incorrect jumps to 
the same BB (1) and incorrect jumps to the beginning of a BB (2). 

 

Figure 4.4 shows seven instructions divided into four BBs. Case (1) happens when a 
jump occurs with destination address as the first instruction of a BB (addresses 0, 3, 4, 
7). Case (2) happens when a jump originates and has as destination address the same 
BB (addresses 0 to 2, 1 to 2, 7 to 7, for example). 

 
 

Address BB - Instruction type 

0 BB1 - First instruction 
 

 
BB1 - Instruction 

 

 
BB1 - Last instruction 

1 

2 

3 BB2 - Instruction 

4 BB3 - First instruction 
 
 
BB3 - Last instruction 5 

 

6 
 

Branch instruction 
 

7 
 

BB4 - Normal instruction 

 
Figure 4.4: Examples of Incorrect jumps to the same BB (1) and to the beginning of a 

BB (2). 
 

The queue management as well as the operations performed on top of BID and 
CFID values require a huge amount of computational time, which would lead to 
increased performance degradation. In order to reduce drawback, PODER migrates as 
much of the computation as possible to the hardware module, being responsible only for 
controlling the module. It is important to note that all the program transformation 
happens during compilation time, and not at runtime. In the following, we describe in 
detail how PODER detects errors (1) and (2). 

 
4.4.1.1 Jumps to the Beginning of a Basic Block 

 

A jump to the beginning of a basic block is a real problem because of the fact that 
the initialization of a BB usually contains extra instructions for control flow error 
detection. In some cases, the first instruction of a BB resets the control flow assertion, 
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which can lead to undetected errors. Because of that, the detection of control flow errors 
to the beginning of a BB is mandatory. 

 

The first step to protect the system against jumps to the beginning of a BB is to 
analyze the program’s execution flow and extract a graph containing all the BB and 
their transitions. By doing so, we have access to the number of BB in the program code 
and their sources and destinations BBs. On a second step, every BB is assigned with 
two identifiers: a BID and a CFID. The BID represents each BB with a unique prime 
number, while the CFID represents the control flow, by storing the multiplication 
product of its destinations’ BBs. 

 

The fact that each BID is a unique prime number combined with the fact that the 
CFID is the multiplication of the destination BBs’ BIDS, gives PODER an interesting 
characteristic: the operation rest of division of the dequeued CFID by the destination 
BB’s BID always returns zero. When the value is different than zero, some control flow 
error happened, causing an incorrect transition in the program’s execution flow. 

 

In order to improve the detection, CFIDs are stored in a two-element queue, 
initialized with the first BB’s CFID. When the program flow enters a BB, its CFID is 
stored in the queue. When it exits a BB, the first CFID is removed from the queue and 
divided by the BID. Errors are detected when one of these situations occur: 

 

• The remainder of the division is not zero; 
 

• The queue overflows; 
 

• The queue underflows. 
 

Four BB are presented in Figure 4.5, that shows an example of a BB graph. BB A is 
the starting BB and therefore receives the BID value 3. BBs B, C and D receive the 
following prime numbers as BID. A has as destination BBs B and C. By multiplying 
B’s BID value per C’s BID value, we get A’s CFID, which is 35. The same applies to 
the CFID value of BBs B and C. D does not have a CFID value, since it is the execution 
flow ends in in. When transitioning from B to A, PODER will divide 35 (A’s CFID, 
stored in the two-element queue) by 5 (B’s BID) and the rest of division will be 0, 
stating that a correct transition was performed. An incorrect transition from A to D 
would result in the division of 35 (stored in the queue during A’s execution) by 11 (D’s 
BID) and the rest of division would be 2, which differs from 0, therefore detecting an 
error. 
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Figure 4.5: PODER technique’s BB graph. 
 

As mentioned before, the queue management is a heavy task to be performed purely 
in software and would result in huge memory and performance losses. Therefore, the 
instructions added to the original program code only control the hardware module, 
pushing the computation to the hardware module. By doing so, it performs the queue 
management when informing CFID and BID values through store instructions. 

 
4.4.1.2 Jumps to the Same Basic Block 

 

An incorrect jump to the same BB is an issue that cannot be solved purely by 
software-based techniques. The main problem is that the granularity required for that is 
at instruction level, while jumps to different BB require BB granularity. In order to 
detect errors inside the same BB, software-based technique would have to duplicate 
every  instruction,  which  would  lead  to  huge  performance  loss.  From  the  related 
software-based techniques, none could detect such kind of error. 

 

In order to detect such errors, PODER uses the communication between software- 
based techniques and hardware-based techniques. It does so by calculating a second 
signature for each BB, called XOR, during compilation time (by the software-based 
techniques), and during runtime (by the hardware module). The XOR value equals to 
the result of the operation eXclusive OR (XOR) between all the instructions from the 
BB. 

 

XOR values are pre-computed by the compiler during the compilation phase and 
sent to the hardware module during runtime. The compiler adds additional instructions 
to send a reset value to the hardware module when the execution flow enters a BB and 
the calculated XOR value when the execution flow exits a BB. This is done by 
performing store instruction at predefined memory addresses. 

 

By doing so, the hardware module receives a flag (when the execution flow enters a 
BB) to start calculating the XOR value at runtime and a check flag with the compiler- 
phase-computed XOR (when the execution flow exits a BB) to compare its calculated 
value with the one sent from the program code. When a mismatch is found, an error is 
notified. 
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4.4.2 Hardware-based Side 
 

PODER’s hardware-based side aims at complementing the software-based side in 
detecting incorrect jumps to the beginning of a BB (1) and incorrect jumps to the same 
BB (2), but also detecting incorrect jumps to unused memory addresses (3) and control 
flow loops (4). 

 

Figure 4.6 shows ten instructions divided into 4 BBs. Case (3) happens when a jump 
occurs with destination address as the unused memory space (between addresses 8 an 
the end of the memory). Case (4) happens when a jump originates and has as destination 
address the same memory address (addresses 0 to 0, 1 to 1, 7 to 7, for example). 

 
 
 
 
 
 
 
 
 
 
 
 

Address BB - Instruction type 

0 BB1 - First instruction 
 
BB1 - Instruction 

 
BB1 - Last instruction 

1 

2 

3 BB2 - Instruction 

4 BB3 - First instruction 
 
BB3 - Last instruction 5 

 

6 
 

Branch instruction 
 

7 
 

BB4 - Normal instruction 

 
8-end of 
memory 

 
 

Unused memory space 

 
Figure 4.6: Incorrect jumps to unused memory addresses (3) and control flow loops (4). 

 

As mentioned before, the hardware module implements a two-element queue and its 
management circuit, and a rest of division operator to detect incorrect jumps to the 
beginning of a BB (1). To detect incorrect jumps to the same BB (2), it implements a 
XOR operator and registers. Also, it implements a small decoding unit, so that it can 
decode store instructions coming from the software-based side at given memory 
addresses. In order to have access to the instructions between the processor and the 
program memory, the hardware module sits between the memory buses, so that it can 
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read the data and address being exchanged. The overall architecture can be seen in 
Figure 4.7. 

 

 
 

Figure 4.7: PODER technique’s system architecture. 
 

To detect incorrect jumps to unused memory addresses (3), the hardware module 
receives information of the memory area used by the program code (both program and 
data). When the processor tries to access an address that is out of range, an error is 
flagged. 

 

The last kind of detection is control flow loops (4). In order to detect this kind of 
error, a watchdog timer is implemented. The counter is reset every time the execution 
flow enters a BB, with the “reset XOR” instruction, from subsection 4.4.1.2. When the 
counter overflows, an error is flagged. By doing so, the hardware module can detect a 
control flow loop that causes the execution flow to be stuck at a single instruction. 

 

Although PODER can theoretically detect all control flow errors, it has two 
drawbacks. The first one is related to the BID and CFID values. Prime numbers increase 
at a fast pace, meaning that there is a limited quantity of BIDs that can fit in one 32-bit 
register. A bigger issue is that the CIFD value equals to the multiplication of BID 
numbers. If BIDs have a limited quantity, CFID soon reaches the 32-bit limit. When it 
happens, two registers must be used, increasing the complexity of the technique, as well 
as the performance degradation and memory usage. 

 

The second drawback is that the hardware module has to have access to the memory 
buses.  The  buses  used  by  some  processors  which  use  on-chip  embedded  cache 
memories may not be accessible by the hardware module. In such cases, PODER cannot 
be used. 

 
4.4.3 Implementation Details 

 

PODER is composed of two separated implementations: the software transformation 
implementation and the hardware module implementation. Both will be described in 
detail in the following. 

 
4.4.3.1PODER’s Software Transformation Implementation 

 

The software transformation is responsible for implementing in the program code 
the operations required for detecting jumps to the beginning of a BB and for detecting 
jumps to the same BB. The first one can be seen at the two-element queue management, 
while the second can be seen as the XOR value calculation management. 

 

In order to do the first, PODER has to implement three operations: (1) to send to 
hardware module the BID value of the BB being executed, (2) to store the CFID of the 
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current BB being executed in the two-element queue, and (3) to load the older CFID 
from the two-element queue and compare it with its BID value, previously sent by 
operation 1. Operation 1 and 2 must be performed in the beginning of the BB execution, 
while operation 3 has to be performed when exiting the BB. 

 

The transformation follows two rules: 
 

• A  "send  BID"  and  a  "enqueue  CFID"  instructions  are  inserted  at  the 
beginning of each BB; 

 

• A "dequeue CFID" is inserted at the end of each BB. 
 

Figure 4.8 shows an example of the code transformation required to apply these 
three operations. It shows two BBs, from instructions 2 to 5 and 6 to 10. One the left 
column, one can see the original program code, while the right column shows the result 
of the transformation. Operation 1, or “send BID”, can be seen in the beginning of both 
BBs, represented by instructions 2 and 6. It is followed by operation (2), or “enqueue 
CFID”, represented by instructions 3 and 7. Operation 3, or “dequeue CFID”, can be 
seen in the end of both basic blocks. When comparing to the original program code, one 
can see that operation 1 and 2 are applied before the execution of the original 
instructions, while instruction 3 is inserted after. 

 
 

Original Code Hardened Code 

1: beq r1, r2, 8 1: beq r1, r2, 6 
 
 
 
 
4: add r2, r3, 1 

2: send BID 
 

3: enqueue CFID 
 

4: add r2, r3, 1 
 

5: dequeue CFID 
 
 
 
 
8: add r2, r3, 4 

 

9: st [r1], r2 

6: send BID 
 

7: enqueue CFID 
 

8: add r2, r3, 4 
 

9: st [r1], r2 
 

10: dequeue CFID 

11: jmp end 11: jmp end 
 

Figure 4.8: PODER technique transformation for queue management. 
 

Operations “send BID” and “enqueue CFID” are implemented in assembly, by 
storing the BID or CFID value at given predefined memory addresses. By doing so, the 
hardware module can decode the store instruction and read the values from the memory 
buses. The operation “dequeue CFID” does not have to send any data and therefore is 
performed by a store instruction with an unknown value to a given predefined memory 
address. 

 

The XOR value management also requires transformations in the program code. In 
order to do that, PODER implements another two operations, which are: (4) to reset the 
XOR value in the hardware module, and (5) to check a given XOR value with the 
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calculated by the hardware module. Operation 4 has to be performed in the beginning of 
the BB, like operations 1 and 2, while operation 5 has to be performed in the end of the 
BB, like operation 3. 

 

The transformation follows two rules: 
 

• A "reset XOR" is inserted at the beginning of each BB; 
 

• A "check XOR" is inserted at the end of each BB. 
 

Figure 4.9 shows the same example from Figure 4.8 applied to operations 4 and 5. 
Operation 4, or “reset XOR”, can be seen in the beginning of both BB, represented by 
instructions 2 and 5, while operation 5, or “check XOR”, can be seen in the end of both 
BB, by instructions 4 and 8. 

 
 
 
 
 
 

Original Code Hardened Code 

1: beq r1, r2, 6 1: beq r1, r2, 5 
 
 
3: add r2, r3, 1 

2: reset XOR 
 

3: add r2, r3, 4 
 

4: check XOR 

 
 
6: add r2, r3, 4 

 

7: st [r1], r2 

5: reset XOR 
 

6: add r2, r3, 4 
 

7: st [r1], r2 
 

8: check XOR 

11: jmp end 9: jmp end 
 

Figure 4.9: PODER technique transformation for XOR value. 
 

Both operations are implemented by using store instruction at predefined memory 
addresses. The only difference between them is that “check XOR” has to send a value to 
the hardware module, so that it can compare to its calculated one, while “reset XOR” is 
a simple store instruction with an unknown value. 

 
 

Original Code Hardened Code 

1: beq r1, r2, 8 1: beq r1, r2, 6 
 
 
 
 
4: add r2, r3, 1 

2: reset XOR/send BID 
 

3: enqueue CFID 
 

4: add r2, r3, 1 
 

5: check XOR/dequeue CFID 
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8: add r2, r3, 4 

 

9: st [r1], r2 

6: reset XOR/send BID 
 

7: enqueue CFID 
 

8: add r2, r3, 4 
 

9: st [r1], r2 
 

10: check XOR/dequeue CFID 

11: jmp end 11: jmp end 
 

Figure 4.10: PODER technique transformation after optimization. 
 

When combining all operations, one can notice that instructions 1, 2 and 4 are 
performed in the beginning of the BB, while instruction 3 and 5 are inserted in the end 
of the BB. In order to optimize the technique, we combine a few instructions. The 
bottleneck in implementing these operations lays in the value that have to be sent to the 
hardware module, since only one value can be sent per instruction. The “reset XOR” 
does not have to send any data and therefore can be combined with “send BID” or 
“enqueue CFID”. The same applies to “dequeue CFID”, which can be combined with 
“check XOR”. The result of both techniques applied to the same example code can be 
seen in Figure 4.10. 

 

As case-study applications, we chose two algorithms: matrix multiplication and 
bubble sort. The first application is data flow oriented, while the second is control flow 
oriented. We transformed the code using the HPCT by using as inputs the original 
program   code,   the   ISA   definition   and   a   file   describing   the   microprocessor’s 
architecture. Using these inputs, the HPC-Translator was able to generate a hardened 
program code. 

 

Tables 4.3 and 4.4 show the original and modified program’s execution time, code 
size and data size for the matrix multiplication and bubble sort algorithms, respectively. 
They  present  results  for  the  original  unhardened  program,  as  well  as  the  version 
hardened with PODER and hardened with PODER combined with Inverted Branches 
and Variables software-based techniques (Combined Techniques). 

 

As one can see, PODER’s execution time varies from 1.33, when applied to the 
matrix multiplication, to 1.61, when applied to the bubble sort, times the original 
unhardened program code. 

 
Table 4.3: Characteristics for the PODER program transformation to the matrix 

multiplication 
 

 Original 
Unhardened 

 

PODER Technique 
 

Combined Techniques 

Execution Time (μs) 1,257 1,670 (1.33×) 2,943 (2.34×) 

Code Size (bytes) 1,548 3,372 (2.18×) 5,576 (3.60×) 

Data Size (bytes) 524 528 (–) 1052 (2.00×) 
 
 

Table 4.4: Characteristics for the PODER program transformation to the bubble sort 
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 Original 
Unhardened 

 

PODER Technique 
 

Combined Techniques 

Execution Time (μs) 233 374 (1.61×) 588 (2.52×) 

Code Size (bytes) 1,212 2,440 (2.01×) 3,960 (3.27×) 

Data Size (bytes) 120 124 (–) 244 (2.00×) 
 
 

4.4.3.2 Hardware Module Implementation 
 

The hardware module was implemented in VHDL language based on a timer that 
signals an error if not reset after a given number of clocks. Its enhancement was 
performed by adding a 16-bit register to store the real-time calculated XOR value, a 64- 
bit register to store the 2-element queue, a rest of division module (which is as big as a 
divider) and a simple decoder module. 

 

The decoder module reads the data and address buses between the processor and the 
memory looking for store instruction in the program memory area. Whenever a store 
instruction is found, it reads the address bus to check which address the processor is 
accessing, in order to decode the instruction from the software-based side, and reads the 
data  bus  to  read  the  value  being  sent.  It  then  manages  to  perform  the  operation 
requested from the software-based side, such as a “reset XOR/send BID” or a “check 
XOR/dequeue CFID”. 

 

Table 4.5 shows the size and performance of the implemented microprocessor and 
the hardware module. The hardware module implementation has a total of 128 registers. 
It was not protected against SEEs because of the fact that the worst case scenario is a 
incorrect fault detection, which would not compromise the system. The implemented 
hardware module occupies 15% of the total area of the miniMIPS microprocessor, while 
maintaining the same operating frequency. It is important to note that the hardware 
module has a fixed size, independent of the processor being used. That means that a 
bigger processor would lead to a smaller hardware module percentage, when compared 
to the processor. 

 
Table 4.5: Area and performance of miniMIPS and the hardware module used by 

PODER technique synthesized in 0.18µ CMOS process technology 
 

Source miniMIPS Hardware Module 

Area (µm) 24,261.32 3,640.21 

Frequency (MHz) 66.7 66.7 
 

4.5  On-line Control Flow Checker Module (OCFCM) 
 

The On-line Control Flow Checker Module (OCFCM) technique was based on 
checkers, watchdog processors and on the reconfigurability offered by modern FPGAs. 
It addresses reconfigurable systems with hardcore processors, such as FPGAs with 
embedded processors (for example, the Virtex an Excalibur families, from Xilinx and 
Altera, respectively) or closed IP processors, such as the Microblaze. It can also be 
applied to ASICs, but with a few restrictions. 
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This  technique  improves  PODER  because  it  can  detect  all  errors  detected  by 
PODER (incorrect jumps to the beginning of a BB, incorrect jumps inside the same BB, 
incorrect jumps to unused memory addresses and control-flow loops) only by using a 
non-intrusive hardware module. The main drawback is that it is application-specific and 
therefore is not as simple to be applied to  a General Purpose Processor (GPP)  as 
PODER. 

 

OCFCM itself is defined as a non-intrusive hardware module and therefore could be 
considered a pure hardware-based technique. Instead, OCFCM alone cannot achieve its 
main objective, which is detecting control flow errors. To do so, it has to be 
complemented by the Inverted Branches software-based technique (described in Section 
4.3) and  configured  by the application  running in  the processor.  Because of these 
characteristics, it is considered as a hybrid fault tolerant technique. 

 

The technique has a clearer division between software and hardware than PODER, 
since the communication between them is very restricted. The division follows two 
main concepts: 

 

• Software-based  program  code  transformation:  is  used  to  configure  the 
OCFCMs and perform small transformations in the program code, if 
necessary. Also, other software-based techniques are used to complement 
OCFCM’s detection capabilities. 

 

• Hardware-based non-intrusive module: an additional non-intrusive hardware 
module is added to the architecture. This module implements watchdog and 
decoder characteristics in order to analyze the processor's control-flow and 
decode instructions sent from the inserted software instructions. 

 

OCFCM starts by analyzing the application’s program code and extracting all the 
branch instructions and their addresses. By doing so, it creates an application-specific 
hardware module containing all the branch addresses and a decoder that can extract 
from these instructions the destination addresses. Then, during runtime, OCFCM can 
check the addresses that the processor is accessing and perform checks on the program’s 
execution flow. Its main advantages are that it can be automatically generated during 
compilation time at small costs of area and performance degradation. 

 

Its main drawback is that each application running on the processor requires its own 
OCFCM. It means that a GPP running ten different applications also requires ten 
OCFCMs. In order to decrease the area required to implement all the OCFCMs, we use 
partial reconfigurability, so that the system stores only the bitstream of each module and 
reprograms it on the FPGA’s logic according to the running application. It is also 
possible to keep programmed on the FPGA a set of OCFCMs, switching between them 
by using software-based techniques. Since ASICS do not have reconfigurable logic, 
they must implement all possible OCFCMs from the start, which may lead to a huge 
drawback when considering such approach. 

 

The innovation of this approach relies on the use reconfigurability and software- 
based techniques to use different application-specific non-intrusive hardware modules 
to detect all upsets that affect the control flow. In the following, we describe in detail 
how the technique works. 

 
4.5.1 Hardware-based Side 

 

OCFCM’s hardware-based side aims at detecting faults that cause incorrect 
deviations in the execution program’s flow. In order to do that, the hardware module 
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combines most of the non-intrusive hardware-based techniques, such as checking if the 
processor is accessing correct memory areas for data and program, the consistency of 
some variables, control flow checkpoints and also the PC evolution during runtime. 

 

OCFCM is capable of doing that by storing some application oriented information. 
It  sits  between  the  processor  and  its  memory.  The  hardware  module,  just  likes 
PODER’s, monitors the address and data buses between the microprocessor and its 
memory. OCFCM checks the memory accesses, branches and control flow checkpoints 
performed by the microprocessor. Figure 4.11 shows a set of OCFCM implemented to a 
processor system. 

 

 
 

Figure 4.11: OCFCM’s system architecture. 
 

As  mentioned  before,   OCFCM  is  an   application  specific  module  and  has 
information about the portion of memory that the application is allowed to access. By 
doing so, it is capable of detecting incorrect memory accesses, both for data and 
instructions. Some variables, such as the PC and the SP are also checked through the 
data and address buses during runtime. 

 

By checking the PC evolution during runtime and the number of clock cycles spent 
on a single instruction, OCFCM can detect if the software execution is stuck at the same 
memory address. Such detection is very important in processor-based systems, because 
software-based techniques cannot achieve such detection (in order to detect errors, 
redundant instructions must be executed, and a loop may hold the microprocessor in a 
single instruction). 

 

In addition to these fault detection capabilities, OCFCM has the ability to check 
branch instructions during runtime and verify if they performed a correct branch in the 
program flow.   To do so, OCFCM checks the PC evolution through the address bus. 
The program executes the instruction stored in program memory sequentially until a 
branch instruction is found. When performing a branch instruction, a new path becomes 
possible, other than the normal sequential execution. In this case, the OCFCM decodes 
the new possible path and checks if the microprocessor is still following the program 
graph. It is important to mention that the OCFCM can only check branch instructions 
with fixed target addresses. Branch instructions with dynamic addresses (Jump to 
Register, for example) must be replaced by branch instructions with fixed addresses 
(Jump to Address, for example). 

 

In order to detect an inconsistency in the program flow, the instructions fetched by 
the microprocessor must also be fetched and decoded by the hardware module, to 
identify   branch   instructions   and   locate   their   destination   address.   Instead   of 
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implementing a full generic decoder, the proposed hardware module, implements a 
reduced decoder composed of a list of physical memory positions of all the branch 
instructions in the program. The decoder can be automatically generated during 
compilation time and allows the OCFCM to calculate each instruction’s consistent 
destination address based only on the address and the data buses. This leads to a 
significant area reduction, as well as the maintenance of the original processor’s timing 
characteristics, such as the clock frequency. 

 

In order to adapt the proposed technique to general-purpose microprocessors, 
reconfiguration must be used, so that the system can reconfigure the same area with 
different modules, each one specifically designed for each application. Depending on 
the area available on chip, designers may build more than one module on the FPGA. In 
this case, the system can have a set of pre-defined OCFCMs, which can be switched 
between different programs without affecting the overall final computation time. 

 

OCFCM is expected to detect control flow faults that either causing the PC to freeze 
at  the  same  memory  address  (through  the  watchdog)  or  the  ones  that  break  the 
sequential evolution of the PC with an inconsistent destination address. Unfortunately, 
these two cases do not comprehend all types of control flow errors. An incorrect 
decision,  whether  to  take  or  not  the  branch,  cannot  be  detected  by  the  module. 
Therefore, a software-based side is required, with the Inverted Branches technique. 

 

One drawback of OCFCM is that, like PODER, it has to have access to the memory 
buses.  The  buses  used  by  some  processors  which  use  on-chip  embedded  cache 
memories may not be accessible by the hardware module.  In such cases,  OCFCM 
cannot be used. 

 
4.5.2   Software-based Side 

 

The software-based side on OCFCM is responsible for choosing which module will 
be active (when using a group of OCFCM) and performing the transformation on the 
software that implements the Inverted Branches software-based technique. It also has to 
guarantee  that  the  program  code  does  not  use  jumps  with  dynamic  destination 
addresses. In such cases, a transformation must be performed to convert them into jump 
with static destination addresses. These characteristics are mandatory for achieving 
better performances and higher fault detection rates. 

 

The first task is performed by predefining the memory address. Whenever an 
application starts, it writes in a given memory address the identifier of the OCFCM 
module to run. The active OCFCM modules decode that store instruction and put 
themselves on hold (if the value does not match their value) or start operating (when the 
value matches). The Inverted Branches transformation is described in Section 4.3. 

 

The replacement of dynamic address branches per static address branches has to be 
performed by analyzing the program code and calculating the fixed address behind the 
register used as target. In most cases, the compiler loads a value to a given register and 
then  performs  the  dynamic  jump.  In  such  cases,  it  is  possible  to  replace  both 
instructions by a fixed address branch, like Jump to Address, where the address is the 
one calculated by the transformation tool. When the destination address does not fit the 
instruction, two or more jumps can be performed. In cases where the target register 
value is unknown, the replacement is not possible and the technique will not be able to 
protect the instruction. 
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4.5.3 Implementation 
 

The OCFCM implementation can be done automatically during compilation time. It 
inputs a C code, which is compiled into an architecture-dependent machine code file 
and submitted to HPC-Translator, which then generates a hardened program code (to be 
executed by the processor) and a Verilog file describing the customized hardware 
module. The Verilog description is then synthesized to generate the final FPGA 
configuration bitstream. The complete program transformation and hardware module 
generation flow is shown in Figure 4.12. 

 

 
 

Figure 4.12: Automatic hardware generation flow. 
 

In order to generate the OCFCMs, we input HPCT with each case-study application 
and receive as output a Verilog description of the hardware module. The Verilog 
description mainly consists of a list of every branch instruction address in the code, 
application definitions (such as which memory area is allowed for data and program 
access) and some processor definitions (such as the maximum number of clock cycles 
allowed to execute the same instruction). 

 

In order to evaluate both the effectiveness and the feasibility of the presented 
approach, a benchmark consisting of six applications was created. As case-studies 
applications, we chose the following six applications: a 6x6 matrix multiplication, a 
bubble sort, a Dijkstra, a short encryption, a run length encoding and a bit count. The 
matrix multiplication requires a large amount of data processing with only a few loops 
and therefore uses mostly the datapath from the microprocessor. The bubble sort 
algorithm, on the other hand, has a large amount of loops and branch instructions and 
therefore uses mostly the controlpath. The Dijkstra algorithm is able to find the shortest 
distance between two nodes in a network and therefore is used in communication of 
systems on chip. The run length encoding and the short encryption are algorithms 
normally used in satellites in order to reduce the size of transmitted data by compressing 
it and to secure the communication by encrypting the transmitted data, respectively. The 
bit count is a small application that counts the number of bits set to ‘1’ in a configurable 
fixed loop. 
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OCFCM’s  were  generated  for  both  an  SRAM-based  FPGA  and  a  Flash-based 
FPGA, considering all six case-study applications. The area required for each of them is 
presented in Table 4.6, represented by the number of Look-Up Tables (LUTs) and Flip- 
Flops (FFs) for SRAM-based FPGAs and VersaTiles for Flash-based FPGAs. The area 
required for the modules is up 240 LUTs and 33 FFs, or 7.8% of the miniMIPS 
implemented in the SRAM-based FPGA board, and up to 528 VersaTiles, or 2.9% of 
minimIPS implemented in the flash-based FPGA board. 

 
 
 

Table 4.6: OCFCM technique area results  for a set of applications and the percentage 
of the area compared to the miniMIPS microprocessor synthesized into FPGA 

 

 SRAM-based FPGA 
 

(Virtex 4 xc4vlx80-12ff1148) 
Flash-based FPGA 

 

(ProAsic3 1500) 

OCFCMs LUTs FFs VersaTiles 

Matrix 
Multiplication 

 

200 (6.5%) 
 

33 (2.2%) 
 

349 (1.9%) 

Bubble Sort 213 (6.9%) 33 (2.2%) 516 (2.9%) 

Bit Count 192 (6.2%) 33 (2.2%) 331 (1.8%) 

Dijkstra 216 (7.1%) 33 (2.2%) 424 (2.4%) 

Encryption 197 (6.4%) 33 (2.2%) 340 (1.9%) 

Encoding 240 (7.8%) 33 (2.2%) 528 (2.9%) 
 
 

Table 4.7 compares the size of the OCFCM modules to the size of the miniMIPS 
microprocessor. It is important to notice that each OCFCM depends only on the 
application and the microprocessor’s Instruction Set Architecture (ISA) and therefore is 
microprocessor  independent.  It  means  that  more  complex  microprocessors  would 
require the same resource usage for each OCFCM and therefore a smaller percentage of 
its total area. 

 

Considering the possibility to dynamically reprogram the SRAM-based FPGA, we 
also verified the reconfiguration time required for each module, by loading the partial 
bitstream from the external memory and writing it into the ICAP port. The time 
consumed to reconfigure the modules was measured by software, using the XTime.h 
library, based on a Virtex-II Pro (2vp30ff896-7) platform. In the case of the ProASIC3 
FPGA, there is no partial reconfiguration, so the entire system must be reconfigured in 
the FPGA. 

 
Table 4.7: Partial reconfiguration time for SRAM-based FPGA (Virtex 4 xc4vlx80- 

12ff1148) 
 

 
Source 

 
Reconfiguration Time (ms) 

Full FPGA (2vp30ff896-7) 960.0 

Matrix Multiplication 8.5 
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Bubble Sort 9.0 

Bit Count 8.1 

Dijkstra 9.2 

Encryption 8.3 

Encoding 9.9 
 
 

As shown in Table 4.7, the time required to partially reprogram an OCFCM on a 
SRAM-based FPGA varied from 8.1ms to 9.9ms. This value is directly proportional to 
the size of each OCFCM. The reconfiguration is only necessary when the module is not 
implemented on the board, meaning that it is not required when using the architecture 
shown in Figure 4.11. 

 
 
4.6  Hybrid Error-detection Technique using Assertions 

 

Hybrid Error-detection Technique using Assertions (HETA) is the third and final 
hybrid technique presented in this thesis. It was based in CEDA and its ability to 
efficiently detect control flow errors between different BBs, and PODER and its ability 
to detect control flow errors inside the same BB. HETA is aimed at both FPGAs and 
ASICs, since it implements a non-intrusive hardware module combined with 
transformation rules on the program code. 

 

As mentioned before, PODER has as main drawbacks scalability issues, since the 
prime numbers combined with CFID grow at a fast pace, and performance and area 
overheads. CEDA, on the other hand, is scalable (at a given point it starts losing fault 
detection capabilities due to signature aliasing) and offers low performance degradation, 
but cannot achieve full fault detection against transient errors. HETA improves both 
techniques, by offering higher fault detection rates than CEDA, scalability (at a given 
point it also starts having aliasing issues) and small performance and area overhead. 

 

Like PODER, HETA combines hardware- software-based techniques into a hybrid 
technique. Its main objective is to protect the system against control flow errors, which 
comprises: (1) incorrect jumps to the beginning of a BB, (2) incorrect jumps inside the 
same BB, (3) incorrect jumps to unused memory addresses and (4) control-flow loops. 
It is important to note that HETA, just like PODER and OCFCM, cannot detect errors in 
branch instructions, where the execution flow should have gone to one BB, but went 
another. In order to do so, it must be combined with the Inverted Branches software- 
based technique, described in Section 4.3. 

 

The technique is divided in software-based and hardware-based sides, which 
communicate through memory writes at predefined memory addresses. HETA divides 
the computational load by exploiting two main concepts: 

 

• Software-based program code transformation: the original program code is 
transformed based on a set of rules and additional instructions are inserted in 
order to communicate with the hardware module. 

 

• Hardware-based non-intrusive module: an additional non-intrusive hardware 
module is added to the architecture. This module implements watchdog and 
decoder characteristics in order to analyze the processor's control-flow and 
decode instructions sent from the inserted software instructions. 
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The main idea behind HETA is to compute the same signature during compilation 
time, by the compiler, and during runtime, by the hardware module. By doing so, it is 
possible to compare the resulting signatures and detect errors in the control flow. The 
calculation during compilation time does not lead to performance or memory overheads 
and is inexpensive, since it can be done automatically. By performing the comparison in 
the hardware module, the overheads in performance are reduced, when comparing to 
software-based techniques, leaving only a few extra instruction in the program code to 
control the hardware module. 

 

HETA  divides  the  program’s  execution  flow  into  a  BB  graph.  It  then  assigns 
different signatures for each BB, according to rules discussed later in this Section. It 
then stores these signatures in a global register during runtime. At given points in the 
code, the software-based side sends these values to the hardware-module that compares 
with its own calculated value. The main advantage of HETA is that it offers high fault 
detection rates at low costs on performance and area overhead. 

 

In the next subsections, the terminology used for HETA is presented, as well as the 
hardware- and software-based sides of the technique. 

 
4.6.1 Terminology 

 

In order to better explain this technique, we will first introduce some terminology. 
 

Program Graph (P): P = {V, E} is a control flow graph with a set of nodes, V = {N1, 
N2, N3, ..., Nm} and a set of directed edges, E = {e1, e2, ...., en}. 

Node (N): A sequence of instructions in a program for which execution always begins 
with the first instruction and ends with the last instruction of the sequence. There is no 
branching instruction inside the node except possibly the last instruction and there is no 
possible branching into the node except to the first instruction of the node. 

Edge: A directed edge between nodes Ni and Nj (denoted Ni → Nj) representing a 
possible execution of Nj after execution of Ni in the absence of any errors. 

Successor set (Succ): The set of all successors of N. Nj ∈ Succ(Ni) ⇐⇒ Ni → Nj ∈ E 
Predecessor set (Pred): The set of all predecessors of N. Ni ∈ Pred(Nj ) ⇐⇒ Nj ∈ succ(Ni) 
Node type (NT): A node is of type A if it has multiple predecessors and at least one 

of its predecessors has multiple successors. A node is of type X if it is not of type A. 
Signature register (S): A run-time register, which is continuously updated to monitor 

the execution of the program. 
Node Ingress Signature (NIS): The expected value of S on ingressing the node on 

correct execution of the program. 
Node Signature (NS): The expected value of S at any point within the node on 

correct execution of the program. 
Node Exit Signature (NES): The expected value of S on exiting the node on correct 

execution of the program. 
Network (Net): A network is a non-empty set of nodes such that Ni ∈ Net =⇒ (∀Nj : 

pred(Ni) ∩ pred(Nj) = φ : Nj ∈ Net), i.e., all the successors of each of the predecessors
 of Ni are also in the network, and is minimal, i.e., an empty subset of Net follows the 

above property. Each node in the program belongs to one and only one network. It can 
be seen on Figure 4.13. 

Network predecessors (Net_pred): The set network predecessors is the union of 
predecessors of all its elements. net_pred(Net)={∪pred(Ni) : Ni ∈ Net}. It can be seen
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on Figure 4.13. 
Related signature set (A_sig): This set is the union of NES of all the nodes in the 

network predecessors set and the NIS of all nodes of type A in the network. 
A_sig(Net) = {∪NES(Ni) : Ni ∈ net_pred(Net)}∪{∪NIS(Ni) : Ni ∈ Net NT(Ni) = A}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13: Program graph with both NT types. 
 
 
4.6.2 Software-based Side 

 

The software-based side from HETA is responsible for parsing the code and 
generating the assertions to be added to the program code. Also, it transforms the 
program code so that it keeps a global register updated with the current signature in 
effect and sends periodically the value stored in the register to the hardware module. By 
doing so, the software-based side can detect, in cooperation with the hardware module, 
all incorrect jumps to the beginning of a BB (1) and incorrect jumps inside the same BB 
(2). 

 

HETA’s software-side technique can be divided in steps that parse, analyze and add 
static instructions to the program code. The first step parses the program code and 
generates a program graph, dividing the program into nodes and edges connecting them. 
Each node represents a block of instructions that is always executed sequentially, while 
the edges are the control flow branches that interconnect them. On a second step, each 
node is analyzed and receives an NT value, according to its incoming and outgoing 
edges. The third step assigns NIS, NS and NES values to each node, according to some 
rules discussed later. In the final step, instructions are inserted into the original program 
code. 

 

In the following subsections, the overall technique will be explained, as well as the 
algorithms used to choose the signatures of the proposed technique. 

 
4.6.2.1 Description Details 

 

As mentioned before, HETA generates signatures based on a program graph 
representing the application control flow. Figure 4.13 shows the generated program 
graph and the two types of nodes (NT type A and NT type X). As one can notice, the 
nodes where NT equals to A have multiple predecessors and at least one of the 
predecessors has another successor. The node where NT equals to X has one single 
predecessor. 

 

Instructions are statically inserted into the program code to continuously update the 
value of S during runtime, as to monitor the program flow. When the program execution 
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reaches a new node, S is assigned with the node’s NIS value. During its execution, the 
node’s NS value is assigned to S. When leaving the node, S is assigned with the node’s 
NES value. NES and NIS values can detect control flow errors caused by jumps between 
different nodes (internode errors). The NS value is responsible for detecting control flow 
errors with incorrect jumps inside the same node (intranode errors). 

 

At run-time, S can be updated up to three times in each node transition. It varies 
because NIS and NS, and also NES and NIS values may be the same and, therefore, not 
require an update on S. The updates on S follow the sequence: (1) NS to NES – when 
leaving a node, (2) NES to NIS – when entering a node, and (3) NIS to NS – when 
executing a node. The updates 1 and 3 (NS to NES and NIS to NS, respectively) are a 
straight transformation based on the XOR operator, performed by the following 
instruction: 

 

S = S XOR invariant (Ni) 
 

The update 2 (NES to NIS), on the other hand, depends on the NT value of the 
current node. When NT equals to A, the instruction performed is an XOR; otherwise, 
the instruction performed is an AND, according to the following rule: 

 

S = S AND invariant (Ni) if NT(Ni) = A 
 

S = S XOR invariant (Ni) if NT(Ni) = X 
 

At certain points of the code, which can be defined by the user, consistency checks 
can be added through store instructions. Such instructions store the value of S in a given 
preset memory address that can be identified by the hardware module. 

 
4.6.2.2 Signature checking algorithms 

 

This subsection explains how to assign values to the signatures NIS, NS and NES for 
each node of the program graph. 

 

In order to allow the hardware module to perform consistency checks, NS must be 
assigned with a value that can be calculated by the module. It also must be a unique 
value, preventing aliasing. Therefore, each node’s NS is set with the XOR of all its 
instructions plus the memory address of its first instruction. Depending on the 
microprocessor’s architecture, only a set of the instructions can be used to generate the 
NS value, in order to avoid aliasing. As an example, only the 16 less significant bits of 
the instructions can be used to generate NS. Considering that S is never reset, but always 
updated, the hardware module can also detect incorrect values affecting NIS and NES. 

 

NES and NIS values are divided in two parts, the upper half and the lower half. Each 
part is calculated differently and has a different objective. Therefore, their sizes can 
vary according to the program code requirements to avoid aliasing. 

 

The upper half is used to identify the program networks (Nets), generating an unique 
value to each Net, called A_sig(Net). That means that its minimum size, in order to 
avoid aliasing is log2(#networks) bits. Once generated, A_sig(Net) is assigned for every 
node’s NIS that belong to Net and every node’s NES that belong to network predecessor 
Net_pred. By doing so, one guarantees the detection of control flow errors between 
different networks. 

 

The lower half is used to identify the nodes inside the networks (nodes with the 
same upper half). This algorithm has to guarantee that (1) the NES value must be 
accepted by all the successor nodes and (2) an incorrect jump from a node to one of its 
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successor nodes must be detected. The algorithm to generate these values is described in 
Figure 4.14. 

 
 

01. FOR each Network Net { 
 

02. FOR each node N from Net_pred { 
 

03. FOR each node F from Net that is not successor of N { 
 

04. IF F.NIS has a bit in 1 
 

05. SET bit 1 to 0 in P.NES and in P's successor's NIS 
 

06. ELSE IF P.NES has any bit in 0 
 

07. SET bit 0 to 1 in F.NS and in F's predecessor's NES 
 

08. ELSE { 
 

09. SET a free bit position in F.NS and in its predecessor's NES to 1 
 

10. SET the same bit position in its successor's P.NES and NS to 0 
 

11. } 
 

12. } 
 

13. SET the free bit in P.NES to 1 
 

14.   } 
 

15.   FOR each node N with NT=A 
 

16. SET the fee bits from NIS to 1 
 

17.   FOR each node N with NT=X 
 

18. SET NIS to its predecessor's NES 
 

19.} 
 
 

Figure 4.14: Algorithm for the signature’s lower half. 
 

Figure 4.15 shows an example of the assignment of values to NIS, NS and NES and 
the operations involved in the signature updating. The example shows only the lower 
half of the signatures. The main idea of the technique is to allow a transition from a 
node’s NS to its successor’s NS. The transition from node A to node D, for example is 
quite easy, since NS(a), NES(a) and NIS(d) are the same. In this case, only one XOR 
operation is necessary, to transform NIS(d) into NS(d) (NS(d) = NIS(d) xor 0111). The 
transition from node B to E is a bit more complicated, since node B can also branch to 
node F. In this case, the NES(b) differs from NS(b) and NIS(e). Because of this, two 
operations are required to transform NS(b) into NES(b) (NES(b) = NS(b) xor 1101) and 
to transform NES(b) into NIS(e) (NIS(e) = NES(b) xor 1110). The most complex case is 
the transition from node B to node F, where all values are different. In this case, three 
transformations are necessary, from NS(b) to NES(b) (NES(b) = NS(b) xor 1101); from 
NES(b)  to NIS(f) (NIS(f) = NES and 1100); and NIS(f) to NS(f) (NS(f) = NIS(f) XOR 
1000). It is important to mention that the transformation NES(b) to NIS(f) has to be 
performed with an AND because node E has NT = A. 
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Figure 4.15: NIS, NS and NES signatures. 

 

Another interesting fact about the above example is the possible optimizations. If 
NS(f) was equal to NIS(f), a transformation would be removed, leading to performance 
gain and less program memory area. The same applies to NS(b) and NES(b), NS(c) and 
NES(c), NES(b) and NIS(e) and NES(b) and NIS(f). NS(d) cannot have the same value as 
NIS(d), because NS(a) already has that value, and it would lead to aliasing. 

 

It is important to note that HETA, like PODER and OCFCM, cannot detect incorrect 
but legal jumps (according to the program graph). In order to do that, the Inverted 
Branches software-based technique, described in Section 4.3 is required. Also, HETA 
may present aliasing, when the program code has many BBs. With big applications, 
some signatures may start to repeat themselves and an error may not be detected by the 
technique. 

 
4.6.3 Hardware-based Side 

 

The hardware-based side of HETA is responsible for complementing the software- 
based side in detecting incorrect jumps to the beginning of a BB (1) and incorrect jumps 
to the same BB (2), but also detecting incorrect jumps to unused memory addresses (3) 
and control flow loops (4). 

 

HETA only updates the value of the S, which means that it is never reset. By 
removing the reset present in PODER, for example, the beginning of a BB does not 
have any initialization and therefore is equal to any other instruction. Because of that, 
the checking performed by the hardware module can detect incorrect jumps to the 
beginning of a BB (1). 

 

As mentioned in the previous subsection, a BB’s value of NS equals to the XOR 
operation of all its instructions plus the memory address of its first instruction. This 
operation is very important, since the hardware module can calculate the same value, by 
XOR’ing all instruction read from the program memory by the processor. It only needs 
two flags that indicate the beginning and the end of a BB. By adding the NS value to the 
S that stores the signature values, HETA can detect incorrect jumps to the same BB (2). 

 

In order to calculate the XOR and perform the checks, HETA relies on a small 
decoder that reads data and address buses and the read/write signal between the 
microprocessor  and  the  memory  in  order  to  perform  the  instructions  sent  by  the 
software-based side. The decoder reads the buses searching for two instructions: (1) 
Reset XOR, which resets the hardware module register that store the XOR value and (2) 
Check XOR, which performs a consistency check, by verifying the value in the data bus 
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with the internal module’s registers storing the current XOR value. To perform the 
XOR instruction, the hardware module implements a simple accumulator which XORs 
itself with every new value. In order to have access to the memory buses, it sits between 
the processor and its memory. Figure 4.16 shows the overall architecture, with the 
hardware module connected to a processor. 

 

 
 

Figure 4.16: HETA’s system architecture. 
 

The watchdog characteristics allow the hardware module to detect incorrect jumps 
to unused memory addresses (3), by receiving information of the memory area used by 
the application’s program code (both program and data). When the processor tries to 
access an address that is out of range, an error is flagged. 

 

Like PODER and OCFCM, HETA can also detect control flow loops (4). In order to 
detect this kind of error, a watchdog timer is implemented. The counter is reset every 
time the software-based technique side enters a BB, by performing a Reset XOR 
instruction. When the counter overflows, an error is flagged. By doing so, the hardware 
module can detect a control flow loop that causes the execution flow to be stuck at a 
single instruction. 

 

HETA has to main drawbacks. The first one is the signature aliasing issue that may 
lead to undetected errors, when the protected application has a huge number of BBs. 
The second one is that the technique requires access to the memory buses. Processors 
with on-chip embedded cache memories may not allow access of its memory buses to 
the hardware module. In such cases, another approach should be used. 

 
4.6.4   Implementation Details 

 

The implementation of HETA consists of the hardware module implementation and 
the software transformation. We have used the miniMIPS microprocessor as platform to 
implement the technique. The following subsections describe the implementations 
required to harden two case-study applications with HETA. 

 
4.6.4.1 HETA Software Transformation 

 

The software transformation is responsible for implementing two main roles: 
updating S to NIS, NS and NES, and controlling the hardware module. The first task is 
performed by adding XOR and AND instructions to the program code, according to the 
rules described in the previous sections. The second is performed with XOR instructions 
in the beginning of BBs and store instructions to predefined memory addresses placed 
in the end of BBs. 
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When the program’s execution flow enters a BB, HETA adds a “xor S” instruction,  

 

which can be seen by the hardware module, informing it that a new BB has started. In 
order to the control the hardware module to compare its calculated signature value with 
the one calculated by the software-based side, HETA add a “store S” instruction in the 
end of a BB. By doing so, it sends S’s value to the hardware module, which then 
compares it, flagging an error if a mismatch is found. 

 

Figure 4.17 shows an example transformation performed when HETA is applied to an 
unprotected code. It presents a program code divided into two BBs, from instructions 2 
to 5 and 6 to 10 in the hardened code, where the first is of has NT type X   and the 
second has NT type A. The left column shows the original program code, while the 
right column shows the transformed hardened program code. 

To  perform  the  updates  on  S,  HETA  uses  XOR  instructions,  represented  by 
instructions 2, 5, 7 and 10, and ADD instructions, represented by instruction 7. As one 
can see, instruction 2 performs the update on S from NES to NS (since the BB is NT 
type  C,  the  NIS  equals  to  the  NS  value).  The  second  basic  block  requires  two 
instructions to update S into its NS value, represented by instruction 6 and 7. Finally, 
instructions 5 and 10 are used to update S from NS to NES and prepare them for the 
execution flow transition. 

In order to control the hardware module, HETA uses the “xor S” operations, 
represented by instructions 2 and 7, to inform that the program’s execution flow has 
entered a new BB. The “store S” operations, represented by instructions 4 and 9 are 
used to send S’s value to the hardware module, so that it can compare them. The stored 
is performed in a predefined memory address. 

 
Original Code Hardened Code 

1: beq r1, r2, 8 1: beq r1, r2, 6 
 
 
4: add r2, r3, 1 

 
 
 

NT = X 

2: xor S, constant 
 

4: add r2, r3, 1 
 

3: store S 
 

5: xor S, constant 
 
 
 
 
8: add r2, r3, 4 

 
 
 

NT = A 

6: and S, constant 
 

7: xor S, constant 
 

8: add r2, r3, 4 
 

9: store S 
 

10: xor S, invariant 

11: jmp end 11: jmp end 
 

Figure 4.17: HETA transformation. 
 

In order to evaluate both the effectiveness and the feasibility of the presented 
approaches, two applications based on two algorithms: 6x6 matrix multiplication and 
bubble sort classification were chosen to be hardened. 

One  hardened  program  for  each  case  study  was  generated  using  the  HPCT 
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implementing HETA. Tables 4.8 and 4.9 show the overhead in execution time, code  

 

size and data size for the matrix multiplication and bubble sort algorithms, respectively, 
when comparing the original unhardened program with the version hardened with only 
HETA and with HETA plus variables and inverted branches (Combined Techniques). 

As one can see, HETA’s overhead varies from 1.08 to 1.34 times the original 
execution time and has 1.5 times the original unhardened code size. When combining 
the techniques, the overhead varied from 1.43 to 1.55 times the original code. The 
observed difference is because the matrix multiplication requires a large data processing 
with only a few loops, while the bubble sort algorithm uses a large number of loops and 
branch instructions. In the code size, the overhead was 2.9 and 2.8 times the original, to 
the matrix multiplication and bubble sort algorithms, respectively. 

 
Table 4.8: Characteristics for the HETA program transformation to the matrix 

multiplication 
 

 Original 
Unhardened 

 

HETA Technique 
 

Combined Techniques 

Execution Time (μs) 1,257 1,361 (1.08×) 1,951 (1.55×) 

Code Size (bytes) 1,140 1,692 (1.48×) 3,328 (2.91×) 

Data Size (bytes) 288 292 (–) 580 (2.04×) 
 
 

Table 4.9: Characteristics for the HETA program transformation to the bubble sort 
 

 Original 
Unhardened 

 

HETA Technique 
 

Combined Techniques 

Execution Time (μs) 201 272 (1.34x) 288 (1.43×) 

Code Size (bytes) 780 1,136 (1.46x) 2,180 (2.79×) 

Data Size (bytes) 40 44 (–) 84 (2.1×) 
 
 

4.6.4.2 Hardware Module Implementation 
 

The hardware module was implemented in VHDL language, based on a timer that 
signals an error if not reset. To calculate the XOR value, we added a 16-bit accumulator 
register that performs a XOR operation between its current and new values so that it is 
not only able to calculate the real-time XOR value, but also to store it. A decoder was 
also added to identify instructions from the software-based side. 

 

The decoder module keeps reading the memory buses looking for store instruction at 
given predefined memory addresses. Whenever a store instruction is found, it reads the 
address bus to check which address the processor is accessing, in order to decode the 
instruction from the software-based side, and reads the data bus to read the value being 
sent. It then manages to perform the operation requested from the software-based side, 
such as a “xor S” or “store S”. 

 

The hardware implementation has a total of 64 flip-flops and is not protected against 
faults, since the worst case scenario is an incorrect error detection. Table 4.10 shows the 



69 

 

 

 

size and performance of the implemented microprocessor and the hardware module. As 
one can see, the hardware module has 11% of the area of the miniMIPS, while 
maintaining the same operation frequency. 

 
Table 4.10: Original and modified architecture characteristics for HETA technique 

synthesized in 0.18µ CMOS process technology 
 

Source miniMIPS Hardware Module 

Area (µm) 24,261.32 2,717.26 

Frequency (MHz) 66.7 66.7 
 
 

It is important to note that the hardware module size is fixed. When using a bigger 
processor, the hardware module should remain the same and therefore with a smaller 
percentage of the total area of the processor. The size of the miniMIPS is used only to 
contextualize the actual size of the hardware module. 
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5  SIMULATION FAULT INJECTION EXPERIMENTAL 
RESULTS 

 
 
 
 

We used the fault injector described in Azambuja (2010b) and simulated the circuits 
using different versions at ModelSim, from Mentor. 

 

The ModelSim software, from Mentor Graphics, is a simulation tool that simulates 
architectures written in Hardware Description Languages (HDL), such as VHDL and 
Verilog. It has a Graphic User Interface (GUI) for easy access as well as a console to 
run scripts with Tool Command Language (TCL). It allows read and write access to any 
logic signal describing the system during any time of the simulation. With these 
commands, it is possible to inject faults with precision higher than nanoseconds and full 
control over the simulation time. On the other hand, ModelSim does not have a fault 
injection  environment  capable  of  injecting  faults  automatically  and  collecting  the 
results. In order to do so, we used a fault injector developed by Azambuja (2010b), 
where it automatically generates TCL scripts that run on top of ModelSim. 

 

The fault injector has three files as inputs: (1) fault definition file, that contains the 
number of faults to be injected and for how long they will be active in the system, (2) 
processor definition file, that contains the operating clock frequency, the signals to be 
upset and detection capabilities, and (3) application definition file, that contains the total 
runtime of the application and the memory position where the results are stored. As 
output, the fault injector creates a single TCL file describing the fault injection and 
result collection to be executed in ModelSim. Figure 5.1 shows the fault injector's role 
in the simulation fault injection campaign. 

 

 
 

Figure 5.1: Fault injector's role. 
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The fault injector starts by generating a set of bits from the signals that describe the 
architecture (from the processor definition file) and a set of times, from the start of the 
application until its end (from the application definition file). It then combines these two 
sets  and  injects  a  fault  in  the  architecture  for  the  duration  described  in  the  fault 
definition file by using the command "force", from ModelSim. A fault is injected by 
running the application until the chosen time, performing the "force" command, and 
then running the application until the end. Figure 5.2 shows the injection of a fault in 
signal adr_reg1(3) with the duration of two time units. 

 

 
 

Figure 5.2: Fault injection example of a SET in signal add_reg1 bit 3. 
 

After each fault injection and application run, results are collected and analyzed by 
the script. As a result, we have the number of injected faults and their effect on the 
system. 

 

In the following, we describe the simulation fault injection campaign for each 
technique. 

 
 
5.1  PODER 

 

In order to start the fault injection campaign, 50 thousand faults were injected in all 
signals of the non-protected miniMIPS (including registered signals), one per program 
execution for the matrix multiplication and bubble sort applications. The SEU and SET 
types of faults were injected directly in the microprocessor VHDL code by using 
ModelSim XE/III 6.3c. SEUs were injected in registered signals, while SETs were 
injected in combinational signals, both during one and a half clock cycle. The fault 
injection campaign is performed automatically. At the end of each execution, the results 
stored in memory were compared with the expected correct values. If the results 
matched, the fault was discarded. The amount of faults masked by the program is 
application related and it should not interfere with the analysis. In the end, only faults 
not masked by the application were considered in the analysis. When 100% signal 
coverage was achieved and at least 4 faults per signal were detected we normalized the 
faults, varying from 4 to 5 faults per signal. Those faults were used to build the test case 
list. 

 

The faults were classified by their source and effect on the system. We defined four 
groups of fault sources to inject SEU and SET types of faults: datapath, controlpath, 
register bank and ALU. Program and data memories are assumed to be protected by 
EDAC and therefore faults in the memories were not injected. 

 

The fault effects were classified into two different groups: data effect and control 
effect, according to the fault effect. To sort the faults among these groups, we 
continuously compared the PC of a golden microprocessor with the PC of the faulty 
microprocessor. In case of a mismatch, the injected fault was classified as control effect. 
If the PC matched with the golden’s, the fault was classified as a data effect. 
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Table 5.1: Percentage of number of error from fault injection results for PODER fault 
tolerant technique in miniMIPS running the matrix multiplication 

 

  

 
 

Source 

 
 

Data 
Effect 

Hardened program 
version 

 
 
Control 
Effect 

Hardened program 
version 

 

PODER PODER 
Combined 

 

PODER PODER 
Combined 

 

SE
T 

Reg. Bank 9 0 100 1 0 100 

ALU 27 9 100 10 0 100 

Control 83 7 100 33 56 100 

Data 42 3 100 2 100 100 

Total 131 6 100 46 44 100 

 

SE
U

 

Reg. Bank 25 0 100 13 15 100 

ALU 4 - 100 0 - - 

Control 67 13 100 36 68 100 

Data 18 0 100 7 0 100 

Total 114 7 100 56 47 100 
 
 

Table 5.2: Percentage of number of error from fault injection results for PODER fault 
tolerant technique in miniMIPS running the bubble sort 

 

  

 
 

Source 

 
 

Data 
Effect 

Hardened program 
version 

 
 
Control 
Effect 

Hardened program 
version 

 

PODER PODER 
Combined 

 

PODER PODER 
Combined 

 

SE
T 

Reg. Bank 3 67 100 4 0 100 

ALU 7 100 100 14 14 100 

Control 22 83 100 89 42 100 

Data 14 69 100 28 0 100 

Total 46 80 100 135 29 100 

 

SE
U

 

Reg. Bank 2 0 100 33 18 100 

ALU 0 - - 0 - - 

Control 24 5 100 81 35 100 

Data 4 0 100 19 6 100 

Total 30 4 100 133 27 100 
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When transforming the program, new instructions were added and as a result the 
time in which the faults were injected changed. Since the injection time is not 
proportional to the total execution time, we mapped each fault locating the instruction 
where the fault was injected (by locating its new PC) and pipeline stage where the fault 
was manifested. Around 1% of the total number of faults could not be mapped and were 
replaced by new faults. 

 

Tables 5.1 and 5.2 present results for the fault injection in the miniMIPS running the 
matrix multiplication and the bubble sort applications, respectively. Results show that 
PODER does not have a high detection rate, when used alone (up to 80%, when 
considering SETs with data effect on the bubble sort). On the other hand, when 
combined with Variables and Inverted Branches techniques, the result was 100% fault 
detection for all cases. 

 
 
5.2  OCFCM 

 

To  test  OCFCM,  we  performed  a  fault  injection  campaign  where  faults  were 
injected in all signals of the non-protected microprocessor, one per program execution. 
The SEU and SET types of faults were injected directly in the microprocessor VHDL 
code by using ModelSim SE 6.6b. SEUs were injected in registered signals, while SETs 
were injected in combinational signals. Faults remained on the system during one and a 
half clock cycle, so that SETs would hit both rising and falling clock edges. The fault 
injection campaign was performed automatically by simulation. At the end of each 
execution,  the  results  stored  in  memory  were  compared  with  the  expected  correct 
values. 

 

The experiment continuously compared the PC of a golden microprocessor with the 
PC of the faulty microprocessor and the generated data results.  Fault injection results 
are presented in Table 5.3. It shows the number of injected faults (Faults Injected) for 
each application, the number of faults that caused an error in the microprocessor 
(Incorrect Result) and the detection rate achieved by the proposed solution (Errors 
Detected). The system was simulated with a clock period of 42ns and a total of 2459 
signals describing it. 40,000 faults represent 16 times the number of signals, but only 
0.4% of the extensive possibilities of faults for the encryption algorithm. 

 

This fault injection campaign simulates the effects of transient faults in the case- 
study system is implemented in a Flash-based FPGA, the ProASIC3 from Actel, where 
the user’s logic (VersaTiles) can be upset by SEU and SET. 

 

Table 5.3 shows a fault injection campaign of 40,000 faults for each application. 
From the total amount of faults injected, around 20% affected the system and caused an 
error in the final result. When protected by the OCFCM techniques, 100% of the faults 
were detected. In order to confirm these results, we injected more 140,000 faults in the 
PC (which is the most sensitive area of the microprocessor with respect to control-flow 
errors) of the bubble sort application, due to its low execution time and got 100% fault 
detection. These results mean that the studied hardening approach was able to fully 
protect the microprocessor system, by detecting every transient fault injected in the 
case-study applications. Aside from these results, an average of 1% faults with no errors 
per application was detected. 
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Table 5.3: Number of faults injected by simulation fault injection in miniMIPS 
protected by OCFCM and the percentage of detected errors. 

 
 

Source 
 

Faults Injected 
 
Incorrect Results 

 
Errors Detected 

Matrix Multiplication 40,000 8,021 100% 

Bubble Sort 40,000 8,746 100% 

Bit Count 40,000 8,960 100% 

Dijkstra 40,000 8,312 100% 

Encryption 40,000 8,995 100% 

Encoding 40,000 8,712 100% 
 
 
 

5.3  HETA 
 

In this fault injection campaign, we ran two case-study application 100,000 times 
each and injected one fault per execution. Faults were chosen from all signals of the 
non-protected microprocessor (including registered signals). The SEU and SET types of 
faults were injected directly in the microprocessor VHDL code by using the ModelSim 
simulator. SEUs were injected in registered signals, while SETs were injected in 
combinational signals, both during one and a half clock cycles. The fault injection 
campaign was performed automatically. At the end of each execution, the results stored 
in memory were compared with the expected correct values. 

 

The experiment continuously compared the PC of a golden miniMIPS with the PC 
of the miniMIPS under fault injection and the generated data results.  Fault injection 
results  are  presented  in  Table  5.4.  It  shows  the  number  of  injected  faults  (Faults 
Injected) for each application, the number of faults that caused an error in the 
microprocessor (Incorrect Result) and the detection rate achieved by the proposed 
solution (Errors Detected). The system was simulated with a clock period of 42ns and a 
total of 2459 signals describing it. To prove the effectiveness of the proposed technique, 
we also injected 100,000 faults in the PC for the bubble sort application. It represents 
around 21 times the total number of clock cycles that the microprocessor takes to run 
the application. The result was 100% fault detection. 

 
Table 5.4: Number of faults injected by simulation fault injection in miniMIPS 

protected by HETA and the percentage of detected errors. 
 

 
Source 

 
Faults Injected 

 
Incorrect Results 

 
Errors Detected 

Matrix Multiplication 100,000 12,246 12,246 

Bubble Sort 100,000 10,948 10,948 
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6  CONFIGURATION BITSTREAM FAULT INJECTION 
EXPERIMENTAL RESULTS 

 
 
 
 

FPGAs have their functionality defined by a large configuration memory. Faults 
affecting this memory, such as SEUs, can alter the device functionality, therefore 
changing both the function of individual components, e.g., LUTs and FFs, and the 
routing between them. The bitstream is defined as the sequence of bits that loads data 
into the configuration memory, and by changing one of its bits, we can simulate an SEU 
in the FPGA. 

 

The fault injection by configuration bitstream  allows fast injection time, as the 
Circuit Under Test (CUT) executes at the full FPGA speed, while the simulation fault 
injection runs at the simulator speed. When compared to radiation experiments, the 
amount of faults injected is much greater, as the bit flip is directly written to the 
memory cell. The controllability of the process is inferior to the simulation fault 
injection, where the designer has access to all internal signals from the implemented 
design, but superior to radiation experiments, since the exact location of each fault is 
known. 

 

In order to inject faults in the configuration bitstream, we used the fault injector 
described in Nazar (2012a). Faults were injected in the configuration bitstream for 
PODER, OCFCM, and HETA, all combined with VAR and BRA. 

 

The fault injection system was implemented on a Xilinx Virtex 5 device, part 
XC5VLX110T (XILINX, 2013a), the same device later used for radiation experiments 
with neutrons. When using the Internal Configuration Access Port (ICAP) to program 
the configuration memory, and therefore perform the fault injections, one must note not 
to harm the experiment control configuration. In order to avoid this problem, placement 
constraints were used to restrict the area occupied by the CUT. Faults were then injected 
only to the area defined as the Area Under Test (AUT), which is the area of the FPGA 
where the CUT was implemented. 

 

The configuration memory of the used Virtex 5 is divided into frames. Each frame 
contains 41 words of 32 bits each, for a total of 1312 bits. Frames are accessed by their 
individual addresses, through the Frame Address Register (FAR), and are divided into 
block type, top/bottom bit, row, major address and minor address. Each frame row 
comprises several rows of the basic FPGA components, such 20 rows of Configurable 
Logic Blocks (CLBs) and 4 block RAMs. 

 

For all techniques, we injected faults in the configuration memory in an exhaustive 
fashion, where all bits, from all frames, from the AUT have been changed, one per 
execution. By doing so, we affected CLBs, block RAMs, I/O blocks, among others. To 
do so, the frame was read using the ICAP in a burst access mode and stored in the frame 
memory.  A  single  bit  would  then  be  bit  flipped  and  rewritten  in  the  FPGA's 
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configuration memory. It is important to note that some very specific bit positions may 
lead to multiple bit errors in other frames, since LUTs may be used to implement 
components that store user data. 

 

Results are then transmitted to a PC for analysis. The connection is done using a 
serial  cable.  After  each  run,  a  signature  is  generated  from  the  implemented  fault 
tolerance techniques informing if any of the techniques detected an error and is the 
result was correct. Figure 6.1 shows the configuration bitstream fault injector system 
overview. As one can see, it is divided in the AUT with the CUT, the CUT I/O Ctrl, 
where the working, golden and init memories are located, the SEU Injector that controls 
the read/write on the ICAP and the System Control and Report Unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1: Configuration bitstream fault injector system overview (NAZAR, 2012a). 
In order to compare the results from fault bitstream fault injection with radiation 

experiments, we can take into consideration the Virtex5 static cross section per bit from 
the Xilinx Reliability Report (XILINX, 2013b) measured under neutrons at the Los 
Alamos Nuclear Science Center (LANSCE) of 6.7x10-15 cm2/bit. We can then calculate 
the dynamic cross section by multiplying the static cross section per bit by the number 
of bits that affected the design for each technique. It is important to notice, though, that 
faults are injected only in the configuration bits before running the application, leaving 
Block RAM (BRAM) memories and user flip-flops not affected. 

 

In the following, results for PODER, OCFCM, and HETA combined with VAR and 
BRA are described in detail. 

 
 
6.1  PODER 

 

In order to perform the configuration bitstream fault injection campaign, we used the 
same hardware implementation from Chapter 5, running the 6x6 matrix multiplication 
algorithm. We injected 2,944,640 faults in the AUT of the FPGA board. From those 
faults, 48,323 caused an error in the circuit's output when considering no fault tolerance 
detection. Since the fault injection was exhaustive, we can assume that, except for 
placement and routing differences, the microprocessor core has 48,323 sensitive bits, 
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which represents 1.6% of the injected faults. This represents a proportion of 61 bit-flips 
in the configuration memory bits to cause a functional error in the design. 

 

When considering the detection capabilities of PODER combined with VAR and 
BRA, we can further analyze the results from the fault injection campaign. We divided 
the faults that affected the resulting matrix of the application into three categories: 

 

1.   Detected faults: errors detected by PODER combined with VAR and BRA 
that did not affect the matrix multiplication result; 

 

2.   Detected errors: errors detected by PODER combined with VAR and BRA 
that corrupted the matrix multiplication results. In this case, the TMR also 
could detect those errors by the majority voters placed at the output. 

 

3.   Not detected errors: errors not detected by PODER combined with VAR and 
BRA. 

 

Table 6.1 summarizes the bitstream fault injection campaign. As one can see, 48,323 
errors affected the DUT, and only 808 faults (1.6%) were not detected by the proposed 
hardening approach, achieving an overall fault detection coverage of 98.4%. 

 
Table 6.1: Classification of the total 48,323 faults in the miniMIPS protected by PODER 

technique with VAR and BRA 
 

 

Classification 
 

Occurences 

Detected Faults 49 

Detected Errors 47,466 

Not Detected Errors 808 
 

 

Taking into account the static cross section per bit of 6.7x10-15  cm2/bit (XILINX, 
2013b), we can calculate the dynamic cross section by multiplying it per the number of 
sensitive bits (48,274), resulting in a dynamic cross section of 3.2 x10-10 cm2. After 
applying PODER, the number of sensitive bits drops to 808, decreasing the dynamic 
cross section to 5.4x10-12 cm2. One can notice a reduction of 59 times in the dynamic 
cross section when using PODER. 

 

Such results show that VAR and BRA combined with PODER can be used in harsh 
environments and allow designers to reach fast fault diagnosis and correction. When 
comparing to hardware-based techniques, such as TMR, we can notice an area reduction 
higher than 66% and still acceptable fault coverage of 98.3%. On the other hand, the 
hardened application takes 2.34 times the original execution time and requires 15% 
extra area for the hardware module. 

In terms of diagnosis, Table 6.2 shows the number of faults and errors in the DUT 
that were detected by the implemented techniques. PODER was the technique that 
presented the highest detection capability, with 30,336 exclusive error detections and 
42,863 errors detected only with PODER-Control. The highest number of exclusive 
errors detected was achieved by PODER-Control, showing that it is mandatory for the 
hardening techniques in order to increase the fault coverage. The Variables technique 
also showed high error detection, with 13,527 detected errors. The Inverted Branches, 
on the other hand, could not exclusively detect a single error, although it was able to 
detect 5,614 errors. 
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Table 6.2: Diagnosis of detected faults and errors for PODER with VAR and BRA 
 

 
Source 

 
Incorrect Results 

   
Errors Detected 

  

 

Flag Classification 
 

Occurrences Exclusive 
Detection 

  

Occurrences Exclusive 
Detection 

 

Variables 0   0 13,527  2,910 

Inverted Branches 0   0 5,614   0 

PODER-Control 2   0 42,863  30,249 

PODER-Data 0   0 0   0 

PODER-Timeout 49  47 7,074   87 
 
 
 

6.2  OCFCM 
 

We injected 2,944,640 faults in the AUT of the FPGA board running a 6x6 matrix 
multiplication  protected  with  OCFCM,  VAR  and  BRA.  From  those  faults,  54,024 
caused an error in the circuit's output when considering no fault tolerance detection. 
Since the fault injection was exhaustive, we can assume that, except for placement and 
routing differences, the microprocessor core has 54,024 sensitive bits, which represents 
1.8%  of  the  injected  faults.  This  represents  a  proportion  of  54  bit-flips  in  the 
configuration memory bits to cause a functional error in the design. 

 

We divided the errors in the same three categories as in Section 6.1. Table 6.3 
summarizes the bitstream fault injection campaign. As one can see, 54,024 errors 
affected the DUT, and only 1,670 faults (3.1%) were not detected by the proposed 
hardening approach, achieving an overall fault detection coverage of 96.9%. 

 
Table 6.3: Classification of the total 54,024 faults in the miniMIPS protected by 

OCFCM technique with VAR and BRA 
 

 

Classification 
 

Occurences 

Detected Faults 69 

Detected Errors 52,285 

Not Detected Errors 1,670 
 

 

Taking into account the static cross section per bit of 6.7x10-15 cm2/bit (XILINX, 2013b), 
we can calculate the dynamic cross section by multiplying it per the number of sensitive 
bits (53,955), resulting in a dynamic cross section of 3.6 x10-10 cm2. After applying 
OCFCM, the number of sensitive bits drops to 1,670, decreasing the dynamic cross 
section to 1.1x10-11 cm2. One can notice a reduction of 32 times in the dynamic cross 
section when using OCFCM. 

Such results show that software-based techniques combined with HETA can be used 
in harsh environments and allow designers to reach fast fault diagnosis and correction. 
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When comparing to hardware-based techniques, such as Xilinx Triple Modular 
Redundancy  (XTMR)  with  scrubbing,  that  require  modifications  to  the 
microprocessor’s hardware, we can notice an area reduction higher than 66% and still 
acceptable fault coverage of 96.9%. On the other hand, the hardened application takes 
1.48 times the original time to execute and 6.5% more area to implement the OCFCM 
hardware module. 

In terms of diagnosis, Table 6.4 shows the number of faults and errors in the DUT 
that were detected by the proposed technique. OCFCM was the technique that presented 
the highest  detection  capability,  with  41,671  exclusive error detections  and  48,576 
errors detected only with OCFCM-Control. The highest number of exclusive errors 
detected was achieved by OCFCM-Control, showing that it is mandatory for the 
hardening techniques in order to increase the fault coverage. The Variables technique 
also showed high error detection, with 1,809 detected errors. The Inverted Branches, on 
the other hand, could not detect a single error. 

 
Table 6.4: Diagnosis of detected faults and errors for OCFCM with VAR and BRA 

 
 

Source 
 

Incorrect Results 
   

Errors Detected 
  

 

Flag Classification 
 

Occurrences Exclusive 
Detection 

  

Occurrences Exclusive 
Detection 

 

Variables 0   0 1,809   16 

Inverted Branches 0   0 0   0 

OCFCM-Control 44   6 48,576  38,311 

OCFCM-Data 2   0 2,216  1,185 

OCFCM-Timeout 63  25 11,162  2,175 
 
 
 

6.3  HETA 
 

As for PODER and OCFCM, a total of 2,944,640 faults were injected in the AUT of 
the FPGA board. From those faults, 75,619 caused an error in the circuit's output when 
considering no fault tolerance detection. Since the fault injection was exhaustive, we 
can assume that, except for placement and routing differences, the microprocessor core 
has 75,507 sensitive bits, which represents 2.6% of the injected faults. This represents a 
proportion of 40 bit-flips in the configuration memory bits to cause a functional error in 
the design. 

 

When further analyzing the results, according to the same three categories from 
Section 6.1, one can see in Table 6.5 that 75,619 errors affected the DUT, and only 
3,247 faults (4.3%) were not detected by the proposed hardening approach, achieving an 
overall fault detection coverage of 95.7%. 
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Table 6.5: Classification of the total 75,619 faults in the miniMIPS protected by HETA 
technique with VAR and BRA 

 
 

Classification 
 

Occurences 

Detected Faults 102 

Detected Errors 72,270 

Not Detected Errors 3,247 

 
Taking into account the static cross section per bit of 6.7x10-15 cm2/bit (XILINX, 2013b), 

we can calculate the dynamic cross section by multiplying it per the number of sensitive 
bits (75,517), resulting in a dynamic cross section of 5.1x10-10 cm2. After applying 
HETA,  the number of sensitive bits  drops to 3,247,  decreasing the dynamic cross 
section to 2.1x10-11 cm2. One can notice a reduction of 24 times in the dynamic cross 
section when using HETA. 

Such results show that software-based techniques combined with HETA can be used 
in harsh environments and allow designers to reach fast fault diagnosis and correction. 
When comparing to hardware-based techniques, such as XTMR with scrubbing, that 
require modifications to the microprocessor’s hardware, we can notice an area reduction 
higher than 66% and still acceptable fault coverage of 95.7%. On the other hand, the 
hardened application takes 56% more time to execute and the hardware module requires 
extra 11.2% of area. 

 

Table 6.6: Diagnosis of detected faults and errors for HETA with VAR and BRA 
 

 
Source 

 
Incorrect Results 

   
Errors Detected 

  

 

Flag Classification 
 

Occurrences Exclusive 
Detection 

  

Occurrences Exclusive 
Detection 

 

Variables 68  63 61,913  980 

Inverted Branches 2   0 6,962   1 

HETA-Control 4   1 23,620  4475 

HETA-Data 28  26 19,657  448 

HETA-Timeout 0   0 63,131  806 

 
In terms of diagnosis, Table 6.6 shows the number of faults and errors in the DUT that 
were detected by the proposed technique. HETA was the technique that presented the 
highest detection capability, with 5,769 exclusive error detections and 63,131 errors 
detected only with HETA-Timeout. The highest number of exclusive errors detected 
was achieved by HETA-Control, showing that it is mandatory for the hardening 
techniques in order to increase the fault coverage. The Variables technique also showed 
high error detection, with 61,913 detected errors. The Inverted Branches, on the other 
hand, could exclusively detect one single error, although it theoretically complements 
HETA in control flow error detection (AZAMBUJA, 2012a) and therefore should be 
maintained in the system. 
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7  RADIATION EXPERIMENTAL RESULTS 
 
 
 
 

This chapter presents radiation experimental results performed to evaluate the 
efficiency of the proposed techniques under an accelerated particle test. We tested 
FPGAs  based  on  Flash  and  SRAM  memory,  implementing  the  miniMIPS 
microprocessor hardened with HETA, for static and dynamic test. 

 
 
7.1  MIPS in Flash-based FPGAs 

 

Flash-based FPGAs use flash memory as the configuration memory. Flash memory 
has low sensitiveness to radiation effects, because it requires a high  voltage to be 
written (change its current state), typically higher than 5V. Such voltages are rarely 
obtained with energized particles, making flash-based FPGA a good platform to test 
how an ASIC would respond to the irradiation, without taking into account SEUs in the 
configuration memory. On the other hand, the circuit responsible for pumping up the 
operation voltage to the writing voltage (5V or higher) is sensitive to radiation effects 
and therefore reconfiguration should not be done under radiation. 

 

The miniMIPS is implemented in flash-based FPGAs with two memories: program 
and data (Harvard architecture). The program memory is implemented on a flash 
memory and the data memory on SRAM blocks inside the FPGA, being sensitive to 
radiation effects. 

 

In the following, two irradiation experiments on flash-based FPGAs are described. 
 
7.1.1 TID Experiment 

 

This first experiment was performed at the Instituto de Estudos Avançados (IEAv), 
in São José dos Campos, Brazil. We built a full-embedded system implemented in a 
commercial flash-based FPGA part A3P250-PQ208 fabricated in 130-nm flash-based CMOS 
process that retains programmed design when powered off. The aim was to analyze TID 
effects in a complete embedded system and to observe in detail its response to external 
inputs. Signal degradations were also observed during the measurements, as well as 
temperature increase and power supply current (Icc). 

 

The chosen embedded system was composed of a MIPS microprocessor hardened 
with HETA, an unhardened SRAM memory embedded in the FPGA, two SpW links 
(TARRILLO, 2011) and the FPGA embedded Phase-Locked Loop (PLL) clock module. 
The system has some fault tolerant capabilities that are able to detect transient faults, 
but not necessary TID effects as radiation results will show. Figure 7.1 shows the 
architecture of the embedded system. 
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Figure 7.1: Architecture of the embedded system. 
 

The input signals for the embedded system are supplied from an on-chip 40MHz 
pulse generator, divided by the PLL module into 20MHz. This signal is then connected 
to a global clock that reaches all modules in the system. The electrical parameters of the 
output signals were observed and recorded on the scope on-beam during DUT 
irradiation. The full system has an occupation of 88% core cells, 75% ram blocks and 
70% IO cells of the FPGA. The device was irradiated with a collimated gamma-ray 
beam up to 68 krad(Si) with a dose rate of 2 krad per hour (0.555 rad/s) at room 
temperature (24.5±0,5°C) using IEAv’s Co-60 source. The chip was covered with a 
5mm layer of acrylic to reach the electronic equilibrium condition in order to calculate 
the absorbed dose in silicon from the dose in air measured with an ion chamber. 
Functional measurements were taken with a 1GHz oscilloscope and a 2GHz logical 
analyzer. The core current and noise was continuously measured with a digital 
multimeter. Figure 7.2 shows the experimental setup. The control of the entire 
experiment, including the acquisition and data storage, was performed remotely. Data 
acquisitions were carried through at each interval of 30 minutes, corresponding to a step 
of 1 krad(Si) between acquisitions, until the first functional failure at 47 krad(Si). After 
the first functional failure, data acquisitions were performed at each interval of 15 
minutes, corresponding to a 0.5 krad(Si) acquisition step. Data was stored in text 
archives for posterior analyses. 



83 

 

 

 

 
Figure 7.2: Experimental setup. 

 

Data from all signals showed in Figure 7.1 were acquired, in order to check the 
systems behavior. In a fault-free environment, the microprocessor runs accessing the 
memory through the memory signals Ram_adr, Ram_data, and Ram_RW, while the 
signal PC_mips increases itself. At the end of the program’s execution, the 
microprocessor sends the result to the SpW link through the memory data bus. The SpW 
link 1 then raises the signal SpW_Busy and starts transmitting data to link 2 through 
signal Tx1 (link 1) and Rx2 (link 2). At the end of transmission, the signal SpW_Ready 
informs that the signal SpW_Data_Out has a valid data output. While executing, signals 
Actel_Out and SpW_error_Flag inform if any error was detected in the microprocessor 
and in the SpW links, respectively. 

 

Figure 7.3 shows the activity of the observed signals (black when active), according 
to the amount of accumulated dose. By analyzing this graphic, one can deduce the 
maximum accumulated dose in which each module of the circuit stop working. At 47 
krad(Si)     the  signals  SpW_Ready,  SpW_Busy  and  SpW_Data_out  stopped  their 
activity, while the SpW_error_flag signal stopped its activity in a dose of 49 krad(Si). 
However, during all this period the SpW_error_flag was not able to signalize an error. 
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This is because the SpW error protocol was designed to detect errors such as permanent, 
intermittent and transient faults, delayed faults as observed under TID. In the case of the 
embedded SRAM memory, it is noticed that the microprocessor kept writing in the 
memory  until  47  krad(Si)    (through  signal  RAM_WR)  and  accessing  it  until  63 
krad(Si), through signals RAM_data and RAM_adr. The fault detection HW module 
worked properly until 55 krad(Si), when it stopped its activity, as one can see through 
signal Actel_out.  However, this module also was not able to detect any degradation in 
the propagation delay, as this module also is used to tolerate transient faults. The PLL 
module and the microprocessor’s PC were the last parts of the embedded system to stop 
their activities, at 65 krad(Si) through signals PLL_Out and PC_mips, respectively. 

 

 
 

Figure 7.3: Accumulated dose for each signal output. 
 

The Icc was measured during radiation. Figure 7.4 shows Icc and Temperature. As 
shown, Icc started to change after 45 krad(Si), close to the moment when some modules 
start stopping working. Note also that the current increases promptly and reaches 1.5 
times  the  original  current  just  before  65  krad(Si).  Temperature  and  current  drops 
abruptly when the majority of the modules fail around 65 krad(Si). The PLL output was 
measured in terms of frequency, duty cycle and delay compared to the board clock of 
40Mhz. Figure 7.5 show the main degradations. It important to notice that the PLL 
maintained very well the clock output frequency up to 65 krad(Si). After 65 krad(Si), 
many glitches pulses were observed in the PLL clock output. 
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Figure 7.4: Measured current and temperature. 
 

 
 
 

Figure 7.5: PLL clock output measurements: frequency, duty cycle and 
delay compared to the external 40 MHz clock. 

 
7.1.2 Neutron Experiment 

 

This experiment was performed at CCLRC Rutherford Appleton Laboratory, in 
Didcot, UK. We implemented the same embedded circuit from Section 7.1.1, shown in 
Figure 7.1: MIPS microprocessor hardened with HETA, an unhardened SRAM memory 
embedded in the FPGA, two SpW links (TARRILLO, 2011) and the FPGA embedded 
PLL clock module. The part used was also the same as the one used on the previous 
experiment: a commercial flash-based FPGA part A3P250-PQ208 fabricated in 130-nm 
flash-based CMOS process. 
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We irradiated the device with a fluence of approximately 1.5•1010  n/(cm2) with the 
available spectrum (shown in Figure 7.6), which has already been demonstrated to be 
suitable to emulate the atmospheric neutron flux (VIOLANTE, 2007). The available 
flux was of approximately 4.5•104 n/(cm2•s) for energies above 10 MeV. The beam was 
focused on a spot with a diameter of 3 cm plus 1cm of penumbra, which is enough to 
cover  the  whole  FPGA  chip.  Irradiation  was  performed  at  room  temperature  with 
normal incidence. 

 

 
 

Figure 7.6: ISIS spectrum compared to those of the LANSCE and TRIUMF facilities 
and to the terrestrial one at sea level multiplied by 107 and 108. 

 

No errors were observed in the outputs. 
 
 
7.2  MIPS in SRAM-based FPGAs 

 

SRAM-based FPGAs use SRAM memory as the configuration memory. Differently 
from flash memories, SRAM are very sensitive to radiation effects. It happens due to 
low write voltages, the high density of memory cells and small transistor sizes. The 
miniMIPS is implemented in SRAM-based FPGAs with one single memory containing 
program and data (Von Neumann architecture). The memory is implemented on SRAM 
blocks inside the FPGA, being sensitive to radiation effects. 

 

In the following, one irradiation experiment on SRAM-based FPGAs is described. 
 
7.2.1 TID Experiment 

 

As would be expected from the thin gate oxides contained in these technologies, 
little or no parametric shift was noted during any of the radiation exposures were 
observed in previous tested by Xilinx (FABULA, 2000). The current was constant up to 
80 krads(Si). 

 
7.2.2 Neutron Experiment 

 

This irradiation experiment was performed at the LANSCE facility, in Los Alamos, 
USA. We implemented the miniMIPS microprocessor in a Virtex5 SRAM-based FPGA, 
part XC5VLX110T. The main goal was to check the response of HETA when applied to SEEs 
in SRAM-based FPGAs. 
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The case-study circuit is composed of three soft-core microprocessors with hardware 
module and embedded memory (BRAM). Each TMR module of the DUT is a soft-core 
microprocessor miniMIPS using shared data and program memory. Each soft-core is 
connected to an embedded memory BRAM used to store the program code and data. 
The soft-core is protected by HETA, a non-intrusive hybrid technique that uses software 
redundancy in the application that is run in this processor and an extra hardware module 
used to monitor the communication between the processor and the BRAM. The test case 
application is a 32-bit 6x6 sequential matrix multiplication algorithm. After each run, 
the microprocessor sends the error flags from the hardware module and an End of 
Execution  (EoE)  flag  to  all  the  interface  control  units.  The  DUT  circuit  was 
implemented into the XC5VLX110T Virtex5 FPGA. Figure 7.7 shows the architecture 
of the embedded system and the connections between the different modules. 

 

 
 

Figure 7.7: DUT’s architecture with the test control unit. 
 

The  HETA’s  hardware  module  is  implemented  without  modifying  the 
microprocessor architecture (non-intrusive) as a logic block that works in tandem with 
the microprocessor. The module can monitor the data exchanged through the buses 
between the microprocessor and the embedded memory (BRAM) and detect unexpected 
deviations in the control flow and microprocessor timeouts. 5 error flags are generated, 
being helpful to diagnose of the error and to improve the technique itself. Flag 1, or 
Variables,  corresponds  to  an  error  detected  by  the  Variables  technique,  flag  2,  or 
Inverted Branches, corresponds to an error in the Inverted Branches technique and flags 
3 (HETA-Control), 4 (HETA-Data) and 5 (HETA-timeout) are related to errors from 
HETA (control flow error, data flow error and timeout, respectively). Each soft-core 
miniMIPS module has an occupation of 2,411 slice LUTs and 1,570 slice registers and, 
additionally, three 36k BRAM memories. From that area, 75 slice LUTs and 98 slice 
registers belong to HETA’s hardware module, which corresponds to around 4% of the 
total area. 

 

In order to collect results from the DUTs and send them to a computer, we 
implemented in the FPGA a control unit. The control unit is composed of a Finite State 
Machine (FSM) capable of reading the BRAMs from the DUT and comparators to 
detect if a fault occurred in one of the TMR modules. Once the EoE flag is received 
from one of the microprocessors, the FSM puts it on hold and reads its BRAM. Once 
the data from each of the three BRAM is read, the control unit generates the following 
flags:  (1)  difference  between  modules  #0  and  #1  –  bit(0),  (2)  difference  between 
modules #0 and #2 – bit(1), (3) difference between modules #1 and #2 – bit(2), (4) 
HETA’s error flags – bit(3-7) (5) ready sign – bit(8), and (4) matrix multiplication result 
– 1152 bits. This module also implements a watchdog to detect if one of the TMR 
microprocessors is not responding and a serial interface circuit, responsible for sending 
the data collected during the radiation test through a serial cable to a computer. Since 
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our main objective is analyzing faults in the DUT, the whole control unit’s circuit was 
duplicated and an extra error flag was added, so that we could diagnose faults affecting 
the control unit. 

 

Figure 7.8 shows the FPGA placement after the routing performed by the Xilinx’s 
tool. The top three squares represent each miniMIPS + HETA’s hardware + BRAM 
module. The bottom three modules are the control unit, which was divided in three 
smaller modules: the serial interface (in the middle) and the two duplicated circuits. 
Boxes were added to highlight the area of each module and the real modules occupancy 
is represented by the dots inside the boxes (the serial interface has approximately 30% 
of the size of the box). Note that each redundant domain is placed far apart to minimize 
interference and shortcuts in presence of SEE in the configuration bits. 

 

 
 

Figure 7.8: FPGA’s module placement. 
 

Radiation test was performed at Los Alamos National Laboratory’s (LANL) - Los 
Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electronics (ICE 
II) House II in September 2012. We irradiated the devices with the available spectrum 
that emulates the atmospheric neutron flux. The available neutron flux was about 9x105 

n/(cm2•s) for energies above 10 MeV. The beam was focused on a spot with a diameter 
of  2cm  plus  1cm  of  penumbra,  thus  enough  for  uniformly  irradiate  the  FPGA. 
Irradiation was performed at room temperature with normal incidence. 

 

Table 7.1 summarizes the neutron experiment results. As one can see, 958 errors 
affected the DUT after more than 97 hours of irradiation, and only 48 faults (5.3%) 
were not detected by the proposed hardening approach, achieving an overall fault 
coverage of 94.7%. We can further analyze the experimental data by dividing the errors 
in three subclasses (see Tab. III): 

 

4.   Detected faults: errors detected by the software-based technique and HETA’s 
hardware module that did not affect the matrix multiplication result; 

 

5.   Detected  errors:  errors  detected  by  the  software-based  technique  and 
HETA’s hardware module that corrupted the matrix multiplication results. In 
this case, the TMR also could detect those errors by the majority voters 
placed at the output. 

 

6.   Not detected errors: errors not detected by the software-based technique and 
HETA’s hardware module, but detected by the TMR. 
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The cross-section of the application, calculated by dividing the amount of observed 
output errors by the fluence (about 3.5x1011n/cm2), is 9.14x10-9cm2. If we consider that 
there were three modules of the miniMIPS, the cross-section per miniMIPS is the result 
of the cross-section divided by three, which is 3.05 x10-9cm2. 

 
Table 7.1: Classification of the total 958 faults in FPGA design tested under neutrons 

 
 

Classification 
 

Occurences 

Detected Faults 157 

Detected Errors 753 

Not Detected Errors 48 
 
 

As the available spectrum of energy resemble the atmospheric one, multiplying the 
experimental cross-section per miniMIPS by an average flux of 14 n/(cm2•h) at New 
York City (NORMAND, 1996), we can estimate the neutron-induced error rate at sea 
level per miniMIPS to be 4.27 x10-17  Failure In Time (FIT). As reported in Table 7.1, 
the proposed technique detected most of the errors. The cross-section of the hardened 
application,  defined  as  the  undetected  output  errors  divided  by  the  fluence,  is  of 
1.73x10-10cm2. The undetected error rate at sea level per miniMIPS is then reduced to 
8.07 x10-19  FIT, being two order or magnitude lower with respect to the unhardened 
design. 

 

Such results show that software-based techniques combined with HETA can be used 
in harsh environments and allow designers to reach fast fault diagnosis and correction. 
When comparing to hardware-based techniques, such as XTMR with scrubbing, that 
require modifications to the microprocessor’s hardware, we can notice an area reduction 
higher than 66% and still acceptable fault coverage of 94.7%. On the other hand, the 
hardened application takes 56% more time to execute. 

 

In terms of diagnosis, Table 7.2 shows the number of faults and errors in the DUT 
that were detected by the proposed techniques and the correspondent flag classification. 

 
Table 7.2: Fault injection by partial reconfiguration in SRAM-based FPGA 

 
 

Source 
 

Incorrect Results 
   

Errors Detected 
  

 

Flag Classification 
 

Occurrences Exclusive 
Detection 

  

Occurrences Exclusive 
Detection 

 

Variables 0   0 502   30 

Inverted Branches 0   0 38   0 

HETA-Control 142  139 168   53 

HETA-Data 14  14 112  104 

HETA-Timeout 4   1 521   6 
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As shown in Table 7.2, HETA was the technique that presented the highest detection 
capability, with 157 fault detections, 163 exclusive error detections and 521 errors 
detected only with HETA-Timeout. The highest number of exclusive errors detected 
was achieved by HETA-Data, showing that it is mandatory for the hardening techniques 
in order to increase the fault coverage. The Variables technique also showed high error 
detection, with 502 detected errors. The Inverted Branches, on the other hand, could not 
exclusively detect a single error, although it theoretically complements HETA in control 
flow error detection and therefore should be maintained in the system. 
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8  CONCLUSIONS AND FUTURE WORK 
 
 
 
 

In this thesis, hybrid fault tolerant techniques to detect SEE in processors were 
developed and verified under fault injection and radiation experiment. In chapter 3 we 
presented the related works through fault tolerant techniques. These works showed 
different  approaches  to  deal with transient  faults at hardware, software and hybrid 
levels. They presented interesting concepts and proved the advantage of using fault 
tolerant techniques at different levels to achieve high fault detection rates. In spite of 
that, the main disadvantages were the intrusiveness of most of hardware-based and 
hybrid techniques and the performance degradations and memory overhead of software- 
based techniques. 

 

Chapter 4 presented our proposed fault tolerant techniques to detect transient errors 
in processors. Two previously known techniques were presented, called Variables and 
Inverted Branches. In addition, three new hybrid techniques were proposed, called 
PODER, OCFCM and HETA. The techniques, as well as the theory and origin behind 
them,  were  discussed  in  detail.  Their  implementations,  including  program 
transformation  and  hardware  implementation  (when  required),  were  presented  and 
results according to execution time (performance degradation), program memory and 
data memory overheads were shown. Results showed for all techniques a performance 
degradation varying from 1.08 to 1.69, data memory overhead up to 2 times (when 
using the Variables technique), and program memory overheads up to 2.18 the original 
one. 

 

In Chapter 5, we presented the fault injection experimental results by simulation. A 
fault injector implemented in Java was used and faults were injected by running a script 
on top of the simulator ModelSim, from Mentor. Faults were injected, one per program 
execution, in all VHDL signals describing the DUT, at RTL level. Techniques PODER, 
OCFCM and HETA showed high detection rates for faults affecting the program’s 
execution flow. On the other hand, as expected, they could not detect some faults 
affecting the data flow. In order to increase the detection, the techniques were combined 
with the Variables and Inverted Branches software-based techniques. The combination 
resulted in 100% fault detection for all techniques applied to all case-study applications. 
Such results show that the proposed techniques could not only be combined with data 
flow techniques, but also reach high detection rates when applied to real applications. 

 

In Chapter 6, we described the fault injection campaign by modifying the 
configuration bitstream of a Virtex 5 SRAM-based FPGA. By doing so, we injected 
faults that were not guaranteed to be detected by the proposed techniques, when 
modifying the functions implemented in the FPGA through its configuration memory. 
All the proposed techniques were implemented and analyzed according to faults 
detected, errors detected and errors not detected. Results showed that PODER was the 
hybrid  technique  with  higher  detecting,  reaching  98.4%  error  detection,  which  is 
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considered a high detection rate, especially for techniques that do no aim to protect the 
configuration memory of the FPGA. HETA, with the lowest detection rate, reached 
95.7% error detection. 

 

Chapter 7 presented three irradiation experimental results. FPGAs with memory 
configuration based on flash and SRAM were used. We analyzed the hybrid HETA 
technique applied to a miniMIPS microprocessor and combined with the Variables and 
Inverted Branches software-based techniques. We used neutron beam sources from 
LANSCE and CCLRC Rutherford Appleton Laboratory to test the parts XC5VLX110T 
(SRAM-based),  from  Xilinx,  and  A3P250-PQ208  (flash-based),  from  Actel, 
respectively. Results showed a low sensitiveness to radiation effects for the flash-based 
FPGA and a cross-section of 9.14x10-9cm2 for the SRAM-based FPGA. When HETA 
was applied to the SRAM-based FPGA, the cross-section was reduced by two orders of 
magnitude. We also performed TID experiments using a Co-60 source from IEAV. The 
part tested was a flash-based FPGA, part A3P250-PQ208, from Actel. Results showed 
functional failures at 45 krad(Si). 

 

The  techniques  proposed  in  this  thesis  have  shown  interesting  results,  when 
compared to related works in the literature. The achieved detection rates combined with 
the performance degradation and area and memory overheads improved the state-of-the- 
art, by providing new ways of protecting processor system with higher fault tolerance at 
smaller costs of performance degradation and area overhead. These results have been 
backed by intense fault injection campaigns, performed by simulating upsets at RTL 
level  and  by injecting  faults  in  the  configuration  memory bitstream,  and  TID  and 
neutron irradiation experiments. By doing so, we tested the techniques from their early 
development stages until real case scenarios. 

 

As future work, we intend to expand the techniques to cope with faults in the 
configuration bitstream, in order to increase the detection rates for SRAM-based FPGAs 
and analyze the response of the proposed techniques to multiple faults. Also, we would 
like to apply the techniques to more complex applications, such as operating systems 
and  real  time  benchmarks.  So  far,  we  have  implemented  the  techniques  on  the 
miniMIPS and have previous results on the LEON3 (GAISLER, 2013). We would like 
to extend it to and ARM architecture, such as the ARM Cortex-A9 and expand it to 
cope with Graphic Processing Units (GPU) and superscalar architectures. 
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1. Introdução 
 

Os avanços da última década na indústria de semicondutores aumentaram 

exponencialmente o desempenho dos microprocessadores. Grande parte destes ganhos 

em desempenho foi devido a dimensões menores e voltagens mais baixas de operação 

dos transistores, que levaram a arquiteturas mais complexas com maior grau de 

paralelismo combinado com uma alta freqüência de relógio. Entretanto, a mesma 

tecnologia que possibilitou todo este progresso também reduziu a confiabilidade dos 

transistores,  reduzindo  a  voltagem  de  limiar  e  estreitando  as  margens  de  ruído 

(Baumann et al., 2001), (O’Gorman et al., 1996) e assim tornando-os mais suscetíveis a 

falhas  causadas  por  partículas  energizadas  (O’Gorman  et  al.,  1996).  Como 

conseqüência,  aplicações  de  alta  confiabilidade  necessitam  técnicas  de  proteção  de 

falhas capazes de recuperar o sistema de uma falha com um custo mínimo de 

implementação e desempenho. 

Uma das maiores preocupações é conhecida como soft error, que é definido 

como uma falha com efeito transiente provocado pela iteração entre uma partícula 

energizada com a junção PN no silício. Esta perturbação carrega temporariamente os 

nodos do circuito, gerando pulsos de voltagem transiente que podem ser interpretados 

como sinais internos e assim provocando um resultado errôneo (Dodd et al., 2003). Os 

erros mais típicos relacionados à soft errors são Single Event Upsets (SEU), 

caracterizados pela mudança de estado da lógica seqüencial (registradores, flip-flops, 

memória, etc.) e Single Effect Transient (SET), que são pulsos transientes de voltagem 

na lógica combinacional, podendo ser registrados pela lógica seqüencial. A figura 1.1 

mostra uma partícula energizada acertando a junção PN de um transistor e causando um 

soft error. 

 
 

Figura 1.1: Partícula energizada ao acertar um transistor. 
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Técnicas de tolerância a falhas baseadas em sofware podem resultar em alta 

flexibilidade e baixo tempo de desenvolvimento e custos para sistemas computacionais. 

Sistemas  de  alto  desempenho  chamados  System-on-Chip  (SoC)  compostos  de  um 

grande numero de microprocessadores e outros núcleos conectados através de uma 

Network-on-Chip (NoC) estão se tornando mais populares em muitas aplicações que 

requerem  alta  confiabilidade,  como  servidores  de  dados,  veículos  de  transporte, 

satélites, entre outros. Ao utilizar estes sistemas, a proteção contra falhas fica a cargo do 

projetista. A tolerância a falhas através de software tem recebido muita atenção nestes 

sistemas, visto que não é necessário alterar o hardware. A figura 1.2 mostra uma NoC 

3x3, conectando diferentes tipos de componentes através de nove roteadores. 
 

 
 

Figura 1.2: Exemplo de uma NoC 3x3. 
 

As técnicas baseadas somente em software exploram a redundância de 

informação, instrução e tempo para detectar e até mesmo corrigir erros durante o fluxo 

do programa. Todas estas técnicas utilizam instruções adicionais na área de código para 

ou recomputar instruções ou para gravar e checar informações nas estruturas de 

hardware. Nos últimos anos, foram apresentadas ferramentas para automaticamente 

injetar tais instruções no código C ou assembly, reduzindo significativamente os custos 

de implementação. 

Trabalhos relacionados apontaram problemas de técnicas baseadas somente em 

software, como a impossibilidade de alcançar uma cobertura completa de falhas do tipo 

SEU (Bolchini et al., 2005), alto custo de memória e degradação de desempenho. A 

memória aumenta devido às instruções adicionais e duplicação de memória. A 

degradação do desempenho acontece devido à execução repetida de instruções 

(Goloubeva et al., 2003), (Huang et al., 1984), (Oh et al., 2002). Entretanto, não existe 

estudo na literatura que analisou tanto falhas do tipo SEU quanto SET e correlacionou a 

localização e os efeitos das falhas injetadas com o estado de detecção. Esta informação 

é muito para guiar projetistas para melhorar a eficiência e as taxas de detecção de soft 

errors das técnicas de mitigação de falhas baseadas somente em software. 
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2. Estado da Arte 
 

O  estado-da-arte  da  área  de  técnicas  de  tolerância  a  falhas  puramente  em 

software classifica as técnicas em dois grupos: (1) que protegem erros de dados, como 

as técnicas propostas por (Rebaudengo et al., 1999), (Cheynet et al., 2000), (Nicolescu 

et al., 2003), e (2) que protegem contra erros de controle, como Structural Integrity 

Checking (SIC) (Lu, 1982), Control-Flow Checking by Software Signatures (CFCSS) 

(Oh et al., 2002), Control Flow Checking using Assertions (CCA) (Mcfearin et al., 

1995) e Enhanced Control Flow Checking using Assertions (ECCA) (Alkhalifa et al., 
 

1999). 
 

As técnicas de proteção de dados se baseiam na replicação e comparação de 

instruções, registradores e memória, aumentando consideravelmente os custos com 

memória de programa e de dados e reduzindo o desempenho do microprocessador, visto 

que é necessário executar diversas instruções replicadas e de checagem. A maioria das 

técnicas de proteção do fluxo de programa, por outro lado, divide o código de programa 

em blocos básicos (partes sequenciais de programa) e atribuem valores a cada bloco 

básico, para então realizar checagens de fluxo de programa com variáveis globais com o 

mesmo fim. 

As técnicas propostas obtiveram tolerância total de erros de dados do tipo SEU, 

conseguindo detectar todas as falhas afetando os dados, tanto em memória quanto em 

registradores, que fossem levar o sistema a um resultado errôneo. Entretanto, as técnicas 

do segundo grupo ainda não obtiveram 100% de detecção de falhas. 

A técnica ECCA estende a CCA e é capaz de detectar todos os erros de desvios 

entre diferentes blocos básicos, mas não é capaz de detectar nem falhas de desvios 

dentro do mesmo bloco básico (origem e destino do desvio incorreto de fluxo) nem 

falhas que causam uma decisão incorreta numa instrução de desvio. A técnica CFCSS, 

por  outro  lado,  consegue  detectar  erros  dentro  do  mesmo  bloco  básico,  mas  não 

consegue detectar erros de desvio se múltiplos blocos básicos possuem o mesmo bloco 

básico de destino, situação muito comum em algoritmos do tipo controlflow. 

Atualmente, as técnicas existentes na literatura conseguem proteger sistemas 

contra todos os tipos de erro de dados e a maioria dos erros de fluxo de programa. 

Entretanto, esta proteção vem com um grande custo em desempenho e em área de 

memória. As proteções de dados podem chegar a aumentar o tempo de computação de 

um algoritmo em duas vezes, enquanto a proteção completa pode ultrapassar três vezes 
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o tempo do algoritmo sem proteção. A memória de programa também tem um aumento 

considerável, chegando a três vezes o tamanho inicial. 

A literatura ainda desconhece um trabalho com uma coleção de técnicas com 

detalhamento suficiente para o projetista combinar e proteger o seu sistema conforme a 

sua vontade, podendo chegar a detectar todas as falhas e com um conhecido custo em 

desempenho e área física. 

3. Motivação 
 

O estado da arte na área de proteção de microprocessadores está muito aquém do 

desejado pelos projetistas, mesmo com o esforço de grandes grupos de pesquisa, como 

das Universidades de Chung-Hua, de Torino, de Milão, de Atlanta, dentre outras e o 

grupo de pesquisa TIMA, sediado na França. Embora tenha alcançado um alto nível de 

detecção de falhas, as técnicas existentes ainda não obtiveram a detecção total de falhas 

injetadas nem traçaram uma relação entre o local das falhas injetadas com o efeito no 

microprocessador e o resultado de detecção de cada técnica. 

Durante o seu mestrado, o candidato desenvolveu um trabalho sobre a proteção 

de microprocessadores através de técnicas puramente em hardware e software. Foram 

implementadas e simuladas diversas arquiteturas através da replicação de diferentes 

partes do microprocessador e adição de módulos intrusivos e extrusivos de checagem de 

estado e construída uma ferramenta chamada Hardening Post-Compiling Tool 

(HPCTool) para automaticamente proteger códigos em linguagem de máquina, ficando 

a cargo do projetista a escolha das técnicas a serem utilizadas. Apesar de ter tomado 

oito meses de implementação, a construção desta ferramenta foi extremamente 

importante, visto que a proteção de códigos-fonte é uma tarefa extremamente difícil 

quando realizada a mão. 

Para automatizar a injeção de falhas, foi implementado um injetor de falhas 

capaz de injetar falhas simples ou múltiplas em qualquer sinal, em qualquer momento 

da execução e pelo tempo escolhido pelo projetista de forma massiva. Além de injetar e 

executar o programa escolhido pelo usuário, o programa gera automaticamente a coleta 

de resultados, compara os resultados obtidos com os esperados (corretos) e faz uma 

classificação das falhas. 

Os resultados obtidos, a ferramenta HPCTool e o injetor de falhas, juntamente 

com outros aplicativos de menor expressão (classificador de falhas com relação a efeito, 

classificador   de   desvio   de   fluxo   de   programa,   mapeador   de   falhas   para 
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microprocessadores com pipeline, dentre outros), formam uma base sólida para o 

desenvolvimento e teste de novas técnicas em software, hardware e, principalmente, 

híbridas. Além disso, os resultados obtidos e a classificação de falhas oferecem uma 

ótima base para comparação de resultados. 
 
 

4. Objetivo 
 
 

O principal objetivo deste trabalho é estender o estudo realizado durante a tese 

de mestrado do candidato e desenvolver uma técnica híbrida de tolerância a falhas para 

microprocessadores capaz de detectar até 100% das falhas, ficando a cargo do projetista 

a melhor relação de detecção por custo. O desenvolvimento prevê a combinação de 

técnicas puramente em software e a adaptação das mesmas para um módulo não- 

intrusivo desenvolvido em hardware. 

O teste da técnica híbrida, bem como a comparação com as outras técnicas, 

envolverá pelo menos duas aplicações de teste, sendo uma dataflow e outra controlflow. 

Entretanto, o ideal é que sejam implementadas todas as aplicações de um benchmark 

utilizado na indústria. Como componentes de processamento, serão utilizados os 

microprocessadores   miniMIPS   e   PowerPC   405   ou   superior,   sendo   o   primeiro 

largamente utilizado na literatura e nos grupos de pesquisa da UFRGS e o segundo 

amplamente utilizado na indústria de sistemas embarcados. O processador PowerPC 

possui uma arquitetura diferente do miniMIPS, com caches L1 de memória e dados, 

pipeline de instruções modificado, interfaces para unidades de processamento auxiliar, 

além de uma Instruction Set Architecture (ISA) completamente diferente. 

Atualmente, o candidato dispõe das seguintes ferramentas para a realização do 
 

trabalho: 
 

• HPCTool (injetor de proteção em códigos em linguagem de máquina); 
 

• Injetor de falhas completo (injeção e coleta de dados); 
 

• Mapeador de falhas para processadores com pipeline; 
 

O HPCTool deverá ser modificado para proteger o código de programa com a 

parte em software da técnica hibrida, ao mesmo tempo em que deverá ser estendido para 

ser  compatível  com  o  microprocessador  PowerPC.  O  mapeador  de  falhas  também 

deverá ser modificado, visto que o PowerPC este possui um pipeline de instruções 

muito diferente do utilizado pelo miniMIPS. 

Ao final do processo de implementação, simulação e da campanha de injeção de 
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falhas, espera-se realizar um estágio no exterior com o fim de realizar uma campanha 

física de injeção de falhas, ou seja, irradiar ambos os processadores com partículas 

energizadas. Os grupos de pesquisa TIMA e da Universidade Politécnica de Torino 

possuem o material necessário para a injeção e histórico de parceria com a UFRGS, 

através da colaboração de pesquisas e intercambio de alunos. 

Ao final do estudo, espera-se ter uma vasta gama de ferramentas para a proteção 

de códigos de programa e injeção de falhas disponível para todos os grupos de pesquisa 

da UFRGS e uma técnica híbrida e configurável, implementada e validada, capaz de 

detectar  falhas  em  microprocessadores.  Espera-se,  ainda,  obter  dados  aprofundados 

sobre a aplicação de tais técnicas a microprocessadores voltados para a indústria, com 

diferentes níveis de cache, com múltiplos núcleos de processamento e múltiplas 

memórias de dados e instruções. 
 
 

5. Plano de Trabalho 
 

Nesse capítulo são apresentadas as disciplinas cursadas durante o mestrado, para 

as   quais   será  solicitado   pedido   de   reaproveitamento   dos   créditos.   Também   é 

apresentado o plano de disciplinas a serem cursadas durante o doutorado. Finalmente, 

um cronograma com todas as atividades a serem realizadas nos quatro anos de 

doutorado. 

5.1. Revalidação de Créditos 
O pedido de reaproveitamento de disciplinas possui um total de 26 créditos.  As 

disciplinas cursadas no mestrado são apresentadas na tabela abaixo. 
 

Código Disciplina Créditos Ano/Semestre 
CMP410 Atividade Didática I 1 2009/01 
CMP117 Arquitetura e Projeto de Sistemas VLSI II 4 2008/02 
CMP231 Sistemas Embarcados 4 2008/02 
CMP246 Teste e Confiabilidade de Sistemas de Hardware 3 2008/02 
CMP401 Trabalho Individual I 2 2008/02 
CMP237 Arquitetura e Organização de Processadores 3 2008/01 
CMP238 Projeto e Teste de Sistemas VLSI 4 2008/01 
CMP182 Redes de Computadores I B 4 2008/01 
--- Proficiência em Inglês --- 2008/01 

 
5.2. Créditos a serem realizados 

 
Para  completar  os  36  créditos  necessários  para  o  doutorado,  o  candidato 

pretende cursar as seguintes disciplinas: 

http://ppgc.inf.ufrgs.br/index.php?option=com_content&amp;task=view&amp;id=75&amp;Itemid
http://ppgc.inf.ufrgs.br/index.php?option=com_content&amp;task=view&amp;id=75&amp;Itemid
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Código Disciplina Créditos Ano/Semestre 
CMP134 Introdução ao Processamento Paralelo e 

Distribuído 
4 2010/01 

CMP115 Concepção de Circuitos VLSI 4 2010/01 
CMP651 Projeto Avançado de Pesquisa I 2 2010/02 
CMP411 Atividade Didática II 1 2010/02 

 
 

Assim, será cursado um total de 8 créditos em disciplinas e 3 créditos em 

projeto de pesquisa e atividade didática. Para o doutorado será realizado um total de 37 

créditos (26 créditos obtidos no mestrado e mais 11 créditos cursados durante o curso de 

doutorado). 
 

5.3. Cronograma 
 

ATIVIDADES/SEMESTRE 2010/01 2010/02 2011/01 2011/02 2012/01 2012/02 2013/01 2013/02 
 

Disciplinas         

 

Revisão Bibliográfica         

 

Exame de Qualificação         

Elaboração da 
Arquitetura Híbrida 
Tolerante a Falhas 

        

Defesa da Proposta de 
Tese 

        

Estágio no Exterior         

Implementação de 
Arquitetura Proposta 

        

 

Escrita da Tese         

 

Defesa da Tese         

 
 

Os grupos mais renomados na área de técnicas de tolerância a falhas para 

microprocessadores são os grupos do Instituto Tecnológico de Karlsruhe, coordenado 

pelo professor Jürgen Becker, a Universidade Politécnica de Torino, coordenada pelo 

professor Massimo Violante, e o laboratório de pesquisa TIMA, coordenado pelo 

professor Raul Velazco. Estes grupos de pesquisa são os mais indicados para realizar o 

estágio, visto que ambos possuem instalações para a injeção física de partículas 

energizadas. 

Estes laboratórios de pesquisa possuem parcerias com a UFRGS, facilitando 

assim o estágio do candidato e trazendo melhores resultados para o curso de doutorado. 
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6. Experiência de Pesquisa 
 
 

Durante a Graduação no curso de Engenharia de Computação pela UFRGS, o 

candidato participou do Programa de Formação de Treinadores Dell, onde participou 

ativamente do grupo de clusters de alto desempenho. Durante os vinte meses de duração 

do projeto, o candidato pesquisou e desenvolveu um curso abordando a construção e 

configuração de um cluster de alto desempenho. Este trabalho foi submetido e aceito no 

workshop WSPPD 2005 (Donassolo et al., 2005). 

Durante o último ano da Graduação, o candidato foi aceito para o estágio de um 

ano numa parceria entre a UFRGS e a Teschnisch Universität Kaiserslautern 

(Universidade Técnica de Kaiserslautern), onde permaneceu um ano sob a tutela do 

professor Christophe Bobda e pesquisou e desenvolveu uma ferramenta para a 

configuração automática de sistemas multiprocessados. Como resultado desta 

experiência, foi submetido e aceito um trabalho para ReCoSoC 2007 (Azambuja et al., 

2007). 
 

Após o curso de Graduação, o candidato ingressou no Programa de Pós 

Graduação em Computação da UFRGS, tendo escolhido a linha de pesquisa de sistemas 

embarcados. No primeiro ano, o candidato desenvolveu um trabalho sobre a 

reconfiguração parcial de dispositivos programáveis (Field Programable Gate Arrays - 

FPGA) na presença de falhas. Como resultado, foi obtida uma redução no tempo de 

reconfiguração do sistema superior a 98% e a possibilidade de manter o sistema 

operando sem interrupção, mesmo durante a reconfiguração do sistema, fato esse ainda 

desconhecido pela literatura. Este trabalho foi inicialmente submetido, aceito e 

apresentado no congresso SBCCI 2008 (Pilotto et al., 2008). 

Ainda no primeiro ano, este trabalho foi estendido com a aplicação da técnica a 

um sistema mais complexo para ser então submetido e aceito ao workshop RADECS 

2008 (Azambuja et al., 2008). 
 

Durante o segundo ano do mestrado, o trabalho apresentado no SBCCI 2008 e 

RADECS 2008 foi novamente estendido, com a adição de novas técnicas para melhorar 

seu desempenho ao se recuperar de um erro de controle. Esta extensão resultou na 

submissão e aceitação para o congresso IOLTS 2009 (Azambuja et al., 2009). 

Além deste trabalho, o candidato adotou uma segunda linha de pesquisa. O seu 

interesse por microprocessadores o levou buscar um modelo ideal para a injeção de 

falhas  e  teste  de  técnicas  de  tolerância  a  falhas.  Tendo  estudado  a  fundo  o 
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microprocessador miniMIPS e sua estrutura, o candidato desenvolveu um injetor de 

falhas, definiu grupos de falhas por local de injeção e efeito e testou diferentes técnicas 

de tolerância a falhas puramente em software através da criação do HPCTool. O 

resultado deste trabalho foi submetido e aceito para o congresso LASCAS 2010 

(Azambuja et al., LASCAS 2010). 

Utilizando-se das ferramentas implementadas, o candidato propôs uma nova 

técnica puramente em software para solução de erros de fluxo de programa e a testou, 

comparando com as demais apresentadas em (Azambuja et al., LASCAS 2010). O 

resultado deste estudo foi submetido e aceito para o congresso LATW 2010 (Azambuja 

et al., LATW 2010). 

Para o curso de doutorado, espera-se aprimorar os trabalhos de ambas as linhas 

de pesquisa. Para a linha de pesquisa de reconfiguração parcial de FPGAs, buscar-se-á o 

teste físico, com a aplicação de partículas energizadas em parceria com a Universidade 

da Espanha (). Quanto à linha de pesquisa de proteção de microprocessadores, existe o 

interesse de criar uma técnica híbrida, para então aplicá-la ao microprocessador 

miniMIPS e ao processador PowerPC utilizado pela Universidade de Torino para testes 

físicos de injeção de falhas. Ao final deste trabalho, almeja-se estender os trabalhos 

realizados,  buscando  as  melhores  alternativas  para  a  proteção  de  sistemas 

reprogramáveis baseados em FPGAs e para a proteção de sistemas baseados em 

componentes COTS, oferecendo assim uma vasta gama de possibilidades para os 

projetistas de sistemas. 
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