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ABSTRACT

Model Driven Engineering Methodology for Design Space Exploration of
Embedded Systems

Nowadays we are surrounded by devices containing hardware and software compo-
nents. These devices support a wide spectrum of different domains, such as telecom-
munication, avionics, automobile, and others. They are found anywhere, and so they
are called Embedded Systems, as they are information processing systems embedded into
enclosing products, where the processing system is not the main functionality of the prod-
uct. The ever growing complexity in modern embedded systems requires the utilization
of more components to implement the functions of a single system. Such an increas-
ing functionality leads to a growth in the design complexity, which must be managed
properly, because besides stringent requirements regarding power, performance and cost,
also time-to-market hinders the design of embedded systems. Design Space Exploration
(DSE) is the systematic generation and evaluation of design alternatives, in order to opti-
mize system properties and fulfill requirements.

In embedded system development, specifically in Platform-Based Design (PBD), cur-
rent DSE methodologies are challenged by the increasing number of design decisions
at multiple abstraction levels, which leads to an explosion of combination of alternatives.
However, only a reduced number of these alternatives leads to feasible designs, which ful-
fill non-functional requirements. Moreover, each design decision influences subsequent
decisions and system properties, hence there are inter-dependencies between design de-
cisions, so that the order decisions are made matters to the final system implementation.
Furthermore, there is a trade-off between heuristics for specific DSE, which improves the
optimization results, and global optimizers, which improve the flexibility to be applied in
different DSE scenarios.

In order to overcome the identified challenges an MDE methodology for DSE is pro-
posed. For this methodology a DSE Domain metamodel is proposed to represent relevant
DSE concepts such as design space, design alternatives, evaluation method, constraints
and others. Moreover, this metamodel represents different DSE problems, improving
the flexibility of the proposed framework. Model transformations are used to implement
DSE rules, which are used to constrain, guide, and generate design candidates. Focus-
ing on the mapping between layers in a PBD approach, a novel design space abstraction
is provided to represent multiple design decisions involved in the mapping as a single
DSE problem. This abstraction is based on Categorical Graph Product, decoupling the
exploration algorithm from the design space and being well suited to be implemented
in automatic exploration tools. Upon this abstraction, the DSE method can benefit from
the MDE methodology, opening new optimization opportunities, and improving the DSE
integration into the development process and specification of DSE scenarios.

Keywords: embedded systems, design space exploration, model-driven engineering, UML,
platform-based design.





RESUMO

Metodologia de Engenharia Dirigida por Modelos para Exploração do Espaço de
Projeto de Sistemas Embarcados

Atualmente dispositivos contendo hardware e software são encontrados em todos os
lugares. Estes dispositivos prestam suporte a uma varieadade de domínios, como teleco-
municações, automotivo e outros. Eles são chamados “sistemas embarcados”, pois são
sistemas de processamento montados dentro de produtos, cujo sistema de processamento
não faz parte da funcionalidade principal do produto. O acréscimo de funções nestes
sistemas implica no aumento da complexidade de seu projeto, o qual deve ser adequada-
mente gerenciado, pois além de requisitos rigorosos em relação à dissipação de potência,
desempenho e custos, a pressão sobre o prazo para introdução de um produto no mer-
cado também dificulta seu projeto. Exploração do espaço de projeto (DSE) é a atividade
sistemática de gerar e avaliar alternativas de projetos, com o objetivo de otimizar suas
propriedades.

No desenvolvimento de sistemas embarcados, especialmente em Projeto Baseado em
Plataformas (PBD), metodologias de DSE atuais são desafiadas pelo crescimento do nú-
mero de decisões de projeto, o qual implica na explosão da combinação de alternati-
vas. Porém, somente algumas destas resultam em projetos que atedem os requisitos não-
funcionais. Além disso, as decisões influenciam umas às outras, de forma que a ordem
em que estas são tomadas alteram a implementação final do sistema. Outro desafio é
o balanço entre flexibilidade da metodologia e seu desempenho, pois métodos globais
de otimização são flexíveis, mas apresentam baixo desempenho. Já heurísticas especial-
mente desenvolvidas para o cenário de DSE em questão apresentam melhor desempenho,
porém dificilmente são aplicáveis a diferentes cenários.

Com o intuito de superar os desafios é proposta uma metodologia de projeto dirigido
por modelos (MDE) adquada para DSE. Um metamodelo do domínio de DSE é definido
para representar conceitos como espaço de projeto, métodos de avaliação e restrições.
O metamodelo também representa diferentes problemas de DSE aprimorando a flexibili-
dade da metodologia. Regras de transformações de modelos implementam as regras de
DSE, as quais são utilizadas para restringir e guiar a geração de projetos alternativos.
Restringindo-se ao mapeamento entre camadas no PBD é proposta uma abstração para
representar o espaço de projeto. Ela representa múltiplas decisões de projeto envolvidas
no mapeamento como um único problema de DSE. Esta representação é adequada para a
implementação em ferramentas automática de DSE e pode beneficiar o processo de DSE
com uma abordagem de MDE, aprimorando a especificação de cenários de DSE e sua
integração no processo de desenvolvimento.

Keywords: sistemas embarcados, exploração espaço de projeto, engenharia dirigida por
modelos, UML, projeto baseado em plataformas.





ZUSAMMENFASSUNG

Modellgetriebene Entwicklungsmethodik für die Entwurfsraumexploration von
Eingebetteten Systeme

Heutzutage sind wir von Geräten umgeben, die sowohl Hardware wie auch Software-
Komponenten beinhalten. Diese Geräte unterstützen ein breites Spektrum an verschie-
denen Domänen, so zum Beispiel Telekommunikation, Luftfahrt, Automobil und andere.
Derartige Systeme sind überall aufzufinden und werden als Eingebettete Systeme bezeich-
net, da sie zur Informationsverarbeitung in andere Produkte eingebettet werden, wobei die
Informationsverarbeitung des eingebetteten Systems jedoch nicht die bezeichnende Funk-
tion des Produkts ist. Die ständig zunehmende Komplexität moderner eingebettete Syste-
me erfordert die Verwendung von mehreren Komponenten um die Funktionen von einem
einzelnen System zu implementieren. Eine solche Steigerung der Funktionalität führt je-
doch ebenfalls zu einem Wachstum in der Entwurfs-Komplexität, die korrekt und effizi-
ent beherrscht werden muss. Neben hohen Anforderungen bezüglich Leistungsaufnahme,
Performanz und Kosten hat auch Time-to-Market-Anforderungen großen Einfluss auf den
Entwurf von Eingebetteten Systemen. Design Space Exploration (DSE) beschreibt die
systematische Erzeugung und Auswertung von Entwurfs-Alternativen, um die Systemlei-
stung zu optimieren und den gestellten Anforderungen an das System zu genügen.

Bei der Entwicklung von Eingebetteten Systemen, speziell beim Platform-Based De-
sign (PBD) führt die zunehmende Anzahl von Design-Entscheidungen auf mehreren Ab-
straktionsebenen zu einer Explosion der möglichen Kombinationen von Alternativen, was
auch für aktuelle DSE Methoden eine Herausforderung darstellt. Jedoch vermag üblicher-
weise nur eine begrenzte Anzahl von Entwurfs-Alternativen die zusätzlich formulierten
nicht-funktionalen Anforderungen zu erfüllen. Darüber hinaus beeinflusst jede Entwurfs-
Entscheidung weitere Entscheidungen und damit die resultierenden Systemeigenschaften.
Somit existieren Abhängigkeiten zwischen Entwurfs-Entscheidungen und deren Reihen-
folge auf dem Weg zur Implementierung des Systems. Zudem gilt es zwischen einer spe-
zifischen Heuristik für eine bestimmte DSE, welche zu verbesserten Optimierungsresul-
taten führt, sowie globalen Verfahren, welche ihrerseits zur Flexibilität hinsichtlich der
Anwendbarkeit bei verschiedenen DSE Szenarien beitragen, abzuwägen.

Um die genannten Herausforderungen zu lösen wird eine Modellgetriebene Entwick-
lung (englisch Model-Driven Engineering, kurz MDE) Methodik für DSE vorgeschlagen.
Für diese Methodik wird ein DSE-Domain-Metamodell eingeführt um relevante DSE-
Konzepte wie Entwurfsraum, Entwurfs-Alternativen, Auswertungs- und Bewertungsver-
fahren, Einschränkungen und andere abzubilden. Darüber hinaus modelliert das Meta-
modell verschiedenen DSE-Frage- stellungen, was zur Verbesserung der Flexibilität der
vorgeschlagenen Methodik beiträgt. Zur Umsetzung von DSE-Regeln, welche zur Steue-
rung, Einschränkung und Generierung der Ent- wurfs-Alternativen genutzt werden, finden
Modell-zu-Modell-Transformationen Anwendung.

Durch die Fokussierung auf die Zuordnung zwischen den Schichten in einem PBD-



Ansatz wird eine neuartige Entwurfsraumabstraktion eingeführt, um multiple Entwurfs-
entscheidungen als singuläres DSE Problem zu repräsentieren. Diese auf dem Categorial
Graph Product aufbauende Abstraktion entkoppelt den Explorations-Algorithmus vom
Entwurfsraum und ist für Umsetzung in automatisierte Werkzeugketten gut geeignet. Ba-
sierend auf dieser Abstraktion profitiert die DSE-Methode durch die eingeführte MDE-
Methodik als solche und ermöglicht nunmehr neue Optimierungsmöglichkeiten sowie die
Verbesserung der Integration von DSE in Entwicklungsprozesse und die Spezifikation
von DSE-Szenarien.

Keywords: Eingebetteten Systeme, Entwurfsraumexploration, Modellgetriebene Entwick-
lung, UML, Platform-based Design.
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sassigned is the start time to be assigned to a task.

fassigned is the finish time to be assigned to a task.

Occmax is the maximum occupation of a resource, so that a schedulability test can be
satisfied.

⊗ is the categorical graph product operator.

Ds is a design space graph.

πn is a projection function, which returns the graphGn ∈ Gi⊗Gi+1 · · ·⊗· · ·Gn.

φij is the current amount of pheromone in the edge 〈i, j〉.
∆φsij is the amount of pheromone value to adjust φij by the ant s.

srank is an integer rank assigned by the Fast Non-dominated Sort procedure.

pij is the probability of ant k selecting the edge connecting vertex i and j.

α is the magnitude of pheromone influence on probabilistic decision.

h is the number of objectives.

ηdij is the heuristic value for edge connecting vertex i and j.

β is the magnitude of heuristic influence on probabilistic decision.

λ is the heuristic exponent weighting factor.

Nk
i is the set of design alternatives that ant k has not yet visited.

Vshared is the number of shared vertices between snewj and sk.

Cd is a candidate design graph, such that Cd ⊆ Ds.

Q is a first-in first-out queue.

A is a list of alternative design decisions.





LIST OF ALGORITHMS

6.1 Crowding Population-Based Ant Colony Optimization: CPACO. . . . . . 114
6.2 Heuristic Scaling Value Assignment. . . . . . . . . . . . . . . . . . . . . 115
6.3 Crowding Replacement Procedure. . . . . . . . . . . . . . . . . . . . . . 116
6.4 Design Candidate Generation. . . . . . . . . . . . . . . . . . . . . . . . 117





LIST OF LISTINGS

7.1 Sample of Graph Pattern in VIATRA II: Successor list of a vertex . . . . 146
7.2 Sample of DSE rules: Include Mapping . . . . . . . . . . . . . . . . . . 146





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.2.1 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.2.2 Minor Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 DEVELOPMENT OF EMBEDDED SYSTEMS . . . . . . . . . . . . . . 37
2.1 Development Process Models . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Development Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 System Analysis and Architectural Design . . . . . . . . . . . . . . . . . 40
2.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 Verification, Validation and Test . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 DESIGN SPACE EXPLORATION FOR EMBEDDED SYSTEMS . . . . 45
3.1 Design Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Modeling Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Modeling the Application . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Modeling the Architectural Platform . . . . . . . . . . . . . . . . . . . . 49
3.5 Modeling the Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Modeling the Requirements and Constraints . . . . . . . . . . . . . . . 52
3.7 Evaluating Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Automatic Exploration Mechanisms . . . . . . . . . . . . . . . . . . . . 56
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 MODEL DRIVEN ENGINEERING OF EMBEDDED SYSTEMS . . . . . 59
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Technological Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 MDE Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 MDE Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 MDE Methodologies for Embedded Systems . . . . . . . . . . . . . . . . 65
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



5 MODEL-DRIVEN ENGINEERING METHODOLOGY FOR DESIGN SPACE
EXPLORATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Design Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Design Space Exploration Domain Modeling . . . . . . . . . . . . . . . . 79
5.4.1 DSE Domain Core Model . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Configuration Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 Construction Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.4 Mapping Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.5 Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Design and DSED Model Weaving . . . . . . . . . . . . . . . . . . . . . 96
5.6 DSE Rules Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Design Space Exploration Process . . . . . . . . . . . . . . . . . . . . . 99
5.8 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 IMPROVING MAPPING IN PBD METHODOLOGIES . . . . . . . . . . 105
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Categorical Graph Product . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Design Space Representation . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Solving the DSE CGP Mapping Problem . . . . . . . . . . . . . . . . . . 112
6.4.1 Exploration Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.2 Generation of Candidate Designs . . . . . . . . . . . . . . . . . . . . . . 117
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 TOOL SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1 Tooling Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1.1 Adopted MDE Technological Framework and tools . . . . . . . . . . . . 128
7.1.2 Contributed tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 MODES: MDE framework for Embedded Systems . . . . . . . . . . . . 129
7.2.1 Basic Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.2 Component Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.3 Task Graph / TGFF Metamodel . . . . . . . . . . . . . . . . . . . . . . . 131
7.2.4 Instruction Set Architecture Metamodel . . . . . . . . . . . . . . . . . . 132
7.2.5 Pseudo-trace Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2.6 Platform Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2.7 Implementation Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.8 Other Metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.9 Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.3 SPEU: Evaluation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.1 Platform Characterization and Instruction Mapping . . . . . . . . . . . . 138
7.3.2 Estimation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4 H-SPEX: Design Space Exploration Tool . . . . . . . . . . . . . . . . . . 143
7.4.1 Evaluator Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4.2 Solver Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.3 Library of DSE Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Automatic DSED Generation From UML . . . . . . . . . . . . . . . . . 147



7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1 Case Study I: Synthetic Graphs . . . . . . . . . . . . . . . . . . . . . . . 151
8.1.1 Experiment 1: Application size . . . . . . . . . . . . . . . . . . . . . . . 152
8.1.2 Experiment 2: Number of alternatives . . . . . . . . . . . . . . . . . . . 155
8.1.3 Experiment 3: Number of design graphs . . . . . . . . . . . . . . . . . . 156
8.2 Case Study II: Electronic Wheelchair System . . . . . . . . . . . . . . . 157
8.2.1 DSE Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2.2 DSE Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2.3 DSE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10 GRAPHS OF E3S BENCHMARKS SUITE (E3S) . . . . . . . . . . . . 167
10.1 List of E3S Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.2 E3S Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

11 WHEELCHAIR SYSTEM: UML DIAGRAMS . . . . . . . . . . . . . . . 171

LIST OF OWN PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . 185

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187





31

1 INTRODUCTION

This chapter gives an introduction into this thesis. It starts presenting a motivation and
describes the purpose. Following it identifies the contribution and present the structure of
this thesis.

1.1 Motivation

Nowadays we are surrounded by devices containing hardware and software compo-
nents. These devices support a wide spectrum of different domains, such as telecommu-
nication, avionics, automobile, space, military, medical care and others. They are inserted
into our day-by-day lives, in the cell phone, in the car as controllers for multiple subsys-
tems (e.g. Ant-Block System - ABS, Electronic Power Steering - EPS, etc), electronic
toys, blood pressure measurement systems, etc. In short, they are found anywhere, and so
they are called Embedded Systems, as they are information processing systems embedded
into enclosing products, where the processing system is not the main functionality of the
product (MARWEDEL, 2003).

The ever growing complexity in modern embedded systems requires the utilization
of more hardware and software components to implement the functions incorporated into
a single system. Such an increasing functionality leads to a growth in the design com-
plexity, which must be managed properly, because besides stringent requirements regard-
ing power, performance and cost, also time-to-market hinders the design of embedded
systems. The presence of multiple design decisions with stringent and often conflicting
requirements unveils complex design alternatives, which the design team must evaluate
under reduced time-to-market. Such a systematical generation and evaluation of design
alternatives is named Design Space Exploration (DSE). The purpose of DSE is to optimize
one or more system properties according to some quality metrics. Each different alterna-
tive corresponds to a trade-off regarding design requirements and constraints. From the
best alternatives an engineer selects one of them to follow the next steps of a development
process.

In the context of embedded systems, Platform-Based Design (PBD) (FERRARI; SAN-
GIOVANNI-VINCENTELLI, 1999) is a development process model largely employed,
because PBD maximizes the reuse of pre-designed components and achieves the best
customization of the design platform concerning system requirements. PBD’s strategy is
to apply a layered design approach and reuse components from a large library of com-
ponents. In this strategy a DSE step is required in order to optimize mapping between
layers, thus building a link from the initial specification until the final implementation.
The increasing number of reused components, together with the complex mapping be-
tween layers, reinforces the need for adequate DSE methods, which should enable the



32

automation and optimization of design activities. Although the PBD approach is very
valuable to the design of embedded system, developing applications for the existing com-
plex platforms is a hard task. Furthermore, developing new platforms from scratch is a
big bet for companies (GOERING, 2002). Moreover, it is difficult to map multiple lay-
ers, as well as get benefits from the optimization potential at higher abstraction layers
(SANGIOVANNI-VINCENTELLI, 2007).

In embedded system development processes, specifically in PBD, current DSE meth-
odologies are challenged by the increasing number of design decisions at multiple ab-
straction levels, which leads to an explosion of combination of alternatives. However,
only a reduced number of these alternatives leads to feasible designs, which fulfill non-
functional requirements (NFRs). Moreover, each design decision influences subsequent
decisions and system properties, hence there are inter-dependencies between design de-
cisions, so that the order decisions are made matters to the final system implementation.
Furthermore, there is a trade-off between heuristics for specific DSE, which improves the
optimization results, and global optimizers, which improve the flexibility to be applied in
different DSE scenarios.

In order to overcome the difficulty in rising the abstraction level and simultaneously
improve the refinement of the design from the initial specification until the final system
through an automated DSE process, the DSE methodology proposed in this thesis ad-
vocates the application of Model-Driven Engineering (MDE) (KENT, 2002) techniques.
Research efforts are strongly supporting MDE for embedded systems (VANDERPER-
REN; DEHAENE, 2006), because MDE can improve the complexity management, by
rising the abstraction, and also provides mechanisms to improve automation and reusabil-
ity of artifacts as models. MDE is also adequate to represent and handle DSE problems,
because it provides abstractions and tools to handle PBD concepts such as orthogonaliza-
tion of concerns, layer refinement, layer and mapping representation. Moreover, MDE
plays an important role on architecture design by providing mechanisms to represent and
map problem and solutions spaces, as highlighted in (HAAN, 2008):

“Model-Driven Engineering (MDE) in its essence is constructing a model
of a problem space (e.g. a business process) and transform that model into a
model of a solution space (e.g. a software system).” (HAAN, 2008)

The purpose of this thesis is to improve the flexibility, reusability, and productivity
in the DSE process. Specifically the methodology endeavors to integrate easily DSE
methods into a development process. Moreover, it attempts to identify and represent
different DSE problems in a concise and uniform way and provide a mechanism that
allows an engineer to define DSE constraints according to the specificity of the problem
to be solved. Another goal of this methodology is to automate development steps related
to DSE, so that DSE artifacts can be generated from other development artifacts. Because
the mapping of layers is the central issue in PBD approaches, it is a goal of this work to
propose new abstractions to represent the design alternatives in the PBD context and a
new method to generate candidates design based on the new proposed representation.

1.2 Contribution

1.2.1 Major Contributions

Definition of a DSE methodology as an MDE process: The increasing application
of MDE as development technology for embedded systems requires alignment of the de-
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velopment process, which includes DSE, in order to completely exploit the productive
gains promised by MDE. This means to go beyond the tool integration through transfor-
mation of input/output models between tools, but including engineering expertise in the
(meta)models and transformation.

The DSE methodology was completely defined for an MDE process, allowing the inte-
gration of the DSE activities into a Domain Specific MDE process. First the methodology
defines a DSE process, which is integrated in the development process by using automatic
model transformation and model weaving, alleviating the development effort. Moreover,
model weaving allows the orthogonal specification of development models, whose ele-
ments are woven with DSE model elements at the beginning of the DSE process. The
process identifies methods, tools, and artifacts required, promoting an easy deployment
of the methodology.

Exploiting MDE concepts in every step of DSE, a DSE Domain (DSED) metamodel
is proposed to represent the important elements of a DSE process. Such elements repre-
sent available solver algorithms, available evaluation tools, and metrics to be optimized
or used to guide the DSE process. Besides, the metamodel represents four different DSE
problems identified from the studied literature. These problems are classified according to
(SAXENA; KARSAI, 2011), namely construction, configuration, mapping, and schedul-
ing.

Models conforming to the DSE Domain metamodel are handled in every step by
model-to-model transformations, which extract required information from development
models and fill the DSE models. Such model-to-model transformations are also used to
implement DSE rules, which guide and prune the automatic DSE, providing the adequate
mechanism to specify configurable, reusable and complex DSE rules.

The methodology was implemented using the de facto standards, such as ATL, ECORE,
and UML, for model transformation, metamodeling and modeling respectively. Such
standards are well supported by tools, such as the ones provided by the Eclipse Modeling
Project, allowing easy application of the proposed methodology in real life projects.

Design Space representation for mapping in PBD: In PBD methodologies the de-
velopment is strongly dependent on the mapping between layers to refine the system until
the implementation. Because different design activities can be represented as mappings
between graphs, which represent the mapping between layers, this work presents a method
to represent the design space as a Categorical Graph Product (CGP) (WEICHSEL, 1962).
The CGP method maps automatically multiple graphs, which are generated from devel-
opment models, and expose element dependencies through all graphs. Such property is
especially important, for example, in order to optimize the communication in different
systems aspects (e.g. tasks, processors, and buses). Moreover, CGP improves the ab-
straction and represents multiple design decisions involved in the mapping as one single
unified decision. Therefore the CGP is appropriate for representing simultaneous and
interdependent design alternatives.

Stepwise alternative design generation: In the CGP-based representation of the
design space, vertices of CGP represent design decisions, and edges define alternatives
reachable from the last selected vertex. The proposed method to generate alternative de-
signs based on the CGP induces a stepwise search in design space. This search is guided
by constraints applied locally at vertex’s adjacency as the search algorithm iterates on the
graph resulting from CGP, in order to select the sub-graph which represents an alterna-
tive design. Such an approach avoids the enumeration of all possibilities, by removing
alternative vertices that do not fulfill the specified constraints.
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1.2.2 Minor Contributions

Domain Specific Model Driven Engineering Framework: The MOdel-Driven en-
gineering for Embedded System (MODES) framework (NASCIMENTO; OLIVEIRA;
WAGNER, 2007), consists of a set of metamodels and transformations to capture differ-
ent views of embedded systems and provides support for integration of Domain Specific
MDE tools. This framework was extended to include more metamodels and transforma-
tions to support the proposed methodology flow and automate some development tasks
such as transformation from Unified Modeling Language (UML) to DSE domain model,
Simulink models in text files to Simulink model in ECORE, extraction of data from UML,
etc.

Analytic Evaluation Tool: A tool called System Performance Estimation with UML
(SPEU) (OLIVEIRA et al., 2006) was implemented to provide quick evaluation of alter-
native designs suggested by the exploration tools. SPEU provides analytical estimates
on physical system properties, which are directly obtained from system specification in
UML, by using an implementation of the Implicit Path Enumeration method (LI; MALIK,
1995) and guided refinement of a symbolic instruction set.

Design Space Exploration Tool: In order to support the proposed methodology a tool
called High-level Design Space Exploration (H-SPEX) (OLIVEIRA et al., 2008) was de-
veloped to orchestrate the DSE process. Moreover, this tool integrates an implementation
of an optimization algorithms used to search in the design space and generate alternative
designs.

Library of DSE rules: In the proposed methodology DSE constraints are model-to-
model transformation rules, which guide and prune the available design space, in order
to reduce the exploration time and ensure the feasibility of a candidate solution. Even
if a design is feasible, it can be invalidated when checked against NFRs, which must be
satisfied by the system. In this fashion, these rules avoid the violation of requirements
such as task deadlines, maximum delays, and maximum energy consumption. Moreover,
designs usually start with pre-defined design decisions and previously developed compo-
nents, and the selected platform may impose restrictions, which an engineer must respect.
Furthermore, an engineer, with his experience, may influence how the automated DSE
process proceeds.

Observing the common constraints and rules used to implement DSE tools, this work
provides a library of common DSE rules. This library reduces the effort during the DSE
by reusing DSE rules and makes easy the adaptation of the DSE tool to be applied for
different DSE scenarios. The library can also be extended by implementing additional
rules by using standard transformation languages.

Automatic DSED model extraction from UML models: In order to improve the
productivity during DSE process, a tool for automatic extraction of design graphs was
implemented. It transform UML models into different design graphs in the DSED model.
Because DSE is essentially a requirement-driven activity, it is expected that the require-
ments are defined in such a way it can be used to guide the DSE. In this fashion, this tool
also extracted automatically constraints from UML models. These constraints are repre-
sented in the DSED model and implemented by the library of DSE rules, which bridges
the UML and DSED models

1.3 Organization

The remainder of this thesis is organized as follows:
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Chapter 2 presents an overview on embedded system development models and pro-
cesses. It introduces the Y-chart model and PBD, which are the basis of the state-of-the-
art DSE methodologies. The most common phases of embedded system development are
present, as well as the context where DSE is performed.

Chapter 3 provides a background on DSE. It starts presenting a motivation and some
challenges faced by DSE tools. After, it defines DSE and shows a general activity flow for
DSE based on the studied literature. The following sections present the state-of-the-art
methodologies for DSE, considering different views, such as language used for specifi-
cation, application, platform, constraints modeling. It also surveys different evaluation
methods and automatic exploration mechanisms. This chapter finishes with a discussion
on the related work.

Chapter 4 introduces the main concepts of MDE. Following, a basic technological
framework to support MDE is identified. This chapter also complements the Chapter 3 by
presenting additional methodologies that explicitly apply MDE technologies for embed-
ded system development and for DSE. A brief discussion on the studied methodologies
ends this chapter.

Chapter 5 presents the proposed MDE methodology for DSE. The DSE methodology
and process are defined. All steps of the methodology process are presented in detail,
starting by the method for system modeling. Afterwards, the DSE domain metamodel
representing the relevant DSE concepts is defined and the formal representation of four
DSE problems are specified and mapped to the DSE Domain metamodel. Following, the
method for weaving design models with DSE Domain models is presented. The speci-
fication of DSE rules to guide the DSE process are presented. It is also presented how
optimization and evaluation methods can be integrated in the process. Finishing this chap-
ter, a discussion provides a comparison of the proposed approach with others found in the
literature.

Chapter 6 describes the proposal to improve the mapping in PBD methodologies. It
starts defining the CGP. Then the CGP definition is used to build a design space abstrac-
tion, which is adequate to deal with the DSE challenges in PBD and improve the flexi-
bility. The algorithms developed to generate design candidates considering the proposed
design abstraction model are presented. Finishing this chapter developed and existing
algorithms for generating design candidates are discussed.

Chapter 7 presents the implemented tools to support the methodology presented in
Chapters 5 and 6. It also presents the required tools to support DSE considering a specific
technology. Such tools and development flow are considered for the evaluation discussed
in Chapter 8.

Chapter 8 shows the evaluation of the methods proposed in this work. First, the CGP
method to represent the design space and the procedure to generate design alternatives are
evaluated by applying the methods to synthetic graphs representing DSE problems with
different complexities. It is also presented a realistic DSE scenario for a real-life applica-
tion, in order to provide a complete example of the DSE flow presented in Chapter 5.

Chapter 9 summarizes the thesis and gives an outlook to further research.
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2 DEVELOPMENT OF EMBEDDED SYSTEMS

Embedded Systems show special characteristics that do not appear in conventional
ones, such as time, power, and size constraints, integration of software and hardware
components (e.g. accelerators), as well as heterogeneous models of computation (MoC).
As the embedded systems are not the final product, their costs are an important constraint
too. Developing quality systems, within restricted time-to-market and affordable price,
is a challenge. Therefore, many efforts are spent to define or improve development pro-
cesses, methods, models and tools for embedded systems.

This chapter presents a short introduction on embedded system development. It starts
presenting some relevant development process models. Afterwards it presents the com-
mon development phases found in many embedded systems development processes. Such
background helps understanding of state-of-the-art of the DSE methodologies and iden-
tifying the context of DSE activities in a comprehensive development processes. The
chapter finishes with a summary.

2.1 Development Process Models

A development process model (or development model for short) is an abstraction of
a development process. It provides a particular perspective and abstraction level, helping
the understanding of a development process (SOMMERVILLE, 2004). Three develop-
ment models are specially studied in software engineering, namely the waterfall, the evo-
lutionary, and the component-based software engineering (SOMMERVILLE, 2004). A
development process may combine more than one model, which usually happens during
complex system development. In embedded systems, three development models are high-
lighted, first the Gajski’s Y-Chart (GAJSKI et al., 1994), later Kienhuis’ Y-Chart (KIEN-
HUIS et al., 1997) and PBD (FERRARI; SANGIOVANNI-VINCENTELLI, 1999).

Gajski’s Y-Chart proposed a system model composed of behavioral, structural and
physical representation. The behavioral representation provides a view of the design as a
function of its input values and expired time. The structural representation defines a set of
components and their connections. The physical representation adds physical information
about components on the model, such as spatial distribution, size, heat dissipation and
position of input/output pins. Each of these views identifies an axis, which are divided in
several different abstraction levels, namely Circuit, Logic, Register transfer, Algorithmic,
and System. Later, the Rammig’s X-Chart propose an extension of Gajski’s Y-Chart, by
including the test view (RAMMIG, 1989). Figure 2.1 illustrates both models.

Improvements in the synthesis tools and the increasing transistor integration allowed
the production of Systems-on-Chip and enforced the reuse of hardware IP in large scale.
Therefore the Gajski’s Y-Chart was replaced by new proposals (VAHID; GIVARGIS,
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Figure 2.1: Gajski’s Y-chart (left) and Rammig’s X-Chart (right).

2001).
One of such proposals is a new Y-Chart (KIENHUIS et al., 1997). It identifies three

key concepts, which now is the base for the embedded systems development: Archi-
tecture, Application and Mapping. The Architecture describes a hardware architecture
composed by programmable processing elements (processors), buses and memories as
parameterized templates. The Application is a behavioral description to be executed in a
defined architecture. The Mapping represents the map from Application to Architecture,
identifying which processor must execute each piece of software and where the software
must be stored. Independently, another Y-Chart was proposed in the context of POLIS
methodology (BALARIN et al., 1997), which is similar to Kienhuis’ proposal.

PBD (FERRARI; SANGIOVANNI-VINCENTELLI, 1999) is a development model
consisting of the refinement of a model at the highest abstraction level to meet an ab-
straction layer at a lower level. Such abstraction layer is named platform and defined to
be “a library of components that can be assembled to generate a design at that level of
abstraction.” (SANGIOVANNI-VINCENTELLI, 2007).

The meet-in-the-middle approach advocated by PBD combines the refinement of mod-
els, by mapping it into an instance of platform and propagating constraints as in a top-
down manner, with the bottom-up flow, by building up a platform from selected compo-
nents available in the library. In this approach, a DSE step is required in order to optimize
each mapping between layers, thus building a link from the initial specification to the final
implementation. Such an approach includes the co-design of software and hardware, fur-
thers the reuse of components and favors the use of higher levels of abstraction. However,
these benefits depend on the establishment of the number, location and components of
platform for a specific project. These trade-offs influence the design space to be explored
and the accuracy of estimations to evaluate each map.

An improved proposal based on the previous two Y-Charts is presented in (KEUTZER
et al., 2000), which combines Y-Chart with PBD. The Keutzer’s model introduced more
concepts of software development and strong focus on software and hardware reuse. The
System Function (similar to the Application in the Kienhuis’ model) describes the sys-
tem behavior and must not include any architectural implication, e.g. the definition of
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what must be hardware or software. The Microarchitecture (similar to the Architecture in
the Kienhuis’ model) is the set of components used to implement a function. Although
Keutzer states that the most important microarchitecture for embedded systems design
consists of microprocessors, peripheral, dedicated logic blocs and memories, his defini-
tion left open space for other kinds of microarchitectures, including physical or abstract
components. As the definition of microarchitecture is wider in Keutzer’s model, the map-
ping could be more than the definition of which part of the function must be executed in
each processor (as defined in the Kienhuis’ model), so that the mapping could define many
different design decisions, such as the definition of software and hardware, computation
models and interconnection. Therefore, mapping is a refinement step, which may be per-
formed interactively, and is required to determine the performance and cost of a system.
It is highlighted that the more fixed the microarchitecture is, the easier is the mapping
process. However, it limits the design alternatives, thus the design optimality. Figure 2.2
illustrates the Keutzer’s Y-Chart development model. Since the pubication of the Y-Chart,
in 1997 by Kienhuis, Y-Chart is interpreted in many different ways. Henceforth, this text
refers to Keutzer’s Y-Chart development model.

Figure 2.2: Keutzer’s Y-chart.

2.2 Development Processes

A development process is the set of activities systematically performed to transform
requirements into the products. A development process must provide well defined ac-
tivities, containing a systematic view and traceable refinement. Moreover, the existence
of tools to automate or support the development activities is important. A list of com-
mon activities can be identified in different development processes of embedded systems,
such as RUP-SE (RATIONAL, 2002), ROPES (DOUGLASS, 2002), HASoC (GREEN;
EDWARDS, 2002), SHE (GEILEN, 2001), MIDAS (FERNANDES; MACHADO; SAN-
TOS, 2000), and Ptolemy (KALAVADE; LEE, 1992). These activities are requirements
engineering, analysis and design, implementation/synthesis, verification, and test.

2.2.1 Requirements Engineering

During requirements engineering the services and operational constraints of a systems
are established according to stakeholders (e.g. development team and customers). The
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output of this process are requirements, which can be defined in different levels of detail,
ranging from abstract textual description in natural language to a formal definition. In
(SOMMERVILLE, 2004) two requirement levels are distinguished:

• User requirements are statements in natural languages and diagrams, to describe
expected services and constraints under which the system must operate.

• System requirements are precise descriptions of system’s functions, services and
constraints. These requirements contain metrics and units to qualify the expected
system. It is also called functional specification and is used as a contract between
the customers and developers.

Besides the level of detail, the requirements are also classified in (SOMMERVILLE,
2004):

Functional Requirements (FR) define which services a system must provide and how
it must behave or not in some particular situation.

Non-Functional Requirement(NFR) are constraints on services or functions. They can
also be constraints on processes and methods used to develop, forcing standards or tools to
be used. Moreover, NFR may arise from users’ special needs, budget constraints, techno-
logical availability, quality characteristics and others. In embedded system development
typical NFRs to be met are the resource and timing constraints.

2.2.2 System Analysis and Architectural Design

The analysis activity defines what the system is and what it should do. The output
of this activity is an analysis model. The analysis model represents concepts from the
problem domain (e.g. wheels, steer, and transmission in automotive systems), for which
the FRs and NFRs are defined. As much as possible the analysis model specification
should have no architectural implications, which is left to the refinement process. During
this refinement, the analysis model should be mapped to some architecture in the solu-
tion domain (e.g. scheduler, processors, classes, and objects in an embedded system),
represented by the design model. During the design specification, computational and
engineering issues (e.g. scheduling, memory, communication mechanism, processors,
instructions, and others) arise as the relevant problems. In order to find the appropri-
ate software and hardware architecture, different design activities must be performed and
decisions between alternative designs must be taken. A non exhaustive list of design ac-
tivities found in the literature (BERGER, 2001; JERRAYA et al., 2003; MARWEDEL,
2003; VAHID; GIVARGIS, 2001) is highlighted and some references to methods which
implement or describe such activities are given:

• Responsibility distribution and interaction between components - This activity iden-
tifies independent portions of the system, whose functionality can be encapsulated
and made available through ports and interfaces. These portions are called cap-
sules (GEILEN, 2001) or processes (DOUGLASS, 2002). In order to identify these
capsules it is important to identify how the components interact with each other,
which functions will be provided and the required data for each component. Some
methods are described in ROPES (DOUGLASS, 2002), MIDAS (FERNANDES;
MACHADO; SANTOS, 2000) and SHE (GEILEN, 2001);

• Algorithm and data structure selection - This activity selects, among different algo-
rithms and data structures, which ones will be used to implement a specific function
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(MATTOS et al., 2004). It is important to highlight that the quality of an algo-
rithm depends on its implementation as software or hardware (GRATTAN; STITT;
VAHID, 2002). The selection of scheduling algorithms, which impacts on the fi-
nal system characteristics (BECKER; WEHRMEISTER; PEREIRA, 2004), is an
example of such an activity;

• Hardware-Software partitioning - Identifies the ideal portion of hardware and soft-
ware to implement the system’s function. The software portion requires a pro-
cessing unit hardware. Compared to a hardware implementation, the software is
more flexible, though it may consume more energy and processing time. Some
recognized methods for partitioning are described in (KALAVADE; LEE, 1992;
VAHID; GAJSKI; GONG, 1994; GRATTAN; STITT; VAHID, 2002). Notable two
approaches are identified. One advocates that the partitioning must be defined as
early as possible and the software and hardware are developed separated. This ap-
proach is recommended in the processes ROPES (DOUGLASS, 2002), COMET
(GOMAA, 2000) and RUP-SE (RATIONAL, 2002). The second approach rec-
ommends the co-design of hardware and software, postponing the partition to as
late as possible, when specialized algorithms perform automatic partition and syn-
thesis. Such an approach is described in the processes HASoC (GREEN; ED-
WARDS, 2002), MIDAS (FERNANDES; MACHADO; SANTOS, 2000) and SHE
(GEILEN, 2001);

• Communication mechanisms and structures - The system components may require
communication between different interfaces, such as hardware-hardware, software-
software or hardware-software. This communication can be implemented in differ-
ent way, considering protocols, media and structures (e.g. buses and Network-on-
Chip (NoC)). Each implementation offers trade-offs to be considered, in order to
achieve an optimized system. There are methods able to generate interfaces auto-
matically (LAHIRI; RAGHUNATHAN; DEY, 2000) and others to determine the
protocols and configure the required parameters (ORTEGA; BORRIELLO, 1998);

• Task mapping - The specified system tasks (processes or capsules) must be mapped
to processing units to be executed. This activity is related with task scheduling and
influences directly the communication and real parallel processing in the systems.
Automatic methods to perform task mapping are described in (BLICKLE; TEICH;
THIELE, 1998; LIEVERSE et al., 2001). In (DOUGLASS, 2002) a manual heuris-
tic is described and uses UML to specify the mapping, while in (KANGAS et al.,
2006) the method called Koski receives UML models as input and generates the
mapping automatically;

• Hardware allocation - The hardware constituting the system must be connected
to a communication structure such as buses or a NoC as described in (BLICKLE;
TEICH; THIELE, 1998; LAHIRI; RAGHUNATHAN; DEY, 2000);

• Task scheduling - The system tasks must be scheduled if they share some resources,
such as processing units or a bus. The scheduling can be statically defined at design
time, reducing overhead and optimizing some system characteristics (BLICKLE;
TEICH; THIELE, 1998; KANGAS et al., 2006), dynamically defined at run-time
(BECKER; WEHRMEISTER; PEREIRA, 2004), or in adaptive fashion (LU et al.,
2000);
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• Voltage and frequency scaling - The clock frequency and voltage are related to pro-
cessing speed and power dissipation, as such should be adjusted to the system re-
quirements. Design time heuristics to define the frequency and voltage are found in
(VARATKAR; MARCULESCU, 2003), while (SHIN; CHOI, 1999; SHIN; CHOI;
SAKURAI, 2000) describes methods to define them at run-time, adapting the sys-
tems to exploit the free scheduling time to save energy.

As a single problem (analysis model) can be solved by (mapped to) alternative so-
lutions (design models), a design space is composed by all these available alternatives.
During the design phase, an engineer searches manually or automatically in the design
space for the best candidate design according to some design goals and constraints (e.g.
measured by performance and energy consumption). Therefore, the design space is the
set of all alternative designs for all required design activities, and DSE is the systematical
method for searching and evaluating different candidates in the design space. Due to the
different abstraction levels, design activities and DSE can be performed at each level of
refinement, until achieving the final implemented system.

2.2.3 Implementation

Implementation is the phase where the design models are translated manually or auto-
matically into software or hardware components. These components can be implemented
at different abstraction levels, and coded in many different languages. Hardware com-
ponents are usually written at the Register Transfer Level (RTL) using languages such
as VHDL and Verilog, which are synthesized into gate-level models. The software im-
plementation may range from application to real-time operating systems, and they are
usually coded in C/C++ or Java. Synthesis tools and compilers can automate at least parts
of the implementation effort, e.g. by generating glue code to integrate multiple compo-
nents, configuring the operating system or translating the code to a lower abstraction level.
Behavioral synthesis tools can generate hardware modules from behavioral descriptions,
usually specified in C or derivate languages, such as Cynthesizer1, CatapultC2, and Cyber-
WorkBench3. Some domain specific tools are able to generate a full system from design
models described in Simulink4 or UML (WEHRMEISTER et al., 2008).

2.2.4 Verification, Validation and Test

Verification, validation and test are activities used to check if an artifact meets the re-
quirements based on some metrics. The validation determines the correctness of the final
product with respect to the specified requirements. The validation can be accomplished by
verifying the product at the end of each development step. Verification is the demonstra-
tion of consistency, completeness and correctness of functions, components or products
by using different techniques, such as model checking (LARSEN; PETTERSSON; YI,
1997) and testing (HABIBI; TAHAR, 2004). Testing is the examination of the parts of, or
the complete system, by executing them on sample data sets. These activities aim to in-
sure the quality of the product in different development phases, in order to identify errors
and improve the product (ADRION; BRANSTAD; CHERNIAVSKY, 1982).

1http://www.forteds.com
2http://www.mentor.com
3http://www.cyberworkbench.com
4http://www.mathworks.com/products/simulink-coder/index.html
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2.3 Summary

This chapter presented a brief introduction to the embedded system development pro-
cess. First it introduces different development models. This work is based on the Y-Chart
development model combined with PBD as proposed in (KEUTZER et al., 2000). After-
wards, it described the common development phases and identified some design activities.
An informal definition of DSE was presented. The context of DSE in a development pro-
cess was identified. DSE can be earliest performed during the transformation of analysis
to design. Then DSE can also applied to refine the design models at different abstraction
levels until the final implementation is achieved.
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3 DESIGN SPACE EXPLORATION
FOR EMBEDDED SYSTEMS

The first section of this chapter defines DSE and presents a general activity flow. The
following sections are organized based on the Y-Chart approach. As such, this chapter
discusses about modeling languages, which is the requirement to model the application
and platform represented in the Y-Chart. Following, this chapter presents the proposed
solutions for modeling the application, the architectural platform, the mapping of the ap-
plication to a platform and the requirements/constraints. Moreover, this chapter discusses
methods for evaluation of design alternatives and presents the automatic mechanisms im-
plemented to search for solutions within the design space. The chapter ends with a dis-
cussion on the current state of DSE methodologies.

3.1 Design Space Exploration

The great majority of current electronic products, such as mobile telephones, DVD
players, microwave ovens, automotive system controls, and so far, contains an embedded
system. During the development of these systems, a wide range of design alternatives
arises from different design activities. For example, by observing a design example where
15 tasks executing on a 4-processor platform with 4 different voltage settings for each
processor, over 100,000 design alternatives are found. The trends show that the number of
embedded processors increases by 1.4/year and the amount of software doubles every 10
month (SEMICONDUCTORS, 2011). Dealing with this ever-growing challenge only by
designer’s expertise is not feasible, therefore new automated tools for DSE are required,
in order to cope with the estimated growth of complexity.

Definition 3.1 (Design Space Exploration (DSE)):
It is the systematic process of generating and evaluating design alternatives, in order to
find the best design solution for a development problem. In the context of PBD, DSE is
also defined as the process of mapping from an application into a platform, such that
design requirements and constraints are met (KEUTZER et al., 2000).

Definition 3.2 (Mapping):
It corresponds to a set of design decisions required to refine a layer to the next abstraction
level. The set of decisions depends on the degrees of freedom that are given by the mapped
layers (e.g. application and platform in the Y-Chart approach) (KEUTZER et al., 2000).

Most tools for DSE are oriented towards a given subset of design decisions, such as
task mapping and resource allocation, cache and pipeline size definition. The applied tool
chain and the abstraction level define the supported set of design decisions and the design
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space. The main impact of the abstraction level regarding DSE concerns the flexibility
and the easier evaluation of alternative designs. Higher abstraction levels reduce the eval-
uation effort and wide the design space, at the cost of reduction of estimation accuracy.

Definition 3.3 (Design Space):
It is the set of all potential design alternatives that represent a solution for a DSE problem.

Providing both high abstraction level and an estimation method with an adequate bal-
ance between speed and accuracy is one of the main challenges for new DSE methods.
Figure 3.1 illustrates this trade-off between abstraction and accuracy regarding the flexi-
bility of DSE, based on the abstraction pyramid (KIENHUIS et al., 2002).

Figure 3.1: Abstraction Pyramid: The trade-off between abstraction and accuracy impacts
on DSE.
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Independently of the abstraction level, the DSE process should be guided in order to
avoid infeasible system solutions and optimize the system following some design quality
criteria, usually named objectives. The first mean to guide the exploration is the spec-
ification of system NFR or design constraints. The NFRs are related to the quality of
the system (performance, energy consumption, area and other) or related to constraints
on how the functions should be implemented, such as the usage of specific technology,
manufacturer, component versions, and etc. Beyond guiding the DSE process, the NFRs
allow to compare each candidate solution properties with the system requirements. Thus,
it is also necessary to provide methods and tools to extract system metrics in order to
evaluate the alternative solutions and to verify their feasibility and quality. Usual metrics
are related to performance, such as throughput or execution time; other are related to en-
ergy consumption and power dissipation; further, some metrics are related to the financial
cost or to resource utilization, such as area, memory footprint or communication channel
occupation.

Figure 3.2 presents a general DSE process (MARWEDEL, 2003; ASCIA et al., 2011).
The inputs of this flow are the system models with open design decisions, such as the map-
ping of an application into a platform. NFRs and constraints can be provided as different
models or embedded in these models. An exploration mechanism generates candidate
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designs using these models, concerned with the constraints provided, so that only fea-
sible candidates are generated or after the generation a repair stage must be performed.
Then the evaluation step extracts quality metrics from the candidate designs. After the
evaluation, another repair step may be required, in order to remove undesired candidates
from the process. A history registers the candidates, and from this history an engineer can
select the final solution after the process has reached a stop condition.

Figure 3.2: General activity flow for design space exploration (MARWEDEL, 2003; AS-
CIA et al., 2011).

3.2 Modeling Languages

Application descriptions should have no architectural implications, thus the languages
should raise the abstraction level in order to allow maximal flexibility in the DSE. More-
over, the application model language, used as interface between designers and Computer
Aided Design (CAD) tools, should provide both, a precise semantic to be handled by com-
putational algorithms and high expressiveness to allow suitable system specifications.

The utilization of an appropriate language for high-level design ensures the reduction
of time-to-market, efficient communication between design team members and provides
the mechanism to improve reusability and DSE process. Unfortunately, the appropriate
language is not a consensus, due the fact that the selection of a language is strongly re-
lated to the system domain and the MoC used to represent the system. Some instances of
high-level model languages are Simulink, used by DESERT (NEEMA et al., 2003) and
(REYNERI et al., 2001); UML as proposed by Metropolis (UML AND PLATFORM-
BASED DESIGN, 2003), DaRT (BONDé; DUMOULIN; DEKEYSER, 2005), and Koski
(KANGAS et al., 2006); SysML, an extension of UML for system modeling, starting to be
used for design space exploration in (PREVOSTINI; GANESAN, 2006). The work pro-
posed in (SCIUTO et al., 2002), and StepN (PAULIN; PILKINGTON; BENSOUDANE,
2002) use SystemC. As the MILAN framework (BAKSHI; PRASANNA; LEDECZI,
2001) uses model translators, it allows modeling the application with different languages,
including SystemC.

Using Simulink1-based environments the designer represents data-flow functions, usu-
ally found in digital signal processing applications such image, video or audio systems.
The Simulink (functional block) language implicitly represents two MoCs, continuous
time and discrete time. Simulink is able to represent periodic timing using a clock con-
structor. Modeling control algorithms is possible using Simulink and it is widely used
in industry. However, there is not a suitable way to express timing requirements such
as deadline, period, delay, jitter and other information usually required for instance to
perform schedulability analysis. The possibility to express the behavior as equations and

1http://www.mathworks.de/products/simulink/
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reusing pre-defined components is an important characteristic of Simulink. A disciplined
Simulink model can be simulated using special design environments such as Matlab, and
tools such as the Simulink Coder2 are able to generate source code.

UML (OMG, 2007) is a highly expressive language to model a large range of sys-
tems. The expressiveness offered by UML is due to the fact that the model is separated
into different aspects (structural and behavioral), and these aspects can be represented in
different views such as classes, objects, components and deployment for structural as-
pects; and state, sequence, actions for behavioral aspects. Furthermore, profiles allow
strong extensions on main UML constructs. Some of these profiles are standardized by
Object Management Group (OMG)3 and present important rules in embedded systems
design, such as the UML profile for Modeling and Analysis of Real-Time and Embedded
System (MARTE) (OMG, 2011), which is used to model resource concurrence and real-
time requirements and includes hardware and software co-design. However, UML does
not present precise semantics, which harms automatic simulation, verification and system
code generation/synthesis.

SystemC (ACCELLERA, 2011) is a proper language to be used in hardware and soft-
ware co-design, due to the possibility of hardware and software co-simulation and mul-
tiple MoC representation. Using the same representation for the hardware and software
allows for a general design before partitioning, improving DSE. The imperative constructs
inherited from C++ allow model execution and evaluation at different abstraction levels,
and each design unit can represent a simple black box or a complex component specified
at RTL-level. Moreover, it can be combined with graphical modeling languages, such as
UML and Simulink, in order to improve the abstraction and the communication between
design teams.

3.3 Modeling the Application

Beyond the languages used as interface with the designers to express the system struc-
ture, behavior or requirements, the utilization of appropriate internal representations is
required to automate computational analysis. A DSE method should use a representation
based on Models of Computation that are adequate for the target system domain and DSE
activities. We can highlight some internal representation models such as Kahn Process
Networks (KNP) (KAHN, 1974) used by ARTEMIS (PIMENTEL; ERBAS; POLSTRA,
2006), (DWIVEDI; KUMAR; BALAKRISHNAN, 2004) and SPADE (LIEVERSE et al.,
2001); Signal Flow Graphs (LEDECZI et al., 2003) proposed in MILAN (BAKSHI;
PRASANNA; LEDECZI, 2001; MOHANTY; PRASANNA, 2002); Control and Data
Flow Graphs (CDFG) as used in H-SPEX (OLIVEIRA et al., 2007) and (ZIVKOVIC
et al., 2003); other data-flow models used in DaRT (BONDé; DUMOULIN; DEKEYSER,
2005); Network of Concurrent Processes used by Metropolis (BALARIN et al., 2003);
and Task Graphs (BLICKLE; TEICH; THIELE, 1998).

As proposed in ARTEMIS, the application is represented by a KPN, which is a MoC
for modeling distributed systems by representing deterministic sequential processes that
communicate through unbounded First-In-First-Out (FIFO) channels. The KPN is ex-
tracted from an application specified in C, C++ or Matlab language. It represents a set of
concurrent processes. Each process performs sequential computation tasks and commu-
nicates with other processes through uni-directional channels, organized as unbounded

2http://www.mathworks.de/products/simulink-coder/index.html
3http://omg.org/
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FIFOs. The KPN is deterministic, thus the result does not depend of the process execu-
tion order. Some extensions (COFFLAND; PIMENTEL, 2003) on the KPN model, such
as the YAPI (KOCK et al., 2000), introduce non-determinism and allow modeling re-
source scheduling. Another extension adds timing information allowing time-dependent
behavior analysis.

A CDFG is used in H-SPEX and Archer for DSE. In the CDFG, the data flow part
specifies the concurrence presented in the application, whereas the control flow part de-
termines the synchronization of data flow and dynamic path decision at run-time. The
CDFG is a highly precise representation of the application, and usually it is used in code
generation approaches. As suggested in (ZIVKOVIC et al., 2003), the CDFG is more
complex than a Trace Driven representation to be handled and the simulation could be
slower. However, static analysis as implemented in (OLIVEIRA et al., 2007) can speedup
the system evaluation (see Section 3.7).

The main purpose of the MILAN framework is to represent embedded systems de-
signed for signal processing. Thus, an enhanced hierarchical Signal Flow Graph model
was proposed to represent the application. The hierarchical characteristic is proposed to
handle system complexity. The meta-model, which defines the Signal Flow MoC, also
supports explicit alternative implementations. Some additional formalisms have been
included to extend the basic model for DSE purposes. The Signal Flow supports syn-
chronous and asynchronous data-flow semantic, as well as the composition of both mod-
els. The proposed model is strongly typed and the model elements are parameterized to
enable data-flow configuration. The formalism related to data-flow is tailored to support
hardware implementation of the model on Field-Programmable Gate Array (FPGA) or
Application-Specific Integrated Circuit (ASIC). In this model, each element is a hierar-
chical component, which contains well-defined interfaces represented by input and output
ports. The signal flow specifies the partial order of execution through the communicating
components. Object Constraint Language (OCL) (OMG, 2006) constraints are used to
define the precise static semantic of data-flow connections.

The Network of Processes model adopted in Metropolis represents a set of commu-
nicating concurrent processes, where each process contains a sequential program, called
thread. The communication is done through ports, and interfaces declare methods that
processes can use through the ports. A media should implement the interface. The use of
media and threads allow the separation of concerns, where computation and communica-
tion are specified separately. The process behavior is modeled as a sequence of events.
The model supports non-deterministic execution of these events, thus constraints can be
specified as logic formulas in order to restrict the execution.

3.4 Modeling the Architectural Platform

For any formal processing (analysis, mapping of an application, synthesis, etc.), the
architectural platform must be explicitly and formally modeled. This model must express
the architectural components of the platform - Central Processing Units (CPUs), global
memories, hardware intellectual property (IP) components, communication infrastructure
- as well as their specific properties. Examples are processor type and frequency and size
of local memories, in the case of CPUs, or size and access time, in the case of global
memories. Furthermore, the architecture can represent the software layer used to sup-
port the application, such as communication protocols, Operating System, Application
Programming Interfaces (API) and other components. Usually the architectural model
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is based on previously designed components, such as ARM processors, AMBA buses,
specific memory modules, and specific hardware or software IP components, such as an
MPEG4 decoder, VxWorks OS and Dot Net Framework.

Most architectural modeling proposals focus on simulation and evaluation rather than
on search mechanisms, hence not many details can be analyzed from the DSE process
point of view. When architectural models are described in the context of search mech-
anisms, most proposals are strongly coupled with the search mechanism adopted. For
example, some approaches use a list of alternatives, which represents architectural com-
ponents, e.g. list of processors, list of buses, list of memories, which are used in candidate
generation functions encoded in the search mechanism, such as Genetic Algorithms (AX-
ELSSON, 1997; ASCIA; CATANIA; PALESI, 2004; DICK; JHA, 1998; ERBAS; ER-
BAS; PIMENTEL, 2003), Simulated Annealing (AXELSSON, 1997; KANGAS et al.,
2006; OLIVEIRA et al., 2008) and Tabu Search (AXELSSON, 1997). Other approaches
use a tree-based representation encoded in Ordered Binary Decision Diagram (OBDD)
(NEEMA et al., 2003; MOHANTY; PRASANNA, 2002; PIMENTEL; ERBAS; POL-
STRA, 2006).

Few works propose architectural representations independent of the search mecha-
nism. There is proposal for an architectural graph (BLICKLE; TEICH; THIELE, 1998;
OLIVEIRA et al., 2009; SCHLICHTER et al., 2006), which represents an architecture
template. Such a template integrates in one graph multiple alternative architectures, into
which an application can be mapped. Each architecture in the template represents the
resources available, such as processors, buses and memories. Because this representation
is more abstract, architectural information, such as cost, cost functions, and architec-
tural parameters, are annotated directly in the graph (BLICKLE; TEICH; THIELE, 1998)
or associated to another more detailed architectural model (SCHLICHTER et al., 2006;
OLIVEIRA et al., 2009)

From the design point of view, there are many approaches for architecture modeling.
Most of them represent an architecture by adopting different types of data-flow models,
whose vertices represent processors and memories and edges represent buses (ASCIA;
CATANIA; PALESI, 2004; BAKSHI; PRASANNA; LEDECZI, 2001; BALARIN et al.,
1997, 2003; ERBAS; ERBAS; PIMENTEL, 2003; LIEVERSE et al., 2001; LEDECZI
et al., 2003; MOHANTY; PRASANNA, 2002; NEEMA et al., 2003; PIMENTEL; ER-
BAS; POLSTRA, 2006; PIMENTEL, 2008). Other approaches represent only archi-
tectural resources with costs or parameterized functions associated to them, in order
to perform static evaluation of the system (ASCIA et al., 2011; BLICKLE; TEICH;
THIELE, 1998; BONTEMPI; KRUIJTZER, 2002; DICK; JHA, 1998; ERBAS; ERBAS;
PIMENTEL, 2003; MATTOS et al., 2004; MOHANTY; PRASANNA, 2002; REYNERI
et al., 2001).

3.5 Modeling the Mapping

The Y-Chart-based exploration approach allows separation of concerns and enhances
the design space. However, to perform DSE, the application must be mapped onto the
platform and the candidate solution must be represented in some fashion. Alternatives for
reaching the final solution, resulting from this mapping, can be: i) intermediate layer rep-
resenting an architecture in multiple abstraction levels (ERBAS; ERBAS; PIMENTEL,
2003; MIHAL et al., 2002; PIMENTEL; ERBAS; POLSTRA, 2006); ii) synchroniza-
tion of traces from the application event with architecture events, as used in Metropo-
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lis (BALARIN et al., 1997); iii) explicit mapping from application elements into ele-
ments from architecture(BAKSHI; PRASANNA; LEDECZI, 2001; BLICKLE; TEICH;
THIELE, 1998; LEDECZI et al., 2003; SCHLICHTER et al., 2006).

The mapping by successive refining architectural layers is implemented in the Sesame
tool of the ARTEMIS (PIMENTEL; ERBAS; POLSTRA, 2006) project. The final refine-
ment of the mapping layer with virtual processors represents the final solution. The event
traces generated by Kahn processes of the application model are mapped onto virtual pro-
cessors on the mapping layer. Both the Kahn’s buffers and channels are also mapped onto
size-restricted buffers and channels on the mapping layer. Sesame is able to automati-
cally generate the mapping layer from the explicit mapping specification in the Y-Chart
Modeling Language (YML) (COFFLAND; PIMENTEL, 2003). The mapping of virtual
processors onto the architecture is specified in YML and can be freely adjustable in order
to perform the DSE. For new mappings, modifications in the application is not required,
thus the same application can be used for many architectures. When virtual processor
models are refined, the mapping model layer is also refined through data-flow analysis
and trace transformation. The application model is not changed during the refinement of
the mapping layer and of the architectural model, so that it can be reused for alternative
refinements. At the end of the process, the mapping layer and the architectural model
together correspond to the final solution.

The Metropolis method uses a network, which encapsulates the network of the appli-
cation events and the network of provided architectural services. Then, this new network
is the mapping model, which synchronizes the events of the application with events of the
architecture generated from decomposed services, for which the application components
were mapped. The synchronization mechanism is made of constraints, which are written
as logic formulas.

The most common alternative to perform the mapping and represent the final solution
is by direct mapping between application and architecture elements. In the approach
proposed in (BLICKLE; TEICH; THIELE, 1998), the explicit mapping is specified by a
specification graph and “activations”. The specification graph consists of compositions
of dependence graphs, which represent the application and architecture models. In order
to compose these graphs, mapping edges are manually specified, in such a way that they
connect vertices from one graph into vertices of another one. The specification graph
defines the design space and user constraints for allocation, binding and scheduling. The
term “activations” specifies the set of nodes and edges active in the specification graph.
A set of active nodes and edges represents an implementation, i.e., a candidate design.

A similar approach for direct mapping is implemented in MILAN (BAKSHI; PRA-
SANNA; LEDECZI, 2001), where the mapping model specifies the available mappings
of each data-flow component in the application model onto components at the resource
model (architectural model). The mapping is represented by one or more references be-
tween components in both application and architecture models. These multiple references
represent the alternative designs available during the DSE process. Additionally, values
for performance and power can be attached in the references in order to guide the explo-
ration algorithm. The mapping model also determines the channel, which implements the
communication between data-flow tasks.
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3.6 Modeling the Requirements and Constraints

Differently from the FR, which imply the explicit activities that a computing system
must handle, NFR (which include design constraints) are somewhat hidden from the main
application, though being critical for the correct system functioning. Hence, NFR encap-
sulate the system quality, its attributes and restrictions (FREITAS, 2007). The DSE pro-
cess is motivated by attempting to find an optimal architecture to support the functional
requirements and that architecture must meet the NFR. Therefore, applying an efficient
requirements analysis method and best specification practices is imperative to successful
DSE.

In the DSE methods, NFR are rarely argued, concerning the influence of requirement
analysis and specification on the DSE. However, most of them present some mechanism
to specify at least the constraints in order to prune the design space and avoid infeasible
designs.

The most common and simple approach is annotating the constraints over the mod-
els. Metropolis, Koski (KANGAS et al., 2006) and Milan (BAKSHI; PRASANNA;
LEDECZI, 2001) use OCL from OMG to specify the design constraints annotated over a
UML models. In (THEELEN; PUTTEN; VOETEN, 2004), OCL is used together with an
UML profile called UML-SHE to annotate requirement formulas and specify the system
model. By using the UML-SHE profile the resulting models can be translated into the
POOSL language, which provides the formalism required for system execution, require-
ment validation and design space pruning. Following the DESERT method (NEEMA
et al., 2003), designers express the compatibilities, inter-aspect and resource constraints
for refining a design element into one from the set of possibilities specified in the design
space model. The constraints are expressed in OCL formulas specified not on the func-
tional model, but instead on the design space model. These approaches are more flexible,
because they offer a rich language for constraints definition, although the usage of OCL
still limits these approaches to special types of constraints, such as limiting the number of
instances or composition of elements.

In other approaches, constraints are defined by the specification of edges (BLICKLE;
TEICH; THIELE, 1998; SCHLICHTER et al., 2006). The edges define the possible allo-
cation and mapping, so that tasks in an application graph can only be mapped into proces-
sors if there are specification edges connecting them. Therefore, additional alternatives
are defined by including more specification edges.

A more general way to specify NFRs and constraints is by using model-to-model
transformations rules, such that the rules can be used to operate a model, in order to guide
and prune the design space (OLIVEIRA et al., 2009; JACKSON et al., 2009; SCHATZ;
HOLZL; LUNDKVIST, 2010). Other approaches define proprietary languages for speci-
fication of the design space and constraints (SAXENA; KARSAI, 2010; SILVANO et al.,
2010).

3.7 Evaluating Design Alternatives

DSE must be performed at a high-level of abstraction in order to be efficient. If assess-
ing each candidate solution requires its detailed synthesis and cycle-accurate simulation,
design time will be prohibitive. Automatic exploration tools, based for instance on ge-
netic algorithms or simulated annealing (see Section 3.8), must rely on fast evaluations
in order to explore dozens of solutions in a few seconds or minutes, finding sub-optimal
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solutions that can be later refined, either when post-synthesis, cycle-accurate simulations
are possible or by performance simulation tools.

The evaluation approaches differ widely concerning the DSE objectives. The most
used approach is based on simulation, such as the Trace-based simulation used by ARTE-
MIS (PIMENTEL; ERBAS; POLSTRA, 2006) and SPADE (LIEVERSE et al., 2001).
Instructionlevel simulation is used by (ASCIA; CATANIA; PALESI, 2004) for platform
tuning. By using cycle-accurate simulation, PLATUNE (GIVARGIS; VAHID, 2002) eval-
uates solutions also for platform tuning. The approach proposed by the MILAN frame-
work and its tools (BAKSHI; PRASANNA; LEDECZI, 2001; LEDECZI et al., 2003;
MOHANTY; PRASANNA, 2002) is simulation at several abstraction levels, starting with
data sheets and rough estimates or pre-characterized components’ information, after that
trace-driven simulation and then specific simulation using cycle-accurate simulation. The
integration of MILAN and HiperE (MOHANTY; PRASANNA, 2002) allows hierarchical
evaluation. The HiperE approach is divided into two steps. In the first step, HiperE uses
one of the evaluation mechanisms provided by MILAN to simulate and extract the com-
ponents’ individual properties, then in the second step it performs system-level estimation
by using the information extracted from the previous step. The first step exploits the hi-
erarchical representation of the application, where each component can have a behavioral
script. These scripts can be highly abstract or completely detailed.

Some other approaches are employed, such as symbolic programs used in Archer
(ZIVKOVIC et al., 2003) or different types of high-level analytical estimates as com-
position functions used in ARTEMIS (NEEMA et al., 2003) and curve fitting used in
(REYNERI et al., 2001). More simple approaches are also used to quickly extract sys-
tem properties and perform DSE such as fixed cost (AXELSSON, 1997; BLICKLE; TE-
ICH; THIELE, 1998; DICK; JHA, 1998; ERBAS; ERBAS; PIMENTEL, 2003) or anal-
ysis based on previously characterized library, as in (MATTOS et al., 2004; DICK; JHA,
1998; REYNERI et al., 2001). Other methods combine different approaches in order to
improve the estimation accuracy and reduce the estimation time and/or use a different
approach for each step of DSE, such as in (MOHANTY; PRASANNA, 2002; ERBAS;
ERBAS; PIMENTEL, 2003; OLIVEIRA et al., 2006).

SESAME (PIMENTEL; ERBAS; POLSTRA, 2006) implements the trace-based sim-
ulation approach to compose the ARTEMIS (PIMENTEL, 2008) environment. In the
trace-based simulation, each process of the Kahn Process Network, extracted from the
application model, is executed for a virtual processor. The process execution generates
the trace, a sequence of application events for each process, which is used during sim-
ulation. The virtual processor is a mapping layer, which reads the application trace and
dispatches the events to the architectural platform model. During the design exploration
process, an exploration tool or designer can change the mapping to evaluate another can-
didate solution without changes in the application trace.

The Platune environment (GIVARGIS; VAHID, 2002) is a platform-tuning framework
used to select appropriate architectural parameter values, for a given application mapped
onto the parameterized System-on-Chip (SoC) platform, in order to meet performance
and power objectives. Platune is composed of tightly integrated cycle-accurate simula-
tion models for SoC components (e.g. processors, memories and buses). Then power
models based on gate switching activities for each component must be parameterized ac-
cording to the parameterization of the respective component. The behavioral simulator
collects the consumed cycles and detailed statistics on the internal activity. The processor
power model uses an instruction-based approach. The power consumption is calculated
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considering all executed instructions and register file accesses, and a preview gate-level
simulation is used to calibrate the instruction-level information. These simulation models
capture dynamic information essential for computing power and performance metrics.

An analytical approach based on a non-linear method is presented in (BONTEMPI;
KRUIJTZER, 2002) to estimate execution time. The proposed method consists of two
phases: i) using the lazy learning algorithm in order to build a model for curve-fitting
(training phase); ii) use the produced model to estimate properties from a system (test
phase). During the training phase a profiler extracts a functional signature vector for
a virtual processor from a benchmark set. The function signature vector contains the
instruction types that appear in the code and the number of times each instruction type is
executed. This functional signature is theoretically independent of the target architecture,
so it can be reused for estimation with different processors. An architectural signature of
the target processor is also extracted, which uses the number of memory wait cycles and
the ratio between the Central Processing Unit (CPU) clock and bus clock as parameters.
The functional and architectural signatures and the number of clock cycles needed to
execute each application in the benchmark set are the inputs for the model-training phase.
During the test phase the profile for the application is used as input for the trained model.

HiPerE (MOHANTY; PRASANNA, 2002) is a high-level performance estimator pro-
posed to guide performance evaluation and mapping in SoC architectures. The input
for the HiPerE simulator is an architecture and application described in Generic Model
(GenM). A GenM description models the SoC architecture capabilities that will be used
to optimize the application mapping. The SoC architecture consists of three components:
a processor, reconfigurable logic, and memory. GenM describes the different architecture
configurations, such as voltage operations of the processor, power states for the mem-
ory, and reconfiguration cost for the reconfigurable logic. In GenM, an application is
described as a task graph. For each task, a set of performance parameters is given by
the designer, for instance, the amount of input and output data to/from memory and the
time and energy for executing the task at a given voltage. The initial estimations can be
obtained by analytic methods. The authors show an example describing performance and
energy as a function of the operational frequency. To improve the accuracy of these ini-
tial estimations, the authors propose linking GenM with a simulation-based framework in
order to estimate the performance of an individual task with more accuracy. This frame-
work, called MILAN, takes the task description (in C) and generates the scripts as well
as the configuration files necessary to launch the simulator and to obtain the performance
and power estimation. Using a symbolic simulator, HiPerE can verify the performance
(latency in completing the task graph execution) and the energy for a given mapping. This
fast symbolic simulation enables system optimization in terms of power consumption or
performance.

A combined approach is described in (REYNERI et al., 2001). This approach provides
an IP library, and for each hardware components there is a model based on a second order
curve-fitting process from real implementation data in order to estimate chip area, byte
size, clock cycles, energy per operation and other system properties. For software com-
ponents estimation the method proposed in (LI; MALIK, 1995) and (TIWARI; MALIK;
WOLFE, 1994) is applied, which provides the worst case execution time and power esti-
mation by formulating an Integer Linear Programming (ILP) from a CDFG. This CDFG
is extracted from basic blocks after the compilation for the target platform. The simula-
tion on the Matlab Simulink Environment provides the overall estimation for the system,
computed based on individual figures estimated from each system component by using
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their associated models.
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3.8 Automatic Exploration Mechanisms

The design space is usually too large, the decision problem is often NP-hard and eval-
uating all design alternatives would require too much time. An efficient way of pruning
the design space and evaluate only interesting solutions is needed. This requires adequate
search mechanisms. Usually an engineer can not freely choose from all alternative design
decisions, so that one restricts the search according to previous design decisions or/and
constraints - e.g. number and type of processors or/and cost and performance.

The search for solution of two important synthesis tasks, namely allocation (selection
of components) and mapping between selected components from an architectural template
are NP-hard (BLICKLE; TEICH; THIELE, 1998). Besides the allocation and mapping,
the determination of configuration parameters (knobs) of an architecture is also NP-hard
(MOHANTY; PRASANNA, 2002).

Because the design space presents a large number of alternative designs, usually the
design decisions are taken in two different steps in order to manage the complexity. The
first step focuses on system level design, which has a coarse grain DSE dedicated to global
decisions such as hardware allocation, hardware and software partitioning, task mapping,
and scheduling. Most DSE proposals concentrate on this kind of DSE, such as (BAKSHI;
PRASANNA; LEDECZI, 2001; BALARIN et al., 2003; BLICKLE; TEICH; THIELE,
1998; BONDé; DUMOULIN; DEKEYSER, 2005; DICK; JHA, 1998; DWIVEDI; KU-
MAR; BALAKRISHNAN, 2004; ERBAS; ERBAS; PIMENTEL, 2003; KANGAS et al.,
2006; LEDECZI et al., 2003; MIHAL et al., 2002; PIMENTEL; ERBAS; POLSTRA,
2006). These methods usually perform DSE at a high abstraction level, where the design
space has more alternatives and the optimization provides better results (MATTOS et al.,
2004; THEELEN; PUTTEN; VOETEN, 2004), and rely on heuristic methods to search in
the design space. In the other step, platform tuning is performed, by which the established
system architecture is fine-tuned according to system requirements. Platform tuning is a
special type of DSE, by which a system is usually evaluated using lower abstraction level
models in order to establish values for local configuration parameters, for instance cache
configuration, bus width and buffer size. The methods proposed in (GIVARGIS; VAHID,
2002; ASCIA; CATANIA; PALESI, 2004) are examples of platform tuning environments.
Few tools cover both high-level DSE and platform tuning, such as the work presented in
(MOHANTY; PRASANNA, 2002).

We can distinguish two classes of search methods, the exact and the heuristic methods
(ROTHLAUF, 2011). The former methods guarantee that the optimal solution can be
found. The latter efficiently sample some point in the design space, however, without
guaranteeing that the optimal solution can be found.

Exact methods enumerate all possible design points in the space. Some tools uses
dynamic programming (MOHANTY; PRASANNA, 2003; DWIVEDI; KUMAR; BAL-
AKRISHNAN, 2004), others use exhaustive enumeration with special methods to prune
the design space, by specifying parameter dependencies (GIVARGIS; VAHID, 2002; GI-
VARGIS; VAHID; HENKEL, 2002). Symbolic techniques are also used, such as OBDD
(NEEMA et al., 2003; MOHANTY; PRASANNA, 2002; PIMENTEL; ERBAS; POL-
STRA, 2006) and Satisfiability Problem (SAT) solvers (ANDERSEN et al., 2012). As
their effort to solve NP-problems increases exponentially with the problem size, they are
not applied to explore large design spaces. However, these methods find their utilization
in specific types of problems.

The heuristic methods exploit properties of the problem to sample some points in
the design space, following some search strategy. In order to provide adequate coverage
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strategies they may incorporate design knowledge and combine multiple algorithms, such
as global and local search. Some examples of this approach uses Genetic Algorithms
(AXELSSON, 1997; ASCIA; CATANIA; PALESI, 2004; BLICKLE; TEICH; THIELE,
1998; DICK; JHA, 1998; ERBAS; ERBAS; PIMENTEL, 2003), Simulated Annealing
(AXELSSON, 1997; KANGAS et al., 2006; OLIVEIRA et al., 2008) and Tabu Search
(AXELSSON, 1997). One work has also investigated the application of OBDDs, Multi-
valued Decision Diagrams (MDD) and SAT solvers, in order to improve an heuristic
algorithm called Strength Pareto Evolutionary Algorithm (SPEA2)(SCHLICHTER et al.,
2006).

3.9 Discussion

After many years of research in this field, there is still a lack of information to evaluate
and compare these methods (GRIES, 2004). The main problem for the evaluation is the
lack of standard benchmarks and metrics to allow extracting concrete measurements re-
lated to DSE. Moreover, the different languages, models and abstraction levels make com-
plex the experimental setup required to produce metrics for comparison. Such a situation
makes it difficult to point out different contributions and evolution of the methodologies.

The pressure to reduce the time-to-market and the ever growing design complexity
enforce the adoption of languages and MoCs at higher abstraction levels. Languages such
as Simulink and UML are extended, such as by Simulink CAAM, MARTE and SysML,
in order to comprise the new requirements for embedded system design, which must deal
with multiple systems aspects. Simultaneously, exploitation of executable models and
virtual prototypes bridges the gap between abstraction levels, such as by using models
described in xtUML or SystemC.

The richest diversity among DSE methods are methods adopted for evaluation of de-
sign candidates. Each approach focuses on specific abstraction levels and system informa-
tion to perform the exploration activity. Thus, a large set of tools is necessary to comprise
the entire system design. Furthermore, the design space search mechanisms rely on sys-
tem properties provided by the current evaluation approaches using simulation at several
levels or imprecise information provided by the designer by using ad hoc methods. This
results in time consuming automatic DSE or waste of effort by manual integration of
tools.

Most of all automatic design space exploration methods rely on a heuristic search.
That leads to no guarantee to find the best solution. However, due to the current complex-
ity of the design space, the time to apply exact methods is still prohibitive, until one finds
more efficient methods to prune and guide the process. Earlier methods for DSE do not
provide methods to apply constraints defined by an engineer, and their limited constraints
are embodied inside the tools and in the search method. Newer methods use more abstract
modeling languages, such as UML, and allow limited specification of constraints, e.g. by
using OCL. However, few works allow some integration between search methods and
constraint specification. The works that allow such integration apply MDE techniques
and are discussed in Chapter 4.

An item missing in the discussion of DSE is the guarantee that the solution found is
correct and satisfies all requirements. Although some methods rely on few requirements
to prune the design space, none work presents integration of DSE to the full requirements
of the system and the verification process. Only the work in (SCHLICHTER et al., 2006)
presents an investigation on the improvement of the solution generated by heuristics, in
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order to improve feasibility and satisfaction of requirements.
Finally one can highlight that most of the DSE methodologies focus on System-Level

design decisions, so that the usually supported DSE activities are architectural allocation
(considering memories, processor and buses), task mapping to the architectural template
and task scheduling. However, other design decisions must be made during the develop-
ment process. Some works focus on other activities, such as configuration of platform
parameters, composition of components selected from a library, etc. However, few works
present a proposal to improve the flexible support for exploration of different design activ-
ities. Moreover, the generation of design candidates is coded inside the tools and cannot
be changed, because most of the DSE tools are black box tailored for a specific domain.
Only few tools present limited mechanisms for user-defined constraints or support the in-
clusion of the user expertise to guide the DSE. The metrics required to evaluate a design
candidate may vary according to design activities to be performed. In this way, different
evaluation tools may be required too. However, many approaches for DSE are tightly
coupled to an evaluation tool, and make assumptions on the domain of the application
and how the design is specified. They are bound to design languages, MoCs and design
activities. The focus of DSE methodologies is the automation of design activities and
computational support for design decisions. However, few methodologies provide means
to integrate the DSE methodology into a comprehensive development process. In this way
they either leave a gap between the design artifacts and the DSE inputs or are restricted to
specific artifacts and languages.

The first works on DSE were published by the end of the 80’s. DSE has been further
investigated after the emergence of hardware and software co-design in the 90’s (WOLF,
2003). After more than 20 years, DSE methods still represent an important research topic,
as observed in reviews on DSE (GRIES, 2004; VEGA-RODRIGUEZ, 2013), and co-
design (DENSMORE; PASSERONE; SANGIOVANNI-VINCENTELLI, 2006). How-
ever, there are still many challenges to be overcome and tools start finding their way in
the industry, such as modeFrontier4, System Architecting5, and Platform Architect6.

4http://www.esteco.com/modefrontier
5http://www.cofluentdesign.com/index.php/en_US/Products_Services/cofluent-studio/system-

architecting.html
6http://www.synopsys.com/Systems/ArchitectureDesign/pages/PlatformArchitect.aspx
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4 MODEL DRIVEN ENGINEERING
OF EMBEDDED SYSTEMS

This chapter introduces the basic concepts of MDE and some tools to provide the
technological framework to support an MDE methodology. It also presents the state-of-
the-art on available MDE methodologies for Embedded Systems in general and on DSE
in particular. Finishing this section a discussion on the state-of-the art is presented.

4.1 Motivation

In order to overcome the difficulty in rising the abstraction level and to improve the
automation of the design from the initial specification until the final system, research ef-
forts look for modeling methods, formalisms, and suitable abstractions to specify, analyze,
verify, and synthesize embedded systems in a fast and precise way.

The main motivation for using models in the design of embedded systems is abstrac-
tion. Abstraction helps us to understand a complex system, hiding irrelevant information
to solve a specific problem. However, abstraction alone does not improve the devel-
opment. Accuracy is required, so that models truly represent a specific system view. A
model must clearly communicate its intent and must be easy to understand and to develop,
in order to be effective (SELIC, 2003).

A prominent effort that attempted to use models in order to raise the abstraction
and automate development tasks resulted in the Computer Aided Software Engineering
(CASE) tools. CASE tools provide graphical representations for fundamental program-
ming concepts and automatically generate implementation code from them. The main
purpose of these tools was to reduce the effort of manually coding, debugging and port-
ing programs. However, due to the limited platforms existing at that time, the code to
be generated was too complex for the available technology. Moreover, the graphical rep-
resentations were too generic and poorly customizable, and thus they could not support
many application domains. Nowadays, these limitations have been drastically reduced,
due to object-oriented languages and development frameworks, which make the reuse of
software components easier. However, these development frameworks and platforms are
extremely complex and evolve quickly, causing a fragmented view due to multiple tool
integrations required for developing new applications (SCHMIDT, 2006).

Although models are used in any engineering domain, only recently they start playing
a central role in the development embedded systems (SELIC, 2003). MDE (KENT, 2002)
has been proposed to improve the complexity management and also the reusability of
previously developed artifacts. MDE raises the design abstraction level and provides
mechanisms to improve the portability, interoperability, and maintainability of models.
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4.2 Model-Driven Engineering

The MDE approach was proposed to overcome the limitation of the object technol-
ogy to raise the abstraction and to deal with the increasingly more complex and rapidly
evolving systems we are developing today. It is defined as:

“A set of well defined practices based on tools that use at the same time
metamodeling and model transformation to achieve some automation goal
in the production, maintenance or operation of software-intensive systems.”
(BEZIVIN, 2005)

Proposing that “Everything is a model”, MDE promotes the paradigm shift required to
the necessary evolution (BEZIVIN, 2005). Although the central concept of this proposal
- model - still has multiple definitions, a consensual definition of model and modeling is:

“Modeling, in the broadest sense, is the cost-effective use of something
in place of something else for some cognitive purpose. It allows us to use
something simpler, safer or cheaper than reality instead of reality by some
purpose. A model represents reality for the given purpose; the model is an
abstraction of reality in the sense that it cannot represent all aspects of real-
ity. This allows us to deal with the world in a simpler manner, avoiding the
complexity, danger and irreversibility of reality.” (ROTHENBERG, 1989)

Since the main principle of MDE is that “Everything is a model”, models play a
central role in the development process, thus defining the scope of MDE proposed in
(KENT, 2002). The basic concepts to support the MDE principle are system, model,
metamodel, and the relations between them, so that a model represents a system and
conforms to a metamodel (BEZIVIN, 2005). Such concepts were organized in 3+1 layers
(BEZIVIN, 2005) and are illustrated in Figure 4.2(a).

Figure 4.1: MDE Basic concepts: (a) Layered organization; (b) Model transformation.



61

Formally, a model in MDE is a graph composed of elements (vertices and edges),
where each element corresponds to a concept in a reference graph (metamodel) as defined
below:

Definition 4.1 (Directed Graph):
G = 〈VG, EG, δs, δt〉 is a directed graph defined by:

VG is the set of vertices VG = v0, v1, . . . , vn ∈ G, also denoted by G (V ).

EG is the set of edges EG = e0, e1, . . . , en ∈ G, also denoted by G (E).

δs is the function δs : EG → VG, which returns the source vertices of an edge.

δt is the function δt : EG → VG, which returns the target vertices of an edge.

Definition 4.2 (Model):
Mo = 〈G,ω, µ〉 is a model defined by:

G is a directed graph as stated in Definition 4.1.

ω is itself a model, named reference model of Mo, associated to a graph Gω =
〈Vω, Eω, δs, δt〉.

µ is a function µ : NG ∪ EG → Nω, which associates elements (vertices and
edges) of G to nodes of Gω (metamodel).

A metamodel is a model, which is a reference model for other models, so that it
defines classes of models that can be produced conforming to it. It is an abstraction,
which collects concepts of a certain domain and the relations between these concepts.

Models are operated through transformations, aiming at the automation of some devel-
opment activity. Such transformations define clear relationships between models (BEZI-
VIN, 2005) and usually are specified in a specialized language to operate on models.
Following the description in (GASEVIC; DJURIC; DEVEDZIC, 2009), a model transfor-
mation means converting one or more source models to a target model, where all models
conform to some metamodel, including the model transformation itself, which is also a
model. Figure 4.2(b) illustrates the concept of model transformation in the MDE context.

Model transformation plays a key role in MDE and has many applications, such as:
generating low-level models from high-level ones, generating development artifacts and
source code, mapping and synchronizing models, creating query-based views of a system,
model refactoring, reverse engineering, model verification, and others (CZARNECKI;
HELSEN, 2006). Based on the possible applications of model transformations, they can
be classified in:

• Model-to-Model, when the source and target of the transformation are models, e.g.
transformation from UML to a Relational Data Base (RDB) schema or from a Plat-
form Independent Model (PIM) to a Platform Specific Model (PSM);

• Model-to-System, characterizing a generation from model to system, which can
include program code or any other artifact, e.g. UML to Java or Simulink to C++;
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• System-to-Model, meaning a reverse engineering, such as from Java code to a UML
model or from Java code to a business model.

4.3 Technological Frameworks

Technological frameworks (FRANCE; RUMPE, 2007) are tools to support different
operations and common tasks for MDE independently from the application domain. Such
tools rely on standards, such as Model-Driven Architecture (MDA) (OMG, 2003), Model
Integrated Computing (MIC) (SZTIPANOVITS; KARSAI, 1997), and Software Facto-
ries, in order to generalize the manipulation of models, providing facilities such as per-
sistence, repository management, copy, etc. They are the technological support of MDE
principles. An overview on some standards and tools are presented in the next subsec-
tions.

4.3.1 MDE Standards

4.3.1.1 Model-Driven Architecture

MDA (OMG, 2003) is a standard proposed by OMG for software development. The
main purpose of MDA is the abstraction of platforms, so that the business models can be
reused as the technological platform evolves. MDA integrates different OMG standards,
such as Meta-object Facility Specification (MOF) for metamodeling, UML for system
modeling, Software Process Engineering Metamodel (SPEM) for process modeling, and
Query/View/Transformation (QVT) for model transformation. In order to separate busi-
ness and application models from the underlying platform, MDA advocates three model-
ing dimensions (view points):

• The Computation Independent Model (CIM) focuses on the required features of the
system and on the environment where it must operate;

• Platform Independent Model (PIM) focuses on business functionality and behavior,
which are unlikely to change from one platform to another;

• Platform Specific Model (PSM) describes platform specific details integrated with
elements of PIM.

The relationship between PIM and PSM in MDA can be established by automatic or
semi-automatic mechanisms, specifying a mapping between these models. MDA suggests
that this mapping can be specified by using QVT, so that a transformation engine can gen-
erate the automatic transformation from PIM to PSM. The languages used to express these
models are defined by means of metamodels using MOF, which are able to represent ab-
stract and concrete syntax, as well as the operational semantics of the modeling language.
Originally, MDA was proposed for enterprise architectures that use platforms, such as
Java2EE, CORBA, VisiBroker, and WebSphere. However, as using the MDA approach
the development of systems can be focused on aspects that do not involve implementation
details, many other domains start considering the MDA approach, such as real-time and
embedded systems. Therefore, MDA and the experience with OMG standards are in the
origins of MDE.



63

4.3.1.2 Model Integrated Computing

MIC (SZTIPANOVITS; KARSAI, 1997) is an initiative from Vanderbilt University.
In this approach, models representing different views capture the designer’s understand-
ing of the computer-based system, including information process, physical architecture,
and operating environment. A formal specification of the dependencies and constraints
among these models allows for the generation of tools to solve an entire class of problems.
MIC proposes a two-steps development process. In the first step, a domain-independent
abstraction is used to formally define a domain specific environment and the required
models, languages and tools. In the second step, three typical components delivered from
the previous phase are used for system engineering:

• A graphical model builder is used to specify domain specific models. Constraints
explicitly defined at meta-level allow model testing;

• A model database stores domain specific multi-view models using a multi-graph
architecture;

• Model Interpreters are used to synthesize executable programs from the domain
specific models and generate data structures for the tools.

MIC has a strong influence on the principles of MDE as it has a wider basis on engi-
neering of systems than MDA. Moreover, the two-step process advocated by MIC is close
to the idea of Technological Frameworks as a basis of development for Domain Specific
Engineering Tools present in the MDE approach.

4.3.1.3 Microsoft Software Factories

The main idea behind the Software Factories (GREENFIELD; SHORT, 2003) is to
introduce patterns of industrialization in the software development. It is “a software prod-
uct line that provides a production facility for the product family by configuring extensible
tools using a software template based on a software schema” 1

A Software Factory Schema describes the artifacts that comprise a software product.
It is represented by a graph, where vertices are viewpoints and edges are relationships be-
tween viewpoints (mapping). Each viewpoint defines the tools and materials required by a
concern in a specific abstraction level. Attached to a viewpoint, a microprocess is defined
for producing the artifacts described in the viewpoint. Such a process is constrained by
preconditions, post-conditions and invariants that must hold when the view is stabilized.

A Software Factory Template is the collection of Domain Specific Languages (DSL),
patterns, frameworks and tools described in the Software Factory Schema, which is made
available to developers, in order to create a specific software product.

4.3.2 MDE Tools

The MDE approach has a practical relevance only if it can produce and transform
models bringing considerably more benefit than the current practices. Therefore, to en-
hance the value of models, they must become tangible artifacts, which can be simulated,
verified, transformed, and so on, and the burden for maintaining these models in synchro-
nization with the produced system must be reduced (KENT, 2002).

1http://msdn.microsoft.com/en-us/library/ms954811.aspx



64

Supporting tools are essential to provide all benefits of MDE. This section describes
some MDE tools, focusing on tools supported by the Eclipse Modeling Project 2. Eclipse
Modeling Project provides a unified set of modeling frameworks, tooling, and standards
implementations.

4.3.2.1 Metamodeling/Abstract Syntax

As the model is the most important artifact in MDE, defining the class of models
an MDE process must work on is one of the first steps. This is done by metamodeling,
which defines the structured data types used to represent a system (abstract syntax). In the
Eclipse Modeling Project, metamodels are defined conforming to ECORE, a metameta-
model (layer 3 in Figure 4.1) defined by the Eclipse Modeling Framework (EMF). EMF
is a projection of ECORE and of the models conforming to it, into Java API. It provides
code generation facilities and tools to build model editors and to compare, query, persist
and validate models. As most tools in Eclipse Modeling Project are based on ECORE and
EMF, and many other projects make use of EMF, ECORE is a de facto standard.

Besides Ecore metametamodels and EMF, other metamodeling tools are found. Ker-
meta 3 is based on the OMG standard Essential MOF (EMOF), which was originated from
ECORE and kernel Meta Meta Model (KM3), a metametamodel proposed in (JOUAULT;
BéZIVIN, 2006). MetaGME is a metamodeling tool, which implements the metamodel-
ing concepts for MIC. Originally, its metametamodel was called Multigraph Architecture.
Newest versions use UML class diagrams notation and OCL for metamodeling.

4.3.2.2 Concrete Syntax

A concrete syntax for a Domain Specific Modeling Language (DSML) can be defined
using the tools from the Eclipse Graphical Modeling Project. It provides tools, such as
GMF Notation and Graphiti, to specify the concrete syntax and to generate an editor to
express models graphically.

The definition of the concrete syntax of languages expressed as text is also possible
by using tools such as Xtext. It provides a simple EBNF language, which is used to define
grammars, a generator to create a parser, an AST-metamodel (implemented in EMF), and
a Eclipse text editor for the defined language.

4.3.2.3 Model Development

For common general purpose and domain specific languages, there is no need to build
new editors as good tools can be found, such as Magic Draw, Enterprise Architecture
and Rhapsody for modeling with UML. Simulink and Scade are DSML’s commonly used
for control engineering and signal processing and specialized tools for that are also pro-
vided. Eclipse Model Development tools provide model editors for some standards such
as UML, Extensible Markup Language (XML), and OCL.

4.3.2.4 Model Transformation

Since model transformation is the key operation for MDE, many transformation en-
gines and languages were proposed. However, after the experience with first languages, a
discussion on classification (CZARNECKI; HELSEN, 2006) and quality metrics (AMS-
TEL; LANGE; BRAND, 2008) is starting to take place in the research agenda, so that a

2http://www.eclipse.org/modeling/
3http://www.kermeta.org/
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standard with high adoption may rise.
Eclipse Modeling Project had many model-to-model transformation languages, but

now the efforts concentrate on ATL and in a reference implementation of QVT, the QVT
Operational. Other languages are provided as Eclipse projects or Eclipse plug-ins, such
as VIATRA II and GReAT.

Model-to-text (Model-to-System) transformation is provided by EMF through three
different template-based languages: Java Emitter Template (JET); Acceleo, which is an
implementation of an OMG standard, named MOF to Text Language; and Xpand, which
was initially an openArchitecturalware component.

4.4 MDE Methodologies for Embedded Systems

In (FRANCE; RUMPE, 2007) two classes of MDE tools were identified. One was
called MDE Technology Framework, which supports the MDE process by providing
tools for different operations and common tasks, independently from development do-
main, such as metamodeling, transformation engines and languages, debugger, tracing
and other facilities. These tools rely strongly on standards. Some of them were presented
in the previous section, such as the tools provided by the Eclipse Modeling Project. The
other class of tools adopts an MDE framework to provide Domain Specific Application
Development Environments (DSAEs), which aggregate domain specific knowledge to de-
fine relations between models and how these models could be refined. In this thesis the
term Domain Specific Model-Driven Engineering Tools (DSMDET) is used, in order to
highlight the fact that some tools rely on MDE technological framework to engineer not
only software, but systems, which may be also composed hardware, electrical, mechanics
parts. This section presents some DSMDETs for embedded system development.

The adoption of platform-independent design and executable UML has been vastly
investigated. For example, xtUML (MELLOR; BALCER, 2002) defines an executable
and translatable UML subset for embedded real-time systems, allowing the simulation
of UML models and C code generation oriented to different microcontroller platforms.
The Model Execution Platform (MEP) (SCHATTKOWSKY; MUELLER; RETTBERG,
2005) is another approach based on MDA, oriented to code generation and model ex-
ecution, as well as the Framework for UML Model Behavior Simulation (FUMBeS)
(WEHRMEISTER; PACKER; CERON, 2012).

Other approaches improve the integration of the design tools into an MDE envi-
ronment, by defining meta-models, and the transformations on them include some re-
finement. This approach includes the DaRT (Data Parallelism to Real Time) project
(BOULET et al., 2003; BONDé; DUMOULIN; DEKEYSER, 2005), whose evolution
produced the Gaspard2 framework. It proposes an MDA-based approach that has many
similarities with our approach in terms of meta-modeling concepts. DaRT defines MOF-
based metamodels to specify application, architecture, and software/hardware associa-
tions and uses transformations between models to refine an association model. In the
Gaspard2 framework (PIEL et al., 2008) UML/MARTE models are used as input and
transformation to other tools, providing support for co-synthesis, simulation and formal
verification, by translating a model into synchronous reactive languages. However, no
automated DSE (Design Space Exploration) strategy based on these transformations is
implemented, and the main focus is code generation for simulation at Transaction Level
Model (TLM) and RTL levels. In this approach, each candidate solution is simulated at a
different abstraction level, thus guiding the designer in the DSE activities.
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The Aspect-oriented Model-Driven Engineering for Real-Time systems (AMoERT)
methodology (WEHRMEISTER et al., 2008) proposes an automated integration of de-
sign phases for distributed embedded real-time systems, focusing on automation systems.
The proposed approach uses MDE techniques together with Aspect-Oriented Design and
previously developed (or third party) hardware and software platforms to design the com-
ponents of distributed embedded real-time systems. The Aspect-Oriented Design con-
cepts allow a separate handling of functional and NFRs, improving the modularization
of the produced artifacts. In addition, the methodology is supported by the GenERTiCA
code generation tool (WEHRMEISTER et al., 2008), which uses mapping rules for the
automatic transformation of UML models into source code for software and hardware
components, which can be compiled or synthesized by other tools, thus obtaining the re-
alization/implementation of the distributed embedded real-time system. During the gen-
eration process, the tool includes the required implementation code to handle the specified
aspects for NFRs (model weaving).

Metropolis (BALARIN et al., 2003) is an infrastructure for electronic system design,
in which tools are integrated through an API and a common metamodel. Following
the platform-based approach (FERRARI; SANGIOVANNI-VINCENTELLI, 1999), the
Metropolis infrastructure captures application, architecture and mapping using a proposed
UML-platform profile (UML AND PLATFORM-BASED DESIGN, 2003). Furthermore,
its infrastructure is general enough to support different Models of Computation and to
accommodate new ones. No automatic support for Design Space Exploration is pro-
vided by Metropolis, which proposes an infrastructure to integrate different tools. Nev-
ertheless, the current simulation and verification tools integrated into Metropolis and the
proposed refinement process can be used to manually perform some architectural explo-
rations (task mapping, scheduling, hardware/software partitioning) and component con-
figuration. Moreover, the refinement process allows the explicit exploration of application
algorithms, which implement a higher level specification.

Koski (KANGAS et al., 2006) is a UML-based framework to support MPSoC design.
It is a library-based method, which implements a platform-based design. Koski provides
tools for UML system specification, estimation, verification, and system implementa-
tion on FPGA. The Koski design flow starts with a requirement analysis, which specifies
the application or architecture requirements and design constraints. Following the de-
sign flow, the application, architecture and the initial mapping are specified as UML 2.0
models. A UML interface handles these models and generates an internal representation,
which is used for architectural exploration. The architectural exploration is performed in
two steps; the first one is static, fast and less accurate; the second one is dynamic. At
the end of the design flow, the UML models are used to generate code and the selected
components from the platform are linked to build the system.

Other complete environment for design space exploration is the MILAN (BAKSHI;
PRASANNA; LEDECZI, 2001) framework, with two exploration tools called DESERT
(NEEMA et al., 2003) and HiPerE (MOHANTY; PRASANNA, 2002). The focus of
MILAN is the integrated simulation of embedded systems, so that it evaluates pre-selected
candidate solutions. The hierarchical simulation provided by MILAN allows a designer to
explore the design space at several abstraction levels, by using the DESERT and HiPerE
tools. First, the DESERT tool uses models of aggregated system sub-components and
constraints to automatically compose the embedded system through OBDD, based on
a complete pre-characterization of components. Moreover, the DESERT tool performs
design space pruning, reducing the number of candidate solutions. After that, HiPerE can
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be used for accurate system-level estimation, exploring the pruned design space. Finally,
by using integrated simulation at lower abstraction levels, the designer can explore the
reminder of the design space, performing then also platform tuning.

The Multi-objective Design Space Exploration of Multiprocessor SOC Architectures
for Embedded Multimedia Applications (MULTICUBE) was an European research project
devoted to provide methods for DSE. One of the outcomes from this project was the
MULTICUBE methodology and tool for automated DSE (SILVANO et al., 2010). The
MULTICUBE framework includes several optimization algorithms to identify trade-offs
between objecives. In order to evaluate candidate designs, MULTICUBE provides an
XML interface, so that different simulators can be plugged to it. The framework also
provides a library of components for response surface modeling, which reduces the time
required to evaluate candidate designs, as it replaces the evaluation by simulation.

The Generic Design Space Exploration (GDSE) (SAXENA; KARSAI, 2010) is a
meta-programmable framework, whose implementation is based on MIC/GME. The frame-
work provides a metamodel that defines the Abstract Design Space Exploration Language
(ADSEL) and the Constraint Specification Language (CSL). ADSEL is used as a base
metamodel, which must be composed with a domain metamodel in order to create a
domain-specific DSE metamodel. The DSE specific concepts are added into the com-
posed metamodel, tailoring the composed metamodel to the domain of the problem. The
goal of ADSEL and such composition is to allow a generic representation of the design
space, which can be configured to different domains. CSL was proposed to provide an
expressive constraint language able to capture different types of constraints, such as arith-
metic, boolean and set constraints. From the domain-specific DSE model and CSL the
GDSE framework generates an intermediate description, namely Intermediate Language
(IRL), which is used to generate tool specific languages, such as Minizinc 4 that can be
used as input for different solvers.

A strategy for DSE by means of model transformation is present in (SCHATZ; HOLZL;
LUNDKVIST, 2010). The approach allows a declarative relational definition of the de-
sign space using Prolog. An Eclipse framework for model transformation called tuProlog
is used to execute the design space definition and generate candidate designs. It provides
a translation from ECORE metamodels to Prolog, which improves automation and the
integration with other flows. Then this Prolog model is extended with the Prolog specifi-
cation of the design and the Prolog specification of the design space. The resulting model
is a declarative description of the DSE problem to be solved.

4.5 Discussion

The first application of model-based engineering for embedded systems was the adop-
tion of high-level modeling languages alone, such as UML and Simulink, which lead to
the fail of CASE tools (SCHMIDT, 2006).Then the application of MDE started, con-
sisting in the development of model-to-model transformations in order to transform out-
put models from a tool to another, so that the existing development tools could be used
(MURILLO; MURA; PREVOSTINI, 2010; BALARIN et al., 1997; KANGAS et al.,
2006). Afterwards, domain specific metamodels were proposed to capture the hetero-
geneous nature of these systems, and syntactic transformations were use to generate
systems based on these metamodels (BOULET et al., 2003; BONDé; DUMOULIN;
DEKEYSER, 2005; NASCIMENTO et al., 2006). The following steps were the devel-

4http://www.minizinc.org/
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opment of smart generators, which use transformations based on the semantics of el-
ements, such as GenERTiCA (WEHRMEISTER et al., 2008), and development activi-
ties fully implemented using MDE concepts, such as performance evaluation (ATITAL-
LAH et al., 2006), schedulability analysis (PERALDI-FRATI; DEANTONI, 2011) and
DSE (OLIVEIRA et al., 2009; SCHLICHTER et al., 2006; SAXENA; KARSAI, 2010;
SCHATZ; HOLZL; LUNDKVIST, 2010).

Although MDE provides many benefits, tools applying MDE for DSE adopt a similar
pattern of the ones without the use of MDE. Most of tools are too specialized for some
specific design decisions, such as task mapping and scheduling (KANGAS et al., 2006),
system construction and component integration (NEEMA et al., 2003), or manual DSE
with focus on abstracting modeling and simulation (PIEL et al., 2008; BALARIN et al.,
2003). Moreover, the generation of candidate designs is internally implemented, usually
as a function that is programmed directly in the tool. As result, no extension mechanisms
are provided, requiring multiple tools to support each design activity. Except for the
Koski and DESERT methods, for most approaches either the constraints set is restricted
to previous constraints implemented by the tool or the method supports limited constraints
constructs.

An issue scarcely discussed is the reuse of design artifacts for specification of DSE
scenarios and reuse of DSE artifacts. Most approaches adopt abstract modeling of the ap-
plication and platform and derive a DSE scenario from that. However, no DSE scenario
specification is supported, so that there is no flexibility in the DSE without changing the
application and platform models. Specific DSE models are proposed as UML diagrams
(GRUTTNER et al., 2012; KANGAS et al., 2006) or a proprietary DSE language based on
XML as proposed by MULTICUBE (SILVANO et al., 2010), so that without changes in
the application and platform, different DSE scenarios can be configured. The approaches
using UML for DSE scenario specification has the benefit of reusing design elements from
the system model. However, this restricts the development process to use only UML. The
DSE language proposed by MULTICUBE provides more flexibility. However, there is no
link between the DSE model and development artifacts, , thus requiring a manual synchro-
nization of the models, and the approach does take benefit of reuse information from the
design models. Moreover, the DSE language provides no abstraction for design elements
and optimization, thus requiring an engineer to adequately code the design elements for
the optimization problem.

Recently flexible and generic support for DSE was proposed (SCHATZ; HOLZL;
LUNDKVIST, 2010; SAXENA; KARSAI, 2010; KANG; JACKSON; SCHULTE, 2011).
In (SCHATZ; HOLZL; LUNDKVIST, 2010) Prolog is used as language for DSE, ex-
ploiting the backtracking features of model transformation engines, which adopts formal
methods to explore the design space. However, design models must be described in Pro-
log together with the DSE model, and no design model injection or translation to Prolog is
provided. Moreover, no design abstractions are provided, so that the engineer must spec-
ify and customize everything. The approach in (KAHN, 1974) is similar to the approach in
(SCHATZ; HOLZL; LUNDKVIST, 2010). They provide a proprietary language, namely
FORMULA with some constructs with higher abstraction, so that transformations and
constraints are easier to specify. However, no integration into another flow is provided.
The great disadvantage of all these methods is that they are too generic. Actually, these
approaches are better classified as MDE Technology framework, because they can be
applied to any (meta)model, with no specific abstraction nor constructs for DSE. In the
contrary, the approach proposed in this work is a DSMDET, which combines flexibility
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with special constructs for DSE. The proposal for MDE adoption for DSE is described in
Chapter 5.

In (SAXENA; KARSAI, 2010) a language specific tailored for DSE is defined and
enhanced with a constraint language. This approach also provides translation to Miniz-
inc, which allows access to different solvers. However, the DSE model is enclosed into
the design model by composing the Generic DSE metamodel and a DSL used to repre-
senting the design model, so that an engineer is forced to use the tools generated from
the composed metamodel to specify the systems. Moreover, the Generic DSE Metamodel
represents just one single type of problem.
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5 MODEL-DRIVEN ENGINEERING METHODOLOGY
FOR DESIGN SPACE EXPLORATION

This chapter presents an MDE methodology for DSE of embedded systems. It dis-
cusses the problem addressed and presents an overview of the MDE methodology for
DSE. Thereafter, each process defined in the methodology is described. The first process
describes the adopted system modeling method. Then a metamodel is defined to represent
the DSE domain with its relevant concepts. A weaving method is proposed to associate
design elements to the DSE domain model, so that the DSE process can be modeled inde-
pendently from the design language adopted in the development process. The approach
to specify DSE rules is presented, so that an engineer can use it to prune and guide the
DSE process. The DSE process is described and alternative DSE methods are presented
to be integrated into this methodology. Then the evaluation process is described and the
adopted evaluation method is briefly explained. Finally, the methodology is discussed in
the last section.

5.1 Motivation

Based on all the discussed works in Chapters 3 and 4, the surveys on DSE (GRIES,
2004), and (DENSMORE; PASSERONE; SANGIOVANNI-VINCENTELLI, 2006), and
the book (GAJSKI et al., 2009) it is observed that there is a lack of industrially strong and
mature tools for DSE, in spite of many academic proposals. The following limitations are
identified in the studied works:

• Restricted support to multiple DSE activities: Most of the DSE methodologies fo-
cus on System-Level design decisions, so that the usually supported DSE activi-
ties are architectural allocation (considering memories, processors and buses), task
mapping to the architectural template and task scheduling. However, other design
decisions must be made during the development process. Some works focus on
other activities, such as configuration of platform parameters, composition of com-
ponents selected from a library, etc. However, few works present a proposal to
improve the flexible support for exploration of different design activities.

• Fixed method to generate solutions: As most of the DSE tools are black-box tailored
for a specific domain, the generation of design candidates is coded inside the tools
and cannot be changed. Only few tools present limited mechanisms for user-defined
constraints or to include the user expertise to guide the DSE.

• Tightly coupled to evaluation tools: The metrics required to evaluate a design can-
didate may vary according to design activities to be performed. In this way, dif-
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ferent evaluation tools may be required too. However, many approaches for DSE
are tightly coupled to an evaluation tool and make assumptions regarding the do-
main of the application and how the design is specified. They are bound to design
languages, MoCs and design activities.

• Lack of integration with the development process: The focus of DSE methodologies
is the automation of design activities and computational support for design deci-
sions. However, few methodologies provide means to integrate the DSE method-
ology into a comprehensive development process. In this way they leave a gap
between the design artifacts and the DSE inputs or they are restricted to specific
artifacts and languages.

From a broader point of view, DSE is performed always when an engineer must choose
between multiple design alternatives, which can arise at different abstraction levels or at
different steps during the development process. Moreover, a wide range of languages and
models are used to specify embedded systems. By using the state-of-the-art tools, setting
up a tool chain to support all or at least some of those design activities is a complex task.
These tools require different inputs, which may differ from the ones used in the develop-
ment process. There are also a variety of internal models and outputs formats. Such lack
of reusability and flexibility in the current DSE methodologies leads to a situation that
inhibit the adoption of these methodologies in a production environment.

In Section 2.2 a list of common design activities were presented. Actually the list
is not exhaustive and many other activities can be added to it. In order to reduce the
DSE complexity, it is important to classify the design activities that can be modeled using
similar elements. Based on the state-of-the-art, in this thesis the classification proposed
in (SAXENA; KARSAI, 2011) was adopted, which groups the design activities into six
DSE problems, namely Configuration, Construction, Mapping, Placement, Routing, and
Scheduling. Such a classification is the starting point for a consensual understanding on
DSE, which drives to a common representation of the DSE problems.

The general goal of the proposed methodology is to improve the flexibility, reusability,
and productivity in the DSE process. Specifically the methodology endeavors to easily
integrate DSE methods into a development process. Moreover, it attempts to represent
the different DSE problems in a concise and uniform way and provide a mechanism that
allows a user to define the DSE rules according to the specificity of the problem to be
solved. Another goal of this methodology is to automate development steps related to
DSE, so that DSE artifacts can be generated from other development artifacts.

In order to fulfill the expected goals, the methodology improves the DSE flow by
defining points of integration, so that the data can be gathered from design models or
stored into them. In this methodology a DSE domain metamodel is proposed to rep-
resent the DSE problem and other concepts related to DSE. Moreover, model-to-model
transformation rules are proposed as a mechanism to allow a user to define DSE rules to
generate design candidates for the specific problem to be solved. These rules implement
the semantic of constraints defined in the DSE domain metamodel, thus increasing the
abstraction and improving the reuse of transformation rules.

5.2 Methodology Overview

The proposed methodology applies the MDE approach, so that a metamodel is defined
to represent the concepts of the DSE domain. This metamodel was named Design Space
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Exploration Domain (DSED) metamodel and by using an MDE technological framework,
such as the one provided by the Eclipse Modeling Project, an API is generated from this
metamodel to allow manipulation of models conforming to it. In addition, a weaving tech-
nique allows the specification of DSED models independently from the design models,
hence the methodology is independent of design languages. A weaving metamodel is used
to represent the link between DSED and design models. It stores references to DSED ele-
ments and to elements of different design models, hence the proposed DSE methodology
can combine design models specified in different languages. Moreover, model-to-model
transformation rules are used to specify the rules that guide the search in the design space
and prune inappropriate design alternatives, according to constraints defined in the DSED
model. Such an approach allows for easy adaptation, by writing, editing, removing, or
reusing transformation rules, according to the requirements of the DSE problem to be
solved.

Consequently, the set of methods proposed results in a highly flexible DSE method-
ology, which can be integrated into the development flow at different stages, in order to
handle the existing DSE problems. The proposed methodology can be applied when-
ever multiple design decisions must be evaluated, at earliest after the end of the analysis
phase as described in Section 2.2. In Figure 5.1 the methodology flow is presented, where
boxes represent artifacts and ellipses represent processes that are described briefly in the
following sections.

Figure 5.1: Methodology flow for Design Space Exploration.
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Design Modeling process

Before starting the DSE, a Design Modeling process must be executed. In this process
engineers can use their favorite design method. Design models are inputs for the DSE
methodology, which must determine the design decisions that are still open in the design
models. A design modeling process is out of scope of this work, since the DSE related
artifacts are specified independently from the design ones. However, technologies and
methods are assumed, to provide a comprehensive context to the reader and computational
tool support for the proposed methodology. More information on the design method are
provided in Section 5.3.

DSED Modeling process

During the DSED Modeling process an engineer defines the DSE problems to be
solved and variable domains. This process is performed manually, by using generic model
editors generated by the MDE framework. Although the automation of such a process
is dependent on the design language and tools used for design, by means of adequate
supporting tools, is possible to extract design information, such as task graph, feature
model, and communication graph. The extracted information is then used to generate the
DSED model. More details on the DSED Modeling are provided in Section 5.4.

Design-DSED Weaving process

The Design-DSED Weaving process weaves design and DSED models. Such a pro-
cess is important to associate design elements from different models (e.g. UML, Simulink,
SystemC) to elements in the DSE model. As a result, it improves the flexibility of the DSE
process, which can be applied to complex embedded systems, whose models are divided
into different views and/or languages. Moreover, it allows the independence of the DSE
methodology from the design method used during the development process, which is one
of the problems concerning the application of DSE tools. The Design-DSED Weaving
process is presented in Section 5.5.

DSE Rules Definition process

The design must meet requirements that define operations, features, constraints, stan-
dards and other rules that must be observed during the development. Likewise, design
candidates generated during the DSE process must follow these rules. The rules concern-
ing to the DSE process are named DSE rules and must be defined in a such a way that
DSE tools can automatically process them during the design candidate generation.

In the proposed DSE methodology, DSE rules are model-to-model transformation
rules, which may be executed by a transformation engine that receives a DSED model
as input and refines this model during the DSE process. These rules are constraints to
guide the search in the design space and prune inappropriate design alternatives, so that
the exploration time is reduced and the feasibility of a candidate design is ensured. By
using model-to-model transformation languages to define DSE rules, the flexibility of
DSE is highly improved, because the DSED model can be handled according to the DSE
problem to be solved, and thus the framework can be applied to different DSE problems,
adapted and extended using standards tools. The specification of DSE rules is presented
in Section 5.6.

Design Space Exploration process

When the DSE process is reached, all information required to execute the DSE pro-
cess, such as the DSED model, woven to design models and DSE rules, are stored in a
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such way that a computer can process them in models that can be processed by standard
APIs and transformation engines.

During the DSE process these information are handled by solvers, which generate
design candidates in conformance to the DSE rules and search in the design space for ad-
equate design alternatives. As all required information is easily accessible in two models,
namely DSED and DSE rules, multiple solvers can be attached to the DSE process, such
as specific heuristics, e.g. Platune (GIVARGIS; VAHID, 2002) and Koski (KANGAS
et al., 2006), optimization frameworks, e.g. Opt4J (LUKASIEWYCZ et al., 2011) and
Watchmaker 1, or optimization tools, e.g. modeFrontier 2 and Guimoo (LIEFOOGHE
et al., 2007). The DSE process is discussed in Section 5.7.

Evaluation process

Although the search in the design space is a complex process from the computational
point of view, the evaluation step is a bottleneck during DSE. As discussed in Section 3.1,
there is a trade-off between time spent in the evaluation and the evaluation accuracy. The
adequate abstraction level and evaluation method depend on the problem to be solved, the
languages used to specify the systems and other factors.

The weaving process allows the DSE methodology to be independent from the eval-
uation method used, because the DSE process makes no assumptions on design artifacts
specifically required for evaluation, such as modeling language and MoCs. Moreover,
the DSED metamodel, together with the MDE technological framework, provides an ade-
quate and standard API to read the required data for the evaluation method from the DSED
model, as well as to write the evaluation results back into the DSED model. Therefore,
the methodology is not bound to a specific evaluation method and hence allows engi-
neers to integrate the evaluation method that is adequate to their problems into the DSE
methodology.

For completeness sake, a mixed evaluation method was adopted to evaluate gener-
ated candidate designs. The evaluation method consists of a static analysis of a CDFG
extracted from UML Models or C++ source code and the combination of information
gathered from a platform of pre-characterized components, so that design candidates at
different levels of abstraction can quickly be evaluated. More information on the evalua-
tion process is presented in Sections 5.8 and 7.3.

Final Solution Selection process

The search for design candidates often leads to a Pareto set, whence an engineer must
select one or more to proceed with the development. The trade-offs must be evaluated
by an engineer. Visualization and analysis tools can be used to support this process and
integrated into the methodology by means of the DSED model and the associated API
or transformation. The final solution selection is out of scope of this work and is not
discussed.

Back annotation

At the end of the DSE methodology, the final solution must be back annotated into the
design model, so that design decisions taken during the DSE process are used to refine
the design model. Such a process is partially supported by the proposed methodology,
by providing the DSED metamodel, the standard API generated from it, and the Design-
DSED weaving model. The DSED metamodel and API allow one to read the design

1http://watchmaker.uncommons.org/
2http://www.modefrontier.com
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decisions from the DSED model, by using the API or model-to-model transformations.
The Design-DSED weaving model keeps the link from the DSED model elements to
elements in the design models. By using them, one can implement model transformations
that automatically back annotate the design model with the design decisions.

5.3 Design Modeling

The adopted system design method uses UML 2.0 and the MARTE profile together
with non-intrusive modeling guidelines to specify application, architecture, and mapping.
This method tries to capture the most common approaches, so that the DSE methodology
can be automated without requiring high modeling effort or a too specific modeling style.
It is highly inspired in the methods presented in (FREITAS, 2007; WEHRMEISTER et al.,
2008) and the MARTE2Cheddar Tool3.In the next paragraphs examples are shown, in or-
der to illustrate the system design modeling guidelines, considering a real-time embedded
system dedicated to the automation and control of an intelligent wheelchair.

The functional requirements identified during the requirement process can be seen in
the UML Use Case Diagrams, as shown in Figure 5.3(a). It defines the functional view
of the system and the context the system is running. Details of such requirements are
provided in textual form by using RT-FRIDA templates (FREITAS, 2007).

The analysis model is specified using the elements that represent concepts in the prob-
lem domain, such as actuators, sensors, and controllers of a system. The FRs and NFRs
should be mapped into these elements, avoiding specific solution concepts, such as pro-
cessors, task, and platform specific information. The solution model is obtained during
the design phase, which searches for the best software and hardware architecture that sup-
ports the FRs and NFRs specified during the analysis phase. Following this approach, the
design model becomes more abstract, thus opening more alternatives for DSE.

The application must contain structural and behavioral models. The structural model
is specified by using Class diagrams. In this diagram, besides the definition of the ap-
plication classes, the designer must also identify upper bounds for the multiplicity of
vectors and matrix fields and objects, such that the evaluation tools can improve the es-
timation. The behavioral model is defined using Sequence diagrams and its fragments,
such as loop, reference to other Sequence diagrams - ref, and alternative execution -
alt. It specifies interaction between objects and dependencies between execution sce-
narios. Additionally, upper and lower bounds of loop fragments must be specified to
improve estimation. Figure 5.3(a) shows examples of the diagrams used to specify the
functional requirements and system application. Figure 5.3(b) shows a class diagram and
Figure 5.3(c) shows a Sequence diagram realizing the Movement Actuation use case pre-
sented in Figure 5.3(a). Interaction of objects with actors indicates inputs/outputs from/to
system devices.

Models are decorated with MARTE stereotypes to add specific design decisions or
NFR information. According to the MARTE specification, many NFRs can be specified,
using the MARTE «Nfp» stereotype to derive all the desired NFR requirements. The
adopted method refers to NFP_Real data type from the MARTE library, which defines a
tuple value and unit, in order to read the information required to prune the design space. In
the current prototype, the «SwSchedulableResource» stereotype is adopted to identify an
active object, while the «RtFeature» stereotype is used to refers to a real-time specifica-
tion. Such a specification is a comment annotated with the stereotype «RtSpecification»

3http://beru.univ-brest.fr/ singhoff/cheddar/contribs/examples_of_use/00readme.html
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Figure 5.2: System specification using UML: (a) Use case diagram; (b) Class diagram;
(c) Sequence diagram.

(a) (b)

(c)

and provide properties to define if the feature is periodic, aperiodic, or sporadic and has
attributes to allow the annotation of relative deadline relDL, absolute deadline absDL,
acceptable rate of missing deadline miss, and occurrence occKind. Figure 5.3(c) also
shows the application of MARTE stereotypes.

An Interaction Overview diagram identifies and links scenarios specified by using Se-
quence diagrams, in order to evaluate the system during the estimation process. Figure 5.3
shows an Interaction Overview diagram example. The diagrams specifies that the system
execution starts by executing the initialize scenario, which among other actions
starts different system threads. Thereafter the parallel execution of three scenarios are
identified, namely leftEncoderReading, movementInterfaceReading, and
rightEncoderReading. The specific execution order of these scenario may not be
important for the evaluation, or it is open to the evaluation tool to figure out the cost
of scheduling overhead based on the final mapping defined in the Component diagrams
or by the DSE tool. The movementControl scenario depends on the execution of
the three previous scenarios and must execute after them and must be followed by the
actuatorInterfaceWriting scenario, which closes the complete evaluation sce-
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nario.

Figure 5.3: Example of an Interaction Overview diagram.

Architectural components, such as processing units, memories and communication
buses, are defined in Composite diagrams and are also decorated with related MARTE
stereotypes for each of these components. The Composite diagram is also used to de-
fine rules for architecture allocation and mapping of applications into the architecture.
Figure 5.5(a) shows a Composite diagram specifying an architecture with up to six pro-
cessors interconnected by a hierarchical bus with two segments, and Figure 5.5(b) shows
an example specifying in which processing unit a software element must execute. These
and others model patterns are used to create DSE Rules in the DSED model.

Figure 5.4: System specification using UML: (a) Composite diagram; (b) Processor allo-
cation and mapping constraints.

(a)

(b)

Although limited constructs are used, such diagrams allow the extraction of many
information used to automate the DSE and evaluation processes. Currently, from these
diagrams interaction, task, processor, and communication graphs are extracted. Moreover
constraints, configuration parameters, and DSE scenarios are also extracted with some
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limitation. More details on the implementation and data extracted from UML models
are explained in Chapter 7. Such modeling method supports automated creation of DSE
Mapping and DSE Scheduling problems and weaving of the DSED model with UML
model. Other DSE problems are supported through manual Design-DSED model weaving
and DSED specification.

5.4 Design Space Exploration Domain Modeling

Before starting the DSE it is necessary to determine which design activities must be
executed. On these information depends the specification of the DSE scenarios, such
as objectives to be optimized, the values allowed to be assigned to variables (variable
domain), etc. Different design activities may require different evaluation and solver tools,
and so these tools must be determined and configured accordingly.

The identification of DSE concepts commonly used in different DSE scenarios is
important to create a standard representation, which can be applied to different DSE
scenarios, so that the flexibility, reusability and automation of DSE process can be im-
proved. The work presented in (SAXENA; KARSAI, 2011) suggests a classification of
design activities for DSE into six problems, namely Configuration, Construction, Map-
ping, Placement, Routing, and Scheduling. Based on the bibliographical review presented
in Chapters 2 and 3, this methodology adopted the same classification and from now on,
this classification is referenced as DSE Problems. The inter-dependencies between design
activities, added to the interleaving aspects of DSE Problems, for example placement and
routing problems, or mapping and scheduling, require adequate methods to represent the
DSE Problems. Furthermore, such relationship must also be handled adequately. There-
fore, four from these six problems were selected to be defined and modeled in the pro-
posed methodology. The selected DSE problems are Configuration, Construction, Map-
ping, and Scheduling. Although Placement and Routing are optimization problems which
lead to DSE , these two problems are out of the scope of this thesis, because no work was
found in the literature, which propose system-level development (e.g. Y-Chart or PBD)
considering such problems.

The fundamental stone for the whole DSE methodology is the formal definition of the
four selected DSE problems, in order to provide a strict semantic for elements that repre-
sent such problems. First, each problem is represented as a tuple of elements, which are
required to model the problem in an adequate and flexible way. When required, the defini-
tion of a problem includes also constraints to assure a well-defined problem. Thereafter, a
set of common constraints are identified for each DSE problem, such that an engineer can
define DSE scenarios, i.e problem instances, containing special requirements according
to design models, DSE goals, and the applicable constraints. In the problem model is
also defined a solution place holder, to which a solution for the problem must conform by
fulfilling all constraints specified for a DSE scenario.

In order to facilitate the specification of the information required to represent ade-
quately different DSE scenarios, the DSE Domain (DSED) metamodel was defined to
capture all relevant concepts of the DSE domain. It is defined based on a mapping of the
formal definition of each DSE problem into a composite representation in ECORE. There-
fore, it composes elements of all DSE problems into a unified model, so that it represents
the four DSE problems, respective solutions, design decisions and alternatives, evaluation
tools, objective metrics, constraints, and other concepts, required to provide flexible and
automated DSE supported by the MDE technology.
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There are different alternatives to specify a model conforming to the proposed DSED
metamodel. One can manually create and edit a DSED model, by using generic model
editors produced by the MDE framework from the DSED metamodel. In this way, the
DSE model is created without any reference to design models, although it requires man-
ual specification of the model and later a manual link of design and DSED models, both
are error prone and counter productive tasks. Another possibility is to use model trans-
formations to automate the creation/editing of a DSED model and the link of it to design
models. The model transformation is responsible for extracting design information, such
as task graph, feature model, communication graph and others from the design models
used. In this approach, the automation is improved, but it is dependent on the modeling
languages used in the development process, so that a transformation must be implemented
for each required design language.

Another alternative would be the additional definition of a concrete syntax for the
DSED metamodel, so that one could specify DSED models by writing text or even using
graphical means by using a DSED language. In favor of the development of transforma-
tions from different design languages into the DSED model, and to improve automation,
this work does not define a concrete syntax for the DSED metamodel. Although a con-
crete syntax may ease the specification of DSE rules/constraints, the proposed methodol-
ogy abstains from defining one, in order to reuse the concrete syntax of a well adopted
language, improving the abstraction and the reuse of development artifacts.

Moreover, in the proposed DSE methodology, common constraints applied to DSE
problems are identified and their semantics are formally defined in the DSE problem mod-
els. Such constraints are mapped to elements in the DSED metamodel, which represents
these constraints in an abstract way. Therefore, instead of complex metamodel defin-
ing operators and terms to specify any kind of constraints, such as OCL (OMG, 2006),
FORMULA(KANG; JACKSON; SCHULTE, 2011), CSL (SAXENA; KARSAI, 2010),
it was opted to use one abstract construct to represent each well-defined constraint of the
DSE problem model. These abstract constraints, which have strict semantics, are later
implemented in a library of model transformation rules in a specific language, for exam-
ple FORMULA or VIATRA II, according to the semantics specified in the DSE problem
model. In this way, such abstract constraint elements in the DSED have strict semantics,
while they are independent of an implementation in a concrete language. Therefore, this
approach improves the DSE process by bridging abstract constraints to a reusable library
of constraints, so that an engineer is not required to master transformation languages, and
implement constraints at each new DSE scenario.

The following sub-sections present formal definitions for each DSE problem and the
constraints associated to these DSE problems, including the semantic to be applied when
these constraints are represented in a DSED model. The equivalent representation of
these definitions in the DSED metamodel is organized in seven UML Class diagrams,
which are presented after each DSE problem definition to facilitate the description of its
concepts. Some elements are replicated in different diagrams, so that a global view of the
metamodel is made easier.

5.4.1 DSE Domain Core Model

DSE is an optimization problem focused on the design of systems, hence concepts
that commonly appear in different optimization problems also appear in DSE problems,
such as problem, solution, solver, evaluation of solutions, constraints and objectives to be
optimized. Although different DSE problems share common concepts, each problem has
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its own specificity, which requires additional concepts. Therefore, a DSE Domain Core
model is defined to represent the concepts shared by the four DSE problems represented.
This core model is the fundamental model for the formulation of specific DSE problems
and the specification global constraints, so that all other models of DSE problems extend
or specialize this core model.

The DSED core model is a tuple that contains a DSE scenario Sc, a set of solvers So
and another set of evaluators Ev, which are used to generate and evaluate solutions to
problems defined in the DSE scenario. So and Ev have parameters Pa, which configure
their algorithms. The DSED core model has also a set of available metrics M supported
by the available evaluations, a function φ that must be implemented by solvers, and a
function γ that must be implemented by evaluators. The function φ maps problems P to
candidate solutions Sl and the function γ annotates costs Co, according to the required
metrics, to solutions, which are sets of decisions d. A scenario is composed of a set D
of design graphs Dg and a set of problems P . A problem P represents the optimization
problem instance, which is composed of a subsetD′ ofD, which contains the set of design
graphs defined for a scenario. P contains also a set of required metrics Rm and a set of
constraints Cs, which are optionally defined by engineers to create different scenarios for
the same problem. The DSED core model is defined as following:

Definition 5.1 (DSE Domain core model):
DSED = 〈Sc 〈D (Dg) , P 〈D′, Sl (d) , Rm,Cs〉〉 , So 〈Pa〉 , Ev 〈Pa〉 ,M, φ, γ〉 is a DSE
domain model, where:

D (Dg) is the set of design graphs Dg1 . . . Dgn, such that Dg is a directed graph as
presented in the Definition 4.1 and generated from design models, e.g. task
graph, architectural graph, parameter dependence graph.

Sl (d) is a place holder for solutions, which must fulfill the set of constraints Cs
specified for a problem P , such that design decisions d ∈ Sl can solve a
problem P .

Rm are the required metrics used to qualify solution s ∈ Sl. Two set of metrics
are identified, namely the set of required objectives Ro to be optimized and
required metrics Rg used to guide the DSE, such that Ro ⊆ Rm, Rg ⊂ Rm
and Ro ∩Rg = ∅.

Cs is a set of constraints specified by an engineer to be applied, when solving a
DSE problem P .

P is the set of DSE problems to be solved for a D′ (Dg) | D′ ⊆ D, which
elements can be one of the following {Pconf , Pconst, Pmapping, Psched}.

Sc is a DSE scenario consisting of D (Dg) and P , which can be solved for all
p ∈ P .

So is the set of available solver methods to optimize the problems p ∈ P that
implements the function φ. It contains parameters Pa, which configure the
solver method to be executed.
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Ev is the set of available evaluation methods to qualify solutions s ∈ Sl that
implements the function γ. It contains parameters Pa, which configure the
evaluation method to be execured.

M is a set of metrics, m ∈M and ∃ ev ∈ Ev |m can be calculated.

φ is a function, such that φ : P → Sl that maps the problem p ∈ P into
solutions s ∈ Sl.

γ is a function, such that γ : Sl → Co that annotates the costs c ∈ Co for a
solution s ∈ Sl.

This model represents concepts shared for many optimization problems and can be
applied to represent a general DSE problem to be solved by global optimizers. The set
of design graphs provide an abstract representation of the design, which can be used to
represent different design information, and at the same time it is easily codified to different
solvers, such as Genetic Algorithm, Simulated Annealing and SAT solvers. However, it
does not provide problem specific information, which could be used by heuristics in order
to provide search mechanisms customized for a specific DSE problem. Therefore, other
four DSE problem models are defined in the next sections.

All optimization problems may be subject of constraints, which define the search
space and the conformity of found solutions. Common required constraints, such as max-
imum and minimum value for the metrics and objectives, are defined, so that an engineer
can optionally constrain the DSE problem according to the specificity of the DSE sce-
nario. The following constraints are defined in the DSE Domain models, so that solutions
must conform to this constraints, if they are specified by a engineer to be applied to a
specific DSE scenario:

• Maximum Value: Defines the upper bound cmax for a value that can be assigned to
c ∈ Co. Using this rule one can deny the assignment of an out of range value after
the evaluation of a system property or deny values that does not fulfills require-
ments:

c ≤ cmax (5.1)

• Minimum Value: Similar to Constraint 5.1, it defines lower bound cmin applied to c:

c ≥ cmin (5.2)

• Value Assignment: Defines the value cassigned to be assigned to c, in order to prune
the design space or assume a specific scenarios:

c = cassigned (5.3)

The DSED core model proposed in Definition 5.1 is mapped into the DSED meta-
model as presented in Figure 5.5. Such representation aims to capture the general DSE
concepts and provides the basic elements to define more specialized DSE scenarios, as
described in the next sections.
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Figure 5.5: Design Space Exploration Domain Metamodel - Core.

The root container in the metamodel presented in Figure 5.5 is DSEDomain (DSED),
which is a container for all elements related to DSE, representing the DSED model. It
inherits properties from NamedElement like all other elements in this metamodel, so
that these elements have a name to be identified. The generalizations to NamedElement
were omitted to keep diagrams clear. The DSEDomain is composed of a set of Evalua-
tor (Ev) elements, which represent the available tools to evaluate candidate designs that
implement the function γ : Sl → Co. Evaluator contains Parameter (Pa) that
stores the information required to execute an Evaluator, such as name, path and con-
figuration. An Evaluator is also associated to the Metrics (M ) it can provide, so that
multiple Evaluators may be used to evaluate the same design candidate. A Solver
(So) represents the available mechanism, which implements a function φ : P → Sl
that interacts with the DSED model in order to solve a Problem (P ). In the same way
as in Evaluator, it also has Parameters to store the required information to exe-
cute the solver algorithm. DSEDomain also contains Scenario (Sc), which has a set
of Problems (P ) and a set (D) of design graphs Graphs (Dg) that represent design
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elements involved in the problem. A Problem is a general representation for a DSE
problem, which is specialized in the four DSE Problems approached in this thesis. Each
Problem specialization is described in the following sections. Problem contains a
subset (D′) of Graphs contained in the Scenario, referencing only the design graphs
that are subject of this problem. A Problem also contains the RequiredMetrics
(Rm), which defines the metrics adopted to evaluate candidate designs. These met-
rics can be Objectives (Ro) to be optimized or Guide metrics (Rg) to be satis-
fied or are used to help the engineer in some trade-off analysis. Selected Solvers are
also associated to each specific Problem. Each problem is subject to Constraints
(Cs), which can be specialized for each type of problem. Constraint is an ab-
stract concept, which must be specialized for the specific constraint to be addressed.
GlobalConstraints are specialization of Constraint, which are applied to any
BasicElement. Currently, the following constraints are defined: MaximumValue,
MinimumValue, and ValueAssignment, which represent the Constraints 5.1, 5.2,
and 5.3 respectively. Solution (Sl) represents a candidate design. A function φ maps
Solutions that have costs (Co), annotated by the function γ in an estimation/simu-
lation process. Solution also contains a list of Decisions (d), which identifies each
individual decision that is part of a solution and has costs too.

The four DSE problems defined in the following sections derive from Problems, so
that they share the common resources defined in the core of the DSED metamodel.

5.4.2 Configuration Problem

A configuration problem in embedded systems is a generalization of the platform
tuning, which is also known as parametrization or parameter tuning problem explained
in Chapter 3, because the configuration can be solved for any component in the system
besides the platform, and at any abstraction level. Examples of configuration problems
are described in (GIVARGIS; VAHID, 2002; ASCIA; CATANIA; PALESI, 2004). In this
problem, the engineer must define values for configurable properties of components, such
as cache size and bus width, for a hardware architecture, or sample rate and resolution for
some software components. The values assigned to properties are usually restricted to a
variable domain, which is the interval of values a property can have.

The Configuration Problem Pconf is a specialization of the Problem P defined in the
DSED core model. Such a specialization is achieved by the specification of constraints
that provides additional semantics to elements of P , so no additional elements are in-
cluded in P . These constraints Cs are used to define the values that can be assigned
to configurable properties/parameters Pr of vertex contained in the design subset D′ of
design graphs. The properties with assigned values that fulfill the constraints form a
solution, which is stored in the set of candidate solutions Sl. Definition 5.2 presents the
complete definition of Configuration problem, based on the work in (GIVARGIS; VAHID,
2002):

Definition 5.2 (DSE Configuration Problem):
Pconf = 〈P 〈D′, Sl (Pr) , Rm,Cs〉〉 is a DSE Configuration Problem, which specializes
the Definition 5.1 as follows:

P is the general DSE problem as specified in Definition 5.1.
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Cs is a set of constraints specified by an engineer to be applied, when solving
Pconf , in order to define the variable domain Do, which is an interval [l;u],
such that Do ⊂ Z or Do ⊂ R and Do are the set of values which So assign
to Pr.

Pr is the set of configurable properties pr1, pr2..., prn ∈ Pr associated to a de-
sign element v | v ∈ Dg (V ).

Sl (Pr) is a place holder for solutions, which must fulfill the set of constraints Cs
specified for the problem, such that the values assigned to Pr ∈ Sl can solve
the problem Pconf .

The DSE Configuration problem model can represent multiple configuration prob-
lems at the same time, if it contains multiple design graphs. So that one can set up a
configurable SoC architecture and application parameters simultaneously. Moreover, the
graph representation can be used not only to identify components and their parameters,
it can also use multiple graphs to specify interdependency between properties, as pro-
posed in (GIVARGIS; VAHID, 2002), so that the heuristics can exploit such information
when solving the DSE Configuration problem. For example, the optimization of proper-
ties of a data cache is independent of properties of an instruction cache, however they are
dependent of bus’ parameters.

In order to assure a finite set of values, i.e. variable domainDo, which can be assigned
to a property Pr, an engineer can specify the following constraints:

• Property Lower Bound: Defines a lower bound to be applied to pr:

pr ≥ prlower (5.4)

• Property Upper Bound: Defines an upper bound to be applied to pr:

pr ≤ prupper (5.5)

• Property Value: Defines the value to be assigned to pr, in order to prune the design
space or assume some DSE scenario, for example if two independent properties
are to be optimized, the value of one can be arbitrarily fixed, when computing the
Pareto-set of values for the other property:

pr = prassigned (5.6)

The Configuration Problem model presented in Definition 5.2 is mapped to the meta-
model illustrated in Figure 5.6. The ConfigurationProblem (Pconf ) element repre-
sents the Configuration problem defined in 5.2. It contains a list of Configuration-
Constraints (Cs), which define the finite set of values (variable domain) that can be
assigned to a Property (Pr), according to the Constraints 5.4, 5.5, and 5.6, respec-
tively. A ConfigurationConstraint also has a generation function for the value
of a Property. A Property is associated to a Vertex and represents the final value
to configure it.
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Figure 5.6: Design Space Exploration Domain Metamodel - Configuration Problem.

5.4.3 Construction Problem

Construction is a typical problem found in Product Family Engineering, which is the
engineering process based on the variability of common features in a family of prod-
ucts(CZARNECKI, 1998). It is also one of the problems in the Platform-based Design,
as features of the product in development are assembled from a library of components
provided by the platform. An example of this problem in the context of DSE is described
in (NEEMA et al., 2003; ANDERSEN et al., 2012). In a DSE Construction problem
building blocks are assembled from a library of blocks, in order to build a product and
optimize some product’s properties. These building blocks may have dependencies, so
that the selection of one block from the library may imply in the selection or exclusion of
other blocks to/from the solution. These dependencies are represented in form of a tree,
so that the root of the tree represents the system to be built and leafs are building blocks
available in the library. Intermediate vertices of the tree represent groups of features with
blocks in their leafs. Groups may have different rules for composition, for example all
leafs in a group may be mandatory, optional, or mutualy exclusive. Figure 5.7 illustrates
a feature model, which is a common model used to represent a construction problem in
Product Family Engineering, and the concrete syntax used to define the diagram.

The Construction Problem Pconst specializes and extends P , by providing additional
semantics and elements to classify and group edges of design graphs. The Construction
Problem is composed of the subset D′ of design graphs and the placeholder Sl, which is
the set of selected vertices Sd of the design graphs that fulfills the constraints and solve
the problem Pconst. Pconst is also composed of the required metrics Rm and constraints
Cs specialized for this problem. It also extends P by including the sets Em, Eo, Ei
and Ex that group edges of design graphs contained in D′ according to the dependency
between the vertices connected by these edges. Finally Pconst has also the sets Go, Gm,
Gx, which are set of group of edges that imply some construction constraints between
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Figure 5.7: Product Family Engineering: example of feature model: (a) Feature model;
(b) Concrete syntax used in the diagram.
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(ANDERSEN et al., 2012)

multiple vertices. The Construction Problem is completely defined as following, based
on the definition in (ANDERSEN et al., 2012):

Definition 5.3 (DSE Construction Problem):
Pconst = 〈P 〈D′, Sl (Sd) , Rm,Cs〉 , 〈Em, Eo, Ei, Ex〉 , 〈Go, Gm, Gx〉〉 is a DSE Construc-
tion Problem, which extends the Definition 5.1 as follows:

P is the general DSE problem as specified in Definition 5.1.

D′ contains one design graph Dg, which is a rooted tree connecting all building
blocks, such thatDg (V ) is a finite set of building blocks available to construct
a system, and Dg (E) is a set of directed edges indicating the relation child-
parent.

Em is a set of mandatory edges, such that Em ⊆ Dg (E).

Eo is a set of optional edges, such that Eo ⊆ Dg (E).

Ei is a set of cross-tree “implies” edges, such that Ei ⊆ Dg (V ) × Dg (V ) and
Ei ∩Dg (E) = ∅.

Ex is the set of cross-tree “excludes” edges, such that Ex ⊆ 2Dg(V ) ∀ e ∈
Ex, |e| = 2.

Go is the set of groups goi ∈ Go of edges ej ∈ Dg (E), such that i = {1.. |Go|},
and j = {1.. |go|}. A go group represents an or-group, such that one or more
blocks in the group can be selected.

Gm is the set of groups gmi ∈ Gm of edges ej ∈ Dg (E), such that i = {1.. |Gm|},
and j = {1.. |gm|}. A gm group represents a mutex-group, such that one block
or none can be selected from the group.

Gx is the set of groups gxi ∈ Gx of edges ej ∈ Dg (E), such that i = {1.. |Gx|},
and j = {1.. |gx|}. A gx group represents an xor-group, such that one block
of the group must be selected.
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Sd is a label associated to building block v ∈ Dg (V ) through the function ε :
Sl→ Dg (V ) and represents the selected block to constitute the system under
construction.

Sl (Sd) is a place holder for solutions, which must fulfill the set of constraints Cs
specified for the problem, such that the selected blocks Sd ∈ Sl can solve the
problem Pconst.

A well formed Construction problem is subject to the following constraints:

Go ∩Gx ∩Gm = ∅ (5.7)

Ek ∩ Ej = ∅ | ∀ k, j = {m, o, i, x} ∧ k 6= j (5.8)

Additionally, all edges in a group share the same parent so:

if g ∈ Gi ∀ i ∈ {o,m, x} and if e = 〈b1, b2〉 , e′ = 〈b3, b4〉 ∈ g then b1 = b3 (5.9)

The DSE Construction Problem is subject to the following constraints, which provide
semantic for edges and group of edges presented in Definition 5.3 and must be fulfilled
when selecting blocks to compose a solution for the problem:

• Mandatory Element: This constraint defines that a mandatory element v ∈ Dg(V ),
which is target of edge e ∈ Em, must be selected to build a solution Sd:

Sl := Sl ∪ {Sd} | δtDg (e) = v′ ∧ e ∈ Em ∧ ε (Sd) = v ∧ v = v′ (5.10)

• Optional Element: This constraint defines that an optional element v ∈ Dg(V ),
which is target of edge e ∈ Eo, may not be selected to build a solution Sd:

if δtDg (e) = v ∧ e ∈ Eo ∧ ε (Sd) = v′ ∧ v = v′ ⇒ Sl∩{Sd} =

{
∅
{Sd}
(5.11)

• Implies Element: This constraint defines that if a block v ∈ Dg(V ) is selected to
compose a solution Sl, and this elements implies another element, then this element
must also compose the solution:

if ∃ e = 〈v, v′〉 ∧ Sdi ∈ Sl | ε (Sdi) = v ∧ e ∈ Ei ⇒
∃ Sdi+1 ∈ Sl | ε (Sdi+1) = v′

(5.12)

• Excludes Element: On the contrary to Constraint 5.12 this constraint defines that if
a vertex v ∈ Dg(V ) is selected to compose a solution Sl, and this element excludes
another element, than the excluded element must not appear in the solution:

if ∃ e = 〈v, v′〉 ∧ Sdi ∈ Sl | ε (Sdi) = v ∧ e ∈ Ex ⇒
@ Sdi+1 ∈ Sl | ε (Sdi+1) = v′

(5.13)
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• Or Group: This constraint defines that one or more blocks in the Or-group must be
selected for the solution, such that:

if ∃ Sd ∈ Sl ∧ ε (Sd) = u ∧ ei = 〈u, vi〉 ∈ go | i = {1.. |go|} ∧ go ∈ Go ⇒
Sl := Sl ∪ ({Sd1} ∨ · · · ∨ {Sdn}) |

ε (Sdi) = vi ∧ ei = 〈u, vi〉 ∈ go ∧ n = |go| ∧ i = {1..n}
(5.14)

• Mutex Group: This constraint defines that none or one block from the Mutex-group
can be selected for the solution, such that:

if ∃ Sd ∈ Sl ∧ ε (Sd) = u ∧ ei = 〈u, vi〉 ∈ gm | i = {1.. |gm|} ∧ gm ∈ Gm ⇒{
Sl := Sl

Sl := Sl ∪ {Sd′} | ε (Sd′) = v ∧ e = 〈u, v〉 ∈ gm
(5.15)

• Xor Group: This constraint defines that one block from the Xor-group must be
selected for the solution, such that:

if ∃ Sd ∈ Sl ∧ ε (Sd) = u ∧ ei = 〈u, vi〉 ∈ gx | i = {1.. |gx|} ∧ gx ∈ Gx ⇒
Sl := Sl ∪ ({Sd1} ∨ · · · ∨ {Sdn}) ∧ ¬ (Sdi ∧ Sdj) ∀i 6= j |
ε (Sdi) = vi ∧ ei = 〈u, vi〉 ∈ gx ∧ n = |gx| ∧ i, j = {1..n}

(5.16)

The DSE Construction Problem presented in Definition 5.3 provides elements to rep-
resent different dependencies, requirements, and alternative ways to assemble design el-
ements. It is suitable not only to construct systems based on the application features,
but also to construct systems by selecting reusable hardware and software components
from a platform repository. Moreover, it is compatible to many feature models, so that
solvers specialized for feature models can be integrated into the DSE methodology. Com-
pared to other feature models found in the literature, Definition 5.3 extends such models
to include not assembly of building blocks, but also optimization of systems properties.
Figure 5.8 illustrates the DSED metamodel elements specified to represent a DSE Con-
struction Problem.

The DSED metamodel represents the problem defined in Definition 5.3, by using the
element ConstructionProblem (Pconst), which extends DSEProblem (P ). It con-
tains a list of Construction Constraints (Cs) that are associated to Edges (E)
of design graph Graph (Dg). Such constraints add the construction semantics to Edges
and determine how a Vertex (V ) can be selected to construct a solution. The elements
Mandatory (Em), Optional (Eo), Implies (Ei), Excludes(Ex), OrGroup (Go),
MutexGroup (Gm) and XorGroup (Gx) are associated to Edges and give them special
semantics according to the Constraints 5.10 - 5.16, respectively. A Vertex is a building
block. Finally, the Selected (Sd) element indicates the selected block to construct a
Solution (Sl) for the Construction Problem.
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Figure 5.8: Design Space Exploration Domain Metamodel - Construction Problem.

5.4.4 Mapping Problem

In modern embedded system development, mapping is the most common problem for
DSE at the system level. As most DSE approaches are based on the Y-Chart, a mapping
step is required, so that an application is mapped into a platform to define a system imple-
mentation. A mapping can define tasks which must be executed on a processor, services
required by an application to components provided by a platform library, distribution of
messages through a communication channel, and other possibilities.

In most of system mapping methods, the system is represented by two or more graphs,
which must be mapped into each other by specifying extra edges that indicate the mapping
between vertices of different graphs. In the same way the DSE Mapping Problem is
defined by a set of graphs, which must be mapped by using tuples that contain vertices
of different graphs. The mapping solutions are searched, so that some system metrics are
optimized. The Mapping Problem Pmapping specializes the problem P , by constraining
the semantics of its elements and is defined as follows:

Definition 5.4 (DSE Mapping Problem):
Pmapping = 〈P 〈D′, Sl (Mp) , Rm,Cs〉〉 is a DSE Mapping Problem, which specializes
the Definition 5.1 as following:

P is the general DSE problem as specified in Definition 5.1.

Mp is a pair 〈u, v〉, where u ∈ Dgi (V ) ∧ v ∈ Dgj (V ) | i 6= j ∧ Dgi, Dgj ⊂ D′,
which represents the mapping from vertex u into vertex v of different design
graphs.

Sl (Mp) is a place holder for solutions that must fulfill the set of constraints Cs speci-
fied for the problem, such that the selected mappings Mp ∈ Sl can solve the
problem Pconst.



91

This model can capture design elements represented in different types of MoC, such as
CDFG, KNP, Signal Flow Graph, and others. Furthermore, it allows different encoding
of graphs, so that different solvers can be used, for example integer representation of
tasks and processors in genes of a Genetic Algorithm (DICK; JHA, 1998), activation
mapping edges (0 or 1) between graphs (BLICKLE; TEICH; THIELE, 1998) or sub-graph
of product of graphs (OLIVEIRA et al., 2009), which is proposed in this thesis. Moreover,
it represents dependencies between elements of the same graph, so that dependencies can
be used by heuristics, in order to improve generation of solutions. Such an approach is
proposed in Chapter 6.

In order to specify different DSE scenarios for the DSE Mapping Problem, some
constraints are defined. By using these constraints, engineers can influence solutions by
including mapping they knows that are adequate, or excluding others. Moreover, con-
straints to specify structural restrictions, such as when a software component cannot be
executed in a specific processor, all elements from a graph must be mapped, or elements
cannot be mapped twice or more. Constraints that represents dependencies between el-
ements are also defined, such as the implication of a mapping when another mapping is
selected in the solution. The constraints that can be specified for DSE Mapping Problem
are defined as follows:

• Duplicated Mapping: Avoids mapping the same vertex in a graph twice to the same
vertex in another graph:

Mpi = 〈u, v〉 6= Mpj = 〈u′, v′〉 ∀Mpi,Mpj ∈ Sl (Mp) |
i, j = {1.. |Sl (Mp)|} ∧ i 6= j

(5.17)

• One To Many Mapping: Avoids mapping one vertex in one graph to many vertices
in another graph:

Let u, u′ ∈ Dg (V ) ∧ v, v′ ∈ Dg′ (V ) :

@ u = u′ ∧ v 6= v′ ∀Mpi = 〈u, v〉 ,Mpj = 〈u′, v′〉 ∈ Sl (Mp) |
i, j = {1.. |Sl (Mp)|} ∧ i 6= j

(5.18)

• Many To One Mapping: Avoids mapping multiple vertices in one graph to the same
vertex in another graph:

Let u, u′ ∈ Dg (V ) ∧ v, v′ ∈ Dg′ (V ) :

@ u 6= u′ ∧ v = v′ ∀Mpi = 〈u, v〉 ,Mpj = 〈u′, v′〉 ∈ Sl (Mp) |
i, j = {1.. |Sl (Mp)|} ∧ i 6= j

(5.19)

• Mandatory Mapping: Defines that all vertices in a graph must be mapped to vertices
in another graph:

∀ u ∈ Dg (V ) ∃Mpi = 〈u, v〉 | i = {1.. |Sl (Mp)|} , v ∈ Dg′ (V ) (5.20)

• Include Mapping: Defines that a vertex in a graph must be mapped to a specific
vertex in another graph:

∃Mp = 〈u, v〉 ∈ Sl (Mp) | u ∈ Dg (V ) ∧ v ∈ Dg′ (V ) (5.21)
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• Exclude Mapping: Prevents the mapping of a vertex in a graph to another vertex in
different graphs:

@Mp = 〈u, v〉 ∈ Sl (Mp) | u ∈ Dg (V ) ∧ v ∈ Dg′ (V ) (5.22)

• Imply Mapping: If a vertex u in graph Dg is mapped to a vertex v in another graph
Dg′, than another vertex u′ in graph Dg must be mapped to vertex v′ in graph Dg′:

if ∃Mp = 〈u, v〉 | u ∈ Dg (V ) , v ∈ Dg′ (V ) ⇒
∃Mp′ = 〈u′, v′〉 | u′ ∈ Dg (V ) , v′ ∈ Dg′ (V ) ∧ Mp = 〈u, v〉 6= Mp′ = 〈u′, v′〉

(5.23)

• Inhibit Mapping: If a vertex u in graph Dg is mapped to a vertex v in another graph
Dg′, than vertex u′ in graph Dg must not be mapped to a vertex v′ in graph Dg′:

if ∃Mpi = 〈u, v〉 |u ∈ Dg (V ) , v ∈ Dg′ (V ) ⇒ Mpj′ = 〈u′, v′〉 /∈ Sl (Mp)
(5.24)

Definition 5.4 is represented in the DSED metamodel by the elements illustrated in
Figure 5.9.

Figure 5.9: Design Space Exploration Domain Metamodel - Mapping Problem.

A MappingProblem (Pmapping) element represents a DSE Mapping Problem, which
extends DSEProblem. It contains a subset (D′) of design graphs Graph (Dg), which
contain Vertex (V ) and Edges (E). The mapping between vertices of these graphs
is defined in MapDecisions (M ), which are stored in DSESolution (Sl). This
problem is subject to MappingConstraints (Cs) of type DuplicatedMapping,
OneToManyMapping, ManyToOneMapping, MandatoryMapping, Include-
Mapping, ExpludeMapping, ImpliesMapping, and InhibitMapping, which
represent Constraints 5.17 - 5.24, respectively.
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5.4.5 Scheduling Problem

Scheduling is a problem where start times must be assigned to a task set, which may
execute under time constraints, such as deadline and period. Messages between elements
are also subject to scheduling and play an important role in real-time and networked
embedded systems, such as in the automotive industry.

In the DSE Scheduling Problem Psched two graphs represent the system and form the
subset D′ of design graphs, namely task graph Dgt and processor graph Dgp. A task
graph is a directed graph, according to Definition 4.1, whose vertices represent tasks
and edges represent a dependency between tasks. A task has a set of attributes τ which
characterize it in terms of computational effort and time, such as computational time
required to execute and interval between execution. Tasks may share processors, which
sequentially execute a task set. Although tasks may also share resources, such as data-
structures or input/output devices, the current DSE Scheduling problem model is limited
to the scheduling of tasks in shared processors. Multiple task graphs can be used to
represent independent task sets. A solution Sl for the scheduling problem is a set of
tuples St, whose attributes are assigned to tasks in order to define the timing attributes
that meet timing and resource constraints. Definition 5.5 presents the scheduling problem
based on (BUTTAZZO, 2011).

Definition 5.5 (DSE Scheduling Problem):
Psched = 〈P 〈D′, Sl (St) , Rm,Cs〉〉 is a DSE Scheduling Problem, which specializes the
Definition 5.1 as follows:

P is the general DSE problem as specified in Definition 5.1.

D′ is a set of directed graphs, whose graph Dgt represents task graph and Dgp
represents a processor graph, such that Dgt ∪ Dgp = D′ and Dgi ∩ Dgj =
∅ ∀i 6= j.

Dgt is a directed graph as defined in Definition 4.1, whose vertices represent tasks,
such that a tuple τi 〈Ti, ri, Ci, di, Di〉 ∈ Dgt (V ) is a task and edge eij ∈
Dgt (E) are dependencies between tasks τi and τj .

Ti the period of task τi is the interval between two consecutive executions of a
periodic task τi or the minimum interval in the case of aperiodic and sporadic
tasks.

ri the release time is the time at which task τi becomes ready for execution.

Ci the computation time is the time required to execute task τi without interrup-
tion.

di the absolute deadline is the time before which task τi should be completed.

Di the relative deadline is the difference between absolute deadline and release
time.

Dgp is a direct graph as defined in Definition 4.1, whose vertex set Dgp (V ) repre-
sent processors where tasks are scheduled.
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Dgr is a direct graph as defined in Definition 4.1, whose vertex set Dgr (V ) repre-
sent resources shared by tasks.

St St = 〈Ti, ri, di, Di, si, fi〉 store tasks properties which configures a task τij
for a specific solution Sl, such 0 ≤ i < |Dg (V )| and j is the nth execution
of τi.

si the start time is the time at which a task τi starts executing.

fi the finish time is the time at which a task τi finishes its execution.

Sl (St) is a place holder for a scheduling solution, which contains the set of values to
be assigned to tasks in order to fulfill the set of constraints Cs.

Although the scheduling constraints guide solutions for scheduling problems, they can
also be applied when there is no requirement for scheduling optimization. The scheduling
constraints are also required when engineers intent to solve other DSE Problems, whose
solution are tasks in a system that must share resources. For example, when solving a
Construction problem, a solution must contain enough computational resource (adequate
number and type of processors) to execute the system functions and fulfill their timing
requirements. Such interleaving between DSE problems is one of the challenges that the
methodology proposed in this chapter tries to address. First, multiple problem represen-
tation is provided, so that engineers can make use of separation of concerns to define
the constraints according to each scenario. Moreover, model elements shared between
multiple DSE Problems allow for exchanging information between these problems, so
that evaluators and solvers can deal with such interleaving information. The following
constraints can be defined by an engineer in order to solve a DSE Scheduling Problem:

• Precedence: Determines the precedence between a pair of tasks:

if τi ≺ τj ⇒ ∃ Sti, Stj ∈ Sl | fi < sj (5.25)

• Assigned Start Time: Specifies when a task must start executing;

Sti 〈Ti, ri, di, Di, si, fi〉 ∈ Sl | si = sassigned (5.26)

• Assigned Finish Time: Specifies when a task must finish its execution:

Sti 〈Ti, ri, di, Di, si, fi〉 ∈ Sl | fi = fassigned (5.27)

• Deadline: Assures that a value lower than the deadline is assigned to a finish time:

∀ Sti ∈ Sl | fi ≤ Di (5.28)
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• Maximum Occupation: Defines an upper limitOccmax for occupation of a resource,
so that a schedulability test of periodic task sets can be satisfied:

|Dgt(V )|∑
i=0

(
Ci
Ti

)
≤ Occmax (5.29)

The DSE Scheduling Problem presented in Definition 5.5 represents in graphs the set
of elements to be scheduled, such as tasks, resources and messages. Multiple graphs can
be used, in order to represent resources where the elements must be scheduled, such as
processors and buses. The costs annotated in vertices, edges and graph, or in solution and
decisions, provide a flexible representation for a wide variation of information required
for the scheduling definition, such as deadline, delay, jitter, and others. The proposed
DSED metamodel elements capture such concepts and are illustrated in Figure 5.10.

Figure 5.10: Design Space Exploration Domain Metamodel - Scheduling Problem.

The SchedulingProblem (Psched) element represents the DSE Scheduling Prob-
lem. It contains a set of constraints (Cs), which the problem is subject of. Constraints 5.25
- 5.29 are represented by elements Precedence, AssignedStartTime, Assigned-
FinishTime, Deadline, and MaximumOccupation, respectively. Scheduling-
Problem has also a subset (D′) of design graphs, which contain Graphs that represent
task graph (Dgt) and processor graph (Dgp). The vertices represented by the element
Vertex (V ) in these graphs represent the tasks or processors, and Edges (E) define
dependencies between them. Some elements of this metamodel, such as Vertex and
Decision (St), are specializations of BasicElement, so that they have a list of
Value. Therefore, they can store values for different properties related to the scheduling
problem, such as the tuple of task properties τ , which contains deadline (D), release time
(r), period (T ), and other properties.
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5.5 Design and DSED Model Weaving

In order to improve DSE model specification, the ideas presented in (OLIVEIRA et al.,
2010) were extended to DSE-related elements. Model weaving, is used to combine design
and DSED model elements without compromising the separation of concerns. In this
fashion the variability of design is seen as an orthogonal concern of system design, and
as such it must be woven to system design elements representing the final model used as
input for DSE.

The separation of concerns is a concept present in different development process mod-
els. For example, Y-Chart and PBD propose application and architecture, whereas ROPES
and RUP-SE propose structural, communication, deployment, and others concerns. The
concrete approach used by engineers to achieve separation of concerns varies in the lit-
erature, such as Object-oriented Programming, Aspect-oriented Programming, MDE and
other approaches. Although the Object-oriented Programming is considered a huge con-
tribution to software development, it is still requiring complementary approaches to im-
prove the software development (BEZIVIN, 2005). Moreover, the embedded systems
domain has additional challenges that the Object-oriented approach only is not enough to
overcome. Therefore, many proposals try to improve the development by applying differ-
ent approaches, such as Aspect-oriented Design (WEHRMEISTER et al., 2008; LINE-
HAN; CLARKE, 2012) and MDE (TERRIER; GéRARD, 2006; PIEL et al., 2008).

“Metamodeling is a convenient way for isolating concerns of a systems” (DEL FABRO
et al., 2005), such that it creates multiple modeling dimensions (KENT, 2002). Although
model transformations are the most common way to define relationships between these di-
mensions (BEZIVIN, 2005), model weaving is another important operation in MDE with
similar purpose. Model weaving establishes links between distinct (meta)models, and
produces a weaving model that relates with these models, remaining linked to them to be
used for different purposes, such as traceability, tool interoperability, model composition,
and model alignment (DEL FABRO et al., 2005). Figure 5.11 illustrates the weaving
metamodel used to represent the link from multiple design models to DSED models.

Figure 5.11: Weaving Metamodel based on the AWM metamodel.

(DEL FABRO et al., 2005)

The basis of the Weaving Metamodel is the WElement, which represents all meta-
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model elements. It has name and description attributes, which are inherited by all other el-
ements. The element WModel represents the weaving model and serves as a container for
all other elements. In the proposed methodology the model that weaves the DSED model
to multiple design models is a WModel. It is composed of WElement and WModelRef,
which is a reference to the models being woven, such as the DSED, UML, and Simulink
models. Such references allow keeping track of woven models. WModelRef also con-
tains WElementRef, which represents elements owned by a model, e.g. classes from a
UML model. The link between elements in different models is represented by WLink.
A bidirectional association to itself, namely parent and child, allows the hierarchical
specification of WLinks. It also contains WLinkEnds, which is a link extremity. Each
WLinkEnd is associated to a WElementRef, which represents a referenced element of
a woven model. Such indirect association between WLink and WElementRef enables
the linkan between arbitrary number of elements. WModelRef and WElementRef
extend the abstract element WRef, which contains the field of type String named ref.
This field contains the identifier of the woven elements and models. Such identifier is
the physical link between models and is technology-dependent, so that an identification
mechanism is required, e.g. XPointer 4 or XMI-IDs 5. Such a mechanism is provided by
model weaving tools, such as AWM (DEL FABRO et al., 2005), which is the one adopted
in the proposed methodology.

In this thesis model weaving is applied to create a link between design and DSED
models with the following purpose: i) allow the adoption of multiple design models (or
languages) during the DSE process; ii) allow the back annotation of design decisions taken
during the DSE process into design models; iii) represent the variability of design models
as an orthogonal design concern; and iv) allow direct exploitation of design information
during the DSE, when creating heuristics for specific domain or application.

5.6 DSE Rules Definition

In the proposed approach, DSE rules are model transformation rules. Therefore, the
name “DSE rules” is used instead of the usual “constraints”, because transformation rules
provide constraint expressions to define source/target matching patterns and additionally
an action block, so that by using DSE rules one can not only assert properties in the model
but also make changes in the target model.

These DSE rules receive an unconstrained design space as input and generate a con-
strained design space as output, when executed by a transformation engine. Such rules
are constraints to guide and prune the available design space, to reduce the exploration
time and ensure the feasibility of a candidate solution. In order to make the identification
of rules easy, we classify them into three categories:

• Structural rules: These rules are applied to avoid illegal designs, which could ap-
pear after the combination of different design decisions. Typical rules avoid double
assignments of an element, e.g. different processors assigned to the same slot in
a given communication structure or the same task assigned to different processors.
Other rules may ensure that all tasks must be mapped, or at least one processor must

4XPointer is a system for addressing components of XML based media.
5XML Metadata Interchange (XMI) is the OMG standard for exchanging model information between

modeling tools and repositories. XMI-ID is the unique identifier which should remain the same during all
the modeling stages
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be allocated. These rules can specify integration issues, such as two components
that could not be integrated into the same system because of incompatibility issues.

• Non-Functional rules: Even if a design is feasible, it can be invalidated when
checked against NFRs, which must be satisfied by the system. In this way, these
rules avoid the selection of solutions that violate requirements, such as task dead-
lines, maximum delays, and maximum energy consumption. One challenge to the
DSE process is to deal with system metrics, which cannot be partially evaluated.
As such, the DSE process may postpone the design space pruning to a second step,
after system evaluation, when it could filter the candidates from the design space.
This procedure avoids selecting the candidate again by removing design alternatives
that may cause requirements violation.

• Defined Design Decisions rules: Designs usually start with pre-defined design deci-
sions and previously developed components, and the selected platform may impose
restrictions, which an engineer must respect. Moreover, engineer’s experience may
influence how the automated DSE process proceeds. Therefore, these rules are
specified in cases where one needs to interfere on the DSE process through specific
design decisions. Typical rules define specific task mapping, processor allocation,
specific task or processor execution frequency, and others.

Considering this classification, an engineer of the proposed DSE methodology is ex-
pected to define some rules for each category, which applies to his/her set of DSE prob-
lems. The DSED metamodel provides elements to represent a set of commonly used
constraints, which can be defined by an engineer, when creating a DSED model. Such el-
ements are abstract representations of the constraints, whose implementation is not bound
to any language and solver. However, they possess a strong semantic, which was de-
fined in Section 5.4. The DSED metamodel can be easily extended to include additional
constraints, but the actual implementation depends on the solver adopted in the tooling
environment, such as a solver based on FORMULA requires constraints written in FOR-
MULA, and the solver presented in Chapter 6 requires the DSE rules implemented in
VIATRA II, because it is the transformation engine integrated in the solver.

The direct representation of specific constraints in elements of the DSED is an impor-
tant mechanism to overcome the inflexibility of current DSE methods. Model transforma-
tions access the DSED model to generate solutions according to constraints specified in
the DSED model. By identifying a constraint specified in the DSED model, a transforma-
tion must execute according to the semantic defined in Section 5.4. The advantage of this
approach is that constraints can be quicker defined, by dealing only with domain concepts
and any specific constraint language syntax. A library of DSE rules boost the produc-
tivity during the DSE process, because well-defined and test rules can be automatically
reused inside solvers, by simple testing if there exists a instance of specific constraint in
the DSED model.

DSE rules can be implemented in any model transformation language that supports the
transformation of ECORE-based models. Such restriction exists only because the meta-
models used to support this methodology were defined in ECORE. Transformation from
ECORE to other metamodeling language, support to multiple languages, or metamodel
agnostic frameworks, e.g. VIATRA II6 can overcome such restriction. Another way to
implement such constraints is the implementation of them in the input model required by

6http://www.eclipse.org/viatra2/
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the adopted solver. Flexible frameworks provide their own language, such as Mathlab,
FORMULA, and SPLOT. Other environments provide building blocks of optimization al-
gorithms implemented in Java or C++, so that engineers can construct their own solvers,
which also must include an implementation of constraints that must test which of them
are defined in the DSED model. Such an implementation is possible, because, Java and
C++ APIs can be generated from the DSED metamodel, by using EMF and EMF4CPP7

frameworks, respectively. Chapter 7 provides more information about the implementation
of constraints in order to support the proposed methodology.

5.7 Design Space Exploration Process

The DSE process is responsible for generating candidate designs based on some ex-
ploration/optimization strategy. The content of the DSED model defines the DSE prob-
lems to be solved, including the metrics required and evaluation and solver tools to be
used. All this information is easily accessed by using the API generated from the DSED
metamodel or by model transformations. Even some constraints can be derived from the
DSED model, such as pre-defined decisions, variable domains and the configuration se-
mantic for Construction problems. By accessing the DSED model and using adequate
transformations the information can be applied to different exploration mechanisms, in
order to generate solutions for different combinations of DSE problems. The results are
stored again in the DSED models after a population of solutions is generated.

The most general way to implement an exploration mechanism (a solver for DSE prob-
lems) for the DSE process is to adopt some optimization tool and transform the DSED
model to the input model conforming to the requirements of the adopted tool and write its
output into the DSED model. In this method there is no interaction between the optimiza-
tion tool and DSED during the DSE process, which may lead to limitations, such as prob-
lems to find support for constraints specified in the DSED, combination of multiple DSE
problems, and exploitation of problem specific features, so that it may also require pre-
and post-processing to encode the problem for the solver or remove design candidates.
Although this pragmatic approach does not exploit all benefits of the proposed methodol-
ogy, it allows access to global optimizers in a simple way, so that less expertise is required
from users that are integrating the DSED and the optimization tool. They provide both,
general design candidate generation functions, given an appropriate encoding of the prob-
lem, and search/optimization functions. Besides, optimization tools provide strong sup-
port to different solvers, mathematical analysis, and advanced visualization techniques of
the results. Examples of such tools are modeFrontier8 and Guimoo (LIEFOOGHE et al.,
2007). Therefore, the DSED model, DSED API and the methodology flow themselves
are contributions to DSE process, because they provide a convergence mechanism, which
allows standard representation of DSE concepts, easy integration of multiple solvers in
the DSE process, and integration of the last in the development process.

Alternatively, the DSED model and API can be interactively used during the DSE pro-
cess, by using engineers’ own implementations of solvers and optimization frameworks.
Optimization frameworks help engineers by providing reused components of common
optimization algorithms and an API, so that engineers can implement their own heuristics
according to their requirements. Opt4J (LUKASIEWYCZ et al., 2011) and Watchmaker 9

7https://code.google.com/p/emf4cpp/
8http://www.modefrontier.com
9http://watchmaker.uncommons.org/
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are examples of this kind of frameworks. By using this method, engineers are requested to
implement a design candidate generation function and an optimization mechanism. This
approach requires strong knowledge of solvers, optimization algorithms, and the prob-
lem to be solved. However, one can explore the benefits of the methodology, as the user
has full control of the exploration mechanism and of the interaction with the DSED and
Design-DSED Model.

A third method to implement/integrate solvers is to use adequate model transforma-
tion engines and transformation rules, as proposed by the author of this theses and col-
leagues in (OLIVEIRA et al., 2009), and other works such as (JACKSON; SCHULTE,
2008; SAXENA; KARSAI, 2010; SCHATZ; HOLZL; LUNDKVIST, 2010; HEGEDUS
et al., 2011). By using this method a metamodel of the DSE problem must be defined.
Afterwards, constraints over (meta)models or constraints implemented as transformation
rules are used to generate design candidates according to requirements. Going beyond
model transformation, some approaches allow for automatic generation of models from
the specification of (meta)model, constraints/transformation rules, and partial models.
Such an MDE approach provides a flexible mechanism, wherewith a engineer can define
under which conditions the DSE problems must be solved, without requiring changes in
the DSE tool. Constraints and relations between DSE problems can easily be defined, and
additional actions could be specified if some conditions are met. Moreover, the model
transformations are artifacts that can be evolved, as problems and solutions change. In
this way the DSE rules, Design-DSED, and DSED models are easily integrated into the
development process, because there are tools to easily handle these models and transfor-
mations - which are models, too. Although the support for automatic generation of models
is still incipient, some tools start supporting it, such as the work in (PETTER; BEHRING;
MüHLHäUSER, 2009), VIATRA II (HEGEDUS et al., 2011), and FORMULA10. By
adopting this method, engineers are not requested to implement a design candidate gen-
eration function, but they are requested to implement optimization functions. The gener-
ation of optimized models are rather limited, because there is no optimization mechanism
to guide the search or it is limited to values existing during the generation, as no inter-
action with evaluators are provided. Furthermore, as discussed in section 4.5, except for
the work in (SAXENA; KARSAI, 2010) the MDE methods for DSE are better classified
as MDE framework as they not provide any specific DSE concept and abstraction for
DSE, and all of them request engineers to completely customize the tooling by defining
their own (meta)models and transformations. Therefore, the methodology proposed in
this thesis complements the general works proposed in (JACKSON; SCHULTE, 2008;
SCHATZ; HOLZL; LUNDKVIST, 2010; HEGEDUS et al., 2011), in the way that such
methods can be specialized for the proposed methodology or used to partially implement
it. In the context of this thesis, such methods are global solvers, which can be integrated
into the proposed methodology to solve any of the DSE problems specified in the DSED
metamodel.

The method adopted in this thesis to support the DSE process and implement a solver
combines two alternatives. It uses an optimization framework to support the optimization
mechanism, which is an implementation of the Crowding Population-based Ant-Colony
Optimization Algorithm for Multi-Objective (CPACO-MO) (ANGUS, 2007). This mech-
anism is responsible for searching in the design space and construct the Pareto-set of
design alternatives, and is described in Section 6.4.1. The design candidate generation
function adopts model transformation rules to represent the DSE rules and use transfor-

10http://research.microsoft.com/en-us/projects/formula/
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mation engines to refine a DSED model, which contains DSE problem instances to be
solved, into a DSED model also containing solutions for the specified problems. The
design candidate generation function is described in Section 6.4.2.

The method implemented to support the DSE process exploits the DSED metamodel,
which provides specific concepts and abstractions for DSE, and a library of provided com-
mon DSE rules, which reduces the effort to define the transformation required to gener-
ate adequate design candidates. The method implemented balances global and specific
optimization, by providing an implementation of a global optimizer and an integration
with the MDE framework, so that engineers can use model transformations in side a pre-
implemented step-wise search to guide the DSE process in a very flexible way. Such
implementation also allows the interaction during the DSE process of solver with values
generated by evaluators in the DSED model, which are used to guide DSE process and
prune the design space. Additional information on the implementation of the adopted
method is presented in Chapters 6 and 7.

5.8 Evaluation Process

During the DSE process an evaluation can take place at different phases. In order to
generate one design candidate, a partial evaluation at each decision can be performed.
Such a kind of evaluation is useful when step-wise search is performed, so that the next
decision is supported by the evaluation of available alternatives, if there is enough infor-
mation for that evaluation, until all decisions are made to compose a solution.

However, there is a point in time where a candidate design cannot be partially evalu-
ated. This is the case, for example, when the execution time of a task in a processor is not
known at the time of a decision. Therefore, the decision is made without considering any
previous evaluation of alternatives, postponing the evaluation until a complete solution is
known, containing all required decisions. After the complete solution is known, it could
be fully evaluated and the results noted to build up a population of design candidates.

In order to support both types of evaluation, the DSED metamodel provides elements
to represent evaluation metrics for partial evaluation in each Vertex and Edge of a
Graph. Fully evaluation or previous knowledge of metrics can be stored in the element
Cost associated to a Solution or a Decision. The API generated from the meta-
model provides easy access to this information, so that evaluation tools can take advantage
of them.

The interface Evaluator is provided, so that a proxy class, which must intermediate
the solver and evaluation tools, can be implemented to meet the user requirements for
evaluation. By using this interface, the evaluation tool can be automatically configured
and executed during the DSE process.

Assessing each candidate solution must not require detailed synthesis and cycle-ac-
curate simulation, because evaluation time will be prohibitive if a large set of design
candidates must be evaluated. Therefore, the proposed methodology adopts and extends
the SPEU tool (OLIVEIRA et al., 2006). SPEU implements a hybrid estimation method,
which provides analytical estimates on physical system properties. These properties are
directly obtained from UML models, C++ source code and/or compiled binary code,
which are transformed into CDFGs.

Before starting an evaluation, the SPEU proxy accesses DSED and UML models in
order to generate its internal representation, containing the CDFG extracted from UML
models and the architectural decisions produced during the DSE process and stored in the
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DSED model. After a fast evaluation, the SPEU proxy stores the estimated properties in
the DSED model again, so that the DSE process can continue its execution.

The approach implemented by SPEU allows quick and static evaluation of candidate
designs using information of different sources and at different abstraction levels, without
depending on costly synthesis and simulation evaluation cycles. Therefore, SPEU is ad-
equate to the purpose of the presented methodology. Further details about the SPEU tool
are provided in Section 7.3

5.9 Discussion

Differently from the proposals found in the literature of MDE applied to embed-
ded systems, which are only concerned about the integration of design tools to DSE
by applying model-to-model transformations from the output of one tool to other ones
(MURILLO; MURA; PREVOSTINI, 2010; KANGAS et al., 2006), the methodology
presented in this chapter exploits the MDE approach to improve the flexibility, reuse, and
productivity for DSE of embedded systems. Initially, a methodology flow was presented,
which integrates the DSE activities in the development process. Afterward the DSED
metamodel was defined, in order to represent DSE domain concepts. Such a metamodel
allows the explicit specification of variability in embedded system design models. A
method for weaving design models with the DSED model is used to create a link between
these models, which is used to exploit domain-specific knowledge in the DSE process,
improve the rationale of design decisions, and back annotate the DSE results. Moreover,
three methods that can be used to implement the DSE process are identified, namely the
bridging between the DSED model with optimization tools, the use of optimization frame-
works by implementing domain specific heuristics, and the use of transformation engines
that execute the DSE rules defined to refine the DSED model. Such methods trade-off
the flexibility and control over the process. The method adopted for this thesis in or-
der to support the DSE process combines two alternatives, an optimization framework to
implement an optimization mechanism, and the use of model transformation rules and a
transformation engine to generate design candidates. The DSE process method also im-
plements a step-wise algorithm, which integrates an MDE framework to execute the DSE
rules that guide the DSE process and prune the design space. Finally, the methodology
foresees the integration of multiple solver and evaluation tools and provides an evaluation
tool adequate for quick DSE at high abstraction level.

Similarly to the proposed methodology, there are also other approaches that use a
metamodel to represent the design space or some concepts of the DSE domain. In the
work presented in (NEEMA et al., 2003) a metamodel is defined to represent the design
space for the construction problem. Besides addressing only one DSE problem, it requires
an engineer to model the design space by defining templates that can be filled with com-
ponents from a library. The approach proposed in (SAXENA; KARSAI, 2011) requires
the extension of the metamodels that represent the design with the variability concepts of
the DSE problems to be addressed and the late generation of a modeling tool from the
extended metamodel, which prohibits the use of the conventional modeling tools by en-
gineers. In the approach presented in (SCHATZ; HOLZL; LUNDKVIST, 2010) the DSE
model, design model and the respective metamodels are mingled. The result is a partial
model, which contains an incomplete model of the systems in development and the rules
that define how such an incomplete model can be filled with new elements. Such a model
is used as input for a transformation engine able to generate the missing elements, ac-
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cording to the rules defined. However, if it is considered a metamodel such as UML, or
Simulink, it can creates a huge model to be solved, because no abstraction is provided
to reduce the search space. Although the approach provides high flexibility, because any
metamodel directly represents a design space, this approach does not provide abstraction
to improve the specification of variability and constraints, hence engineers must use sim-
ple metamodels or create very detailed models to reduce variability and the size of the
model to be created. Moreover, there are no computational support for integrating design
and DSE models.

In the methodology described in this chapter DSE concepts were gathered, and used
to define a metamodel to represent the DSE domain. As such a DSE domain (DSED)
metamodel was defined to represent the concepts that are commonly found in any DSE
problem. Moreover, it also identifies and provides elements to represent four DSE classes
of problems, namely Configuration, Construction, Mapping, and Scheduling, which are
able to represent a variety of DSE problem instances. As a result, the DSED metamodel
allows for flexible representation of different DSE scenarios, by combining different prob-
lems, evaluators and solvers, while managing the complexity by providing abstraction
from design and specialized problem definition.

The inflexible bond of the DSE method to a design language is present in many pro-
posals, such as in (KANGAS et al., 2006) and (NEEMA et al., 2003). One reason for this
dependency is the lack of an explicit and orthogonal DSE domain model, such as the one
proposed in this chapter. As there is no DSE model, the required information must be
extracted from the design model or specified together, resulting in a dependency between
design and DSE tools. Another reason is the requirement imposed by evaluation tools that
may have easy integration with some design tools or whose data model is shared with the
DSE method, as presented in (PIMENTEL, 2008) and (LIEVERSE et al., 2001).

The proposed approach shown in this chapter allows the orthogonal specification of
the variability in the embedded system design model as another system design view, and
use the DSED for this purpose. An aspect weaving method is used to implement the
link between design elements and the DSED model, which contains information about
the variability of design elements. Such orthogonal specification allows the application
of the proposed methodology in different design environments, independently from the
design language used, such as UML, SysML, and Simulink. Moreover, it also allows the
integration of information extracted from theses languages in a combined DSED scenario.

Similarly to the DSE rules method proposed in this thesis, there are other proposals
that apply model-to-model transformations to specify DSE rules or for similar purposes.
The Prolog model specification proposed in (SCHATZ; HOLZL; LUNDKVIST, 2010)
allows the specification of incomplete transformation rules, where the lack of precision is
filled by proposing different models that fulfill the transformation rule specification. This
approach can be applied to a variety of problems. However, it has a bad separation of
concerns, thus it is difficult to integrate the proposal into a development process. No so-
lution for the application of different solvers and evaluation is proposed, what reduces its
applicability. A constraint solver is integrated into the background of a transformation en-
gine in (HEGEDUS et al., 2011), which similarly to (SCHATZ; HOLZL; LUNDKVIST,
2010) also presents a general approach to optimize models generated by transformation
engines. It improves the application of transformation rules by extracting dependency
information, providing hints to remove dead end states, and prioritizing possibles oper-
ations. In (SAXENA; KARSAI, 2010) the Constraint Specification Language (CSL) is
proposed on basis of a subset of the OMG’s OCL. This language is used to define the DSE
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rules, but no model-to-model transformation strategy is implemented based on it. Instead,
the model defined by CSL is translated into an intermediate language used as front-end to
different constraint solvers. The CSL provides some high-level constructs to reduce the
verbosity of OCL and to overcome the limitation of OCL to address multi-context con-
straints. However, such limitations are solved by highly adopted model-to-model trans-
formation languages, such as OMG’s QVT, ATL and VIATRA II.

This chapter presented a methodology that adopts a conventional model-to-model
transformation language, which presents more benefits, such as easy adoption, strong
supporting tools, multi-context constraints, etc, which can also be translated to intermedi-
ate constraint solver languages, instead of a proprietary language, such as in (SAXENA;
KARSAI, 2010). Furthermore, smart transformations, which exploit the semantics of el-
ements, are used to extract variability from design models and include domain expertise
in model transformations, in order to achieve more improvements on the DSE process.
These transformations are used to implement not only integration transformations, which
generate DSED models from design models and annotate the results back, but they are
also DSE rules. The DSE rules specified using a model transformation language provide
full flexibility in the DSE process. By using this approach any rule can be implemented
to satisfy the engineering needs. Optimized transformation engines such the one used in
(HEGEDUS et al., 2011) and FORMULA, can be used to complement the methodology
proposed here. Moreover, DSE rules are independent from the design language used, be-
cause they refer to DSED elements in order to prune the design space and guide the DSE
process, by exploiting the domain specific knowledge added to the DSED models.

Therefore, the contribution described in this chapter improves the automation reuse
and abstraction. It also manages the complexity by allowing the engineer to breakdown
the DSE problem into smaller pieces and to combine the results in a next step to fur-
ther exploration. Such improvements can impact the productivity of engineers, that can
concentrate on application design and trade-off analysis of results, instead of wasting
precious time on integration of complex tool chains and translation of requirements into
proprietary constraint languages at every different DSE scenario.
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6 IMPROVING MAPPING IN PBD METHODOLOGIES

This chapter describes a method to improve the mapping between layers in a PBD
methodology. It starts revisiting the challenges faced by DSE methodologies in the current
PBD approach. Following, this chapter defines the Categorical Graph Product (CGP)
based on the work in (WEICHSEL, 1962) and briefly discusses the properties of CGP
that are relevant for the design space abstraction proposed. Conforming to definitions
in Chapter 5, the DSE Mapping Problem is redefined to accommodate the design space
abstraction, considering the representation as CGP of design graphs. The method used to
generate candidate designs is also presented. Finishing this chapter the proposed method
is compared to other methods found in the literature.

6.1 Motivation

Although the PBD approach is very valuable for the design of embedded systems, de-
veloping applications for the existing complex platforms is a hard task. Developing a new
platform from the scratch is a big bet for companies too (GOERING, 2002). Furthermore,
the mapping between platform layers requires advanced methods. On the one hand the
evaluation of many design alternatives at low-level is prohibitive due to the long evalua-
tion cycles and short time-to-market, on the other hand getting benefits from the optimiza-
tion potential at higher abstraction layers is difficult (SANGIOVANNI-VINCENTELLI,
2007). The following issues arises on the mapping between platform layers:

• Mapping between layers requires multiple design decisions, involving different de-
sign activities. The order in which these decisions are taken matters, and different
orders result in different system metrics.

• Multiple design decisions, functions and components lead to a large number of
design combinations. However, only a small number of feasible alternative designs
can be found due to NFRs.

• The state-of-the-art methods provide solutions for specific design activities. These
solutions do not provide extension mechanisms and have limited facilities to de-
fine and reuse constraints. Due to such low flexibility, it is difficult to apply these
methods to different DSE scenarios.

• Increasing algorithm performance can be done by exploiting the problem structure,
thus leading to a problem-specific algorithm. Such a specialization also worsens
the flexibility of the DSE methodologies.
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More than efficient optimization algorithms, the emerging complex design space dur-
ing the mapping between platform layers requires efficient and flexible ways to specify
DSE rules in order to guide the exploration process. Moreover, the lack of flexibility and
the interdependence between design decisions require adequate representations of the de-
sign space. Finally, there is also a need for a method that exploits the trade-off between
specialized heuristics and global optimizations, in order to reach an easier and flexible
DSE tool.

The method proposed in this chapter improves the methodology presented in the
Chapter 5 considering only the DSE Mapping problem. The mapping problem is the
central issue in System-Level design following the Y-Chart and more specifically in PBD
approaches. Different design activities can be represented as mappings between graphs.
Therefore, the method presented in this chapter represents the design space as a categori-
cal product of graphs (CGP), which maps automatically multiple graphs and expose ele-
ment dependencies. The representation of the design space by using CGP also raises the
abstraction and shows multiple DSE problems as a single problem instance - DSE Map-
ping Problem. This method exploits local constraints, to guide the search in the design
space and relies on the fact that optimizing a path in the CGP is the same as optimizing
a path in each graph individually. Moreover, the representation of the design space as a
combined graph, which a design activity is mapped to the general problem of finding a
sub-graph, detaches the optimization algorithm from the problem to be solved.

6.2 Categorical Graph Product

Initially, lets us define the CGP (WEICHSEL, 1962) and identify the properties pre-
sented by such a product that make it adequate to represent the design space as described
in the next section.

Definition 6.1 (Categorical Graph Product):
Let G1 = 〈V1, E1, δs1, δt1〉 and G2 = 〈V2, E2, δs2, δt2〉 be two graphs as presented in
Definition 4.1. G1 ⊗G2 is a categorical graph product, which is defined as follows:

G1⊗G2 = 〈V1 × V2, E1 × E2, δs1 × δs2, δt1 × δt2〉, which represents the graph prod-
uct between G1 and G2, where {δs1 × δs2} and {δt1 × δt2} are unambiguously induced
by the dot product between vertices and edges, considering that any two vertices (u1, u2)
and (v1, v2) ∈ G1 ⊗ G2 are adjacent, if and only if u1 and v1 ∈ G1 are adjacent and, u2
and v2 ∈ G2 are adjacent.

Two projection functions π1 = 〈πV1, πE1〉 : G1 ⊗ G2 → G1 and π2 = 〈πV2, πE2〉 :
G1 ⊗G2 → G2 are defined and return the graphs G1 and G2, respectively.

Because graphs are general representations of data, they are highly used in DSE and
other domains. Graph products are also implicitly or explicitly adopted by DSE method-
ologies. The implicit use of a graph product is observed as a side effect of the combinato-
rial nature of DSE problems, because system elements are represented as lists or graphs
and the Cartesian graph product is implicitly considered, when combining alternatives.
For example, some methods adopt heuristics based on genetic algorithm operators, such
as mutation and crossover, which randomly combine elements to generate alternative de-
signs (DICK; JHA, 1998) (BLICKLE; TEICH; THIELE, 1998), and other methods apply
OBDD, which uses a tree-based representation of the design space to enumerate all alter-
native designs (NEEMA et al., 2003).
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Both, implicit and explicit adoptions of graph product lead to an explosion of states.
In order to deal with such challenge, physical or logical implementations of the graph
product and different alternative generation strategies are proposed, and they were already
identified in Section 3.8.

In the methodology proposed in this chapter, if the CGP is physically implemented,
then all vertices of the resulting graph product are represented, so that all vertices are
traversed at least once. In such a case the explosion of states can not be precluded, even
if the exploration mechanism does not traverse the entire graph in order to generate one
alternative design, as done by exhaustive methods. A logical implementation of the CGP
provides to the exploration mechanism projection functions π in order to retrieve in the
CGP a vertex and its neighbors, and use the source and target functions δ from the original
graphs to iterate on the product. Similarly to methods that implicitly adopt graph product
and use heuristics to generate alternative designs, by using a logical implementation the
exploration mechanism does not enumerate all alternatives, and the graph produced will
not be completely traversed, thus only part of its vertices will be produced. The trade-off
between logical and physical implementations, as well as the details of the exploration
mechanism are discussed in Section 6.4.

The explicit adoption of CGP, presented in this chapter, aims to automatically repre-
sent the mapping between graphs and reduces the design space by using edges represent-
ing alternatives, which can be pruned to reflect design constraints on possible combina-
tions of alternatives (OLIVEIRA et al., 2009). The CGP allows different views of the
same information while preserving the original semantics, such that the resulting graph
can be used to perform different design activities based on the same design information
- different algorithms on the same data. Moreover, a CGP merges semantically differ-
ent information, by combining different graphs in the form of a product. As such, DSE
can be performed using different design information, but relying on the same structure
and algorithms too. Finally, by using the CGP an initial mapping between graphs can be
automatically computed, and the constraints for the induction of the vertices and edges
expose the dependencies between vertices in each graph together in the CGP. As result,
an iteration on the CGP corresponds to iterations through multiple graphs simultaneously.

Therefore, CGP is appropriate for representing simultaneous and interdependent de-
sign options, which appear during DSE, so that such a representation can be automatically
derived from a system specification and, at the same time, it is flexible to be employed on
different DSE scenarios.

6.3 Design Space Representation

Similarly to most DSE approaches we define the design space as a mapping of graphs.
However, differently from the usual approach, such as the work presented in (BLICKLE;
TEICH; THIELE, 1998), which adopts a manual mapping between semantically defined
graphs, our approach uses the CGP in order to automatically generate the mapping be-
tween graphs. From the design space generation point of view these graphs are free of
any specific design semantics, which is adequate for an abstraction. In Definition 6.2 the
design space representation based on the CGP is formalized.

Definition 6.2 (Design Space Graph):
Let D be the set of design graphs, where Dgi = 〈Vi, Ei, δsi, δti〉 ∈ D, i = {1..n} and
n = |S|.
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The design space is the graph Ds = 〈VDs, EDs, δsDs, δtDs〉, resulting from the cate-
gorical graph product of the sequence of terms, which are all graphs inD. In this fashion:

Ds = 〈VDs, EDs, δsDs, δtDs〉 = Dgi ⊗Dgi+1 · · · ⊗ · · ·Dgn =

〈Vi × Vi+1 · · · × · · ·Vn, Ei × Ei+1 · · · × · · ·En,
δis × δi+1s · · · × · · · δns, δit × δi+1t · · · × · · · δnt〉

(6.1)

This represents the graph product between Dgi, Dgi+1, · · · , Dgn, where
{δis × δi+1s · · · × · · · δns} and {δit × δi+1t · · · × · · · δnt} are unambiguously induced by
the dot product between vertices and edges, considering that any two vertices
(ui, ui+1, · · · , un) and (vi, vi+1, · · · , vn) are adjacent in Ds, if and only if ui is adjacent
with vi in Dgi, ui+1 is adjacent with vi+1 in Dgi+1 and un is adjacent with vn in Dgn, i =
{1..n− 1}, where n is the number of graphs in D.

Definition 6.2 considers that any graph can be used to produce the CGP, in order to
represent the design space. Because Definition 6.2 is aimed at the abstraction of the un-
derlined elements to be mapped, there is no reasoning about graph semantics. Such graphs
are extracted form design models and represented in the DSED model presented in Chap-
ter 5. In general cases these graphs are, for example, task graphs, architectural graphs,
communication structure graphs and others that commonly are mapped during develop-
ment. Such graphs can usually be combined in any way, except for design constraints.
The graph semantic is taken into account during the evaluation of DSE rules, which are
defined by the engineer and are responsible for guiding the exploration mechanism and
for removing edges that lead to inappropriate combination.

In order to illustrate the proposed design space abstraction, let’s consider the design
graphs Dgt and Dgp. Graph Dgt is illustrated in the Figure 6.2(a) and represents a task
graph where the vertices are tasks and edges specify the data dependencies between them.
Graph Dgp shown in the Figure 6.2(b) represents the processing units and the allowed
communications between them. GraphDgt⊗Dgp in the Figure 6.2(c) is the CGP between
graphs Dgt and Dgp, representing a design space for the task mapping design activity.

Figure 6.1: Design Space Representation by using Categorical Graph Product between
two graphs: (a) Task Graph Dgt; (b) Processor Graph Dgp; (c) Design Space Dgt⊗Dgp.

(a) (b) (c)

One vertex in the design space is a design decision, which represents the mapping
between vertices from the graphs that are used to compute the design space and is defined
as follows:
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Definition 6.3 (Design Decision):
Let Ds be a graph representing the design space as in Definition 6.2.

The vertex vp ∈ V (Ds) is a tuple vp = 〈vij, vi+1k, · · · , vnl〉 | i = {1..n} , n =
|D| , j, k, l = {1..m} , m = |V (Dgi)|, representing a design decision that maps the
vertices vij , vi+1k · · · , vnl to each other.

Considering Definition 4.1, the design space is the graph Ds = 〈V,E, δ0, δ1〉, result-
ing from the CGP of all graphs in D. From now on Definition 4.1 is used to refer to the
design space without distinguishing the vertices from the design graphs that compound
the design decision. Such a reference emphasizes the graph representation and operation
over graphs. Yet Definition 6.2 is used to emphasize the composition of graphs in the
product and the components of the design decision tuple.

In order to construct a solution to the DSE Mapping Problem, the exploration algo-
rithm must iterate on the vertices of the design space. Such an iteration selects vertices in
the design space by following the alternatives provided by the edges in the design space.
Alternative decisions represented by edges are defined as follows:

Definition 6.4 (Alternative Decision):
Let Ds be the design space graph as in Definition 6.2, whose design decisions are defined
in Definition 6.3.

The edge euv ∈ E (Ds) identifies one alternative decision, so that at the specific
vertex u ∈ Ds, the adjacent vertex v ∈ Ds is one design decision available from u. The
set of edges Eu ⊆ Ds (E), generated by the source function δ0 and target function δ1,
represents all alternative decisions from the vertex u.

Figure 6.2 illustrates Definitions 6.3 and 6.4. The resulting design space Dgt ⊗ Dgp
from the previous example in the Figure 6.1 is replicated again in Figure 6.2. The vertices
in Dgt ⊗ Dgp represent design decisions, and the edges identify available alternative
design decisions from a specific vertex. Let’s assume that in a previous iteration step
the vertex 〈T1, P1〉, highlighted with the bold line, was selected from the design space.
This vertex specifies that task T1 should be mapped onto processor P1. The outgoing and
incoming edges of vertex 〈T1, P1〉 identify the alternative decisions, such that the vertices
highlighted with shadow ellipses 〈T2, P1〉 , 〈T2, P2〉 are the ones available for selection
staying on the vertex 〈T1, P1〉. After the selection, the iteration in the graph Dgt ⊗ Dgp
continues until a candidate design is generated.

Figure 6.2: Example of design decisions and alternative decisions representation.

At the end of the iteration the exploration mechanism must return a candidate design,
which represents the design decisions selected from the design space. The candidate de-
sign is a sub-graph of the design space graph presented in Definition 6.5. As such, the
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DSE problem consists in searching for sub-graphs, which represent design candidates.
Such a problem is formulated in the same way, independently of the design activity per-
formed.

Definition 6.5 (Candidate Design):
Let Ds be the design space graph as in Definition 6.2.

A Candidate design is the sub-graph C | C (V ) ⊆ Ds (V ) and C (E) ⊆ Ds (E),
where the vertex set C (V ) represents the design decisions selected manually or automat-
ically from the design space.

By using the CGP representation for the design space, the DSE problem consists in
searching for sub-graphs, which represent candidate designs, independently of the design
activities to be performed. Figure 6.3 illustrates a sub-graph selected from the design
space presented in the previous example. The selected vertices are identified with shad-
owed ellipses in Figure 6.4(a), and Figure 6.4(b) illustrates the resulting sub-graph, which
is composed by vertices 〈T1, P1〉, 〈T2, P2〉, 〈T3, P2〉, and 〈T4, P2〉. The procedure to
select vertices to produce a sub-graph requires an exploration mechanism, in order to opti-
mize the generation of candidate designs. The exploration mechanism and the generation
of candidate designs are discussed in Section 6.4.

Figure 6.3: Example of a sub-graph representing a candidate design: (a) Design Space
Dgt ⊗Dgp; (b) Candidate solution - sub-graph Dgt ⊗Dgp.

(a) (b)

The application of the CGP between multiple graphs allows to produce a single design
space graph for multiple design activities. As an example, consider again the same task
graph Dgt and processor graph Dgp from the example illustrated in the Figure 6.1 before.
The design space resulted from the CGP Dgt⊗Dgp is reproduced again in Figure 6.5(a).
Now, consider a communication graph Dgc, as illustrated in Figure 6.5(b), representing
a communication structure, such as a hierarchical bus with two segments used to inte-
grate the selected processors. The CGP between the design space graph Dgt ⊗Dgp and
graph Dgc results in the graph Dgt ⊗ Dgp ⊗ Dgc that represents the mapping between
tasks of graph Dgt and selected processors of graph Dgp and simultaneously the possi-
ble allocation of the processors selected from graph Dgp to the communication structure
represented by graph Dgc. Such a procedure can continue for multiple products, and the
available decisions depend on which graphs are produced from the design and on the DSE
rules that guide the exploration and prune the design space.

Considering Definition 6.1 to 6.5 a new DSE Mapping Problem is formulated, in order
to accommodate the CGP representation of the design space, shown in Definition 6.6 as
follows:



111

Figure 6.4: Design Space Representation by using Categorical Graph Product between
multiple graphs: (c) Design SpaceDgt⊗Dgp; (b) Communication GraphDgc; (c) Design
Space Dgt ⊗Dgp ⊗Dgc; (d) Candidate solution, sub-graph Dgt ⊗Dgp ⊗Dgc.

(a) (b)

(c) (d)

Definition 6.6 (DSE CGP Mapping Problem):
PCGP = 〈P 〈D′, Sl (Mp) , Rm,Cs〉 , Ds〉 is a DSE CGP Mapping Problem, which ex-
tends the Definition 5.4 as follows:

P is the general DSE problem as specified in Definition 5.1.

Mp is a map decision as defined in Definition 6.3.

Sl (Mp) is the set of map decisions that solve the problem PCGP and is subject to the
same constraint set Cs of the DSE Mapping Problem from Definition5.4.

Ds is the design space graph as defined in Definition 6.2, resulting from the CGP
of graphs in D′;

The model presented in Definition 6.6 accommodates the CGP in the DSE Mapping
problem from Definition 5.4. It allows the mapping between multiple graphs and repre-
sents the mapping as a CGP. Such a representation provides a mingled view of the graphs,
exposing the dependence between vertices of all graphs together, so that it can be ex-
plored by heuristic optimization methods. To improve the application of the method to
different DSE scenarios, it does not assume any graph semantics, hence providing higher
abstraction level and flexibility. Moreover, the CGP adopted in this model allows for au-
tomatic generation of an initial mapping between graphs, which reduces the design space
and allows further refinement by applying local constraints during the DSE process.
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It is not made any assumption on the implementation of the CGP that represents the
design space, so that different solvers can choose between to exploit the benefits of static
and physical implementation of the CGP, which generates the complete design space be-
fore starts searching, or the benefits of dynamic and logical implementation, which gen-
erates part of the design space as the search iterates on the design space. Finally the
proposed model balances the specification of a generic problem (i.e. finding an optimized
sub-graph) to be solved by global optimizers with a structure that allows the implementa-
tion of the best heuristic to solve a specific problem, by exploiting the values that can be
annotated in the model during the search.

Based on Definition 6.6 the DSED metamodel was updated to accommodate the CGP
representation of the design space for the DSE Mapping problem. Figure 6.5 illustrates
the new DSED elements.

Figure 6.5: Extended DSED Metamodel containing the CGP representation of the design
space for the Mapping Problem.

In Figure 6.5 elements added to the DSE Mapping Problem introduced in Figure 5.9
are identified as shadowed classes and bold lines. The class DesignSpace represents
the design space following Definition 6.2. An AlternativeDecision represents an
edge in the design space graph, as defined in Definition 6.4. AlternativeDecision
contains references to DesignDecisions, representing the source and target vertices,
by following Definition 6.3. Notice that the Mapping may contain many Design-
Spaces. Such a multiplicity allows for the physical implementation of the complete
design space or for multiple partial representations, which are especially useful when the
design space is logically implemented. The discussion on physical and logical implemen-
tations of the design space graph is presented in the Section 6.4.2 and 6.5.

6.4 Solving the DSE CGP Mapping Problem

Since we represent the design space as a graph product and the optimization problem
consists in finding a (quasi)-optimal sub-graph, the exploration algorithm is not aware
of specific DSE information and of the semantics for vertices and edges in the design
space and its sub-graphs. This means that the exploration algorithm is detached from the
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design space and from the specific design exploration problem and thus does not require a
specific design optimization approach. This way, we could use any other multi-objective
heuristic. However, under certain conditions heuristics based on Ant Colony algorithms
have been shown to outperform others (DORIGO; MANIEZZO; COLORNI, 1996).

In order to solve the proposed DSE CGP Mapping Problem, an algorithm based on
the Ant Colony Optimization (ACO) algorithm was adopted. ACO was first proposed in
(DORIGO; MANIEZZO; COLORNI, 1996). It is based on the foraging behavior of ants,
which let on the way a substance called pheromone, as they search for food. The better
the quality of food source, the higher is the amount of pheromone deposited. A higher
concentration of pheromone attracts more ants through the path, emerging a shorter path
between the food source and the nest. Since the ACO proposal several works extended
the original algorithm by augmenting it with new features and by applying it to differ-
ent problems. The algorithm adopted in this work is the Crowding Population-based Ant
Colony Optimization for Multi-Objective (CPACO-MO) (ANGUS, 2007), which com-
bines features from ACO and Evolutionary Algorithms, such as Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) (DEB et al., 2000). CPACO-MO presents some fea-
tures that show to be interesting for the proposed DSE Mapping Problem using the CGP
representation, such as:

• An ant can be assigned a starting position, which is a vertex in the design space;

• An ant searches for a minimum/maximum cost to optimize a solution;

• Once a candidate solution is created, and after completing the update of pheromone
values in the path selected in the iteration, an ant dies, freeing all allocated re-
sources;

• Ants build up solutions by using a stepwise approach, which selects one vertex (so-
lution component) each time according to a combination of pheromone and heuris-
tic values associated with every vertex in the in the design space. The choice of
which vertex is chosen is usually a probabilistic one (transition probability);

• The transition probability used to iterate on the design space in order to construct
solutions provides a mechanism to balance between exploration of new solutions
and exploration of similar solutions already found;

• The step-wise approach exploits the CGP representation of the design space, al-
lowing the application of DSE rules at each step, guiding the iteration by removing
edges that are not allowed to be followed. Such a process has advantages when
compared with the random permutation present in algorithms based on Genetic
Algorithms, which can lead to infeasible solutions and requires specialized repair
mechanisms;

• Use of a population of multiple individual agents (ants) to construct candidate so-
lutions sequentially or in parallel;

• Flexible representation and calculation of multiple objectives.
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6.4.1 Exploration Mechanism

Algorithm 6.1 outlines the procedure performed by CPACO-MO. The procedure starts
by initializing a population S of pre-defined size Ssize with randomly generated candidate
solutions. Each candidate solution s is evaluated according to the function γ : Sn → C
presented in Definition 5.1. These solutions are inserted into the population and to each
solution is assigned an integer rank according to the Fast Non-dominated Sort procedure
(DEB et al., 2000). Then all solutions in the population are used to update the pheromone
map by using a +∆φ according to Equation 6.2.

∆φsij =
1

srank
(6.2)

Where:

∆φsij is the value to adjust the pheromone φij in the edge 〈i, j〉 by the ant s.

srank is an integer rank assigned by the Fast Non-dominated Sort procedure.

Algorithm 6.1 Crowding Population-Based Ant Colony Optimization: CPACO.
1: Uniformly initialize the pheromone map values to φinit
2: for j = 1 to hsize do
3: s← GENERATE RANDOM SOLUTION

4: Evaluate Solution (s)
5: Insert Solution s in the history h
6: FAST NON-DOMINATED SORT (h)
7: Update the pheromone map (+∆φ) according to (6.2)
8: end for
9: while stopping criterion not met do

10: for j = 1 to m do
11: SCALING VALUE ASSIGNMENT

12: s← GENERATE SOLUTION

13: Evaluate Solution (s)
14: end for
15: CROWDING REPLACEMENT

16: FAST NON-DOMINATED SORT (h)
17: Update the pheromone map (+∆φ) according to (6.2)
18: end while

Line 9 is the main loop of the algorithm, which will be executed until a stop condition
is met, such as a maximum computation time or a minimum difference in the objectives
between iterations. In the internal loop at Line 10 the algorithm generates a set of candi-
date solutions, from which the best candidates are selected to compose the population.

Before starting generating solutions, the Heuristic Scaling Value Assignment proce-
dure presented in Algorithm 6.2 assigns to each ant a weighting factor λ, by which ants
exploit the heuristic matrix by different amounts. This procedure allows the construction
of solutions biased by different objectives, and thus drives the search to the relevant areas
of the design space.

The Generate Solution procedure iterates on the edges of the design space, in order
to step-wise create a candidate solution by selecting vertices from the design space using



115

Algorithm 6.2 Heuristic Scaling Value Assignment.
1: for i = 1 to hsize do
2: Ri = random [0, 1]
3: end for
4: Sort R in ascending order
5: λ1 ← R1

6: for i = 2 to hsize − 1 do
7: λi ← Ri −Ri−1
8: end for
9: λh ← 1−Rh

a transition probability according to Equation 6.3. This procedure is presented in Algo-
rithm 6.4 and is discussed in Section 6.4.2. After generation the candidate solution is
evaluated.

pij =

∏|Sdg|
n=1 [φij]

α ·
∏h

d=1

[
ηdij
]λdβ∑

l∈Nk
i

[φinit]
α ·
∏h

d=1

[
ηdil
]λdβ (6.3)

Where:

pij is the probability of ant k selecting the edge connecting vertex i and j.

φij is the pheromone value for edge connecting vertex i and j.

α is the magnitude of pheromone influence on the probabilistic decision.

h is the number of objectives.

ηdij is the heuristic value for the edge connecting vertices i and j.

β is the magnitude of heuristic influence on the probabilistic decision.

λ is the heuristic exponent weighing factor.

Nk
i is the set of design alternatives that ant k has not yet visited.

When all candidates solutions are generated, the Crowding Replacement procedure
is used to control which generated solutions will integrate the population, according to
Algorithm 6.3.

This procedure compares all solutions generated during the iteration against a ran-
domly selected subset S′ of S to find the most similar solution in the population. Then the
most similar solution is replaced if the newly generated solution is strongly-dominating
the other. The similarity between two solutions is measured in the decision space, by us-
ing the Hamming Distance according to Equation 6.4. Such a metric identifies the number
of shared solution components, where a ratio equal one means that the solutions are com-
pletely different, whereas zero means that the solutions are the same. At the end of each
iteration, an integer rank is assigned to all solutions in the population, by using the Fast
Non-dominated Sort procedure and these solutions are used to update the pheromone map
by using a +∆φ according to Equation 6.2.
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Algorithm 6.3 Crowding Replacement Procedure.
1: for j = 1 to m do
2: S′ ← randomly c chosen solutions from S
3: for k = 1 to c do
4: d← distance

(
snewj , sk

)
calculated according to (6.4)

5: if d < leastDistance then
6: leastDistance← d
7: sclosest ← sk
8: end if
9: end for

10: if snewj �� sclosest then
11: Remove sclosest from the population
12: Add snewj to the population
13: end if
14: end for

Distance =
Vshared
|C (V )|

(6.4)

Where:

Vshared is the number of shared vertices between snewj and sk.

|Cd (V )| is the number of vertices in a candidate design s, such that s = Cd ⊆ Ds.

When the stop conditions are met, the final population is a set of non-dominated de-
sign points (Pareto-optimal). An engineer can select from this population one or more
solutions for further investigation, by considering design trade-offs and system require-
ments.

CPACO-MO combines features from two classes of optimization algorithms, namely
ACO and Evolutionary Algorithm, and its complexity is comparable to other algorithms
of these classes, in special when compared to the PACO and NASGA-II algorithms. In or-
der to define the influence between different objectives, CPACO-MO sort weights gener-
ated for each objective assigned for each solution to be generated in the Heuristic Scaling
Value Assignment procedure, which has a complexity of O (hN), where h is the number
of objectives and N is the number of solutions generated per iteration. In the Crowding
Replacement procedure CPACO-MO requires the selection of a subset c of the population
S, in order to identify the closest neighbors from each generated solution and performs
one dominance test, resulting in the complexity O (hN2/c), where c is the crowding fac-
tor that determines how many solutions must be compared. Moreover, at every iteration
CPACO-MO performs a dominance ranking based on the Fast Non-dominated Sort pro-
cedure, whose worst case complexity is O (hN2). At the end of the iteration CPACO-
MO updates the pheromone matrix. In the worst case this matrix has size O (|E (D)|),
where V (D) is the number of edges in the design space graph. CPACO-MO’s complex-
ity is governed by the non-dominated sort procedure, resulting in the overall complexity
of O (hN2), which is equivalent to the state-of-the-art NASGA-II algorithm. The Gen-
erating solution procedure is presented in the next section, followed by its complexity
analysis.
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6.4.2 Generation of Candidate Designs

The algorithm proposed to generate candidate designs is based on the breadth-first
search algorithm (CORMEN et al., 2009). It iterates on the design space graph and is
guided by the DSE rules, which prune locally the design alternatives at a selected deci-
sion. A selection function, which is implemented according to an optimization criteria/al-
gorithm, selects the next decision from a list of alternatives. In this way, the algorithm
iterates the graph until a final condition defined as a DSE rule holds. Similarly to the
breadth-first search algorithm, it discovers all alternatives at distance k from a specific de-
sign decision before discovering other alternatives at distance k+1. The design candidate
generation is presented in Algorithm 6.4.

Algorithm 6.4 Design Candidate Generation.
Require: Ds = 〈VDs, EDs, δDs0, δDs1〉 . Design space graph

1: s← TAKE RANDOM DECISION (V (Ds))
2: V (S)← V (S) ∪ {s}
3: Q← ∅
4: ENQUEUE (Q, s)
5: repeat
6: u← DEQUEUE (Q)
7: A← CONSTRAINTS (Ds.Adj [u] , u, S)
8: while A 6= ∅ do
9: v ← TAKE DECISION (A, u, S)

10: V (S)← V (S) ∪ {v}
11: ENQUEUE (Q, v)
12: A← CONSTRAINTS (A, u, S)
13: end while
14: if (Q 6= ∅) then
15: finished← CHECK FINAL CONDITION (S)
16: if (notfinished) then
17: if v is a root vertex then
18: A← CONSTRAINTS (Rv, u, S)
19: else
20: A← CONSTRAINTS (Lv, u, S)
21: end if
22: if A 6= ∅ then
23: v ← TAKE DECISION (A, u, S)
24: ENQUEUE (Q, v)
25: elsereturn S = ∅
26: end if
27: end if
28: end if
29: until finished

return S = 〈VS, ES, δS0, δS1〉 |VS, ES ⊂ Ds . Solution sub-graph

Algorithm 6.4 assumes there is a graph Ds = 〈VDs, EDs, δDs0, δDs1〉, which repre-
sents the design space according to Definition 6.2. The functions δDs0 and δDs1 are used
to compute the adjacency list of vertex v ∈ VDs, which is represented as D.Adj [v]. A
first-in first-out queue Q is used to manage the visited vertices. It also assumes that there
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is a function CONSTRAINTS, which requires the adjacency list of vertex x and returns a
constrained list of adjacent vertices, representing the actual alternative decisions A avail-
able from the vertex v. The function TAKEDECISION implements a selection procedure
based on some heuristic. It requires a list of alternative decisionsA and the current vertex.
Then it returns the selected decision. Because of the application of DSE rules, the design
space can be composed of multiple components. This means that after the selection of
a vertex, there may be no alternative decision available - i.e. no adjacent vertices. Such
a situation reveals an infeasible region, where the exploration mechanism cannot find a
feasible solution, hence it returns an empty candidate. In order to avoid getting trapped in
such an infeasible region, the algorithm uses two auxiliary lists, one containing the root
vertices and the other one containing the sink vertices. Both lists can be physically or
logically implemented, according to the CGP implementation.

In the Line 1 of Algorithm 6.4, the function TAKERANDOMDECISION initializes the
procedure by randomly selecting a vertex from V (Ds) and assigning it to s. The con-
struction of the sub-graph S that represents the solution starts in Line 2, by adding the
start vertex s to S. Lines 3-4 initialize the queue Q to contain only the start vertex s.
The main loop in Lines 5-14 iterates as long as the final condition does not hold. Line 6
determines the current vertex u and removes it from Q. Line 7 applies the DSE rules by
calling the function CONSTRAINTS, which operates on the adjacency list of the current
vertex u and assigns the result to A. The inner loop in Lines 8-13 repeats the procedure to
construct a solution until no more alternatives exist inA. In Line 9 the function TAKEDE-
CISION selects a vertex from the list A and assigns it to the next vertex v, according to the
transition probability in Equation 6.3. The selected vertex is added to S in Line 10, and
in Line 11 it is put in the tail of the queue Q, so that it can be explored later. The function
CONSTRAINTS verifies if there are still alternatives to be visited from the current vertex
u, in Line 12. If there are no more alternatives from the current vertex, the inner loop is
finished and it is verified if the solution reaches a final condition in Line 14. Finally the
algorithm returns the design candidate in form of a solution sub-graph S in Line 15.

The Design Candidate Generation procedure is executed N times, where N is the
number of solutions to be generated at each iteration of the DSE process. The initializa-
tion at each iteration consists in the selection of a random decision from the design space
graph Ds and the initialization of the queue Q. The enqueuing, dequeuing, and assign-
ments are assumed to take O (1) time. If the CGP is physically implemented, randomly
picking up a vertex from Ds takes O (1) time. However, if the logical implementation
is used, this operation must select one vertex from each design graph in D, so that it
takes O (|D|). The construction of one solution sub-graph S takes place in the outer loop,
which iterates until the final condition is reached, which vary according to the DSE sce-
nario. Therefore, lets assume that Equation 5.20 and Equation 5.18 represent two final
conditions, in order to provide a bound to this iteration. Equation 5.20 defines that all
vertices of graph Dg1 ∈ D must be mapped, and Equation 5.18 defines that a vertex in
Dg1 can only be mapped once. These two constraints are reasonable and occurs often in
mappings between platform layers, such as mapping all vertices from a task graph into an
architecture graph. Accordingly, the outer loop will be executed O (|V (Dg1)| − 1) times
in the worst case. In the inner loop, alternatives available at a previously selected vertex
are explored. First the procedure CONSTRAINTS is executed in order to prune the cur-
rent design space. The complexity of such procedure depends on the size of the model,
number of constraints, and mainly on the implementation of the transformation engine
adopted(HORVáTH et al., 2010; BERGMANN et al., 2008). Because of such a variation,
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in this analysis it is assumed to be O (1). The procedureTAKEDECISION implements a
step-wise heuristic to select the next design decision based on the CPACO-MO’s transi-
tion probability, whose worst case is O (h |V (Ds)|), where h is the number of objectives
and V (Ds) the set of vertices in the design space, because it iterates on the adjacent lists
of the selected vertex, which in the worst case is connected to all others vertices. The in-
ner loop is executed in the worst caseO (|V (Ds)|) times, which results in the algorithm’s
overall complexity equal to O

(
h |V (Dg1)| |V (Ds)|2

)
.

6.5 Discussion

The use of CGP and model-to-model transformations to guide the step-wise gener-
ation of solutions in the optimization loop leads to an increase of computational com-
plexity, when compared to random operators used by evolutionary algorithms, such as
crossover and mutation. However, in addition to such operators, evolutionary algorithms
are garnished with repair and other functions that operate on the generated solution, in
order to maintain solution feasibility, which also results in an increase of complexity. The
following strategies are used to implement such functions:

• penalize bad solutions in the fitness function (evaluation), so that the exploration
mechanism avoids the creation of similar solutions in next iterations by itself;

• use repair functions to fix the candidate solution after the generation;

• use complex generation functions to assure the feasibility of the solution.

Clearly there is a trade-off in the implementation of such strategies. On the one hand,
computation effort is used to assure generation of feasible solutions and to save time later
by avoiding to repair or discard candidates due to their infeasibility. On the other hand,
quick generation accelerates the exploration, by assuming the risk of wasting time when
repairing, discarding or evaluating a false candidate.

In (BLICKLE; TEICH; THIELE, 1998) a Cartesian graph product with an additional
manual definition of mapping edges is used to define a specification graph (design space).
Such a manual mapping definition can be compared to the “structural” and “pre-defined
decisions” DSE rules presented in Chapter 5. The approach proposed in (BLICKLE; TE-
ICH; THIELE, 1998) allows for a flexible definition of DSE scenarios. However, after
random operators specific “allocation”, “bind”, “check for valid binding”, and “update
allocation” functions are used to repair the solutions generated by the exploration mecha-
nism, adding in this way an overall quadratic complexity to the optimization loop. Besides
such functions to apply “structural” and “pre-defined decisions” DSE rules on solutions,
no information on the application of non-functional constraints is provided, except that a
penalty strategy is adopted in the fitness function, which means that illegal solutions are
still being generated and evaluated. Therefore, this causes waste of computational effort,
which in some cases can be very high due to long evaluation cycles.

In (DICK; JHA, 1998) the application of random operators is limited, and the concept
of cluster of solutions is introduced to assure the structural feasibility. Although some
checks are performed to verify if a solution meets the NFRs, bad solutions are allowed to
be in the solution set and are penalized in the fitness function. The goal is to save com-
putational effort by reducing the effort on the verification of feasibility and to allow these
bad solutions to influence the next generations through genetic random operators. How-
ever, customized operators to generate new solutions adopt Pareto-ranking algorithm, and
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hence adds quadratic complexity into the optimization loop, in order to sort the solutions
prior to the application of genetic operators. This approach also uses a specific coding of
problem and solution into the exploration mechanisms, thus only previously implemented
design activities, namely allocation, mapping and scheduling, can be performed without
any flexibility. Moreover no mechanism to define additional constraints is provided, so
that no mechanism to assure feasibility is provided. Therefore an evaluation step may fail,
when implemented by other tools.

In a similar way, (KANGAS et al., 2006), (ERBAS; ERBAS; PIMENTEL, 2003),
and other works present similar implementations, hence it is believed that the algorithm
presented in this chapter still has a competitive performance. Furthermore, the result-
ing worst case complexity occurs only in one specific case, when all graphs involved in
the product are fully connected. Such a scenario is unusual and may indicate bad de-
sign architectures, such as a set of tasks completely connected to each other, mapped to
a communication structure that allows direct point-to-point communication between all
processors. In the proposed method each selected design decision, as well as previously
evaluated solutions helps to reduce the set of alternatives, hence the vertices to be visited,
because the CONSTRAINT procedure removes redundant decisions and decisions that lead
to infeasible solutions. In this way Algorithm 6.4 proposes a compromise between flexi-
bility and performance to improve the DSE process.

The following example illustrates the generation of one solution by applying Algo-
rithm 6.4. It highlights the differences between physical and logical implementations of
the CGP and the application of constraints to prune the design space.

Let graph Dgt be a task graph, depicted in Figure 6.7(a), and graph Dgp be a pro-
cessor graph representing two processors connected point-to-point, as illustrated in Fig-
ure 6.7(b). Figure 6.7(c) shows the CGPDgt⊗Dgp, which represents the full design space
for mapping the task graph Dgt into processor graph Dgp, without considering any DSE
rules. Notice that although graph Dgp is fully connected, the edges in graph Dgt ⊗Dgp
are limited by the connectivity in Dgt, because vertices in Dgt ⊗ Dgp are adjacent only
if the referenced vertices in Dgt and Dgp are both adjacent. Therefore, the number of
alternatives to be evaluated at each step is reduced and depends on the connectivity of
each graph in CGP.

Figure 6.6: Example 1 of hard feasibility in DSE: (a) Task Graph Dgt; (b) Processor
Graph Dgp; (c) Design Space Dgt ⊗Dgp;

(a) (b) (c)
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The generation of solutions relies on the graph’s edge source function π1 and target
function π2, in order to iterate on the design space graph generated by an implementa-
tion of the CGP. In a physical implementation the complete design space graph is com-
puted prior to the exploration process once, which results in a storage complexity equal to
O (Πi

n |(Dgi (V )|), where n is the number of design graphs in the CGP. The design space
is constantly pruned at each iteration, whenever infeasible or illegal edges and vertices
are found. In this way, the computation effort required to generate the complete design
space graph is mitigated, because more and more alternatives are permanently removed,
while new solutions are evaluated. The benefit is the reduction of the computation time
by avoiding dynamically verification of paths for feasibility at each iteration and reducing
the execution of the DSE rules body, by preventing rule matches. Moreover, sub-sets of
solutions (vertices and edges) that were evaluated previously can be definitively removed
if they do not meet requirements, avoiding in this way unnecessary evaluation. However,
the drawback is that vertices of the design space are visited once, even if they will never be
required by the exploration mechanism. Such limitation is also presented in approaches
that uses BDD such as (NEEMA et al., 2003) and (SCHLICHTER et al., 2006).

Figure 6.7 illustrates a solution generated by using a physical implementation of the
CGP and Algorithm 6.4 for the set of graphs presented in Figure 6.6. For this sample, all
vertices of the design space were visited at least once, in order to produce the CGP. The
edges and vertices highlighted with a bold line indicate the selected decisions. Even al-
though all vertices are computed, additional DSE rules can be defined, so that more edges
are definitively removed at each iteration, reducing the number of edges to be evaluated in
the TAKEDECISION procedure. For example, lets consider that the vertex 〈T4, P2〉 is part
of a previously generated solution and that after its evaluation it was found out that pro-
cessor P2 cannot execute task T4 with the required performance. Then the performance
metric is stored in the edge attributes and used by the DSE rules to remove this alternative
from the design space, by applying the NFR DSE rules. Such an example is illustrated in
Figure 6.7 by the dashed edges representing the removed edges.

Figure 6.7: Solution generation example for physical CGP implementation: Solution
graph.

Differently from the physical implementation, the logical one only generates and visits
a vertex if it is required at each iteration. This leads to less storage complexity, which
is O (Σi

n |Dgi (V )|), where n is the number of design graphs in the CGP. However, as
the design graphs are already stored in the DSED model, there is no additional storage.
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This approach also reduces the computational effort at initialization, because the CGP
is not computed. However, at each iteration infeasible and illegal vertices appear in the
adjacency list of the current vertex before the application of DSE rules and they must be
pruned before making the alternatives available to the TAKEDECISION procedure. This
cost is required in order to dynamically adjust the process to user requirements, in this
way improving flexibility during the exploration process. The application of DSE rules
is the step where user constraints and heuristics can be applied to guide the exploration
process. After the application of DSE rules, the list of alternatives is limited, reducing
in this way the computational effort to evaluate alternatives. The verification of solution
feasibility is reduced as well, because only feasible alternatives are available for selection.

Figure 6.8 illustrates the generation of one solution according to Algorithm 6.4, from
the set of graphs presented in Figure 6.6, by using a logical implementation of CGP.
In this illustration dashed lines of edges and vertices are used to highlight the logical
representation of the product, while bold lines indicate the current vertex used by the
solution generation procedure to identify and evaluate alternatives. The vertices filled in
gray represent the next selected decision, which will be queued and have its neighbors
vertices evaluated in the next step.

Figure 6.9(a) shows the first state, where the vertex 〈T1, P1〉was randomly selected. In
Figure 6.9(b) the selected vertex and the alternatives at this step are shown. The current
vertex is used by the generation algorithm to identify and select one alternative design
decision from one of its adjacent vertices. The vertex 〈T4, P1〉 is highlighted in gray, in
order to indicate the selected vertex.

In the next step, illustrated in Figure 6.9(c), the current vertex is updated to vertex
〈T4, P1〉, because the vertex 〈T1, P1〉 has no more alternatives to select. At this step,
the adjacent alternatives of the vertex 〈T4, P1〉 are available for selection, except the ver-
tex 〈T1, P1〉, which is pruned by the DSE rules because it was previously selected. The
vertex 〈T3, P21〉 is selected and queued, while there are still other alternatives to be se-
lected. As the exploration proceeds, edges and vertices are pruned due to the application
of “structural”, “non-functional requirement” and “previously-defined design decision”
DSE rules. For example, in Figure 6.9(d) two alternatives for mapping the task T2 are
still available, and the alternative 〈T2, P1〉 was selected. The vertices 〈T1, P1〉, 〈T4, P1〉,
and 〈T3, P2〉 were pruned from the alternatives, because they were already selected. If
there is a “pre-defined design decision” DSE rule requiring the mapping of task T2 to a
specific processor, lets say P1, the vertices 〈T2, P1〉 and 〈T2, P2〉 would never appear as
alternatives in any step, since the first application of DSE rules would have included this
map in the solution. The reduction in the number of alternatives after the selection of
design decisions can be noticed in Figure 6.9(e).

The design space expands when new areas of the design space are reached, as illus-
trated in Figure 6.9(f), and it is reduced after visiting some vertices in the adjacency or
a number of similar solutions is found. After selection of the last decision, the vertex
〈T2, P2〉 is added to the solution, as illustrated in Figure 6.9(g). The final sub-graph S,
which represents a candidate solution can be observed in Figure 6.9(h).

Besides the abstraction and flexibility provided by the adoption of CGP to represent
the design space, this method is also an approach to overcome the common difficulty
of exploration mechanisms to escape from infeasible areas present in highly constrained
design spaces. Figure 6.9 illustrates a trap example from (SCHLICHTER et al., 2006),
where the task graph Dgt and the resource graph Dgr, shown in Figure 6.10(a) and Fig-
ure 6.10(b) respectively, must be mapped. Following the method presented in (BLICKLE;
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Figure 6.8: Solution Generation Example for logical CGP implementation.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

TEICH; THIELE, 1998), a specification graph is built, in order to defines how tasks in
graphDgt can be mapped into vertices of the resource graphDgr. The specification graph
is shown in Figure 6.10(c). This example illustrates the unavoidable inter-dependence be-
tween design decisions, because the decision of allocation of resources influences the pos-
sible mappings, while the mapping decision influences the possible allocation, depending
on the order of decisions. Therefore, sequential decoders, such as the one presented in
(BLICKLE; TEICH; THIELE, 1998), are not able to find a valid solution in such a highly
constrained design space. These algorithms cannot find a solution because T1 is mapped
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to R1 first, as it does not violate any restriction. However, such a map prohibits a feasible
mapping of task T2, because there is no link between R1 and R3. In this example the only
feasible solution is the sub-graph S = {〈T1, R2〉 , (T2, R3)}, which can be found by the
method presented in this chapter.

Figure 6.9: First example of hard feasibility in design space: (a) Task Graph T ; (b)
Resources Graph R; (c) Specification Graph S; (d) CGP-based Design Space Ds.

(a) (b) (c) (d)

(SCHLICHTER et al., 2006)

Assuming the same constraints presented in (BLICKLE; TEICH; THIELE, 1998), an
DSE rule must implement the constraint defined in Equation 6.5, which enforces commu-
nicating tasks to be mapped to the same resource or the existence of an edge in the re-
source graph connecting two communicating tasks. In this way the generated design space
contains only the feasible solution, so that the generation of candidates has no other alter-
native than selecting the sub-graph S containing the vertex set S (V ) = 〈T1, R2〉 , 〈T2, R3〉
as a solution for this mapping problem. Figure 6.10(d) illustrates the resulting design
space, by applying the proposed approach. The dashed lines are used to indicate pruned
vertices and edges.

It is important to highlight that the definition of additional DSE rules, which are called
inside the generate solution procedure presented in Algorithm 6.4, is different from other
approaches, because most approaches, such as (KANGAS et al., 2006), (DICK; JHA,
1998), (ERBAS; ERBAS; PIMENTEL, 2003) and others do not offer an interface for that
purpose.

∃ (v, v′) ∈ Ds | π (vr) = π (vr′) ∧ ∃ (π (vr) , π (vr′)) ∈ R (6.5)

Another example is presented in (SCHLICHTER et al., 2006), in order to illustrate
how exploration mechanisms can fail during the generation of solutions. This example
is shown in Figure 6.10. Another task graph Dgt and resource graph Dgr are shown in
Figure 6.11(a) and Figure 6.11(b) respectively. The specification graph used to define
the mapping problem is shown in Figure 6.11(c). In this example there are only two
feasible solutions, which are identified by the two edge sets of the specification graph:
〈m1,m2,m4,m6〉 and 〈m3,m5,m7,m8〉. Because task T1 and T4 do not have common
neighbors, exploration mechanisms may be trapped after deciding to map task T1 into
resource R1 (edge m1) and task T4 into resource R4 (edge m8). Figure 6.11(d) illustrates
the design space graph Dgt ⊗ Dgr produced, whose dashed lines identify pruned edges
and vertices after the application of DSE rules. The design space was produced according
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to the method proposed in this chapter and the constraints specified in the specification
graph are illustrated in Figure 6.10(c).

Figure 6.10: Second example of hard feasibility in design space: (a) Task Graph T ; (b)
Resources Graph R; (c) Specification Graph S; (d) CGP-based Design Space Design
Space Ds.

(a) (b) (c) (d)

(SCHLICHTER et al., 2006)

In order to avoid getting trapped in design space regions like the one presented in the
example above, the lists of root and sink vertices are used, so that the search can migrate to
another region of the design space and proceed. If the queue of visited vertices is empty
due to the lack of alternatives and the current state of the solution does not satisfy the
stop condition, one random vertex is selected from these lists according to the type of the
previously selected vertex: it is selected from the root list if there is no incoming edges;
it is selected from the sink list in other cases. Such an approach allows for searching in
design spaces whose graph is formed by multiple components due to the removal of edges
and vertices caused by the application of DSE rules. Consequently, in this example the
search is able to find another feasible design space, for example migrating from 〈T1, R1〉
to 〈T2, R1〉, as it is the only root vertex available. Because the vertex 〈T4, R4〉 is a sink
vertex, and the edge that reaches it is removed due to the structural constraints, it can be
selected only in the first step of the solution generation by random selection of the first
vertex. Therefore, the vertices 〈T1, R1〉 and 〈T4, R4〉 cannot be simultaneously selected.

Although the design space like the one shown in the previous example can arise due
to some requirements, in other scenarios where communicating tasks can be mapped into
the same resources, like in the previous example, the specification of the resources can be
alternatively specified by allowing loops which represent the inter-communication inside
a resource. In this way, the contiguous feasible region in the design space is longer, requir-
ing less iterations on the root/sink vertex list and better exploitation of dependencies be-
tween tasks. Figure 6.11 illustrates this approach, where to the resource graph Dgr, from
Figure 6.11(b), were added loop edges to each resource, as illustrated in Figure 6.12(b).
Thereafter, the graph Dgt ⊗Dgr contains additional vertical edges, as illustrated in Fig-
ure 6.12(c). Like in the previous example, the dashed lines indicate pruned vertices and
edges. The bold edges are the two new edges that create the only two feasible paths,
which connect all vertices in each solution.
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Figure 6.11: Example of alternative specification of design graphs: (a) Task Graph Dgt;
(b) Resources Graph Dgr; (c) CGP-based Design Space Design Space Ds.

(a) (b) (c)

In this chapter it was presented a layer mapping method that represents the design
space by using CGP, in order to provide abstraction and automation for DSE. In this
method, design graphs, which represent platform layers, are abstracted and combined by
using a CGP. Edges of the resulting graph product represent alternative mappings between
multiple layers, and the selection of one vertex in this graph represent, simultaneously,
multiple design decisions. The DSE Mapping Problem was reviewed to use a CGP rep-
resentation. Moreover, elements to represent the CGP and the reviewed DSE Mapping
Problem were included into the DSED metamodel.

In order to solve the new DSE Mapping Problem a heuristic, which exploits the CGP
and the MDE approach, was implemented. This heuristic adopts an exploration mech-
anism based on CPACO-MO and generates design candidates by iterating in the CGP
edges. Model-to-model transformations are used to prune the design alternatives at each
iteration, assuring that only feasible decisions are selected to build a solution.

By using the CGP for design space representation, DSE is performed for multiple
design activities simultaneously, as each product represents a design activity. Specific
properties of this product, such as a restriction on the adjacency, reduce the number of
available alternatives, as the navigation on the design space is performed through the
edges. Moreover, this representation overcomes the interdependence between design ac-
tivities, as one vertex in the design space represents multiple design decisions at the same
time and the graph is iterated in different directions. This abstraction also exposes the de-
pendencies between elements, such as communication or priority, between elements and it
is well suited to combine the communication in multiple hierarchies, such as classes, task,
processors, and systems. Moreover, this proposal improves the ability of the exploration
mechanism to escape from infeasible regions in the design space. Finally, the application
of DSE rules, by means of model-to-model transformations, provides the flexibility to
define constraints on the design space and the guidance to the exploration mechanism.
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7 TOOL SUPPORT

In this chapter the tools adopted or implemented to support the proposed method-
ology are presented. The first section starts by identifying the tool flow requirements
and assumptions. It also presents the MDE Technological Framework adopted, which is
based on the Eclipse Modeling Project. An overview of the tool flow is presented, and
the contributions of this work are highlighted. Then the Domain Specific MDE Frame-
work implemented to support the methodology introduced in Chapter 5 and Chapter 6 is
described. Such a framework contains common metamodels, models and transformations
used by the evaluation and exploration tools, which are also described in the following
sections. Moreover, a tool for automatic generation of DSED models from UML ones is
described.

7.1 Tooling Overview

Supporting tools are essential to the success of a DSE methodology. Besides an op-
timization algorithm implemented to automate the search in the design space, other tools
are useful to improve the DSE process. Tools for assessment of alternative designs are
required to automatically evaluate the solutions proposed by the DSE tool. Tools to create
and adequately operate on the models are also important, in order to reduce the develop-
ment effort. The proposed methodology is supported by the following tools:

• MDE technological framework;

• Domain Specific MDE models and transformations - for embedded systems in gen-
eral and specifically for DSE;

• an implementation of two solver methods in a tool that orchestrates the DSE pro-
cess;

• an automatic design evaluation tool;

• a tool for extraction of partial DSED models from UML models.

The adopted MDE technological framework and the implemented tools are proto-
types that operate in a limited context, in order to demonstrate the concepts proposed
in the methodology. Although the methodology is independent of the design language,
only support for UML was implemented. Additional languages could be supported by
implementing the adequate transformations to automate the weaving and back annotation
processes or the creation of DSED models from other languages. Moreover, the inter-
face tools, such as the back annotation and DSED generation, are tightly coupled to the
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adopted modeling languages, tools and development environment. Therefore, there is no
guarantee that working with different versions of the tools or from other providers can be
done without extra effort for integration. The prototypes were developed by using Java
1.6 and the Eclipse IDE Juno 4.2. The tools must support EMF 2.8.1, used as meta-data
repository technology and the foundation for interoperability with other EMF-based tools,
such as a transformation engine and (meta)model editors.

7.1.1 Adopted MDE Technological Framework and tools

As presented in Chapter 4, an MDE Technological Framework consists of tools to
support common tasks for MDE, independently from the application domain. The proto-
types were developed by using the framework provided by the Eclipse Modeling Project,
which includes tools for metamodeling, model transformation, model edition, etc. How-
ever, other tools were also required to support developing the prototypes. Specifically the
following tools/technologies were adopted:

• Eclipse Modeling Framework (EMF) as meta-data repository and code generator;

• ECORE for metamodeling;

• Xtend, ATL and VIATRA II for model transformation;

• Atlas Model Weaving (AMW) for model weaving, e.g. design and DSED models;

• Magic Draw from No Magic for UML modeling;

• ANTLR for creating the TGFF Injectors - parsers used to transform text files gen-
erated by the Task Graph for Free (TGFF) tool (DICK; RHODES; WOLF, 1998)
into TGFF ecore models;

• LP Solver and LP Solver Java Wrapper for solving Implicit Path Enumeration Prob-
lem during the design evaluation.

7.1.2 Contributed tools

Figure 7.1 shows the tools used to support the MDE methodology for DSE. The tools
contributed by this thesis are identified by the surrounding dashed box. The figure also
shows the adopted user front-end tools and the data flow between all these tools.

The MOdel-Driven engineering for Embedded System (MODES) framework (NASCI-
MENTO; OLIVEIRA; WAGNER, 2007) consists of a set of metamodels and transfor-
mations to capture different views of embedded systems and to provide support for the
integration of Domain Specific MDE tools. The metamodels and transformations are pre-
sented in Section 7.2. The SPEU tool provides the support for quick system evaluation
by using static analysis. Details on the evaluation tool are provided in Section 7.3. The
CPACO algorithm was implemented into the H-SPEX tool, which orchestrates the DSE
process and the interaction with the SPEU tool. Implementation details of H-SPEX are
presented in Section 7.4. Finally, a tool to extract a DSED model from a UML one is
available, in order to reduce the effort to define DSE scenarios and reuse the design arti-
facts to generate constraints. This tool is described in Section 7.5.
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Figure 7.1: Overview of Supporting Tools.
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7.2 MODES: MDE framework for Embedded Systems

Originally, MODES provided the components System Designer, Application, Plat-
form and Implementation Managers, which transform UML models into internal mod-
els conforming to metamodels proposed to represent applications, capturing functional-
ity by means of processes communicating by ports and channels; platforms, indicating
available hardware/software resources; mappings from applications into platforms; and
implementations, oriented to code generation and hardware synthesis (NASCIMENTO;
OLIVEIRA; WAGNER, 2007). MODES relies on the Y-Chart approach, focusing on
complex models to represent the Y-Charts axises. MODES was developed in the context
of the Embedded System Laboratory (acronym in Portuguese - LSE1) of Federal Univer-
sity of Rio Grande do Sul, and it was originally published with co-authors in (NASCI-
MENTO; OLIVEIRA; WAGNER, 2007). In the view of the author of this thesis, simple
and specialized metamodels can be more effective and improve the development process.
Therefore, the MODES framework was extended, by refactoring its original metamodels
in smaller parts and adding other metamodels to represent different system views or de-
velopment needs. Although separation of concerns is still available as multiple system
views, after the extensions there is no more direct identification between MODES and the
Y-Chart approach. Also included into MODES was a transformation that extracts infor-
mation from front-end languages such as UML and converts it into models conforming to
the internal metamodels.

Therefore, now MODES is a library of domain specific metamodels, models, and
transformations, which are specified or implemented to support the development of em-
bedded systems. MODES provides metamodels in ECORE, as well as APIs and model
editors, which were generated from these metamodels by using EMF tools, thus they
can be deployed as Eclipse Plug-in. Model-to-model transformations are provided to
support generation of MODES models from well-adopted languages and to provide inter-
operation between tools, e.g., H-SPEX and SPEU. There are also model-to-text trans-
formations to generate source code, configuration scripts, and other development arti-
facts, such as input file for the UPPAAL model checking tool (LARSEN; PETTERS-

1http://www.inf.ufrgs.br/ lse/
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SON; YI, 1997). Text-to-model transformations were included to inject models in TGFF
and Simulink text file format in the framework as TGFF and Simulink models based on
ECORE, so that they can be accessed by high-level Java APIs and model model-to-model
transformations. Additional transformations can also be implemented, based on the pro-
vided metamodels or the generated Java APIs, in order to operate the models or perform
some development tasks. As such, MODES is the integration point of multiple embedded
systems development methods, which requires specialized views of the system. Nowa-
days, with the advances in model management, tools such as AtlanMod MegaModel Man-
agement (AM3)2 or MoScript3 can be used to improve the MODES framework, so that the
library of models and transformations can be adequately managed, providing support for
(meta)model registration, version control, (meta)model extensions, and others. The next
sections present the metamodels and transformations available in the MODES framework.

7.2.1 Basic Metamodels

Two metamodels are provided to support the representation of basic concepts. Due
to their simplicity, no diagrams are presented. One is the Core metamodel, which pro-
vides the basic elements shared by all other metamodels. This metamodel is composed
of NamedElement, which has a name and a description. It is also associated with an
Annotation element, which contains a string key and a value used to provide informa-
tion about NamedElement. The second metamodel represents a CDFG and is the basis
for many other metamodels. The CDFG metamodel extends the NamedElement from
the Core metamodel, by defining a Graph, containing Vertex and Edges. Figure 7.2
illustrates the metamodels provided by the MODES framework and the specialization hi-
erarchy as UML classes. The DSED metamodel was described in Chapters 5 and 6. It was
also integrated in the MODES framework. The other metamodels provided by MODES
and used in this thesis are described in the following sections.

Figure 7.2: MODES metamodel hierarchy.

7.2.2 Component Metamodel

The application structure can be represented in different ways, however component or
class models are the most common way to represent the composition structure. Moreover,

2http://www.wiki.eclipse.org/AM3
3htpp://www.eclipse.org/MoScript
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components and classes are the basis for many other DSLs, such as Simulik, SCADE and
SystemC. Figure 7.3 presents the MODES Component metamodel.

Figure 7.3: MODES Component Metamodel.

Conforming to this metamodel a ComponentModel captures the application struc-
ture in terms of a set of Modules. Each Module has Declarations and Pro-
cesses. Specialization of Modules is possible due to the super association between
Modules, with same class’ hierarchy semantic. Declarations are associated with
DataTypes and can be a Channel, a Connection, or a Signal. These concepts
come from hardware description languages, such as VHDL, but are also used in some
software MoCs. Channels are used by Processes to send or receive messages.
Connections have a Direction, which can be in, out or inout, representing
the communication direction through Port and Export used to interconnect Modules.
Signals are used to specify shared memories for processes. A Declaration can also
be a Field, which defines the state of a Module. A Process contains Parameters,
a Return value, and Variables, which correspond to local memories.

The behaviors of Processes are associated to MoCs, which are not represented
in this metamodel. This association allows the translation from an abstract behavior de-
scription to a specific MoC and the execution of algorithms to automate design tasks.
Currently, two MoC’s are supported, a CDFG representation defined by the Interaction
Graph metamodel and a Labeled Time Automata (LTA). These metamodels are briefly
described in Section 7.2.8.

7.2.3 Task Graph / TGFF Metamodel

Task Graph for Free (TGFF)(DICK; RHODES; WOLF, 1998) is a tool that generates
graphs and resource tables, which represent respectively task graphs and information on
system resources, in order to produce mapping, scheduling and allocation problems as in-
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put for synthesis and DSE methods. The outputs of TGFF are files in a plain text format,
which represent graphs and tables. MODES provides a TGFF metamodel in order to rep-
resent the outputs of the TGFF tool and inject them into the MDE Framework. Moreover,
this metamodel is also used to represent task graphs extracted from the system specifi-
cation, providing in this way a common representation for this information. Figure 7.4
illustrates the TGFF metamodel.

Figure 7.4: MODES TGFF Metamodel.

7.2.4 Instruction Set Architecture Metamodel

The Instruction Set Architecture (ISA) metamodel is aimed to represent not only the
instruction set of processor architectures, but also to represent high-level instructions,
such as the Symbolic Instruction defined by SPEU, DERCS (WEHRMEISTER et al.,
2008) Actions and UML Actions. The Annotation element inherited from MODES’
Core metamodel is used to provide information on instruction size, execution cycles, etc.
Such information is used to characterize a processing unit’s instructions or services pro-
vided by components from the platform repository (see Section 7.2.6). Figure 7.5 illus-
trates the MODES’ ISA metamodel. The ISA metamodel is an extension of the method
proposed in (OLIVEIRA et al., 2006) to represent architectural information and reuse it
to improve static system analysis.

The specification of ISA models is done by using the Eclipse EMF reflective editor,
and currently two models are provided by MODES. The Symbolic ISA model was con-
tributed by the SPEU evaluation tool to represent the high-level behavior independent
of platform. The Femtojava Instruction Set defines the Femtojava ISA for the Femto-
java micro-controller (ITO; CARRO; JACOBI, 2001), which is a stack-based processor
that implements the Java virtual machine. The Femtojava ISA contains also the instruc-
tion extensions to support the real-time API presented in(WEHRMEISTER et al., 2005).
These models are used by SPEU, which requires a mapping between Symbolic ISA model
into real ISA models, in order to extract estimation from UML models. Other ISA can be
added to the MODES’ model repository, when new processor architectures are included
in the Platform Repository. Other ISAs of Virtual Machines or abstract instruction set,
such as the UML ALF(OMG, 2013) can also be integrated in the repository.
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Figure 7.5: MODES ISA Metamodel.

7.2.5 Pseudo-trace Metamodel

The Pseudo-trace metamodel represents the expected application behavior at run-time,
in order to allow a quick evaluation of the system. The application behavior is repre-
sented by the Interaction Graph metamodel in form of CDFGs. The Pseudo-trace meta-
model extends the Interaction Graph metamodel, by adding into the metamodel elements
to represent the expected run-time information, such as structural and functional con-
straints on the execution path and defined execution scenarios. This representation is
based on the Implicit Path Enumeration method (LI; MALIK, 1995), which is used to
estimate the worst-case execution path, and Software Performance Engineering (SMITH;
WILLIAMS, 2003), which inspired the method to define execution scenarios. The com-
bination of both methods in an MDE approach was presented in (OLIVEIRA et al., 2006)
and extended in this thesis, in order to allow its application to systems described in differ-
ent languages. Figure 7.6 illustrates the Pseudo-trace metamodel.

Figure 7.6: MODES Pseudo-trace metamodel.

A Pseudo-trace consists of a set of InteractionGraphs with Vertex and
Edges representing the CDFG extracted from the application. A Vertex can be an
InitialVertex or a FinalVertex, which represent the beginning and end of an
InteractionGraph, respectively, and holds information about the number of times
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the InteractionGraph is executed. Such information is used to extract the struc-
tural constraints, explained with more detail in Section 7.3.2. A Vertex can also be
a ReferenceVertex, which associates a Vertex to a complete Interaction-
Graph, thus reducing the complexity by capturing the application behavior in a hierar-
chical way. The abstraction level can be controlled by using the OpaqueOperation,
which extends Vertex, in order to represent an operation at arbitrary granularity. In this
way, OpaqueOperation can be used to represent a single instruction or a full exe-
cution of a complex algorithm, which will be associated to a cost that characterizes the
operation. Other control flow vertices, such as parallel execution, conditions, loops, and
operations, such as assignment, creation and destruction of objects, which are required to
capture the behavior, are represented by the Instruction element, which is defined
in ISA models. The Annotation element from the Core metamodel is used to provide
functional constraints such as lower and upper bounds for execution of loops and condi-
tions. For example, let’s consider that a vertex n2 must execute 5 times if another vertex
v1 is executed due to a loop and conditional statements between them, than the functional
constraint expression v2 = 5v1 will be stored in an Annotation associated to the ver-
tex v2. Moreover, each Vertex contains a list of Slots, which store dynamic Values
computed at run-time. Such run-time information is not mandatory. However, if defined,
they can be used by data-flow analysis, in order to improve the extraction of structural
and functional constraints, and improve the accuracy of estimations.

7.2.6 Platform Metamodel

In a PBD context a large number of hardware and software components are provided
and can be reused in the system development. To evaluate different solutions at a high ab-
straction level, the reused components must be pre-characterized in terms of performance,
energy, memory footprint, and others. This pre-characterized library dramatically reduces
the design phases and the uncertainty about the system properties, thus improving the pro-
ductivity and accuracy. The software component characterization is performed after the
component code is compiled for the target architecture, since at this point in time the
evaluation can capture architectural information with high accuracy. The characterization
of hardware components must be performed from adequate synthesized descriptions, to
obtain values that are independent of technology and frequency, such as execution cycles
and gate switchings per cycle (a measure for power consumption).

In the MODES framework, the available hardware and software components, as well
as the information on characterization, are stored in a platform model, conforming to the
metamodel presented in Figure 7.7. Such a platform model is a repository of reusable
components at different abstraction levels, which includes implementations or models.
This representation is consistent with the platform definition presented in (SANGIOVAN-
NI-VINCENTELLI, 2007).

In the Platform metamodel, a Platform contains different Components, which
offer Services for the application, through a set of Interfaces. These Services
must be pre-characterized in terms of Quality of Service, which is represented in the meta-
model by the element QoS. Quality of Service has Metrics, which hold the values of a
QoS in a specific metric. Two types of components are distinguished, namely Software
and Hardware. In order to simplify the metamodel, there is no distinction between dif-
ferent types of software, such as application components, Operating System, and drivers,
so that any type of software can be reused from the platform repository. Hardware com-
ponents are classified in Communication, Memory and Processing, which repre-
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Figure 7.7: Platform metamodel.

sent communication, storage and processing resources, respectively. Moreover, Process-
ing can also be Dedicated, so that no software can be executed onto it, or Program-
mable, which is able to execute software, if it conforms to the Programmable’s in-
struction set.

Currently, the platform repository conforming to the Platform Metamodel contains
information on processing units of Femtojava type, which are different versions of a Java
micro-controller (ITO; CARRO; JACOBI, 2001; BECK et al., 2003; WEHRMEISTER
et al., 2005), scheduling, timer, and real-time specification services/API (WEHRMEIS-
TER et al., 2005) implemented on top of Femtojava micro-controllers, hardware and soft-
ware components for communication (SILVA et al., 2006, 2008), a math library, and a
library of video image processing.

7.2.7 Implementation Metamodel

The Implementation Metamodel is presented in Figure 7.8 and represents the map-
ping of application into an architecture, including the allocated resources and the map-
ping between them. An Implementation is composed by a list of Resources,
which are the Hardware, Software and Communication components required to
implement the system. Software can be Active, which means it is scheduled and
can initiate communication, or Passive. The metamodel represents the association
between Hardware and Software, namely storedIn and executedBy, and the
Communication between resources, namely source and target.

7.2.8 Other Metamodels

MODES provides also other metamodels, which are not used to support the DSE
methodology. Some of these metamodels are Interaction Graph and Labeled Timed Au-
tomata presented in (NASCIMENTO; OLIVEIRA; WAGNER, 2012). Moreover, MODES
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Figure 7.8: Implementation metamodel.

provides metamodels for languages commonly used for design of embedded systems,
such as Simulink and SystemC, which are not described here.

The Interaction Graph metamodel is used to represent the application behavior in form
of CDFGs, in order to generate code out of it. The Interaction Graph metamodel allows
the composition of multiple CDFGs, so that complexity of the application can represented
using different abstractions. This metamodel is the basis of the Pseudo-trace metamodel,
and in this way they share common elements to represent the behavior. However, the In-
teraction Graph metamodel does not provide elements to represent run-time information.

MODES can extract a network of Labeled Timed Automata (LTA) (ALUR; DILL,
1994) from UML Sequence Diagrams in order to verify the system functional behavior.
The LTA metamodel captures all concepts introduced by the UPPAAL model checking
tool (LARSEN; PETTERSSON; YI, 1997). LTA is used in the UPPAAL model checker
to perform formal verification of specified properties of the system. This feature is very
useful for the designer, since the LTA model can automatically be generated from system
specification and helps the designer to debug and validate it.

7.2.9 Model Transformations

A library of transformations is provided by the MODES framework, so that other
DSMDETs can integrate different design views into their own internal representations
and be more independent of design languages. For example, a scheduling analysis tool
would made use of TGFF models and of the transformation from UML to TGFF.

Previously, the library already contained transformations from UML to Component,
Interaction Graph, Implementation, and LTA models, and from these models to Java and
UPAAL code (NASCIMENTO; OLIVEIRA; WAGNER, 2012). A transformation from
UML to Simulink was already integrated in the framework (BRISOLARA et al., 2008).
This thesis extended the library by providing transformations from UML to Pseudo-Trace,
TGFF, and DSED models. Moreover, an injection transformation from TGFF text files to
TGFF models in EMF was implemented, in order to use data in the TGFF format inside of
the DSMDET, e.g., when loading graphs for evaluation of the methodology in Chapter 8.
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7.3 SPEU: Evaluation Tool

Moving the development focus from code to model (MRAIDHA et al., 2004) sug-
gests the support of a fast design space exploration in the early design steps, where the
design effort is now concentrated. Moreover, high abstraction modeling decisions can
lead to substantially superior improvements, when compared to design decisions taken at
low abstraction levels (MATTOS et al., 2004; THEELEN; PUTTEN; VOETEN, 2004).
However, at high abstraction levels software engineers do not have an exact idea of the
impact of their decisions on essential issues such as performance, energy, and memory
footprint for a given embedded platform. It would be desirable that the designer could
evaluate the candidate solutions as early as possible, using the same abstraction level as
in the system specification. Furthermore, at a high abstraction level the design space is
large and an efficient DSE process requires quick and precise evaluation methods to rank
candidate designs. However, accuracy is related to low level and inflexible designs, which
are slowly evaluated by simulation tools.

Therefore, a high-level model-based estimation tool supporting a quick DSE process
in early design phases is needed. H-SPEX uses the SPEU estimation tool (OLIVEIRA
et al., 2006) to evaluate alternative design solutions and to guide DSE. SPEU provides
analytical estimates on physical system properties. These properties are directly obtained
from system specification in UML, C++, and binary code, which are transformed into
CDFGs of Pseudo-Trace and Component models. The Implicit Path Enumeration method
(LI; MALIK, 1995) was implemented to find out the worst case execution path in each
CDFG, by using an ILP formulation. A Symbolic Instruction Set is used, in order to reuse
the pseudo-trace for different architectural configurations, and improves the estimation
during automatic DSE. A symbolic instruction model conforming to the ISA metamodel
is used to label vertices of the pseudo-trace model. Such symbolic instructions must be
mapped into services and instructions of a real platform, so that the costs of the application
can be estimated. The estimation relies on a platform containing reusable components,
which are characterized in terms of performance, energy, memory footprint, and others.
The estimation presents errors as low as 5 % (OLIVEIRA et al., 2006), comparing to
results extracted by cycle-accurate simulation, when the reuse of platform repository is
largely employed by a PBD approach.

The original SPEU tool was extended, in order to better support the methodology
presented in the previous chapters. Different aspects of the tool were improved, such as
the mapping of instruction set, platform metamodel, and pre-characterization of platform
components. Moreover the estimation method was extended to support multiple proces-
sors and communication. Besides UML, the estimation based on other system specifica-
tion languages is now also supported, by integrating the SPEU method into the MODES
framework.

The estimation method implemented in SPEU is divided into three steps, so that the
tool can gather the most information possible to evaluate the system. In a preliminary
step a platform repository containing information about the components reused in the
system must be provided and the services available must be mapped into the Symbolic
Instruction Set defined by SPEU. This process is defined in Section 7.3.1. In order to
automate the information gathering process, the system must be modeled under certain
restrictions. The modeling process was described in Section 5.3. Finally the automated
estimation process is described in Section 7.3.2.
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7.3.1 Platform Characterization and Instruction Mapping

In order to overcome the drawback created by the absence of the complete behavior
description in UML models, and to allow more abstract evaluation, SPEU uses the infor-
mation specified in the platform repository regarding costs of pre-designed components
and include them in the CDFGs. This way, SPEU improves estimation accuracy, and
bridges the gap between high abstraction models and platform low level details. How-
ever, the use of information about pre-characterized components from a repository by
itself does not provide precision enough for DSE purposes, because such information is
still dependent on the context that the system is executing. Therefore, SPEU provides
a systematic method to identify and reuse information from the platform repository in
the system models, by mapping symbolic instructions representing the application into
real-instructions and services of platform repository.

The repository model proposed to store the required information conforms to the Plat-
form metamodel, which was presented in Section 7.2.6. It is important to notice that the
Platform model contains only (meta)information about a component, and not the compo-
nent itself, so neither structural information nor behavioral information is stored. For this
information one must rely on the artifacts referenced by each component in the Platform
model, because if a component is available for reuse then it must have an artifact that
defines it.

Providing an extensive component repository requires a significant effort. However,
normally a large amount of system components can be reused from different component
providers or as a sub-product from a previous system development (SHANDLE; MAR-
TIN, 2002). Therefore, the platform repository creation is based on the accumulation
of components produced or acquired in previous product developments. To add new IP
resources to the platform repository, the IP provider or the user must attach this archi-
tectural information to his/her IPs. In order to provide such information the system can
be simulated or the SPEU static analysis can be used on information extracted from a
low level specification, instead of UML models. Simulation provides high accuracy, al-
though it requires long interaction cycles. The pre-characterization of components by us-
ing the SPEU tool trades-off accuracy for a quick evaluation, which extracts the required
information from C++ or binary code transformed in the MODES models, in order to
support quick evaluation and addition of components’ metadata into the platform library.
Figure 7.9 illustrates both alternatives to add characterized components to the platform
repository.

After population of the repository with adequate information on the platform compo-
nents, a mapping is required from the provided services into the Symbolic Instructions,
which is a model conforming to the ISA metamodel presented in Section 7.2.4. This
method bridges the gap between the architectural independent representation of the ap-
plication and the actual architecture where the application is deployed. The weaving
method presented in Section 5.5 is used to improve the instruction set mapping proposed
in (OLIVEIRA et al., 2006). Figure 7.10 illustrates the mapping process and the relation-
ship between the ISA metamodel and ISA models.

The instruction mapping method consists of the creation of a weaving model that con-
tains references from one Symbolic Instruction to one or more real instructions required
to implement it, so that SPEU can add costs of all real instructions and annotate them in
the pseudo-trace model. The AWM Tool is used to create an ISA Mapping model, which
is used during the estimation process to determine the cost of symbolic instructions found
in the Pseudo-trace model. Each Programmable in the repository must have an ISA
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Figure 7.9: Platform Component Characterization.
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Table 7.1 illustrates part of the mapping between SPEU’s symbolic instructions into

real instructions of Femtojava Multicicle. The table shows six symbolic instructions, one
per line, which are mapped to one or more real instructions defined, shown in the central
column. In order to calculate the final cost of a symbolic instruction, a field costRule,
shown in the right column, was added by extending the AWM metamodel. This field
indicates if the cost calculation must: i) assign directly the cost of a real to a symbolic
instruction (direct); ii) add all values of the referenced real instructions (add); or use
arithmetic mean of the values of all referenced real instructions (mean).

7.3.2 Estimation process

Currently the estimation approach allows the estimation of performance, energy con-
sumption, power dissipation, throughput of communication data, and footprint of data
and program memories. These system properties are the basis for other analyses, e.g.
quality of service (QoS) assessment on issues such as communication, schedulability, and
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Table 7.1: Sample of symbolic to real instructions of Femtojava microcontroller.

Symbolic Instruction Real Instruction Cost Rule

getDynamicObjectField aload_0, getfield add
interactionStatic invokestatic direct

loadParameterByValue iload_0 direct
conditional ifgt, ifeq, ifle mean
returnInteger ireturn direct

setStaticPrimitiveField putstatic direct

resource usage. After these estimates, further analyses can be performed, as suggested
in (PETRIU; WOODSIDE, 2003). Using an approach similar to (SMITH; WILLIAMS,
2003), the estimation focuses on use cases and scenarios that describe the system, since
they provide the basics for the object-oriented methodology and provide the context for
the system evaluation. The estimation method flow is illustrated in Figure 7.11 and de-
scribed in the sequence.

Figure 7.11: Estimation Flow of SPEU Tool.
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The evaluation flow starts generating the signature of the system, by means of trans-
formations from UML models into Component and Pseudo-trace models conforming to
the metamodels described in Section 7.2. This signature represents the structure and be-
havior of the system, without considering yet a platform mapping. Moreover, the reused
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platform services are also included in the signature in the form of symbolic instructions,
whose costs are extracted from the platform repository after the mapping step. Therefore,
this signature can be generated once and reused for multiple mapping solutions.

There are two alternative ways to map a signature. One way is to manually define
Component diagrams with allocated components in the UML model, so that such map-
ping information can be extracted. This alternative is identified in Figure 7.11 as the
process 2.a (Manual DSE). Another way is by using an automatic DSE tool, which au-
tomatically generates the mapping information. The automatic process is identified in
Figure 7.11 as the process 2.b (Automatic DSE). The mapping is responsible for defining
the allocation of platform resources and the mapping of the application into an architec-
ture. A Task Graph and an Implementation model are added into the previously generated
signature, which after this step contains also architectural decisions required for the sys-
tem evaluation.

In the Primary Estimation step the first figures are gathered from the Platform model
and related ISA Mapping models, which contain the link between symbolic and real in-
structions, in order to annotate them as intermediate values in the vertices and edges
of each InteractionGraph from the Pseudo-trace model. After this first process,
the SPEU tool can estimate the best case and worst case scenarios by handling the es-
timation as an optimization problem. For this purpose, SPEU formulates an ILP for
each InteractionGraph in the the Pseudo-trace model, in order to find the worst
case execution path, by using a method similar to the Implicit Path Enumeration(LI;
MALIK, 1995), and based on the these paths SPEU back annotates the costs in each
InteractionGraph. Implicit Path Enumeration determines the number of executions
of each basic block, which in the SPEU tool are symbolic instructions, in the best or worst
cases. These limits are calculated by minimizing or maximizing the linear expression in
Equation 7.1. The result cost C is the value annotated in each graph.

C =
N∑
i=0

cixi (7.1)

Where:

ci is the cost associated to the mapped symbolic instruction insti.

xi is the number of times insti is executed, such that xi ∈ Z+

N is the number of symbolic instructions in an InteractionGraph.

Linear constraints are used to give a hint about the execution paths in Interaction-
Graphs and can represent structural and functional constraints. Structural constraints are
automatically extracted from the graph structure and represent loop and conditional ex-
ecutions. The functional restrictions are extracted from additional information specified
in the UML model. Such information are lower and upper bounds specified in the loop
operators and restrictions on conditional execution paths specified in alt operators in
UML Sequence or Interaction Overview diagrams. These constraints are transformed
into linear constraints, by using the Java LP wrapper4 to the LP Solver library5, when an
ILP problem is formulated and solved. The hierarchical representation of CDFG in the

4http://lpsolve.sourceforge.net/5.5/
5http://lpsolve.sourceforge.net/5.5/
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Pseudo-trace allows for complexity management, so that the ILP problems formulated for
CDFG at the bottom of the hierarchy are solved first, whose costs are annotated in refer-
ence vertices of CDFG at the higher levels of the hierarchy, until reaching the top-level
graph that represents the Interaction Overview diagram.

Figure 7.12 illustrates the transformation from UML Sequence Diagram into CDFG
for the Pseudo-trace model and the implicit path enumeration method. Figure 7.13(a)
shows a Sequence diagram, which contains an execution specification of a Navigator.
The execution is triggered by a Scheduler, than in a loop fragment the Navigator
reads the data from CollisionAvoidance. An alt fragment is used to specify
alternative executions. One alternative calls the notify method to send angle and
speed values to the MovementControler. Another alternative makes reference to
an emergencyStop scenario, which has its own specification in another diagram. A
CDFG is extracted from the Sequence diagrams and transformed into an Interaction-
Graph of a Pseudo-trace model. The transformation iterates on each UML Collabora-
tion in order to find the Sequence diagrams, from which CDFGs are generated. After-
wards, each Sequence diagram is iterated, such that the UML InteractionFragment
elements, such as messages, loop, and alt, found in the model are used to generate
vertices of the CDFG. For each vertex generated, a variable (x1, ..., xn), associated to the
vertex by a labeling function, is created in the ILP formulation to hold the number of times
the instructions is executed. Different InteractionFragment are specially handled,
in order to map adequately the fragments to Symbolic Instruction represent by vertices.
The resulting CDFG for the presented Sequence diagram is shown in Figure 7.13(b). In
this graph, the labels in the vertices identify the variable associated to it, as required in
the Equation 7.1, and the labels in the edge are also associated to variables used to prop-
agate the linear constraints used in the implicit path enumeration method. In this graphs
some nodes are associated to labels in order to identify the respective UML element in
Figure 7.13(a).

Each CDFG must have start and finish vertices, which are used to bound the execution
of the evaluated scenario, so that, e.g., if it is entered five times in one scenario and x1
represents the start vertex of this scenario, then x1 = 5. Equations 7.2 to 7.5 are examples
of linear constraints. Equation 7.2 defines that the scenario must execute five times, hence
the edge d1 = x1 in order to propagate constraints. Equation 7.3 defines that the first and
last vertices must be executed the same number of times. For all vertices must hold that
the sum of values from its incoming edges must be equal to the sum of the values from
its outgoing edges, as illustrated in Equation 7.4. Equation 7.5 illustrates a functional
constraint, so that the execution enters in the loop, at vertex x3, at least the same number
of times its previous vertex executes and at most 10 times the number of executions of the
previous vertex. In this case, x4 will execute 50 times inside the loop.

x1 = 5 and x1 = d1 (7.2)

x1 = x9 (7.3)

x5 = d5 = d6 + d7 (7.4)

x2 ≤ x3 ≤ 10x2 (7.5)

In the Final Estimation step, SPEU calculates additional costs based on task schedul-
ing and communication between tasks, considering the task mapping and the allocation
of processors in a communication structure.
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Figure 7.12: Example of Implicit Path Enumeration from UML Sequence Diagram: (a)
Sequence diagram; (b) Resulting CDFG.

(a) (b)

7.4 H-SPEX: Design Space Exploration Tool

A prototype tool named H-SPEX was implemented in order to support the automatic
DSE methodology. This prototype integrates the MODES framework, the SPEU tool,
and the FORMULA engine to solve DSED problems in a general way. Into H-SPEX
was also implemented the CPACO-MO algorithm to solve the DSE CGP Mapping Prob-
lem. Moreover, H-SPEX coordinates the transformation between required models. The
implementation is based on the OAT framework6, which provides a graphical user in-
terface to configure and manage optimization runs. This framework provides also a set
components that make easier the development and experimentation of new optimization
algorithms, such as operators, monitor, fitness functions, and graphical result presenta-
tion. OAT provides also interfaces based on the Domain-Problem-Algorithm design pat-
tern, which splits the structures of an optimization problem, and allows easy framework
extensions.

By using that design pattern, the EMF-based classes generated from the DSED meta-
model were integrated into the OAT framework. A DSEDomain class implements the
OAT’s Domain interface, which collects information about the available algorithms, prob-
lems and solvers for a specific domain. The DSEDProblem implements the OAT’s Prob-
lem interface, which provides information about the problem to be solved, such as how
it must be evaluated and validated. Figure 7.13 shows the H-SPEX tool graphical user
interface implemented by using the OAT framework.

7.4.1 Evaluator Integration

A proxy class was implemented to use the SPEU tool as evaluator and integrate it into
the OAT framework, which calls SPEU using the Problem interface. The SPEU tool

6http://optalgtoolkit.sourceforge.net/
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Figure 7.13: H-SPEX GUI implemented by using the OAT Framework.

provides estimates for energy or power consumption, communication bandwidth, mem-
ory footprint, performance (execution time or cycles), or any combination of the above.
The information obtained with SPEU are stored in edges, vertices and graph elements
of the DSED model, which any solver algorithm can analyze and use it in its objective
function. If additional metrics are need, one can implement such a proxy class and easily
add another evaluator in the framework, by specifying the new solver in the DSED model
with its parameters, and the fully qualified Java name (e.g. br.ufrgs.inf.Randon-
Evaluator) to find the classes that implement the new evaluator.

7.4.2 Solver Integration

A class implementing the CPACO-MO algorithm, described in Section 6.4.1 imple-
ments also the OAT’s interface Algorithm, and is used to solve DSE CGP Mapping
Problems defined in a DSED model. In this problem, since the design space is repre-
sented as a CGP and the optimization problem always consists in finding a (sub)optimal
sub-graph of the resulting CGP, the optimization algorithm is not aware of specific DSE
information and of the semantics of vertices and edges in the design space. This means
that the optimization algorithm is detached from the design space and from the specific
DSE problem to be solved, thus it does not require a specific optimization approach. In
this way, one could adopt other multi-objective optimization algorithm, such as the ones
provided by the OAT framework.

The Algorithm interface from the OAT framework requires the implementation
of a solution generation function. This function was implemented according to Algo-
rithm 6.4 and it integrates the VIATRA II7 transformation engine in the OAT framework.
VIATRA II was used to execute the DSE rules inside the solution generation function

7http://www.eclipse.org/viatra2/
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for DSE CGP Mapping Problems, so that after the transformation a solution is generated
and made available to the optimization algorithm. This transformation engine is easily
integrated into Java programs, and allows calling Java methods from the inside its trans-
formation engine. It also provides different styles of transformation languages, including
declarative and imperative rules. Such integration and flexibility were the main factors
for selecting this transformation engine. Besides, experiments have shown that VIATRA
II presents good performance, although it is outperformed by other transformation en-
gines(HORVáTH et al., 2010; BERGMANN et al., 2008).

7.4.3 Library of DSE Rules

In order to alleviate the effort to implement DSE rules manually, a library of rules to
support the constraints defined in the DSED metamodel must be implemented. In general,
these rules verify the existence of elements of a specific Constraint type in the DSED
model, such as MaximumValue, DuplicatedMapping and MandatoryMapping
to verify if it is applicable to the DSE scenario in analysis. Afterwards, for each constraint
found the rules create or remove elements according to the constraint semantics, which
are described in Section 5.4.

There are two levels of reuse of resource in this library, namely user and developer
levels. The former consists on the definition of modeling elements available in the DSED
metamodel, for example by creating an IncludeMapping element and setting the ver-
tices that must be mapped in the explorables attribute of IncludeMapping el-
ement. This mechanisms assumes that there is an implementation of solvers and DSE
Rules that support such constraints. This is a very flexible mechanism to support reuse
of DSE Rules implemented for different solvers and technologies. By extending a library
and the metamodel, such mechanism can support an arbitrary number of DSE Rules and
solvers, reusing a large amount of artifacts and alleviating the user effort.

The latter consists of the direct reuse of the code implemented in the concrete syntax
used to define the DSE Rules, inside new transformation developed by the tool user. On
this level the reuse is dependent of the implementation issues and requires a developer
role from the part of tool user. The DSE Rules are implemented in the H-SPEX tool by
using VIATRA II. In this language the reusable constructs are divided into Abstract State
Machine (ASM) rules (rule), graph transformation rules (gtrule) and graph patterns
(patterns). ASM rules use an imperative style to manipulate models, whereas graph
transformation rules use a declarative one. Graph transformation rules have preconditions,
postconditions and an optional action body, which allows for imperative constructions.
Graph patterns are declarative model queries, which define pattens to be matched in the
model. Such patterns are used by ASM and graph transformation rules to define which
elements must be manipulated.

H-SPEX provides a library of reusable Graph transformation rules and graph patterns,
which support some of the constrains defined in Section 5.4, and they support both levels
of reuse. In order to reuse resources at the developer level, developers must create their
own transformation to manipulate the DSED model and use the fully qualified name of
rules or pattern to invoke them. For example, by using use hspex.library.viatra.
successorListOf(Dg,V,VV), a developer can define a call to use the successor-
ListOf(Dg,V,VV) graph pattern to get a list of successor vertices of a specific vertex
in a specific graph. The prefix hspex.library.viatra used before each rule and
pattern name to form the fully qualified name where they are found. As an example of re-
sources contained in the library Listing 7.1 shows the successorListOf(Dg,V,VV)
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Listing 7.1: Sample of Graph Pattern in VIATRA II: Successor list of a vertex
1 s h a r e a b l e p a t t e r n s u c c e s s o r L i s t O f ( Dg , V,VV) = {
2 ’ Graph ’ ( Dg ) ;
3 ’ Ver tex ’ (V) ;
4 ’ Graph ’ . v e r t i c e s ( Has , Dg , V) ;
5 f i n d ou tgo ingEdge ( Dg , V, E ) ;
6 ’ Edge ’ ( E ) ;
7 ’ Edge ’ . t a r g e t (TGR, E , VV) ;
8 ’ Ver tex ’ (VV) ;
9 }

graph pattern, and Listing 7.2 shows an implementation for the IncludeMapping con-
straint element defined in the Equation 5.21.

The graph pattern shown in Listing 7.1 is used to iterate on design graphs and build the
logical CGP, when solving the CGP Mapping Problem. It starts by identifying the types
passed as parameters: a design graph Dg and a vertex V in Lines 2-3. Line 4 matches the
composition relation vertices of a Graph, such that the vertex V is in Dg (V ). It also
reuses another graph pattern, named outgoingEdge, identified in Line 5 and called by
using the find keyword. The outgoingEdge matches the outgoing edges of vertex V
and by matching the target relation between each edge and its target vertex V V in Line 7,
the successor vertex V V is returned as result of the application of the complete pattern.

Listing 7.2: Sample of DSE rules: Include Mapping
1 g t r u l e c r e a t e I n c l u d e d M a p p i n g ( i n Cs , o u t S l ) = {
2 p r e c o n d i t i o n p a t t e r n mappingToInc lude ( Cs , U, V, S l ) = {
3 ’ Inc ludeMapping ’ ( Cs ) ;
4 ’ DSESolut ion ’ ( S l ) ;
5 ’ E x p l o r a b l e ’ (U) ;
6 ’ E x p l o r a b l e ’ (V) ;
7 f i n d e x p l o r a b l e T o I n c l u d e ( Cs , U, V) ;
8 neg f i n d inc ludedMapp ing ( Cs , NoMp, U, V) ;
9 }

10 p o s t c o n d i t i o n p a t t e r n inc ludedMapp ing (U, V, Sl , Mp) = {
11 ’ DSESolut ion ’ ( S l ) ;
12 ’ MappingDecis ion ’ (Mp) ;
13 ’ DSESolut ion ’ . d e c i s i o n s ( Mps , Sl , Mp) ;
14 f i n d mappedExp lo rab le (Mp, U, V) ;
15 }
16 a c t i o n {
17 move (D, r e f ( fqn ( S l ) ) ) ;
18 rename (D, name ( Cs ) ) ;
19 }
20 }

A graph transformation rule is shown in Listing 7.2. This rule implements the Inclu-
deMapping constraint, according to Equation 5.21. It is called at the beginning of the
generation process, so that the generation of a design candidate is influenced by previous
design decisions made by engineers when defining a DSE scenario. This rule defines a
precondition pattern named mappingToInclude in Line 2. In Lines 3-6 this pattern
identifies the pattern parameters: an IncludeMapping constraint Cs; the vertices to
be mapped, U and V ; the solution Sl in which the mapping decision Mp must be in-
cluded and which was previously created. The precondition pattern reuses in Line 7 a
graph pattern named explorableToInclude, which matches the vertices defined in
the explorables attribute of the IncludeMapping constraint Cs. Then a negative
pattern match is used in Line 8 to avoid creating the same mapping twice. A postcondition
pattern, named includedMapping is used to defined the match in the model with the
mapping to be crated. It receives as input the vertices U and V found by the precondition
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pattern, the solution Sl and the MappingDecisionMp to be created with the mapped
vertices. Lines 11-12 define the inputs used in Line 13, which matches the relation be-
tween the solution Sl the decision D to be created. The pattern mappedExplorable
defined in Line 14 matches the mapping decision Mp and the mapped vertices U , and
V . If the preconditions holds, the VIATRA transformation engine manipulates the DSED
model, so that the postcondition holds after the rule application. Finally, the action
body in Lines 16-18 moves the created mapping decision to the solution and renames it
to have the same name as the constraint Cs.

Currently the library does not provide DSE Rules to support all constraints. As the fo-
cus of this thesis is the mapping for PBD, only the constraints defined for the DSED Core,
DSED Mapping Problem, and the constraints Deadline MaximumOccupation from
the Scheduling Problem were implemented. Such an implementation supported the ex-
periments in Chapter 8 and illustrates the methodology. Additional DSE Rules can be
included in the existing library, if they are specified in VIATRA II, or a complete new
library can be implemented by reusing the available patterns and rules. Alternatively, new
rules in any other language can be implemented, since it supports the DSED metamodel,
which is currently defined in ECORE. The DSED model provides many elements to sup-
port a broad spectrum of DSE scenarios and a developer can refer directly to them, so that
rules can be implemented independently of design models.

7.5 Automatic DSED Generation From UML

The transformation of UML models into DSED is aimed to support an engineer in
the task of producing DSED scenarios. The automation of such a transformation relies
on transformations and metamodels provided by the MODES framework and additional
transformations that extract constraint information from the UML model. The process
starts by transforming UML models into Component, TGFF, InteractionGraph, and Im-
plementation models, from which a transformation extracts design graphs and write them
into a DSED model. Furthermore, the generator creates different Constraints el-
ements according to patterns found in UML/MARTE model. Because some generated
constraints have an implementation in the library, an engineer is not required to manually
specify those DSE rules, hence improving the productivity by reusing design artifact to
generate DSE ones.

In order to generate constraints from UML/MARTE constructs a mapping between
patterns in the UML model to DSED one was defined. This mapping was implemented
by using ATL transformations, which search for patterns in the UML/MARTE model and
create the respective constraints in the DSED model. Such constraints are associated to
DSED elements which provide the context where the constraints must be applied. The
context is also found in the UML/MARTE pattern, by identifying the elements to which
the stereotypes are applied, such as classes and objects. In this way, after creating a
constraint, it is associated to Vertex, Edge, Decisions and other DSED elements,
which will hold the values used in the DSE Rule. A simplified view of the UML/MARTE
patterns and the mapping to DSED constraints is presented in Table 7.3.

The «Nfp» stereotype is used to annotate a Property of a UML Class and
define a specific constraint on the annotated property. Three variations of this pattern
generate the constraints MaximumValue, MinimumValule, and AssignedValue,
which are distinguished by using the stereotype properties staQ equal to min,max or
determ, respectively, where x assigned to the stereotype property value is a value speci-
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Table 7.3: Mapping of MARTE Profile to DSE rules.

UML/MARTE DSE rule

Property + «Nfp» + source = req,
staQ = max, value = x, unit = y

MaximumValue

Property + «Nfp» + source = req,
staQ = min, value = x, unit = y

MinimumValue

Property + «Nfp» + source = req,
staQ = determ, value = x, unit = y

AssignedValue

«HwProcessor» + frequency = x,
unit = y, source = req

PropertyValue

«SwSchedulableResource» + «Hw-
Clock» + frequency = x, unit = y,
source = req

PropertyValue

«HwProcessor» + «GaExecHost»+
source = req, staQ = max,
utilization = x

MaximumOccupation

«SwSchedulableResource» + «Allo-
cated» + «HwProcessor»

IncludeMapping

«HwProcessor» + «HwBus» + Port Con-
nection

IncludeMapping

«SwSchedulableResource» + «Rt-
Feature» + «RtSpecification» +
relDl.value = x, unit = y

Deadline

fied by the user. The annotated Property must be one of the NFP_Real type provided
in the MARTE profile library, such as NFP_Power, NFP_Area and others types, or
a NFP_CommonType without defining a unit property, such as NFP_Boolean and
NFP_Integer. The stereotype «Nfp» is required to specify performance, power, mem-
ory, and other NFRs that is used to define constraints in the DSED model and trigger
DSE Rules to remove design candidates, if they do not fulfill the NFRs or to use such
values in some heuristic search implemented by a solver. A AssignedValue con-
straint is generated to define the frequency property of a processor, when the stereotype
«HwProcessor» and its frequency property are found in the UML model. Another con-
figuration constraint of type AssignedValue is generated for elements annotated with
the stereotype «SwSchedulableReseource», which defines a task, and «HwClock» with
a frequency property defined. In this case, the processing unit that is going to execute
the task must be configured with the specified frequency. A MaximumOccupation
constraint is created when elements annotated with the stereotype «GaExecHost» and its
properties source = req, staQ = max, and utilization = x are found in combination
with the stereotype «HwProcessor». The constraint IncludedMapping is created
when elements annotated with «SwSchedulableReseource» are associated to elements
annotated with «HwProcessor» and the association is annotated with the «Allocated»
stereotype, which defines that a task must be executed in a specific processor. The map-
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ping of a processor to a specific bus segment is defined by connecting a port of a processor
annotated with the stereotype «HwProcessor» to a port of an element annotated with the
stereotype «HwBus». This pattern creates an IncludeMapping constraint, mapping
these elements. Finally, in order to verify if a task fulfills the Deadline constraint, an
element representing this task must be annotated with the stereotype «SwSchedulableRe-
seource» and have Messageassociated to a task’s Operation and it is annotated with
the stereotype «RtFeature». The «RtFeature» must be associated to a «RtSpecification»,
whose property relDl is assigned with the relative deadline.

As an example, lets consider a system with a task named depthProcessor, which
implements a heavy image processing function. An engineer may want to constrain the
DSE by defining that this task must execute in a DSP microcontroler, which is a hardware
resource more adequate to this function. Hence, he/she defies a UML Composite diagram,
in which the depthProcessor task is annotated the stereotype «SwSchedulableRe-
source» and associated to the processor P0 annotated with the stereotype «HwProces-
sor». This association is also annotated to define association semantic, by applying the
stereotype «Allocated». Figure 7.15(a) illustrates the resulting UML Composite diagram.
Such model patterns leads to the generation of a constraint in the DSED model of type
IncludeMapping, which is associated to two Vertex elements that represents the
UML elements depthProcessor and P0. The DSE Rule previously presented in the
Listing 7.2 is applied, when the instance of IncludeMapping is found in the DSED
model.

Figure 7.14: Pattern for generation of IncludeMapping constraint: (a) UML Composite
diagram; (b) Created elements in the DSED model (shown using UML Instances nota-
tion).

(a) (b)

The automatic generation of the DSED model can be improved by defining new pat-
terns UML/MARTE and the respective transformations into DSED model, for exam-
ple, by considering the MARTE data type package to generate configuration constraints.
Maybe not all DSED elements can be generated from UML/MARTE models, hence ad-
ditional standard profiles such as the UML Profile for System on a Chip8 or private pro-
files, such as the UML COMPLEX profile for DSE(GRUTTNER et al., 2012). However,
due to the expressiveness of MARTE and other standard profiles, this thesis abstained
to define yet another profile to cover the generation of some simple elements, such as
MandatoryMapping that do not require any association with other elements.

8http://www.omg.org/spec/SoCP/
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7.6 Discussion

This chapter presented the tools adopted to implement and support the proposed
methodology. De facto standard tools from the Eclipse Modeling Project were used as
MDE Framework, such as EMF, ATL and AMW. Different activities were supported by
well adopted tools such as Magic Draw for UML modeling, ANTLR for parser genera-
tion, and LP Solve to solve ILPs during the estimation process.

Moreover, some tools were extended to fulfill the methodology requirements. The
MODES frameworks was extended with more metamodels and transformations, which
improved the support of DSMDETs. The methods implemented in the SPEU tool for
quick estimation were improved by updating its metamodels, such as platform, ISA,
pseudo-trace metamodels. New technologies were also integrated in the SPEU tool that
improved the mapping between Symbolic Instruction Set and real ISAs models

A DSE tools named H-SPEX was implemented to integrate solvers, evaluators and
the DSED model, so that DSE can be automatically performed. It orchestrates the DSE
process and provides a GUI based on the OAT framework, in order to ease the user interac-
tion. It was also implemented a library of DSE rules that supports some of the constraints
defined in the DSED metamodel. Finally, a tool to automatically generate DSED models
from UML/MARTE was developed that increases the productivity when repetitive DSE
scenarios must be evaluated.

Although the DSE methodology flow is not fully automated for all DSE problems and
different use cases, many steps were automated and computational support was provided
to all steps, in order to ease the integration of the methodology into development process
and improve productivity.
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8 EVALUATION

This chapter presents an evaluation and an example of the methodology presented
in Chapters 5, 6, and 7. It starts by presenting a case study, in which synthetic graphs
are used to produce input data with different complexities, so that the step-wise search
induced by iterating on the CGP of the design graphs can be evaluated. In a second case
study a realistic DSE scenario for a real-life application is used to provide a complete
example of the DSE flow presented in Chapter 5. At the end of this chapter final remarks
are presented.

8.1 Case Study I: Synthetic Graphs

This case study aims to evaluate the scalability of the CGP method to represent the
design space when solving the DSE mapping problem. This method induces a step-wise
iteration on the CGP of the design graphs. Therefore, the execution time of Algorithm 6.4,
adopting a logical implementation of the CGP, was measured under different scenarios,
in order to evaluate how the execution time grows when the problem size increases. The
proposed method provides interfaces for iteration, constraint specification and node se-
lection, so that a user can customize the heuristic applied during the search on the design
space. Due to this flexibility, only the design space iteration, with random search selec-
tion of nodes and minimal constraints is evaluated. In this way, the method behavior is
stressed, without the influence of optimization methods, which can be customized by the
user.

The behavior of Algorithm 6.4 depends on three factors: the size of the graphs, the
connectivity between vertices, which increases the number of alternatives, and the number
of graphs used in the CGP. In order to evaluate how these factors influence the method,
three different experiments were built. For this experiment, synthetic graphs were gen-
erated by a Java application especially implemented for this purpose. These graphs are
generated in TGFF models, which are transformed into DSED models by an ATL trans-
formation, so that the evaluated method can use the same type of input as in a real DSE
scenario. Moreover, graphs extracted from a benchmark in TGFF file format were also
adopted in this case. All graphs are explained in each experiment. The transformations
and the evaluated method ran on a Java virtual machine 1.6. The machine used in this
case study has the following setup: Intel Xeon CPU with 2 cores at 2.40 GHz; Windows
7 Professional 64 Bit; 6 Gb installed RAM. In order to reduce the noise in the measure-
ments, which ran concurrently with other tasks in the operating system, the average time
in microseconds to generate 1000 solutions for all generated problems was measured.
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8.1.1 Experiment 1: Application size

By increasing the size of the graph, which represents an application also the number
of vertices to be mapped onto an architecture increases. These vertices can represent
functions, tasks, objects or any other application units. In this experiment the application
size is measured in number of tasks, which must be mapped to an architecture. Three cases
were evaluated, namely worst case, best case and average case, the last one represented
by a benchmark. These cases consist in the generation of candidate solutions for DSE
mapping problems formed by pairs of design graphs T and P , such that T represents a
task graph and P represents a processor graph onto which tasks must be mapped. During
the generation of solutions Constraints 5.20 and 5.18 must be fulfilled, so that all vertices
of graph T are mapped and a design decision d ∈ S does not repeat in the solution S. The
experiment generated 26 problems for the worst and best cases, in such a way that the first
two measurements were done with 5 and 10 tasks and the following measurements were
increased by 10 tasks up to 250 tasks. The number of vertices in P was arbitrarily fixed
to 2, in order to control the factors that influence the complexity.

The worst case reproduces a scenario where design graphs are used to produce a CGP
with the worst complexity. This means that the resulting CGP has many edges, enforcing
the evaluation of many alternatives and the pruning of all already selected vertices after
each iteration. Such scenario can be reproduced when the graphs T and P are fully
connected, so that T ⊗ P is also fully connected. Figure 8.1 illustrates these graphs for
the DSE mapping problem in the worst case, consisting of a task graph T with 4 vertices,
a processor graph P with 2 vertices and the graph T ⊗ P .

Figure 8.1: Example of Graphs used for evaluation of the worst case: (a) Task Graph T;
(b) Processor Graph P; (c) Design Space T ⊗ P ;

(a) (b) (c)

The best case reproduces a scenario where the task graph has a small number of con-
nections and there are not many alternatives for mapping, which leads to a straightforward
iteration on the CGP. In order to produce this scenario, the generated task graphs T con-
tain vertices with a maximum degree of 1, resulting in a chain of vertices. The processor
graph, which contains 2 processors, contains edges to connect one processor to another
in both directions, but without edges connecting a vertex with itself. In this way, the
graph T ⊗ P enforces that each task must be mapped onto a processor that is different
from the previous one, and at a specific vertex there is only one alternative design deci-
sion available. Figure 8.2 illustrates sample graphs used to evaluate the best case scenario
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containing a task graph T with 4 vertices, graph P with 2 vertices, and the graph T ⊗ P .
The resulting graph T ⊗ P was explicitly drawn by crossing edges between vertices, in
order to highlight the interchange of processors. However, notice that it is a graph with 2
components.

Figure 8.2: Example of Graphs used for evaluation of the best case: (a) Task Graph T; (b)
Processor Graph P; (c) Design Space T ⊗ P ;

(a) (b) (c)

The results measured for the worst case (wc) and best case (bc) are shown in Fig-
ure 8.3. This figure shows the measured average time in microseconds to load a DSED
model for each problem containing task graphs with increasing number of vertices and
the average time to generate a sub-graph from T ⊗P that represents a candidate solution.

Figure 8.3: Evaluation of solution generation time by increasing the application size
(number of vertices)
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The results shows that the time required to load a DSED model grows linearly, and
does not contribute significantly to the total execution of the algorithm. The smallest and
the largest load times are 23 and 69 microseconds, respectively. Moreover, the difference
between load times for worst and best cases are insignificant. However, the growth of the
generation time for worst and best cases diverges significantly as the number of vertices
in the task graph increases. Such a growth divergence is due to the difference on the
degree of vertices, which increases with the number of vertices in the worst case, whereas
it remains constant in the best case. Notice that the high connectivity of the graph T ⊗ P
for the worst case is not due to the number of alternatives, because for all problems one
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task can only be mapped onto processor p0 or p1. Instead, the connectivity reflects the
high dependency between vertices in the task graph, and, as it is shown in the third case,
such a design is not usual in real-life applications.

The third case reproduces real-life applications and does not stress the method limits.
It represents the average case, where independent sets of tasks with limited number of
connections are mapped onto an architecture, reflecting the nature of embedded systems.
Such task sets are provided by the Embedded System Synthesis Benchmarks Suite (E3S)1,
which contains task graphs representing real-life applications from different domains, and
resource sets containing meta-information about memories, buses, and processors. The
E3S benchmark suite was created to aid the evaluation of embedded system synthesis
methods and is largely based on the data extracted from the Embedded Microprocessor
Benchmark Consortium (EEMBC)2.

The average case consists of five DSE mapping problems, one for each application
domain provided by EEMBC: automotive/industrial automation, consumer electronics,
office automation, networking, and telecommunications. Each problem has one task set
with one or more task graphs, in a way that the resulting CGP contains multiple compo-
nents, and stresses additional features of the method, such as jumping from one compo-
nent to another by using the root and sink lists, as discussed in Section 6.5. Consider-
ing high-connected architectures of today, such as those based on NoCs, task sets were
mapped onto a fully connected processor graph P . However, this graph contains only two
vertices, so that the results can be compared to the results of previous cases. Figure 8.4
illustrates the task set for the automotive/industrial automation application provided by
E3S. The others graph illustrations can be found in Appendix 10, together with the list of
45 tasks that compose the benchmark.

Figure 8.4: E3S task graph set representing an automotive application.

The average total time required to load and generate solutions for DSE mapping prob-
lems using the task graphs provided by the E3S benchmark are shown in Figure 8.5.

1http://ziyang.eecs.umich.edu/ dickrp/e3s/
2http://www.eembc.org/
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Besides the average case, the figure also shows the average total time to load and generate
solutions measured in the previous experiment for worst and best cases.

Figure 8.5: Evaluation of solution generation time by using the E3S Benchmark.
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The results shows that for task graphs with small number of vertices, the difference
between the execution time of all cases is not significant, whereas from graphs with more
than 20 vertices the difference between best and worst cases grows. However, the average
total time to generate solutions for the application with 24 and 30 tasks is very close
to the best case. Therefore, the time to generate solutions from real-life problems will
grow polynomially and closer to the best case than to the worst case, because in real-life
problems the growth of the number of vertices does not imply a growth of the degree.
Such a disconnection between task graph size and connectivity comes from the fact that
reducing the coupling between application components and increasing the coherence of
components is a best practice in system development(OLIVEIRA et al., 2008).

8.1.2 Experiment 2: Number of alternatives

The number of alternatives depends on the size and flexibility of an architecture. The
size of the architecture is defined by the number of vertices in the architectural graph,
and the number of edges defines its flexibility. In order to evaluate the scalability while
increasing the number of alternatives in this experiment setup, two sets of 25 problems
for worst and best cases were produced. In both cases the task graph T is mapped onto
a fully connected architectural graph containing a vertex set varying from 10 up to 250,
with step of 10 vertices. A fully connected task graph for the worst case and a task graph
containing vertices with maximum degree 1 for the best case were defined and the size of
the vertex set was arbitrarily fixed in 20. In this way, the number of alternatives increases
with the number of vertices in the architectural graph. Figure 8.6 shows the average time
to load and generate solutions for the DSE mapping problem produced in this experiment.

Like other experiments, the time to load a DSED model was not significant. However,
an important result is that the time to generate solutions in both cases grows linearly when
the number of alternatives increases. Because the iteration on the design space is bounded
by the size of the task graph, i.e., it does not matter how large is the architecture vertex
set, the algorithm will iterate only |T (V )| times and the observed growth is due to the
evaluation of adjacent vertices of the latest selected vertex in the design space. Therefore,
the number of alternatives grows with n, where n is number of vertices added in P , when
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Figure 8.6: Evaluation of solution generation time by increasing the number of alterna-
tives.
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evaluating the adjacent list, whereas the actual design space grows with |T (V )| ×n, with
no influence on the performance. The difference between the worst and the best case is
due to the step-wise iteration, which evaluates only alternatives that are reachable from
a specific vertex, instead of evaluating all combinations, which occurs in the worst case.
Therefore, a reduced generation time is expected when the resulting CGP has less edges
connecting vertices with references to different tasks, as occurs with the best case. Such
a fact reinforces the previous observation that the algorithm performance depends much
more on the task dependencies than on the number of alternatives, i.e. on the size and
flexibility of an architecture.

8.1.3 Experiment 3: Number of design graphs

The mapping between multiple layers produced by the CGP also increases the gener-
ation time. Each layer is represented by a design graph, and the mapping between layers
represents different design activities. This experiment has the goal to evaluate the scala-
bility of the algorithm when increasing the number of design graphs participating in the
CGP, so that more design activities can be solved simultaneously. The setup for this ex-
periment uses a task graph arbitrarily fixed to 20 tasks. Again two sets of problems were
produced, one set using a fully connected task graph for the worst case and the other one
using a graph with vertex degree limited to 1 for the best case. These graphs were used to
produce nine problems, increasing the number of design graphs up to 10. Each additional
graph besides the task graph has a fixed size of five vertices, and they are fully connected.
Figure 8.7 shows the average time to generate one solution for the generated problems.

Again the difference in performance between the worst and best cases is due to the
difference in the connectivity presented in the task graphs used for each case. In spite
of the exponential growth in the number of alternatives by combining multiple graphs,
the results show a linear growth of the generation time for both the best and worst cases.
The number of alternatives grows with |Dgn (V )|, which means that the adjacent list off
a vertex grows with the size of the vertex set of the design graph n, whereas the actual
design space grows with |Ds (V )| × |Dgn (V )|, with no influence on the performance.
Therefore, the generation algorithm presents a very good performance, allowing the si-
multaneous DSE of multiple activities by exploiting the CGP method to represent the
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Figure 8.7: Evaluation of solution generation time by increasing the number of design
graphs.
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design space.

8.2 Case Study II: Electronic Wheelchair System

In order to illustrate the proposed methodology, this case study presents a DSE sce-
nario for a real-time embedded system dedicated to the automation and control of an
intelligent wheelchair that helps people with special needs. In this case study all steps
presented in Figure 5.1 are shown, and it illustrates how the tools presented in Chapter 7
are used to automate the DSE flow. This case study focuses on the DSE CGP Mapping
Problem presented in Definition 6.6, in order to highlight the method proposed in Chap-
ter 6. All other DSE problems discussed in Chapter 5 can be solved in a similar way by
using the DSED metamodel and the generated API to implement the engineer’s heuristic
or to integrate global optimizers into the framework. Such solving methods were dis-
cussed in Section 5.3.

8.2.1 DSE Scenario

The wheelchair system has several functions, such as movement control, collision
avoidance based on ultrasound and stereo vision, navigation, target pursuit, battery con-
trol, system supervision, task scheduling, and automatic movement. The system applica-
tion is modeled by using UML, as described in Section 5.2. PBD is considered in this case
study, thus it is expected that a large amount of software and hardware components can
be reused to develop the system. The reusable components are specified in the platform
repository, as described in Section 7.2.6.

The DSE scenario consists in solving the DSE mapping problem extended with the
CGP representation of the design space, presented in Section 6.3, so that the following
design activities are performed:

• definition of which objects are active or passive (runnables), among the 17 behav-
iors defined in the interaction graphs;

• mapping of the active objects to available processors (up to 6 processors);
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• allocation of the selected processors into a hierarchical bus with two segments;

• processor voltage scaling with four distinct voltage levels.

In order to illustrate how an engineer can customize the DSE methodology to specific
scenarios by including his/her own heuristic, a cluster graph Cg was created from the
UML sequence and interaction overview diagrams. By analyzing the dependencies be-
tween sequence diagrams, referenced in the interaction overview diagram, a cluster graph
was produced to define if an interaction must be implemented by an active or passive ob-
ject. In this way, the cluster graph contains vertices, which represents alternative clusters
of interactions. The edges of the cluster graph represents dependencies between clusters,
which emerges by grouping interactions with dependencies in different clusters. Selected
vertices from the cluster graph represents active objects that wrap passive behavior of
sequential interactions.

A fully connected processor graphDgp is defined to represent the processors available
in the platform and the way they how can communicate. The graph Cg ⊗Dgp represents
the possible mappings of vertices from the cluster graph onto to available processors.

The communication structure graph Dgc represents a hierarchical bus with two seg-
ments, thus this graph contains two fully connected vertices to represent each segment.
Processors mapped to the same segment can communicate without overhead, hence only
two vertices are required. The graph Dgp ⊗Dgc represents the possible mapping of pro-
cessors onto the bus.

A graph Dgv representing the four distinct voltage levels is defined. Each vertex rep-
resents a level and the edges represent the transitions between levels. In order to increase
the benefits of voltage scaling, each active object can execute in a processor with a voltage
level defined according to its computational and time requirements. The graphDgc⊗Dgv
represents the alternative assignments of voltage levels for each active object.

The design space for this DSE scenario is the graph Cg⊗Dgp⊗Dgc⊗Dgv resulting
from the CGP between those four design graphs. The design space graph contains 2,064
vertices and 334,080 edges, from where a set of up to 17 vertices (the maximum active
task distribution is equal to the number of interaction graphs) must be selected to define
a sub-graph, which represents a candidate design solution. The unveiled design space
presents 5.89×1041 alternative designs, considering a unrestricted design space, when the
step-wise iteration on the design space presented in Section 6.4 is not applied. However,
in the proposed methodology, edges guide the available alternatives and constraints are
locally applied between the current vertex and its neighbors, thus pruning the design space
and speeding up the DSE process.

8.2.2 DSE Flow

8.2.2.1 Design Modeling

The methodology flow starts by modeling the wheelchair system as prescribed in
Subsections 5.3 and 7.3. The UML model specifies the wheelchair movement control,
collision avoidance, and navigation functions, which are essential to the system and in-
corporate critical hard real-time constraints. It consists of a Class model, 18 interaction
diagrams, 1 interaction overview diagram, and one composite diagram. These UML dia-
grams were produced in the Magic Draw tool and can be found in Appendix 11.

The platform library was presented in Section 7.2.6 and provides software and hard-
ware components to be reused during the implementation of the wheelchair control sys-
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tem. A UML model library mirrors the platform repository, so that an engineer can use
the library components in the UML model.

8.2.2.2 DSED Modeling

A basic DSED model is available containing the information about solvers, evaluators,
and the metrics that can be evaluated, thus reducing the manual effort for the specification.
Moreover, part of the DSED model is automatically generated, by extending the basic
DSED model with design graphs extracted from UML models, such as interaction, task,
processor, and communication graphs.

When some information cannot be directly specified in or extracted from UML mod-
els, an engineer can use the DSED editor, generated by EMF, and specify the required
information directly in the DSED model. In this case study the cluster and the voltage
scale graphs were included in the DSED using the DSED editor.

8.2.2.3 Design-DSED Weaving

This step combines multiple design models with DSED, in order to support the link
between variability and the design, back annotation, and other tasks. The Design-DSED
Weaving model is created when data are automatically extracted from UML. The weav-
ing with additional models, such as a Simulink model, is not supported yet. Moreover,
manually inserted information in the DSED model requires manual weaving using the
multi-pane editor provided by AMW weaving tool.

8.2.2.4 DSE Rules Generation

Two rules are standard in the DSE mapping problem and were used in the previ-
ous case study, namely MandatoryMapping, corresponding to Constraint 5.20 and
OneToManyMapping, corresponding to Constraint 5.18, and are also used in this DSE
scenario, so that all tasks must be mapped and tasks do not repeat in the solution. Ad-
ditionally, mappings that lead to computational times greater than deadlines of real-time
tasks must be rejected after the evaluation, hence the DSE rule MaximumValue, which
refers to Constraint 5.1, is also specified. Moreover, processors can only be mapped to one
segment of the bus, hence after the selection of the first mapping for a specific processor
all other design decisions must obey the same mapping. Such a constraint is implemented
by the ManyToOneMapping, which implements Constraint 5.19. Some DSE rules can
be automatically generated from the UML models, such as MaximumValue, while the
other rules are selected prior to the execution of the exploration.

8.2.2.5 Design Space Exploration and Evaluation

Before starting running the DSE process, an engineer can select the Solver and evalu-
ation methods to be used, from the ones registered in the DSED model. In this case study
we use the CPACO Solver, which implements the optimization algorithm and solution
generation procedure described in Chapter 6, and the SPEU Evaluator, used to estimate
the values of objectives from the generated solutions. H-SPEX was configured to opti-
mize the system in terms of performance (cycles), power (µWatt), energy (µJoules), total
memory (bytes), and communication volume (bytes transmitted on the bus).

The DSE process is executed automatically by H-SPEX until reaching a stop condi-
tion, which was set to 5,000 evaluations. The number of candidates generated at each
iteration was set to 50 and the population size was set to 20.
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8.2.2.6 Final Solution Selection and Back Annotation

The DSE result is the final population of non-dominated candidate designs. The best
overall candidate must be selected after a trade-off analysis between the obtained estima-
tions, based on some criteria, such as weights for the optimized objectives, or any other
design feature. The outputs of the H-SPEX tool are a text report and a DSED model
containing the final population characterized with the values estimated by SPEU. These
outputs can be used in some analysis tools to aid the engineer in the task of selecting the
solution(s) to be refined and implemented. The next section presents the results for this
DSE scenario.

The resulting DSED model then can be used to back annotate the results into the
original design models, by following the links contained in the Design-DSED Weaving
model. Although the DSED metamodel and API are provided also for back annotation,
this is not automated yet.

8.2.3 DSE Results

The candidate population was found after 5,000 evaluations, which was the stop con-
dition. The DSE process ran 3 hours and evaluated proximately 1,666 candidates/hour.
Such result shows the performance of the DSE and evaluation tools in a real-life applica-
tion, which contains a huge design space. Figure 8.8 and Figure 8.9 show five plots with
values of the objectives estimated for each solution. The horizontal line without marks
shows the average value.

The first observation in Figure 8.9 is that the communication strongly influences the
system performance, so that reducing data transfers is important to optimize the system.
However, as all solutions fulfill the system performance requirements, other solutions
may provide better gains in other objectives than the solution with best performance.

The results show that solutions 3 and 19 are above the average for all objectives, hence
they are not good candidates for further developments. These solutions do not presented
an adequate load balance, because they require more cycles to execute and dissipate more
power to fulfill the requirements. From the set of solutions that present at least 4 values
below the average, six solutions, namely 5, 7, 11, 13, 16 and 13, present results above the
average for energy consumption, and, from them, solution 7 and 13 present the highest
figures. These solutions present two clusters, which agglomerate functions with many
dependencies under the same task. Such an approach reduces the communication and ex-
ecution cycles required by data transfer and scheduling, hence these solutions presented
good performance figures. However, these clusters are responsible for most of the ex-
ecution cycles, which are executed at higher power in order to fulfill the computation
requirements, therefore increasing the energy consumption.

Solutions 4, 9, 14, 15, 17, and 20 present figures closer to the average. They have a
smaller number of processors and a smart distribution of the 17 behaviors in task clus-
ters. Not as a coincidence, these solutions present the highest number of design decisions
that appear more frequently in the population. This fact illustrates the convergence of the
search, which can be improved by changing the algorithm parameters, such as number of
evaluations, size of the population, and crowding factor. These parameters were empiri-
cally selected, based on the time to evaluate a solution, previous runs and recommended
parameters (ANGUS, 2007).
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Figure 8.8: DSE Results for the Wheelchair System: (a) performance (cycles); (b) power
(µWatts); (c) total memory (bytes).
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Figure 8.9: DSE Results for the Wheelchair System: (a) energy (µJaules); (b) communi-
cation (bytes).

0 5 10 15 20
0.5

1

1.5

·105

Solutions

en
er

gy
(µ

Ja
ul

es
)

(a)

0 5 10 15 20

0

1

2

3

·104

Solutions

co
m

m
un

ic
at

io
n(

by
te

s)

(b)



162

8.3 Discussion

This chapter presented two case studies, one aiming at the evaluation of the method
proposed to improve mapping in PBD and another one to show a complete flow of the
DSE methodology applied to a real-life application.

The first case study demonstrates the scalability of the method proposed to gener-
ate candidate designs, when executed for problems with different sizes and complexities.
Three experiments were performed. The first one showed the average time to generate
candidate designs, when increasing the application size, considering graphs with connec-
tivity in best, average, and worst cases. Although the generation time grows exponentially
in the worst case, the time grows polynomially in the best and average cases. Moreover,
the generation time for problems extracted from an industrial benchmark grows close to
the best case. The second experiment showed the growth of generation time, when the
number of alternatives in an architectural graph increased. The growth in this case is
linear with the growth of the architectural graph in the best and worst cases. The last ex-
periment showed the growth of the execution time when design graphs are included in the
CGP. As expected, the logical implementation of the CGP favors the simultaneous map-
ping of multiple graphs, which grows linearly with the addition of new graphs, although
the number of possible combination grows exponentially. Finally, by evaluating all three
experiments one notices that the connectivity of the graph representing the application
has more influence on the performance of the method than the number of alternatives and
the number of layers to be mapped. Moreover, it was shown that the proposed method is
efficient and scalable, hence it can be applied to larger problems - as it was demonstrated
in the second case study.

The second case study illustrates the methodology by applying it to the design of an
electronic wheelchair control system. This case study shows with examples each process
of the methodology: system modeling with UML, DSE domain modeling, Design-DSED
weaving, exploration rule generation, design space exploration and evaluation, and the
selection of the final solution. In order to illustrate the flexibility of the proposed method-
ology an heuristic was adopted, such that a cluster graph is used to replace the task graph
and indicates some possible clusters of tasks. This heuristic aims to guide the DSE pro-
cess by reducing the communication and scheduling costs. However, it was intended
to increase the number of combinations after the CGP calculation, which resulted in a
huge design space of 5.89 × 1041 design alternatives, and illustrates the scalability of
the method for real-life problems. Although the resulting design space was much larger
than the design spaces in the first case study, the method for design candidate genera-
tion demonstrates good performance, by evaluating proximately 1,666 candidates/hour,
including a static analysis of the candidates.
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9 CONCLUSION

This thesis proposes a DSE methodology for embedded systems, which consists in the
exploitation of the MDE approach to improve different deficiencies in the current DSE
methodologies, such as: i) restricted support to multiple DSE activities; ii) fixed method
to generate solutions; iii) tightly coupling to evaluation tools; iv) lack of integration with
the development process. Moreover, this thesis proposes methods to overcome some
challenges faced by these methods, namely the increasing number of alternative decisions
in a design space with reduced number of feasible designs due to stringent requirements,
as well as the inter-dependencies between such decisions. Furthermore, in the state-of-
the-art the trade-off between heuristics for specific DSE problems and global optimizers
prevents the development of tools that are simultaneously efficient and flexible.

The DSE methodology was completely implemented for an MDE process. The result
was a Domain Specific MDE Tool, which better integrates the DSE activities into a de-
velopment process. A simple development process was defined, in order to provide a real
development context for the DSE methodology, and the flow of data in the process was
automated by using model transformations, which alleviate the development effort. The
process identifies methods, tools, and artifacts required to promote an easy deployment of
the methodology.

A lightweight modeling method was proposed to specify a system by using UML and
MARTE. This method collects common practices in modeling, so that the development
flow could be automated without enforcing stringent modeling requirements. Because it
focuses in the most common modeling elements from UML and MARTE, the method can
be used in conjunction with other tools, such as different UML editors, GenERTiCA for
code generation, and Cheddar for schedulability analysis.

After review of the current DSE methods, a DSE Domain metamodel was defined. It
represents the important elements of a DSE process, such as available solver and evalu-
ation tools and metrics to be optimized or used to guide the DSE process, and represent
these elements in a concise and uniform way. Moreover, DSED can represent four dif-
ferent DSE problems identified from the studied literature and classified according to
(SAXENA; KARSAI, 2011), namely construction, configuration, mapping, and schedul-
ing. Each DSE problem contributes to the DSED metamodel, which provides abstractions
to represent problem elements, solutions, and constraints specialized for each problem.
Such abstractions improve the specification of DSE models, which require less special-
ization of an engineer in optimization and formal techniques, usually required by general
optimization frameworks.

In order to improve the flexibility of the DSE methodology, so that models in different
languages can be used, a model weaving method was adopted. This method is supported
by the AWM tool, which weaves design and DSED model elements at the beginning of the
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DSE process. Besides multiple input models, the weaving method aids the automation of
DSE activities, such as back annotation of DSE results in the design models, and improves
the traceability and separation of concerns, namely design and design and DSE.

Models conforming to DSED models are handled in every step by model-to-model
transformations, which extract required information from development models and fill
the DSE models. By including domain specific knowledge, namely DSE, in the transfor-
mations rules, these rules could also be used to implement DSE rules, in order to guide the
automatic DSE process and prune the design space. Moreover, model-to-model transfor-
mations are an adequate mechanism to specify configurable, reusable, and complex DSE
rules, if an engineer needs additional constraints according to a specific DSE scenario.

A method to represent the design space as a Categorical Graph Product (CGP) was
developed, in order to improve the mapping between layers in PBD approaches. The
CGP is adequate to represent such a mapping, because it maps automatically multiple de-
sign graphs, improves the abstraction, and represents multiple design decisions involved
in the mapping as one single unified decision. Therefore, CGP is appropriate for rep-
resenting simultaneous and interdependent design alternatives. Moreover, CGP exposes
element dependencies through all graphs, which is especially important to optimize the
communication in different systems aspects (e.g. tasks, processors, and buses).

Based on the CGP representation of the design space, a method to generate solutions
for the DSE Mapping problem was implemented. It induces a step-wise search in the
design space. This search is guided by constraints applied locally at each vertex’s adja-
cency as the search algorithm iterates on graphs resulting from CGP, in order to select the
sub-graph which represents an alternative design. Such an approach avoids the enumer-
ation of all possibilities, by removing alternative vertices that do not fulfill the specified
constraints. Experiments have shown the generation method being able to deal with large
design spaces, because the time to generate a solution grows linearly, despite of the ex-
ponential growth of combinations, by increasing the number of alternatives or graphs.
The results have also shown that the time to generate solutions grows exponentially in
the worst case, when the number of vertices in the application grows. However, this time
grows polynomially in the best case. Moreover, experiments with an industrial bench-
mark have shown that the time to generate solutions grows also polynomially for real-life
applications, and close to the best case.

The proposed methodology is supported by a set of tools developed during this PhD
work. This set includes the MODES framework, which provides domain specific (meta)-
models and transformations for embedded systems development. Through MODES all
other tools were integrated, such as UML model editor, the H-SPEX DSE tool, and the
SPEU estimation tool, so that a complete automated process could be supported. The
MODES framework was extended, by refactoring original metamodels in smaller parts
and adding other metamodels and transformations.

The design space exploration of a large design space requires quick evaluation tools,
hence the estimation tool SPEU was developed to support quick evaluation of embedded
systems specified in UML models. SPEU provides analytical estimates about physical
system properties, such as performance, power dissipation, and volume of communica-
tion. The estimation is performed by extracting structural and behavioral information
from UML models and generating a CDFG. In this graph information of pre-designed
components from a platform repository is annotated and used to improve the estimation
accuracy. An ILP formulation for each CDFG generated is solved, in order to identify the
worst-case execution paths and calculate the final estimates. By using SPEU, HSPEX can
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rapidly evaluate candidate solutions during the DSE process, without depending on costly
synthesis-and-simulation evaluation cycles.

The H-SPEX tool was implemented to orchestrate and support the MDE approach
for automated DSE. H-SPEX provides an implementation of the methods proposed in
Chapters 5 and 6. It relies on the Java API generated from the DSED metamodel to
configure and execute the DSE process. It coordinates also the transformation of models
from and to tools required in the process.

H-SPEX implements CPACO-MO, which is an implementation of a global optimiza-
tion algorithm based on Ant Colony Systems and Evolutionary Algorithms. This algo-
rithm was adapted to exploit the proposed design space representation through a logic
implementation of a CGP inside the procedure for the generation of candidate designs.
By combining CGP and CPACO-MO this proposal balances the trade-off between global
optimization and heuristic optimization. CPACO-MO represents the global optimization
methods, which are flexible and incorporate few knowledge of the problem domain, in
detriment of performance. The generation of candidate designs and CGP allow the speci-
fication of heuristics to guide the design space dealing with simple abstractions - vertices
and edges, representing the mapping between layers in the PBD approach. Moreover,
model transformations can be used to customize the heuristic and prune the design space,
by dealing with the concepts defined in the DSED metamodel.

9.1 Future work

Development, integration, and adaption of solvers were not the main contribution of
this thesis, because the methodology was developed to be applied with different solvers.
However, CPACO-MO algorithm was implemented and adapted to solve the DSE Map-
ping Problem with a logical implementation of the CGP. A general proposal to to solve the
other three DSE problem is the integration of the FORMULA tool, by transforming the
specification of DSED metamodel in ECORE to a specification in FORMULA. Moreover,
CPACO-MO requires further evaluation and comparison with state-of-the-art algorithms
applied for similar problems, because each algorithm is better suited to a specific class of
problems.

This thesis strongly relies on transformation engines and transformation languages.
In that MDE gets more importance in the system development, more and more engines
and languages are proposed. Because each one has different characteristics, studies show
that they can have completely different performance figures, from an exponential to a
linear growth of execution time. Therefore, further studies of engines and languages
would improve the knowledge on specific application niches for which each one is more
appropriate and on their influence in domain specific MDE tools, and in particular in tools
for DSE.

Now that the fundamentals for Model-driven Design Space Exploration are settled, by
representing the DSE domain in an adequate way through two metamodels, namely DSED
and a transformation language, it is interesting to bridge the requirements specified in the
early development phase to the DSE rules defined as a transformation language. Since
requirements could be formalized as constraints, such as in OCL, and most transformation
languages use OCL as basis to define expressions, such a constraint forwarding process
seems to be natural, even if it may require intermediate steps, such as the transformation
of requirements into design models.

In this thesis six DSE problems were specified in the DSED metamodel. Although
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a general method using FORMULA to find a solution for all specified problems can be
implemented, not all of these problems were specifically approached. Similarly to the
DSE Mapping Problem, which was improved by using CGP to represent the design space
and a combination of heuristic search with global optimization algorithm (CPACO-MO),
other problems can also be approached with specific heuristics.

An effort that is always valuable is to automate steps during the development process.
In particular, the extraction of data from design models can be improved or extended.
For example, design graphs could be extracted from SystemC models or SysML. Another
example would be the automation of the specification of parameter interdependency. This
was originally proposed in (GIVARGIS; VAHID, 2002), and the DSED metamodel is
able to represent configuration problems by using this method. The weaving of design
and DSED models facilitates the back annotation of the results into the design models.
This step can be automated in the future.

During the evolution of this thesis many tools were developed. However, all of them
are prototypes and can be improved. A tool for (meta)model management is required,
namely mega-model management tools, such as AtlanMod MegaModel Management
(AM3)1 or MoScript2. Metamodels and transformations must also evolve to reflect the
community requirements, as well as the MODES framework requires more (meta)models
and transformations to completely fulfill its goals. SPEU can exploit the UML Test profile
and the MARTE Analysis profile, in order to improve the evaluation scenario specifica-
tion and the estimation. Besides the automation of more activities in the H-SPEX tool, its
GUI and usability can be improved, as well as its integration with other analysis, solver,
and estimation tools.

1http://www.wiki.eclipse.org/AM3
2htpp://www.eclipse.org/MoScript
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10 GRAPHS OF E3S BENCHMARKS SUITE (E3S)

10.1 List of E3S Tasks

Automotive/Industrial

0 Angle to Time Conversion

1 Basic floating point

2 Bit Manipulation

3 Cache Buster

4 CAN Remote Data Request

5 Fast Fourier Transform (Auto/Indust. Version)

6 Finite Impulse Response Filter (Auto/Indust. Vers)

7 Infinite Impulse Response Filter

8 Inverse discrete cosine transfom

9 Inverse Fast Fourier Transform (Auto/Indust. Vers)

10 Matrix arithmetic

11 Pointer Chasing

12 Pulse Width Modulation

13 Road Speed Calculation

14 Table Lookup and Interpolation

15 Tooth To Spark

Consumer

16 Compress JPEG

17 Decompress JPEG

18 High Pass Grey-scale filter
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19 RGB to CYMK Conversion

20 RGB to YIQ Conversion
Networking

21 OSPF/Dijkstra

22 Route Lookup/Patricia

23 Packet Flow - 512 kbytes

24 Packet Flow - 1 Mbyte

25 Packet Flow - 2 Mbytes
Office automation

26 Dithering

27 Image Rotation

28 Text Processing
Telecom

29 Autocorrelation - Data1 (pulse)

30 Autocorrelation - Data2 (sine)

31 Auto-Correlation - Data3 (speech)

32 Convolutional Encoder - Data1 (xk5r2dt)

33 Convolutional Encoder - Data2 (xk4r2dt)

34 Convolutional Encoder - Data3 (xk3r2dt)

35 Fixed-point Bit Allocation - Data2 (typ)

36 Fixed-point Bit Allocation - Data3 (step)

37 Fixed Point Bit Allocation - Data6 (pent)

38 Fixed Point Complex FFT - Data1 (pulse)

39 Fixed point Complex FFT - Data2 (spn)

40 Fixed Point Complex FFT - Data3 (sine)

41 Viterbi GSM Decoder - Data1 (get)

42 Viterbi GSM Decoder - Data2 (toggle)

43 Viterbi GSM Decoder - Data3 (ones)

44 Viterbi GSM Decoder - Data4 (zeros)

45 Placeholder task (sink / src)
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10.2 E3S Graphs

Figure 10.1: E3S task graph set representing an office automation application.

Figure 10.2: E3S task graph set representing a consumer electronics application.

Figure 10.3: E3S task graph set representing a networking application.
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Figure 10.4: E3S task graph set representing an automotive application.

Figure 10.5: E3S task graph set representing a telecommunication application.
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11 WHEELCHAIR SYSTEM: UML DIAGRAMS

Figure 11.1: Wheelchair System: Sequence Diagram - Movement control.
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Figure 11.2: Wheelchair System: Sequence Diagram - Movement interface reading.
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Figure 11.3: Wheelchair System: Sequence Diagram - Actuator interface writing.

Figure 11.4: Wheelchair System: Sequence Diagram - Generate depth map.
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Figure 11.5: Wheelchair System: Sequence Diagram - Left image processing.

Figure 11.6: Wheelchair System: Sequence Diagram - Right image processing.
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Figure 11.7: Wheelchair System: Sequence Diagram - Right image sensoring.

Figure 11.8: Wheelchair System: Sequence Diagram - Left image sensoring.
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Figure 11.9: Wheelchair System: Sequence Diagram - Right encoder reading.

Figure 11.10: Wheelchair System: Sequence Diagram - Left encoder reading.
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Figure 11.11: Wheelchair System: Sequence Diagram - Navigation.
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Figure 11.12: Wheelchair System: Sequence Diagram - Sytem initialization.

Figure 11.13: Wheelchair System: Sequence Diagram - Ultrasound processing.
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Figure 11.14: Wheelchair System: Sequence Diagram - Ultrasound reading 1.

Figure 11.15: Wheelchair System: Sequence Diagram - Ultrasound reading 2.
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Figure 11.16: Wheelchair System: Sequence Diagram - Ultrasound reading 3.

Figure 11.17: Wheelchair System: Sequence Diagram - Ultrasound reading 4.
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Figure 11.18: Wheelchair System: Sequence Diagram - Verify obstacle.

Figure 11.19: Wheelchair System: Composite structure diagram.
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Figure 11.20: Wheelchair System: Interaction overview diagram.
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Figure 11.21: Wheelchair System: Class diagram.
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