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We consider spin systems with competing interactions isotropic with respect to the axes of a cu-
bic lattice. A renormalization-group analysis carried to second order in e=d —4 demonstrates that
the critical behavior for the para-modulated phase transition is 2m-component-like with m =3 for a
uniaxially modulated phase and m =4 for a cubically modulated phase, in the same universality
class as the m-component spin model with uniaxial competing interactions. Each case may describe
different helical magnetic rare-earth alloys. Possible phase diagrams are proposed encompassing

such compounds.

I. INTRODUCTION

Models with competing interactions that result in
modulated phases have received much attention. Many
magnetic materials undergo a phase transition from a
paramagnetic phase to a phase with a modulated super-
structure.! This superstructure can result from a com-
petition between ferro and antiferromagnetic interac-
tions. To study this problem, Garel and Pfeuty2 used a
model where m-component spins are coupled by nearest-
neighbor ferromagnetic interactions and by next-nearest-
neighbor antiferromagnetic interactions along a fixed
direction. They found that the critical exponents belong
to the same universality class as the O(2m) Heisenberg
model, where the m =1 case is the usual ANNNI model
which describes a para-sinusoidal transition having XY-
model critical behavior, while m =2 describes a para-
planar helical transition with O(4) behavior.® Provided
cubic anisotropy could be neglected, they concluded that
the m = 2 cases have first-order transitions.

Although this analysis provides a explanation of the
presence of modulated phases, the model has some de-
fects. First, since its interactions are anisotropic, it does
not have the possibility of modulated order in more than
one direction. Indeed, in the analogous structurally
modulated phases observed in binary alloys* we would
normally expect the underlying couplings between the
structural units to be isotropic. In order to repair this de-
fect, Upton and Yeomans® introduced an Ising model
with isotropic competing interactions. Within mean-field
theory, it has a rich phase diagram with a paramagnetic
phase, a ferromagnetic phase, and many modulated
phases.’ They found that the para-ferromagnetic Ising-
like phase transition line meets a para-modulated con-
tinuous transition locus at a Lifshitz point.

In this paper we allow for fluctuations by
renormalization-group theory and show that the para-
modulated phase transition in the Upton-Yeomans model
is in the universality class of the 2m-component spin
model with cubic anisotropy between m components
where 2m =6 for uniaxially-modulated phases while
2m =8 for cubically modulated phases. The 2m-
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component model was studied previously by Mukamel
and Krinsky.® They calculated fixed points and critical
exponents to second order in the d =4 — € expansion. Us-
ing their results, we can predict the critical behavior for
the paramodulated phase transitions. Recently Dawson,
Walker, and Berera’ studied the uniaxially modulated
case by Monte Carlo simulation and suggested that the
transition would be first order. For applications to
structural systems, our analysis agrees with their results
since the physical parameters prove not to be in the
domain of attraction of the appropriate fixed point. In
addition, we demonstrate similar behavior for cubical
modulation. For applications to magnetic systems, how-
ever, we find that there is a possibility of a continuous
transition.

Another defect in the Garel and Pfeuty model is the
absence of cubic anisotropy between the m spin com-
ponents. For applications to rare-earth compounds, for
example, we should certainly allow for such a contribu-
tion since it is known that these materials are typically
cubic ferromagnets.® It turns out that the inclusion of
these terms changes the critical behavior. First, we show
that the para-modulated phase transition present in the
m-component spin model with uniaxial competing in-
teractions and easy axes along m directions is in the same
universality class as para-planar, para-uniaxial, and
para-cubic modulated phase transitions occurring in the
Ising model with isotropic competing interactions for
m =2, 3, and 4, respectively. Then, using the Mukamel
and Krinsky® results, we present critical exponents for
each case. It transpires that, owing to the cubic terms,
the m =2,3,4 systems can exhibit continuous transitions
if the physical parameters are in the domain of attraction
of the stable fixed point.

There has recently been a growing interest in helimag-
nets. It is well known® that the rare-earth metal erbium
exhibits a uniaxial modulated structure which can be de-
scribed by the XY model (2m =2). Other materials such
as Tb'®!"" Dy,'>!3 and Ho,' display a sinusoidal spin
modulation which can be described by a four-component
model (2m =4). The nature of the para-modulated phase
transition is not well known yet, since some experiments
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indicate continuous transitions,'®'>!* while others indi-

cate weak first-order transitions'""!3 for both Tb and Dy.
Furthermore, the exponents obtained'* for Ho are
different from those!®'? for Tb and Dy. We find that the
theoretical exponents agree with the experimental ones
obtained for Ho metal. We also suggest that the physical
parameters related to Tb and Dy lie outside the domain
of the stable fixed point, so yielding first-order transitions
consistent with early experiments.'"!3

Unfortunately there are no known physical examples
of the m =3,4 cases. We propose that both cases may be
realized by binary rare-earth alloys with orthogonal spin
planes and uniaxial competing interactions when the
wave vectors associated to each metal exhibit the same
value. We present possible phase diagrams for different
regions of the space of model parameters.

Besides para-modulated transitions, models with com-
peting interactions also display a para-ferromagnetic
transition when the antiferromagnetic interaction dom-
inates. Mean-field analysis of both n-component spin
models with uniaxial competing interactions and Ising
models with isotropic competing interactions indicates>>
that the para-, ferro-, and modulated phases meet at a
Lifshitz point. Now renormalization-group analysis up
to second order in €=4.5—d expansion, performed for
the n-component spin model with anisotropic competing
interactions, predicts a continuous transition at the
Lifshitz point if no cubic terms are considered. '’

Since we are interested in applications to helimagnets,
where the cubic terms can be relevant, we have included
such contributions. We find that for n * 4 and parame-
ters u >v (see below) the Lifshitz point behavior is con-
trolled by the cubic fixed point. We have computed new
exponents possibly relevant to the rare-earth compounds.
For u <v, since the stable fixed point is not achievable,
the three phases now meet at an ordinary triple point.

The study of the Lifshitz point for the isotropic case is
more complex. First, since the para-ferromagnetic tran-
sition is continuous while the para-modulated transition
is first order, one might anticipate that the supposed
“Liftshitz point” is actually a critical endpoint. But be-
cause this result is based on the assumption that the wave
vector q, associated with the modulation is not too small
we cannot be sure that this result is still valid when
q.=0. In order to understand this region we employ
renormalization-group theory up to second order in an
€=8—d expansion. We find that the usual stable fixed
point approaches the unstable Gaussian point as one
lowers d from 8. We propose that higher-order contribu-
tions might make this fixed point enter the unstable re-
gion for €=4 indicating a first-order transition. For
d =8 dimensions, where a continuous para-modulated
phase transition would be expected, a normal Lifshitz
point should be observed. Leaving this point aside one
has, as usual,!® two critical lines described by

te(p)=(TF—T,) /T, ~ App "%,
l/¢p

(1.1)

ty(P)=(TM—T,)/T, ~ Ay lp| (1.2)

where t =(T —T,)/T;. These lines are defined by the
zeros of r +pg?+q* when p >0 (in this case ¢ =0) and

MARCIA C. BARBOSA 42

p <0 (in this case ¢ =g, and g, —0), respectively. Also,
T, given by r =p =0, TF given by p >0, r=0, and TM
given by p <0, r=r, (¢ =gq_) are the critical temperatures
of the Lifshitz point and, the ferromagnetic and modulat-
ed phases, respectively. The crossover exponent is given

¢, =1+LE+0(@) . (1.3)

For the anisotropic model, Mukamel and Luban'®
showed that A/ A, is a universal quantity. Assuming
spherical symmetry within momentum space, they also
suggested that for the isotropic case no long-range order
should exist since 4,, cannot be defined. However, the
isotropic model proposed by Upton and Yeomans®> does
not have spherical symmetry owing to the presence of
two kinds of antiferromagnetic interactions. In this case,
it is possible to define A,, but we show that A;/A4,, is
then not a universal ratio.

II. THE BEHAVIOR OF MODULATED PHASES

The Ising model with isotropic competing interactions
introduced by Upton and Yeomans® may be described as
follows. Ising spins s; reside on the sites of a cubic lattice
and interact through nearest-neighbor interactions of
strength J, next-nearest-neighbor couplings along the cu-
bic axes of strength —«,J, and next-nearest-neighbor in-
teractions across the face diagonals, —«,J. On going to a
continuous-spin representation by adding a weighting
term for each spin, we obtain the effective Hamiltonian

H=—-1% s(qlu,(q)s(—q)

q
_U42 S(ql)S(qz)S(q3)S(q4)6 [2(]l ] s
| i

(2.1)
lq,
where, as usual, we have
u,(qQ)=kgT—J(q), (2.2)
and for this model,
1J(q)=J[(cosg, +cosg, +cosq,)
—«,(cos2q, +cos2q, +cos2q,)
— 2K,(cosg, cosq,, +cosg, cosq,
+cosg,cosq, )] . (2.3)

The special feature of the model is that when
1—4k,—4x, <0, the Fourier transform J(q) has maxima
at q=q,, where q. points along various special direc-
tions. For ;< $k,, q. is oriented along the x, y, or z
axes; this leads to a uniaxially modulated phase. Other-
wise, when «, > 1k,, q, points along any diagonal direc-
tion. This leads to a cubically modulated region. Explic-
itly one has
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q,=(%gq,,0,0) (uniaxially modulated)
=(0,*gq,,0)
=(0,0,%¢,.),

q.=(*gq.,*gq.,tq.) (cubic modulated)

(g, *4q., Fq.)

=(+g., +q.,%q.)

Il

(+q9.,%q.,Fq.) . (2.5)

Evidently, for the modulated phases, the fluctuations
with q close to q. will play an important role. To take
them into account, we introduce a new Brillouin zone
given by |g;| <1g, with i=x,y,z. Then, as usual,>’ we
fold the original zone into the new one by (i) dividing the
sums over q into pieces running from

L, —1g. <lg;l<1ilgq, ,

with i =x,y,z and [;=1,2, - - - ; (ii) shifting all these sums
to run from |g,| < 1q; (iii) defining new spin variables by
1 T .

s(qtq, )=‘/—E[U(l‘)(q)ita(2”(q)] i=12,...
where m is the number of possible directions of q, and we
have integrated out all noncritical modes.

After these steps, the initial Hamiltonian (2.1) maps
into a new one corresponding to a 2m-component model,
namely,

(2.6)

m ,

=—13'3 uy(q)lof(q)ai(—q)
q

i=1

+0i(q)oy(—q)]

- (i ()22
_uz 2 (0'1 +0'2 )
fq;} i=1

m .2 2 .2 52
Y'Y (0(1’) +U(2') o +o¥7),
lq,} j#1

2.7

where u =3u, and v =6u, while the sum 3’ runs over the
reduced Brillouin zone |q| < 1g. and one has

2J

ut(q=0)=1— [3k,+ 2k, +xy) 7] (2.8)

for x> 1k, (modulation along any diagonal direction
with m =4) and
2J 1 (1—di,)?

2k — 2y
kBT 1 2 8 K12

uy(q=0)=1— (2.9)

for k| <1k, (modulation along any cubic axis direction
with m =3).

For the ANNNI model (m =1), it was shown that the
disordered-modulated phase transition is XY-model-like.’®
Let us consider the following model: Ising spins with
nearest-neighbor ferromagnetic couplings J, next-
nearest-neighbor antiferromagnetic interactions along the
cubic axes in two fixed directions (x and y) of strength

6365

—«,J, and next-nearest-neighbor antiferromagnetic in-
teractions across the face diagonals in the plane (001) of
strength —«k,J. This model will display uniaxial modula-
tions along the two directions

(t¢.,0,0) and (0,%gq,,0) (2.10)
if k| < 1k,, or along the four in-plane directions
(tq.,tq.,0) and (Fgq.,*q,.,0) (2.11)

if k;>1k,. Using the same process as above, we can
show that both kinds of disorder-modulated phase transi-
tion can be described by the Hamiltonian (2.7) with
m =2. This result can be understood from the fact that
each m-component modulated phase is characterized by
an amplitude and a phase; consequently one needs 2m
scalar components for a proper description of the order.

Mukamel and Krinsky,6 studied the 2m-component
spin model using renormalization-group techniques car-
ried to second order in e=4—d. They obtained the fixed
points

u*=e€/40K,, v*=0, (2.12)
u*=e/8(m+4)K,, v*=u*, (2.13)
u*=(m—1)e/8(5m —4)K,, v*=u*/(m—1), (2.14)

where K,=(87?)"! and u=u, and v =1u; in the nota-
tion of Mukamel and Krinsky.® The first (XY like) fixed
point is stable only if v =0 (ANNNI model), the second
(symmetric) fixed point is stable for 2m <4, while the last
(asymmetric) fixed point is stable for 2m > 4 (uniaxial and
cubical modulation). The 2m =4 case has a stable asym-
metric fixed point given by®

2 2
«_ € Te «_ € €

- + ’ - - ’
48K, ' 384K, ' 48K, 384K,

u (2.15)

with K, =2"4"Vz=d2[(d /2)]7".

Now the stable fixed point are accessible only if initial
physical parameters in (2.7) satisfy u >v. Then the con-
tinuous transition for m =1, 2, 3, and 4 exhibits the criti-
cal exponents listed in Table I. However, recall that in
(2.7) we have, by computation, u =v /2 initially.

Note that the Hamiltonian (2.7) is in the same univer-
sality class as that which describes m-component magnet-
ic helical structures when modulation is imposed in one
fixed direction (the m-component spin model with aniso-

TABLE I. Critical exponents for the 2m-component model
for 2m =2, 4, 6, and 8 and d =3. The values are estimated from
second-order e=d —4 expansions (Ref. 6). Experimental data
for holmium, corresponding to 2m =4, yield =0.39+0.04
(Ref. 14).

Number of Exponents
components B v
2m =2 0.365 0.655
2m=4 0.39 0.698
2m=6 0.38 0.69
2m =38 0.352 0.686
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tropic competing interactions) and when a cubic anisotro-
py term of strength v is introduced among the m com-
ponents. In contrast to our special isotropic case, v can
now assume any initial value relative to u. This model
has been studied previously’ for m=1,2,3 and u =v.
For m =1, since v is absent, the usual XY-like behavior is
expected. This case has many physical realizations.! One
is the modulated phase present’ in erbium. The m =2
case is more complex. It can be realized in two ways ei-
ther as two-component spins displaying modulation in
one fixed direction perpendicular to the spin plane®? or
as Ising spins with competing interactions in two fixed
directions. [See (2.10) and (2.11).] In the first case, a con-
tinuous transition is to be expected when u >v; other-
wise, if u <v the renormalization-group flow diagram
shows that the stable fixed point (2.15) is not accessible
and the transition should be first order. In the second
case, our mapping leads to 2u=v [see Eq. (2.7)], the
stable fixed point (2.15) cannot be reached, and the transi-
tion in this case should also be first order. Note, other-
wise, that the critical behavior predicted by the fixed
point is the same as predicted by the unstable (but attain-
able point) (2.13); this indicates a weak first-order transi-
tion. Both models exhibit helical phases and can be used
to explain the weak first-order transition seen experimen-
tally in the rare-earth metals!""!> Tb and Dy and the con-
tinuous transition'* present in Ho.

Unfortunately, there are no known physical examples
for m =3. However, such a model might possibly be
realized experimentally in binary rare-earth alloys such
as Er, characterized by Ising spins with modulation in
one fixed direction represented by a two-component order
parameter,”? and Ho or Dy characterized by XY spins ly-
ing in one plane and modulation perpendicular to it
represented by a four-component order. The alloy might
be represented by a six-component order-parameter
(2m =6) with an anisotropy related to the difference be-
tween the wave vectors. In this way, besides a disordered
phase, this system should have a modulation along the Er
spin direction when the corresponding wave vector dom-
inates, or orthogonal to the Ho spin plane, otherwise.
When the overall anisotropy vanishes, the m =3 model
should be realized provided one can neglect the quenched
randomness in the alloy. However, it must be recognized
that taking full account of randomness complicates the
picture.!”

Note that we are considering the m-vector model with
uniaxial competing interactions, which, in contrast to the
Ising (or m =1) model with spatially isotropic competing
interactions, v has no fixed relation to u. In the absence
of cubic terms, one has u=v and the transition for
2m >4 would be first order. When we allow u+v, a
stable fixed point appears provided the physical parame-
ters satisfy u > v. In this case the transition is continuous
with exponents given in Table I. The cubic anisotropy
terms, even in the case of a first-order transition, are
relevant since they give rise to tricritical behavior: see
Figs. 1 and 2 below for details. (Note that similar phase
diagrams have been found previously for related but dis-
tinct models: see, e.g., Domany et al. and Blanckschtein
and Aharony.'®)
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The m =4 case is even more difficult to realize experi-
mentally. A possibility is an alloy of two rare-earth met-
als such as Dy and Ho. Since each element alone exhibits
modulation with spins lying in one plane and a wave vec-
tor perpendicular to it (the transition being described by
a four-component order parameter), the alloy might be
reasonably represented by an eight-component order pa-
rameter Hamiltonian (2m =8) provided the planes relat-
ed to Dy and Ho are orthogonal. In this case, Dy and
Ho spins will interact only through fourth-order terms.

One might anticipate, however, as Mukamel and Grin-
stein (as quoted in Ref. 17) concluded, that terms arising
from the randomness in the alloy will make the transition
first order when a continuous transition would, other-
wise, be realized. Note that our considerations, presented
below, suggest that the transition should be first order
even without allowance for the randomness.

Since we are considering rare-earth alloys, we should
also introduce a cubic anisotropy term that generates
easy axes. Consequently the critical behavior of such a
system should be represented by an m-component spin
(m =2,3,4) system, with Hamiltonian

! m
S 4)(@di— 3 Ay(q)e}

=1
H=—1f
i=1 i=1+1

—uffff|é¢¢+ X

i=1 i=1+1 1

—o [ [ [ ]3], (2.16)
i
where we use the notation
. dd
[=[7"4 2.17)
0 (2m)
and
A,(q)=1— 2 J(cosq, +cosq, +cosq, —kcos2q,) ,
(2.18)
Ay(q)=1— zg—y—,.lz(cosqx +cosg,, +cosq, —k,c0s2q,) ,
B

(2.19)

in which (J,,«x,J,) and (J,,k,J,) represent nearest- and
next-nearest-neighbor interactions between (¢; —¢;) with
i,j=1..., | spin components and (¢;,—¢;) with
i,j=I+1..., m spin components, respectively. The
cases / =2 and m =4 and /=1 and m =3 should de-
scribe Dy and Ho and Er and Ho alloys, respectively.

In the critical region, fluctuations with ¢,(q.) or ¢,;(g.)
dominate where

g.=cos” '(1k,;) and g ,=cos™'(ik,) .

(2.20)

In order to take these into account we apply the
Brillouin-zone folding process obtaining a 2m-component
Hamiltonian, namely,
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1 —_
Hy=—1[ | 3 (n+a*N4}+8D)

i=1

+ (ry+q*)¢*+¢2)
i=l+1

~u[ [ [ ] 3 @+drr

—uffff§(¢%+$§)(¢§.+$f), 2.21)
i#j
where
r,=r— I—L g r2=r+—£-g, (2.22)
m m
r=1—(2J/kgT)2+k—1c7"), (2.23)
g=—(20/kgT)(1—Kk"2)8, (2.24)

where we have written J, =J,, k,=k—[1—(I/m )]}, and
Kk,=k~+(l/m)6. One may reasonably suppose that both
the parameters « and 6 will depend on the temperature,
on the pressure, and on the concentration of each com-
ponent. Variations of these various quantities could thus
lead to phase diagrams similar to Figs. 1 and 2. Note
that this Hamiltonian is identical to (2.7) if r, =r, but
now the initial values of ¥ and v are not related.

In order to allow for g0, we have extended Mukamel
and Krinsky’s® analysis and this yields the crossover ex-
ponent
e+0(€?),

o=1+ (2.25)

_m
2(m +4)
when 2m < 4 for the symmetric fixed point (2.13), and

- m

=1t S om—a)

when 2m > 4 for the asymmetric fixed point (2.14). In the

case of cubic anisotropy among all 2m components, one
has ¢=1+¢€/6."

e+0(e), (2.26)

g
/ a
My
/
/
,/  paramagnetic
AN t
\
\\
M2 \b

FIG. 1. Phase diagram for u >v. M, denotes the modulated
phase associated with Ho; M, denotes the modulated phase as-
sociated with Er (2m =6) or Dy (2m =8). The critical lines (a)
and (b) meet at the bicritical point B with crossover exponent ¢
and amplitude ratio 4 ~/ A4 *. (See Table II for values.)
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FIG. 2. Phase diagram for u <v. As in Fig. 1, M| denotes
the modulated phase associated with Ho (21 =4), while M, la-
bels the modulated phase appropriate for Er (2m =6) or Dy
(2m =8). The critical lines (a) and (b) meet the first-order loci
at the tricritical points ( gF,t7F), labeled TCP.

Since u and v are not related initially, we can consider
v>u. Then if g <O the system orders along the Ho spin
components with O(2/)—(/=2) critical behavior
through a continuous transition with exponents given in
Table I. When g <0, the system orders in the Dy plane
through a O(2(m —1))—(m —I1=2) continuous transi-
tion. At g =0, these two critical lines meet at a bicritical
point, near which one has

g.~+AT[t|% gso0, 2.27)
where to first order in e=4—d expansion one has'®
A=/4T=[1/tm—=D)°, (2.28)

where ¢ is given by (2.26).

In order to understand the influence of the cubic term,
we compare our results for 2m =6,8 where we have con-
sidered cubic anisotropy within m components with
known values for 2m =2,3,4 calculated without a cubic
term, since for 2m >4 the symmetrical fixed point is the
stable one. See Table II.

For v > u, since the stable fixed point (2.14) cannot be
attained, the transition for g =0 is first order. However,
for g sufficiently positive or negative we can still find two
critical lines as illustrated in Fig. 2. These will meet the
first-order loci at tricritical points specified by

g =tAF|t|?, (2.29)

where ¢ is given by (2.25). In order to calculate 4,5, we
have to consider the 2/[2(m —I)]-component Hamiltoni-
an

Ha==1[(rq+q)3 ($1+4;2)

—ug[ [ [ [Z(42+8777, (2.30)
where rg~r, for g >0and rz~r, for g <0, and
uUg=u(l)—8K,vX(Dn(2In2—1) , (2.31)

in which n =m —Ifor g >0and n =/ for g <O.
This form of Hamiltonian is obtained from (2.21) by in-
tegrating out the noncritical fields i S/ for gS0. Owing to
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TABLE II. Universal amplitude ratios and crossover exponents ¢ (u =v) and ¢ (u7v) for 2m =2, 3,

4,6,and 8 and d =3.

Number of

components A~ /47 é é

2 1? 1.18+0.02°

(Ising + Ising) 1.2

3 2.34+0.08° 1.25+0.02°

(Ising+XY) 2.416° 1.272

4 1€ 1.332 1.167°¢
(XY +XY)

6 2.198¢ 1.214° 1.136°
[XY +0(4)]

8 1€ 1.25% 1.125°¢
[0(4)+0(@)]

*The values were obtained from the € expansion without cubic terms (Ref. 20).
®The values are derived from the high-temperature series (Ref. 19).
“The values were estimated from a first-order € expansion including cubic anisotropy.

the cubic term, u .4 can become zero even if u >0. Using
this condition together with r.;=0 and standard
recursion-relation procedures, we obtain the universal
amplitude ratio

A7 /A =[m/(m =] em/2Am ) (2.32)

For 2m =6,8 and €=1, we find A,_/A,+21.72,1, re-
spectively.

For u =v, there is no stable fixed point when 2m = 4.
In this case the transition should be first order.

It should be stressed that even though qualitatively
similar to the bicritical and tricritical behavior obtained
when cubic anisotropy is allowed among 2m com-
ponents,18 our model lies, in fact, in a different universali-
ty class.

III. THE LIFSHITZ-REGION BEHAVIOR

Besides modulated and disordered phases, models with
competing interaction models typically also exhibit a fer-
romagnetic phase. If the para-ferromagnetic and para-
modulated phase transitions are continuous, these three
phases meet at a Lifshitz point.!* In this section we study
this region for the different models considered above.

Consider first the n-vector model with a cubic term
and uniaxially competing interactions. For n <4, the
para-ferromagnetic transition is continuous, as is well
known, and so is the para-modulated transition if u > v,
as we just saw. This leads to a Lifshitz point. In order to
obtain the behavior in this region we must analyze the
Hamiltonian (2.16) with m =1=n, 4,(qg)= A4,(q), and

d
A,(q)5r+pq%+zqf3+q§' , (3.1)
B=2
that generalizes the Hornreich case!> by allowing a cubic
term. Since, in the vicinity of the Lifshitz point, the
order-parameter fluctuations are dominated by the term
g%, the upper critical dimension must be d.=4.5. In or-
der to understand the influence of the cubic term, we

have derived new recursion relations to second order in
€=4.5—d. We obtain, besides the symmetric and Gauss-
ian Lifshitz fixed points,'® the Ising-Lifshitz fixed point

u*=e/9K, v*=0 with K=T(1)/(2m)%"* (3.2)
and the cubic-Lifshitz fixed point
u*=(n—1)/9nK, v*=e/3nk . (3.3)

Examination reveals that for n <4 the symmetric fixed
point is the stable one; otherwise the cubic fixed point
controls the behavior. In that case, we find the new
Lifshitz exponents

1 (n—1)

=— +2)e2+ -,
n 108 5 (n+2)e

v=1[1+3n—le/n+---17,

7(n+2)n—1)
216n2

(3.4)

Bk.Z_v/(ﬁp:%-*‘ e+,

that differ from usual cubic ones, in order € by more than
a shift in € and a rescaling.?"??> The negative sign of 7 is
also characteristic of a Lifshitz point.

The Ising model with isotropic competing interactions
displays quite different behavior. The para-ferromagnetic
transition is continuous (Ising-like) but the paramagnetic
to (cubic or uniaxial) modulated phase transitions are first
order. Since this last result is due to fluctuations for
d <4 dimensions and since the Brillouin-zone folding
process does not work near q=0, it is interesting to in-
vestigate the situation in more detail. To this end we ex-
pand (2.3) around q =0 and redefine the spin variables ap-
propriately which yields the Hamiltonian (2.16) with
m =[=1 and

d
4,(Q)=r+pg*+(g*’+s3 g},

i=1

(3.5)

where
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r=20kyT—6(1—k;—2k,)1/x,, T=T/J,

p=2(1—4Kk,—4K,) /x, , (3.6)

S=2K1/K2'—1 .

Mean-field analysis of this Hamiltonian indicates that
for p <0 the ferromagnetic phase is unstable against a
modulated phase. For s <0, there is modulation along
three axial directions (uniaxial modulated phases) but for
s >0 along four diagonal directions (cubically modulated
phases). In this approximation, the order-disorder transi-
tions are continuous and there is a Lifshitz point.

In order to include fluctuations, Hornreich, Luban,
and Shtrikman,'’ using the renormalization group to first
order in €=8—d, found p*=0, u*=€/36K,, and also
the critical exponents ¢, given by (1.3) and v=]+&/48.
Note that owing to the isotropy in momentum space, one
has s =0 in their analysis. In addition, Mukamel and Lu-
ban'® showed that, in this case, the susceptibility y(g) for
p <0 apparently vanishes or cannot be defined, which
they argue suggests that no long-range helical order ex-
ists. Here we specifically allow s#0 and have extended
their analysis finding a stable fixed point with s*=0.
Neat this fixed point we obtain (As) =b /% As where b
is the rescaling factor associated with momentum space
with n=—¢"2/180 and ¢,/¢,=7n. Since ¢, <0 and
#,>0 one can say that s is an irrelevant variable. We
will show, however, that it is actually a “dangerous ir-
relevant variable”? so that it cannot be neglected even
asymptotically close to multicriticality.

The singular part of the susceptibility, in the region
around the Lifshitz point, can be written as

y=lpl X F | — e L — |,
ol 1pl™% " 1pl* 7

3.7

where t=(T —T,)/T, (at p=0), and the functions X ~
and X refer to p <0 and p >0, respectively. Now, the
upper critical dimension for the para-ferromagnetic tran-
sition is only d, =4 but we will calculate only d =8 —& di-
mensions: thus the susceptibility for p >0 will diverge
linearly on a locus T (p) defined by (X *)~!'=0, which
we find leads explicitly to

t/p %+ 4, (=0, (3.8)
wheret, =[T,(p)—T,)/T,; and
AP =1eIn2—1—1y(In2+1)] (3.9)

with y=s/ !p|¢’/¢". Likewise for p <0 one encounters
the para-modulated phase transition and the susceptibili-
ty will diverge linearly on a locus T _(p,s) defined by
(x )~ 1=0 which, upon calculation, is given by

(t/p" ")+ 1(s /p* ) —1— 4 _(y)=0

(p,s)—T.1/T; and
A_(y)=le+Lelnd—Ly & (1—1y)I

16

(3.10)
wheret_ =[T_

(3.11)

-t =/ S|
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(3.12)

i=1

and where ) denotes a solid angle.

Note that in the spatially isotropic case, one has s =0
and the function X~ then vanishes identically indicating,
following Mukamel and Luban,'® that no long-range
modulated phase persists. As we allow s =0, however,
T(p,s) is defined for p =0. In this sense, we argue that
the contribution of y to A4 _, even being apparently ir-
relevant, makes a para-modulated phase transition possi-
ble. We may anticipate also that the ratio 4, /A4 _ will
be a universal function of y; however, since we may not
actually set y0, noting the divergence in 4 _(y), the ra-
tio 4, /A _ will not take a universal value, for given
values of s and p. This is in agreement with the general
surmise that this sort of ratio need not be universal when
many perturbations leading to different types of critical
behavior are present.?*

This analysis for €=8 —d << 1 cannot reveal the weak
first-order disorder-modulated phase transition arising
from fluctuations which is expected below d. =4 dimen-
sions. In order to understand what happens, even quali-
tatively, when d is lowered from eight dimensions one has
to look at higher orders in the € expansion. We have
found that the leading higher-order term gives a negative
contribution to the value of u at the stable fixed point,
suggesting that a first-order transition may arise for
larger € For this reason we believe that the Lifshitz
point should, in fact, become a critical endpoint in di-
mensions d <4.

IV. SUMMARY

For applications to binary alloys and helimagnets, we
have studied two models with competing interactions: Is-
ing spins with spatially isotropic competing interactions
and n-component spins with anisotropic competing in-
teractions. We showed first that the paramagnetic-to-
planar, or to uniaxial, or to cubic-modulated phase tran-
sition present in the first model lies in the same universal-
ity class as the para-modulated transition ( for which the
wave vector is unique) present in the second model when
the number of spin components is n =2, 3, or 4, respec-
tively. The Ising-spin model displays first-order transi-
tions; the second model can have continuous transitions.
This result may explain why some helimagnets exhibit
first-order transitions while others do not. We have also
proposed phase diagrams encompassing such compounds.

In order to understand how the first order or continu-
ous transitions meet the para-ferromagnetic transition
locus, we studied the Lifshitz region. For a continuous
transition we calculated new Lifshitz point exponents for
the anisotropic n-component spin model; for the isotropic
Ising model it was suggested that the supposed Lifshitz
point in d <4 dimensions should actually become a criti-
cal end point.
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