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We show that noise enhances the trapping of trajectories in scattering systems. In fully chaotic systems,
the decay rate can decrease with increasing noise due to a generic mismatch between the noiseless escape
rate and the value predicted by the Liouville measure of the exit set. In Hamiltonian systems with mixed
phase space we show that noise leads to a slower algebraic decay due to trajectories performing a random
walk inside Kolmogorov-Arnold-Moser islands. We argue that these noise-enhanced trapping mechanisms
exist in most scattering systems and are likely to be dominant for small noise intensities, which is
confirmed through a detailed investigation in the Hénon map. Our results can be tested in fluid experi-
ments, affect the fractal Weyl’s law of quantum systems, and modify the estimations of chemical reaction

rates based on phase-space transition state theory.
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The responses of nonlinear dynamical systems to small
uncorrelated random perturbations (noise) can be surpris-
ing and seemingly contradictory. Noise usually destroys
fine structures of deterministic dynamics, e.g., it fattens
fractals [1-3], but it can also combine constructively with
the nonlinearities and increase the order of the system [4].
In chaotic Hamiltonian systems, investigations focused on
the effect of noise on anomalous transport [5,6] and, very
recently, on chaotic scattering [7-9].

Chaotic scattering is a basic process of Hamiltonian
dynamics [2,10,11], with fundamental applications in clas-
sical [12] and quantum [2,13] systems, and recent appli-
cations ranging from plankton populations [3] to blood
flows [14] and even the origin of life [15]. Chemical
(dissociative) reactions of simple molecules are also scat-
tering processes where chaos is essential in the micro-
canonical phase-space formulation of transition state
theory (TST) [16]. Scattered trajectories perform transi-
ently chaotic motion while trapped by fine structures of the
phase space, such as fractal nonattracting sets and chains of
Kolmogorov-Arnold-Moser (KAM) islands [2,10]. Noise
destroys the small scales of these structures [7], modifies
the temporal decay of trajectories in time from algebraic to
exponential [8,9] with an exponent that increases with
noise [8], and creates otherwise forbidden escape paths
[9]. All these effects weaken the deterministic trapping.

In this Letter we show that noise also plays a construc-
tive role in chaotic scattering, enhancing the trapping of
trajectories. First we introduce and scrutinize two different
mechanisms responsible for this surprising effect, arguing
that they exist in very general circumstances. The first
mechanism acts in fully chaotic systems and reduces the
escape rate of particles by blurring the natural measure of
the system. The second mechanism acts on mixed-phase-
space systems and enhances trapping by throwing trajec-
tories inside KAM islands. We confirm the generality of
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these mechanisms through simulations in the conservative
Hénon map, and we explore the implications of our results
to physical systems.

To illustrate how noise enhances trapping in fully
chaotic systems, consider the baker map [2]

M{ (1, Vi) = (6/2,2y)) y=1/2
(xt+1’yt+1)=((xt+ 1)/2r 2yt_ 1) y> 1/2r
defined in [0, 1] X [0, 1]. Escape is introduced through an
arbitrary leak 7 [17-20]:

M(X,, Vo)
escape

if (x,y) E 1

if (x,y,) €L 1

M(x, y,) = {
For concreteness, consider / to be a vertical stripe (I =
[x, — A, x. + A.] X0, 1]) at the center of the map (x, =
0.5, A, = 0.05). The survival probability P(z) of typical
initial conditions decays asymptotically as P(r) ~ e */7
[2,10,11]. In chemical reactions P(f) corresponds to the
reactant lifetime distribution, which plays a central role in
TST [16]. The trapping strength is quantified through the
characteristic lifetime 7, which is the reciprocal of
the escape rate and is different from the mean escape
time [19]. It can be obtained from periodic orbits, e.g.,
by calculating the leading root z' of the (truncated) poly-
nomial approximation of the zeta function [10],

1/¢G) =] = 2%/A,), as7eo=Inzt, (2
4

where the product is taken over all periodic orbits p which
have period 7, and expanding eigenvalue A, and & =0
indicates absence of noise [21]. We locate the orbits ana-
lytically so that Eq. (2) yields 7,—, with a higher precision
than simulations. For the baker map example above, all
1990 orbits up to period 18 yield 7. = 6.06 £ 0.02.
Next we consider the effect of noise, added indepen-
dently to each trajectory x—x + £5,, y—>y + &6,
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where ¢ controls the noise intensity and &, , € [—1, 1] are
independent uniformly identically distributed stochastic
variables. Let us first consider the simplest case of periodic
boundary conditions (BC) for trajectories driven by noise
outside [0, 1] X [0, 1]. This would be the natural choice for
maps defined on the torus. In this case, for & — oo trajec-
tories are uniformly distributed in [0, 1] X [0, 1] and 7 —
7* with [17-19]

7 ={=In[1 — u(O}"'[= 1/p(1) for small u(D)], (3)

where w(I) is the Liouville measure (phase-space area) of
the leak /. This is equivalent to the statistical microcanon-
ical estimation of chemical reaction rates in TST [16]. In
the baker’s map example above, w(f) =2A, = 0.1 and
7" = 9.49, which is greater than the noiseless case 7, =
6.06 calculated above. The trapping is enhanced by noise.

Let us take a closer look at the two crucial points that
lead to this simple yet surprising result. The first crucial
point is the periodic BC that guarantees that 7 — 7 for
& — oo, Another natural choice is open BC, in which case
trajectories outside [0, 1] X [0, 1] escape. This type of
escape prevails for large ¢ and reduces 7 [for the baker
map7 = —1/In[(1 — A,)/(2£)*] ~ 1/Iné for £ = 1], but
it is negligible for small £. The results shown in Fig. 1(a)
confirm the existence of noise-enhanced trapping for open
BC, with a maximum 7, > 7., at £ = £,, > 0. Noise
increases 7 by more than 50% in the periodic BC case and
by almost 10% in the open BC case.

The second crucial point in the derivation above is
7" > 74—(. References [17-20] show that this holds for
most leaks, also for map (1) [18], which is confirmed in
Fig. 1(b). For periodic BC the condition 7" > 7, is
sufficient for the existence of noise-enhanced trapping.
For open BC the condition 7* > 7,_, is necessary but not
sufficient, and noise-enhanced trapping exists only when
T > T¢=o. In Fig. 1(b) this is seen only in the deep
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FIG. 1 (color online). Noise-enhanced trapping for fully cha-
otic systems. (a) The lifetime 7 for the baker map (1) is shown as
a function of the noise intensity ¢ for two BCs: periodic (red H)
and open (blue @). Horizontal lines: T¢=o = 6.06 (solid) and
7" =9.49 (dashed). Inset: P(z) for £ =0, &= &, = 0.035
(open BC) and ¢ =1 (periodic BC). (b) Values of 77, 7.,
and 7, for different positions x,. of the leak (A, = 0.05). Noise-
enhanced trapping occurs when 7 > 7, for periodic BC and
when 7,, > 7, for open BC (blue shading).

“valleys” of the 7,—y(x.) landscape. But the noise-
enhanced mechanism is also present elsewhere; e.g., for
several x.’s the 7(£) curve has local maxima. The differ-
ence between 7" and 7. is a consequence of the differ-
ence between the Liouville invariant density p, (uniform
in x, y) and the open system’s quasi-invariant density p:—
(nonuniform in x, y) inside 7 [17,19]. Note that escape
occurs one iteration after trajectories enter / (or leave
[0, 1] X [0, 1]). When p,— is large in I, the open system
measure of / is larger than u(I) and 7° > 7,_; see Eq. (3).
In this case the dominant effect of noise is to move trajec-
tories outside /, avoiding their escape and increasing 7.
More generally, noise acts on x, y coordinates making p,
more uniform in x,y [3,7], departing from p,—, and
approaching p,. This 7-increasing effect is shown in
Fig. 2 [17,22].

The mechanism described above acts on transient chaos
and is different from stochastic and coherence resonance
[4]. It has been observed in dissipative maps near crisis
[24,25] and on extended excitable systems [26]. Strong
nonlinearity was shown to be a sufficient condition for its
occurrence in 1D maps [25]. No effect was observed in a
2D system [27], raising doubts about its generality in
higher dimensions. Here we show the existence of this
mechanism in (Hamiltonian) scattering systems. We
identify 7" > 7, as the crucial condition, clarifying the
generality also for higher dimensions. A similar approach
in 1D maps related this mechanism to the nonuniformity
of the invariant density of the closed system [28]. In
Hamiltonian systems the closed system density p, is
uniform, but we show that the mechanism is nevertheless
effective because the open system density pg— is
nonuniform.

In mixed-phase-space systems the exponential decay
discussed so far is replaced by an algebraic decay P(¢) ~
t~ due to the stickiness of KAM islands [6,29]. Figure 3

(b 0<g <1 () &=1

/T/I(I) T M(I)

FIG. 2 (color online). Noise tends to uniformly distribute
surviving trajectories. Quasi-invariant density p, of map (1)
obtained at t = 40 for (a) § = 0 (7 = 7¢—), pg—o distributed
along the unstable manifold of the chaotic saddle [2,10,11];
(b) £€=¢, (r=r7,, open BC), p; is smoothed in / and
negligible outside [0, 1] X [0,1]; (¢) £ =1 (7 = 7", periodic
BC), ps=1 = p, is uniformly distributed. The leak I (x. =
0.5, A = 0.05) and its forward iteration M(I) are indicated.
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FIG. 3 (color online). Random-walk model for trajectories
inside KAM islands. (a) Illustrative KAM island [Hénon map
(4) with k£ = 2]. Inset: Magnification around the period three
orbit A showing the intersection of manifolds. (b) Random-walk
model with probabilities p.~ = 0.5 of stepping Ar = *1, one
reflecting (r = 0, center of the island) and one absorbing bound-
ary (r = r* ~ ¥ /£, where 7 is proportional to island width and
£ to step length). (¢) P(¢) for a simulation of 10° walkers started
in r = r* — 1, with r* = oo (thin red line) and * = 100 (thick
black line). Dashed line: Scaling @ = 0.5. Inset: Linear-log plot
emphasizing the exponential tail (for r* = 100) starting at 7, =

107 = () = (/).

illustrates how noise enhances trapping in this case. If £ is
larger than the lobes of manifold intersections close to the
KAM island (see inset), it will be more likely for trajecto-
ries to approach (or enter) the region corresponding to the
KAM island in the deterministic dynamics by jumping
over the manifolds that shield the island. The time scales
of this effect can be estimated following Ref. [5], which
argues that for small ¢ the deterministic algebraic decay
will be interrupted at a time t, ~ 1/£P, where B =~ 1
depends on «. An asymptotic exponential decay after
such cutoff is the typical effect of noise in intermittent
systems [5], observed also in scattering systems [8]. Our
approach differs from Refs. [5,8] because we consider an
additional trapping regime dominated by trajectories that
jump inside the island, circle the elliptic fixed point, and
perform a random walk in the perpendicular direction. This
1D random-walk model can be solved analytically in infi-
nite domain [30] and yields P(¢) ~ ¢ with & = 0.5. This
is smaller than the deterministic exponent 1 < ag—y <2,
meaning that trapping is enhanced. In reality, the island has
a finite area that corresponds to a reflecting boundary in the
model, as explained in Fig. 3(b). This introduces a cutoff
t, > 1, in the a = 0.5 algebraic decay followed by an
exponential decay, as shown in Fig. 3(c). This second
cutoff occurs when trajectories explore the full island of
size 7, and since this is a diffusive process ¥ = r*/& ~ \/t
and t, ~ 1/&* [6]. For & — 0 the interval of enhanced
trapping At = (¢, — 1,) — oo because of the different scal-
ings of 7, and ¢,. Therefore, even if not valid asymptoti-
cally, enhanced trapping is in practice dominant for small
¢. Similar models have been used to investigate different
problems: anomalous transport [6] and escape of initial
conditions inside KAM islands in random maps [9].

Finally, to confirm the general validity of the two mecha-
nisms discussed above, we investigate the paradigmatic
Hénon map [31-33]

X1 =k — xtz —x, + &0, 4

where different random perturbations &,, defined as before,
are applied to each trajectory. To investigate the mecha-
nism for fully chaotic systems we choose k = 6 in Eq. (4),
which is the smallest integer for which a complete horse-
shoe exists [33]. In Fig. 4(a) we identify in the phase space
of map (4) the trapped region and exit set / (reactant region
and transition state in TST [16]). We estimate graphically
[31] w(I)=area(l)/area(trapped region) = 0.2656, which
leads through Eq. (3) to 7 = 3.239. We compute analyti-
cally [33] all 226 periodic orbits up to period 10, and
through Eq. (2) we obtain 7, = 1.557 = 0.001. Again
7" > 74—, fulfilling the necessary condition identified
above for the existence of noise-enhanced trapping. Our
numerical simulations reported in Fig. 4(b) confirm the
nonmonotonic dependence of 7 on § with 7, > 7., in
perfect analogy with the results for the baker map shown in
Fig. 1. To investigate the mechanism for mixed-phase-
space systems we choose k = 2 in Eq. (4). The phase space
is similar to the one shown in Fig. 4(a) except for the KAM
island in Fig. 3(a) around the fixed point (black dot @). The
results are summarized in Fig. 5 and confirm quantitatively
the predictions (scalings of t,, and a = 0.5) of the
random-walk model in Figs. 3(b) and 3(c).

In summary, we have shown that weak noise leads to a
slower decay of the survival probability P(z) in fully cha-
otic and in mixed-phase-space scattering systems. In both
cases P(r) changes nonmonotonically with noise intensity
¢ (Figs. 4 and 5), an effect previously observed in the
dependence of the diffusion coefficient on ¢ [6,34]. Our

FIG. 4 (color online). Noise-enhanced trapping in the fully
chaotic (k = 6) Hénon map (4). (a) Phase space with trapped
region, delimited by the solid black line (first intersection of the
manifolds WYS of the fixed point B). Escape (inflow) denotes an
unbounded forward (backward) invariant set that diverges in
forward (backward) iterations [32]. Initial conditions and the
region where trajectories are removed were chosen inside these
sets [35]. The exit set / is the set of points that exit the trapped
region in one iteration [31]. (b) Dependence of 7 on & with
Te—o = 1.557 (dashed line) and 7* = 3.239 (dotted line).
Inset: P(r) for £ =0, £ = £, and with 7*.
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FIG. 5 (color online). Noise-enhanced trapping in the Hénon
map (4) with mixed phase space (k = 2). (a) P(r) for £ =0
(thick black line) and & = 1073 (thin blue line) [35]. The times
t, and 7, indicate the beginning and end of the mechanism
described in Fig. 3. Power-law scalings are shown as a reference
(dashed lines). (b) Dependence of ¢, and ¢, on & with fits of the
model predictions (with 8 = 0.92; see text).

approach to the mechanism for fully chaotic systems ex-
tends naturally to higher dimensions, while the mixed-
phase-space mechanism has to be expanded to take
Arnold’s diffusion into account [2].

All scattering systems are likely to be subject to small
noiselike perturbations and to experience an enhancement
of the trapping. Experiments on the chaotic advection of
passive tracers [12] can provide a direct test of our pre-
dictions: by systematically changing the properties of the
tracer and fluid one can control the molecular diffusion
(~ £?) and obtain the dependence of P() on ¢£.

Our results also describe the effect of noise in the phase-
space formulation of TST, where an increase of the chemi-
cal reaction rate is expected. Simulations of unimolecular
reactions with mixed phase space found P(r) ~ t~¢ with
a <1 and an exponential tail. According to Ref. [16] the
dynamical origins of this behavior remain obscure. We
show that noise leads to the same observations. It remains
to be shown whether this explains the previous simulations,
where noiselike perturbations could originate from round-
off errors or from higher degrees of freedom [6]. Our
results also impact quantum systems. For instance, the
increase in the characteristic lifetime 7 indicates a modifi-
cation of the fractal dimensions of the invariant sets
[3,22,23] and consequently of the fractal Weyl’s law [13].

We are indebted to T. Tél and D. Pazé for insightful
suggestions. E.G. A. was supported by the Max Planck
Society.

[1] A. Ben-Mizrachi, I. Procaccia, and P. Grassberger, Phys.
Rev. A 29, 975 (1984).

[2] E. Ott, Chaos In Dynamical Systems (Cambridge
University Press, Cambridge, England, 2002).

[3] T. Tél et al., Chaos 10, 89 (2000).

[4] See,e.g., A.S. Pikovsky and J. Kurths, Phys. Rev. Lett. 78,
775 (1997); L. Gammaitoni, P. Hinggi, P. Jung, and F.
Marchesoni, Rev. Mod. Phys. 70, 223 (1998).

(5]
(6]

(71
(8]

(91

[10]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]
(30]

(31]
(32]
(33]

[34]
(35]

244102-4

E. Floriani, R. Mannella, and P. Grigolini, Phys. Rev. E 52,
5910 (1995).

E.G. Altmann and H. Kantz, Europhys. Lett. 78, 10008
(2007); in Anomalous Transport: Foundations and
Applications, edited by R. Klages, G. Radons, and 1. M.
Sokolov (Wiley-VCH, Weinheim, 2008), p. 271; E.G.
Altmann, Ph.D. thesis, Wuppertal University, 2007.

P. Mills, Commun. Nonlinear Sci. Numer. Simul. 11, 899
(2000).

J.M. Seoane and M. A.F. Sanjuan, Phys. Lett. A 372, 110
(2007); J.M. Seoane, L. Huang, M. A.F. Sanjuan, and
Y.-C. Lai, Phys. Rev. E 79, 047202 (2009).

C.S. Rodrigues, A.P.S. de Moura, and C. Grebogi, Phys.
Rev. E 82, 026211 (2010).

P. Gaspard, Chaos, Scattering And Statistical Mechanics
(Cambridge University Press, Cambridge, England,
1998).

T. Tél, and M. Gruiz, Chaotic Dynamics (Cambridge
University Press, Cambridge, England, 2006).

J.C. Sommerer, H.C. Ku, and H.E. Gilreath, Phys. Rev.
Lett. 77, 5055 (1996).

W.T. Lu, S. Sridhar, and M. Zworski, Phys. Rev. Lett. 91,
154101 (2003).

A.B. Schelin et al., Phys. Rev. E 80, 016213 (2009).

I. Scheuring, T. Czaran, P. Szab6, G. Karolyi, and Z.
Toroczkai, Origins Life Evol. Biosphere 33, 319 (2003).

See G.S. Ezra, H. Waalkens, and S. Wiggins, J. Chem.
Phys. 130, 164118 (2009), and references therein.

V. Paar and N. Pavin, Phys. Rev. E 55, 4112 (1997); V.
Paar and H. Buljan, ibid. 62, 4869 (2000).

J. Schneider, T. Tél, and Z. Neufeld, Phys. Rev. E 66,
066218 (2002).

E.G. Altmann and T. Tél, Phys. Rev. Lett. 100, 174101
(2008); Phys. Rev. E 79, 016204 (2009).

V.S. Afraimovich and L. A. Bunimovich, Nonlinearity 23,
643 (2010); L.A. Bunimovich and A. Yurchenko,
arXiv:0811.4438.

For noise corrections, see C. P. Dettmann, R. Mainieri, and
G. Vattay, J. Stat. Phys. 93, 981 (1998).

We have verified that trapping is enhanced also for random
maps, where dimensions remain fractal [3,23].

F.J. Romeiras, C. Grebogi, and E. Ott, Phys. Rev. A 41,
784 (1990).

M. Franaszek, Phys. Rev. A 44, 4065 (1991).

P. Reimann, J. Stat. Phys. 85, 403 (1996).

R. Wackerbauer and S. Kobayashi, Phys. Rev. E 75,
066209 (2007).

J. A. Blackburn, N. Gronbech-Jensen, and H.J. T. Smith,
Phys. Rev. Lett. 74, 908 (1995).

H. Faisst and B. Eckhardt, Phys. Rev. E 68, 026215
(2003).

G. M. Zaslavsky, Phys. Rep. 371, 461 (2002).

W. Feller, An Introduction To Probability Theory And Its
Applications (John Wiley & Sons, New York, 1950).

J. Meiss, Chaos 7, 139 (1997).

E. Petrisor, Chaos Solitons Fractals 17, 651 (2003).

A. Endler and J. A.C. Gallas, Phys. Lett. A 352, 124
(20006); 356, 1 (2006).

R. Klages, Europhys. Lett. 57, 796 (2002).

Trajectories were started at x; € {0.9x/,, 1.0x;,}, y; =
1.1y, and removed at x < 1.lx;,, y <l.lys,, where
Xpp =Y = —1 =1+ Kk [31-33].


http://dx.doi.org/10.1103/PhysRevA.29.975
http://dx.doi.org/10.1103/PhysRevA.29.975
http://dx.doi.org/10.1063/1.166478
http://dx.doi.org/10.1103/PhysRevLett.78.775
http://dx.doi.org/10.1103/PhysRevLett.78.775
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/PhysRevE.52.5910
http://dx.doi.org/10.1103/PhysRevE.52.5910
http://dx.doi.org/10.1209/0295-5075/78/10008
http://dx.doi.org/10.1209/0295-5075/78/10008
http://dx.doi.org/10.1016/j.cnsns.2005.02.003
http://dx.doi.org/10.1016/j.cnsns.2005.02.003
http://dx.doi.org/10.1016/j.physleta.2007.06.079
http://dx.doi.org/10.1016/j.physleta.2007.06.079
http://dx.doi.org/10.1103/PhysRevE.79.047202
http://dx.doi.org/10.1103/PhysRevE.82.026211
http://dx.doi.org/10.1103/PhysRevE.82.026211
http://dx.doi.org/10.1103/PhysRevLett.77.5055
http://dx.doi.org/10.1103/PhysRevLett.77.5055
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1103/PhysRevE.80.016213
http://dx.doi.org/10.1023/A:1025742505324
http://dx.doi.org/10.1063/1.3119365
http://dx.doi.org/10.1063/1.3119365
http://dx.doi.org/10.1103/PhysRevE.55.4112
http://dx.doi.org/10.1103/PhysRevE.62.4869
http://dx.doi.org/10.1103/PhysRevE.66.066218
http://dx.doi.org/10.1103/PhysRevE.66.066218
http://dx.doi.org/10.1103/PhysRevLett.100.174101
http://dx.doi.org/10.1103/PhysRevLett.100.174101
http://dx.doi.org/10.1103/PhysRevE.79.016204
http://dx.doi.org/10.1088/0951-7715/23/3/012
http://dx.doi.org/10.1088/0951-7715/23/3/012
http://arXiv.org/abs/0811.4438
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1103/PhysRevA.41.784
http://dx.doi.org/10.1103/PhysRevA.41.784
http://dx.doi.org/10.1103/PhysRevA.44.4065
http://dx.doi.org/10.1007/BF02174212
http://dx.doi.org/10.1103/PhysRevE.75.066209
http://dx.doi.org/10.1103/PhysRevE.75.066209
http://dx.doi.org/10.1103/PhysRevLett.74.908
http://dx.doi.org/10.1103/PhysRevE.68.026215
http://dx.doi.org/10.1103/PhysRevE.68.026215
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
http://dx.doi.org/10.1063/1.166245
http://dx.doi.org/10.1016/S0960-0779(02)00475-7
http://dx.doi.org/10.1016/j.physleta.2006.01.031
http://dx.doi.org/10.1016/j.physleta.2006.01.031
http://dx.doi.org/10.1016/j.physleta.2006.04.042
http://dx.doi.org/10.1209/epl/i2002-00581-4

