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Simple approximation for the Bethe-ansatz solution of the one-dimensional Fermi gas 
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We present a simple approximation scheme for the solution of the integral equations resulting 
from the Bethe-ansatz diagonalization of the one-dimensional Fermi gas with ô-function attraction. 
These equations arise for the Hubbard model with attractive interaction in the limit of weak cou­
pling and low density. We obtain the ground-state energy as a function of coupling and density in 
very good agreement with numerical solutions, as well as a value for the parameter determining the 
gap in the magnetic excitation spectrum which strongly supports a conjecture of Larkin and Sak. 

I. INTRODUCTION 

The one-dimensional Hubbard model with attractive in­
teraction between the electrons is one of the simplest 
models for a (quasi-) one-dimensional superconductor. In 
the limit of weak interaction and low electronic density it 
reduces to a Fermi gas with c'\-function attraction. The 
properties of this and related models have been discussed 
by a number of authors, 1- 5 using the exact diagonaliza­
tion of the Hamiltonian by the Bethe ansatz. 6 The attrac­
tive interaction favors formation of electronic pairs, re­
sulting in a ground state with zero magnetization and a 
gap in the magnetic excitation spectrum. Writing down 
the Hubbard Hamiltonian for n electrons per site in a 
linear lattice of N sites as 

H=- T ,l: (aluai+!,a+a;~a;_J,al+ U _l:altal1a;1ai! , 
i,u i 

(1) 

with T >O and U <O; the energy gap in the weak­
coupling Fermi gas limit (u = I UI IT << 1, n << 1, 
u In<< 1) was shown1 to be given by 

~ =2(2e -I )112u2(nlu )3/2e .,.2aoe -.,.2n;u ' 
T 

(2) 

with a numerical evaluation of the constant a0 yielding 
the value a 0 -0.11. 

The same problem was also addressed by Larkin and 
Sak 7 resorting to a renormalization-group calculation. 
They rederived formula (2) for the gap with an analytical 
expression for a 0, namely, 

ln1r+ 1 
a 0 = =0.108 65 · · · , 

21T2 
(3) 

which was obtained by means of an argument of univer­
sality and the consequently allowed comparison with the 
exact solution of the n = 1 model.2 Since the latter is not 
a rigorous approach, it would be interesting to check the 
result (3) by obtaining a more accurate value of a 0 from 
the Bethe-ansatz solution. This was the original aim of 
this work. 

Although we did not obtain a 0 in closed form, we 
worked out a scheme of successive approximations to the 
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solution of the relevant integral equation (see below) 
whose zeroth order already gives a 0 differing from (3) by 
about 2%, this difference being reduced to less than 0.4% 
in the next step. We believe that this is a good indication 
of the accuracy of (3). In addition, our method allows us 
to evaluate the ground-state energy of the Fermi gas for 
any value of u In. Even the zeroth-order approximation 
gives this energy as a function of u In in very good agree­
ment with the numerical results, 1 as shown in Fig. 1. We 
also discuss the possibility of applying this method to the 
calculation of other quantities, e.g., the energy gap of the 
Fermi gas as a function of u In, the magnetization in the 
presence of a magnetic field, and the case of the Hubbard 
model for arbitrary u and n. 

11. BASIC EQUATIONS 

The lowest energy levei of the one-dimensional Hub­
bard model for a fixed value of the total spin component 
Sz is given by the so-called "Lieb and Wu equations."2•5 

In the attractive case, defining s =SziN and setting 
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FIG. 1. Ground-state energy of the one-dimensional Fermi 
gas with attraction. In this scale it is impossible to resolve our 
zeroth-order approximation from the exact numerical evaluation 
of Ref. 1. 
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T= 1, these equations can be written5 as follows: 

_§___=- [!!:_-s]u-2JQ p(k)coskdk, 
N 2 -Q 

JB 8ua(À) 
21Tp(k)=l+cosk 2 2 dÀ, 

-B u + 16(sink -À) 

21Ta(À)+ f_BB 4ua(À') dÀ' 
u 2 +4(À-À')2 

= Jº 8up(k) dk' 
-Q u 2 +16(sink-À)2 

J Q p(k)dk=1-2s, 
-Q 

J B a(À)dÀ= !!:_ -s . 
-B 2 

(4) 

(5) 

(6) 

(7) 

(8) 

For the ground state (s =0) the right-hand side of (7) be­
comes unity, yielding Q=1T and allowing for the elimina­
tion of p(k) from the set (4)-(8), which reduces to1 

E n JB - =- -u -2 a(À)g2(À)dÀ, 
N 2 -B 

JB 4ua(À') , 
21Ta(À)+ 2 2 dÀ =g0(À), 

-B U +4(À-À') 

f B a(À)dÀ= !!:_ 
-B 2 ' 

where 

Kn(À)= _1_ Jrr 8u cosnk dk . 
21T -rr u 2+ 16(sink -À)2 

Finally, in the Fermi gas limit u --+O,n --+0, with 
constant, Eqs. (9) and (10) become1 

E nu 2 JB 
E= N +2n = ---+2 À2a(À)dÀ, 

16 -B 

21Ta(À)+ JB 4ua(À') dÀ'=2. 
-B u 2+4(À-À')2 

Introducing the notation 

(9) 

(10) 

(11) 

(12) 

uln 

(13) 

(14) 

u À 
K= 2B, x=B' j(x;K):=1Ta(À), 

KI1T 
K(x;K):=:-2 --2 , 

K +x 

we can rewrite Eqs. (14) and (11) in the form 
1 

j(x;K)+ J dx' K(x -x';K)j(x';K)= 1 , 
-1 

f t dxf(x;K)= 1T (niB). 
-1 2 

(15) 

(16) 

(17) 

Equation (16) also appears in the prob1em of calculating 
the capacity of a circular parallel plate condenser, 8 where 
it is known as Love's integral equation. Numerica1 solu­
tions for various values of K were first reported by Nomu­
ra9 and 1ater corrected by Cooke. 10 The Nomura-Cooke 
va1ues are shown in Table I. 

Given j(x;K) as a solution of Eq. (16), the dependence 
of the parameter B on u and n is determined by (17). In 
the weak-coupling limit u In << 1 (K << 1 ), Krivnov and 
Ovchinnikov1 have found 

TABLE I. Comparison between our zeroth- and first-order 
approximations for the integral I (K ), Eq. (24), and the exact 
(numerical) results reported in Ref. 8. 

K lo(K) /I(K) /(K) (exact) 

o I I I 
T T T 

0.4 0.6019 0.6023 0.6027 
0.6 0.6359 0.6363 0.6364 
0.8 0.6652 0.6655 0.6656 
1.0 0.6910 0.6911 0.6912 
1.2 0.7137 0.7138 0.7138 
1.5 0.7429 0.7430 0.7430 
2.0 0.7817 0.7817 0.7817 
2.5 0.8113 0.8113 0.8113 
3.0 0.8342 0.8342 0.8342 
5.0 0.8896 0.8896 0.8896 

10.0 0.9405 0.9405 0.9405 

B =.!!_ [!!:_ ]--1 ln [1T!!:_ l-.!!_ao+O [ln(nlu)]' 
u 2 u 41T u 2 n lu 

(18) 

where the constant a 0 is the same as that which appears in 
Eq. (2) for the energy gap. Our aim is thus to solve Eq. 
(16) for j(x ;K << 1) and integrate this solution in (17) to 
check Eq. (18) and determine the value ofa0. 

III. ZEROTH-ORDER APPROXIMA TION 

We can easily solve Eq. (16) in the two extreme limits 
K=O and K--+ oo. In the latter the keme1 goes to zero, 
while in the former it becomes a õ function. This yields 

{-L X2<1 

j(x;O)= 1, X2> 1 

j(x; oo )= 1 . 

(19) 

(20) 

For K small, K(x -x';K) is sharply peaked around 
x =x' while j(x;K) is a smooth function of x except for 
the two small regions around x = ± 1. For this reason, we 
can try the following approximation: 

1 1 f dx' K(x -x';K)j(x';K)=f(x;K) J dx' K(x -x';K). 
-1 -1 

(21) 

Substituting (21) into (16) we get the approximate solu­
tion11 

fo(x;K)= 1 ( ) , 
+t x;K 

with 
1 

t(x;Kl= J dx' K(x -x';K) 
-1 

1 -t[l+x] 1 _ 1 [1-x] = 1T tan -K- +-; tan -K-

(22) 

(23) 

We can check that the limits (19) and (20) are satisfied. 
Indeed, it happens that this approximation is much better 
for large K, since in this limit, although the peak in 
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K(x -x';K) becomes smeared, j(x;K) becomes much 
smoother, without the rapid variations around the points 
x = ± 1. The limit K =O is also correct, for the variation 
of j(x;K) is finite while the range in which this variation 
occurs goes to zero; thus its contribution to the integral in 
(21) vanishes. 

In order to obtain the parameter B in Eq. ( 17) we need 
to evaluate 

1 1 
l(Kl=t f dxj(x;K)= J. dxj(x;K). (24) 

-1 o 
In our zeroth-order approximation we have 

I dx 
lo(K)= fo 1+t(x;K) ' 

(25) 

with t(x;K) given by Eq. (23). Some values of this in­
tegral (numerically evaluated) are listed in Table I. Evi­
dently the agreement with the exact results is remarkable 
for such a crude approximation. lt also presents the 
correct asymptotic behavior for large K and the exact lim­
iting value / 0(K=0)=t· The behavior of l 0(K) for small 
K, as shown in the Appendix, is described by the relation 

1 KlnK 1T (O) 2 
l 0(K)=---4-+-a0 K+0(K lnK), (26) 

2 1T 2 

with 

abo> = _! J. oo dx [ 1 - 1 - _!_ l 
1T o 3+(211T)tan- 1x 81r(x +2) 4 

=0.10644 .... (27) 

Equations (26), (24), and (17) reproduce the form (18) for 
B lu, with the approximate value of a 0 given by (27). 
Comparison with the expected exact value (3) shows a 
difference of about 2%. 

Within the same approximation we also evaluated the 
ground-state energy (13) for arbitrary u In. The results 
are plotted in Fig. 1 together with the values obtained by a 
numerical solution1 of Eq. (14) (in which À was tumed 
into a discrete variable, thereby transforming the integral 
equation into a set of algebraic equations). The compar­
ison shows again an agreement that is remarkable, given 
the simplicity of the approximation. 

IV. SUCCESSIVE APPROXIMATION SCHEME 

Since f 0 (x;K), as defined by Eq. (22), is a reasonable ap­
proximate solution of (16), it can be used as the starting 
point for either an iterative solution or a successive ap­
proximation scheme in which the same approximation is 
recursively employed for the corrections to j 0 (x;K). We 
chose this latter approach because it showed faster con­
vergence when compared to the iterative solution, which 
is known8 to be a convergent scheme for this kind of in­
tegral equation. 

Writing f(x;K)=/0 (x;K)+Ilf0 (x;K) in Eq. (16), the 
correction term must satisfy the equation 

1 
llj0(x;K)+ f dx' K(x-x';K)Ilj0 (x';K)=h 0(x;K), 

-I 

where 

(28) 

is the "error" function, which measures the failure of 
j 0 (x;K) to fulfill (16). 

We again expect llf0 (x;K) to be smooth except for the 
narrow regions around x = ± 1. Then, using approxima­
tion (21) for llf0 (x;K) in Eq. (28) and calling / 1 (x;K) the 
resulting solution, we have 

h 0 (x;K) 
fdx;K)= 1 ( ) =fo(x;K)h 0(x;K). 

+t x;K 
(30) 

The process can now be continued by writing 
llj0(x;K)=/1(x;K)+Il/1(x;K) and applying the same 
treatment to the integral equation determining llj1(x;K), 
and so on. We then obtain 

j(x;K)=/0 (x;K)+/1(x;K)+/2(x;K)+ · · · , 

fn+l(x;K)=/o(x;K)hn(x;K), 

hn +1(x;K)=hn(x;K)-fn + ,(x;K) 
I 

- f dx' K(x -x';K)fn+1(x';K), 
-I 

n=0,1,2,3, ... , (31) 

with j 0 (x;K) and h 0 (x;K) given by Eqs. (22) and (29), 
respectively. For the integral l(K), Eq. (24), we now have 

00 

[(K)=Jo(K)+ l: /l[n(K) , 
n=1 

I 
llln(K)= fo dxfn(X;K). 

(32) 

Some values of l 1(K)=l0 (K)+IlldK) are listed in Table I, 
showing an improved agreement with the exact values, 
even for K quite small. 

From the comments following Eq. (27) we see that both 
the constant and the logarithmic terms in l(K) are already 
correctly given by / 0(K). So, in the limit of small K the 
corrections llln(K) directly yield corrections to a 0. We 
can write the n th approximation for this parameter as 

n 
abn>=ab0)+ l: llabm), (33) 

m=1 

where 

(34) 

In the first approximation we obtain the value 
ab0 =O. 108 25, which differs by less than 0.4% from the 
renormalization-group7 result (3). So, although our 
scheme does not yield an analytical verification of the 
latter, there are good indications that it can be approached 
to the desired precision. 

V. CONCLUSIONS AND POSSIBLE EXTENSIONS 

In summary, we have developed a method of successive 
approximations to the solution of the Fredholm integral 
equation of the second kind,8 Eq. (14) [or (16)], that ap­
pears in the Bethe-ansatz solution of the one-dimensional 
Fermi gas with attractive interaction. With this simple 
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scheme we were able to reproduce some of the results ob­
tained by Krivnov and Ovchinnikov1 who used much 
more involved mathematical methods. In particular, we 
obtained, even in the simplest approximation, a very accu­
rate plot of the Fermi gas ground-state energy as a func­
tion of u In (Fig. 1). Furthermore, our results strongly in­
dicate the correctness of the renormalization-group7 result 
(3) for the parameter a 0 appearing in the expression for 
the energy gap in the weak-coupling limit, Eq. (2). A plot 
of this equation is presented in Fig. 2. 

We can also speculate on the possibility of using the 
same method to study other properties of the Fermi gas, 
or even the Hubbard model for more general parameters, 
since ali the integrais appearing in the Bethe-ansatz solu­
tion present essentially the same form. Indeed, we tried to 
obtain the u In dependence of the energy gap â for the 
Fermi gas, using the equations of Krivnov and Ovchinni­
kov:1 

B 
â=-}u 2 -2B 2 +4 f_B Àt/J(À)dÀ, (35) 

217't/J(À)+ JB 4ut/J(À') df...' 
-B uz+ 4(À-À')2 

=1T+4tan-1 [~À J -2 tan- 1 [ 2(À;;B) J . (36) 

The zeroth-order approximation, as shown in Fig. 2, is 
only good for small nlu (large K), departing from the ex­
act (numerical) result as K becomes small. This can be ex­
plained by the fact that the right-hand side of (36), in con­
trast with (14), presents fast variations for À-0 or À-B 
when u is small. As a result, t/J(À) is no longer a very 
smooth function of À, violating the basic assumption of 
the approximation (21). The same difficulty is expected 
to arise in the Hubbard model for general parameters [Eq. 
(10)], or in the study of the magnetization in the presence 
of a magnetic field,4•5 when it is necessary to treat the 
case of s=;i::O in Eqs. (4)-(8). We still expect the higher­
order approximations to become increasingly accurate. 

N 
;:::! 

......... 

<J 

0.2 0.4 0.6 0.8 

n/u 
FIO. 2. Energy gap of the one-dimensional Fermi gas with 

attraction. The solid curve is the numerical result (Ref. 1), the 
dashed curve is our zeroth-order approximation for Eqs. (35) 
and (36), and the dotted curve is the result of Eq. (2) with a 0 

given by (3). 

However, since the final results involve numerical evalua­
tion of integrais in which the number of variables in­
creases with the order of approximation, it appears that 
the method will, at least, lose its simplicity. 
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APPENDIX 

We shall derive Eqs. (26) and (27) as the small-K limit 
of Eq. (25). In this limit we can make the approximation 

! tan- 1 [ l!x ]= ~- 1r(l:x) (Al) 

in the first term of t(x ;K), Eq. (23), since we are integrat­
ing over positive values of x. Keeping only terms up to 
first order in K, except for the "dangerous" second term in 
(23), we have 

2 K 

2 1[1-xJ+41T(l+x)' 3+-tan- --
1T K 

(A2) 
l+t(x;K) 

J. l 1 K 

/ 0 (K)=2 0 dx 2 [x J + 41Tln2. 
3+-tan-1 -

1T K 

(A3) 

A change of variable in the last integral yields 

(A4) 

For large x we see that 

I 1 1 --+--. 
3+(211T)tan- 1x 4 81rx 

(A5) 

Subtracting this limiting value and introducing a small-x 
cutoff (since the integrand is finite for x =0), 

+2K dx f. 1/K [ 1 
0 3+(211T)tan- 1x 

81r(x +a) 
_!_J 4 . (A6) 

Finally, choosing a =2 and evaluating the last integral at 
K=O, we arrive at Eqs. (26) and (27). 
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