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A quasilinear analysis of the relativistic electron cyclotron maser instability is presented. A
background plasma is assumed to support the wave motion, while the instability is driven by a
tenuous population of energetic electrons possessing a loss-cone feature. The analysis makes use
of an efficient moment method. In this approach, evolution equations for the moments of particle
distribution function are derived from the particle kinetic equation. Then, a self-similar model of
the loss-cone electron distribution function is imposed. Simultaneously, the wave kinetic equation is
solved. The resulting fully self-consistent set of equations that governs the evolution of the particles
and unstable waves is solved numerically under physical parameters that represent typical solar

microwave burst sources.

PACS number(s): 52.35.—g

I. INTRODUCTION

The cyclotron maser instability is driven by a loss-
cone feature in the electron distribution function (or
more precisely, by an inverted population in momentum
space perpendicular to the magnetic field, hence the term
maser). The instability mechanism excites a variety of
wave modes in the vicinity of the electron cyclotron fre-
quency and/or its harmonics, including the fast electro-
magnetic mode. The excitation of fast waves leads to
direct amplification of radiation. Therefore the maser
instability is an important radiation mechanism with a
wide range of applicability in many astrophysical radio
sources, planetary and solar radio emissions, and lab-
oratory microwave generation devices. The instability
cannot be described under the nonrelativistic formalism
despite the fact that, in many applications, typical par-
ticle energy is nonrelativistic. Therefore it is called the
relativistic electron cyclotron maser in the literature.

Over the past decade or so, an extensive body of lit-
erature on the subject of the cyclotron maser has been
accumulated [1-28]. Many articles in the literature em-
phasize the linear aspect of the instability, although a few
discussions concerning nonlinear aspects can be found.
Most of the nonlinear theories make use of the numerical
simulation method. The results from these simulations
led to the conclusion that the dominant saturation mech-
anism for the maser instability is quasilinear saturation
of unstable waves with concomitant filling up of the loss
cone. Therefore it is appropriate to study the nonlinear
stage of the instability by employing quasilinear kinetic
theory.

In the past, some attempts have been made to employ
quasilinear theory to the maser instability [17,19,24,26].
In particular, Refs. [24,26] discuss calculations of in-
stantaneous anomalous transport rates that result from
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maser process, while Ref. [17] discusses the solution of
the quasilinear kinetic equation by assuming a quasiper-
pendicular or exactly perpendicular propagation angle.
A recent work by Aschwanden [24], however, makes an
important step toward a comprehensive treatment of the
cyclotron maser instability within the context of quasi-
linear theory. In Ref. [24] a set of fully self-consistent
particle and wave kinetic equations is numerically solved
by assuming that the fundamental X mode prevails over
other modes. The analysis was carried out with specific
application to the solar microwave burst phenomenon.

In this paper we describe an alternative method for
a quasilinear analysis similar to that in Ref. [24]. The
method we introduce involves the use of an efficient mo-
ment method under an assumed model time-dependent
particle distribution function which has a self-similar
form. The construction of the model distribution func-
tion is guided by the fact that in the nonlinear stage of
the instability the dominant feature in the particle evolu-
tion will be the filling up of the loss cone. This procedure
greatly reduces the computational time, although it may
not be strictly rigorous in a mathematical sense. Nev-
ertheless, with this method, we demonstrate that one
can obtain reliable physical results very effectively. To
test the reliability of the present approach, we make a
direct comparison with the more formal results obtained
in Ref. [24]. Indeed, it is found that results obtained with
this approach agree well with those of Ref. [24]. Further-
more, we also consider a parameter regime not considered
in Ref. [24], and conclude that the competition between
different unstable modes must be incorporated for a gen-
eral situation, and that large initial growth rate does not
necessarily mean that that particular mode will prevail
over other modes with smaller growth rates in the later
stage of evolution.

This paper is organized in the following manner. In
Sec. II the linear analysis of the maser instability is per-
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formed. Then Sec. IIl discusses the nonlinear stage of
the instability with the use of the aforementioned mo-
ment method. Finally, Sec. IV presents the conclusions
and discussion.

II. LINEAR STAGE
OF THE MASER INSTABILITY

The present analysis is concerned with high frequency
waves. Therefore the ions are treated as a neutralizing
background. The electrons are assumed to be comprised
of a relatively less energetic component and an energetic
species possessing a (one-sided) loss-cone feature in mo-
mentum space. The physical reason for the one sidedness
of the loss cone is the following. The cyclotron maser
emission is the source of Earth’s auroral kilometric ra-
diation (AKR) [1] and the solar microwave bursts [24],
among other examples. In these cases, the loss-cone fea-
ture in the energetic electron population is a result of
diverging ambient magnetic field with monotonically de-
creasing strength, which reflects those electrons traveling
from a weak-field region to regions with increasing field
strength, hence the one-sided loss-cone.

In the present analysis, it is assumed that the density
of the background component is sufficiently higher than
that of the energetic component so that the dispersion
relation can be determined from the background com-
ponent while the energetic component gives rise to the
wave growth. For the case of the Earth’s AKR, this as-
sumption is not appropriate. In fact, in the AKR source,
the loss-cone electrons may dominate over the cold com-
ponent. (In a concurrent article [32], the AKR case is
addressed.) However, for solar microwave bursts, this as-
sumption is valid [24]. Therefore, in the present analysis,
we consider physical parameters appropriate for the solar
case.

As is customary, the ambient magnetic field is assumed
to lie in the z direction (Bo = Bye,), and the wave vector
k lies in the zz plane, k = e ksinf + e,kcosd. In de-
termining the real frequency, background thermal effects
are ignored.

The following cold-plasma (or, magnetoionic) disper-
sion relation is well known [29-31]:
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where 0 = +1 for the X mode, and ¢ = —1 for the
O mode. (The definitions for the X and O modes are
well known, and thus are not repeated here.) In Eq.
(1), N = ck/w is the index of refraction; 2 = eBy/mc
is the electron cyclotron frequency, e being the electron
charge, m being the electron mass, and c being the speed
of light in vacuo; and wz = 4mnoe?/m is the square of the
electron plasma frequency, no being the number density
associated with the background electrons.

Often, the X mode is further classified into X and Z
modes, where these are defined by their respective fre-
quency ranges: w > wyx for the X mode, while wo <
w < wg for the Z mode. Similarly, the O mode is
also further distinguished by respective frequency ranges
into O and W modes. These are defined by w > w,
and 0 < w < ww, respectively. Here, wx and wo
are cutoff frequencies defined, respectively, by wx =
(2% + 4w2)'/2 + Q]/2 and wo = [(R? + 4w2)'/2 — Q]/2.
Further, wz and ww are resonance frequencies defined
by wz = (1/V2)[w) + (wh — 4w2Q? cos? 9)*/2]1/2 and

= (1/V?2)[w¥ — (v} — 4w2Q? cos? 0)/2)1/2, respec-
tively. Here, wy = (w2 + ©2)1/2 is the familiar upper-
hybrid frequency.

In evaluating the linear growth rate for the maser in-
stability, we employ the weakly (or, semi) relativistic ap-
proximation. That is, we replace the relativistic Lorentz
factor v = (1 + p?/m2c®)'/2 by 1 everywhere, except
when it appears in the wave-particle resonance condition,
where it is replaced by 1+ p?/2m?c2. In what follows, we
introduce a normalized momentum variable, u = p/mec.
Then, the linear growth rate expression can be shown to
reduce to [31]
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In Eq. (2), p is the cosine of the momentum pitch an-
gle, and f(u,u) is the total (background plus energetic)
electron momentum distribution function.

The background component is modeled by an isotropic
Maxwellian distribution, while the energetic component
possessing a loss-cone feature is modeled as shown below:
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In the above model, n. is the density associated with
the energetic component, which is assumed to be much
lower than that of the isotropic component (n. < ngp).
The parameter A ranges from 0 to co. When A = oo,
G(p) = 1, and the model distribution (3) reduces to the
sum of two isotropic Maxwellians with different temper-
atures and number densities. On the other hand, when
A = 0, the model distribution (3) depicts a component
with a complete one-sided loss cone, in the sense that
the particle number density at g = 1 is 0. Thus it is ex-
pected that, in general, the excitation of unstable modes
will tend to increase the value of A, so as to fill up the loss
cone and remove the source of instability. Indeed, quasi-
linear analysis that follows in the next section shows this
behavior. The parameter § controls the angle of the loss
cone. One can easily compute the loss-cone angle by sim-
ply taking the second derivative of Eq. (3) with respect
to u, and setting it equal to zero. This gives

cosfrc =14 681n(2 — V3).

Figure 1 shows the three-dimensional surface and con-
tour plots of the energetic component of the particle
distribution, f.(u,p) = (7%/2a®) L exp(—u?/a?)G(u) (Z
axis), of the model distribution function [see Eq. (3)] ver-
sus two normalized momentum components, v = up
(denoted in the figure by X) and u) = u(1 — p?)'/2
(denoted by Y), for energetic electron temperature T =
10 keV [corresponding to a = (2T/mc?)/? = 0.2, mc?
being 500 keV]; loss-cone angle 8¢ = 30° [correspond-
ing & given by § = (cosfrc — 1)/In(2 — v/3) = 0.1017];
and A = 0 (complete loss cone). This choice of parame-
ters is made so that direct comparison can be made with
Ref. [24]. In Ref. [24], an additional choice of parame-
ters, namely, that of the background electron tempera-
ture Tp =100 eV [corresponding to ag = (2To/mc2)1/2 =
0.02], and the ratio of energetic to background electron
J

PF(p) =
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FIG. 1. Three-dimensional surface and two-dimensional
contour plots of the model distribution function f(u,u) (only
the energetic component is shown — see the text). The X
axis stands for u; = u (1l — pz)l/z, Y axis is u| = upy, and
the Z axis is the distribution function. The parameters used
in the figure are @ = 0.2, § = 0.1017, and A = 0.

number density, n./no = 0.01, is also made. Although
we do not show the background component in Fig. 1, in
the subsequent linear and quasilinear analysis we shall
adopt such values for these additional parameters. Here,
L and || are defined with respect to the ambient magnetic
field vector.

Using the model distribution function (3), one can
show that the growth rate (2) reduces to

37=—2f32 (emn—w/;waﬂm
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where O(x) is the step function; ©(z) =1 for = > 0 and
O(z) = 0 otherwise, and
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In Fig. 2, the growth rate (4) (Z axis) is plotted
against the normalized real frequency w/Q (X axis) and
propagation angle § (Y axis) in three-dimensional sur-
face and contour plot formats. The physical parameters
are chosen exactly as in Fig. 1 (that is, ap = 0.02, «
= 0.2, 6 = 0.1017, n./ng = 0.01, and A = 0), with an
additional parameter, w,/2 = 0.1. Again, the choice of

26 a? 26

[
wp/2 = 0.1 is made so that the present result can be di-
rectly compared with that of Ref. [24]. In the figure, the
Z axis denotes the normalized growth rate i /Q, the X
axis denotes the normalized frequency w/?, and the Y
axis corresponds to the propagation angle 6 (in degrees).
In the calculation, we have kept up to n = 3 terms in the
Bessel function series. Specifically, plotted in the figure
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are the growth rates corresponding to the fundamental X
mode [denoted by X1 — Fig. 2(a)], fundamental O mode
[designated as O1 — Fig. 2(b)], and the second harmonic
X mode [denoted by X2 — Fig. 2(c)]. The Z mode is
stable in this case. Clearly, the most dominant mode is
the X1 mode, in agreement with Ref. [24], in which it
is assumed at the outset that the X1 mode dominates
over other modes. The maximum growth rate for the X1
mode is an order of magnitude larger than that for the
O1 mode, which in turn is larger than that of X2.
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1x10°
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FIG. 2. Linear growth rates for (a) fundamental X mode
(X1); (b) fundamental O mode (O1); and (c) second harmonic
X mode (X2). The X axis stands for the normalized frequency
w/Q, Y axis is for the angle 6 (in degrees), and the Z axis is
the growth rate i /Q. The physical parameters are n./no =
0.01, wp/Q = 0.1, ap = 0.02, @ = 0.2, § = 0.1017, and A = 0.
Note that the X1 mode growth rate is an order of magnitude
higher than the rest.

4911

It is known that, among the various physical param-
eters, the most sensitive parameter that determines the
relative importance of various unstable modes is the fre-
quency ratio w,/Q. Therefore we now consider the effect
of variation on this parameter. Specifically, we hold other
parameters fixed, but increase w, /2 from 0.1 to 0.2. The
results are shown in Fig. 3. Figure 3 is in the same format
as Fig. 2 (Z axis denotes v, /€2, X axis denotes w/Q, and
Y axis corresponds to #). Note that Ref. [24] considers
only the case of w,/Q = 0.1. It turns out that in the
case of w,/2 = 0.2 the three most important unstable
modes are the fundamental X and O modes (denoted by
X and O, respectively), and the Z mode. The growth

6x10°
4x10°
2x10°
0x10° 8
2x105F

1.04

3x10°
2x10°
1x10°
0x10%
Ax10%fF
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0x10%
-1x10°
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FIG. 3. Linear growth rates for (a) fundamental X mode;
(b) fundamental O mode; and (c) the Z mode. Axis labels are
the same as in Fig. 2. The parameters used in the figure are
the same as in Fig. 2, except w,/2 = 0.2. Note that in this
case, all three modes have comparable growth rates, with the
X mode growing at about twice the Z mode, which is in turn
growing at a somewhat faster rate than the O mode.
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rate for the X mode is shown in Fig. 3(a), Fig. 3(b) cor-
responds to the O mode growth rate, and finally, the Z
mode growth rate is shown in Fig. 3(c). The maximum
growth rates for all three modes are comparable, with the
X mode growth rate about twice that of the other two.
Based upon this behavior, one might be tempted to con-
clude that the X mode is relatively the most important
mode, and that in the nonlinear stage, the X mode will
saturate to the highest wave intensity. However, such an
intuitive conclusion proves to be premature. As we will
show in the next section, among the three modes, the X
mode does amplify at the fastest rate, but in the satu-
ration stage it is the Z mode which reaches the highest
level of intensity.

III. QUASILINEAR STAGE
OF MASER INSTABILITY

The model distribution function (3) can be used in the
study of nonlinear evolution of the maser instability in
the following sense. Although Eq. (3) is not a solution
to the particle kinetic equation in a rigorous sense, we
nevertheless can approximate the nonlinear stage of the
particle evolution by allowing the parameters o and A to
evolve in time, while maintaining the essential functional
form as described by Eq. (3). The primary motivation
for such an approximate approach is the simplicity, which
is based upon a reasonable physical ground. Putting it
another way, we impose a self-similar form of the solu-
tion. The parameters a and A are related to appropriate
moments of the particle distribution (3) itself. Thus, by
taking appropriate moments of the kinetic equation for
f(u, p,t), one can construct the evolution equations for
a(t) and A(t). Such a scheme is known as the moment
method [33]. In what follows, we shall consider that the
change in the background temperature during the quasi-
linear evolution process is minimal so that we can hold
ag constant in time. Moreover, the parameter &, which
determines the loss-cone angle, is not expected to vary
as a result of the wave process, since the loss-cone an-
gle is determined by global configuration of the magnetic
field inhomogeneity. Thus, within the context of uniform
medium theory (which is employed in the present analy-
sis), we may assume that ¢ is also a constant.

The quasilinear particle kinetic equation is well known,
and it is given by

of _ 11, 0f Dy, 0f
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where
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In the above, ex = §Eyx/|0Ex | is the unit electric field
vector for the spectral electric field component §Eg. Sim-
ilarly, the wave kinetic equation is given by

8
0B = 2B )

From Eq. (6), the following equations for appropriate
moments can be readily derived:
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For the present purpose, a set of parameters (w, ) is
more natural than k. Therefore the following relation is
useful for our purpose:

1 oo 2
/dskéEﬁ = 271'/ dcose/ dw ¥5E2(w,€)
—1 0 C

R
X
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Before we move on, let us introduce the following normal-
ized time variable and normalized spectral wave energy
density:

O3 §E%(w,0)
T=Qt, &(w,l) = ﬂc—:’_—Bg_'
It is also interesting to note that the ratio of the wave

energy density to particle energy density can be expressed
as
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Finally, we note that the following relations can be established from the model distribution function Eq. (3):
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From these, the moment kinetic equation (8) and the wave kinetic equation (7) can now be expressed in terms of

various normalized quantities as follows:

%a(r) = 3a2('r } e wz / dcosH/ dwS(w, 0w, | (1), A(T)])E(w, 8, 7),
%A(T) = —[1—+%ﬁ'—)—]— %E g—;/o dcosO/o. dw S(w,0)n[w, 0 | a(r), A(T)] E(w, 6, T), (11)

%S(w,G,T) =2T(w,0 | a(r), A(T)] E(w, 8, T),

where I is defined in Eq. (4). Moreover,
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where P (p) is defined in Eq. (4).

In the numerical scheme employed in the present pa-
per, we assume that the initial wave energy contained in
each unstable mode is the same. We assume that the ini-
tial wave spectrum £(w,#,0) is constant over an initially
unstable domain. Then we assign the value for each wave
mode in such a way that the total wave energy [integrated
over w and 0 according to Eq. (9)] is the same for all the
unstable modes. Specifically, we set Eyave(0)/Eparticie(0)
=1 x 10~ for all the modes. We then proceed to numer-
ically solve Eq. (11). We consider two sets of parameters
corresponding to Figs. 2 and 3. For the first case (corre-
sponding to the initial set of parameters exactly the same
as in Fig. 2), the results of the quasilinear moment calcu-
lation are displayed in Fig. 4. In the figure, the quantity
a(r) is plotted against the normalized time 7 in the top
panel. The second panel shows the evolution of A(r)
versus 7. Finally, in the bottom panel, the total wave
energy densities (integrated over w and ) corresponding
to X1, O1, and X2 modes are shown versus 7 in loga-

+,—
(13)

rithmic scale. The curve that saturates to the highest
level is that of X1. The middle curve corresponds to O1,
and the curve with the lowest saturation level is that of
X2. In this case, the quasilinear saturation level gener-
ally follows the trend indicated by the initial growth rate
for each mode. That is, the mode that has the highest
level of initial growth rate saturates to the highest wave
level. These results are again in good agreement with
those obtained in Ref. [24].

Figure 5 shows the run with the second set of param-
eters (i.e., those of Fig. 3). The figure is in the same
format as Fig. 4. The reader may recall that this run
is for a higher value of the frequency ratio, w,/ = 0.2
instead of 0.1, while other parameters are held fixed as in
Figs. 2 and 4. Recall also that initially the X, Z, and O
modes all had comparable growth rates, but the X mode
growth rate was about twice that of the rest. Consistent
with this feature, it can be observed that the X mode
grows at the fastest rate. However, a notable aspect of
the present nonlinear calculation is that the X mode satu-
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rates at a somewhat lower intensity when compared with
the Z mode. (Note that, unlike Fig. 4, the bottom panel
is in linear scale.) The O mode is relatively unimportant
when compared with the other two modes. Nevertheless,
its saturation amplitude is non-negligible.

The reason the Z mode with lower growth rate nonlin-
early dominates the X mode can be understood as fol-
lows. We counsider, for instance, an X mode wave, with
w ~ 1.05 Q and 6 ~ 30° [see Fig. 3(a)]. The weakly rela-
tivistic resonance condition shows that the extremities of
the resonance ellipse are u; ~ 1.70 and u_ ~ 0.028. One
of the extremities of the ellipse is well inside the loss-cone
region, but most of the ellipse is located in velocity space
where the density of particles is negligible and does not
contribute to growth. When the loss cone is partially
filled, the relevant region of amplification is affected and

0.201 T T T T
0.200
0.199
0.198
0.197
0.196
0.195

0.194 1 1 1 1 Il
0x10° 1x10° 2><1057_3><105 4x10° 5x10°

14 T
1.2
1.0
08 [
06 -
04 -
0.2

L 1 1

0.0
0 x 10°

X1 (C)

o1 3

10-¢ 3
X2 E

5

10~
0 x 10°

L 1

2><1057_3><105 4 x 10°

1 x10° 5 x 10°
FIG. 4. Plot showing the evolution of (a) a(7), (b) A(7),
and (c) the total (integrated over w and ) normalized wave
energy density for each mode (X1, O1, and X2). The initial
parameters are exactly the same as used in Fig. 2. The nor-
malization for the wave energy density is done over the parti-
cle energy density. Note that in (c) three curves are plotted in
logarithmic scale. Consequently, the O1 and X2 modes have
negligible wave energies compared to the X1 mode.
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the growth rate quickly disappears.

On the other hand, we consider a Z mode wave, with
w ~ 1.015 Q and 0 ~ 80 ° [see Fig. 3(c)]. The extremities
of the resonant ellipse are now u =~ 0.29 and u_ ~ 0.049.
The resonant ellipse is entirely in the loss cone region of
velocity space. When the loss cone starts to be filled by
quasilinear diffusion, the growth rate may decrease, but
amplifying conditions remain longer than for the case of
the X mode.

Finally, Fig. 6 shows the energetic component of the
distribution function (see Fig. 1 for the description) at
the end of the run shown in Fig. 4. For this case, at the
time 7 = 5 x 10°, o = 0.1948 and A = 1.381. The figure
clearly shows the partially filled loss cones. For the run
shown in Fig. 5,at 7 = 5 x 10%, a = 0.1949 and A =
1.227. The final distribution is not shown because it is

0.201 T T T T

0.200 (a) A
0.199
0.198
0.197

0.196

0.195

0.194 L
2 x 10° 7_3><105 4 x 10°

0 x 10°

1
1x10° 5 x 10°
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0.0
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4% 10-2

2 x 1073 o1 ]

2x10573x105 4 x 10°

0x10-3
0 x 10°

1 x 10°

5 x 10°

FIG. 5. The same as Fig. 4, except that this case corre-
sponds to w,/Q = 0.2. [(a) is for a(r), (b) is for A(T), and
(c) is for normalized wave energy densities for X, Z, and O
modes.] Note that despite the fact that the X mode initially
grows the fastest, the Z mode has a higher saturation ampli-
tude. Note also that, unlike Fig. 4, the vertical axis in panel
(c) is in linear scale.
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FIG. 6. The asymptotic energetic electron distribution
function corresponding to Fig. 4.

very similar to that of Fig. 6.

Notice that the asymptotic distributions still show
some remaining loss-cone feature for the low-energy por-
tion of the distribution, but such a feature is not sufficient
to contribute to the wave growth. Note also that the fi-
nal form of the distribution function compares very well
with that obtained by full numerical solution in Ref. [24].

IV. SUMMARY AND CONCLUSIONS

In the present paper, we have carried out a quasilin-
ear analysis of the loss-cone driven electron cyclotron
maser instability. The method is based upon an efficient
moment calculation of the quasilinear kinetic equation.
The difference of the present approach is that, instead of
solving the quasilinear equation directly, we make a rea-
sonable conjecture on the time dependency of the par-
ticle distribution function. Since the results of previous
simulation studies confirm that the dominant nonlinear
mechanism is the filling up of the loss cone, we model
a self-similar form of the loss-cone distribution accord-
ingly. This allows us to evaluate the evolution of the var-

ious wave modes, as well as the particle moments, very
efficiently. The result is then tested against the formal re-
sult obtained in Ref. [24] with the same set of parameters
used in that paper. We then proceed to the case when
the frequency ratio w,/Q is slightly larger. In this in-
stance, unlike Ref. [24], the X, O, and Z modes all have
comparable growth rates. Our analysis shows that the
competition among various unstable modes can be very
important for this parameter regime. In particular, al-
though the initial growth suggests that the X mode has
the highest growth rate, in the nonlinear stage, the mode
saturates to a lower wave level, when compared to the Z
mode. Thus we conclude that the study of linear insta-
bility alone is not sufficient, and that nonlinear (or quasi-
linear) analysis is called for. However, a direct numerical
solution of the fully self-consistent quasilinear equation
including multiple unstable modes is very time consum-
ing and costly in terms of computation time. Therefore
it is our belief that the moment method introduced in
this paper can serve the purpose of providing efficient
and reasonable results.
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