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Chaotic interaction of Langmuir solitons and long wavelength radiation

R. Erichsen, G. I. de Oliveira,* and F. B. Rizzato
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,

91501-970 Porto Alegre, Rio Grande do Sul, Brazil
~Received 26 May 1998!

In this work we analyze the interaction of isolated solitary structures and ion-acoustic radiation. If the
radiation amplitude is small solitary structures persist, but when the amplitude grows energy transfer towards
small spatial scales occurs. We show that transfer is particularly fast when a fixed point of a low dimensional
model is destroyed.@S1063-651X~98!11811-1#

PACS number~s!: 52.35.Ra, 05.45.1b, 52.35.Mw
ie
la
ys
lit
et
n

s

e
w
e
tic
tu

u
ol

tic
il
o
e

ha
hi
o
o

ing
gi
w
n
-

e
sy
rg
th

e-
an
r

has
erac-
ing
by

has-
om

ns
ed
oli-
oli-
nd

lem
op-
n,
re-

ype
e
ev-
ons

on
g
the
om
n
we
ari-
vior

ce
we
the
een
des
e-
h to

t in
ons
r the

es

dy
rba-

e

I. INTRODUCTION

Langmuir turbulence has been one of the most stud
problems in modern nonlinear plasma physics. Over the
years a great deal of effort has been directed to its anal
as well as to the analysis of related subjects such as so
dynamics, collapse, nucleation of cavitons, electromagn
emission, and others@1#. More recently, attempts have bee
made to understand the turbulence in terms of concept
nonlinear dynamics and chaos@2–6#.

The conservative version of Langmuir turbulence is d
scribed by the Zakharov equations that couple the slo
varying amplitude of a high-frequency electric field, th
Langmuir field, to slow density fluctuations, the ion-acous
field. Decay processes deposit energy into Langmuir fluc
tions with long wavelengths and if the energy thus accum
lated exceeds the threshold for modulational instability, s
tons can be formed.

In addition to solitons a certain amount of ion-acous
radiation is also generated, a fact that creates the possib
of nonlinear wave interaction involving these two types
structures: solitons of the Langmuir field and long wav
length ion-acoustic radiation. In more specific terms, w
happens is that as solitons are formed their shapes ex
temporal oscillations@7#; if ion-acoustic fluctuations are als
present, the possibility exists of interaction between the
cillatory degrees of freedom of solitons and the oscillat
ion-acoustic waves. One has two length scales in the re
of long scales. One of them is the soliton length scale,
shall call it Ls , and the other is the length scale of the io
acoustic fluctuations,Li . Both quantities shall be better de
fined later on, but we can already identifyLs with the length
of the spatial region occupied by a single soliton, andLi with
the typical wavelength of an ion-acoustic wave. It has be
shown that depending on the general conditions of the
tem, the mentioned interaction may lead to intense ene
transfer from the spectral region of long wavelengths to
region with much shorter wavelengths, we call itLsh with
Lsh!Ls ,Li . As energy moves into modes with small wav
lengths, dissipation becomes progressively more import
However, as we are interested only in nonlinear transfer p
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cesses, we discard dissipation in a first approximation. It
been suggested that energy transfer occurs when the int
tion is of chaotic nature. Presumably the process underly
the transfer is related to the diffusive processes induced
the presence of a stochastic drive in the system; the stoc
tic drive would be formed by the chaotic degrees of freed
@8#.

Now we come to our point. In various earlier simulatio
@6,7,9# a modulationally perturbed plane wave is launch
into the system. If the system is unstable a number of s
tons and additional ion-acoustic radiation are formed. S
tons interact with each other and with the radiation, a
transfer of energy towards small spatial scalesLsh may take
place if nonintegrable features are prominent. The prob
here is that this kind of simulations does not examine pr
erly the interaction of individual solitons and the radiatio
since soliton-soliton collisional processes cannot be dis
garded under such conditions. It is not even clear which t
of interaction, if soliton-soliton or soliton-radiation, is th
dominant one responsible for the transfer. In addition, s
eral systems display a small soliton density so that collisi
are unlikely—in these systems one should focus attention
the individual interaction involving one single oscillatin
soliton and ion-acoustic waves. This is the purpose of
present paper. We shall examine the system evolving fr
an initial condition where only one single oscillating solito
and some radiation are present. In addition to simulations
develop a model where we perform averages over fast v
ables in order to make estimates with regard to the beha
of the collective variables of the system.

As will become clear, energy transfer starts to take pla
when the collective variables become chaotic. In general
shall see that while for moderate and small amplitudes of
perturbing ion-acoustic radiation solitons can be at least s
as metastable structures in the system, for large amplitu
transfer is fast and initial solitary structures are rapidly d
stroyed. It has been argued that solitons are robust enoug
describe final states of this type of system@10–13#. But what
we see here is that even if some solitons are presen
asymptotic states of large amplitude regimes, those solit
are not the same as those present in earlier times—afte
initial solitons are destroyed there are long stretches of tim
over which no organized structures are seen.

We finally mention that a number of works have alrea
analyzed the interaction of localized structures and pertu

y,
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PRE 58 7813CHAOTIC INTERACTION OF LANGMUIR SOLITONS . . .
tions with longer wavelengths. In some of them only lo
dimensional models were investigated@14#, and in others
where full simulations were performed, chaotic dynam
was not the issue, although some nonintegrable features
soliton fusion have been reported@9#.

We organize the paper as follows: in Sec. II we introdu
the basic model and the numerical techniques to be u
here; in Sec. III we discuss our initial conditions and perfo
the appropriate averages to single out the relevant collec
variables; in Sec. IV we compare the low dimensional mo
with full simulations, and in Sec. V we summarize the wo

II. BASIC EQUATIONS AND NUMERICAL TECHNIQUES

The one dimensional Zakharov equations governing
Langmuir turbulence can be written in the adimensio
form @6#

i ] tE1]x
2E5nE, ~1!

] t
2n2]x

2n5]x
2uEu2, ~2!

with ] t[]/]t, ]x[]/]x. E(x,t) is the slowly varying am-
plitude of the high-frequency Langmuir field andn(x,t) are
slow density fluctuations associated with the ion-acou
field. The nonlinear Schro¨dinger ~NLS! equation

i ] tE1]x
2E1uEu2E50 ~3!

is obtained from the set~1!, ~2! if one is allowed to approxi-
mate Eq.~2! in order to replacen with 2uEu21const. This
approximation is called subsonic because it requires v
slow time scales that] t

2n(x,t)!]x
2n(x,t).

Our numerical approach is based on a pseudospe
method. We assume spatial periodicity with basic lengthL
and expandE(x,t) andn(x,t) into Fourier series as

E~x,t !5 (
m52N/2

1N/2

Em~ t !eimkx,

n~x,t !5 (
m52N/2

1N/2

nm~ t !eimkx. ~4!

The basic wave vector is defined in terms of the syst
lengthL ask52p/L, and the integerN represents the num
ber of modes used in the simulations. To represent a cont
ous system one should take the limitN→`. In practice we
let N51024, removing half of the modes to cure aliasi
problems associated with the fast Fourier transform~FFT!
routines. Comparison withN52048 indicates numerica
convergence in terms of number of modes. Accuracy is
ther checked by varying the tolerance factor of the numer
integrator and by monitoring the conserved energy@1#. We
find that relative fluctuations in energy are about one par
106– 108 and that variations of tolerance factor do not pr
duce alterations in the outcome of runs.

Solitons of amplitude&as are formed when a homoge
neous train of Langmuir radiation of amplitudeuE0u;as be-
comes modulationally unstable. The subsonic growth ratG
for a perturbation with wave vectork superimposed on the
homogeneous train can be estimated as
s
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;AuE0u22k2. ~5!

From relation~5! one sees that the only unstable modes
those for whichuE0u2.k2. Now whenuE0u22k2!1, G!k.
If this condition holds for the majority of modes,] t!]x ,
ion-acoustic fluctuations are mostly enslaved to the La
muir field, and approximation~3! can be used. On the othe
hand whenuE0u2 is not exceedingly small ion-acoustic fluc
tuations withk!uE0u may not be completely enslaved to th
Langmuir field. Those free fluctuations are to be seen
independent degrees of freedom whose presence is cap
of destroying the integrability of the system. Given that t
maximum growth rate occurs forkmax;uE0u and that the typi-
cal length scale of a soliton arising from modulational ins
bility induced by a perturbation with wave vectorkmax is
given by Ls;2p/kmax ~this means that the one way to ca
culate the soliton length is to imagine that one has as m
solitons as the number of wavelengths along the space
more formal way shall be indicated shortly!, free ion-
acoustic radiation of wave vectorki52p/Li ~as a matter of
fact this relation should serve as a definition forLi ; Li
[1/ki) typically appears in the spectral region for which

Li@Ls . ~6!

III. COLLECTIVE VARIABLES AND LOW
DIMENSIONAL MODEL

Our system is multidimensional but we would like to s
whether a small subgroup of modes is more active than
remaining. If this is the case one could try to describe
basic features of the full dynamics by a low dimension
approximation. As it turns out, such an approximation a
pears to be possible.

To see how to obtain the low dimensional model, w
proceed as follows. We first recall that as initial conditio
we are interested in configurations with isolated solita
structures. To represent this sort of states either analytic
or in the simulations we shall first determine the station
one-soliton solution for the full problem. We start by takin
] t50 in Eqs. ~1! and ~2! from which we first getn'
2uEsu21const. Substituting this relation into Eq.~1!, after
some algebra one obtains

uEs~x!u5&j sech~jx!, ~7!

which is the expression we are looking for.j is an arbitrary
factor that measures either the amplitude or the inverse w
of the soliton. Given the soliton shape by Eq.~7!, we may
now better define the soliton length scaleLs , introduced
earlier, asLs[1/j. We point out that due to the nonlinear
ties and dispersion of the problem a precise balance betw
amplitude and width is needed. If we callas[j and ws
[1/j, it is indeed seen that the following relation holds:

as5
1

ws
. ~8!

We had mentioned that our interest is to see what co
happen with the soliton when it starts to interact with fr
ion-acoustic radiation. Based on several results one kn
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already that the basic soliton solution must be allowed
display temporal oscillations. The problem now is how
describe those oscillations in a compact way. And the ans
is known: one first writes an ansatz solution for the solit
field where amplitude is, however, not correlated to
width according to the static relation~8!. The ansatz solution
is therefore generically written in the form

E~x,t !5&a~ t !sechS x

w~ t ! DeiF~ t !, ~9!

where a(t), w(t), and F(t) are all unknown as yet. The
phase factorF is included to incorporate the complex stru
ture of the solutions of the set~1!, ~2!. As for the ion-acoustic
field interacting with the soliton field, one writes

n~x,t !52uE~x,t !u21@A~ t !eikx1c.c.#. ~10!

Here we write the ion-acoustic field as a sum of the p
adiabatic response to the soliton field, plus some free ra
tion that will actually interact with the isolated nonline
structure.A(t) is the amplitude of the radiation field and c.
stands for complex conjugate. The next step is to derive
appropriate governing equations for the four time depend
parameters,a(t), w(t), F(t), andA(t). This is more easily
done with the help of average Lagrangian techniques.
full Lagrangian from which one obtains the original set~1!,
~2! reads

L5E Ldx[E S i

2
~E* ] tE2E] tE* !2u]xEu2

2uEu2]xn1
1

2
@~] tn!22~]xn!2# Ddx, ~11!

where the dynamical variablen(x,t) is introduced in the
form n(x,t)[]xn(x,t). The Euler-Lagrange equation fo
E(x,t), for instance, is written as

] t

]L
]~] tE!

5
]L
]E

2]x

]L
]~]xE!

, ~12!

with similar expressions holding for the other variable
From expression~12! one obtains the complex conjugate
Eq. ~1!. In terms of averaged Lagrangians, what has to
done now is to substitute into Eq.~11! the one-soliton solu-
tion, Eq.~9!, plus the ion-acoustic field, Eq.~10!. Doing this
and performing the spatial integrations one arrives at

L'22hḞ1F4W2

3w
2

2W

3w2 10.429
W2ẇ2

w
23.290WẇwȦG

1
pȦ2

k3 2
pA2

k
, ~13!

with h5a(t)2w(t). The various numerical factors appear
Eq. ~13! as a result of the integrals involving trigonometr
and hyperbolic functions.

The Euler-Lagrange equation with respect to the varia
F indicates thath is a constant of motion. As a matter of fa
this feature has already been used to simplify the form of
Lagrangian~13! by dropping terms proportional toḣ up to
o
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positive powers. Euler-Lagrange variational equations
then applied to the independent variablesw(t) and A(t) to
produce a two-degrees-of-freedom conservative dynam
system. If we setA→0 we have solutions corresponding
free oscillations of the soliton shape. One can construc
convenient phase space to visualize those oscillations. Th
done in Fig. 1 where we plotẇ(t) versusw(t). The central
fixed point of the figure is simply the static soliton solutio
analytically represented by Eq.~7!, and the curves surround
ing the fixed point represent oscillatory modes of the solit
each mode labeled by a particular constant energy that ca
canonically evaluated from Lagrangian~13! with A50. In
the absence of ion-acoustic free fluctuations, one can e
mate the position of the fixed point,

as51/ws5h, ~14!

and the oscillatory frequency around the fixed point,

vs5A2h2

1.29
;as . ~15!

Given thatLs[ws51/as , one hasLs;1/vs , and given that
2p/v i5Li@Ls one obtains a relationship involving the fre
quencies of soliton and ion-acoustic waves:

v i!vs . ~16!

In other words, the components of the ion-acoustic field m
weakly enslaved to the Langmuir field are those for wh
both length and time scales are much longer than the sc
corresponding to the solitons. One shall also mention tha
addition to trapped orbits around the fixed point, open orb
are also possible. Those would represent decaying soli
for which w→` asymptotically. The fact that one ha
trapped and untrapped orbits implies that a separatrix d
exist in which vicinity some amount of chaotic activity ma

FIG. 1. Contour levels for the unperturbed dynamicsA→0; h
5A0.1/2.
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FIG. 2. Poincare´ plots (ẇ,w) of the low dimensional model withki50.0257 andh5A0.1/2.A050 in ~a!, 0.14 in~b!, and 0.16 in~c!.
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be displayed if the system is in fact nonintegrable. The r
of chaos, if chaos is indeed present, shall be better expl
in the next section.

IV. FULL SIMULATIONS VERSUS THE LOW
DIMENSIONAL MODEL

At this point we make use of the numerical techniqu
discussed in Sec. II to compare results of full one dim
sional simulations with the low dimensional model dev
oped in the preceding section. Our full simulations give
account of the behavior of a stationary soliton submitted
the action of long wavelength ion-acoustic perturbatio
Our purpose is to test the robustness of the soliton solu
and see what happens when it loses stability due to the
acoustic radiation. Before embarking on the simulations i
perhaps convenient to preview the basic system beha
based on possible results obtained with the low dimensio
model. If the parameters of the low dimensional model
such that the corresponding nested orbits on the phase p
ẇ,w are mostly regular, one can expect a negligible infl
ence exerted by the ion-acoustic field on the solitary str
ture in the full simulations, whether this structure is oscil
tory or not. On the other hand it may well happen that
low dimensional system is nonintegrable. Should this be
case, and if low dimensional chaos is indeed well develop
the influence of ion-acoustic waves may be strong enoug
destroy the solitary structure. In this case our low dime
sional description may be expected to cease furnishing
sonable results. What is likely to happen then is that
e
ed

s
-

-
n
o
.
n
n-
s
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e
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-
-

-
e
e
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to
-
a-
e

chaotic low dimensional degrees of freedom start to act
a random drive, continuously delivering energy in a diffusi
way to all the other dynamical modes@8#. Then one may
anticipate the soliton to decrease in intensity as its ene
flows away. In addition, short wavelength modes are
pected to grow and appear in the spectrum. We shall inv
tigate some details of the transfer next.

A. Low dimensional analysis

Let us first explore the integrability properties of the lo
dimensional approximation. To do that we examine the s
face of section obtained when we record the pair of variab
w,ẇ each timeA50 with Ȧ.0. In the context of the low
dimensional analysis we examine the system as an
acoustic wave of initial amplitudeA0 is added to the centra
fixed point of Fig. 1—the remaining initial amplitudes co
responding to other orbits are obtained with help of the c
dition of constant energy. This constant energy is to be
tained from Lagrangian~13!. Parameters are specified in th
legend of Fig. 2. In both low dimensional and full simulatio
we work with a soliton ofas5A0.1/2 and with a perturbing
ion-acoustic wave vectorki50.0257. In the simulations the
basic wave vectork is chosen ask5ki /2; smaller values and
evenk5ki generate the same results. For those paramet

Li;40Ls , ~17!

and

vs510.8v i . ~18!



-
ng
ua
d
y

ro

na

e

fo
ow

I

a
xe

ni
t
h
os

3
el
su
ha
pa
um

th

o
he
h
e
d

ith
lly

o-

y-
. It
d to

ig.
es.

hat
in
s

m-
the

tion
rgy
for
nted

n

to
-
re-
nal
ore

to

re

s of
lds
ow

tic
di-
on-
t.
ap-

les.

u-
oo
tion
r-

b-

me

ral
till
ary
d

7816 PRE 58R. ERICHSEN, G. I. de OLIVEIRA, AND F. B. RIZZATO
One thus hasvs@v i andLs!Li as required by the assump
tions on time and length scales. If one recalls the scali
used to derive the normalized form of the Zakharov eq
tions, Eqs.~1! and ~2! @1#, one finds that the normalize
distance unit approximately corresponds to 65 Deb
lengths, where the Debye lengthlD is written as lD

[AkTe/4pn0e2, with k as the Boltzmann constant,Te and
e2 as the temperature and squared charge of the elect
respectively, and withn0 as the equilibrium density of the
system. Therefore, going momentarily over dimensio
quantities, one has, in the present case,Ls;as

2165lD

;290lD and Li;40Ls;11 600lD , where lD;1023 cm
for a fusion plasma, for instance.

One should also notice that relation~18! says that if the
system is indeed nonintegrable, a period one island is lik
to appear close to the central fixed point in thew,ẇ phase
space.

Examining the phase plots of Fig. 2 one sees that
small amplitudes the phase space is mostly regular. H
ever, for larger values two features become noticeable:~i! the
dynamics is indeed nonintegrable, and~ii ! for large enough
values of the amplitude, chaotic dynamics is dominant.
addition, for sufficiently large amplitudes~in the present case
A0;0.145) the central fixed point undergoes an inverse t
gent bifurcation and disappears along with the unstable fi
point of the period one island seen in Fig. 2~b!. All these
features strongly suggest that the stochastic drive mecha
may be operative causing energy transfer into small spa
scales for moderately large values of the perturbation. T
type of behavior is found for other choices of the rati
v i /vs and Li /Ls as long as relations~6! and ~16! are re-
spected.

B. Full simulations

The results of full simulations can be found in Fig.
where we make plots of the space-time history of the fi
uE(x,t)u2, and of the average number of active modes ver
time. The average number of modes is an auxiliary tool t
can help to study details of energy transfer that are not
ticularly apparent in the space-time plots. The average n
ber of modes is denoted byA^NL,i

2 & for Langmuir and ion-
acoustic fields, respectively, and defined according to
following @15#:

^NL
2&[

(
m

m2uEmu2

(
m

uEmu2

, ~19!

^Ni
2&[

( 8
m

m2unmu2

( 8
m

unmu2

. ~20!

The primes in definition~20! mean that the ion modes int
which energy is initially placed are to be excluded from t
summation. We do this simply to obtain clearer results. T
problem is that since all the initial ion-acoustic energy go
into one single mode, the statistics becomes poor if we
s
-
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not make the exclusion. No problems of that sort occur w
the Langmuir field, as solitons already involve a statistica
good number of modes.

We launch a solitary structure of shape given by Eq.~9!,
with a slight mismatch betweena(t50) and 1/w(t50) such
that the soliton can oscillate initially: we choosea(t50)
5A0.1/2 andw(t50)51.2/a(t50). For small enough val-
ues of the ion-acoustic perturbation Fig. 3~a! shows that the
solitary structure maintains its original amplitude without n
ticeable damping. It is seen from Fig. 3~b! that for this per-
turbing amplitude the number of modes involved in the d
namics does not change significantly as time evolves
should be noticed that the present modes are those use
construct the solitary structure.

For larger values of the ion-acoustic amplitude, as in F
3~c!, the soliton gradually damps away as time advanc
Fig. 3~d! shows that energy diffusion is now present, and t
in the ion-acoustic field it is considerably much faster than
the Langmuir field. Diffusion in the Langmuir field become
in fact almost imperceptible for even smaller perturbing a
plitudes as we shall see a little later. Note that plateaus in
plots are formed when all the modes used in the simula
become involved in the dynamics—at this stage ene
would be dissipated if we had added dissipation terms
large values of wave vectors. In the present case represe
in Figs. 3~c! and 3~d!, the central fixed point is still present i
low dimensional phase plots, as indicated by Fig. 2~b!. One
can therefore think in terms of stochastic drive models
describe this type of regime@8#. Although the orbits are cha
otic, the presence of the central fixed point offers some
sistance against rapid destruction of the low dimensio
chaotic system. This low dimensional system might theref
last long enough to serve as a drive delivering energy
short wavelength modes.

Now, if A is large enough, the localized solitary structu
is rapidly destroyed as indicated in Figs. 3~e! and 3~f!. En-
ergy is transferred to short wavelengths over short period
time. We point out that this fast process occurs for ion fie
intense enough to destroy the central fixed point of the l
dimensional system, as indicated in Fig. 2~c!. In addition,
diffusive time scales for both Langmuir and ion-acous
fields become similar in this fast regime. Under such con
tions the stochastic drive may not be a very appropriate c
cept since the lifetime of the solitary structure is too shor

We emphasize, therefore, that three distinct regimes
pear to be present.

~i! If the initial perturbation is small, typicallyA!0.1,
there is no diffusion whatsoever towards small length sca

~ii ! For larger values of the perturbation,A;0.1, diffu-
sion is observed in both Langmuir and ion fields. But diff
sion in the ion field is much faster. If one diminishes not t
much the perturbing amplitude and reduces the observa
time, diffusion in the Langmuir field becomes almost impe
ceptible although diffusion in the ion field can still be o
served. This is what can be seen in Fig. 3~g! where one
considers a perturbing amplitude smaller, but of the sa
order of magnitude, than the one used in Fig. 3~d!. In gen-
eral, within this range of perturbing amplitudes, the cent
fixed point of the low dimensional phase space is s
present. This could explain the persistence of the solit
structure seen in Fig. 3~c!. Since solitons are persistent an
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FIG. 3. I @[uE(x,t)u2# @in ~a!, ~c!, ~e!# and A^N2& @in ~b!, ~d!, ~f!, ~g!# from full simulations with ki50.0257, k5ki /2, a(t50)
5A0.1/2, andw(t50)51.2/a(t50). A50.005 in ~a! and ~b!, 0.1 in ~c! and ~d!, 0.2 in ~e! and ~f!, and 0.05 in~g!. Time has been
normalized by a factor of 5000/100550 and space by a factor of 64p/k532L.
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typically chaotic here, this regime is perhaps the most app
priately described by the stochastic drive. The oscillating l
dimensional subsystem formed by the soliton and the i
acoustic wave would excite the remaining modes of the s
tem. As mentioned, diffusion is very asymmetric, bei
much faster in the ion-acoustic field. But on examining E
~2!, it is not unreasonable to say that the Langmuir field te
appearing in the form]x

2uE(x,t)u2 on the right-hand side, ca
act similarly to a source delivering energy to the ion field
the left-hand side. The sourcelike behavior would enha
diffusion in the ion-acoustic field.

~iii ! Finally, when the amplitude attains sufficiently larg
values,A.0.1, fast diffusion takes place in both fields.
contrast to the preceding case, here the time scales for d
sion in both fields are similar. We point out that the cent
fixed point of the phase plots no longer exists for this ran
of relatively large perturbing amplitudes. Again, this cou
explain the short life of the solitary structures, as seen in F
3~e!.

V. CONCLUDING REMARKS

In this paper we examined the interaction of an io
acoustic harmonic mode with a solitary wave of the Z
kharov equations. Here the interest is to see how far a s
tary wave can resist before it is destroyed by lo
wavelength radiation and how this destruction takes pla
Although some recent works show that solitons can be st
structures even in nonintegrable environments@10–13#, what
we see here is that if chaos is strong enough in the
dimensional approximations, solitons are in fact destro
and energy transfer towards small spatial scales takes p

We have observed that the dynamics can be divided
three categories as a function of the amplitude of the ini
tt
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ion-acoustic wave. Considering&as5A0.1, for small am-
plitudes,A!0.1, there is energy transfer neither in Langm
nor ion-acoustic fields. For moderately large amplitudesA
;0.1, diffusion is observed mostly in the ion-acoustic fie
and for sufficiently large amplitudes,A.0.1, diffusion is
fast and equally present in both fields. In the intermedi
regime one can think in terms of a stochastic drive deliver
energy to modes with short wavelengths. The drive would
formed as a result of the chaotic, but persistent, low dim
sional dynamics. Persistence follows because for not
large amplitudes the central fixed point of the low dime
sional phase plots is still unaffected by the interaction, wh
means that solitons last long enough to serve as stoch
drives. While soliton turbulence may well describe the
gime of intermediary amplitudes, it may not be quite app
priate to describe the regime of large perturbing amplitu
since solitons readily damp away there. The characteris
of the stochastic drive are not easy to obtain because
dynamics on the chaotic spacew(t),ẇ(t) is not pendulum-
like. Therefore some known results on pendulumlike settin
@8# cannot be directly used here. Details and comparis
with the full simulations are currently under study.

Recalling our initial question in this paper, the conclusi
is that the interaction of isolated solitons and ion-acous
radiation alone is capable of driving energy transfer.
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