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Chaotic interaction of Langmuir solitons and long wavelength radiation
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In this work we analyze the interaction of isolated solitary structures and ion-acoustic radiation. If the
radiation amplitude is small solitary structures persist, but when the amplitude grows energy transfer towards
small spatial scales occurs. We show that transfer is particularly fast when a fixed point of a low dimensional
model is destroyed.S1063-651%98)11811-]

PACS numbds): 52.35.Ra, 05.45:b, 52.35.Mw

I. INTRODUCTION cesses, we discard dissipation in a first approximation. It has
been suggested that energy transfer occurs when the interac-
Langmuir turbulence has been one of the most studiedion is of chaotic nature. Presumably the process underlying
problems in modern nonlinear plasma physics. Over the laghe transfer is related to the diffusive processes induced by
years a great deal of effort has been directed to its analysishe presence of a stochastic drive in the system; the stochas-
as well as to the analysis of related subjects such as solitafic drive would be formed by the chaotic degrees of freedom
dynamics, collapse, nucleation of cavitons, electromagnetifsg].
emission, and otherfd]. More recently, attempts have been  Now we come to our point. In various earlier simulations
made to understand the turbulence in terms of concepts ¢6,7,9 a modulationally perturbed plane wave is launched
nonlinear dynamics and chafiz—6]. into the system. If the system is unstable a number of soli-
The conservative version of Langmuir turbulence is detons and additional ion-acoustic radiation are formed. Soli-
scribed by the Zakharov equations that couple the slowlytons interact with each other and with the radiation, and
varying amplitude of a high-frequency electric field, the transfer of energy towards small spatial scdlggmay take
Langmuir field, to slow density fluctuations, the ion-acousticplace if nonintegrable features are prominent. The problem
field. Decay processes deposit energy into Langmuir fluctuahere is that this kind of simulations does not examine prop-
tions with long wavelengths and if the energy thus accumuerly the interaction of individual solitons and the radiation,
lated exceeds the threshold for modulational instability, soli-since soliton-soliton collisional processes cannot be disre-
tons can be formed. garded under such conditions. It is not even clear which type
In addition to solitons a certain amount of ion-acousticof interaction, if soliton-soliton or soliton-radiation, is the
radiation is also generated, a fact that creates the possibilifominant one responsible for the transfer. In addition, sev-
of nonlinear wave interaction involving these two types oferal systems display a small soliton density so that collisions
structures: solitons of the Langmuir field and long wave-are unlikely—in these systems one should focus attention on
length ion-acoustic radiation. In more specific terms, whathe individual interaction involving one single oscillating
happens is that as solitons are formed their shapes exhikibliton and ion-acoustic waves. This is the purpose of the
temporal oscillation$7]; if ion-acoustic fluctuations are also present paper. We shall examine the system evolving from
present, the possibility exists of interaction between the osan initial condition where only one single oscillating soliton
cillatory degrees of freedom of solitons and the oscillatingand some radiation are present. In addition to simulations we
ion-acoustic waves. One has two length scales in the regioglevelop a model where we perform averages over fast vari-
of long scales. One of them is the soliton length scale, webles in order to make estimates with regard to the behavior
shall call itLs, and the other is the length scale of the ion-of the collective variables of the system.
acoustic fluctuationd,;. Both quantities shall be better de-  As will become clear, energy transfer starts to take place
fined later on, but we can already identlfy with the length  when the collective variables become chaotic. In general we
of the spatial region occupied by a single soliton, anaith shall see that while for moderate and small amplitudes of the
the typical wavelength of an ion-acoustic wave. It has beemerturbing ion-acoustic radiation solitons can be at least seen
shown that depending on the general conditions of the sysas metastable structures in the system, for large amplitudes
tem, the mentioned interaction may lead to intense energgransfer is fast and initial solitary structures are rapidly de-
transfer from the spectral region of long wavelengths to thestroyed. It has been argued that solitons are robust enough to
region with much shorter wavelengths, we callLif, with  describe final states of this type of systEb0—13. But what
Ls<<Lg,L;. As energy moves into modes with small wave- we see here is that even if some solitons are present in
lengths, dissipation becomes progressively more importanasymptotic states of large amplitude regimes, those solitons
However, as we are interested only in nonlinear transfer proare not the same as those present in earlier times—after the
initial solitons are destroyed there are long stretches of times
over which no organized structures are seen.
*Present address: School of Physics A28, University of Sydney, We finally mention that a number of works have already
New South Wales 2006, Australia. analyzed the interaction of localized structures and perturba-
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tions with longer wavelengths. In some of them only low r —
dimensional models were investigatgt¥4], and in others E”V|Eo| —k*. %)
where full simulations were performed, chaotic dynamics

was not the issue, although some nonintegrable features likerom relation(5) one sees that the only unstable modes are
soliton fusion have been reporté. those for which|Eg|?>>k?. Now when|E,|?—k?<1, I'<k.

We organize the paper as follows: in Sec. Il we introduceif this condition holds for the majority of modes,<d,,
the basic model and the numerical techniques to be use@n-acoustic fluctuations are mostly enslaved to the Lang-
here; in Sec. lll we discuss our initial conditions and performmyir field, and approximatiof3) can be used. On the other
the appropriate averages to single out the relevant collectivRand whenE,|? is not exceedingly small ion-acoustic fluc-
variables; in Sec. IV we compare the low dimensional modetyations withk<|E,| may not be completely enslaved to the
with full simulations, and in Sec. V we summarize the work. Langmuir field. Those free fluctuations are to be seen as

independent degrees of freedom whose presence is capable

Il. BASIC EQUATIONS AND NUMERICAL TECHNIQUES of destroying the integrability of the system. Given that the

maximum growth rate occurs fét,,,,~|Eo| and that the typi-

The one dimensional Zakharoy equations governing th%al length scale of a soliton arising from modulational insta-
Langmuir turbulence can be written in the adlmenS|onaIbiIity induced by a perturbation with wave vectaf,. is

form (6] given byL~27/knax (this means that the one way to cal-
i E+d2E=nE (1)  culate the soliton length is to imagine that one has as many
! X ’ solitons as the number of wavelengths along the space—a
ﬂfn—ﬁ§n=a§|E|2, ) more formal way shall be indicated shoitlyfree ion-

acoustic radiation of wave vectay=2x/L; (as a matter of

With d,=aldt, d,=alax. E(x,t) is the slowly varying am- fact this relation should serve as a definition for; L;
plitude of the high-frequency Langmuir field andx,t) are ~ =1/ki) typically appears in the spectral region for which
slow density fluctuations associated with the ion-acoustic L>L ®)
field. The nonlinear Schadinger (NLS) equation =TS

i,E+02E+|E|?’E=0 3) lll. COLLECTIVE VARIABLES AND LOW
DIMENSIONAL MODEL

is obtained from the s€fl), (2) if one is allowed to approxi- . . . .
! ! 41), )i ! b bprox! Our system is multidimensional but we would like to see

mate Eq.(2) in order to replaca with —|E|?+ const. This heth I sub f modes i ve than th
approximation is called subsonic because it requires ver¥/" ether a small subgroup of modes is more active than the

slow time scales thaitzn(x,t)<(9§n(x,t). emaining. If this is the case one could try to describe the

Our numerical approach is based on a pseudospectrgfas"r%;ﬁﬁ ;l:ir:: czstﬂeu]‘:lrl]lsdg&an;hcsh bgn aaIO\;vo)glr:]nae:[inosrl]ogal_
method. We assume spatial periodicity with basic lerigth P : ' PP P

. . . pears to be possible.
and expandE(x,t) andn(x,t) into Fourier series as To see how to obtain the low dimensional model, we

+N/2 proceed as follows. We first recall that as initial conditions
E(x,t)= >, Ep(t)emkx we are interested in configurations with isolated solitary
m=—N/2 structures. To represent this sort of states either analytically

or in the simulations we shall first determine the stationary
ko one-soliton solution for the full problem. We start by taking
n(x,t)zm_E - Nm(t)e™™, (4 5,=0 in Egs. (1) and (2) from which we first getn~
—|Eg|?+ const. Substituting this relation into E¢f), after
The basic wave vector is defined in terms of the systen$OMe algebra one obtains
lengthL ask=2=/L, and the integeN represents the num- _
ber of modes used in the simulations. To represent a continu- [E(x)|=v2¢ sechiéx), )

ous system one should take the lifit-. In practice we  \hijch is the expression we are looking faris an arbitrary

let N=1024, removing half of the modes to cure aliasingfactor that measures either the amplitude or the inverse width
problems associated with the fast Fourier transfdfRT) of the soliton. Given the soliton shape by E@), we may
routines. Comparison witiN=2048 indicates numerical now better define the soliton length scale, introduced
convergence in terms of number of modes. Accuracy is furearlier, asl=1/¢. We point out that due to the nonlineari-
ther checked by varying the tolerance factor of the numericafies and dispersion of the problem a precise balance between
integrator and by monitoring the conserved endrly We amplitude and width is needed. If we call=¢ and wq

find that relative fluctuations in energy are about one part in=1/¢, it is indeed seen that the following relation holds:
10°— 10 and that variations of tolerance factor do not pro-

duce alterations in the outcome of runs. 1

Solitons of amplitude/2a; are formed when a homoge- =W ®)
neous train of Langmuir radiation of amplitu¢ig,| ~a be- °
comes modulationally unstable. The subsonic growth Fate ~ We had mentioned that our interest is to see what could
for a perturbation with wave vectde superimposed on the happen with the soliton when it starts to interact with free
homogeneous train can be estimated as ion-acoustic radiation. Based on several results one knows

+N/2
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already that the basic soliton solution must be allowed to 2f
display temporal oscillations. The problem now is how to

describe those oscillations in a compact way. And the answer
is known: one first writes an ansatz solution for the soliton

field where amplitude is, however, not correlated to the

width according to the static relatidB). The ansatz solution

is therefore generically written in the form

X

E(x,t)zfza(t)secV6

dw/dt
o

where a(t), w(t), and ®(t) are all unknown as yet. The
phase factorp is included to incorporate the complex struc-
ture of the solutions of the sét), (2). As for the ion-acoustic
field interacting with the soliton field, one writes

n(x,t)=—|E(x,t)|2+[A(t)e'**+c.c]. (10)

Here we write the ion-acoustic field as a sum of the pure _
adiabatic response to the soliton field, plus some free radia- 2.5 5 7.5 10 12.5 15 17.5
tion that will actually interact with the isolated nonlinear
structure A(t) is the amplitude of the radiation field and c.c.
stands for complex conjugate. The next step is to derive the FIG. 1. Contour levels for the unperturbed dynamics:0; 7
appropriate governing equations for the four time depender vO0.1/2.

parametersa(t), w(t), ®(t), andA(t). This is more easily

done with the help of average Lagrangian techniques. Thgositive powers. Euler-Lagrange variational equations are

full Lagrangian from which one obtains the original $&t,  then applied to the independent variable@) and A(t) to
(2) reads produce a two-degrees-of-freedom conservative dynamical

system. If we seA—0 we have solutions corresponding to
free oscillations of the soliton shape. One can construct a
convenient phase space to visualize those oscillations. This is

done in Fig. 1 where we plat(t) versusw(t). The central
—|E|20, v+ E[(ﬁw)z—(o'?xv)z] dx, (12) fixed point of the figure is simply the static soliton solution
2 analytically represented by E(j), and the curves surround-

i , . ) ing the fixed point represent oscillatory modes of the soliton,
where the dynamical variable(x,t) is introduced in the  oa0h mode labeled by a particular constant energy that can be
form n(x,t)=d,v(x,t). The Euler-Lagrange equation for .,nonically evaluated from Lagrangidh3) with A=0. In
E(x,1), for instance, is written as the absence of ion-acoustic free fluctuations, one can esti-

or oL or mate the position of the fixed point,

Oy === == —dy ’ 12
Y9(E)  OE A(04E) (12 as=1lwg=17, (14)

w

i
sz dezf (E(E*&tE—E&tE*)—MXEF

with similar expressions holding for the other variables.ang the oscillatory frequency around the fixed point,
From expressiorf12) one obtains the complex conjugate of

Eqg. (1). In terms of averaged Lagrangians, what has to be [272
W= AN
1.2

~ag. (15

done now is to substitute into E@L1) the one-soliton solu- 5

tion, EQ.(9), plus the ion-acoustic field, E¢L0). Doing this

and performing the spatial integrations one arrives at Given thatl (=w,=1/a,, one had .~ 1/w,, and given that

C Taw?2 2w W22 2@l wj=L;>Lg one obtains a relationship involving the fre-
L~-25p®+|=—— =——+0.429 —3.290N/WWA quencies of soliton and ion-acoustic waves:
3w 3w?
A2 a2 0 <ws. (16
Kk (13 In other words, the components of the ion-acoustic field most

weakly enslaved to the Langmuir field are those for which
with »=a(t)?w(t). The various numerical factors appear in hoth length and time scales are much longer than the scales
Eq. (13) as a result of the integrals involving trigonometric corresponding to the solitons. One shall also mention that in
and hyperbolic functions. addition to trapped orbits around the fixed point, open orbits
The Euler-Lagrange equation with respect to the variableyre also possible. Those would represent decaying solitons
® indicates thaty is a constant of motion. As a matter of fact for which w— o asymptotically. The fact that one has
this feature has already been used to simplify the form of thgrapped and untrapped orbits implies that a separatrix does
Lagrangian(13) by dropping terms proportional tg up to  exist in which vicinity some amount of chaotic activity may
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FIG. 2. Poincarelots (w,w) of the low dimensional model witk;=0.0257 andy=/0.1/2.A,=0 in (a), 0.14 in(b), and 0.16 in(c).

be displayed if the system is in fact nonintegrable. The rolechaotic low dimensional degrees of freedom start to act like
of chaos, if chaos is indeed present, shall be better explorealrandom drive, continuously delivering energy in a diffusive
in the next section. way to all the other dynamical mod¢8]. Then one may
anticipate the soliton to decrease in intensity as its energy
flows away. In addition, short wavelength modes are ex-
IV. FULL SIMULATIONS VERSUS THE LOW pected to grow and appear in the spectrum. We shall inves-
DIMENSIONAL MODEL tigate some details of the transfer next.

At this point we make use of the numerical techniques
discussed in Sec. Il to compare results of full one dimen- A. Low dimensional analysis

sional simulations with the low dimensional model devel- | et ys first explore the integrability properties of the low
oped in the preceding section. Our full simulations give angimensjonal approximation. To do that we examine the sur-

account of the behavior of a stationary soliton submitted tqce of section obtained when we record the pair of variables

the action of long wavelength ion-acoustic perturbatlonsw’w each timeA=0 with A>0. In the context of the low

Our purpose is to test the robustness of the soliton SOlu“OBimensional analvsis we examine the svstem as an ion-
and see what happens when it loses stability due to the ion- y y

acoustic radiation. Before embarking on the simulations it ist?;gttjjsggir\:\tla;‘eF?; 'nlm_althaemgﬁ]u;ﬁ%ésiﬁgg?i;?ptlﬂﬁ dC:SmCrglr_

perhaps convenient to preview the basic system behavio . . ) ) i
based on possible results obtained with the low dimensiond _§pond|ng to other orbits are obtained with heIp_of the con
ition of constant energy. This constant energy is to be ob-

model. If the parameters of the low dimensional model areb

: . ined from Lagrangiail3). Parameters are specified in the
S.UCh that the corresponding nested orbits on the phase pla Zegend of Fig. 2. In both low dimensional and full simulation

w,w are mo;tlg rehgullar, one can ?XI%eCt ahneglil_q]ible influ-ye \work with a soliton ofa,=+0.1/2 and with a perturbing
ence exerted by the lon-acoustic field on the solitary struci,, 5. stic wave vectd;=0.0257. In the simulations the

ture in the full simulations, whether this structure is oscilla- | < \vave vectok is chosen ak=k;/2; smaller values and
tory or not. On the other hand it may well happen that the

low dimensional system is nonintegrable. Should this be theevenk_ki generate the same results. For those parameters,
case, and if low dimensional chaos is indeed well developed, L;~40Lq, (17
the influence of ion-acoustic waves may be strong enough to

destroy the solitary structure. In this case our low dimen-and

sional description may be expected to cease furnishing rea-

sonable results. What is likely to happen then is that the ws=10.8w; . (18
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One thus has> w; andL¢<L; as required by the assump- not make the exclusion. No problems of that sort occur with
tions on time and length scales. If one recalls the scalingthe Langmuir field, as solitons already involve a statistically
used to derive the normalized form of the Zakharov equagood number of modes.
tions, Egs.(1) and (2) [1], one finds that the normalized  We launch a solitary structure of shape given by &,
distance unit approximately corresponds to 65 Deby&yith a slight mismatch betweea(t=0) and 1t(t=0) such
lengths, where the Debye lengthp is written asAp  that the soliton can oscillate initially: we choosét=0)
52\/KTe/477n0e2, with « as the Boltzmann constanfe and = ,/0.1/2 andw(t=0)=1.2/a(t=0). For small enough val-
e® as the temperature and squared charge of the electronges of the ion-acoustic perturbation FigaBshows that the
respectively, and witmg as the equilibrium density of the solitary structure maintains its original amplitude without no-
system. Therefore, going momentarily over dimensionaticeable damping. It is seen from Fig(b3 that for this per-
quantities, one has, in the present cakg~as'65\p  turbing amplitude the number of modes involved in the dy-
~290\p and L;~40Ls~11600, where \p~10 3cm  namics does not change significantly as time evolves. It
for a fusion plasma, for instance. should be noticed that the present modes are those used to
One should also notice that relatioh8) says that if the construct the solitary structure.
system is indeed nonintegrable, a period one island is likely For larger values of the ion-acoustic amplitude, as in Fig.
to appear close to the central fixed point in thev phase 3(c), the soliton gradually damps away as time advances.
space. Fig. 3(d) shows that energy diffusion is now present, and that
Examining the phase plots of Fig. 2 one sees that foin the ion-acoustic field it is considerably much faster than in
small amplitudes the phase space is mostly regular. Howthe Langmuir field. Diffusion in the Langmuir field becomes
ever, for larger values two features become noticedbléhe  in fact almost imperceptible for even smaller perturbing am-
dynamics is indeed nonintegrable, afiid for large enough plitudes as we shall see a little later. Note that plateaus in the
values of the amplitude, chaotic dynamics is dominant. Irplots are formed when all the modes used in the simulation
addition, for sufficiently large amplitudés the present case become involved in the dynamics—at this stage energy
Ay~ 0.145) the central fixed point undergoes an inverse tanwould be dissipated if we had added dissipation terms for
gent bifurcation and disappears along with the unstable fixethrge values of wave vectors. In the present case represented
point of the period one island seen in FigbR All these in Figs. 3c) and 3d), the central fixed point is still present in
features strongly suggest that the stochastic drive mechanisiow dimensional phase plots, as indicated by Fign) 20ne
may be operative causing energy transfer into small spatialan therefore think in terms of stochastic drive models to
scales for moderately large values of the perturbation. Thiglescribe this type of regim@]. Although the orbits are cha-
type of behavior is found for other choices of the ratiosotic, the presence of the central fixed point offers some re-
wilws andL;/Lg as long as relationgs) and (16) are re-  sistance against rapid destruction of the low dimensional
spected. chaotic system. This low dimensional system might therefore
last long enough to serve as a drive delivering energy to
B. Full simulations short wavelength modes.
Now, if A is large enough, the localized solitary structure
is rapidly destroyed as indicated in FiggeBand 3f). En-
rgy is transferred to short wavelengths over short periods of
fime. We point out that this fast process occurs for ion fields

hel dv details of ter th fntense enough to destroy the central fixed point of the low
can help to study detalls of energy transfer that are not palginengjonal system, as indicated in Figc)2 In addition,

ticularly apparent in the space-time plots. The average NUMitfusive time scales for both Langmuir and ion-acoustic
ber of modes is denoted by(N? ;) for Langmuir and ion- fields become similar in this fast regime. Under such condi-
acoustic fields, respectively, and defined according to th@ons the stochastic drive may not be a very appropriate con-

The results of full simulations can be found in Fig. 3
where we make plots of the space-time history of the fiel

following [15]: cept since the lifetime of the solitary structure is too short.
We emphasize, therefore, that three distinct regimes ap-
> mAE,| pear to be present.
o m (i) If the initial perturbation is small, typicalllA<0.1,
(ND=—""", (19

5 there is no diffusion whatsoever towards small length scales.
% |Eml (i) For larger values of the perturbatioA~0.1, diffu-
sion is observed in both Langmuir and ion fields. But diffu-
sion in the ion field is much faster. If one diminishes not too

! m?|n|? much the perturbing amplitude and reduces the observation
(N-2>E _ (20) time, diffusion in the Langmuir field becomes almost imper-
' / 2 ceptible although diffusion in the ion field can still be ob-
Z L served. This is what can be seen in Figg)3where one

considers a perturbing amplitude smaller, but of the same
The primes in definition(20) mean that the ion modes into order of magnitude, than the one used in Figd)3In gen-
which energy is initially placed are to be excluded from theeral, within this range of perturbing amplitudes, the central
summation. We do this simply to obtain clearer results. Thdixed point of the low dimensional phase space is still
problem is that since all the initial ion-acoustic energy goespresent. This could explain the persistence of the solitary
into one single mode, the statistics becomes poor if we dstructure seen in Fig.(8). Since solitons are persistent and
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typically chaotic here, this regime is perhaps the most appraon-acoustic wave. Consideringa=+/0.1, for small am-
priately described by the stochastic drive. The oscillating lowplitudes,A<0.1, there is energy transfer neither in Langmuir
dimensional subsystem formed by the soliton and the ionnor ion-acoustic fields. For moderately large amplitudes,
acoustic wave would excite the remaining modes of the sys~0.1, diffusion is observed mostly in the ion-acoustic field,
tem. As mentioned, diffusion is very asymmetric, beingand for sufficiently large amplitudes\>0.1, diffusion is
much faster in the ion-acoustic field. But on examining Eq.fast and equally present in both fields. In the intermediary
(2), itis not unreasonable to say that the Langmuir field termyegime one can think in terms of a stochastic drive delivering
appearing in the form#2|E(x,t)|? on the right-hand side, can energy to modes with short wavelengths. The drive would be
act similarly to a source delivering energy to the ion field onformed as a result of the chaotic, but persistent, low dimen-
the left-hand side. The sourcelike behavior would enhanceional dynamics. Persistence follows because for not too
diffusion in the ion-acoustic field. large amplitudes the central fixed point of the low dimen-
(iii) Finally, when the amplitude attains sufficiently large sional phase plots is still unaffected by the interaction, which
values,A>0.1, fast diffusion takes place in both fields. In means that solitons last long enough to serve as stochastic
contrast to the preceding case, here the time scales for diffudrives. While soliton turbulence may well describe the re-
sion in both fields are similar. We point out that the centralgime of intermediary amplitudes, it may not be quite appro-
fixed point of the phase plots no longer exists for this rangepriate to describe the regime of large perturbing amplitudes
of relatively large perturbing amplitudes. Again, this could since solitons readily damp away there. The characteristics
explain the short life of the solitary structures, as seen in Figof the stochastic drive are not easy to obtain because the
3(e). dynamics on the chaotic spaet),w(t) is not pendulum-
like. Therefore some known results on pendulumlike settings
V. CONCLUDING REMARKS [8] cannot be directly used here. Details and comparisons
In this paper we examined the interaction of an ion-With the full simqla}t?ons are.cur_rentl.y under study. :
Recalling our initial question in this paper, the conclusion

acoustic ha”?“O”'C mode W'.th a so!|tary wave of the Za'is that the interaction of isolated solitons and ion-acoustic
kharov equations. Here the interest is to see how far a soli:

tary wave can resist before it is destroyed by Iongradiation alone is capable of driving energy transfer.
wavelength radiation and how this destruction takes place.
Although some recent works show that solitons can be stable
structures even in nonintegrable environmégats-13, what This work was partially supported by Financiadora de
we see here is that if chaos is strong enough in the lovEstudos e Projetod~INEP) and Conselho Nacional de De-
dimensional approximations, solitons are in fact destroyegenvolvimento Cienfico e Tecnolgico (CNPQ, Brazil. Nu-
and energy transfer towards small spatial scales takes plac@erical computing was performed on the Cray Y-MP2E at
We have observed that the dynamics can be divided intthe Universidade Federal do Rio Grande do Sul Supercom-
three categories as a function of the amplitude of the initiaputing Center.
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