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A quasilinear analysis of the relativistic electron cyclotron maser instability is presented. A
background plasma is assumed to support the wave motion, while the instability is driven by a
tenuous population of energetic electrons possessing a loss-cone feature. The analysis makes use
of an efBcient moment method. In this approach, evolution equations for the moments of particle
distribution function are derived from the particle kinetic equation. Then, a self-similar model of
the loss-cone electron distribution function is imposed. Simultaneously, the wave kinetic equation is
solved. The resulting fully self-consistent set of equations that governs the evolution of the particles
and unstable waves is solved numerically under physical parameters that represent typical solar
microwave burst sources.

PACS number(s): 52.35.—g

I. INTRODUCTION

The cyclotron maser instability is driven by a loss-
cone feature in the electron distribution function (or
more precisely, by an inverted population in momentum
space perpendicular to the magnetic field, hence the term
maser). The instability mechanism excites a variety of
wave modes in the vicinity of the electron cyclotron fre-
quency and/or its harmonics, including the fast electro-
magnetic mode. The excitation of fast waves leads to
direct amplification of radiation. Therefore the maser
instability is an important radiation mechanism with a
wide range of applicability in many astrophysical radio
sources, planetary and solar radio emissions, and lab-
oratory microwave generation devices. The instability
cannot be described under the nonrelativistic formalism
despite the fact that, in many applications, typical par-
ticle energy is nonrelativistic. Therefore it is called. the
relativistic electron cyclotron maser in the literature.

Over the past decade or so, an extensive body of lit-
erature on the subject of the cyclotron maser has been
accumulated [1—28]. Many articles in the literature em-
phasize the linear aspect of the instability, although a few
discussions concerning nonlinear aspects can be found.
Most of the nonlinear theories make use of the numerical
simulation method. The results &om these simulations
led to the conclusion that the dominant saturation mech-
anism for the maser instability is quasilinear saturation
of unstable waves with concomitant filling up of the loss
cone. Therefore it is appropriate to study the nonlinear
stage of the instability by employing quasilinear kinetic
theory.

In the past, some attempts have been made to employ
quasilinear theory to the maser instability [17,19,24,26].
In particular, Refs. [24,26] discuss calculations of in-
stantaneous anomalous transport rates that result from

maser process, while Ref. [17] discusses the solution of
the quasilinear kinetic equation by assuming a quasiper-
pendicular or exactly perpendicular propagation angle.
A recent work by Aschwanden [24], however, makes an
important step toward a comprehensive treatment of the
cyclotron maser instability within the context of quasi-
linear theory. In Ref. [24] a set of fully self-consistent
particle and wave kinetic equations is numerically solved
by assuming that the fundamental X mode prevails over
other modes. The analysis was carried out with specific
application to the solar microwave burst phenomenon.

In this paper we describe an alternative method for
a quasilinear analysis similar to that in Ref. [24]. The
method we introduce involves the use of an eKcient rno-
ment method under an assumed model time-dependent
particle distribution function which has a self-similar
form. The construction of the model distribution func-
tion is guided by the fact that in the nonlinear stage of
the instability the dominant feature in the particle evolu-
tion will be the filling up of the loss cone. This procedure
greatly reduces the computational time, although it may
not be strictly rigorous in a mathematical sense. Nev-
ertheless, with this method, we demonstrate that one
can obtain reliable physical results very effectively. To
test the reliability of the present approach, we make a
direct comparison with the more formal results obtained
in Ref. [24]. Indeed, it is found that results obtained with
this approach agree well with those of Ref. [24]. Further-
more, we also consider a parameter regime not considered
in Ref. [24], and conclude that the competition between
diferent unstable modes must be incorporated for a gen-
eral situation, and that large initial growth rate does not
necessarily mean that that particular mode will prevail
over other modes with smaller growth rates in the later
stage of evolution.

This paper is organized in the following manner. In
Sec. II the linear analysis of the maser instability is per-
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formed. Then Sec. III discusses the nonlinear stage of
the instability with the use of the aforementioned mo-
ment method. Finally, Sec. IV presents the conclusions
and discussion.

II. LINEAR STAGE
OP THE MASER INSTABILITY

The present analysis is concerned with high &equency
waves. Therefore the ions are treated as a neutralizing
background. The electrons are assumed to be comprised
of a relatively less energetic component and an energetic
species possessing a (one-sided) loss-cone feature in mo-
mentum space. The physical reason for the one sidedness
of the loss cone is the following. The cyclotron maser
emission is the source of Earth s auroral kilometric ra-
diation (AKR) [1] and the solar microwave bursts [24],
among other examples. In these cases, the loss-cone fea-
ture in the energetic electron population is a result of
diverging ambient magnetic field with monotonically de-
creasing strength, which reHects those electrons traveling
from a weak-field region to regions with increasing Beld
strength, hence the one-sided loss-cone.

In the present analysis, it is assumed that the density
of the background component is suKciently higher than
that of the energetic component so that the dispersion
relation can be determined &om the background com-
ponent while the energetic component gives rise to the
wave growth. For the case of the Earth's AKR, this as-
sumption is not appropriate. In fact, in the AKR source,
the loss-cone electrons may dominate over the cold com-
ponent. (In a concurrent article [32], the AKR case is
addressed. ) However, for solar microwave bursts, this as-
sumption is valid [24]. Therefore, in the present analysis,
we consider physical parameters appropriate for the solar
case.

As is customary, the ambient magnetic field is assumed
to lie in the z direction (Bp ——Bpe, ), and the wave vector
k lies in the xz plane, k = e ksin0+ e kcos0. In de-
termining the real &equency, background thermal efFects
are ignored.

The following cold-plasma (or, magnetoionic) disper-
sion relation is well known [29—31]:

Often, the X mode is further classified into X and Z
modes, where these are defined by their respective &e-
quency ranges: ~ ) ~x for the X mode, while ~~

cuz for the Z mode. Similarly, the 0 mode is
also further distinguished by respective &equency ranges
into 0 and W modes. These are de6ned by ~
and 0 ( u ( su~, respectively. Here, wx and wo
are cutofF frequencies defined, respectively, by ~x
[(0'+ 4(u„')'~'+ 0]/2 and ~o = [(0'+ 4'„')'r' —0]/2.
Further, uz and u~ are resonance &equencies defined
by A&2; = (I/~2)[~~ + (~H —4~„0 cos 0) ~2] ~ and

urw = (1/~2)[or~2 —(su~4 —4u„A cos 0) r ] ~, respec-
tively. Here, ~H = (u12 + 02)ir is the familiar upper-
hybrid &equency.

In evaluating the linear growth rate for the maser in-
stability, we employ the weakly (or, semi) relativistic ap-
proximation. That is, we replace the relativistic Lorentz
factor p = (1 + p2/m2c2) i~ by 1 everywhere, except
when it appears in the wave-particle resonance condition,
where it is replaced by 1+p2/2m c . In what follows, we
introduce a normalized momentum variable, u = p/mc.
Then, the linear growth rate expression can be shown to
reduce to [31]
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where o = +1 for the X mode, and o = —1 for the
0 mode. (The definitions for the X and 0 modes are
well known, and thus are not repeated here. ) In Eq.
(1), N = ck/w is the index of refraction; 0 = eBp/mc
is the electron cyclotron frequency, e being the electron
charge, m being the electron mass, and c being the speed
of light in vacuo; and ur2 = 47rnpe2/m is the square of the
electron plasma &equency, no being the number density
associated with the background electrons.

b = —Nu(1 —p2) ~ sin 0.0

In Eq. (2), p, is the cosine of the momentum pitch an-
gle, and f (u, p) is the total (background plus energetic)
electron momentum distribution function.

The background component is modeled by an isotropic
Maxwellian distribution, while the energetic component
possessing a loss-cone feature is modeled as shown below:

1 ( u2)
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are the growth rates corresponding to the fundamental X
mode [denoted by Xl —Fig. 2(a)], fundamental 0 mode
[designated as 01—Fig. 2(b)], and the second harmonic
X mode [denoted by X2 —Fig. 2(c)]. The Z mode is
stable in this case. Clearly, the most dominant mode is
the Xl mode, in agreement with Ref. [24], in which it
is assumed at the outset that the X1 mode dominates
over other modes. The maximum growth rate for the Xl
mode is an order of magnitude larger than that for the
01 mode, which in turn is larger than that of X2.

It is known that, among the various physical param-
eters, the most sensitive parameter that determines the
relative importance of various unstable modes is the &e-
quency ratio u„/A. Therefore we now consider the effect
of variation on this parameter. Speci6cally, we hold other
parameters fixed, but increase ~„/0 from 0.1 to 0.2. The
results are shown in Fig. 3. Figure 3 is in the same format
as Fig. 2 (Z axis denotes pi, /0, 4 axis denotes u/0, and
Y' axis corresponds to 0). Note that Ref. [24] considers
only the case of u„/0 = O.l. It turns out that in the
case of u„/0 = 0.2 the three most important unstable
modes are the fundamental X and 0 modes (denoted by
X and 0, respectively), and the Z mode. The growth
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FIG. 2. Linear growth rates for (a) fundamental X mode
(Xl); (b) fundamental 0 mode (Ol); and (c) second harmonic
X mode (X2). The 4 axis stands for the normalized frequency
u/0, Y axis is for the angle 8 {in degrees), and the Z axis is
the growth rate pg/A. The physical parameters are n /no =
0.01, u„/0 = 0.1, crs = 0.02, cr = 0.2, b = 0.1017, and A = 0.
Note that the X1 mode growth rate is an order of magnitude
higher than the rest.

FIG. 3. Linear growth rates for (a) fundamental X mode;
(b) fundamental 0 mode; and (c) the Z mode. Axis labels are
the same as in Fig. 2. The parameters used in the figure are
the same as in Fig. 2, except u„/0 = 0.2. Note that in this
case, all three modes have comparable growth rates, with the
X mode growing at about twice the Z mode, which is in turn
growing at a somewhat faster rate than the 0 mode.
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rate for the X mode is shown in Fig. 3(a), Fig. 3(b) cor-
responds to the 0 mode growth rate, and finally, the Z
mode growth rate is shown in Fig. 3(c). The maximum
growth rates for all three modes are comparable, with the
X mode growth rate about twice that of the other two.
Based upon this behavior, one might be tempted to con-
clude that the X mode is relatively the most important
mode, and that in the nonlinear stage, the X mode will
saturate to the highest wave intensity. However, such an
intuitive conclusion proves to be premature. As we will
show in the next section, among the three modes, the X
mode does amplify. at the fastest rate, but in the satu-
ration stage it is the Z mode which reaches the highest
level of intensity.

where

2

ie. V„*i
(1+%2+ T2) ¹ sin 0

x [Ksin8+ T (cos8 —Nup)] 1 (6)

+—6J„'(6)
0

III. QUASILINEAH STACK
OF MASER INSTABILITY

The model distribution function (3) can be used in the
study of nonlinear evolution of the maser instability in
the following sense. Although Eq. (3) is not a solution
to the particle kinetic equation in a rigorous sense, we
nevertheless can approximate the nonlinear stage of the
particle evolution by allowing the parameters o. and L to
evolve in time, while maintaining the essential functional
form as described by Eq. (3). The primary motivation
for such an approximate approach is the simplicity, which
is based upon a reasonable physical ground. Putting it
another way, we impose a self-similar form of the solu-
tion. The parameters o, and A are related to appropriate
moments of the particle distribution (3) itself. Thus, by
taking appropriate moments of the kinetic equation for
f (u, p, t), one can construct the evolution equations for
n(t) and A(t). Such a scheme is known as the moment
method [33]. In what follows, we shall consider that the
change in the background temperature during the quasi-
linear evolution process is minimal so that we can hold
n0 constant in time. Moreover, the parameter b, which
determines the loss-cone angle, is not expected to vary
as a result of the wave process, since the loss-cone an-
gle is determined by global configuration of the magnetic
6eld inhomogeneity. Thus, within the context of uniform
medium theory (which is employed in the present analy-
sis), we may assume that b is also a constant.

The quasilinear particle kinetic equation is well known,
and it is given by

( O D„„Off''
Ot u2 i Ou u Op)

1 O ( Of D~~ Of

In the above, ei, = bEi, /~bEi,
~

is the unit electric field
vector for the spectral electric field component bEg. Sim-
ilarly, the wave kinetic equation is given by

—bEk ——2p][,bEI, .
0 2

Bt

From Eq. (6), the following equations for appropriate
moments can be readily derived:

( 2) 2 ds ~(D f tlat f
l~

E
""O

For the present purpose, a set of parameters (w, 8) is
more natural than k. Therefore the following relation is
useful for our purpose:

1 OO

d kbEi, ——2vr dcose d(u bE ((u, 0)—1 0 C

B
X

(1+T2)N sin 8

Before we move on, let us introduce the following normal-
ized time variable and normalized spectral wave energy
density:

7l 8 bE2) dk~ei, V„*~m'c4u
COn=1

u' nO
xb

~

1+ —— —Nupcos&
~

A
)2 td

= 1, A& ——p —NucosO,

-=Dt, z(., e) =8."'E"".
c3 B20

It is also interesting to note that the ratio of the wave
energy density to particle energy density can be expressed
as
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~mave f d'k(~&g/&~) [I+N'(I —
I

~.e I')]
nome' f dsu (u'/2) f (u, p)

8 0' B 1+T
3 ~2o2+(n/no)n2 o 0

' (1+T )Nsin 0 4 I+K +T )
In the above k = k/ I

& I.
Finally, we note that the following relations can be established from the model distribution fun«ion Eq. (3):

d 2 ne d—(u') = 3—'~

flap

d7

d n, b dA

no (1+4)2 dv

(10)

From these, the moment kinetic equation (8) and the wave kinetic equation (7) can now be expressed in terms of
various normalized quantities as follows:

d 2 np 02—cl(1") = — — d cos 0 d(dS((d, 0)r[~, 0
I n(r) L l(7 )]6 (ca/ 0 'r),d7. 3a(~) n, u)„o 0

—A(v) = — — d cos 0 d~ S(~, 0)g[~, 0
I n(v), A(~)] Z(~, 0, ~),

d [1+A(7.)]' no 0'
d7- b n 0

8
~( 0 ) =2r[ 0I ( ) &( )]~( 0 )07

where I' is defined in Eq. (4). Moreover,

S(~, 0) = Q(cu, 0) ~ 1 Tcd&cos0 t 1 —T trJ + ld—+ ——
(1+K2+T2) Nsin 0 0 2 (Tu —Ocos0)2

~
1+T2w2 —u (i2)

where B(u, 0) is defined in Eq. (3), and

n[~ 0
I ~(~), &(~)] = —z „",). 9(n& —~) dpQ+(p)+ o(~ —nn) o(1 —~2) d&) q„+(„)

—1 Pn

(i3)

where P+(p) is defined in Eq. (4).
In the numerical scheme employed in the present pa-

per, we assume that the initial wave energy contained in
each unstable mode is the same. We assume that the ini-
tial wave spectruin E(u, 0, 0) is constant over an initially
unstable domain. Then we assign the value for each wave
mode in such a way that the total wave energy [integrated
over w and 0 according to Eq. (9)] is the same for all the
unstable modes. Specifically, we set 8 „,(0)/f„„q;,i, (0)
= 1 x 10 for all the modes. We then proceed to numer-
ically solve Eq. (11). We consider two sets of parameters
corresponding to Figs. 2 and 3. For the first case (corre-
sponding to the initial set of parameters exactly the same
as in Fig. 2), the results of the quasilinear moment calcu-
lation are displayed in Fig. 4. In the figure, the quantity
n(v) is plotted against the normalized time w in the top
panel. The second panel shows the evolution of A(7)
versus v. . Finally, in the bottom panel, the total wave
energy densities (integrated over ur and 0) corresponding
to Xl, 01, and X2 modes are shown versus w in loga-

rithmic scale. The curve that saturates to the highest
level is that of Xl. The middle curve corresponds to Ol,
and the curve with the lowest saturation level is that of
X2. In this case, the quasilinear saturation level gener-
ally follows the trend indicated by the initial growth rate
for each mode. That is, the mode that has the highest;
level of initial growth rate saturates to the highest wave
level. These results are again in good agreement with
those obtained in Ref. [24].

Figure 5 shows the run with the second set of param-
eters (i.e. , those of Fig. 3). The figure is in the same
format as Fig. 4. The reader may recall that this run
is for a higher value of the frequency ratio, u~/0 = 0.2
instead of 0.1, while other parameters are held fixed as in
Figs. 2 and 4. Recall also that initially the X, Z, and 0
modes all had comparable growth rates, but the X mode
growth rate was about twice that of the rest. Consistent
with this feature, it can be observed that the X mode
grows at the fastest rate. However, a notable aspect of
the present nonlinear calculation is that the X mode satu-
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rates at a somewhat lower intensity when compared with
the Z mode. (Note that, unlike Fig. 4, the bottom panel
is in linear scale. ) The 0 mode is relatively unimportant
when compared with the other two modes. Nevertheless,
its saturation amplitude is non-negligible.

The reason the Z mode with lower growth rate nonlin-
early dominates the X mode can be understood as fol-
lows. We consider, for instance, an X mod. e wave, with

1.05 0 and 0 30' [see Fig. 3(a)]. The weakly rela-
tivistic resonance condition shows that the extremities of
the resonance ellipse are u+ 1.70 and u 0.028. One
of the extremities of the ellipse is well inside the loss-cone
region, but most of the ellipse is located in velocity space
where the density of particles is negligible and does not
contribute to growth. When the loss cone is partially
filled, the relevant region of amplification is a8'ected and

the growth rate quickly disappears.
On the other hand, we consider a Z mode wave, with

1.015 0 and 0 80' [see Fig. 3(c)]. The extremities
of the resonant ellipse are now u+ 0.29 and u 0.049.
The resonant ellipse is entirely in. the loss cone region of
velocity space. When the loss cone starts to be filled by
quasilinear di6'usion, the growth rate may decrease, but
amplifying conditions remain longer than for the case of
the X mode.

Finally, Fig. 6 shows the energetic component of the
distribution function (see Fig. 1 for the description) at
the end of the run shown in Fig. 4. For this case, at the
time ~ = 5 x 10, o. = 0.1948 and A = 1.381. The figure
clearly shows the partially filled loss cones. For the run
shown in Fig. 5, at ~ = 5 x 10, n = 0.1949 and 4 =
1.227. The final distribution is not shown because it is
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parameters are exactly the same as used in Fig. 2. The nor-
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negligible wave energies compared to the Xl mode.
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FIG. 5. The same as Fig. 4, except that this case corre-
sponds to u„/fl = 0.2. [(a) is for o.(r), (b) is for A(r), and
(c) is far normalized wave energy densities for X, Z, and 0
modes. ] Note that despite the fact that the X mode initially
grows the fastest, the Z mode has a higher saturation ampli-
tude. Note also that, unlike Fig. 4, the vertical axis in panel
(c) is in linear scale.
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