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It is shown that mean-field theory fails to give a correct qualitative picture of the thermo­
dynamic behavior of the q-state Potts model when the exchange interaction is anisotropic in spin 
space. The correct picture is recovered either by introducing a single-particle anisotropy or by 
taking correlations into account via a Bethe-Peierls approximation. This analysis helps the inter­
pretation of previous renormalization-group results for asymmetric Potts models. 

I. INTRODUCfiON 

The Potts model 1 of a ferromagnet has been extensively 
studied 2 either in its original lattice formulation or in the 
continuum version 3- 6 as a Euclidean f{J 3 field theory. Ex­
tensions of the model have also been introduced 7- 9 that al­
low for anisotropy in spin space. These are used, for ex­
ample, to describe structural phase transitions in 
perovskites. 7•8 

In a recent paper, Barbosa, Gusmão, and Theumann9 

discussed the phase transitions in the continuum version of 
the q-state Potts model with symmetry breaking, using a 
form of the renormalization group (RG) suitable for 
studying the crossover behavior when some components of 
the order-parameter field remain massive through the 
transitiono 10 

The purpose of this work is to complement the analysis 
of Ref. 9, where the interpretation of the RG results was 
based on a mean-field theory (MFT) which, as I shall dis­
cuss below, is not appropriate for the anisotropic case. In 
particular, the MFT predicts the existence of a disordered 
phase with zero magnetization even when the exchange 
anisotropy favors only one of the q states against ali the 
otherso The existence of such a phase is obviously not ex­
pected on physical groundso This failure can be explained 
by the fact that an asymmetry in the exchange interaction 
manifests itself through correlations, which are neglected 
in MFTo lndeed, when a single-particle (crystal-field) an­
isotropy is introduced (Seco 111) it appears as an effective 
magnetic field in the Landau free energy and, consequent­
ly, the disordered phase is not present. I also show that in 
the case of purely exchange asymmetry the introduction 
of correlations through a simple Bethe-Peierls approxima­
tion 11 (Seco IV) results in the absence of a disordered 
phase. This precludes a paramagnetic-to-ferromagnetic 
second-order phase transition, although a first-order tran­
sition between a weakly and a strongly magnetized phase 
is not ruled outo 8 It also explains the absence of a non­
trivial fixed point of the RG for this case, 9 since the 
mean-field minimum at zero-order parameter, around 

which the perturbation expansion is performed, is no 
longer a minimum when the asymmetric interaction is 
taken into accounto 

A controversial point concerning the continuation of the 
results for small noninteger q that is important to under­
stand the role of the RG fixed point and criticai exponents 
is also addressed (Seco V). 

11. THE MODEL AND RG RESULTS 

The Hamiltonian of the q-state Potts model in a lattice 
with only nearest-neighbor interactions is usually 2 written 
as 

H = - J L 8"1"J ' (l) 
(ij) 

where 8u1u1 is the Kronecker 8 function, (ij) denotes a pair 
of nearest-neighbor sites, and the o/s can assume q 
different values. The relationship between this model and 
the Ising or Heisenberg models can be made explicit by 
writing down a spin Hamiltonian for it, namely, 

H- -J}2S;·S1 , (2) 
(ij) 

where the "spins" S; can be in any one of the q states de­
scribed by the position vectors e, (r = 1, .. o , q) of the ver­
tices of a hypertetrahedron in n =q -1 dimensionso 3•4 

Apart from a constant shift in energy, (I) and (2) share 
the sample spectrumo 

The second form of the Potts-model Hamiltonian is 
more suitable for the introduction of anisotropyo The gen­
eralized or asymmetric 12 Potts model is defined by 

n 
H- -'L L lasrsj, (3) 

(ij)a-1 

where the la's can assume different values for each com­
ponent o f the spins. The continuum version of this model 9 

is described by the Landau-Ginzburg-Wilson Hamiltoni-
an 

-'H=~ }2jdt(k 2 +mi}rpa(k)rpa(-k)- ;, L UaflrDaflrfdtdk'rpa(lr.)rppOr.')rp1(-k-k')+O(rp 4 ), (4) 
a o ~Ar 

where the tensorial coefficients Daflr are defined in terms of the components of the vectors e, as Daflr -l:, eJ.'e!eJ. 
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I will be interested in the case of uniaxial anisotropy. 
The vectors e, will be chosen in a particular arrangement4 

so that one of them, say e~o lies entirely on the symmetry 
axis. lt is easier to visualize in the four-state model, in 
which these vectors define a tetrahedron in three­
dimensional space. Then e 1 is the position vector of the 
upper vertex, lying entirely on the z axis (here chosen to 
be the symmetry axis), while e2, e3, and e4 define the basis 
vertices and have nonzero projections on the xy plane. lt 
is clear that an anisotropy that favors alignment of the 
spins parallel to the symmetry axis will favor e 1 against ali 
the other states. Following the notation of Ref. 9, I call 
this "longitudinal ordering," in contrast to "transverse or­
dering" when the preference is for alignment perpendicu­
lar to the symmetry axis, thus favoring the q -I states 
with nonzero transverse components. 

The RG treatment of this model, within an E expansion 
for d -6- E dimensions, has been developed with consid­
erable detail in Ref. 9. I will only state here the results I 
wish to discuss. 

(i) For longitudinal ordering, no stable fixed point has 
been found. In the study of the crossover under variation 
of the mass of the noncritical transverse components, 10 

the fixed point was seen to run away from the symmetric 
value, without crossing over to a finite limit. 

(ii) For transverse ordering, variation of the longitudi­
nal mass showed a crossover from the symmetric fixed 
point to a nontrivial stable fixed point with both the trans­
verse coupling constant and the criticai exponents identi­
cal to the symmetric case for q -I states. 

I will discuss these results in Sec. V. I turn next to the 
mean-field analysis to show its deficiency in dealing with 
an interaction asymmetry. Failure to notice this can 
mislead an interpretation of the RG results based on 
MFT. 

111. MEAN-FIELD THEORY 

will start by rewriting the Hamiltonian (3) for the 
case of uniaxial symmetry, introducing in addition a 
single-particle anisotropy term: 

H--L [J1SiS]+h Í, srsj] -DL(S/> 2 • (5) 
(ij) a-2 i 

I will consider J 1 >h and D > O, both conditions favor­
ing longitudinal ordering. Thus, S/ is expected to develop 
a nonzero average value that I will call Q. The corre­
sponding mean-field Hamiltonian is then 

HMF-!NzJIQ 2 -zJIQLS;1-DL(S/> 2 , (6) 

where N is the total number of spins and z is the coordina­
tion number. lt can be seen that there is no information 
about the transverse coupling in this mean-field Hamil­
tonian, which for D =O would be exactly the same as in 
the symmetric case J 1 = J 2· 

Defining Ka-f3zJa and g-{3D, where {3-I/kaT, the 
free energy per particle, 

f =f3FMF =-...!_lnZMF==-...!_lnTre-pHMF (7) 
N N N ' 

is given by 

f= t K1Q 2 -lnLexp[KIQe,l + g(e,l ) 2] (8) 

To evaluate the last sum I will use the following represen­
tation4 for the vectors e,: 

(9) 

where the normalization was chosen so that each vector 
h as magnitude q - I == n. With this 

f= !KIQ 2 -ln(enK,Q+n 2g+ne -K,Q+g) . (lO) 

In order to write it in the form of a Landau free energy 
the logarithm must be expanded in powers of Q. I will 
also consider the small-anisotropy limit, keeping only 
terms up to first order in g. The result, dropping additive 
constants and neglecting terms of O(Q 5 ), is 13 

where 

h = n (n - I ) K 1g , 

r==Kdi-nK1[I+(n 2 -n+I)g]}, 

w==n(n-I)K[[I+(n 2 -3n+I)g], 

u=n(4n-n 2 -I)Kf 

- n (n 4 - II n 3 + I5 n 2 - II n + I ) K t g 

( II) 

(12) 

Equations ( II) and ( I2) show that the single-particle an­
isotropy introduces an effective magnetic field in the Lan­
dau free energy, thus eliminating the disordered phase. 
The field term consistently disappears (together with the 
cu bic term) in the Ising case n == 1. 

From a physical point of view, the qualitative picture 
should be the same for both single-particle and interaction 
anisotropy. Nevertheless, as we have just seen, MFT does 
differentiate between the two. Although providing a 
correct (qualitative) description of the single-particle 
case, it completely fails to account for interaction asym­
metry. 

IV. BETHE-PEIERLS APPROXIMATION 

I now turn to a Bethe-Peierls approximation, 11 which 
does not neglect correlations, to see if the effect of purely 
interaction anisotropy is noticeable. In the longitudinal 
ordering case it should yield the absence of a disordered 
phase. 

The Bethe-Peierls Hamiltonian for a cluster with a cen­
tral spin So and z nearest neighbors is written as 

z [ n ) z -{3Hop==;"f1 K1SdS/+K2a~/8Sf' +ho;"f1S/+hSd, 

( 13) 
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where h is an applied field (to be set to zero later) and h 0 is the effective field on the externai spins of the cluster. The 
spontaneous magnetization on sites O and i are, respectively, mo-Z 8P1 (âZ sp/âh) I h -o and m; ""'(1/z )Z BJ>1 
x (âZ sp/âho) I h - 0, where Z BP -Tre -tJHBP is the partition function. The effective field h ois determined through the con­
sistency condition mo= m;. 

In order to avoid excessively complicated expressions I will restrict the analysis to the three-state Potts model. The re-
sulting equations for the two magnetizations are then 

1 z ( 2(ho+2Kt>+ 2 -<ho+2Kt))z ( 2(h0 -K1)+ 2 h(3K ) -(h0 -K1))z 
2 spmo == e e - e cos 2 e , 
I z -( 2(ho+2Kt>+ 2 -<ho+2Kt))z-1(2 2(h 0 +2K1) -(h0 +2K1)) 
2 spm; - e e e -e 04) 

+ 2[e2(ho-Kt> + 2cosh(3K2)e -<ho-Kt>p-l[e 2(ho-Kt> -cosh(3K2)e -<ho-Kt)] 

There is no need to look for a general solution, since the relevant question is whether a disordered phase is present or not. 
So, the solution to be checked is mo=m; =O. This obviously implies ho-=0 and Eqs. (14) take the form 

t Zspmo ==(e 4K 1+ 2e - 2K1)•- [e - 2K1 + 2cosh(3K2)eK1p , 
(15) 

1 z -( 4Kt+ 2 -2Kt)z-l( 4Kt -2Kt)+2( -2Kt+2 h(3K) Kt]z-1[ -2Kt h(3K) Kt] 2 spm; - e e e -e e cos 2 e e - cos 2 e 

lt can be easily checked that the only case in which the 
right-hand sides of both Eqs. (15) become zero is for 
K 1 = K 2· Thus, there is no disordered phase in the asym­
metric case K1>&-K2, which is the expected result. Al­
though the calculation was restricted to the three-state 
model the basic point is present here, namely, the fact that 
the anisotropy favors one state against the others (in this 
case two), whose equivalence is maintained. 

V. DISCUSSION 

I have clearly demonstrated the failure of the usual 
MFT to cope with a situation in which the exchange in­
teraction is anisotropic. In the case of the Potts model, 
this failure yields the prediction of a disordered phase in 
the presence of an anistropy that, by favoring one single 
spin state, rules out the possibility of zero magnetization 
at finite temperatures. That this failure is related to the 
neglect of correlations is confirmed by the fact that it can 
be corrected through the introduction of a single-particle 
anistropy, or by resorting to an approximation that does 
not neglect correlations, as the Bethe-Peierls scheme. 

The above analysis is relevant for the interpretation of 
the RG results stated in Sec. 11, since the MFT is the clas­
sical limit of the effective quantum field theory for the 
problem. As far as the 41 3 theory is concerned, there is no 
possibility of studying the first-order transition, and the 
RG deals with fluctuations around the mean-field 
minimum at 41 =O (a local anisotropy was not considered 
in the RG treatment of Ref. 9). For the case of longitudi­
nal ordering the asymmetric interaction displaces this 
minimum, so that no massless fluctuations around 41 =O 
are possible. This yields the absence of a stable fixed point 
of the RG. 9 For transverse ordering, although the 
minimum in the (massive) 411 component is also displaced 
from zero, the massless transverse fluctuations remain 
around 41 ==O and a fixed point is found 9 which essentialiy 
describes a symmetric system with q - 1 states. This is 
also an expected result, since the anisotropy should 
"freeze out" the state e 1, without affecting the equivalence 
between the remaining q - 1 states. 

The relevant concern here is whether the transverse 

fixed point and the corresponding criticai exponents de­
scribe a second-order phase transition or not. I now turn 
to a discussion of this point for the symmetric theory, 
since the same conclusions apply for the asymmetric case 
(transverse ordering) with a shift in the number of states. 

Equation ( 11) for g =O (h -=O) is the Landau free ener­
gy of the symmetric model (now free of problems of the 
anisotropic case). The cubic term, which is not present 
only for n -1 Osing model), is responsible for the ex­
istence of two mínima and the consequent first-order na­
ture of the phase transition. For n > 1 (q > 2), the large 
order-parameter minimum occurs for Q > O, and it is ac­
cepted that the transition is first order. In this case, the 
fixed point of the RG should describe the spinodal point in 
the stability limit of the disordered phase. 5•6 For n < 1 
(q < 2), however, the large-1 Q I minimum occurs for 
Q < O. The current argument 4 rules out this minimum as 
unphysical and considers that the low order-parameter 
minimum at Q ;(';O is the one that does describe the sys­
tem. The RG fixed point would then actualiy describe a 
second-order phase transition. 

The question obviously arising is whether it is possible 
to simply neglect the unphysical part of the free energy, 
keeping the rest unaltered, or should the whole theory be 
revised. Pytte6 expressed the hope that the negative-Q 
minimum would disappear if the Landau free-energy in­
cluded ali orders in Q. This, unfortunately, is not the 
case, as can be seen from Eq. (lO), which does include ali 
orders in Q. From the minimization condition âj/âQ =O 
(and setting g =O), we obtain 

e<n+1)KQ_1 
Q == n-=-,...-:-:-;==---=­

e (n+1)KQ+n 
(16) 

A simple inspection of the behavior of the right-hand side 
of this equation shows that a solution for Q large and neg­
ative is a1ways present for n < 1. There is, however, an 
important difference between the positive- and negative-Q 
solutions. Since the limiting value of the right-hand side 
of ( 16) is n for Q > O and - 1 for Q <O, the positive-Q 
solution always satisfies the condition I Q I < n Gmplied 
by the normalization of the vectors e,), while this condi­
tion is violated in the negative-Q solution for n < 1. This 
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may be a mathematical indication of the unphysical na­
ture of this solution. 

Pytté also claims the instability of the negative-Q 
minimum against transverse fluctuations. What actually 
happens (and this remained hidden in Pytte's tensorial or­
der parameter) is that the transverse fluctuations become 
imaginary for q < 2. This can be understood in terms of 
the relation n -q -I that makes it impossible to consider 
transverse fluctuations for q < 2, when the number of 
components n < 1. lt appears as imaginary components 
e1 for q <a in Eq. (9) and yields imaginary tensorial 
coefficients DafJr in Eq. (4). 

It is well known and explicitly manifest in the above dis­
cussion, that the q-state Potts model is not defined for 
q < 2. It can only be defined by means of an analytical 
continuation. So far no such continuation has been clear­
ly achieved, and even the prescription for obtaining the 
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