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Core-Halo Distribution in the Hamiltonian Mean-Field Model
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We study a paradigmatic system with long-range interactions: the Hamiltonian mean-field (HMF)
model. It is shown that in the thermodynamic limit this model does not relax to the usual equilibrium
Maxwell-Boltzmann distribution. Instead, the final stationary state has a peculiar core-halo structure. In
the thermodynamic limit, HMF is neither ergodic nor mixing. Nevertheless, we find that using dynamical
properties of Hamiltonian systems it is possible to quantitatively predict both the spin distribution and the
velocity distribution functions in the final stationary state, without any adjustable parameters. We also
show that HMF undergoes a nonequilibrium first-order phase transition between paramagnetic and

ferromagnetic states.
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Since the early work of Clausius, Boltzmann, and Gibbs
it has been known that for particles interacting through
short-range potentials, the final stationary state reached by
a system corresponds to the thermodynamic equilibrium
[1]. Although no exact proof exists, in practice it is found
that nonintegrable systems with a fixed energy and number
of particles (microcanonical ensemble) always relax to a
unique stationary state which only depends on the global
conserved quantities: energy, momentum, and angular
momentum. The equilibrium state does not depend on
the specifics of the initial particle distribution. The situ-
ation is very different for systems in which particles
interact through long-ranged unscreened potentials. This
is the case for gravitational systems and confined one
component plasmas [2,3]. For these systems, in the ther-
modynamic limit, the collision duration time diverges, and
the thermodynamic equilibrium is never reached [4].
Instead, as time ¢ — oo, these systems become trapped in
a stationary state characterized by a broken ergodicity
[5-7]. Unlike the thermodynamic equilibrium, the station-
ary state depends explicitly on the initial particle distribu-
tion. Over the last 50 years, there has been a great effort to
predict the final stationary state without having to explic-
itly solve the N-body dynamics or the collisionless
Boltzmann (Vlasov) equation. Qualitatively, it has been
observed that for many different systems the nonequilib-
rium stationary state has a peculiar core-halo shape.
Recently, an ansatz solution to the Vlasov equation has
been proposed which allowed us to explicitly calculate the
core-halo distribution function for confined plasmas and
self-gravitating systems [2,3]. In this Letter we will show
that an ansatz solution is also possible for the Hamiltonian
mean-field (HMF) model. The theory proposed allows us
also to locate the nonequilibrium para-to-ferromagnetic
phase transition, which earlier theories incorrectly pre-
dicted to be of second order [8]. All of the results are
compared with the molecular dynamics simulations
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performed using a symplectic integrator, and are found
to be in excellent agreement.

The HMF model consists of N, XY interacting spins,
whose dynamics is governed by the Hamiltonian

N p2 1 N
H= ;7 TN i;[l —cos(; —6)] (1)

where angle 6; is the orientation of the ith spin and p; is its
conjugate momentum [8—10]. The macroscopic behavior
of the system is characterized by the magnetization vector
M = (M, M,), where M, = (cosf), M, = (sinf), and
(- - -) stands for the average over all particles. The modulus,
M = |M| serves as the order parameter which measures
the coherence of the spin angular distribution: for M = 0
we have a completely incoherent state, whereas for finite
M there is some degree of coherence. Hamilton’s dynamic
equations for each spin can be expressed in terms of the
total magnetization and take a particularly simple
form 6; = F(#,), where the force on each spin is F(6;) =
—M, sinf; + M, cosf;. The average energy per particle is
u=H/N = {(p?)/2 + (1 — M?)/2. Since the Hamiltonian
does not explicitly depend on time, u is conserved along
the temporal evolution. For simplicity we will consider
initial distributions of the “water-bag” form in the (6, p)
reduced phase space (u space). Without loss of generality,
we choose a frame of reference where (6) = 0 and (p)=0.
The one-particle initial distribution function then reads

1
fo(0, p) = ——0(0, — [0))O(py — Ipl), (2
460 po

where O is the Heaviside step function, and 6, and p are
the maximum absolute values of the angle and the momen-
tum, respectively. Such initial distributions are character-
ized by M, = My, M, = 0, and u = p§/6 + (1 — M})/2,
where M, = sin(0,)/6, is the initial magnetization.
Because of the symmetry of f, with respect to § = 0, in
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the thermodynamic limit M, = 0 throughout the evolution,
so that the macroscopic dynamics is completely deter-
mined by M, (z).

As the system evolves, the particle distribution in the
phase space changes and eventually reaches a stationary
state or a limit cycle. If N is finite, the stationary state will
be described by the equilibrium Maxwell-Boltzmann (MB)
distribution. In the thermodynamic limit N — oo, however,
the system becomes trapped in a nonergodic nonmixing
state, the lifetime of which diverges with the number of
particles. In this limit, the dynamical evolution of one-
particle distribution function f(6, p, t) is governed exactly
by the collisionless Boltzmann (Vlasov) equation [11],

af | of Af _
E+pﬁ+F(ﬁ)$—O. 3)

The left-hand side of this equation is just the conve-
ctive derivative of the one-particle distribution function.
Therefore, a collisionless Hamiltonian system evolves over
the phase space as an incompressible fluid. Furthermore,
the incompressibility implies that during the temporal
evolution the phase-space density can never exceed the
maximum of the initial distribution function.

Although the MB distribution is also a stationary solu-
tion of the Vlasov equation, unlike for the Boltzmann
equation, it is not a global attractor of the dynamics, so
that an arbitrary initial distribution will not evolve to the
MB equilibrium. The collisionless relaxation described by
the Vlasov equation for systems with long-range interac-
tions is, therefore, much more complex than the collisional
relaxation governed by the usual Boltzmann equation for
systems with short-range forces.

The Vlasov equation is time reversible. Thus, on a fine-
grained scale, temporal evolution never ends. There is no
fine-grained attractor for the Vlasov dynamics. In practice,
however, one can never have infinite resolution, and there
is a finite maximum precision that one can reach in any
experiment or a numerical simulation. It is on this coarse-
grained scale that it appears that the evolution has reached
a steady state. Unlike for the Boltzmann equation, how-
ever, the stationary coarse-grained distribution function
depends explicitly on the initial condition.

Recently it has been observed that for systems with
long-range interactions, such as self-gravitating clusters
and plasmas [2,3], the final stationary state has a peculiar
core-halo structure. The mechanism of core-halo formation
is very similar to the process of evaporative cooling. As the
dynamics evolves, macroscopic propagating density waves
are formed. Some particles enter in resonance with the
macroscopic oscillations gaining a large amount of energy
at the expense of the collective motion. This is similar to
the mechanism of Landau damping well known in plasma
physics [12]. Resonant particles can gain sufficient energy
to reach high energy states, thus forming a diffuse halo. On
the other hand, the loss of energy dampens the macroscopic

oscillations, so that the leftover particles become con-
densed into the low energy states, resulting in a dense
core. However, because of the incompressibility of
Vlasov dynamics, the core cannot completely freeze—
i.e., collapse to the minimum of the potential energy.
Instead, the distribution function of the core particles pro-
gressively approaches the maximum phase-space density
allowed by the initial distribution—all the low energy
states become fully occupied by the core particles.
Although the HMF model appears to be very different
from either self-gravitating clusters or confined plasmas,
we find that its dynamical evolution follows exactly the
same scenario as described above.

In the case of the HMF, the oscillations of the magneti-
zation M play the role of collective oscillations which drive
some spins to higher energy states, leading to a halo
formation. The macroscopic oscillations of M are signifi-
cantly damped in one or two periods of oscillation. The
extent of the halo is determined on the same time scale. As
a consequence of the conservation of the total energy, the
remaining spins populate lower and lower energy states,
until all of them become fully occupied up to the maximum
phase-space density o = 1/46,p,. In the final stationary
state, the core distribution function is the same as that of a
fully degenerate Fermi gas of spin-degeneracy m,. The
core distribution extends up to the Fermi energy €y. The
value of e is yet unknown, and must be determined self-
consistently. We propose an ansatz for the core-halo dis-
tribution that describes the final (coarse-grained) stationary
state reached by the HMF model at the end of its dynamical
evolution:

f5(0,p) = no[O(er — &) + xO(g;, — £)O(e —gp)], (4)

where (6, p, M,) = p?>/2+ 1 — M cos@ is the single-
spin energy, y is the ratio between the halo and the core
phase-space densities, M, is the stationary value of mag-
netization, and g, is the maximum energy of the halo spins.
The energy ¢, is determined from the short-time dynamics
of spins driven by the oscillations of the magnetization. To
estimate this value we need an independent equation that
describes the dynamical evolution of magnetization. We
proceed as follows: taking the second derivative of M, we
obtain M, = M {(sin’0) — (p*> cosf). This equation re-
quires the knowledge of the temporal evolution of (sin’@)
and (p?cosf), which leads to an infinite hierarchy of
equations. To truncate the hierarchy, we assume that for
short times (sin’f) = 1/2 and {p? cosf) = (p>)cosh) =
(Qu — 1 + M2)M,, where use has been made of the con-
servation of energy, together with the condition M = M.
We then find a dynamical equation satisfied by the
magnetization

M, =—M,Qu+ M?-3. §))

This equation can be integrated numerically to provide the
temporal evolution of M,(¢). Since Eq. (5) was derived
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neglecting the correlations between angles and momen-
tums, its validity extends only to very short times.
However, the maximum energy of the halo is also
determined by the very short-time dynamics. Thus,
Eq. (5), should be sufficient to give a reasonable estimate
of the value of the maximum halo energy. We adopt the
following procedure to determine &;,. For a given initial
distribution, we determine the maximum energy attained
by a group of noninteracting test-spins that are launched
with the initial conditions selected from the distribution
function, Eq. (2). Their dynamical evolution is governed by
6, = —M () sinf; with M (¢) determined by Eq. (5), with
M (0) = M, and M () = 0. We solve this equation over a
short time corresponding to two periods of oscillation of
M,. The g, then, corresponds to the maximum energy
obtained by any of the test-spins.
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FIG. 1 (color online). Snapshots of (a) the phase space and
(b) of spin energies &, as a function of angle. The snapshot is
taken at = 10000, using N = 20000 spins. The solid curves
correspond to the calculated Fermi energy e (red, inner circle)
and to the maximum halo energy ¢, (blue, outer curves), i.e.,
€0, p, M) = p*>/2+1— M,cosh = g and &(, p, M,) = &,
respectively. We see that the Fermi energy curve perfectly
encloses the high density region. The maximum halo energy
obtained using the test particle dynamics and Eq. (5) also
delimits well the extent of the particle distribution in the phase
space [blue upper line, panel (b)]. Panels (c) and (d) show the
angle and the momentum distributions, respectively. Solid
curves are the theoretical predictions obtained using the distri-
bution function of Eq. (4), and points are the results of molecular
dynamics simulations averaged over 20 runs. The initial distri-
bution has My = 0.80 and u = 0.55. Note that the present theory
predicts that the maximum energy attained by any spin will be
bounded by &, while theories based on generalized entropies
predict that this energy distribution is unbounded, decaying
either exponentially or algebraically [9], but see also [16].

Once ¢, has been determined using the test particle
dynamics, the remaining parameters of the final stationary
distribution—ep, y, and M,—are obtained by imposing
the conditions of conservation of norm and of the total
energy, as well as the closure equation for magnetization:

[ 7,6, p)dbdp = 1, ©)
[fs(é’, p)e6, p, My)dbdp = u, (7)
[fs(ﬁ, p)cosfdOdp = M,. (8)

The equations above can be analytically evaluated in terms
of elliptic integrals, forming a closed set of algebraic
equations that must be solved numerically to determine
er, X, and M.

In Figs. 1(a) and 1(b) we show a snapshot of the phase
space and of the distribution of spin energies. The core-
halo separation can be seen very clearly. The energy ¢,
delimits the particle distribution over the phase space,
while the Fermi energy restricts the extent of the core
region. In this example the initial distribution has
My = 0.80 and u = 0.55, while the magnetization in the
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FIG. 2 (color online). Magnetization of the final stationary
state M, as a function of the initial energy per particle u for
M, = 0.40. The curves are the theoretical predictions obtained
using the distribution function of Eq. (4), and the points are the
results of the molecular dynamics simulations with N = 10°
spins. The solid curve corresponds to the stable solutions,
whereas the dashed curve corresponds to unstable solutions.
The gray area corresponds to the metastable region in the
parameter space where the phase transition must occur. The
inset shows the result of a large number of molecular dynamics
simulations, performed in the close vicinity of the phase tran-
sition. The abrupt change in magnetization, as u is varied
indicates a first-order phase transition, as is predicted by the
theory. For all simulations, the integration was performed up to
t = 1200. The final M, was obtained by averaging the magne-
tization over an additional time interval Ar = 800. We note that
the theory based on Lynden-Bell’s coarse-grained entropy in-
correctly predicts that the phase transition at this point will be of
second order [8].
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FIG. 3 (color online). Dynamical evolution of magnetization
on two sides of the first-order phase transition. On the paramag-
netic side (u# = 0.6170), the magnetization oscillates around
zero, while on the ferromagnetic side (u = 0.6165), the oscil-
lations are damped and magnetization converges to M, predicted
by the theory.

final stationary state is M; = 0.56. In panels (c) and (d) we
compare the theoretically calculated spin and momentum
distributions with the molecular dynamics simulations.
As can be seen, excellent agreement is found between
the theory and the simulations.

For all the initial distributions with finite magnetization,
we find that if the energy per particle is less than u < u;
there are two real roots of Eq. (8), M; = 0 and M, # 0.
The root M, = 0 is unstable, so that only the solution with
finite magnetization has a physical meaning. On the other
hand for u > u,, there is only one real root, M; = 0. For
the interval of energies u; = u = u,, there are three distinct
roots, see Fig. 2. The theory, therefore, predicts that there is
a first-order phase transition in the interval between u; =
u = u,. This is precisely what is found in simulations, see
Fig. 2. Unfortunately, differently from the equilibrium
phase transitions, here we do not have a free energy, which
would allow us to precisely locate the transition point using
the Maxwell construction. All we can do is delimit the
location of the first-order phase transition within a narrow
interval u; = u = u,, shaded gray in Fig. 2. On the para-
magnetic side of the phase transition, the systems becomes
trapped in an out-of-equilibrium limit cycle associated
with appearance of resonance islands in the phase space
[13], characterized by strong oscillation of magnetization
around M = 0, see Fig. 3.

We have studied the paradigmatic system with long-
range interactions, the so-called Hamiltonian mean-field
model. It is shown that in the thermodynamic limit this
model does not relax to the usual Maxwell-Boltzmann
distribution. Instead the final stationary state of the HMF
has a core-halo distribution function which is an ansatz
solution to the Vlasov equation. The theory allows us to
explicitly calculate the spin and the momentum distribu-
tion functions, both of which are found to be in excellent

agreement with the simulations, without any adjustable
parameters. We also find that the HMF model undergoes
a first-order ferro-to-para phase transition in the region of
parameter space where earlier theories based on the
Lynden-Bell (LB) coarse-grained entropy predicted a sec-
ond order phase transition [8]. It is interesting to note that
the previous simulations [8,14]—performed over a fairly
short time span ¢ << 150, before the system has fully re-
laxed—failed to notice this incorrect prediction of the LB
theory.

The present theory—as well as the earlier results on non-
neutral plasmas [2], and self-gravitating systems in one
[15] and two [3] dimensions—suggests that there is a
significant degree of universality in collisionless relaxation
dynamics. The core-halo distribution function appears to
be a universal attractor—in a coarse-grained sense—of
systems with long-range interactions, analogous to the
MB distribution for collisional systems with short-range
forces.
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