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We consider a spin system with competing interactions that are isotropic with respect to the axes 
of a cubic lattice. In the mean-field approximation the model supports paramagnetic, ferromagnetic, 
and modulated phases separated by a Lifshitz point. The character of this point is investigated in the 
presence of fl.uctuations. Using a standard diagrammatic formalism, we find that the paramodulated 
phase transition should be fi.rst order and that the Lifshitz point should be a criticai endpoint. 

a. Introduction. Modeis with competing interactions 
that resuit in moduiated phases have received consider­
able attention recently. Such phases are present in binary 
alloys, ferrimagnets, copoiymers, and microemulsions. 1 

These superstructures can result from competition be­
tween ferromagnetic and antiferromagnetic interactions. 
To study this problem, Upton and Yeomans2 introduced 
an Ising modei with isotropic competing interactions that 
is described as follows: the Ising spins on a cubic Iattice 
have first-neighbor ferromagnetic interactions J, next­
neighbor antiferromagnetic interactions along the cubic 
axes tt1J, and antiferromagnetic interactions along the 
face diagonais K2J. On going to a continuous-spin rep­
resentation by adding a weighting term for each spin, we 
obtain the following Hamiltonian: 

H = ~ l u2rp( q)rp( -q) 

~! u4 f f f r/J(ql)rp(q2)r/J(qa)r/J( -ql- q2- qa), (1) 

where u4 is a weighting parameter and where 

u2 = kBT- J(q), 

and, in this modei, 

~J(q) = J[ cosqx + cosqy + cosqz 

-Kl (cos 2qx + cos 2qy + cos 2qz) 

-2K2(cosq:r; cosqy + cosq:r; cosqz 

(2) 

+cosqycosqz)]. (3) 

Note that when 1-4Kl -4K2 <O, J(q) has a maximum 
at q = qc. This wave vector for K1 < tt2/2 is given by 

(4) 

and it is oriented aiong the x, y or z directions. For 
K1 > K2/2, it is oriented aiong one of the diagonais and 
is given by 

cosqc = 1/(4ttl + 4tt2)· (5) 

At tt1 = K2/2, the wave vector can assume any possible 
direction provided 

cosqx +cosqy +cosqz = 1/4ttl· (6) 

In this sense, one might note that as opposed to the axial 
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next-nearest-neighbor Ising (ANNNI) modei,3 qc is not 
restricted to a unique direction. 

Mean-fieid studies of this modei indicate that 
both paramagnetic-ferromagnetic and paramagnetic­
moduiated phase transitions are continuous and meet the 
ferromagnetic-modulated first-order transition as qc --+ O 
at a Lifshitz point. 2 

Renormalization-group analysis carried out to a 
second-order expansion in e = 4 - d demonstrates that 
the paramagnetic-moduiated phase transition is first or­
der for both K1 > K2/2 and K1 < K2/2, since the initiai 
conditions lie out of the domain of attraction of the sta­
ble fixed point.4•5 Unfortunately, this result is based on 
a foiding process of the original Brillouin zone in a new 
one given by lqil < qc/2, which is not validas one aliows 
qc --+ O, 6 and consequently is not valid as one approaches 
the Lifshitz point. 

Then, in order to include fl.uctuations properly in this 
region, following Hornreich, Luban, and Shtrikman work 
(they have studied the tt1 = tt2/2 case),7 we applied 
a renormalization-group expansion in € = 8 - d (as 
qc --+ O, the bare upper criticai dimension is d+ = 8), 
and we found that the same fixed point obtained for 
the K1 = tt2/2 case can be used for the K1 f. tt2/2 
case. This characterizes an isotropic Lifshitz point of 
Ising type. However, since in this case d ~ 8, the anal­
ysis based on € < < 1 cannot reveal the weak first-order 
disordered-modulated phase transition arising from fl.uc­
tuations, which is expected below de = 4, that is, below 
the Iower criticai dimension of the € theory.4•5 

Given the inconclusiviness associated with this resuit, 
Levin and Dawson5 proposed that the three phases meet 
at a point in the universality class of a 2n model with 
n = 7 for the tt1 > K2/2 case, assuming that qc f. O. The 
problem with this analysis is that it has no controi in the 
initial conditions and one cannot ensure that the initial 
parameters are not out of the domain of attraction of a 
stable fixed point. 5 

One might also point out that extensive Monte Carlo 
simuiations have been carried out, indicating a clear 
Ising-like disordered ferromagnetic anda weak first-order 
disordered-modulated phase transition, but in the region 
between these limits the results are inconclusive. 8 In this 
sense, one can see that the character of the Lifshitz point 
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region is still an open question. 
One can also ask about the line K1 = K2/2 that was left 

aside in the previous analysis. In this limit, the model 
can be mapped into a lattice model for microemulsion, 
which has been receiving much attention recently.9 In this 
case, there are an infinite number of criticai modes given 
by Eq. (6) and consequently, one cannot use the fold­
ing without generating overlaps between them. In this 
sense, the K1 = K2/2 line must be investigated by other 
means. One might also point out that, in this special 
case, as one approaches the Lifshitz point region, even 
results in the € = 8- d expansion are not conclusive.4•10 

Besides, Monte Carlo simulations in d = 3 dimensions 
are contradictory.11•12 

In this note we fix K1 = K2/2, the so-called microemul­
sion limit, and we analyze the paramagnetic-modulated 
phase transition assuming qc « 1 in d = 3 dimensions. 

H= H1(([>) + H1(t/J) + H2, 

We employ a diagrammatic method, and we control di­
vergences by a Hartree approximation. 13 With this strat­
egy, we compute the equation of state, as well as the free 
energy of each phase and compare them. 

b. Equation of state and free energy. In this section 
we fix K1 = K2/2 and analyze the phases and transitions 
between them by including fluctuations. In order to do 
so, we compute the equation of state and the thermody­
namic potential. 

Following previous mean-field analyses,2 we already 
know that three phases, i. e., disordered, ferromagnetic, 
and modulated phases, are present. In this case, in order 
to study the effect of fluctuations on the paramagnetic­
modulated phase transition, one may rescale rp by a fac­
tor {2K1J)112 and write rp = ([> + t/J with (r/>) = ([>, where 
( · · ·) means, as usual, the thermal average. Then, the 
Hamiltonian, Eq. (1), will be given by 

{7) 

H1(t/J) =i ~[ro + (q2 - q~)2]t/J(q)t/J(-q) + ~1 uo f f f t/J(q1)t/J(q2)t/J(qa)t/J(-q1- q2- qa), (8) 

H2 =i [ro + (q2 - q~) 2]t/J(q)(i>( -q) +~o f f f [ t/J(ql)t/J(q2)t/J(qa)(i>( -q1 - q2- qa) 

3 - -
+2t/J(q1)tP(~)cf>(qa)cf>( -q1 - ~- qa) 

+t/J(q1)(i>(q2)(i>(qa)i>(-q1-~- qa)J, (9) 

where, assuming that the wave vector qc is small, we 
rewrite from Eq. (2) as 

ro = [kBT/J- 6(1- 5K1))/K1- [(1-12K1)/4K1]2 (10) 

and the coupling u4 as 

Uo = U4/(2K1J)1f 2. 

Now, the equation of state can be determined from 

hq = 8F((i>)j8([> = (8H((i>,t/J)f8([>), 

and it is given by 

h(q) = [ro + (q2- q~)2](J>(q) 

+~Uo f f ([>( q1)([>( q2)([>( -q- q1 - ~) 
}ql }q2 

+~uo f 1 (t/J(q1)tP(~))(i>( -q- q1 - q2) 
}ql q2 

(11) 

{12) 

+~uo f f (t/J(ql)t/J(q2)tP( -q- q1- ~)). {13) 
}ql Jq2 

Now, in order to study the equation of state in 
Eq. (13), we have to compute (t/J(q1)t/J(q2)), as well as 
(t/J(q1)t/J(q2)t/J( -q- q1 - ~)) to all orders in a loop ex­
pansion. This would be an impossible task, if we had 
to include all diagrams. Fortunately, as we will show 
next, we can eliminate most of them by simply assum­
ing that the wave vector qc is small but not zero. Let 
us begin by computing the two points correlation func­
tion (t/J(q)t/J( -q)). First, for simplicity, let us look at the 

diagonal elements. To one loop order, one has 

(t/J(q)t/J( -q)) -1 = [ro + (q2 _ q~)2] 

1 1 d3q1 +-uo 
2 ql [ro + (q~ - q~)2]. 

(14) 

Since the minimum of the propagator is attained at a 
surface lql = qc, the most significant contribution to the 
integral comes from this region. Then, using a standard 
harmonic approximation, one has 

=uo f [ 4 ~~q1 )2] +0 (u~) }ql ro + qc q1 - qc qc 

= uoqc/47rr~12 +O (uofq~), (15) 

where we assume that 

ro << q~. (16) 

This condition makes it possible to confine the problem 
to the region close to q = qc and still perform the calcula­
tions analytically. Obviously more complicated skeleton 
diagrams or diagrams with ladder loops may also con­
tribute as we consider higher orders in the loop expan­
sion in Eq. (14). These terms can appear in two forms: 
with and without externai momentum dependence. In 
the first case, one has to add to Eq. (14) terms of the 
form 
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Assuming now that ( we will return to this point later) 

(18) 

the expression in Eq. (17) will exhibit relative arder 

r612 fq~ << 1 when compared with Eq. (15) if we as­
sume the approximation in Eq. (16). From this one can 
readily note that more complicated diagrams of n- 1 
loops have relative arder (ufqcro)n when compared with 
Eq. (15). Then, using Eq. (18) and Eq. (16), all these 
terms that depend on externai momentum will be small 
when compared with last term in Eq. (14). Besides this 
small contribution, one also has a channel of terms with­
out externai momentum dependence given, for example, 
by 21 d3q2 f d3ql 
uo q2 [ro + (q~- q;) 2] 2{ro + [q?- q~J2}2 

where li represents "a bubble" diagram with no externai 
momentum. Equation (19), in spite of the fact of being a 
two-loop order term, if one uses Eq. (18), exhibits relative 
arder 0(1) when compared with Eq. (15). One can easily 
verify that this sort of important contribution will appear 

higher orders in the loop expansion will exhibit diagrams, 
where the propagators being integrated simultaneouly 
depend on the externai momenta and consequently do 
not coincide. In that case, we obtain, by using Eq. (18), 
that these terms will be O(rofqc) when compared with 
the zero-loop contribution, and consequently they will 
be negligible. Next, in order to complete the equation 
of state, the computation of (1/J(ql)1/J(q2)1/J(qa)) is also 
needed. Using a similar analysis, we can see that the last 
term in Eq. (13) also depends on externai momentum 
and is also small. 

Finally, we have found, although using a different ini­
tial propagator, that the model we are considering here 
has an equation of state with the same form as Bra­
zovskii's equation, 13 namely, 

h(q) = r(qc)Cfi(q) + ~u f f (fi(ql){fi(q2){fi(q- Ql - Q2) 

-~f {fi(ql){fi(-qt){fi(q), (23} 

where 

r= r1 +~f {fi(qt)(fi( -qi). (24) 

Now, having completed Eq. (13}, we can study 
the paramagnetic-modulated phase transition properly. 

(17) 

in all orders in loop expansion in powers of u01I and must 
then be included. Since they do not have any externai 
momentum dependence, we can take care of these terms 
by redefining the coupling uo as 

u = uo((l - uoii)/(1 + uoii)], (20) 

where fi= 1/(1 + uoii) represents a sum of this series of 
li diagrams specified by Eq. (19). 

Now we can understand the assumption Eq. {18). First 
note that we shall be interested in the region in which u 
becomes negative, i.e., the region where uoii "' 1, since 
a negative coupling introduces infl.ections in the free en­
ergy. Then a nonzero (fi can exist where otherwise only a 
disordered phase should be present. 

One can observe that up to this moment in arder to 
construct an equation of state with fl.uctuations taken 
into account we have only needed a renormalization in 
the coupling, and from Eqs. (14) and (15) a definition of 
a new paramenter, namely, 

(21) 

Now let us return to the complete form of the cor­
relation function {'!/J(q1)1/J(q2)) for Ql =f. Q2· Even if, in 
principie, one must also include off-diagonal elements to 
all orders, one can easily see that given that 

(22} 

First, let us introduce an explicit form for (fi given by 

{fi(r) = 2acos(qc ·r). (25) 

It is not difficult to show that this unidimensional 
structure should be a good choice since a nonunidimen­
sional structure is unstable.13 One can note that the main 
feature of Eq. (25} is that, as opposed to the ANNNI case 
(in the uniaxial models one can use a two-order param­
eter theory, since we need an amplitude and a unique 
phase),3 we have here a unidirectional structure where 
the wave vector qc can assume any fixed direction. Here, 
we need an amplitude a and multiple choices of phases. 

Then, with the specification of (fi given by Eq. (25), we 
can analyze the equation of state. Note that the expres­
sion for h(qc) given by Eq. (23) with Eq. (25), namely, 

(26) 

besides the usual disordered phase a = O solution, also 
exhibits an a =f. O solution given by 

a=(2r/u) 1/ 2 • (27) 

Assuming h= O, from Eqs. (26) and (24), one finds that 

(28) 

which has two real solutions for r if -ro > 
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3(uqc/161l")213.13 These solutions (one ofthem is a maxi­
mum and the other one is a minimum) become identicai 
for -ro = 3(uqc/161l")213, where r = -ro/3. For lower 
values of -ro only the a = O solution persista. Now, 
one has to compare the energies of the a = O and a =f O 
phases. The free energy of the modulated phase differs 
from the free energy for the disordered phase by 

ll.F = t'" 2hdã = 1r 2h dda dr 
lo rl r 

= -rU2u- r~12 j81r- r 2 f2u + r 112 /81!". 
(29) 

If one anaiyzes Eq. (29) together with Eq.(24) and 
Eq. {21), it is not difficult to verify that ll.F will be 
negative, when -ro > 2(uqc/81r)213 and, consequently, 
at -ro ~ 2(uqcf811")213, one has a first-order transition 
from a disordered to a modulated phase. 

c. Summary. In this paper, we have studied the 
paramagnetic-modulated phase transition present in the 
Ising model with isotropic competing interactions. This 
model exhibits incommensurate phases with wave vector 
q = qc pointing in any fixed but not specific direction 
provided Kt = K2/2. The relevance of fluctuations in 
such kinds of systems could have been conjectured, since 
the previously studied cases K1 > K2/2 and K1 < K2/2 
exhibit first-order transition induced by fluctuations ef­
fects. 

In order to verify this, we introduced fluctuations in 
d = 3 dimensione. We applied a diagrammatic expan­
sion where most of the diagrama were considered small 
assuming qc is not too smail. In that case, we showed 
that the transition is first order. This result is in agree­
ment with the more general case proposed in Ref. 14. 

From this, one can see that, at least in d = 3, fluc­
tuations change the mean-field result which indicates a 
continuous transition. Now one can understand the pre­
vious anaiysis where Mukamel and Luban, using usual 
d = 8 - f expansion to study the vicinity of the isotropic 
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Lifshitz point, could not define a susceptibility related to 
a continuous disordered modulated phase transition.10 
From our point of view, this result indicates that even in 
d ~ 8 dimensione the disordered-modulated phase con­
tinuous transition is not stable, and this transition should 
be first order. 

One can, otherwise, argue that our approximation is 
not valid at the Lifshitz point where qc = O and, conse­
quently, we could not say that the disordered-modulated 
phase transition should stay first order even when qc = O. 
However, we would like to point out that the condition 
Eq. (16) ailows us to reach regions in the dose vicinity 
of the Lifshitz point, and even there we find no indica­
tion of a continuous transition. In this sense, we might 
well say that the so-called Lifshitz point could be a triple 
point (the point where three first-order lines meet) if 
the paramagnetic-ferromagnetic transition is also first­
order or a criticai endpoint (the region where a criticai 
line ends in a first-order line), otherwise. Resulta from 
Hornreich, Luban, and Shtrikman indicate that even near 
the so-called Lifshitz-point regime the paramagnetic­
ferromagnetic transition is still continuous and, in that 
sense, one cannot have a triple point. 7 Then, we can sug­
gest that it should be a reasonable guess that the mi­
croemulsions model exhibits a first-order paramagnetic­
modulated phase transition that meets the continuous 
paramagnetic-ferromagnetic transition at an endpoint. 

One still has to understand how this changes if one 
ailows K1 =f K2/2 at the Lifshitz point. Naturally it is 
possible to guess that no drastic change will occur and 
that the endpoint is still there. 
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