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Partial synchronization and spontaneous spatial ordering in coupled chaotic systems
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A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchro-
nizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are
revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotem-
poral structures and some dynamical behaviors of these states are discussed both numerically and analytically.
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I. INTRODUCTION

Synchronization of coupled chaotic systems has rece
become a topic of great interest@1#, with the intent of real-
istically modeling spatially extended systems and even
bulent systems, and with the belief that dominant feature
the underlying constituents of extended systems will be
tained in such simple models. For this intention, coup
systems with local interactions are of significance. Comp
synchronization~CS! of chaotic oscillators has been d
scribed theoretically and observed experimentally@1,2#. Re-
cently, partial synchronization~PS!, where some of the sub
systems synchronize with each other and others do no
one of the most important aspects after the complete s
chronization is broken. PS of chaotic oscillators has b
extensively investigated in globally coupled systems, wh
no space structure can be involved@3#. Very recently, PS in
locally coupled systems has been revealed@4#, in which,
however, only three subsystems are involved and the n
symmetric coupling plays the key role in producing part
synchronization. To our knowledge, partial synchronizatio
associated with the spontaneous symmetry breaking and
different spatial structures in locally and symmetrica
coupled chaotic systems have not yet been systematic
investigated. However, this is obviously a very importa
direction.

In this paper, we study PS in symmetrically and loca
coupled chaotic oscillators. Our basic model is the chain
coupled identical Rossler oscillators@5# with nearest-
neighbor diffusive coupling. It can be written as a set
ordinary differential equations

ẋi52yi2zi1«~xi 211xi 1122xi !,

ẏi5xi1ayi1«~yi 211yi 1122yi !,
~1!

żi5b1zi~xi2c!1«~zi 211zi 1122zi !,

xN115x1 , yN115y1 , zN115z1 ,

*Author to whom correspondence should be addressed. Emai
dress: ygyao@aphy.iphy.ac.cn
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where we takea50.175,b50.4, andc58.5, which yield a
chaotic state of the system, andi 51,2, . . . ,N represents the
spatial location of oscillators in the lattice and« is the cou-
pling coefficient. Specifically, we focus on the analysis
N56, a direct extension to arbitraryN will be briefly dis-
cussed in the conclusion. Due to the structure of the mo
the oscillators have the following symmetries. First, the s
tem is invariant against the change between clockwise di
tion and counterclockwise direction due to the symme
coupling. Second, Eqs.~1! satisfy spatial permutation sym

metry, i.e., they are invariant by the exchangerW i�rW j . Any
breaking from these symmetries of the system state m
happen spontaneously@6#.

Here, we are concerned with the patterns induced by
ferent kinds of PS in the lattice. Imagine, we have now
seats, sitting on a ring in the order ofi 51,2, . . . ,6with 7
being identical to 1; each seat has a certain type of oscilla
~suppose totallym<6 types of motions are acceptable!, and
different seats can have the same type of oscillation. T
question is which arrangements for the six seats are acc
able, i.e., which spatial ordering and spatiotemporal patte
can be observed? These patterns comply with their spe
spatial dynamics in smooth invariant submanifold of low
dimension than that of the full phase space with 633 dimen-
sion (633D) ~the submanifold is invariant in the sense: a
orbit originating in the submanifold stays there forever@7#!.
The stability of these spatial solutions depend on the dyn
ics of infinitesimal perturbations that are transverse to th
invariant submanifold. We discuss each of the possible
solutions in the next section.

The paper is arranged as follows. In Sec. II, we find
the possible partially synchronized spatial structures by t
oretical analysis. Both their dynamic equations defined in
invariant submanifolds and their instability conditions a
deduced. In Sec. III, partially synchronous states and th
transverse stabilities are discussed in numerical computa
The actual stable states of the original coupled oscillators
presented in Sec. IV. On the basis of these we have fo
about all the possible and actual PS structural states in the
coupled chaotic oscillators; we come to obtain a global
formation about the dynamics of the coupled system in
d-
©2001 The American Physical Society11-1
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space described by Eqs.~1!. The last section presents a bri
discussion on the generalization and application of the fi
ings in this paper.

II. THEORETICAL ANALYSIS OF PARTIALLY
SYNCHRONIZED SPATIAL STRUCTURES

The casem51 is the trivial case of complete synchron
zation, and has been studied extensively in the previous
eratures@8#. So, we start fromm52. In this case, the six
oscillators are divided into two sets. The motion of the o
cillators in a set is identical; we represent one bya, and the
other byb. There are two and only two topologically distin
patterns, one is$ababab%, and the other is$aabaab%. For
instance, the state$aaabbb% can never occur unlessa5b,
because thea andb sites~i.e., a2 ,b2 in a1a2a3b1b2b3) have
dynamics different from the sidea andb (a1 ,b3 andb1 ,b3)
if aÞb due to the different couplings@see Eqs.~1! for the
dynamics#.

Given $ababab%, the 233D partially synchronous in-
variant submanifold is defined byrW15rW35rW5 and rW25rW4

5rW6. The full phase space with 633D can be regarded as
direct product of the invariant subspace of 233D and its
transverse remainder. Under this consideration, we can m
the following transformation:

RW 15rW11rW31rW5 , RW 25rW21rW41rW6 ,

RW 3522rW11rW31rW5 , RW 45rW32rW5 ,
~2!

RW 55rW222rW41rW6 , RW 65rW22rW6 ,

RW i5~Xi ,Yi ,Zi !, i 51,2, . . . ,N.

In the given invariant submanifold, the motion can be d
scribed by only two coordinatesRW 1 andRW 2, and the dynam-
ics of $ababab% on the invariant subspace is governed
the equations

Ẋ152Y12Z112«~X22X1!,

Ẏ15X11aY112«~Y22Y1!,

Ż153b1 1
3 Z1X12cZ112«~Z22Z1!,

~3!
Ẋ252Y22Z212«~X12X2!,

Ẏ25X21aY212«~Y12Y2!,

Ż253b1 1
3 Z2X22cZ212«~Z12Z2!.

The stability of$ababab% PS state depends on the infinites
mal perturbations in its transverse remainder subspace,
the dynamics of the perturbations is governed by

dẊ352dY32dZ31«~22dX32dX5!,

dẎ35dX31adY31«~22dY32dY5!,
02621
-
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dŻ35 1
3 Z1dX31 1

3 X1dZ32cdZ31«~22dZ32dZ5!,

dẊ452dY42dZ41«~22dX41dX6!,

dẎ45dX41adY41«~22dY41dY6!,

dŻ45 1
3 Z1dX41 1

3 X1dZ42cdZ41«~22dZ41dZ6!,

dẊ552dY52dZ51«~22dX52dX3!,
~4!

dẎ55dX51adY51«~22dY52dY3!,

dŻ55 1
3 Z2dX51 1

3 X2dZ52cdZ51«~22dZ52dZ3!,

dẊ652dY62dZ61«~22dX61dX4!,

dẎ65dX61adY61«~22dY61dY4!,

dŻ65 1
3 Z2dX61 1

3 X2dZ62cdZ61«~22dZ61dZ4!,

where „RW 1(t), RW 2(t)… is a possible solution of$ababab%
obtained by the integration of Eqs.~3!. The stability of the
state„RW 1(t), RW 2(t)… depends on the largest Lyapunov exp
nent ~LE! of Eqs.~4!,

L5 lim
t→`

1

t
ln@d~ t !/d~0!#, ~5!

where

d~ t !5A(
j 53

6

$@dXj~ t !#21@dYj~ t !#21@dZj~ t !#2%.

From the discussion above, the computation procedur
very clear. Given certain possible PS solution, first we p
form a space transformation into two subspaces, one
which is the invariant submanifold corresponding to the p
tern solution; the other corresponds to its transverse rem
der. Second, we consider the dynamics of infinitesimal p
turbations that are transverse to the invariant submanif
and calculate the largest LE for the perturbations, then
stability of the PS solution is determined. Following th
same procedure, we can analyze all other PS solutions of
system described by Eqs.~1!.

For the$aabaab% pattern, the 233D invariant synchro-
nization submanifold is defined byrW15rW25rW45rW5 and rW3

5rW6. The full phase space with 633D can be built up by the
invariant subspace and its transverse remainder. Under
consideration, we perform the transformation

RW 15rW11rW21rW41rW5 , RW 25rW31rW6 ,

RW 35rW12rW22rW41rW5 , RW 45rW22rW4 ,
~6!

RW 55rW12rW5 , RW 65rW32rW6 ,

RW i5~Xi ,Yi ,Zi !, i 51,2, . . . ,N,
1-2
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and derive the equations for the evolution of the system
the (RW 1 ,RW 2) synchronous invariant submanifold, and t
equations for determining the transverse stability in the sa
manner as Eqs.~3! and ~4!.

If m53, there are also two topologically different pa
terns $abbacc% and $abcabc% ~note, the state$aabbcc%
can never occur by the same reason of the forbiddanc
$aaabbb% structure!. For m54, we have a unique PS stat
i.e., the$abcbad% state. The detailed discussion on the sp
tial transformations, the equations on the submanifolds
these PS states, and the corresponding linear dynamics t
versal to these submanifolds are given in the Appendix.

There is no pattern form55 with six oscillators, andm
56 corresponds to the case of no kind of synchronizati
Therefore, we have learned that, apart from the comple
synchronized and fully desynchronized solutions, the sys
of coupled six Rossler oscillators has five kinds of nontriv
PS solutions; they are$ababab%, $aabaab%, $abbacc%,
$abcabc%, and$abcbad%. Their instabilities are determine
by their largest conditional LE,L, transverse to the corre
sponding partially synchronized manifolds.

III. PARTIALLY SYNCHRONIZED STATES AND THEIR
TRANSVERSE STABILITIES

After deriving all the equations for the PS solutions
various synchronous invariant submanifolds and for the
bilities of these solutions, we can now numerically comp
all these solutions and specify their stabilities. For doing th
we compute two kinds of LE’s. First, we calculate the tw
largest LE’s in the invariant submanifolds to classify the
solutions, i.e., to distinguish periodic solution~one zero LE
and one negative!, quasiperiodic motion~two zero LE’s!,
and chaotic state~at least one positive LE!. Second, we com-
pute the largest transverse LE,L, of the corresponding PS
solution for determining its stability, i.e., negative~positive!
L indicates the local stability~instability! of this PS state.

We start withm51, the CS state. The two largest LE’s
the invariant subspace,L1 andL2, and the largest transve
sal LE, L, are plotted versus the coupling parameter« in
Figs. 1~a,b!, respectively. From Fig. 1, it is shown that the
is only a single synchronous chaotic solution for this triv
case, the chaotic state of a single Rossler oscillator. T
complete synchronous chaos is stable for«.0.087~called as
CSC! sinceL,0 there, and it is unstable otherwise.

Next, we come to the two PS cases form
52: $ababab% and$aabaab%. For $ababab%, L1,L2 and
L are presented in Figs. 2~a,b!, respectively.L1 andL2 are
obtained from Eqs.~3! in the corresponding subspace, wh
L comes from the computation of Eqs.~4!. From Fig. 2~b!
one can find two stability regions. One region with«
.0.087 corresponds to a chaoticabababmotion degener-
ating to the CSC (a5b); the other region is around«50.2
where we find stable partially synchronous periodic mot
~PSP!. In Figs. 2~c,d! we do the same as Figs. 2~a,b! with the
$aabaab% partially synchronous structure being consider
and we observe also two stable regions. One region wit«
.0.087 corresponds again to the CSC state, and the o
around«'0.0075 allows stable PSP$aabaab% motion.
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In Fig. 3 we do the same as Fig. 2 by havingm53 and
$abbacc% and $abcabc% spatial structures considered, r
spectively. For the case of$abbacc%, new types of solutions
appear. Figure 3 shows that, in addition to the stable perio
states for small«, there are other periodic and chaotic sta
keeping stable for 0.059,«,0.087. Partially synchronou
chaotic state is called PSC. For$abcabc%, one can find PSP

FIG. 1. ~a! The largest Lyapunov exponentsL1 andL2 versus
coupling parameter« in the submanifold$aaaaaa% (m51). ~b!
The transversal largest Lyapunov exponentL versus« correspond-
ing to ~a!.

FIG. 2. The same as Fig. 1 with~a! and ~b! $ababab%
(m52); ~c! and ~d! $aabaab% (m52).
1-3
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only for relatively small«, similar to the case ofm52.
For m54, we have a single spatial structure$abcbad%

only. The corresponding Lyapunov exponents are plotted
Fig. 4. The curves ofL1, L2 andL in Figs. 4~a,b! show that
the temporal behavior in this submanifold of this spat
structure is rich. In particular, we can find stable partia
synchronous quasiperiodic motion in the region 0.060,«
,0.068, which can bifurcate to partially synchronous cha
with the sameabcbadstructure by increasing«. Moreover,
we find a stable partially synchronous~in the way of

FIG. 3. The same as Fig. 1 with~a! and ~b! $abbacc%
(m53); ~c! and ~d! $abcabc% (m53).

FIG. 4. The same as Fig. 1 with$abcbad% (m54).
02621
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abcbad) periodic state for 0.087,«,0.091, which coexists
with the completely synchronous chaotic state.

IV. THE ACTUAL STATE OF THE ORIGINAL
COUPLED OSCILLATORS

All the results in Figs. 1–4 are from the dynamics
various invariant subspaces of the system and their trans
sal remainders. In this section, we investigate their co
sponding actual states by directly computing the original s
tem Eqs.~1!. From Figs. 1–4, we note that there are multip
stable solutions of CS and PS coexisting in some coup
ranges. So, in order to surely obtain certain PS solutions,
have to restrict the initial states in the vicinity of the want
pattern; the problem about the attracting basins of the
states will be discussed later in the conclusion section. In
following, we take the same order as the last section
present the actual states for all the PS patterns one by o

For m51, the completely synchronous state takes
chaotic orbit of a single Rossler oscillator, and all oscillato
have an identical trajectory.

For the stable$ababab% structure botha andb oscillators
have the same period-2 orbit@Fig. 5~a!#, but they take differ-
ent phases on the orbit@see the two circles in Fig. 5~a! and
also see Fig. 5~b!#. The oscillatorsa andb in the $aabaab%
structure become slightly different@see Fig. 5~c!#, the phase
relation betweena and b for this structure is shown in Fig
5~d!.

The characteristic features of the$abbacc% PSP state,
shown in Fig. 6, are particularly interesting. Bothb and c
oscillators take the same period-6 orbit@see Fig. 6~a!# while
the phases ofb andc are different@see Fig. 6~b!#. However,
the oscillatorsa have a period-3 orbit@see Fig. 6~c!#. How
can a period-3 orbit exist under the interactions of perio
signals? The reason is that bothxb(t) and xc(t) have
period-6 orbits while the total coupling to an oscillatora,
«@xb(t)1xc(t)#, can become of period-3 after summatio
which can be seen in Fig. 6~d!. There is also a chaotic
$abbacc% PSC state; the spatiotemporal behavior is n
striking and we do not show it here. We find two kinds
$abcabc% PSP states, and one example is exhibited in F
7. For the case in Fig. 7, thea, b, andc oscillators take the
same period-3 orbit@see Fig. 7~a!#, while they array inabc
with T/3 (T is the period! phase difference@see the circles
indicated in Fig. 7~a!, and the phase relation in Fig. 7~b!
where the thick and thin curves are symmetric against
diagonal line#. The other$abcabc% PSP case considered
similar to that of Fig. 6. The existence of both period-2 a
period-4 orbits and the reasoning for this seemly pecu
phenomenon are exactly the same as of Fig. 6.

Figure 8 shows the$abcbad% (m54) partial synchro-
nous periodic ~PSP!, partial synchronous quasiperiod
~PSQ!, and partial synchronous chaotic~PSC! states, respec
tively. The a andb periodic oscillators have the same orb
but take different phases. Similar spatial relations can be
observed for the PSQ@Figs. 8~c,d!# and PSC@Figs. 8~e,f!#
states.

In all the figures from Fig. 5 to Fig. 8, we show th
dynamic behavior of various stable configurations of the s
tem. It is interesting to investigate how some of these p
terns appear via different bifurcations and symmetry bre
1-4
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FIG. 5. ~a! and ~b! Periodic oscillations for
the pattern of$ababab% with «50.025. ~a! xa,b

vs ya,b , ~b! xa vs xb . ~c! and ~d! Periodic oscil-
lations for the pattern of$aabaab% with «
50.008. ~c! xa vs ya , solid curve;xb vs yb ,
dashed curve.~d! xa vs xb . The lettersa andb in
the figure indicate the positions of thea and b
sites at an arbitrary instant. This notation also
used in Figs. 5–8.
w
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ings by varying the control parameters. For this sake,
start from the CSC state of«.«c , and perform our numeri-
cal simulation by continually reducing« ~the step for«
change isD«50.001). For each« we run the system~1! by
taking the ending state for the previous coupling as the in
state for the current coupling. Small noise is used to excl
any unstable states. In Fig. 9, we plot the three larg
02621
e

l
e

st

Lyapunov exponents of the system state realized in the ab
process versus the coupling intensity«. We find, at«5«c
'0.087, a translational symmetry breaking~the orientation
symmetry is still kept! occurs, which brings the system from
CSC state to the partially synchronous periodic state~PSP!
of structureabcbad~still a very small probability exists for
the system to approach theabbaccstructure if noise is very
f
FIG. 6. Periodic oscillation in the pattern o
$abbacc% with «50.007.~a! xb,c vs yb,c . ~b! xb

vs xc . ~c! xa vs ya . ~d! xb1xc vs yb1yc .
1-5
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small; this branch is not shown in Fig. 9!. Further reducing
«, theabcbadPSP state is replaced by a partially synch
nous quasiperiodic state~PSQ! via Hopf bifurcation with the
same spatialabcbadstructure at«50.067. A bifurcation of
Ruelle-Taken-type occurs at«'0.056; then this PSQ bifur
cates to the PSC chaoticabcbadstate. Aftere,0.048, the
branch of stable PS solution~Fig. 9! stops to exist; the sys
tem jumps to the state of desynchronizationabcde fchaotic
structure via on-off intermittency between the identical si
of PSC. By continually decreasing«, this desynchronous
chaos may be interrupted by two periodic windows, o
abababPSP and the otheraabaaband abcabcPSP via
saddle-node bifurcation, and finally returns back to the fu
desynchronous chaos till«50.

V. CONCLUSION

In conclusion we have investigated partially synchrono
states of coupled chaotic Rossler oscillators in detail.
have revealed very rich spatial structures for the partial s
chronization. The overall demonstration about the distri
tion of various stable PS and CS states is presented in

FIG. 7. Periodic oscillation in the pattern of$abcabc% with
«50.005. ~a! xa,b,c vs ya,b,c . ~b! xa vs xb,c .
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10~a!, where the state$abcde f% represents the entirely de
synchronous oscillators. Different spatial structures repres
distinctive spatial symmetry breakings and retain differe
symmetries. For instance, the$ababab% structure breaks the
symmetry of xi→xi 11, but it keeps the symmetry ofxi
→xi 12; moreover, it still keeps the orientation symmet
~i.e., the state is invariant between the clockwise and co
terclockwise orientations!. The $aabaab% and $abcabc%
states break the symmetries ofxi→xi 11 and xi→xi 12, but
still keep the symmetry ofxi→xi 13. However, the
$aabaab% state keeps the orientation symmetry wh
$abcabc% does not. The states$abbacc% and $abcbad%
break all translation symmetries forxi→xi 1 j , j 51,2,3,4,5,
but both keep the orientation symmetry.

It is emphasized that the above classifications can be
generated in certain regions. For instance, all PS states
cept the$abcbad% state reduce to the stable CSC$aaaaaa%
state by degeneratinga5b5c for «.0.087. The$abcbad%
(m54) state can degenerate to$aacaac% (m52) and
$ababab% (m52) states by settinga5b, c5d, andc5a,
d5b, respectively. The$abcabc%, $abbacc% states can de-
generate to$abbabb% state. Similar degenerating process

FIG. 8. ~a! and ~b! Periodic oscillation in the pattern o
$abcbad% with «50.085.~a! xa,b vs ya,b . ~b! xc,d vs yc,d . ~c! and
~d! Quasiperiodic oscillation in the pattern of$abcbad% with «
50.065. ~c! xa,b vs ya,b . ~d! xc,d vs yc,d . ~e! and ~f! Chaotic
oscillation in the pattern of$abcbad% with «50.053. ~e! xa,b vs
ya,b . ~f! xc,d vs yc,d .
1-6
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FIG. 9. The largest three Lyapunov exponen
vs e. We start frome.ec . SC, synchronous
chaos; PSC, partially synchronous chaos; PS
partially synchronous periodic motion; PSQ, pa
tially synchronous quasiperiodic motion.
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from largem to smallm can be observed for other structure
In Fig. 10~b!, we represent all degenerated patterns in F
10~a! by the pattern with the leastm; some patterns with
largem in ~a! disappear in~b!.

It is also emphasized that the above partially synchron
states can be easily observed in the original coupled sys
For instance, in the coupling regions 0.020,«,0.025 and
0.050,«,0.087, we can observe only the PS state in E
~1! from arbitrary initial conditions. The transitions from
completely desynchronous chaos to PS states correspo
02621
.
.

s
m.

s.

to

distinctive collapses of the system state from hig
dimensional variable space to different low-dimensional
variant subspaces. Moreover, the temporal behaviors of
states are also very rich. The states can be periodic, qu
periodic or chaotic, depending on parameter combinati
@see Figs. 9 and 10#.

In this paper, we focus on a particular model of coupl
Rossler oscillators withN56 only for the specification of
demonstration. Similar analysis can be applied to differenN,
and similar PS states can be found identically. The appl
-
FIG. 10. ~a! Overall demonstration of the sys
tem dynamics. The state$abcde f% represents the
entirely desynchronous state.~b! The same as~a!
with the degenerated patterns with largem being
canceled.
1-7



lla

un
si
s

ld
ro

for
e

is

ZHANG, HU, CERDEIRA, CHEN, BRAUN, AND YAO PHYSICAL REVIEW E63 026211
tions of the study to other coupled identical chaotic osci
tors are also straightforward.
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APPENDIX

Given the$abbacc% state, the 333D invariant submani-
fold is defined byrW15rW4 , rW25rW3, andrW55rW6. By the trans-
formation

RW 15rW11rW4 , RW 25rW21rW3 ,

RW 35rW51rW6 , RW 45rW12rW4 ,
~A1!

RW 55rW22rW3 , RW 65rW52rW6 ,

RW i5~Xi ,Yi ,Zi !, i 51,2, . . . ,N,

we can derive nine equations

Ẋ152Y12Z11«~X21X322X1!,

Ẏ15X11aY11«~Y21Y322Y1!,

Ż152b1 1
2 Z1X12cZ11«~Z21Z322Z1!,

Ẋ252Y22Z21«~X12X2!,

Ẏ25X21aY21«~Y12Y2!, ~A2!

Ż252b1 1
2 Z2X22cZ21«~Z12Z2!,

Ẋ352Y32Z31«~X12X3!,

Ẏ35X31aY31«~Y12Y3!,

Ż352b1 1
2 Z3X32cZ31«~Z12Z3!,

for the motion on the synchronous invariant submanifo
and determine the stability of the given partially synch
nized pattern by the set of equations below:
02621
-

-
c
ti-

,
-

dẊ452dY42dZ41«~dX52dX622dX4!,

dẎ45dX41adY41«~dY52dY622dX4!,

dŻ45 1
2 Z1dX41 1

2 X1dZ42cdZ41«~dZ52dZ622dZ4!,

dẊ552dY52dZ51«~dX423dX5!,

dẎ55dX51adY51«~dY423dY5!, ~A3!

dŻ55 1
2 Z2dX51 1

2 X2dZ52cdZ51«~dZ423dZ5!,

dẊ652dY62dZ61«~23dX62dX4!,

dẎ65dX61adY61«~23dY62dY4!,

dŻ65 1
2 Z3dX61 1

2 X3dZ62cdZ61«~23dZ62dZ4!.

The evolution equations and stability equations
$abcabc% patterns can be specified in a similar manner. W
will not repeat the details.

For m54, only one possible pattern exists; it
$abcbad%. Now the transformation

RW 15rW11rW5 , RW 25rW21rW4 ,

RW 35rW3 , RW 45rW6 ,
~A4!

RW 55rW12rW5 , RW 65rW22rW4 ,

RW i5~Xi ,Yi ,Zi !, i 51,2, . . . ,N,

which leads to the evolution equations

Ẋ152Y12Z11«~2X41X222X1!,

Ẏ15X11aY11«~2Y41Y222Y1!,

Ż152b1 1
2 Z1X12cZ11«~2Z41Z222Z1!,

Ẋ252Y22Z21«~X112X322X2!,

Ẏ25X21aY21«~Y112Y322Y2!,

Ż252b1 1
2 Z2X22cZ21«~Z112Z322Z2!,

~A5!
Ẋ352Y32Z31«~X222X3!,

Ẏ35X31aY31«~Y222Y3!,

Ż35b1Z3X32cZ31«~Z222Z3!,

Ẋ452Y42Z41«~X122X4!,

Ẏ45X41aY41«~Y122Y4!,

Ż45b1Z4X42cZ41«~Z122Z4!,
1-8
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in the submanifold and the transverse stability is determi
by

dẊ552dY52dZ51«~dX622dX5!,

dẎ55dX51adY51«~dY622dY5!,

dŻ55 1
2 Z1dX51 1

2 X1dZ52cdZ51«~dZ622dZ5!,
-

re

cs

02621
d dẊ652dY62dZ61«~dX522dX6!,

dẎ65dX61adY61«~dY522dY6!, ~A6!

dŻ65 1
2 Z2dX61 1

2 X2dZ62cdZ61«~dZ522dZ6!.
s.

ev.

tt.

.
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