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Partial synchronization and spontaneous spatial ordering in coupled chaotic systems
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A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchro-
nizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are
revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotem-
poral structures and some dynamical behaviors of these states are discussed both numerically and analytically.
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I. INTRODUCTION where we takea=0.175,b=0.4, andc=28.5, which yield a
chaotic state of the system, aivd 1,2, ... N represents the
Synchronization of coupled chaotic systems has recentlgpatial location of oscillators in the lattice ands the cou-
become a topic of great intergst], with the intent of real-  pling coefficient. Specifically, we focus on the analysis of
istically modeling spatially extended systems and even turN=6, a direct extension to arbitrafy will be briefly dis-
bulent systems, and with the belief that dominant features ofyssed in the conclusion. Due to the structure of the model,
the underlying constituents of extended systems will be reyhe oscillators have the following symmetries. First, the sys-

tained in such simple models. For this intention, coupleder, is invariant against the change between clockwise direc-
systems with local interactions are of significance. Completgn, and counterclockwise direction due to the symmetric

synchronization(CS) of chaotic oscillators has been de- . : : ; )
scribed theoretically and observed experimentflly?]. Re- coupling. Second, Eqs1) satisfy spatial permutation sym

cently, partial synchronizatiotPS, where some of the sub- MEtrY; i.e., they are invariant by the exchange-r;. Any
systems synchronize with each other and others do not, fréaking from these symmetries of the system state must
one of the most important aspects after the complete syrfl@Ppen spontaneousiig].

chronization is broken. PS of chaotic oscillators has been Here, we are concerned with the patterns induced by dif-
extensively investigated in globally coupled systems, wherderent kinds of PS in the lattice. Imagine, we have now six
no space structure can be involvi@. Very recently, PS in  seats, sitting on a ring in the order o¥1,2, ... ,6with 7
locally coupled systems has been revedldll in which, being identical to 1; each seat has a certain type of oscillation
however, only three subsystems are involved and the nor{suppose totallym=6 types of motions are acceptahland
symmetric coupling plays the key role in producing partialdifferent seats can have the same type of oscillation. The
synchronization. To our knowledge, partial synchronizationgjuestion is which arrangements for the six seats are accept-
associated with the spontaneous symmetry breaking and withble, i.e., which spatial ordering and spatiotemporal patterns
different spatial structures in locally and symmetrically can be observed? These patterns comply with their special
coupled chaotic systems have not yet been systematicalBpatial dynamics in smooth invariant submanifold of lower
investigated. However, this is obviously a very importantdimension than that of the full phase space with®dimen-
direction. sion (6x 3D) (the submanifold is invariant in the sense: any

In this paper, we study PS in symmetrically and locally orbit originating in the submanifold stays there fore{/&}.
coupled chaotic oscillators. Our basic model is the chain ofrhe stability of these spatial solutions depend on the dynam-
coupled identical Rossler oscillator5] with nearest- jcs of infinitesimal perturbations that are transverse to their
neighbor diffusive coupling. It can be written as a set ofinvariant submanifold. We discuss each of the possible PS
ordinary differential equations solutions in the next section.

The paper is arranged as follows. In Sec. Il, we find all
the possible partially synchronized spatial structures by the-
oy : ) oy oretical analysis. Both their dynamic equations defined in the
yi=xitayite(i-ityiea— 2¥), n invariant submanifolds and their instability conditions are

Xi= = Yi—Zi+&(Xi 1+ X1 2X),

Z=b+z(x—C)+e(z_1+2z.,—22), deduced. In Sec. lll, partially synchronous states and their
transverse stabilities are discussed in numerical computation.
XN+1=X1,  YN+1TY1  IN+1T 73, The actual stable states of the original coupled oscillators are

presented in Sec. IV. On the basis of these we have found

about all the possible and actual PS structural states in the six
* Author to whom correspondence should be addressed. Email adsoupled chaotic oscillators; we come to obtain a global in-
dress: ygyao@aphy.iphy.ac.cn formation about the dynamics of the coupled system in full
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space described by Eq4). The last section presents a brief
discussion on the generalization and application of the find-

ings in this paper.

Il. THEORETICAL ANALYSIS OF PARTIALLY
SYNCHRONIZED SPATIAL STRUCTURES

The casan=1 is the trivial case of complete synchroni-
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523=127,8X3+ 3 X,6Z5—C8Z5+e(—26Z5— 6Zs),
OXy=—8Y = 85Z4+e(—28X4+ 6Xg),
8Y 4= X4+ adY,+e(—258Y,+ 8Yg),

5'24: % 215X4+ % X1524_ C(SZ4+ 8( - 2524+ (SZG),

zation, and has been studied extensively in the previous lit-

eratures[8]. So, we start froom=2. In this case, the six

oscillators are divided into two sets. The motion of the os-

cillators in a set is identical; we represent oneayyand the
other byb. There are two and only two topologically distinct
patterns, one i$ababal}, and the other i§aabaal}. For
instance, the stattaaabbl} can never occur unless=b,
because tha andb sites(i.e.,a,,b, in a;a,azb,bybsz) have
dynamics different from the sideandb (a;,b; andb;,bs)
if a#b due to the different couplingssee Eqs(1) for the
dynamicg.

Given {ababal}, the 2x3D partially synchronous in-
variant submanifold is defined b571=F3=F5 and F2=F4
= FG. The full phase space with>63D can be regarded as a
direct product of the invariant subspace ok 2D and its

SXg=—8Yg— 8Zs+&(—26X5— 6X3),
. 4
SYs=6Xs+adYs+e(—28Ys— 6Y3),
5'25: % Z25X5+ % Xz&ZS_C(SZ5+8( - 2525_ 523),
SXg=—OYg— 6Zg+e(—25Xg+ 6Xy),
SYg= Xg+adYg+e(—25Yg+ 8Y,),

526: % ZZ5X6+ %X25ZG—C5ZG+8(—2526+ 524),

where (R;(t), R,(t)) is a possible solution ofababal}

transverse remainder. Under this consideration, we can makabtained by the integration of Eq&3). The stability of the

the following transformation:

§1:F1+|:3+r5, §2:F2+F4+r6,

§3:_2F1+F3+F5, §4:F3_|?5,
2

R5=I’2—2r4+r6, R6=r2—l’6,

R=(X,Y;,Z), i=1,2,...N.

state(lfil(t), F§2(t)) depends on the largest Lyapunov expo-
nent(LE) of Egs.(4),

A= Iim%ln[é(t)/é(O)], (5)

t—o0

where

6
8(t)= \/ 3 OGO+, + 62,01,

In the given invariant submanifold, the motion can be de-

scribed by only two coordinate?, andR,, and the dynam-

From the discussion above, the computation procedure is

ics of {ababal} on the invariant subspace is governed byVvery clear. Given certain possible PS solution, first we per-

the equations

X1=—Y,1—Z1+2e(Xo—Xy),
Y, =X;+aY;+2&(Y,—Yy),

Zl:3b+ %lel—Czl-l- 28(22_21),
. ©)
X2: _Y2_22+ 28(X1_X2),
.Y2:X2+ aY2+ 28(Y1_Y2),

Z,=3b+ 3 Z,Xo—CZ,+2e(Z1—2Z,).

The stability of{fababal} PS state depends on the infinitesi-

mal perturbations in its transverse remainder subspace, and

the dynamics of the perturbations is governed by
SX3=—8Y3— 6Z3+&(—26X3— 6Xs),

8Y3=6Xs+adYz+e(—268Y3— 6Ys),

form a space transformation into two subspaces, one of
which is the invariant submanifold corresponding to the pat-
tern solution; the other corresponds to its transverse remain-
der. Second, we consider the dynamics of infinitesimal per-
turbations that are transverse to the invariant submanifold,
and calculate the largest LE for the perturbations, then the
stability of the PS solution is determined. Following the
same procedure, we can analyze all other PS solutions of our
system described by Eqgl).

For the{aabaalj} pattern, the X 3D invariant synchro-
nization submanifold is defined b§1=F2=F4=F5 and F3
= F6. The full phase space with>63D can be built up by the

invariant subspace and its transverse remainder. Under this
consideration, we perform the transformation

ﬁl:Fl+F2+F4+F5, §2:F3+F6,
§3:F1_F2_F4+F5, §4:F2_F4,

(6)

>

Rs=ri—rs, Rg=rz—rs,

R=(X,Y;,Z), i=12,...N,
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and derive the equations for the evolution of the system on

the (Iilﬁz) synchronous invariant submanifold, and the
equations for determining the transverse stability in the same
manner as Eqg3) and (4). 0.08 1
If m=3, there are also two topologically different pat-
terns{abbacg and{abcabg (note, the statdaabbcg
can never occur by the same reason of the forbiddance o5
{aaabbl} structurg. Form=4, we have a unique PS state, 0.00
i.e., the{abcbad state. The detailed discussion on the spa-
tial transformations, the equations on the submanifolds of
these PS states, and the corresponding linear dynamics tran
versal to these submanifolds are given in the Appendix.
There is no pattern fom=5 with six oscillators, andn
=6 corresponds to the case of no kind of synchronization.
Therefore, we have learned that, apart from the completely <
synchronized and fully desynchronized solutions, the systerr 004
of coupled six Rossler oscillators has five kinds of nontrivial
PS solutions; they aréababal}, {aabaal}, {abbacdg, 000
{abcabgd, and{abcbad. Their instabilities are determined
by their largest conditional LEA, transverse to the corre-

(@)

0.04 |-

and L2

-0.04 ' L L L i

0.12 oy,

0.08

-0.04 L 1 1 1 1

sponding partially synchronized manifolds. 0.00 0.02 0.04 e 0.06 0.08 0.10
lll. PARTIALLY SYNCHRONIZED STATES AND THEIR FIG. 1. (a) The largest Lyapunov exponeritd andL2 versus
TRANSVERSE STABILITIES coupling parametet in the submanifold{aaaaag (m=1). (b)

After deriving all the equations for the PS solutions On;get;r?;sversal largest Lyapunov exponanversuse correspond-

various synchronous invariant submanifolds and for the sta-

bilities of these solutions, we can now numerically compute

all these solutions and specify their stabilities. For doing this, In Fig. 3 we do the same as Fig. 2 by havimg=3 and

we compute two kinds of LE’s. First, we calculate the two{abbacg and{abcabg spatial structures considered, re-

largest LE’s in the invariant submanifolds to classify the PSspectively. For the case ¢abbacg, new types of solutions

solutions, i.e., to distinguish periodic soluti¢one zero LE ~ appear. Figure 3 shows that, in addition to the stable periodic

and one negatiye quasiperiodic motior(two zero LE’'9,  states for smalk, there are other periodic and chaotic states

and chaotic statéat least one positive DESecond, we com- keeping stable for 0.059¢ <0.087. Partially synchronous

pute the largest transverse LK, of the corresponding PS chaotic state is called PSC. Habcabg, one can find PSP

solution for determining its stability, i.e., negatiygositive

A indicates the local stabilityinstability) of this PS state. 014
We start withm=1, the CS state. The two largest LE’s in (a) ©)

the invariant subspacé,l andL?2, and the largest transver-

sal LE, A, are plotted versus the coupling parametein

Figs. Xa,b), respectively. From Fig. 1, it is shown that there &

0.074

is only a single synchronous chaotic solution for this trivial 2 0003 u
case, the chaotic state of a single Rossler oscillator. This
complete synchronous chaos is stablesfor0.087(called as 007
CSO sinceA <0 there, and it is unstable otherwise.
Next, we come to the two PS cases fan o4 , , ,
=2: {ababal} and{aabaalj. For{ababal}, L1,L2 and PSP (ababab) (d)

A are presented in Figs(2b), respectivelyL1 andL2 are
obtained from Eqgs(3) in the corresponding subspace, while 4]
A comes from the computation of Eqgl). From Fig. Zb)

one can find two stability regions. One region with < .
>0.087 corresponds to a chaoabababmotion degener- 000]-n e, £5C
ating to the CSC¢=Db); the other region is aroung=0.2 s
where we find stable partially synchronous periodic motion M PSP (aabasb)

(PSB. In Figs. Zc,d) we do the same as Figs.azb) with the 007

0.00 003 0.06 0.09 0.03 0.06 0.09

{aabaal} partially synchronous structure being considered, e e

and we observe also two stable regions. One region with
>0.087 corresponds again to the CSC state, and the other FIG. 2. The same as Fig. 1 witfie) and (b) {ababal}
arounde ~0.0075 allows stable PSRrabaal} motion. (m=2); (c) and(d) {aabaal} (m=2).
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FIG. 3. The same as Fig. 1 witfi@ and (b) {abbacg¢

003 0.06 008

€

(m=3); (c) and(d) {abcabg (m=3).

0.06 0.09

only for relatively smalle, similar to the case ofn=2.

For m=4, we have a single spatial structyr@bcbad

PHYSICAL REVIEW E63 026211

abcbag periodic state for 0.087 £<0.091, which coexists
with the completely synchronous chaotic state.

IV. THE ACTUAL STATE OF THE ORIGINAL
COUPLED OSCILLATORS

All the results in Figs. 1-4 are from the dynamics of
various invariant subspaces of the system and their transver-
sal remainders. In this section, we investigate their corre-
sponding actual states by directly computing the original sys-
tem Eqgs(1). From Figs. 1-4, we note that there are multiple
stable solutions of CS and PS coexisting in some coupling
ranges. So, in order to surely obtain certain PS solutions, we
have to restrict the initial states in the vicinity of the wanted
pattern; the problem about the attracting basins of the PS
states will be discussed later in the conclusion section. In the
following, we take the same order as the last section and
present the actual states for all the PS patterns one by one.

For m=1, the completely synchronous state takes the
chaotic orbit of a single Rossler oscillator, and all oscillators
have an identical trajectory.

For the stabldababal} structure botta andb oscillators
have the same period-2 orlpiig. 5@)], but they take differ-
ent phases on the orlisee the two circles in Fig.(8 and
also see Fig. ®)]. The oscillatorsa andb in the{aabaal}
structure become slightly differefsee Fig. %c)], the phase
relation betweera andb for this structure is shown in Fig.

: .5(d).
only. The corresponding Lyapunov exponents are plotted in" The characteristic features of tHabbacg PSP state,

Fig. 4. The curves of 1, L2 andA in Figs. 4a,b show that

shown in Fig. 6, are particularly interesting. Bdbhand c

the temporal behavior in this submanifold of this spatialggcillators take the same period-6 orfsiee Fig. 6a)] while
structure is rich. In particular, we can find stable partiallythe phases o andc are differentsee Fig. 6b)]. However,

synchronous quasiperiodic motion in the region 0060

the oscillatorsa have a period-3 orbifsee Fig. €)]. How

<0.068, which can bifurcate to partially synchronous chaogan a period-3 orbit exist under the interactions of period-6

with the sameabcbadstructure by increasing. Moreover,
we find a stable partially synchronousn the way of

0.05

L1 and L2
o
3

005

-0.10

0.10 [

-0.05

-0.10

0.00

.....................

. PSP (abcbad)

PSC (abcbad)

%00
> N

______________________

&y
> N

PSQ (abecbad)

0
o &
X
00

(b)

PSP (abcbad)

X0y
XX,

%,
.....
¥
&

5

0.02 0.04

€

0.06

0.08 0.10

FIG. 4. The same as Fig. 1 wiffabcbad (m=4).

signals? The reason is that bo#y(t) and x.(t) have
period-6 orbits while the total coupling to an oscillatar

e[ xp(t) +x.(t)], can become of period-3 after summation,
which can be seen in Fig.(@. There is also a chaotic
{abbacgd PSC state; the spatiotemporal behavior is not
striking and we do not show it here. We find two kinds of
{abcabg PSP states, and one example is exhibited in Fig.
7. For the case in Fig. 7, thee b, andc oscillators take the
same period-3 orbitsee Fig. 7a)], while they array inabc
with T/3 (T is the period phase differencgsee the circles
indicated in Fig. 7a), and the phase relation in Fig(bf
where the thick and thin curves are symmetric against the
diagonal lind. The othe{abcabg PSP case considered is
similar to that of Fig. 6. The existence of both period-2 and
period-4 orbits and the reasoning for this seemly peculiar
phenomenon are exactly the same as of Fig. 6.

Figure 8 shows thdabcbad (m=4) partial synchro-
nous periodic (PSP, partial synchronous quasiperiodic
(PSQ, and partial synchronous chaotieSQ states, respec-
tively. Thea andb periodic oscillators have the same orbit,
but take different phases. Similar spatial relations can be also
observed for the PSQFigs. §c,d)] and PSC[Figs. 8e,f)]
states.

In all the figures from Fig. 5 to Fig. 8, we show the
dynamic behavior of various stable configurations of the sys-
tem. It is interesting to investigate how some of these pat-
terns appear via different bifurcations and symmetry break-
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FIG. 5. (a) and (b) Periodic oscillations for
the pattern ofababal} with £=0.025.(a) X,
VSVYap, (b) X5 VS X,. (€) and(d) Periodic oscil-
lations for the pattern offaabaab with &
=0.008. (c) x, Vs y,, solid curve;x, vs y,,

(b) (d) dashed curveld) x, vsx,, . The lettersa andb in
the figure indicate the positions of tteandb
sites at an arbitrary instant. This notation also is
used in Figs. 5-8.
&° 0 §° o
0 0
T T,
a

ings by varying the control parameters. For this sake, we.yapunov exponents of the system state realized in the above
start from the CSC state ef>¢., and perform our numeri- process versus the coupling intensity We find, ate =¢

cal simulation by continually reducing (the step fore ~0.087, a translational symmetry breaki(tge orientation
change isAe =0.001). For eaclzs we run the systenil) by ~ symmetry is still keptoccurs, which brings the system from
taking the ending state for the previous coupling as the initialCSC state to the partially synchronous periodic st&8P

state for the current coupling. Small noise is used to excludef structureabcbad(still a very small probability exists for
any unstable states. In Fig. 9, we plot the three largesthe system to approach thdbaccstructure if noise is very

(b)/
)

T pr A FIG. 6. Periodic oscillation in the pattern of

s be % b {abbacg with &=0.007.(a) Xy ¢ VSyp.c . (b) Xp
(c) (d VS X¢ . (C) X VS Y4. (d) Xp+Xc VS Yp+Ye-
> 0 i’ 0
=
-15 T -30 T
-15 0 15 -30 [¢] 30
T
a $b+-’Bc
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15 14

(a) (b)

15 . FIG. 8. (8 and (b) Periodic oscillation in the pattern of
-15 0 15 {abcbad with £=0.085.(a) X, p VSYap- (b) Xcq VSYcq- (€) and
T (d) Quasiperiodic oscillation in the pattern ¢dbcbad with &

=0.065. (C) Xap VS Yap- (d) Xcg VS Ycq- (€) and (f) Chaotic
FIG. 7. Periodic oscillation in the pattern ¢abcabg with ~ Oscillation in the pattern ofabcbad with £=0.053. (€) X,p VS
£=0.005.(8) Xap,c VS Vap.c- (0) X3 VS Xp e Yab- () Xca VSYeq-

small; this branch is not shown in Fig).Further reducing 0@, where the stat¢abcdef represents the entirely de-
e, theabcbadPSP state is replaced by a partially Synchro_synphrqnous o;cﬂlators. Different spatlal structures represent
nous quasiperiodic stat®SQ via Hopf bifurcation with the dlstlnctlv_e spatla_l symmetry breakings and retain different
same spatiahbcbadstructure ak =0.067. A bifurcation of symmetries. For instance, tlﬁababat} structure breaks the
Ruelle-Taken-type occurs at=0.056; then this PSQ bifur- Symmetry ofxj—x;;, but it keeps the symmetry af;
cates to the PSC chaotihchadstate. Aftere<0.048, the —Xi+2; moreover, it still keeps the orientation symmetry
branch of stable PS solutidiffig. 9) stops to exist; the sys- (i.e., the §tate is mva_rlant between the clockwise and coun-
tem jumps to the state of desynchronizatidncde fchaotic  terclockwise orientations The {aabaalj and {abcabg
structure via on-off intermittency between the identical sitesStates break the symmetries xf—x;,; andxj—x;,, but

of PSC. By continually decreasing, this desynchronous still keep the symmetry Oin_—>xi +3. However, the_
chaos may be interrupted by two periodic windows, onel2@baal} state keeps the orientation symmetry while
abababPSP and the otheaabaabandabcabcPSP via {abcabg does not. The stategabbacg and {abcbad
saddle-node bifurcation, and finally returns back to the fullyPreak all translation symmetries far—x;, j=1,2,3,4,5,
desynchronous chaos til=0. but both keep the orientation symmetry.

It is emphasized that the above classifications can be de-
generated in certain regions. For instance, all PS states ex-
cept the{abcbad state reduce to the stable C$€aaaag

In conclusion we have investigated partially synchronousstate by degeneratiray=b=c for £>0.087. The{abcbad
states of coupled chaotic Rossler oscillators in detail. Wgm=4) state can degenerate f@acaag¢ (m=2) and
have revealed very rich spatial structures for the partial synfababalj (m=2) states by setting=b, c=d, andc=a,
chronization. The overall demonstration about the distribud=b, respectively. Th¢abcabg, {abbacg states can de-
tion of various stable PS and CS states is presented in Figienerate tdabbabi} state. Similar degenerating processes

V. CONCLUSION

026211-6
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0.15 4 {abcdef}
CSC
PSC {abcbad}
0.10 4
PSQ {abcbad}
0.05 4
PSP {abcbad}
/ FIG. 9. The largest three Lyapunov exponents
0 0.004 vs €. We start frome>e.. SC, synchronous
— chaos; PSC, partially synchronous chaos; PSP,
< partially synchronous periodic motion; PSQ, par-
10054 PSP {ababab} tially synchronous quasiperiodic motion.

PSP {aabaab}

0104 pSp {abcabe}

o1 77
0.00 0.02 0.04 0.06 0.08 0.10

€

from largemto smallm can be observed for other structures. distinctive collapses of the system state from high-

In Fig. 10b), we represent all degenerated patterns in Figdimensional variable space to different low-dimensional in-

10(a) by the pattern with the leash; some patterns with variant subspaces. Moreover, the temporal behaviors of PS

largemin (a) disappear inb). states are also very rich. The states can be periodic, quasi-
It is also emphasized that the above partially synchronouperiodic or chaotic, depending on parameter combinations

states can be easily observed in the original coupled systerfsee Figs. 9 and 10

For instance, in the coupling regions 0.620<0.025 and In this paper, we focus on a particular model of coupled

0.050<£<0.087, we can observe only the PS state in EqsRossler oscillators witiN=6 only for the specification of

(1) from arbitrary initial conditions. The transitions from demonstration. Similar analysis can be applied to diffeient

completely desynchronous chaos to PS states correspond dad similar PS states can be found identically. The applica-

{abcdef} (a)
{abebad}i- 200000000 HHHHH
{abcabc}| oo o000
{abbacc} o oo O SOBSREEESE0IINEEEEE0000NE000
{aabaab}
{ababab }- o 000000000 o Periodic
+ Quasiperiodic
{aaacaa}| ® Chaotic cssesscsssese
0.00 0.02 0.04 0.06 0.08 0.10 FIG. 10. (a) Overall demonstration of the sys-
tem dynamics. The staf@bcdef represents the
bed entirely desynchronous stai®) The same ag)
{abedef} (b) with the degenerated patterns with lamgebeing
{abcbad} HHHH canceled.
{abcabe}| o oo0
{abbacc} - o O €0080000000000000060000000008
{aabaab}l
[ © Periodic
{ababab}- © 000000000 + Quasiperiodic
s ® Chaotic
{acaaaa}l ssssssseseses
v 1 M 1 M 1 M 1 v 1
0.00 0.02 0.04 0.06 0.08 0.10
€

026211-7



ZHANG, HU, CERDEIRA, CHEN, BRAUN, AND YAO PHYSICAL REVIEW E63 026211

tions of the study to other coupled identical chaotic oscilla- SXy=— Y 4— 5Z4+ £(5Xs— Xg— 25Xy)
tors are also straightforward. 4 4 4 5 4
SY 4= 6X,+adY,+e(8Ys— 8Yg—25X,),
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APPENDIX 8Z5=3%Z,0Xs+ £ X,8Z5—C8Zs+e(5Z4—38Zs),
Given the{abbacg state, the X 3D invariant submani-

fold is defined byf;=r,, r,=rs, andrs=rg. By the trans- OXg== 0¥~ 0Zg+e(—30Xe— Xy),
formation .
5Y6: 5X6+a5Y6+8(_35Y6_5Y4),
Ry=ri+rs, Rp=ra+rs, 8Z6= 1% Z30Xg+ L X30Z5— COZg+e(—35Zg— 5Z,).
B Pt B —F _f The evolution equations and stability equations for
3=TsTle, Ra=M1Ta, {abcabg patterns can be specified in a similar manner. We
(AL will not repeat the details.
§5:;2_;3, §6:;5_;6, For m=4, only one poss_|ble pattern exists; it is
{abcbad. Now the transformation
R=(X,Y,Z), i=12,...N, Ri=ri+rs, Rp=rp+ry,
Rs=r3, Ry=rs,
we can derive nine equations 38 40 (A4)
I:Es_rﬁl_'?s, FE6—|72 F4,
X1=_Y1_21+8(X2+X3_2X1), N
Ri=(X,Yi,Z), i=12,...N,
Y =X +aY;+e(Yo+Ys—2Y,), which leads to the evolution equations
. Xy=—Y;—Z1+e(2X4+ Xo—2X4),
21:2b+ %lel_czl+8(22+23_221), .
Y1:X1+aY1+8(2Y4+Y2_2Y1),
Xo=—Yo—Zy+ (X1~ Xy), Z,=2b+ 1 Z,X,—CcZy+8(2Z4+ Z,— 22y),
.Y2:X2+aY2+8(Y1_Y2), (AZ) XZZ _Y2_22+8(x1+2X3_2X2),
.Y2:X2+aY2+8(Y1+2Y3_2Y2),
Z,=2b+ 3 Z,X,—CZy+ (21— Z,), .
? 2o el L T2 7,=2b+ 1 Z,Xy— CZp+ £(Zy+ 273~ 2Z,),
. i (A5)

X3=—=Y3—Zz+e(X;—X3), X3=—Y3—Z3+e(X;—2X3),
. Ys=Xs+aYs+e(Yo—2Y3),
Ya=Xa+aYste(Yi—Ya), $orei s =
23=b+23X3_CZ3+8(22_2Z3),

Z3=2b+ 3 ZX3—CcZg+e(Z,—Zy), Xo= = Ya— Zat 8(Xy—2X2),

for the motion on the synchronous invariant submanifold, Y =Xs+aY,+e(Y,—2Y,),
and determine the stability of the given partially synchro- _
nized pattern by the set of equations below: Z,=b+ZX4—CZy+e(Z1—22Z,),
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in the submanifold and the transverse stability is determined

by
SXs=— 8Y5— 8Z5+e(Xg—25Xs5),

SYs=6Xs+adYs+e(8Yg—25Ys),

5Z5: % 215X5+ % X15Z5_ C525+ 8(526_ 2525),

PHYSICAL REVIEW E 63 026211

SXg=—OYg— 6Zg+&(SXs—26Xg),

SYg= 0Xg+adYg+e(SYs—25Yg), (AB)

5z6: % ZZ5X6+ %XzéZG_C526+8(5Z5_2526)
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