
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FRANCIS BIRCK MOREIRA

Profiling and Reducing Micro-Architecture
Bottlenecks at the Hardware Level

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Philippe Olivier Alexandre Navaux
Advisor

Porto Alegre, August 2014

CIP – CATALOGING-IN-PUBLICATION

Moreira, Francis Birck

Profiling and Reducing Micro-Architecture Bottlenecks at the
Hardware Level / Francis Birck Moreira. – Porto Alegre: PPGC
da UFRGS, 2014.

75 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2014. Advisor: Philippe Olivier Alexandre Navaux.

1. System Architecture. 2. Program Profiling. 3. Hardware
Design. I. Navaux, Philippe Olivier Alexandre. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Profa. Carlos Alexandre Neto
Pró-Reitor de Coordenação Acadêmica: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora Adjunta de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecário-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“I do not know what I may appear to the world, but to myself I seem to have been
only like a boy playing on the sea-shore,

and diverting myself in now and then finding a smoother pebble or a prettier shell
than ordinary, whilst the great ocean of truth lay all undiscovered before me.”

— SIR ISAAC NEWTON

ACKNOWLEDGMENTS

Well, I should as well make this the longest chapter of this dissertation. First, I would
like to thank my parents for, well, everything. There is simply too much in this “every-
thing” to be detailed, so let us keep ourselves at that. Second, I must thank Laércio Lima
Pilla for enduring my introverted, awkward presence while living together for three and a
half years, and for still being by far a better friend than I should hope to have. Thanks to
him, I was able to make friends and become somewhat more human again. I’ll also use
this space to thank Francieli Zanon Boito, his girlfriend, for all the guaca mole, and for
becoming a friend with who I am usually able to identify with myself. In this same line,
I must thank my cousin Herberth Birck Fröhlich, for living with me for four years and
a half, and always being able to make me laugh in the simplest of ways. Thanks to his
influence, I became someone who could even, at times, be considered fun and extrovert.

I am grateful to Philippe Olivier Alexandre Navaux, for the opportunity in the first
place to engage in research. And when speaking of research, a special acknowledgment
must go to Marco Antonio Zanata Alves for his endless help. Ever since I started re-
searching, Marco has mentored me, taught me, laughed with me, corrected me, argued
with me, corrected me again, and so on, until I eventually came up with something de-
cent. This work would simply not exist were it not for Marco pushing me into MsC and
always being there for me.

There are many more who I should thank, such as everyone in my laboratory, as
everyone always helped: Vicente Cruz, Matthias Diener, Eduardo Cruz, Eduardo Roloff
and others. I should also thank all the people who eventually became friends with me,
and, somehow, changed me and my ways of thinking. Eight years ago I would not find it
possible, but this number of friends became large enough that I should not list them here.
Thank you all.

RESUMO

BLAP: Um Caracterizador de Blocos Básicos de Arquitetura

A maior parte dos mecanismos em processadores superescalares atuais usam granula-
ridade de instrução para criar ou caracterizar especulações, tais como predição de desvios
ou prefetchers. No entanto, muitas das características das instruções podem ser obti-
das ao analisar uma granularidade mais grossa, o bloco básico de código, aumentando
a quantidade de código coberta em um espaço similar de armazenamento. Adicional-
mente, códigos podem ser analisados mais precisamente e prover uma variedade maior
de informação ao observar diferentes tipos de instruções e suas relações. Devido a estas
vantagens, a análise no nível de blocos pode fornecer mais oportunidades para mecanis-
mos que necessitam desta informação. Por exemplo, é possível integrar informações de
desvios mal previstos e acessos a memória para gerar informações mais precisas de quais
acessos a memória oferecem melhor desempenho ao serem priorizados.

Nesta tese propomos o Block-Level Architecture Profiler (BLAP) (Block Level Ar-
chitecture Profiler), um mecanismo em hardware que caracteriza gargalos no nível micro-
arquitetural, tal como loads delinquentes, desvios de difícil previsão e contenção nas uni-
dades funcionais. O BLAP trabalha no nível de bloco básico, apenas detectando e forne-
cendo informações que podem ser usada para otimizar tais gargalos. Um mecanismo para
a remoção de prefetches e uma política de controlador de memória DRAM foram criados
para usar a informação criada pelo BLAP e demonstrar seu potencial. Juntos, estes me-
canismos são capazes de melhorar o desempenho do sistema em até 17.39% (3.9% em
média). Nosso método mostrou também ganhos médios de 13.14% quando avaliado com
uma pressão na memória mais alta devido a prefetchers mais agressivos.

Palavras-chave: Arquitetura de Sistemas, Perfil de Programas, Design de Hardware.

ABSTRACT

Most mechanisms in current superscalar processors use instruction granularity infor-
mation for speculation, such as branch predictors or prefetchers. However, many of these
characteristics can be obtained at the basic block level, increasing the amount of code that
can be covered while requiring less space to store the data. Moreover, the code can be
profiled more accurately and provide a higher variety of information by analyzing differ-
ent instruction types inside a block. Because of these advantages, block-level analysis
can offer more opportunities for mechanisms that use this information. For example, it is
possible to integrate information about branch prediction and memory accesses to provide
precise information for speculative mechanisms, increasing accuracy and performance.

We propose a BLAP, an online mechanism that profiles bottlenecks at the micro-
architectural level, such as delinquent memory loads, hard-to-predict branches and con-
tention for functional units. BLAP works at the basic block level, providing information
that can be used to reduce the impact of these bottlenecks. A prefetch dropping mech-
anism and a memory controller policy were developed to use the profiled information
provided by BLAP. Together, these mechanisms are able to improve performance by up
to 17.39% (3.90% on average). Our technique showed average gains of 13.14% when
evaluated under high memory pressure due to highly aggressive prefetch.

Keywords: System Architecture, Program Profiling, Hardware Design.

LIST OF FIGURES

2.1 Example of code presenting the classical definition of basic blocks
(BBL) and our relaxed definition (RBL) 24

2.2 Statistics for the most relevant blocks of the libquantum benchmark,
and their relationship with performance measured in IPC 25

4.1 Basic block characteristic distribution. Every block receives only one
characteristic, the most relevant one according to the hardware counters 36

4.2 Basic block characteristic distribution. Every block receives only one
characteristic, the most relevant one according to the hardware coun-
ters. Now statistics are properly attributed to each block. 37

4.3 Basic block characteristic distribution. Every block receives one char-
acteristic, the most relevant one according to the sum of register true
dependencies delays per type . 39

4.4 Basic block characteristic distribution. Every block receives only one
characteristic, the most relevant one according to commit stage delays 40

5.1 Overview of the operation of BLAP in a superscalar processor. Parts
in gray represent BLAP’s modifications or additions to the processor. 43

5.2 Flow chart of additional commit stage events. 45
5.3 Modeled performance improvements correctly predicting 25%, 50%,

75% and 100% of branch instructions in blocks characterized as "Brch". 50
5.4 Modeled performance improvements solving 25%, 50%, 75% and

100% of the load instructions of blocks characterized as "memory
load". 50

5.5 Modeled performance improvements solving 25%, 50%, 75% and
100% of the load instructions of blocks characterized as "memory
load", when the mechanism only characterizes loads. 51

6.1 Request selection logic for different memory controller mechanisms. 56

7.1 Performance results for NAS-NPB and SPEC-OMP2001, relative to
FR-FCFS baseline. 57

7.2 Performance results for NAS-NPB and SPEC-OMP2001 with increased
aggressivity prefetcher, relative to FR-FCFS baseline. 58

7.3 Performance results for NAS-NPB and SPEC-OMP2001 with con-
servative aggressivity prefetcher, relative to FR-FCFS baseline. . . . 59

7.4 Performance results comparison between using the branch target buffer
and a large cache, relative to FR-FCFS baseline. 60

7.5 Performance results comparison using the same memory controller,
but different informations, from BLAP and CBP respectively, relative
to FR-FCFS baseline. 60

7.6 Mechanism performance, normalized to baseline configurations with
different memory latencies . 61

7.7 Mechanism performance with BLAP-PADC-8L using Branch Target
Buffer (BTB), normalized to baseline configurations with 16 cores . . 62

7.8 Mechanism performance, normalized to baseline configurations with
different memory latencies . 62

LIST OF TABLES

2.1 Pearson moment-product correlation coefficients of absolute statistics
per block and performance in IPC for sequential benchmarks. 27

2.2 Pearson moment-product correlation coefficients of absolute statistics
per block and performance in IPC for parallel benchmarks. 28

5.1 Hardware Costs of BLAP . 49

6.1 Baseline simulated architectural parameters. 54

LIST OF ABBREVIATIONS AND ACRONYMS

BBL Basic Block

BBV Basic Block Vector

BHT Branch History Table

BLAP Block Level Architectural Profiler

BTB Branch Target Buffer

CBP Criticality Binary Prediction

CPU Core Processing Unit

FR-FCFSFirst Row - First Come First Serve

GPU Graphic Processing Unit

ILP Instruction-Level Parallelism

IPC Instructions per Cycle

ISA Instruction Set Architecture

LLC Last Level Cache

LRU Least Recently Used

MOB Memory Reorder Buffer

MSHR Miss Status Handle Register

OBP Online Behavior Predictor

PADC Prefetch-Aware DRAM Controller

RBL Relaxed Block

ROB Reorder Buffer

TLP Thread-Level Parallelism

x86 Intel’s ISA x86

CONTENTS

1 INTRODUCTION . 19
1.1 Introduction . 19
1.2 Contributions . 20
1.3 Organization . 21

2 BACKGROUND . 23
2.1 Basic Block and Relaxed Blocks . 23
2.2 Basic Block Characteristics and Performance 24
2.3 Correlation between Characteristics and Performance 25

3 ANALYSIS OF THE STATE-OF-THE-ART 29
3.1 Code Behavior Detection and Use . 30
3.2 Basic Block and Phases Use Cases . 31
3.3 Hardware Design Opportunities . 31
3.4 Summary of the State of Art . 33

4 BLOCK CHARACTERIZATION . 35
4.1 Introduction . 35
4.2 Hardware Counter Classification . 35
4.3 Register Dependence Latency Classification 37
4.4 Stall Commit Classification . 38

5 BLOCK LEVEL ARCHITECTURAL PROFILER 43
5.1 Behavior Detection . 43
5.2 Behavior Storage . 46
5.3 Behavior Labeling . 46
5.4 Critical Path Implications . 47
5.4.1 Profile Stability . 47
5.4.2 Hardware Costs . 48
5.5 Evaluating BLAP Precision . 48

6 EVALUATION METHODOLOGY . 53
6.1 Simulation Environment and Metrics . 53
6.2 Evaluated Memory Controller Policies 53

7 EXPERIMENTAL RESULTS . 57
7.1 Mechanism Exploration . 57
7.2 Design Space Exploration . 60
7.2.1 Memory Latency . 61

7.2.2 Cores Number . 61
7.2.3 Cache Size . 61

8 CONCLUSIONS AND FUTURE WORK 63
8.1 Contributions . 63
8.2 Future Work . 64

REFERENCES . 65

9 APPENDIX - PORTUGUESE SUMMARY 69
9.1 Introdução . 69
9.2 Detecção de Blocos Básicos . 70
9.3 BLAP: Proposta de Detecção de Blocos Básicos 72
9.3.1 Detecção . 72
9.3.2 Armazenamento . 73
9.3.3 Rotulamento . 73
9.3.4 Implicações no caminho Crítico . 73
9.3.5 Custos de Hardware . 73
9.4 Resultados . 74
9.5 Conclusões . 75

19

1 INTRODUCTION

Currently, industry has reached the limits of Instruction Level Parallelism (ILP) for
the available computing system models, which feature superscalar out-of-order execution.
Extensive research has enabled compilers to optimize a program’s fundamental building
blocks (also known as basic blocks) for specific architectures, mostly through profiling
with specific data inputs. However, a dissonance is still present in the code optimization,
as compilers cannot leverage the hardware state information of different architectures,
which leads to the concepts present in this thesis.

1.1 Introduction

Characterization of basic blocks is an important, recurring technique, used for auto-
matic optimization of several types. Software tools such as Vtune (REINDERS, 2005)
allow manual analysis to detect performance improvement opportunities, such as rewrit-
ing code to avoid high cache miss rates for specific basic blocks, known as hotspots. The
basic block granularity is especially useful (COCKE, 1970) as basic blocks represent por-
tions of code that always end with conditional or unconditional branch instructions. A
program’s execution path is therefore defined by basic block execution sequences, en-
abling a program phase characterization and dynamic optimization. A recent example
is the work of Kambadur et al. (KAMBADUR; TANG; KIM, 2012), which uses basic
blocks to characterize the thread-level parallelism of an application in its different phases.

General-purpose processor designs (YUFFE et al., 2011) only collect information at
the instruction level. Although several research papers used basic block analysis, most did
so using a software approach, even for hardware adaptations (PANAIT; SASTURKAR;
WONG, 2004; RATANAWORABHAN; BURTSCHER, 2008). One of the few techniques
that actually performed basic block analysis at the hardware level was the rePlay frame-
work (PATEL; LUMETTA, 2001). It analyzes the code to perform dynamic code opti-
mization which is stored in a trace cache for future use, although no bottleneck profiling is
performed. Another example is (CLARK et al., 2007), which uses post-commit analysis
to make dynamic translation from scalar instructions to SIMD instructions (given offline
step to convert SIMD to scalar instructions), although using a single function (detecting
branch-and-link instructions) as scope to detect scalar instructions for translation.

Block profiling is usually done in software due to the high complexity of detailed
profiling and analysis required. Nevertheless, profiling in hardware is interesting as it can
leverage current hardware state information to efficiently generate relevant information
of a program’s execution, requiring no pre-analysis or source code modification. Recent
trends in hardware development also point to the relation of instructions within blocks for
performance improvements (AFRAM; ZENG; GHOSE, 2013; FAROOQ; KHUBAIB;

20

JOHN, 2013). The main limitation of basic block analysis is on what kind of analysis
and characterization can be performed in hardware. It must be relevant enough to ensure
performance improvements, and simple enough for effective trade-off.

With the mainstream acceptance of prefetchers (ZHUANG; LEE, 2007) and the re-
cent inclusion of the memory controller into the processor chip (RIXNER et al., 2000),
there is space for research using basic block information to provide information to such
mechanisms. Sherwood et al. (2001) shows that there is a strong correlation between
the characteristics found in the most relevant blocks of each application and the overall
application characteristic. Based on this correlation, a basic block classification has the
potential to provide relevant information regarding the application’s performance. As ba-
sic block granularity automatically adapts to program phase changes, there is no need
for additional control and time to adapt to changing phases. Additionally, the granular-
ity allows for higher coverage with less hardware, opposite to designing with instruction
granularity, such as in Ghose et al. (2013). Finally, any ideas that have been succesfully
implemented using simple basic block classification in software could be enabled to be
implemented in hardware.

1.2 Contributions

In this thesis, we propose BLAP. BLAP characterizes basic blocks according to the
most relevant delays occurring per block, thus allowing improvement of future execu-
tions of these blocks. BLAP has several advantages over other mechanisms. It adapts
to program phase changes, as it dynamically keeps track of basic blocks. It requires less
storage than mechanisms which use instruction granularity, as we aggregate the behavior
per block. We are able to use the BTB to efficiently store this information, as it retains the
initial address of each block targeted by a branch. BLAP is capable of detecting different
types of performance-related issues within a block, thus being able to provide information
to a wide range of mechanisms.

In order to show the potential of BLAP, we explore the use of its profiling informa-
tion to design an improved memory controller. Compared with the instruction-granularity
information used by Ghose et al. (2013) and Lee et al. (2008), our mechanism achieves
better performance with a scalable hardware overhead. Moreover, BLAP’s basic imple-
mentation can be extended to provide detailed information regarding a wide range of bot-
tlenecks at low hardware costs. To the best of our knowledge, no previous research has
profiled basic blocks in hardware. Moreover, we present an integration between BLAP
and other mechanisms, in order to show the usefulness of the profiled information. The
main contributions of this thesis are the following:
Characterization Mechanism: We propose BLAP, an efficient detection mechanism ca-
pable of characterizing applications at the basic block level during their execution. The
mechanism’s highlights are the ability to store information using a BTB extension, there-
fore adding minimal overhead. It detects a varied amount of characteristics, and provides
information to all instructions fetched in each core.

Mechanisms Integration: We integrated BLAP with mechanisms that improve mem-
ory performance by adapting them to use the profile information and by creating a new
mechanism that relies on BLAP.

New Memory controller: In order to adapt existing concepts in a format that could
use BLAP’s information, we have created a new, aggressive prefetch-dropping memory
controller.

21

1.3 Organization

The main objective of this work is to propose and study a hardware mechanism capa-
ble of detecting the blocks that build a program and characterizing their behavior. Such
characterization can make it possible to improve the processor performance through its
use by other mechanisms, such as prefetchers or priority policies. In Chapter 3, we cite the
related work done in the area of basic block classification, and recent works that are used
for concept implementation and performance comparison. In Chapter 4, we overview
several methods to characterize blocks accordingly to their characteristics. In Chapter 5,
the mechanism is detailed, in order to estimate the area overhead and feasibility of im-
plementation. In Chapter 6, we describe the simulation environment and methodology,
presenting preliminary results showing BLAP’s potential. Chapter 7 details related work
on memory access, how they can be adapted to use BLAP, and compares all the imple-
mentations. Chapter 8 finishes the thesis with our conclusions and suggestions for future
work.

22

23

2 BACKGROUND

In this section, we explore the relationship between blocks and performance. We
actually use a relaxed definition of a basic block (ANSALONI et al., 2013; COCKE,
1970; HUANG; LILJA, 2000) for our mechanism.

2.1 Basic Block and Relaxed Blocks

A basic block is a stretch of code with a single point of entry and a single point of
exit. Thus, every basic block ends either with a branch instruction, or before an instruc-
tion targeted by a branch. This enables mechanisms based on basic blocks to automat-
ically adapt to the program phase, as a program’s phase is characterized by the blocks
being used (RATANAWORABHAN; BURTSCHER, 2008). However, our low overhead
hardware implementation allows multiple entry points, as it is not possible to efficiently
detect the beginning of a block which was not targeted by a branch without changing the
instruction set functionality. In Figure 2.1, we can see an example of what might happen
during a code execution.

In Figure 2.1, we can see a simple matrix multiplication with fixed dimensions, both
in C code as well as in AT&T assembly, for visualization of how a basic block is seen by
the hardware. The assembly is composed of 5 real basic blocks: initialization (1st BBL),
external loop - internal loop initialization (2nd BBL), internal loop (3rd BBL), external
loop - increment and check (4th BBL) and return (5th BBL). These are divided in the
real basic block, as for example, the first instruction of 2nd BBL is the target of the jne
400508 <matmul+0x8> instruction in address 400540, and being a new point of entry,
must denote the end of 1st BBL and the beginning of a new BBL, 2nd BBL.

In the rightmost brackets in red, we can see how a hardware mechanism can detect a
relaxed definition of basic blocks, noted by RBL. As the hardware does not know about
new entry points ahead of time, it will detect the relaxed blocks in the following order.
First, it will aggregate BBLs 1st, 2nd, and 3rd in the 1st RBL. Once instruction jne 400518
<matmul+0x18> at address 400533 jumps back to the beginning of the 3rd BBL, we will
detect the 2nd RBL, which is the internal loop. This allows a relaxed definition to still
obtain frequently repeated loop code. Once the instruction fails to jump and execution
reaches the end of the first external loop, we will detect the 3rd RBL, similar to the 4th
BBL. However, we will now create a 4th RBL that aggregates the 2nd BBL and 3rd BBL,
as we cannot see the entry point between them. Finally, once the external loop is over, the
5th BBL is equal to the 5th RBL, ending the function.

Although there is an overlap between the characteristics detected for each code por-
tion, as the information is to be stored into the BTB, we have precise information for each
block following a branch. In the example, the 1st RBL is only going to execute once,

24

void matmul(int** A, int** B, int** C){
int i,j;
for (i=0;i<100;i++){ // ~ external loop

for(j=0;j<100;j++){ // ~ internal loop
C[i][j]+= A[i][j] * B[j][i];
}

}

}

0000000000400500 <matmul>:
 xor %r10d,%r10d
 nopl 0x0(%rax,%rax,1)
 EXT LOOP: mov (%rdx,%r10,2),%r8
 mov (%rdi,%r10,2),%r11
 xor %eax,%eax
 nopw 0x0(%rax,%rax,1)
 INT LOOP: mov (%rsi,%rax,2),%r9
 mov (%r11,%rax,1),%ecx
 imul (%r9,%r10,1),%ecx
 add %ecx,(%r8,%rax,1)
 add $0x4,%rax
 cmp $0x190,%rax
 jne INT LOOP <matmul+0x18>
 add $0x4,%r10
 cmp $0x190,%r10
 jne EXT LOOP <matmul+0x8>
 repz retq

3rd
BBL

 1st
BBL

4th
BBL

5th
RBL

1st
RBL

3rd
RBL

 2nd
BBL

2nd
RBL

4th
RBL

5th
BBL

Figure 2.1: Example of code presenting the classical definition of basic blocks (BBL) and
our relaxed definition (RBL)

while the 4th RBL is going to execute 100 times, and the 2nd RBL, the code that is truly
repetitive, will execute 10000 times.

A design issue to be considered when extending the BTB is that it only records infor-
mation for blocks that begin after a taken branch. Given that the behavior to be exploited is
usually repetitive, this is normally not a problem, as as the repetition of blocks begins after
taken branches. Since we cannot recognize branch targets unless their respective branch
occurred, we are breaking the definition of basic block, as we will likely record blocks
with overlapping information. These blocks will aggregate behavior from all the instruc-
tions of the few, smaller real basic blocks inside them, and thus will not be characterized
separately. However, the smaller basic blocks will be correctly characterized once they
are targeted by a branch, thus obtaining their correct starting address. As in most cases
smaller blocks represent conditions inside loops, they will be executed enough times to
be characterized. If they do not, then they are likely not relevant.

2.2 Basic Block Characteristics and Performance

To motivate the behavior that can be observed per block and their correlation with per-
formance, in Figure 2.2 we can see the behavior detection of the benchmark libquantum
of the SPEC-CPU 2006 workload obtained through simulation. In the Figure 2.2, there
are five bars showing the statistics of each block. These statistics all refer to the instruc-
tions inside the block (e.g. the branch misprediction happened for the branch within the
block). The blocks are ordered in terms of number of executions, from most executed (1)

25

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IP
C

Most Executed Basic Blocks

L1_Miss_Ratio L2_Miss_Ratio LLC_Miss_Ratio Branch_Miss_Ratio INT_ALU_CPI IPC

Figure 2.2: Statistics for the most relevant blocks of the libquantum benchmark, and their
relationship with performance measured in IPC

to least executed (15).
The characteristics of the block clearly affect the performance on the majority of the

blocks. As examples of blocks without characteristics, there are blocks 10 and 11. Likely,
these blocks have different performances due to different code dependencies. In blocks
2, 8, 13, 14, and 15, contention in the ALU integer unit is present. Although contention
should represent a problem for performance, we can notice that the blocks with this con-
tention present higher performance than the average. This happens due to integer opera-
tions being simple and fast, and as the modeled architecture has 3 integer units, if there is
contention, then it means that at least 3 instructions are being finished each cycle.

Blocks 3 and 4 show the worst performance. They also show bars representing a
high data rate miss in all cache levels. In block 6, a similar effect occurs with branch
mispredictions. If the architecture presented a better prefetcher, reducing the data miss
rate, we could obtain improved performance for blocks 1, 3, 4 and 12. Alternatively, a
prefetcher could use information regarding the poor performance of these blocks in order
to prioritize them. This is the main motivation for our work, which is to improve or enable
other mechanisms through observation of the block behavior.

To further motivate the behavior that can be observed per block and their correlation
with performance, we used statistical correlation.

2.3 Correlation between Characteristics and Performance

To demonstrate the behavior that can be observed for our relaxed block definition
and its correlation with performance, we statistically correlated execution events (such as
branch mispredictions) with performance, using the Pearson Moment-Product Correlation
Coefficient. This is a generalization of the linear regression model, used to observe how
closely two different sets of data correlate. The resulting coefficient lies between −1 and
1. The higher the absolute value the stronger is the correlation between the parameters.
If the coefficient is negative, the parameters are inversely correlated (i.e. the value of the
parameters influence each other, but when one increases, the other decreases). If it is
positive, they are correlated, both values increase or decrease together. The closer to 0,
the smaller is the correlation between parameters.

The details of the configuration and benchmarks used can be found in Section 6. To
calculate the correlation, we generated a profile of the execution. This profile contained
the most important processor events relevant for execution performance (WALL, 1993)

26

for each block: L1 data cache misses, L2 cache misses, Last-Level Cache (LLC) misses,
branch mispredictions, number of floating point arithmetic-logic instructions, and number
of floating point division instructions. Whenever a basic block finished executing, we
recorded the number of instructions the block contained and how many cycles it took
to execute, in order to measure its performance. We then recorded how many of the
events happened during the execution of that block. For fourteen parallel application
from the NAS-NPB and SPEC-OMP2001 benchmark suites, each correlation coefficient
was calculated considering blocks from all the threads together.

The correlation results are shown in 2.1 and Tables 2.2. The Tables show sequential
benchmarks (SPEC-CPU2006) and parallel benchmarks (NAS-NPB and SPEC-OMP2001),
respectively. The highest correlation coefficients for each benchmark are marked in bold.
Looking at the cache misses correlation coefficients, we can observe a diminishing corre-
lation as we go from smaller and faster to slower and larger caches. Although a miss in
the LLC means a main memory access, which is likely to stall the processor, the number
of accesses the LLC receives is small, because most accesses are serviced by higher level
caches. Therefore, although a single LLC miss has a considerable impact on the final
performance, it happens much less frequently than L1 and L2 misses, such that it does
not correlate highly with the performance differences between blocks. We have noticed
that, due to the large number of varied block executions, all correlation values are low.
Were we to first partition the blocks into specific block types and run correlations individ-
ually, we would find much higher values. However, this analysis still serves the purpose
of showing, for the entire program, which is the most relevant bottleneck of the program.
A low correlation value will simply mean that the problem does not present many gains
for the entire benchmark execution, but if we solved the specific problem of each block,
we would certainly improve the overall execution.

Although a branch misprediction in a pipeline with 15 stages results in flush latency
and a large number of stalled cycles, for parallel benchmarks, the other instruction types
correlations seem to significantly diminish the branch instruction correlation. We found
this low correlation coefficient happens due to a low branch misprediction rate, smaller
than 1% in most of the parallel benchmarks. In the sequential benchmarks, we can observe
higher branch misprediction correlation coefficient values for several benchmarks, denot-
ing that the small memory pressure of a single thread alleviates the issues with memory
for many benchmarks allowing branch misprediction to have a larger impact on program
performance.

Floating points instructions per block correlate well on a few benchmarks. For parallel
benchmarks, we can observe that for Apsi and Mgrid, floating point ALU instruction
count is the statistic that correlates the most with degraded performance. In sequential
benchmarks, the same happens for astar and hmmer.

Following this analysis, we seek to improve the memory access bottleneck. Therefore,
in the next Chapter, we overview the related work that led us into our research and the
state of the art regarding use of block profiling and memory controller improvements.

27

Table 2.1: Pearson moment-product correlation coefficients of absolute statistics per
block and performance in IPC for sequential benchmarks.

Benchmark L1D Misses L2
Misses

LLC
Misses

Branch
Mispred.

FP ALU
Inst.

FP DIV
Inst.

astar -0.185 -0.186 -0.066 -0.209 -0.003 0.000
bwaves -0.026 -0.006 -0.002 -0.015 -0.168 -0.088
bzip2 -0.073 -0.117 -0.011 -0.308 0.000 0.000
cactusADM -0.349 -0.452 -0.230 0.038 -0.036 0.063
calculix -0.092 -0.051 -0.016 -0.253 0.096 -0.010
dealII -0.090 -0.073 -0.014 -0.158 0.036 0.000
gamess -0.052 -0.015 -0.004 -0.076 -0.062 -0.025
gcc -0.371 -0.341 -0.157 -0.011 -0.225 -0.135
GemsFDTD -0.187 -0.216 -0.089 -0.185 0.118 0.000
gobmk -0.009 -0.015 -0.011 -0.343 -0.006 -0.003
gromacs -0.223 -0.068 -0.008 -0.201 0.001 -0.333
h264 -0.065 -0.063 -0.013 -0.129 0.006 -0.002
hmmer -0.077 -0.058 -0.006 -0.048 -0.359 0.002
lbm -0.200 -0.651 -0.148 -0.031 -0.219 -0.087
leslie3d -0.413 -0.356 -0.143 -0.049 -0.174 -0.325
libquantum -0.517 -0.374 -0.078 -0.143 0.000 0.000
mcf -0.374 -0.309 -0.064 -0.305 0.000 0.000
milc -0.312 -0.299 -0.245 -0.004 0.028 0.000
namd -0.007 -0.019 -0.002 -0.068 -0.033 -0.016
omnetpp -0.224 -0.236 -0.051 -0.151 -0.132 -0.002
perlbench -0.140 -0.095 -0.010 -0.108 0.002 -0.001
povray -0.102 -0.022 -0.003 -0.128 -0.029 -0.113
sjeng -0.056 -0.051 -0.018 -0.235 0.000 0.000
soplex -0.242 -0.204 -0.072 -0.170 -0.066 -0.152
sphinx3 -0.270 -0.177 -0.028 -0.023 0.097 -0.035
tonto -0.041 -0.035 -0.003 -0.086 -0.085 -0.041
wrf -0.161 -0.128 -0.056 -0.031 -0.141 -0.114
xalancbmk -0.254 -0.087 -0.033 -0.113 -0.025 -0.005
zeusmp -0.116 -0.110 -0.034 -0.090 -0.112 -0.164

28

Table 2.2: Pearson moment-product correlation coefficients of absolute statistics per
block and performance in IPC for parallel benchmarks.

Benchmark L1D
Misses

L2
Misses

LLC
Misses

Branch
Mis-
pred.

FP ALU
Inst.

FP DIV
Inst.

N
A

S-
N

PB

BT -0.28 -0.34 -0.39 -0.01 -0.14 -0.15
CG -0.63 -0.44 -0.48 0.00 0.13 0.13
FT -0.51 -0.31 -0.25 -0.05 0.04 0.05
IS -0.18 -0.16 -0.16 -0.01 -0.00 0.00
LU 0.04 0.02 -0.14 0.01 0.11 0.10
MG -0.34 -0.28 -0.28 -0.02 0.06 -0.23
SP -0.40 -0.36 -0.31 -0.05 -0.27 -0.34

SP
E

C
-O

M
P

20
01

Applu -0.45 -0.45 -0.39 -0.01 0.26 0.00
Apsi -0.13 -0.14 -0.14 0.01 -0.27 -0.26
Fma3d -0.27 -0.33 -0.33 -0.03 -0.00 0.12
Galgel -0.18 -0.21 -0.08 -0.01 0.21 0.25
Mgrid -0.30 -0.29 -0.28 -0.01 -0.49 -0.45
Swim -0.69 -0.60 -0.59 -0.01 -0.40 -0.32
Wupwise -0.58 -0.50 -0.47 -0.00 0.01 -0.06

29

3 ANALYSIS OF THE STATE-OF-THE-ART

The common goal of basic block profiling is to enhance code execution by obtain-
ing knowledge about its behavior in its different phases. Most approaches are done in
software, through use of instrumentation tools to obtain profile information during the
program’s execution (LUK et al., 2005). Such method has an overhead due to additional
instructions, and the very pollution generated by this overhead in registers and caches
reduces the reliability of performance measurements done by such approach. Neverthe-
less, this approach can still correctly approximate the behavior of program phases. Its
main problem is the need to execute a program multiple times with the same input, which
makes any improvement achieved for single executions negligible.

State-of-the-art compilers can also use input sets to simulate a program execution and
obtain profiling information, thus optimizing the code after some executions (LATTNER;
ADVE, 2004). This approach can obtain performance improvements given a training in-
put that is generic enough, i.e. which fully explores the code’s execution paths. However,
the bias over the necessarily exploring all execution paths may degrade performance for
several input loads which only stress specific program execution paths. Alas, the need for
recompilation among different architectures and systems always counts as a major factor
in industry decisions to adopt a new technology.

Finally, the option of detecting basic blocks in hardware has intuitively been con-
sidered difficult to use. Most of the works which seek behavior characterization and
reuse in hardware use coarser granularity for the sets of instructions analyzed in order to
achieve performance gains. Such coarse granularity misses on opportunities for perfor-
mance gain due to loss of specific blocks behavior information that is averaged among
several blocks (PADMANABHA et al., 2013). This argument can also be used against
basic blocks: it is a coarse granularity when compared to instructions. Nevertheless, in-
dividual instruction types are quite different, and cannot be compared with each other
for any other purpose than hardware design analysis. Moreover, basic blocks have been
proven to be a better granularity mostly due to code layout pattern detection (COCKE,
1970). As basic blocks identify the code units of repetition due to their direct relation
with branches, they are intuitively good for the behavior analysis of different execution
path phases.

The remainder of this section describes the works which serve as base to understand
the potential usage of the mechanism, and then exemplifies hardware design mechanisms
that can be improved with it.

30

3.1 Code Behavior Detection and Use

Sherwood et al. (2001) is the precursor to SimPoints (HAMERLY et al., 2005) and
other works, such as Pinpoints (PATIL et al., 2004). The authors characterize the behav-
ior of entire programs based on the analysis of basic block execution distribution. The
concept of a Basic Block Vector (BBV) is first introduced to characterize a program. A
basic block vector contains execution counts for all basic blocks, normalized by the total
number of basic block executions. Therefore, the vector gives the execution frequency of
each basic block proportionally to the entire program slice observed. The authors are then
able to compare the behavior of executions of different sizes, for different inputs. In order
to do so, a BBV comparison method is created by treating each BBV as a fingerprint of
the observed program slice. To compare them, a BBV is subtracted from another, and
all absolute values are summed, generating a value between zero and two. Zero means
the BBVs are identical, as there was no difference between their fingerprints, while two
means the BBVs do not execute any block in common.

With this comparison, the authors show a variety of features of their technique. They
are able to identify the different phases of a program, such as the initialization phase of
a program, due to the considerable difference between the BBV obtained for the first
100 million instructions and the BBV of the entire program. With the BBV of the entire
program, they are also able to identify or create BBVs that have identical fingerprints, but
a much smaller number of instructions. They show that the behavior of selected program
slices with similar BBV are practically the same, with statistics pertaining to cache misses,
branch mispredictions and overall type of instructions executed differing at most by 3%.
This was further improved in SimPoints, which can use the Pin instrumentation tool (LUK
et al., 2005) to build simulation points based on this technique. The importance of these
techniques for our work is that our methodology uses Pinpoints to simulate programs in
a reasonable time. Sherwood’s work also shows that by improving only the performance
of the repetitive blocks that define the entire program behavior, we can achieve overall
improved performance.

The rePLay framework (PATEL; LUMETTA, 2001) has a similar concept to our work.
In this work, the authors use an extended definition of a block called a frame. A frame
aggregates several basic blocks, as it ignores unconditional branches, and promotes easily
predictable branches into assertions (PATEL; EVERS; PATT, 1998). They also provide
a scheme to replay a frame in case an assertion fires, which signals a misprediction of
an easily predictable branch which was promoted. In this way, they achieve a coarse
granularity, enabling dynamic code optimizations during execution, and alongside the
rollback mechanism, the opportunity for aggressive speculative techniques, such as value
prediction and value reuse (PILLA et al., 2004). Although the framework is described,
it is not explored in the paper. Frames intuitively have few opportunities for value reuse
and value prediction, as they are coarse enough to capture several executions of loops,
and seem to represent distinct phases of data progression in programs. The authors only
show manual optimizations of single frame examples, and do not show any mechanism
that can make automatic run time optimizations using the frames collected. In our work,
we characterize application behavior on a finer granularity, so we can better inform other
mechanisms.

The recent work of Kambadur et al (2012) also uses a simple profiling method called
Parallel Basic Block Vectors. It can be seen as an extension of Sherwood’s work, as now
each entry in the BBV contains n positions, each representing the degree of parallelism at
which the basic block is executed. When a basic block is executed, the number of parallel

31

threads is observed and used as index to increment the appropriate part of the entry. This
allows the authors to identify how frequently every basic block execute at each parallelism
level, clearly identifying sequential and parallel code blocks. They also identify the most
critical regions of code in terms of performance. Several scenarios are illustrated to show
how this analysis can be applied, such as serial and parallel application partitioning, or
analysis of program features by degree of parallelism and parallelism hotspots.

3.2 Basic Block and Phases Use Cases

In Panait et al (2004), the authors statically classify load instructions based on several
heuristics. These include operations used for calculation of target address, registers used
in address calculation and execution frequency. The work defines the delinquency of each
load, pinpointing the instructions that are responsible for most of the data cache misses
during execution. With static analysis, the authors are able to select only 10% of the
total load instructions as responsible for more than 90% of the level 1 data cache misses.
Using basic block analysis alongside the compiler, they reduce this number to 1.3% of all
load instructions, responsible for 82% of all level 1 data cache misses. In this way, the
efficiency of basic block analysis is shown by identifying blocks with loads that do not fit
prefetch patterns or have overall low temporal or spatial locality.

Ratanaworabhan et al (2008) presents a new concept to detect program phase tran-
sition. Their phase transition is defined by critical basic block transitions. A critical
basic block transition occurs when a rarely executed basic block is executed, signaling
the change of behavior in a branch instruction. This usually signals a change of program
phase, and thus different behavior. By observing critical basic block transitions, the work
aggregates code into ten million instruction phases, and offers insight into different meth-
ods to detect critical block transitions, reusing the concept of BBV from Sherwood et al.
to find the rarely executed basic blocks. It then uses phase information to adapt cache
sizes to each phase. This shows the effectiveness of dynamic cache sizes when compared
to optimal static size selection, as it reduces average cache size by 15%.

The work of Padmanabha et al (2013) proposes a predictive trace-based switching
controller, which predicts an upcoming phase change in a program and preemptively mi-
grates execution to an appropriate core in order to reduce energy consumption. In reality,
the work uses a single heterogeneous core composed of a single frontend and 2 back ends.
Each back end is based on the different organizations found in ARM’s big.LITTLE archi-
tecture (PETER GREENHALGH, 2011), and what the authors describe as execution mi-
gration is actually selecting which back end will be used. Therefore, the only overhead is
the communication of the register file’s contents for correct context execution. With such
a low overhead, migrations can be done often. Thereby the authors explore fine switching
granularities, where they observe that these finer granularities offer more opportunities
for energy savings. At the granularity of 300 instruction, the average time spent on the
Little back end constitutes 28% of the execution, while targeting maximum performance
degradation of 5%. This leads to an increased energy savings of 15% in comparison to
running only on Big, representing claims of 60% improvement over existing techniques.

3.3 Hardware Design Opportunities

The main targets of current processor design research are branch prediction and mem-
ory access, as these issues are responsible for the greatest bottlenecks in modern super-

32

scalar designs. Although many other design points are becoming increasingly important,
such as energy consumption, and others have been explored to some extent, such as value
reuse (PILLA et al., 2004), branch prediction and memory access remain constant prob-
lems across decades. Therefore, it is of our interest to obtain information on the state-of-
the-art mechanisms used to treat or alleviate these issues. We focus on memory access as
it has the highest correlation with performance.

One of the methods available to improve memory access is prefetching. Prefetching
is a technique that improves memory access by predicting future accesses and making re-
quests ahead of time, generating better memory throughput and increased instructions per
cycle due to lower average memory wait time. However, not all memory patterns are eas-
ily detectable, making the technique sometimes useless. Moreover, the technique can de-
grade performance by incorrectly predicting a pattern and generating useless prefetches.
This results in cache pollution and unnecessarily increased memory pressure. To alleviate
these aspects, Srinath et al (2007) create a mechanism to control prefetching aggressive-
ness. Every cache line is increased by 2 bits to characterize which lines were prefetched
from main memory and which lines were touched. At the eviction of a line, if a line was
prefetched and not touched, it falls under the case of pollution. With heuristics and mech-
anisms to insert prefetches on the last positions of a LRU policy (JALEEL et al., 2010),
the authors propose tests using an adaptive stream prefetcher (HUR; LIN, 2006), which
uses feedback from the cache lines to change the prefetcher aggressiveness configuration.
Let it be noted that the technique can be used for any kind of prefetcher based on con-
figurable parameters. In these results, performance of benchmarks from the SPEC-CPU
2000 benchmark suite increases by 6.5% on average when compared to the best per-
forming static prefetcher configuration, while consuming 18.7% less memory bandwidth.
Compared to a prefetcher using the same bandwidth, feedback directed prefetching pro-
vides 13.6% improved performance.

The work is superseded by Lee et al. (2008), who implements the same methodology
to obtain prefetcher pollution data, but to avoid the slow pace of aggressiveness change,
instead drops prefetches when detecting high pollution levels. This technique, known as
Prefetch-Aware DRAM Controller (PADC), is able to obtain better improvements with a
specific memory controller policy, with smaller hardware overhead. We used Lee’s paper
concepts to create a new memory controller using BLAP’s information, and so we offer
greater detail on their implementation in Chapter 6.

These works, along with Zhuang et al. (2007), ensure that no prefetcher ever degrades
performance by reducing aggressiveness, even disabling all prefetch requests if neces-
sary. These papers are crucial for prefetchers, as the increased memory pressure coming
from multiple cores has been a main point of consideration regarding whether prefetchers
should or should not be used. Generally, their performance improvement outweighs their
performance degradation, even for large numbers of cores. These works use an interval
to detect prefetching pattern, a fixed period of 8192 level 2 cache useful block evictions
which is detected by the access bit of the lines. This is a valid approach to detect a pro-
gram’s memory phase change, but it does not detect a program’s execution phase change.

In Ghose et al. (2013), the authors work on a memory controller policy capable of
prioritizing critical loads. To identify critical loads, they develop a mechanism that stores
information over the stalled cycles each load instruction generated in the commit stage.
This characterizes how long each load takes, and with this several policies are possible.
They explore binary policy, giving priority to loads which are currently stalling the com-
mit stage and using a prediction table to give priority to loads that have stalled it before.

33

Moreover, they explore the usage of the cycles that a load stalls by creating four more
policies. As we used this work for comparison, more details are given in Chapter 6.

The work’s idea is solid, but the methodology shows some flaws. Prioritizing loads
ahead of time ends up giving priority to loads that are already in the cache, or are easily
predicted by prefetcher. Moreover, the aliasing of load PC addresses in the tagless table
can lead to prioritization of irrelevant loads.

The authors used a processor frequency predicted to be present in the future, with
a 4.27 Ghz frequency, while modeling a current DDR3 main memory at 1066 Mhz fre-
quency. Therefore the memory pressure becomes much higher and the relevance of re-
ordering loads in the memory controller also higher than it should be. We consider this
to be a valid assumption, as the access times of memory accesses are likely to increase in
the future. We use this idea in our work, as it can be implemented in coarse granularity by
giving priority to all loads in a block. Additionally, we keep track of block behavior and
ensure that a block has stable behavior before changing priorities. We also make a deeper
study around the benefits of such approach in the presence of prefetchers.

3.4 Summary of the State of Art

Overall, most of the existing works in hardware to improve performance or energy
consumption use coarse granularity phases. They do this given several constraints of their
own implementations, such as migration overhead or detection overhead.

However, most works do not take into account that the branch target buffer structure
contains information regarding all branch targets. These are the instructions that begin
basic blocks. Detecting basic block execution is possible given relaxation of the defini-
tions, and as seen in the related work, it should provide good granularity to detect program
behavior.

Following the work of (PATEL; LUMETTA, 2001), we take a new direction by using
the behavior detected to adapt existing hardware mechanisms, namely (GHOSE; LEE;
MARTÍNEZ, 2013) and (LEE et al., 2008). In the next Chapter, we present all detection
mechanisms that led from related work to the final mechanism, presented in Chapter 5.

34

35

4 BLOCK CHARACTERIZATION

Basic block profiling is a frequently used technique in compiler and post-compilation
steps. It aims to characterize basic blocks in some aspect (LATTNER; ADVE, 2004). In
this Chapter, we explore methods to perform block profiling at the hardware level.

4.1 Introduction

Our proposed method to perform block profiling in hardware builds an evolving pro-
file of a program’s code. Thereby, it is possible to improve frequently used blocks by
characterizing them and improving their performance in future executions. In the follow-
ing sections, the profiles generated by the mechanism in this work record the types of
instructions that are responsible for the largest delays in each block. However, the basic
concept of the mechanism can be extended to implement a variety of techniques based on
block profiling. In this section, we base ourselves on the related work to discuss common
techniques to characterize code behavior, and how we can adapt these techniques to the
basic block case. This section shows a progression towards accuracy and simplicity, in
order to achieve a useful technique which could be implemented in hardware. This sec-
tion only cares about behavior detection. Behavior storage and its information use are
explored in later sections.

4.2 Hardware Counter Classification

Currently, Intel processors come with hardware counters available to enable perfor-
mance profiling and analysis, used by tools such as Vtune (REINDERS, 2005). These
counters keep track of several events during processor execution, such as cache misses,
operations per type, to the point of detailing even bus transactions. Such statistics intu-
itively correlate to performance, and they can be used to provide insight on what issues
might result in suboptimal performance of a code snippet.

However, to do so at the basic block level raises a few issues. The first issue is iden-
tifying and delimiting blocks. As our relaxed block definition uses branches and jumps
as blocks’ last instructions, we can identify branch and jump commits to mark block end-
ings. We then store the hardware counter values and reset them, so they start collecting
information for the next block. If we assign a weight to each counter in order to properly
characterize each instruction given its performance overhead, we get the block distribu-
tion seen in Figure 4.1. The figure shows the execution of a simulation that prints, at
every block end, which weighted characteristic had the highest value for that block. We
assigned the following weights for hardware counters: 8 for instruction cache misses, 8

36

for data cache misses, 32 for level 2 cache misses, 200 for last level cache misses and
120 for branch mispredictions. All functional unit stalls were already counted as cycles,
and thus had weight 1. In all of our tests we eliminated statistics that did not show to
have a relevant number of occurrences or delays, such as integer multiplication, integer
division, and instruction cache misses. Their occurrences accounted for less than 1% of
all blocks. "Others" denote none of the registered characteristics were found in the block,
so any stalls result from register real dependencies or were simply not detected.

a
st

a
r

b
w

a
ve

s

b
zi

p
2

ca
ct

u
sA

D
M

ca
lc

u
lix

d
e

a
lII

g
a

m
e

ss

g
cc

G
e

m
sF

D
T

D

g
o

b
m

k

g
ro

m
a

cs

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
sl

ie
3

d

lib
q

u
a

n
tu

m

m
cf

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rlb
e

n
ch

p
o

vr
a

y

sj
e

n
g

so
p

le
x

sp
h

in
x3

to
n

to w
rf

xa
la

n
cb

m
k

ze
u

sm
p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FP DIV
FP MUL
FP ALU
INT ALU
BRANCHES
LLC
L2Cache
D-Cache
Others

Figure 4.1: Basic block characteristic distribution. Every block receives only one charac-
teristic, the most relevant one according to the hardware counters

These results show us the second issue. As we are using superscalar architectures,
the branch commit contains all the information of what was processed since the previous
branch commit; the in-order commit stage ensures that. However, since new instructions
do not wait for a branch commit to happen, they can enter execution after branch "A",
change some of the statistics (such as data cache accesses), and be stored as information
of the block that finishes at the branch "A", i.e. the previous block information. Therefore,
we now have information that does not belong to this block, resulting in its pollution.
This also means the next block will be lacking this information, and it may also grab
information from the block ahead of it. We denote this phenomenon as information skew.

This would not be a problem if all statistics collected to characterize a block were
obtained within two branch instruction commits. As the skew happens for every block,
we would have a fixed skew for every block, and a fixed characteristic skew. However,
statistics such as level 1 data cache miss and last level cache miss take different times to
be recorded. This generates variable pollution for each block, which is the main challenge
in implementing a real mechanism.

37

To avoid this, in our simulation we created a table to store statistics per in-flight
branch. Whenever a new statistic must be recorded, we search the reorder buffer for
the first conditional branch instruction that would come after it, and increment the statis-
tics for that branch entry. Then, when the branch commits, we get the statistics from
this table, ensuring no information skew occurs. Due to the large size and difficulty of
hardware implementation, we believe that creating such a table in hardware and check-
ing for ordering would offer a mediocre tradeoff. Nevertheless, the characteristics of this
distribution are shown in Figure 4.2.

a
st

a
r

b
w

a
ve

s

b
zi

p
2

ca
ct

u
sA

D
M

ca
lc

u
lix

d
e

a
lII

g
a

m
e

ss

g
cc

G
e

m
sF

D
T

D

g
o

b
m

k

g
ro

m
a

cs

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
sl

ie
3

d

lib
q

u
a

n
tu

m

m
cf

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rlb
e

n
ch

p
o

vr
a

y

sj
e

n
g

so
p

le
x

sp
h

in
x3

to
n

to w
rf

xa
la

n
cb

m
k

ze
u

sm
p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FP DIV
FP MUL
FP ALU
Int ALU
Branches
LLC
L2Cache
D-Cache
Others

Figure 4.2: Basic block characteristic distribution. Every block receives only one char-
acteristic, the most relevant one according to the hardware counters. Now statistics are
properly attributed to each block.

Although there were several changes in the characteristics attributed to each block,
the main problem with both classifications is that many blocks do not receive any charac-
terization. In order to achieve characterization for more blocks, we must use information
of greater detail, which led us to seek the latencies generated by register dependencies.

4.3 Register Dependence Latency Classification

The basic, initial number of delayed cycles caused by a single instruction A is the one
measured by how many cycles another instruction B, which is dependent of instruction
A’s result, was delayed. To implement this mechanism we observe the latencies generated
by each register dependence (we do not take into account structural hazards, i.e. two
unrelated instructions which need the same functional unit). A table is kept with an entry
for each characteristic. When an instruction is blocked due to register dependencies, we

38

count how many cycles the instruction takes to receive the register value which it needs.
The instruction A, which was using the register, is accused of generating the delay, and
thus the characteristic of such instruction type’s entry is incremented by that number of
cycles.

Although the accused instruction A might have suffered with delays from other in-
struction C, instruction C would also be accused for such delays, as it was stalling A first.
This warrants we find the culprits for the largest stalls in the critical path of the appli-
cation. We can observe the resulting basic block distribution in Figure 4.3. As we do
not know the level of cache that was able to provide the correct line for loads and writes
(considering caches with write-allocate policy), we measure the number of cycles delayed
and classify them into the three levels. If the delay is smaller than the minimum number
of cycles necessary to access to the level 1 cache, we classify the delays as memory loads
and memory stores, representing latencies on the load-store queue.

An odd observation is that memory stores are taking up a portion of the benchmarks,
such as in the dealII benchmark. In Sandy Bridge’s pipeline, once a write has been
sent to memory, there is no need to wait for registers, as they do not store values at any
register. After some research, we found out that Pin considers the CALL instruction as
store, as the instruction writes values to the stack and increases its size. However, it also
generates register dependence for the PC and stack pointer registers, therefore generating
dependence for other instructions. Even with the prediction of the PC value in the branch
target buffer, instructions which require the stack pointer, such as the instructions that
must obtain the parameters of the function in the stack, would theoretically still be stalled.
To remediate this, Intel uses a "Stack Engine" in the front-end, which keeps a copy of the
stack pointer updated to free dependencies for every CALL, RET, POP, PUSH, and other
instructions which implicitly use the stack pointer.

This mechanism was modeled in simulation, but deemed too complex for hardware
implementation, as in hardware there is no efficient way to trace back which instruction
generated the delay. Even if we built such a mechanism, to assign instruction types to
registers in order to check for dependence delays, this would likely generate larger delays
per stages in the middle of the back end, which is not desirable.

Alas, the number of blocks characterized as ALU integer is large likely due to minimal
stalls characterizing the block, covering the area that was presented as others or none in
the previous distributions. Nevertheless, integer operations do not cause any real harm to
performance, as the unit’s latency is minimal. Even though register dependencies delay
instructions, the overall throughput can still be high, as long as the hindrances do not stall
the commit stage, which takes us to the next idea.

4.4 Stall Commit Classification

Rather than checking for indirect and intermediary effects on performance, a simpler
way is to observe the delays generated by the instructions at the final point: the commit
stage. If an instruction delays the commit stage, it means that it will affect throughput,
as the commit stage is in-order, and being blocked by one instruction means blocking all
instructions that could be committed in the same cycle. This is a rather simple way to
observe delays, as we do not see the indirect delays that register dependencies generate.
If instruction B was greatly delayed by instruction A, instruction B will stall the commit
stage and we will accuse its delay. However, our intuition is that instruction A will likely
stall the commit stage before instruction B does, and for a longer time. The resulting

39

a
st

a
r

b
w

a
ve

s
b

zi
p

2
ca

ct
u

sA
D

M
ca

lc
u

lix
d

e
a

lII
g

a
m

e
ss

g
cc

G
e

m
sF

D
T

D
g

o
b

m
k

g
ro

m
a

cs
h

2
6

4
re

f
h

m
m

e
r

lb
m

le
sl

ie
3

d
lib

q
u

a
n

tu
m

m
cf

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rlb
e

n
ch

p
o

vr
a

y
sj

e
n

g
so

p
le

x
sp

h
in

x3
to

n
to w
rf

xa
la

n
cb

m
k

ze
u

sm
p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MEM STORES
MEM LOADS
FP DIV
FP MUL
FP ALU
INT ALU
BRANCHES
LLC
L2Cache
D-Cache
Others

Figure 4.3: Basic block characteristic distribution. Every block receives one characteris-
tic, the most relevant one according to the sum of register true dependencies delays per
type

block characteristic distribution can be seen in Figure 4.4.
As seen in this Chapter, obtaining detailed hardware counter statistics per block during

execution is a complex matter. As we aim to aggregate behavior and uniquely identify
blocks, within a reduced storage size, using statistics gives us three challenges. First, a
statistic must show a direct impact on performance. While cache misses are intuitively
correct in expressing delinquent loads (PANAIT; SASTURKAR; WONG, 2004), current
architectures are usually tolerant to L1D misses due to high ILP, which provides enough
computation to overlap the cache access latency. That is, in most cases, L1D misses stall
the processor for a small number of cycles.

Second, different hardware events cannot be directly compared. When a level 1 data
cache miss occurs, we know that it will take at least the level 1 data cache access time
plus level 2 cache access time for a request to be serviced, but we do not know the state
of the Miss-Status Handling Registers (MSHR) of each cache, or even if the cache line
will be serviced in level 2. Even such a large latency could be hidden in the presence of
a branch misprediction. If we want to find which was the most relevant bottleneck in a
block, we cannot compare such a value directly to the delay generated by a floating point
division unit, as we do not know whether there is any instruction that actually depends on
the unit result, or even if it is actually going to stall the commit stage.

Third, hardware counters cannot be used directly to profile the block. As blocks of
instruction are committed, we do not know which statistics belong to which block. As
an example, if instructions from a block have executed, are ready to commit, and we

40

a
st

a
r

b
w

a
ve

s
b

zi
p

2
ca

ct
u

sA
D

M
ca

lc
u

lix

d
e

a
lII

g
a

m
e

ss
G

e
m

sF
D

T
D

g
cc

g
o

b
m

k
g

ro
m

a
cs

h
2

6
4

h
m

m
e

r
lb

m
le

sl
ie

3
d

lib
q

u
a

n
tu

m
m

cf
m

ilc
n

a
m

d
o

m
n

e
tp

p
p

e
rlb

e
n

ch
p

o
vr

a
y

sj
e

n
g

so
p

le
x

sp
h

in
x3

to
n

to w
rf

xa
la

n
cb

m
k

ze
u

sm
p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

branch
mem_store
mem_load
fp_div
fp_mul
fp_alu
int_div
int_mul
int_alu
dep

Benchmark

C
h

a
ra

ct
e

ris
tic

 D
is

tr
ib

u
tio

n

Figure 4.4: Basic block characteristic distribution. Every block receives only one charac-
teristic, the most relevant one according to commit stage delays

obtained all their statistics, once the last instruction from the block commits, we should
reset the counters to gather statistics for the next block. However, instructions from the
next block making accesses to the data cache or committing floating point instructions
might be altering these statistics, preventing us to accurately evaluate a block.

To overcome these challenges, we opted to exploit the commit stage. Instructions only
cause bottlenecks or delay the pipeline if eventually this leads to the commit stage being
blocked. So, in order to compare instruction delays, we only look at how many cycles
each instruction stalled the commit stage. This technique will obtain information that
directly impacts performance (first issue), since we are looking at the commit stage stalls.
We can directly compare the number of commit stage stalled cycles between instructions,
since they are measured in terms of cycles (second issue). Finally, as we do not use
hardware counters, the statistics are not skewed (third issue).

Overall, this is the better choice because it is simple to implement in hardware. As the
operation code of the instructions can be obtained from their reorder buffer entries when
they are being retired, no critical path increase is generated, as a simple wire extension
can give us those signals. All the needed hardware for detection can be counted in a
few registers to detect how many cycles each instruction stalls the commit stage. When
using register dependencies or isolated hardware counters, we need intermediary storage
to isolate the information per block, which is expensive with large reorder buffers and
high ILP, making these techniques unfeasible. Furthermore, this technique only measures
meaningful stalled cycles, as the throughput of the processor is usually observed by the
number of instructions retired in the commit stage every cycle.

41

In summary, a potential hardware mechanism that identifies the bottlenecks using the
commit stage stalls has new relevant applications and requirements. It must be able to
meaningfully characterize blocks, requiring small logic overhead. This is possible by
recording the stall of the instructions at the head of the Reorder Buffer (ROB), and de-
tecting branch instructions to observe block boundaries. It is also required to effectively
store this profile. Therefore, the information for each block should be kept to a minimum.
Additionally, the size of the information has an impact as we need to communicate the
profile to different mechanisms. Finally, the mechanism should be able to provide mul-
tiple characterizations, so multiple mechanisms can use the profile. In accordance with
the correlation results and the characteristic distribution, we chose to record the follow-
ing characteristics: None to denote that the block presents no problems, Brch to denote
branches hard to predict, Mem to denote commit stalls due to loads and FP to denote
commit stalls due to any floating point unit. We have chosen to use the Brch character-
istic due to more tests which show the relevance of the characteristic influence in block
executions.

42

43

5 BLOCK LEVEL ARCHITECTURAL PROFILER

In this Chapter, we show the detailed implementation of BLAP(Block Level Architec-
tural Profiler) in hardware. BLAP consists of three parts: Behavior Detection, Behavior
Labeling and Behavior Storage. After explaining each, we discuss potential critical path
implications and how they can be avoided. We then list the hardware overhead costs these
three stages and describe additions to further improve the profile information.

5.1 Behavior Detection

Modern superscalar processors use an in-order commit stage, so they can avoid mem-
ory access speculation (CRISTAL et al., 2004). This enables reading the decoded in-order
stream of instructions of a program by looking at the retired instructions each cycle. With
the instructions decoded, we can observe which instructions are conditional branches,

Processor Core

Branch Predictor

Rename

RAT

ROB

Dispatch Execution

ALU MUL DIV

FALU FMUL FDIV

Load Store

CommitDecodeFetch

MOB

BTB

Memory

Disambiguation

BLAP

Block_Address

Bottleneck

Inst. Cache Data Cache

Stall Counter

Largest Stall

Figure 5.1: Overview of the operation of BLAP in a superscalar processor. Parts in gray
represent BLAP’s modifications or additions to the processor.

44

thus allowing us to detect ends of basic blocks. Whenever the branch target buffer is ac-
cessed by a branch, we can observe the beginning of a new basic block as branch targets
are stored in the BTB.

To better illustrate the hardware needed for our mechanism, in Figure 5.1 we can see
a common abstraction of a modern superscalar design with our mechanism additions in
gray. The fetch, decode, rename and commit stages are all in-order. For every branch
instruction, the fetch stage consults the branch predictor to speculate on the correct path
to follow. This forces the fetch stage to be in-order, as the instruction path is conditioned
by the branches present in the instruction flow.

The following substages which compose the decode and rename stages all perform
simple, single-cycle operations on the instructions. The rename stage is in-order, as it
needs to be aware of instruction order to keep track of real dependencies and eliminate
false dependencies. The rename stage also passes instructions to the reorder buffer, while
it keeps track of the register dependencies between these instructions. Thereby, the re-
order buffer keeps all ordered instruction information, so the out-of-order stages can exe-
cute correctly.

The next stage, dispatch, begins out-of-order execution. It will dispatch any instruc-
tion to an available functional unit of the instruction type. Given different program behav-
iors, this means that a busy functional unit will delay its instruction type, while another
instruction can be scheduled to another functional unit type in that cycle, thus resulting in
the reorder of the instructions. Moreover, different functional units take different times to
execute, which also affects the execution order.

The commit stage is responsible for retiring instructions from the reorder buffer in
order. This stage is executed in order to ensure precise exceptions, which means that
whenever an instruction generates an exception, every instruction previous to it must have
finished, and nothing after it can have finished execution. In this way the software state is
not changed by incorrect execution of instructions that could be affected by the instruction
that generated an exception.

Further, an in-order commit stage also simplifies the rollback mechanism necessary
for branch mispredictions when using speculative execution. As an example, let’s con-
sider that a branch prediction speculative path contains an instruction I1 that changes a
register value. With an in-order commit stage, whenever a branch’s prediction is detected
as a misprediction, the necessary steps to continue the correct execution are to flush the
reorder buffer positions that come after the branch, flush all in-order stages of the front
end (fetch, decode and rename), and then start fetching instructions from the correct dat-
apath. In this way, the I1 instruction will be flushed, and since it never committed its
results, register values would not be changed. If this instruction was allowed to commit
its results before the branch, a misprediction would imply that the branch would need to
keep every register state, so it would know which registers were changed by the speculated
instruction and would be able to recover their values.

In Figure 5.2, we show a flowchart of the additional events needed to implement our
detection mechanism in the commit stage of a superscalar processor. BLAP implemen-
tation requires an in-order commit stage, which is widely used in current commercial
processors. The Figure accounts events that must happen for all instructions, but a real
implementation will only look for the reorder buffer head instruction and the first branch
instruction it finds, as can be seen in the sequence of conditionals 3 and 4 .

In the commit stage, we must check whether the oldest instruction, at the reorder
buffer head, is ready to commit 1 . Whenever an instruction stalls the commit, a Stall

45

Inst. ready
to commit?

1

BEGIN

Inst. is
branch?

3

Predicted
correctly?

7
Bottleneck = Branch

8
Stall counter = 0

11

Stall counter++
2

First inst.
committed in

this cycle?
4

Stall counter <
Largest stall?

5

Largest Stall =
Stall Counter

Bottleneck =
Inst. type

6

Store Bottleneck
Largest stall = 0

9

Bottleneck = None
Block_addr. =

Inst. addr.
10

END

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

Figure 5.2: Flow chart of additional commit stage events.

Counter is incremented 2 . When the instruction is ready to be committed, we must
check if it is a branch 3 , as branches indicate the end of blocks. If it is not a branch, we
must also check whether it is the first instruction being committed in that cycle, as we only
need the instructions which stalled the commit 4 . If it is not the first instruction being
committed and it is not a branch, no action is necessary, as the instruction has not blocked
the stage nor does it end a block. However, if this is the first instruction, we must compare
its accumulated stall time with the previous largest stall time of the current block 5 . If
the stall is larger, we update the register keeping track of the bottleneck with the current
instruction type 6 , update the largest stall with the value of stall cycles present in the
stall counter, and reset the stall counter 11 . Otherwise, we skip the update and reset the
stall counter at 11 .

If the instruction is a branch (which can be obtained in the same cycle by extending the
signals present in the reorder buffer entries to our scheme), we must store the block infor-
mation. First, we check whether the branch was correctly predicted 7 . This can be done
by checking the branch history table (which takes 2-3 cycles) or carrying this information
in the reorder buffer entries (done within the same cycle), but additional hardware, which
is likely already present in the processor commit stage to detect mispredictions. Obtain-
ing the signal from a reorder buffer entry only requires a wire extension from the signal
(picoseconds), while selection requires more logic and time, although the combinational
logic used by the commit stage to select the reorder buffer entries can simply be extended
to obtain the extra bit signals which denote instruction type and whether a branch mispre-
diction occurred. As branch instructions do not stall the commit stage, the only way to
characterize a block as "Brch" is to directly access its accuracy information.

If the branch is not correctly predicted, we change the block’s bottleneck type to

46

Brch 8 . We then store the bottleneck type in the BTB, using the value of the Block_Address
register as index (the address of the branch that started the block) and store the instruction
address of the current branch instruction in the Block_Address (as we are starting a new
block) 10 . Thereby, at the end of each block, we store the block information using the
instruction address of the branch of the previous block as the index 9 . We also reset
the counters related to largest stall 9 and bottleneck 10 , followed by resetting the stall
counter 11 .

In our experiments, the average relaxed block size varies between 5 and 10 instruc-
tions, while we have a commit width of 5 instructions.

In order to prevent profiling to be affected by cold start effects in caches, prefetchers
and branch predictors, we designed a stabilization scheme for BLAP. This deals with
problems that may arise when a block has an unstable characteristic in its first executions.
It uses a saturating counter to record the number of times the basic block was executed.
When this counter saturates, the last detected characteristic is considered to be stable, and
thus it is identified as the bottleneck of that block. Further changes in the block bottleneck
will not overwrite the BTB entry, in order to avoid disabling the improvements that may
have caused the bottleneck reduction and subsequent characterization change.

5.2 Behavior Storage

In order to use the profile, we must store it for future use. Based on the correlation re-
sults, we use 2 bits per block, expressing 4 characteristics (None, Brch, Mem, FP). These
characteristics were chosen because they either have shown the highest correlation coef-
ficients or they had the greatest impact in terms of stalled cycles in our experiments. The
number of characteristics can be incremented by using more bits per entry, to allow future
extensions. As the BTB contains all the conditional and unconditional branch targets, in-
stead of using a new cache, we can extend the BTB to store characteristics for every block
targeted by a conditional or unconditional branch. In this way, when the branch target is
predicted by the BTB, we also load the bottleneck characteristic of that entry as we know
it is the profiled characteristic of the block about to be fetched. The register mentioned in
the previous section, Block_Address, is responsible for indexing each block in the BTB.
A 2 bits saturating counter is also used per entry to stabilize a block’s characteristic. Mis-
labeling can occur, as "not taken" branches will load the characteristic from a predicted
taken path, when such mispredictions happen. As blocks with mispredictions after the
training phase are rare (less than 1% of all predictions), we accept this mislabeling, since
the mechanisms which use this information are all speculative and do not generate wrong
execution.

5.3 Behavior Labeling

To use our profile information, we followed an approach that allows implementation
of multiple mechanisms. When a branch is predicted at the fetch stage, we access the
BTB using the address of the branch instruction. The characteristic is loaded into a new
register called Block Characteristic.

The information of this register is copied to a new field for every entry of that instruc-
tion (e.g. the ROB) until the content of Block Characteristic is updated by the next block
profile information. Thus, the fetch buffer’s entries, the decode buffer’s entries, and the
ROB entries are all augmented by 2 bits to store the characteristic pertaining to the block.

47

5.4 Critical Path Implications

Detection: The detection scheme of Block-Level Architecture Profiler (BLAP) re-
quires additional hardware to support the update of the mechanism’s registers. There is
a special case which occurs when two branches commit in the same cycle. This means
that the block initiated by the first branch had no stalls, so we aggregate the block with
whatever instructions are committed after the second, ignored branch. In our evaluations,
cycles which committed more than one branch represented less than 1% of the execution
cycles for NAS-NPB and SPEC-OMP2001 benchmarks. Finally, storing information into
the BTB at the same cycle could require a longer cycle time. Thus, we write to a buffer
and create an additional post-mortem pipeline stage used only for BLAP, which stores
the information received by the last block in the BTB. This extra stage does not affect
the processor’s throughput, as it is not in the critical path, it only uses information from
instructions which have already finished executing and have committed.

Storage: The extra stage in BLAP is used to pipeline the actual write to ensure syn-
chronization with the BTB reads performed by all instructions being fetched, so the writ-
ten value is only valid for the next cycle. When there is conflict for the BTB write port,
target address writes coming from branch execution units are given priority through the
use of multiplexers to the BTB write port. The BTB has an additional bit to signal which
part of the entry will be written(regular branch writing its target address or BLAP infor-
mation). If new values from blocks would come to this new stage, we do not overwrite
the current BLAP information waiting for the write port, as these new values are from
blocks that likely were stalled for a small number of cycles.

Labeling: Labeling has no implications on the critical path, only requiring additional
information bits going through the pipeline along their respective instructions.

5.4.1 Profile Stability

The behavior of a basic block is static given enough repetitions, but the scheme shown
so far updates the characteristic every execution. Alas, the characteristic of a block
changes quickly in the first executions, as caching, prefetching and branch prediction
mechanisms get trained. To ensure that a block’s characteristics are stable, we add 2 bits
to each BTB entry. These bits count to 4 to ignore the first 4 executions, allowing time
for a block behavior to become stable. Once the counter saturates, we register a block
characteristic and do not change it until the block is evicted.

We were led to implement behavior stabilization because of implementation details
detected in our tests. For instance, when increasing the aggressiveness of a prefetcher
for a block detected with long load stalls, two cases could happen. The first case hap-
pened when the block did not actually have a Mem characteristic, and it should stabilize
as another characteristic. In the second execution, we would increase prefetcher aggres-
siveness, and performance could be degraded due to too much memory bandwidth used,
or improved. If performance was improved, there was no way to tell whether it happened
due to caching, prefetching or increased aggressiveness on prefetching, so we would end
up keeping a prefetcher more aggressive than it should be and degrade performance for
other blocks. The second case, which happened when the block actually had memory
problems, generated more problems. If we improved memory access via prefetcher ag-
gressiveness or load priority bits, and the characteristic of the block was kept as Mem, that
would be fine. But even though the block’s stable characteristic was of long load latency,
our implemented mechanisms would improve performance enough so that the detected

48

characteristic would change. This generated a "tic-toc" effect. Whenever we got a Mem
characteristic on block A, we improved performance of block A via memory mecha-
nisms, and got a different characteristic for it, such as FPDiv. Then, on the next execution
of block A, as its characteristic was detected as FPDiv, the changes on mechanisms to
improve memory performance would not be triggered, degrading performance back to
characteristic Mem. The characteristics and the mechanism activation would keep alter-
nating, when it is desirable that the changes made to improve memory access remained
active the entire time.

5.4.2 Hardware Costs

To implement BLAP, we can divide the hardware costs into three parts: detection,
storage and labeling. As can be seen in Figure 5.2, detection requires two 8-bit counters,
Stall and Largest Stall. It also requires an 8-bit adder and a 8-bit comparator for these
registers. We use two 2-bit Bottleneck registers, and two Block Address registers, to
pipeline the actual write to the BTB with an additional BLAP stage. To determine whether
a branch prediction was a misprediction, we add 1 bit for each reorder buffer entry (which
may already be there to detect mispredictions and generate rollbacks in the commit stage).
All entries and options of the datapath require two 2 bit 2-input multiplexers and one 8 bit
2-input multiplexer.

For storage, we modify the BTB write port to write the extra BTB bits. The value in
BLAP’s write buffer waits until no branch instruction has a branch target address to write
in the same cycle, and one extra bit indicates the entry bits to be written (branch target
address or BLAP information). If another block information coming from BLAP would
overwrite BLAP’s buffer while it waits for a write opportunity, we ignore the second block
information as the stall value is likely low for such conflict to happen. Optionally, we can
add another write port to avoid this issue. Thereby, we reuse all tags and logic from the
BTB. The extension is composed of 2 bits for characteristics and a 2-bit saturating counter
to stabilize each entry.

We store the labels in a Block Characteristic register when we obtain the information
bits from the BTB in the fetch stage. Every following instruction of the block must copy
this information, so we must add these bits to the entries of all structures. We add 2 bits
to every entry of the fetch buffer, decode buffer and ROB. The calculated costs in terms
of hardware are shown in Table 5.1. For each core, BLAP requires the total storage of
2142 bytes, plus combinational logic of three 2 bit multiplexers, one 8 bit multiplexer, one
8 bit adder and one 8 bit comparator. This is a significant amount of bytes, but using it as
cache storage or extra branch target buffer targets would yield less than 1% performance
improvements. The total area overhead per core is of 206164 transistors. In Sandy Bridge,
that means 1236984 total transistors. As Sandy Bridge has 6 cores, Graphic Processing
Unit (GPU) and large caches, if we consider the core areas to only take 25% out of the
2.27 billion transistors, our area overhead corresponds to less than 0.22% of the total cores
area.

5.5 Evaluating BLAP Precision

In order to evaluate BLAP’s precision and performance improvement potential, we
performed a collection of experiments for the "Brch" and "Mem" characteristics. First,
we tested baseline execution and upper bound improvements execution for each character-
istic. The upper bound changes for every characteristic, as it is modeled upon eliminating

49

Table 5.1: Hardware Costs of BLAP
Mechanism Portion Resources

Detection 8-bit Stall counter; 8-bit Largest Stall counter;
8-bit adder for Stall counter;
8-bit comparator (Stall counter with Largest Stall);
1 2-input 2-bit multiplexer, uses branch prediction information to update BLAP;
1 2-input 2-bit multiplexer, bottleneck evaluation and selection;
1 2-input 8-bit multiplexer, largest stall evaluation and selection;

2-bit Bottleneck reg. (Commit); 2-bit Bottleneck reg. (BLAP);
64-bit Block Addr. reg. (Commit); 64-bit Block Addr. reg. (BLAP);
1-bit branch prediction information per ROB entry (168 entries in total);
Total of 316 bits for detection;

Storage 1 2-input 2-bit multiplexer (selects regular BTB write or BLAP write);

2-bit Bottleneck reg. per BTB entry (4096 entries in total);
2-bit Stabilizer counter per BTB entry (4096 entries in total);
1 4-bit write buffer;
Total of 2048 bytes of storage;

Labeling 2-bit Block Characteristic reg.;
2-bit Block Characteristic per fetch buffer entry (18 entries in total);
2-bit Block Characteristic per decode buffer entry (28 entries in total);
2-bit Block Characteristic per ROB entry (168 entries in total);
Total of 430 bits for labeling;

the latencies of the characteristic. Memory accesses are all solved within the LLC cache
(eliminating the major latency of accessing main memory), while branches are all cor-
rectly predicted. The configurations used to obtain these results are detailed in Chapter 6.

After we defined these results, we ran tests eliminating these latencies only for blocks
found within BLAP, and only for a certain amount of them. For these results, we used a
4096 lines cache. Our objective here is to first show BLAP’s accuracy and performance
improvement potential. We will use the BTB later on, with mechanisms defined for per-
formance improvement. In the next figures, each bar shows the performance improve-
ments compared to the baseline, with progression when modeling constraint elimination
from 25% of the blocks detected by BLAP to 100%, with leaps of 25%. The rightmost
bar shows the upper bound, achieved if we eliminated the latency for all instructions of
that type.

In Figure 5.3, branch performance progression is shown. Following the correlation,
performance is greatly dependent on correct branch prediction. If we take into account
the figures shown in previous chapters, we know that branches represent a small amount
of all blocks characterized, since the amount of branches mispredicted is relatively small.
Yet, correctly predicting that small amount of branches yields great improvements, and
being able to improve any of the branches detected by BLAP allows for a good amount
of performance improvement. The issue is, as the progression shows, that BLAP has a
hard time finding all the correct blocks. As branch prediction hit rate does not stabilize
like memory access time, BLAP’s stabilization scheme makes it impossible to detect un-
predictable branches. An example would be a branch that alternates between correct and
incorrect prediction back and forth, without repeating a correct or incorrect prediction.

In Figure 5.4, last level cache performance progression is shown. Here we also notice
performance potential for the cache misses found within BLAP, as expected from avoiding

50

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

A
D

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gc
c

go
bm

k
gr

om
ac

s
h2

64
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

be
nc

h
po

vr
ay

sj
en

g
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
xa

la
nc

bm
k

ze
us

m
p

0%

20%

40%

60%

80%

100%

Sp
ee

du
p

25 50 75 100 UPPERBOUND

Figure 5.3: Modeled performance improvements correctly predicting 25%, 50%, 75%
and 100% of branch instructions in blocks characterized as "Brch".

accesses to the main memory. We can notice that the cache performance is still distant
from the upper bound. This happens due to characteristic aggregation. For instance, if
a block has a large latency of 160 cycles for a load, but a misprediction also happens,
the load instruction should not matter. Likely, its stall effect on general performance will
be diminished due to the lack of instructions ready for execution and committing. In the
cases of floating point functional units, these could hide small latency loads, which would
hit L2 cache level and still be tolerated.

Thus, in Figure 5.5, we redo the experiment characterizing only for cache character-
istic or no characteristic. Here, we can see small increases in performance, thanks to the
elimination of branch characteristic in blocks that had last level cache misses as well.

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

A
D

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gc
c

go
bm

k
gr

om
ac

s
h2

64
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

be
nc

h
po

vr
ay

sj
en

g
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
xa

la
nc

bm
k

ze
us

m
p

0%

20%

40%

60%

80%

100%

Sp
ee

du
p

25 50 75 100 UPPERBOUND

Figure 5.4: Modeled performance improvements solving 25%, 50%, 75% and 100% of
the load instructions of blocks characterized as "memory load".

With these results, we can see a lot of potential for the memory bottleneck. In the next
Chapter, we detail the architecture used and the related work that was considered as state
of art to improve the memory controller.

51

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

A
D

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gc
c

go
bm

k
gr

om
ac

s
h2

64
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

be
nc

h
po

vr
ay

sj
en

g
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
xa

la
nc

bm
k

ze
us

m
p

0%

20%

40%

60%

80%

100%

Sp
ee

du
p

25 50 75 100 UPPERBOUND

Figure 5.5: Modeled performance improvements solving 25%, 50%, 75% and 100% of
the load instructions of blocks characterized as "memory load", when the mechanism only
characterizes loads.

52

53

6 EVALUATION METHODOLOGY

In this Chapter we detail the simulation environment and the mechanisms imple-
mented for the 7 Chapter. The related work detailed here has been implemented in all
details described in their respective papers. The major difference is the architecture con-
figuration used, as we simulate a realistic scenario, the Sandy Bridge architecture, as a
baseline.

6.1 Simulation Environment and Metrics

To validate our mechanism, we used a cycle-accurate in-house simulator (ALVES,
2014). It accurately simulates the micro-architecture, modeling all functional unit con-
tention, register dependency, processor and system restrictions, cache architecture, DRAM
memory and interconnections. In Table 6.1, we specify the details of the simulated sys-
tem, which has a configuration based on the Intel Sandy Bridge micro-architecture.

We used two parallel workload sets for evaluation: (i) seven applications from the
NAS-NPB workload suite, with the A input size, and (ii) seven applications from the the
SPEC-OMP2001 workload suite with ref input size. On average each thread’s execution
trace contains 150 million instructions. Overall, the trace of each application represents
one parallel time step from each algorithm. The applications use the OpenMP paralleliza-
tion library and were compiled with gcc 4.6.3, with the -O3 options. We only used the
parallel benchmarks for these tests as single-threaded benchmarks do not generate enough
memory pressure to provide performance improvement opportunities.

As we use parallel benchmarks for all our performance tests, we measure performance
in terms of total number of execution cycles until the program finishes. This means that
individual thread behavior may vary during execution. We show speedups calculated to
express the proportion of total execution time reduced in each application in comparison
to the baseline.

6.2 Evaluated Memory Controller Policies

Given the correlation coefficients presented in Section 2, we have chosen to improve
the memory controller because of the high correlation that memory accesses have with
performance. Considering the proposals of Ghose et al. (2013) and Lee et al. (2008), we
designed an improved memory controller that can use the profile information provided
by BLAP to give different priorities to memory accesses depending on their relevance
to the application’s critical path. The baseline for the memory controller policies is the
FR-FCFS (RIXNER et al., 2000) policy, which gives priority to row hits (First Row),

54

thus lowering average memory wait time, and then priority to older accesses (First-Come,
First-Serve). In order to compare our solutions with the state-of-the-art, we also imple-
mented the original Criticality Binary Prediction (CBP) from Ghose et al. (2013) and the
PADC from Lee et al. (2008).

The CBP mechanism gives priority to the load instructions that stall the commit stage.

Table 6.1: Baseline simulated architectural parameters.
Component Configuration

Processor
Cores

8 cores OoO @ 2.66 GHz, 32 nm; in-order front-end and commit;
16 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit stages);
16 B fetch block size (up to 6 instructions);
Decode and commit up to 5 instructions;
Rename/dispatch/execute up to 5 µ instructions;
18-entry fetch buffer, 28-entry decode buffer;
3-alu, 1-multiplication and 1-division integer units (1-3-32 cycle);
1-alu, 1-multiplication and 1-division floating-point units (3-5-10 cycle);
1-load and 1-store functional units (1-1 cycle);
MOB entries: 64-read, 36-write; 168-entry ROB;

Branch
Predictor

1 branch per fetch; 8 parallel in-flight branches;
4 K-entry 4-way set-assoc., LRU policy BTB;
Two-Level PAs 2-bit; 16 K-entry BHT;

L1D
Cache

32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
MSHR: 8-request, 10-write-back, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;

L1I
Cache

32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
MSHR: 8-request, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;

L2
Cache

Private 256 KB, 8-way, 64 B line size; LRU policy;
MSHR: 4-request, 6-write-back, 4-prefetch; 4-cycle;
Stream prefetch: 4-degree, 64-dist., 64-streams;

L3
Cache

Shared 16 MB (8-banks), 2 MB per bank; MOESI coherence protocol;
16-way, 64 B line size; LRU policy; 6-cycle; Inclusive;
MSHR: 8-request, 12-write-back; Bi-directional ring interconnection;

DRAM
and Bus

On-chip DRAM ctrl., 8 banks/channel; 4-channels; DDR3 1333 MHz;
8 burst length; 4 KB row buffer per bank, Open-row first;
4.0 core-to-bus frequency ratio; 9-CAS, 9-RP, 9-RCD & 28-RAS cycles;
MSHR: 128-request, 64-write-back, 32-prefetch;

55

As it only keeps track of the loads, it uses a small 64 bits tagless SRAM table per core,
which is reset every 100000 cycles to adapt to program phase. It then gives priority to
the loads found in this internal table. The authors explore more options, such as storing
the number of stalled cycles for more complex policies: BlockCount, LastStall, MaxStall
and TotalStall. BlockCount counts how many times a load blocked the commit stage,
regardless of how many cycles it blocked the commit stage. LastStall counts how many
cycles the commit stage was stalled by the last load. MaxStall counts the maximum
amount of cycles the commit stage was stalled by a single load execution. TotalStall
counts the total amount of cycles the commit stage was stalled by a load. This information
is then added in the memory packages to define priority levels, instead of the simpler 1-bit
binary policy. The paper reports speedups of 6.5% for the basic binary policy, 8.7% for
BlockCount, no tangible benefit for LastStall when compared to binary policy, 9.3% for
MaxStall and meager improvements over MaxStall with TotalStall. We implemented only
the binary policy, as the other policies demand too many bits of added bandwidth and
storage to the memory controller.

For the PADC mechanism, each cache line is extended by adding 2 bits, a prefetch bit
and an access bit, in the same way of (SRINATH et al., 2007). These bits track which
prefetches were useful. By measuring prefetch accuracy every 100000 cycles, PADC
decides whether it should give the same priority to prefetches and demands, or whether
it should prioritize demand requests and drop prefetches given the pollution present. It
uses 4 prefetch accuracy threshold values and 4 corresponding thresholds for the number
of cycles which the prefetch waited for service to drop it, defined by the authors for their
architecture. Over 70% prefetch accuracy, the mechanism treats all requests equally and
does not drop prefetches. Between 30% and 70% prefetch accuracy, it prioritizes demand
requests and drops prefetches that waited in the memory request buffer longer than 50000
cycles to be serviced. Between 10% and 30% accuracy, the mechanism drops prefetches
which waited longer than 300 cycles to be serviced. If accuracy is lower than 10%, it
drops any prefetch which waits more than 100 cycles to be serviced.

The BLAP-based mechanisms were implemented as follows. BLAP-CBP is the adap-
tation of CBP using the basic block profile information provided by BLAP. The idea is
to give priority to blocks that BLAP characterized as Mem, by using the CBP memory
controller policy. Therefore, BLAP-CBP uses the following priority set of rules:

1. Give priority to critical row hits;

2. Give priority to non-critical row hits;

3. Give priority to critical non-row hits;

4. Give priority to non-critical, non-row hits.

In BLAP-PADC-8L, prefetches get BLAP information from the requests that triggered
them. To emulate the concept of PADC, we drop prefetches above average demand re-
quest wait time. We implemented an 8-level priority memory controller which combines
CBP and PADC. As we have information of which demand requests are critical, which
prefetch requests are critical, and whether the request is a row hit, we need 23 levels of
priorities. The 8 level rules are:

1. Give priority to demand critical row hits;

2. Give priority to prefetch critical row hits;

56

Row hit Critical Prefetch Age

Present in FR-FCFS policy (baseline)

Added by
CBP, BLAP

Added by
PADC, BLAP

078910

Figure 6.1: Request selection logic for different memory controller mechanisms.

3. Give priority to demand non-critical row hits;

4. Give priority to prefetch non-critical row hits;

5. Give priority to demand critical non-row hits;

6. Give priority to prefetch critical non-row hits;

7. Give priority to demand non-critical, non-row hits;

8. Give priority to prefetch non-critical, non-row hits.

Figure 6.1 illustrates each input bit used by the selection logic for different memory
controller mechanisms. The mechanisms compare the information bits from the request
as a single number, by concatenating all bits and considering the leftmost bits as most
significant. The age represents how many cycles the request has been waiting for service
in the memory controller request buffer. The prefetch bit is set to 0 on prefetches and 1
on demand requests, in order to give priority to demand requests. The critical bit is the
information fed either by CBP or BLAP. Finally, row hit is 1 if the address of the request
matches the currently open row.

In comparison to CBP, the first advantage of BLAP-CBP is that we can exploit other
processor bottlenecks beyond memory pressure. The second advantage of this charac-
terization that yields performance gains is that it also provides information on branch
mispredictions. We will not give priority to loads that are followed by a mispredicted
branch. Doing so would not help the block performance, which is why branch prediction
is given the highest value. The objective in doing so is to reduce the number of critical
loads to the loads which can actually improve performance if prioritized, which is not the
case of loads followed by mispredicted branches. Third, as we can address blocks and
store their information using the branch target buffer, we are able to store a much larger
amount of information, 4096 entries, compared to 64 entries in the CBP’s table. Both im-
plementations require the same amount of hardware in the memory controller and MSHR
structures to pass the information bit that indicates critical requests.

Compared to the PADC, BLAP-PADC-8L required four times less storage by using
the BTB to store the profile information. We cannot offer a straightforward adaptation, as
BLAP does not have prefetch accuracy information. Rather, we used the average demand
request wait time to make a new prefetch dropping mechanism, and used BLAP informa-
tion to avoid evicting prefetches triggered by relevant blocks. In this sense, the memory
controller used for BLAP-PADC-8L is entirely new, as it mixes the priority from CBP,
extends it by applying it to prefetches, and uses the concept of prefetch dropping to dis-
card irrelevant prefetches, thus alleviating the pressure on the memory request buffer and
average memory service time. In the next Chapter, we evaluate all of these mechanisms
using the configuration detailed in this Chapter.

57

7 EXPERIMENTAL RESULTS

In this chapter we discuss the two main mechanism implementations used to achieve
performance improvements using the characteristics detected per block. We chose these
mechanisms because they are sensitive to the information BLAP collects, have shown
good prospects for performance improvement, and were recent works representing nov-
elty in the computer architecture field. Although we detect several characteristics, these
mechanisms only use the "Mem" characteristic.

After we reach a satisfactory mechanism, we perform a design space exploration to
evaluate how the mechanism behaves with different architectural parameters. In all our
evaluations, we only used parallel benchmarks, as the memory pressures present in single-
threaded sequential benchmarks were too small to provide any improvement opportunity.

7.1 Mechanism Exploration

Figure 7.1 presents results for different mechanisms running NAS-NPB and SPEC-
OMP2001 benchmarks. In the Figure, we show speedup relative to the baseline for all
benchmarks, meaning higher values mean better performance. The first observation is
that the average gains of both related work are different from the ones found in their
work, due to different benchmarks, architectural parameters and simulators. Although the
effect of the mechanism implementation is noticeable, as seen in the IS benchmark, the
average benchmark speedup is low.

For this experiment, PADC offers the highest improvement, achieving 19.02% for IS.
We have average performance improvements of 1.89% with CBP, 0.80% with BLAP-

B
T

C
G FT IS L
U

M
G SP

A
pp

lu

A
ps

i

Fm
a3

d

G
al

ge
l

M
gr

id

Sw
im

W
up

w
is

e

AV
G

−5%

0%

5%

10%

15%

20%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

CBP BLAP-CBP PADC BLAP-PADC-8L

Figure 7.1: Performance results for NAS-NPB and SPEC-OMP2001, relative to FR-FCFS
baseline.

58

CBP, 3.10% with PADC and 3.90% with BLAP-PADC-8L. In general CBP obtained bet-
ter results than BLAP-CBP. This is due to CBP information being specifically designed
for load instructions, while BLAP profiles in a coarser granularity.

BLAP-PADC-8L outperforms PADC on average as we adapted it to perform in a
flexible way using the average demand request time. Although the average time could
also be used for PADC, there is no information on the original paper on which thresh-
olds would better benefit from such value, and we would rather replicate the original
work in every aspect for comparison. Using BLAP information, the mechanism is able
to drop prefetches more aggressively while still servicing important prefetches. This is
because the prioritized prefetches come mostly from critical, repetitive blocks, which got
characterized as "Mem". This makes BLAP-PADC-8L inclinable to drop false-positive
triggered prefetches, as they do not receive priority (low number of executions of their
block may not allow characterization) and are thus left to be dropped (since the priority
of non-critical prefetches is below average demand request time for closed rows).

In order to stress the memory controller mechanisms and their profiling methods, we
used a stream prefetcher with increased agressivity. A stream prefetcher normally looks
for cache misses within a range (search distance), and, if the sequential misses fall within
this distance, we allocate a stream. If any cache access falls within this stream initial
address and m cache lines ahead(where m is the prefetch distance parameter), we prefetch
n cache lines (where n is the prefetch degree parameter) starting from address prefetch
triggering address + (prefetch distance * cache line size), then attributing starting ad-
dress with the value of the request that triggered the prefetches. In our baseline, we used
prefetch degree 4 and prefetch distance 64, which is already considered aggressive. It is
considered aggressive because of the high number of packages prefetched and the large
area of cache lines detected. This configuration was used since the current related work
all use this same aggressiveness. During validation, Sandy Bridge seems to use prefetch
degree 2 and prefetch distance 32 for its L2 cache stream prefetcher, which seems realistic
for current architectures.

In the next experiment, Figure 7.2 shows results for CBP, PADC, BLAP-CBP and
BLAP-PADC-8L with prefetch degree 8 and prefetch distance 128. In this experiment
BLAP-PADC-8L offers the highest improvement, achieving 37.05% for Wupwise. We
have average improvements of 3.99% with CBP, 1.72% with BLAP-CBP, 4.24% with
PADC and 13.14% with BLAP-PADC-8L.

B
T

C
G FT IS L
U

M
G SP

A
pp

lu

A
ps

i

Fm
a3

d

G
al

ge
l

M
gr

id

Sw
im

W
up

w
is

e

AV
G

−10%

0%

10%

20%

30%

40%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

CBP BLAP-CBP PADC BLAP-PADC-8L

Figure 7.2: Performance results for NAS-NPB and SPEC-OMP2001 with increased ag-
gressivity prefetcher, relative to FR-FCFS baseline.

59

CBP performed better than in the baseline experiment as it only gives priority to de-
mand requests. Thus, improving performance by only servicing prefetches when there are
no critical demand requests. For the reasons mentioned in the previous test, BLAP-CBP
also improves, but it does not reach the same improvements as CBP.

PADC obtains the same performance improvements as in the baseline. This happens
because our evaluations used the same parameters proposed by the authors, although dif-
ferent system architectures may require different internal parameters. We have no correct
way of determining these parameters, as they are not discussed in the original paper, which
leads to unfairness in this comparison. This way, PADC is not able to drop prefetches as
aggressively as needed. On the other hand, BLAP-PADC-8L achieved high performance
improvements for several benchmarks due to its aggressive prefetch dropping.

In the opposite direction of the previous Figure, Figure 7.3 shows results with a
conservative stream prefetcher aggressiveness for CBP, PADC, BLAP-CBP and BLAP-
PADC-8L, with prefetch degree 2 and prefetch distance 32. By conservative, we mean
values that are deemed safe and do not generate performance degradation due to cache
pollution. These values are used for current architectures. This experiment shows that all
mechanisms offer little improvement, as there is not enough memory pressure. The high-
est improvement of 3.88% with BLAP in the benchmark MG does not suffice to make the
results considerable, as all averages are within 1% of the baseline performance.

We can observe that the prefetch dropping mechanisms hurt performance, as they
are likely too aggressive when dropping prefetches. In such a conservative prefetcher
aggressiveness configuration, prefetches are unlikely to generate significant pollution in
the memory controller MSHRs and caches.

Figure 7.4 shows speedup results for BLAP-PADC-8L, comparing the BLAP mech-
anism implemented with the BTB and implemented with a large cache, which is large
enough to avoid any conflict and capacity misses within all benchmarks. Moreover, it
is able to differentiate and store blocks targeted by branches and fall-through blocks by
storing all addresses that come after a branch.

Comparing the BTB to the large cache implementation, we can notice similar perfor-
mance improvements over the baseline. This shows that the large entry number in the
BTB is sufficient to keep the profile information for most benchmarks. This has been
further tested by using different BTB sizes, and while a smaller BTB does not show the

B
T

C
G FT IS L
U

M
G SP

A
pp

lu

A
ps

i

Fm
a3

d

G
al

ge
l

M
gr

id

Sw
im

W
up

w
is

e

AV
G

−10%

−5%

0%

5%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

CBP BLAP-CBP PADC BLAP-PADC-8L

Figure 7.3: Performance results for NAS-NPB and SPEC-OMP2001 with conservative
aggressivity prefetcher, relative to FR-FCFS baseline.

60

B
T

C
G FT IS L
U

M
G SP

A
pp

lu

A
ps

i

Fm
a3

d

G
al

ge
l

M
gr

id

Sw
im

W
up

w
is

e

AV
G

−5%

0%

5%

10%

15%

20%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

BLAP-Cache BLAP-BTB

Figure 7.4: Performance results comparison between using the branch target buffer and a
large cache, relative to FR-FCFS baseline.

B
T

C
G FT IS L
U

M
G SP

A
pp

lu

A
ps

i

Fm
a3

d

G
al

ge
l

M
gr

id

Sw
im

W
up

w
is

e

AV
G

−5%

0%

5%

10%

15%

20%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

BLAP-BTB CBP+DROP

Figure 7.5: Performance results comparison using the same memory controller, but dif-
ferent informations, from BLAP and CBP respectively, relative to FR-FCFS baseline.

same performance improvements, a larger BTB was not able to show any improvement
at all, registering the same hit ratio as the size currently in use. This can be attributed to
the use of traces that are not composed of the entire program, but rather one application
step. However, one application step should contain references to most of the branches that
have repeated accesses. There are cases where the BTB implementation outperforms the
large cache, as giving priority only to repeatedly executed blocks (i.e. blocks targeted by a
branch in a loop) instead of priority to all blocks helps to differentiate the truly important
blocks in an application.

Figure 7.5 shows speedup results comparing the performance of the memory con-
troller and prefetch dropping policies when fed with information from BLAP and CBP.
Since CBP is able to detect single-instruction granularity and change the priority of in-
structions as soon as they stall the first time in the processor, requiring no training time,
its characterization of loads is slightly better than BLAP’s. However, CBP is unable to
detect other characteristics, which gives BLAP an edge for future work and extensions.

7.2 Design Space Exploration

In order to explore the scalability of the mechanism for future systems design and
its general behavior, we have performed three tests to explore the characteristics of the

61

bt cg ft is lu m
g sp

ap
pl

u

ap
si

fm
a3

d

ga
lg

el

m
gr

id

sw
im

w
up

w
is

e

AV
G

−5%

0%

5%

10%

15%

20%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

1.5 ratio 2.0 ratio 3.0 ratio 4.0 ratio

Figure 7.6: Mechanism performance, normalized to baseline configurations with different
memory latencies

mechanism under different conditions.

7.2.1 Memory Latency

One of the most important aspects of the mechanism provided is related to the memory
latency present in the system. In Figure 7.6 we have varied the core-to-bus ratio, i.e. the
ratio between the core cycle period and the memory bus cycle period, from lower levels
to the configuration used for our tests.

We can clearly observe that, with lower memory latencies, BLAP-PADC-8L offers
diminishing advantages, as reordering requests and prefetch pollution have less impact
in faster memories. However, future memories are likely to have a larger latency when
compared to processors. The DRAM we currently use in Sandy Bridge has a core-to-
bus period ratio of 3.0, which is not far from the ratio used for the results. The results
actually show that a ratio of 3.0 yields better speedup results, although we never tuned the
parameters of the initial configuration to obtain the best results. With higher frequency
processors, running at 3.2GHz, this ratio would actually be 5.0, which shows that the
performance is still scaling. However, memory pressure is much more likely to become
an issue due to the number of cores generating requests with the scaling of core numbers
than the actual core-to-bus ratio.

7.2.2 Cores Number

In order to test how the mechanism scales when using a larger number of cores we
have scaled our system to 16 cores. We still use a bidirectional ring, but now we have 16
last level cache banks of 2MB each. In Figure 7.7 we can see that we obtain an average
of 6.04% speedup in relation to the baseline configuration with 16 cores, which shows
that our mechanism’s performance scales with the larger number of requests per mem-
ory controller. This happens because the priorization of critical requests and alleviating
prefetcher pollution becomes increasingly important with more pressure on the memory
and more requests to consider when ordering request priorities.

7.2.3 Cache Size

Evaluation of memory-related mechanisms are always impacted by the cache hierar-
chy present in the system. To evaluate this, in Figure 7.8 we vary the cache size of our
baseline system.

62

B
T

C
G FT IS L
U

M
G SP

A
pp

lu

A
ps

i

Fm
a3

d

G
al

ge
l

M
gr

id

Sw
im

W
up

w
is

e

AV
G

−5%
0%
5%
10%
15%
20%
25%
30%
35%
40%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

BLAP-PADC-8L

Figure 7.7: Mechanism performance with BLAP-PADC-8L using BTB, normalized to
baseline configurations with 16 cores

bt cg ft is lu m
g sp

ap
pl

u

ap
si

fm
a3

d

ga
lg

el

m
gr

id

sw
im

w
up

w
is

e

AV
G

−15%

−10%

−5%

0%

5%

10%

15%

20%

NAS–NPB SPEC-OMP 2001

Sp
ee

du
p

8MB 16MB 32MB

Figure 7.8: Mechanism performance, normalized to baseline configurations with different
memory latencies

In the Figure we can observe a larger cache will filter more accesses, reducing memory
pressure and consequentially reducing the performance improvement opportunities for
our mechanism. On the other hand, a smaller cache has the opposite effect.

63

8 CONCLUSIONS AND FUTURE WORK

In this master thesis, we have presented BLAP, a mechanism capable of characterizing
blocks to better inform other mechanisms about basic block behavior. Our main objective
was to provide a mechanism that could aggregate behavior to minimize storage overhead
and have a simple, efficient detection, in order to compare basic block information versus
instruction information. BLAP has shown several advantages. It automatically adapts
to program phase changes, as it dynamically keeps track of basic blocks. It requires
less storage than instruction-granularity mechanisms, as we aggregate the behavior per
block. We are able to use the BTB to efficiently store this information, as it retains
the initial address of each block. BLAP is also capable of detecting different types of
performance issues within a block, thus being able to provide information to a wide range
of mechanisms.

8.1 Contributions
Characterization Mechanism: We proposed BLAP, an efficient detection mecha-

nism capable of characterizing applications at the basic block level during their execution.
We have detailed its implementation avoiding any critical path changes within reasonable
hardware overhead.

Low Overhead Profile Storage: By using the BTB, our mechanism requires negli-
gible storage to keep information about the relevant characteristics of each basic block.

New Memory Controller: Using a combination of related works, we were able to
design a new memory controller that can outperform both related work using BLAP’s
characterization. It works by dropping prefetches deemed useless or late, by servicing
demand requests and useful prefetches first. Additionally, we perform design space ex-
ploration to show that this memory controller scales well with future memory pressures.

Our results show that basic block granularity can be just as relevant as single instruc-
tion granularity for memory accesses. The findings indicate that as basic blocks naturally
track a program’s phase progression, we are able to more accurately adapt to different
memory pressures that occur in different program phases. We were able to improve
performance by 3.9% on average (up to 17.39%), compared to the baseline FR-FCFS,
with a low hardware overhead. We have also shown that our technique scales better than
the state-of-the-art when faced with higher memory pressure due to higher prefetch ag-
gressivity, and scales well for a larger number of cores. This master thesis generated
two publications: "Influência das Características de Processadores e Aplicações no Nível
de Blocos Básicos" in WSCAD (Workshop de Sistemas Computacionais de Alto De-
sempenho) in 2013, and "Profiling and Reducing Micro-Architecture Bottlenecks at the

64

Hardware Level" in SBAC-PAD (Simpósio Brasileiro de Arquitetura de Computadores -
Processamento de Alto Desempenho) 2014.

8.2 Future Work

For future work, there are several ways to build on this work. First, exploring BLAP’s
information for other instruction types among those selected should be the first con-
cern. For branches, it might be possible to increment the base detection to work on
data-dependent branches, adjust Farooq et al. (2013) to work using our mechanism in-
formation. For floating point units, it should be possible to work on instruction reordering
when these are a block’s problem, as compiler usually gives priority to memory instruc-
tions when ordering them. Additionally, value reuse and energy consumption research are
viable ways to use the base concept of the mechanism.

Second, the concept should be tested with different architectures, such as ARM and
MIPS, and configurations, varying core number and core complexity. The scheme shown
in this work should not be implemented in simple cores, but large cores used in hetero-
geneous systems should have improved performance with the memory controller options
shown here.

Third, there are still optimizations that can be done within the mechanism itself. Sta-
bilizing behavior can likely be improved, or perhaps skipped altogether. Devising a min-
imum number of stall cycles comparison to ensure that characterized blocks have a rel-
evant stall is also an interesting alternative. Finally, the cases in which the mechanism
degrades performance should also be studied, to enable controlling and shutting down the
mechanism action for such blocks.

65

REFERENCES

AFRAM, F.; ZENG, H.; GHOSE, K. A group-commit mechanism for ROB-based proces-
sors implementing the X86 ISA. In: HIGH PERFORMANCE COMPUTER ARCHITEC-
TURE (HPCA2013), 2013 IEEE 19TH INTERNATIONAL SYMPOSIUM ON. Anais. . .
[S.l.: s.n.], 2013. p.47–58.

ALVES, M. Increasing Energy Efficiency of Processor Caches via Line Usage Pre-
dictors. 2014. Tese (Doutorado em Ciência da Computação) — Universidade Federal do
Rio Grande do Sul.

ANSALONI, D. et al. Enabling modularity and re-use in dynamic program analysis tools
for the Java virtual machine. In: ECOOP 2013–Object-Oriented Programming. [S.l.]:
Springer, 2013. p.352–377.

CLARK, N. et al. Liquid SIMD: abstracting simd hardware using lightweight dynamic
mapping. In: HIGH PERFORMANCE COMPUTER ARCHITECTURE, 2007. HPCA
2007. IEEE 13TH INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2007.
p.216–227.

COCKE, J. Global common subexpression elimination. SIGPLAN Not., New York, NY,
USA, v.5, n.7, p.20–24, July 1970.

CRISTAL, A. et al. Out-of-order commit processors. In: SOFTWARE, IEE
PROCEEDINGS-. Anais. . . [S.l.: s.n.], 2004. p.48–59.

FAROOQ, M. U.; KHUBAIB, K.; JOHN, L. K. Store-Load-Branch (SLB) predictor: a
compiler assisted branch prediction for data dependent branches. In: HIGH PERFOR-
MANCE COMPUTER ARCHITECTURE (HPCA2013), 2013 IEEE 19TH INTERNA-
TIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2013. p.59–70.

GHOSE, S.; LEE, H.; MARTÍNEZ, J. F. Improving Memory Scheduling via Processor-
side Load Criticality Information. In: ANNUAL INTERNATIONAL SYMPOSIUM ON
COMPUTER ARCHITECTURE, 40., New York, NY, USA. Proceedings. . . ACM, 2013.
p.84–95. (ISCA ’13).

HAMERLY, G. et al. Simpoint 3.0: faster and more flexible program phase analysis.
Journal of Instruction Level Parallelism, [S.l.], v.7, n.4, p.1–28, 2005.

HUANG, J.; LILJA, D. Extending value reuse to basic blocks with compiler support.
Computers, IEEE Transactions on, [S.l.], v.49, n.4, p.331–347, 2000.

66

HUR, I.; LIN, C. Memory prefetching using adaptive stream detection. In: ANNUAL
IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 39. Pro-
ceedings. . . [S.l.: s.n.], 2006. p.397–408.

JALEEL, A. et al. High performance cache replacement using re-reference interval pre-
diction (RRIP). In: ACM SIGARCH COMPUTER ARCHITECTURE NEWS. Anais. . .
[S.l.: s.n.], 2010. v.38, n.3, p.60–71.

KAMBADUR, M.; TANG, K.; KIM, M. A. Harmony: collection and analysis of parallel
block vectors. In: ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER AR-
CHITECTURE, 39., Washington, DC, USA. Proceedings. . . IEEE Computer Society,
2012. p.452–463. (ISCA ’12).

LATTNER, C.; ADVE, V. LLVM: a compilation framework for lifelong program analysis
& transformation. In: CODE GENERATION AND OPTIMIZATION, 2004. CGO 2004.
INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2004. p.75–86.

LEE, C. J. et al. Prefetch-aware DRAM controllers. In: IEEE/ACM INTERNATIONAL
SYMPOSIUM ON MICROARCHITECTURE, 41. Proceedings. . . [S.l.: s.n.], 2008.
p.200–209.

LUK, C.-K. et al. Pin: building customized program analysis tools with dynamic instru-
mentation. In: ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE
DESIGN AND IMPLEMENTATION, 2005., New York, NY, USA. Proceedings. . .
ACM, 2005. p.190–200. (PLDI ’05).

PADMANABHA, S. et al. Trace based phase prediction for tightly-coupled heteroge-
neous cores. In: ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MI-
CROARCHITECTURE, 46. Proceedings. . . [S.l.: s.n.], 2013. p.445–456.

PANAIT, V.-M.; SASTURKAR, A.; WONG, W.-F. Static identification of delinquent
loads. In: CODE GENERATION AND OPTIMIZATION, 2004. CGO 2004. INTERNA-
TIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2004. p.303–314.

PATEL, S. J.; EVERS, M.; PATT, Y. N. Improving trace cache effectiveness with branch
promotion and trace packing. ACM SIGARCH Computer Architecture News, [S.l.],
v.26, n.3, p.262–271, 1998.

PATEL, S. J.; LUMETTA, S. S. rePLay: a hardware framework for dynamic optimization.
Computers, IEEE Transactions on, [S.l.], v.50, n.6, p.590–608, 2001.

PATIL, H. et al. Pinpointing Representative Portions of Large Intel Itanium Programs with
Dynamic Instrumentation. In: MICROARCHITECTURE, 2004. MICRO-37 2004. 37TH
INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2004. p.81–92.

PETER GREENHALGH, A. Big. LITTLE Processing with ARM CortexTM-A15 &
Cortex-A7. [S.l.]: Sep, 2011.

PILLA, M. L. et al. Value predictors for reuse through speculation on traces. In: COM-
PUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING, 2004. SBAC-
PAD 2004. 16TH SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2004. p.48–55.

67

RATANAWORABHAN, P.; BURTSCHER, M. Program phase detection based on critical
basic block transitions. In: PERFORMANCE ANALYSIS OF SYSTEMS AND SOFT-
WARE, 2008. ISPASS 2008. IEEE INTERNATIONAL SYMPOSIUM ON. Anais. . .
[S.l.: s.n.], 2008. p.11–21.

REINDERS, J. VTune performance analyzer essentials. [S.l.]: Intel Press, 2005.

RIXNER, S. et al. Memory access scheduling. [S.l.]: ACM, 2000. v.28, n.2.

ROTENBERG, E.; BENNETT, S.; SMITH, J. E. Trace cache: a low latency approach to
high bandwidth instruction fetching. In: ACM/IEEE INTERNATIONAL SYMPOSIUM
ON MICROARCHITECTURE, 29. Proceedings. . . [S.l.: s.n.], 1996. p.24–35.

SHERWOOD, T.; PERELMAN, E.; CALDER, B. Basic block distribution analysis to
find periodic behavior and simulation points in applications. In: PARALLEL ARCHI-
TECTURES AND COMPILATION TECHNIQUES, 2001. PROCEEDINGS. 2001 IN-
TERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2001. p.3–14.

SRINATH, S. et al. Feedback directed prefetching: improving the performance and
bandwidth-efficiency of hardware prefetchers. In: HIGH PERFORMANCE COMPUTER
ARCHITECTURE, 2007. HPCA 2007. IEEE 13TH INTERNATIONAL SYMPOSIUM
ON. Anais. . . [S.l.: s.n.], 2007. p.63–74.

WALL, D. W. WRL Research Report 93/6. [S.l.]: DEC Western Research Laborator,
1993.

YUFFE, M. et al. A fully integrated multi-CPU, GPU and memory controller 32nm pro-
cessor. In: SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECHNICAL PA-
PERS (ISSCC). Anais. . . [S.l.: s.n.], 2011.

ZHUANG, X.; LEE, H.-H. Reducing cache pollution via dynamic data prefetch filtering.
Computers, IEEE Transactions on, [S.l.], v.56, n.1, p.18–31, 2007.

68

69

9 APPENDIX - PORTUGUESE SUMMARY

In this chapter, we present a summary of this master thesis in the portuguese language,
as required by the PPGC Graduate Program in Computing. Neste capítulo, é apresentado
um resumo desta dissertação de mestrado na língua portuguesa, como requerido pelo
Programa de Pós-Graduação em Computação.

9.1 Introdução

A caracterização de blocos básicos é uma técnica importante e recorrente, usada
para vários tipos de otimizações automáticas. Ferramentas em software, tal como o
Vtune (REINDERS, 2005), permitem análises manuais para detectar oportunidades de
ganhos de desempenho, tal como reescrita de código para evitar uma alta taxa de falta
de dados nas caches ou uma alta taxa de predições de desvio erradas. A granularidade
de blocos básicos é especialmente útil (COCKE, 1970) pois blocos básicos representam
porções de código que sempre acabam em desvios. Portanto, o comportamento e as fases
de um programa são definidos pela seqüência de blocos básicos executados.

No entanto, não existe nenhum uso claro de blocos básicos em computadores de
propósito geral atuais (YUFFE et al., 2011). O único uso realizado poderia ser con-
siderado o da cache de traços (ROTENBERG; BENNETT; SMITH, 1996), e nenhuma
caracterização é feita em cima do que é armazenado. Os projetos de computadores de
propósitos gerais em geral apenas coletam informações no nível de instruções. Embora
vários artigos científicos usem análise no nível de bloco, a maioria o faz através do uso de
software, mesmo para adaptações de hardware (PANAIT; SASTURKAR; WONG, 2004;
RATANAWORABHAN; BURTSCHER, 2008). Uma das raras técnicas que faz uso de
blocos básicos no nível de hardware foi o projeto rePlay (PATEL; LUMETTA, 2001).
Neste trabalho, o código é analisado para realização de otimizações durante execução e
armazenamento em uma cache de traços para execuções futuras, embora nenhum perfila-
mento de gargalos de execução seja feito.

Nesta dissertação de mestrado, propomos um criador de perfis de blocos básicos em
hardware, em inglês Block-level Architectural Profiler(BLAP). Tal mecanismo caracter-
iza blocos básicos de acordo com os atrasos mais relevantes que ocorreram por bloco,
permitindo melhoria de desempenho do bloco em execuções futuras. O BLAP tem várias
vantagens em relação a outros mecanismos. Devido ao uso de blocos básicos, ele se
adapta automaticamente à mudanças de fase do programa, por estar fortemente ligado
aos blocos de instruções sendo executados. Ele também precisa de menor espaço de ar-
mazenamento que mecanismos que usam granularidade de instruções, pois ele agrega as
informações dos atrasos apenas com um valor relevante. É possível usar o Branch Target
Buffer (BTB) para armazenar eficientemente essa informação adicional, já que o BTB

70

possui os endereços iniciais de cada bloco. O BLAP também é capaz de detectar difer-
entes tipos de problemas que influenciam no desempenho de um bloco, portanto podendo
providenciar informações para vários mecanismos diferentes.

Para demonstrar o potencial do BLAP, é explorado o uso de sua informação para pro-
jetar um novo controlador de memória, capaz de usar esta informação para diferenciar
leituras de diferentes prioridades e descartar prefetches. Comparado com a informação
de granularidade de instrução usada por Ghose et al. (2013) e Lee et al. (2008), o perfil
de nosso mecanismo pode providenciar melhor desempenho com mínima área adicional
em hardware. Adicionalmente, a implementação básica do BLAP pode ser estendida para
fornecer informações e mais detalhes para outros mecanismos, mantendo praticamente o
mesmo custo em hardware. Ao nosso conhecimento, nenhuma pesquisa prévia criou per-
fis de blocos básicos em hardware. As principais contribuições desta tese são as seguintes:
Mecanismo de Caracterização: É proposto o BLAP, um mecanismo de detecção efi-
ciente capaz de caracterizar aplicações no nível de blocos básicos durante a sua execução.

Perfil Eficiente: o BLAP requer espaço de armazenamento negligível para manter infor-
mações sobre as características relevantes de cada bloco básico. Tal mecanismo pode ser
implementado estendendo o BTB com alguns bits por entrada.
Melhoria de Desempenho: o BLAP foi integrado com mecanismos que melhoram o
desempenho da memória ao adaptá-los para usarem a informação do perfil ou ao criar um
novo mecanismo que reproduzisse o conceito usando o BLAP.

O objetivo final deste trabalho é propor e estudar um mecanismo em hardware ca-
paz de detectar os blocos que compõe um programa e caracterizá-los com as instruções
responsáveis pelas maiores latências no bloco. Tal caracterização deve tornar possível a
melhoria de desempenho através do uso da informação por parte de outros mecanismos,
tal como prefetchers ou políticas de prioridade.

9.2 Detecção de Blocos Básicos

Um bloco básico é uma porção de código com um único ponto de entrada e um único
ponto de saída. Portanto, todo bloco acaba com uma instrução de desvio ou com a in-
strução anterior ao alvo de uma instrução de desvio. Isto permite com que mecanismos
baseados em blocos acompanhem a fase de um programa automaticamente, já que uma
fase é caracterizada pelos blocos básicos usados (RATANAWORABHAN; BURTSCHER,
2008). No entanto, uma implementação eficiente em hardware deve ser relaxada per-
mitindo múltiplos pontos de entrada, já que é impossível detectar que instruções são alvos
de desvios sem grandes mudanças na funcionalidade do conjunto de instruções da arquite-
tura.

Um fenômeno que deve ser considerado ao estender o BTB é que tal estrutura ape-
nas armazena informação para blocos que começam após um desvio tomado. Dado que
o comportamento a ser explorado é normalmente repetitivo, isto normalmente não é um
problema, já que o formato do código de loops fará com que blocos básicos comecem
após desvios tomados. Já que não podemos reconhecer quais instruções são alvos de
desvios, estamos quebrando a definição de bloco básico, pois iremos gerar sobreposição
de código analisado entre blocos. Tais blocos irão agregar comportamento de todas in-
struções dos poucos blocos básicos reais e menores contidos dentro deles, e portanto não
serão caracterizados separadamente. Porém, tais blocos básicos reais serão caracterizados
corretamente assim que um desvio tomado mudar o fluxo de execução para eles, obtendo

71

assim seu endereço de começo real. Como blocos menores representam condições dentro
de loops na maior parte dos casos, eles serão executados vezes o suficiente para serem
caracterizados. Se não forem, então eles provavelmente não são relevantes.

Para detecção de características, podemos utilizar vários métodos. Atualmente, pro-
cessadores da Intel vem com contadores de hardware disponíveis para perfilamento e
análise de desempenho de código, usados por ferramentas tais como Vtune (REINDERS,
2005). Tais contadores mantém informações sobre vários eventos durante a execução do
processador, tais como faltas de dados nas caches, número de operações por tipo, ao ponto
de detalhar transações nos barramentos. Tais estatísticas intuitivamente correlacionam-se
com o desempenho do sistema, e podem ser usadas para providenciar idéias em relação
a motivos para desempenho sub-ótimo de um código. Porém, estatísticas não podem ser
diretamente comparadas à latências, pois "um acesso à cache L2" pode significar 7 ou
15 ciclos, dependendo do estado de requisições pendentes nas caches. Adicionalmente,
estatísticas não ocorrem em ciclos específicos, gerando dificuldade em relação à estab-
elecer quais estatísticas pertencem a quais blocos em um processador fora de ordem. É
possível que um acesso a memória seja feito em curto tempo e assim se encaixe em um
bloco vários blocos à frente do seu bloco original.

Outro método de gerar características é observar o número de ciclos que instruções
atrasam outras devido a uma dependência. Este é um método direto de observar quais
instruções são mais relevantes em cada bloco básico, mas não necessariamente confiável
devido à irrelevância de instruções que não estão no caminho crítico. Adicionalmente, a
complexidade de hardware é enorme para obter latências para todos registradores.

Em geral, obter informações detalhadas de execução eficientemente é um problema
complexo. Como almejamos eficiência, temos três necessidades em relação à detecção de
desempenho de instruções. Primeiro, uma estatística deve demonstrar relevância, ou seja,
um impacto direto no desempenho do código. Embora faltas de dados nas caches sejam
um bom indicador de problemas com a memória, arquiteturas modernas são normalmente
tolerantes a falhas nos níveis mais altos devido à alta capacidade de ILP, o qual provê
computação o suficiente para mascarar tal latência. Isto é, para a maioria dos casos, faltas
de dado na cache de dados de nível mais alto não atrasam o processador. E latências de
instruções específicas nem sempre estão no caminho crítico de execução do processador,
tornando-as muitas vezes inúteis.

Segundo, eventos diferentes em hardware necessitam comparação direta. Quando uma
falta de dados ocorre em uma cache, sabemos o nível que responderá, mas não podemos
medir com precisão a latência devido à variações de carga nas estruturas de MSHR das
caches. E mesmo uma falta de dados no último nível de cache poderia ter sua latência
escondida por um desvio previsto erroneamente. Se for desejado achar qual a latência
mais relevante de um bloco ou comparar ela a um valor fixo, não é possível fazê-lo.

Terceiro, são necessárias características com local determinado e em ordem para
obtenção de dados. Caso as estatísticas não possam ser alocadas a um determinado trecho
de código com simplicidade, torna-se muito custoso gerar mecanismos que reordenem
tais dados para encaixá-los nos blocos básicos apropriados. Se isto não for feito, ocorre a
descaracterização de blocos e poluição de dados, gerando estatísticas que não tem credi-
bilidade para serem usadas.

Para sobrepor tais desafios, optou-se por explorar o estágio de graduação do proces-
sador. Instruções apenas causam gargalos visíveis ou atrasam o processador caso não
possam ser graduadas. Como o estágio de graduação é feito em ordem, isto acarreta em
parar todo o pipeline do processador. Assim, resolve-se o primeiro problema. Como

72

observa-se o número de ciclos que cada instrução parou o estágio de graduação, temos
informação que pode ser comparada diretamente entre as instruções de diferentes tipos,
resolvendo o segundo problema. Finalmente, devido às instruções serem graduadas em
ordem, podemos obter estes dados em ordem facilitando a delimitação de blocos básicos,
resolvendo o terceiro problema.

9.3 BLAP: Proposta de Detecção de Blocos Básicos

Nesta Seção, é apresentada a implementação do BLAP. O mecanismo pode ser divi-
dido em 3 partes: detecção, armazenamento e rotulamento.

9.3.1 Detecção

Com um estágio de graduação em ordem (CRISTAL et al., 2004), pode-se observar
quais instruções são desvios para terminar blocos e delimitar a análise de blocos. Para ob-
servar as latências das instruções e caracterizar um bloco utilizam-se quatro registradores:
MaiorLat (armazena qual maior latência achada até agora), Gargalo (armazena qual tipo
de gargalo encontrado para a maior latência), Contador (conta ciclos em que nenhuma
instrução foi graduada, ou seja, que a instrução no topo da fila de instruções bloqueou o
estágio) e EndInicial (marca o endereço do desvio que levou a este bloco).

Em todo ciclo, observa-se se a instrução no topo da fila está pronta para ser gradu-
ada. Sempre que nenhuma instrução é graduada em um ciclo, incrementa-se o registrador
Contador.

Caso uma instrução estiver pronta para ser graduada, deve-se observar se ela é um
desvio, o que sinaliza o fim de um bloco. Se ela não for 1 desvio, também devemos
observar apenas a primeira instrução graduada em cada ciclo, pois apenas ela pode ter
bloqueado a graduação em ciclos anteriores. Outras instruções que não são desvios no
mesmo ciclo podem ser ignoradas.

Caso seja a primeira instrução, o registrador Contador é comparado com o registrador
MaiorLat, para observar se a instrução teve a maior latência detectada no bloco até agora.
Se, e somente se, Contador for maior, atualiza-se o registrador Gargalo com o tipo da
instrução no topo da fila e MaiorLat com o valor atual de Contador. Em qualquer caso,
reseta-se o valor de Contador para iniciar a contagem de ciclos da próxima instrução a ser
graduada no próximo ciclo.

Caso uma instrução seja um desvio, deve-se armazenar a informação do bloco. Primeira-
mente, é observado se o desvio foi corretamente previsto, pois desvios não atrasam direta-
mente o estágio de graduação, sendo necessária uma forma indireta de comparar o atraso
destas instruções com as outras. Se o desvio não foi corretamente previsto, muda-se o
valor do registrador Gargalo do bloco para Brch (tipo usado para desvios).

Após esta possível atualização do registrador, armazena-se o valor de Gargalo em um
buffer, que escreverá o valor no BTB, usando o valor do registrador EndInicial como
índice (o qual também necessita de um buffer para realizar-se um pipeline da escrita).
Este registrador EndInicial então recebe o valor da instrução de desvio graduada para ser
futuramente usado como índice para o próximo bloco. Como este é o fim de um bloco,
todos os outros registradores, MaiorLat, Contador e Gargalo são resetados, para capturar
o comportamento de um novo bloco.

73

9.3.2 Armazenamento

Para uso posterior dos bits de caracterização, é necessário armazená-los no BTB. De
acordo com os problemas recorrentes em benchmarks, foram usados 2 bits para caracteri-
zar cada bloco, expressando quatro características (None, Brch, Mem, FP).

9.3.3 Rotulamento

Para usar a informação efetivamente, foi criado um método genérico que permite a
implementação simples de múltiplos mecanismos. Quando um desvio acessa o BTB no
estágio de busca de instruções, o BTB é acessado para obter um possível endereço alvo,
o qual possui uma informação de bloco relacionada. Então, ao acessar o BTB, carrega-se
também esta informação para um novo registrador no estágio, chamado de Característica
do Bloco.

A informação deste registrador é copiada em um novo campo de 2 bits em todas
entradas de instruções em todos buffers do processador. Assim, qualquer mecanismo pode
facilmente obter a característica de um bloco para observar o que pode ser melhorado nele.

9.3.4 Implicações no caminho Crítico

Todo o mecanismo exige hardware adicional, mas a implementação garante nenhuma
implicação no caminho crítico.

Existe um caso específico que deve ser tratado pois é possível dois desvios grad-
uarem em um mesmo ciclo de execução. Isto significa que o bloco iniciado pelo primeiro
desvio do ciclo acaba no mesmo ciclo, ou seja, não tem atraso algum em suas instruções.
Portanto, agregam0se as informações com o segundo bloco, ignorando os desvios sub-
sequentes e tratando apenas o primeiro desvio achado no ciclo para delimitar blocos.
Através de experimentos, é possível confirmar que a probabilidade de ocorrência de 2
desvios no mesmo ciclo é insignificante, acontecendo em menos de 1% dos desvios grad-
uados.

Adicionalmente, armazenar a informação no BTB no mesmo ciclo poderia requerer
um ciclo mais longo. Este é o motivo para o uso de um buffer, pois assim cria-se um
pipeline para escrita da informação, dividindo o tempo entre os cálculos do mecanismo e
o acesso real ao BTB. Também evita-se assim a necessidade de criação de uma nova porta
para o BTB, pois o buffer pode esperar a porta estar desocupada por escritas oriundas de
desvios no estágio de execução para assim escrever a informação referente ao mecanismo
BLAP. Tal estágio extra não afeta o desempenho do processador, pois não aumenta o
tempo de ciclo e não entra no caminho crítico de instruções (toda esta informação já foi
graduada).

De todo resto, apenas são adicionados bits junto às instruções pelo caminho do proces-
sador, nenhuma lógica a mais é necessária para o funcionamento básico do mecanismo.

9.3.5 Custos de Hardware

Para implementação do mecanismo, são necessários 2142 bytes de armazenamento,
três multiplexadores de 2 entradas de 2 bits, um multiplexador de 2 entradas de 8 bits,
um somador de 8 bits e um comparador de 8 bits. Portanto, a área adicional de hardware
por unidade de processamento é estimada em 206164 transistores. Na arquitetura Sandy
Bridge, a qual possui 8 cores, isto significa 1649216 transistores. Tal arquitetura possui
mais de 2.27 bilhões de transistores, portanto o mecanismo possui área adicional menor
que 0.08% da área total.

74

9.4 Resultados

Para avaliar a caracterização do mecanismo, foram implementados dois trabalhos cor-
relatos capazes de serem aproximados para usarem a informação. Como ambos mecan-
ismos melhoram o desempenho da memória, foram usados benchmarks paralelos para
exercício de pressão sobre a mesma.

O primeiro mecanismo é o preditor de criticalidade binário (CBP), criado e demon-
strado por Ghose et al. (2013). O segundo mecanismo é o controlador de memória con-
sciente de prefetches (PADC), criado e demonstrado por Lee et al. (2008).

O mecanismo CBP dá prioridade a instruções de load que atrasam o estágio de grad-
uação. Como o mecanismo só mantém informação de loads, ele usa apenas uma tabela
em SRAM sem tags de 64 bits por cores, a qual é resetada a cada cem mil ciclos para se
adaptar à diferentes fases do programa. Tais loads armazenados na tabela são priorizados
no controlador de memória.

O mecanismo PADC estende todas linhas de cache em 2 bits para calcular informações
de poluição gerada por prefetches. Ao medir a precisão de prefetches a cada cem mil cic-
los, o mecanismo decide se deve dar prioridades iguais para prefetches e requisições por
demanda, ou se deve priorizar a demanda e apagar requisições de prefetch que demoram
demais dada a sua poluição.

Criamos adaptações para ambos mecanismos. BLAP-CBP utiliza o mesmo contro-
lador de memória do CBP, mas utiliza a informação de pacotes com valor de gargalo
Mem do BLAP. Estas instruções são consideradas críticas no controlador de memória.
Assim, a prioridade dos acessos se torna:

1. Prioridade a requisições críticas que são acertos na linha aberta de memória;

2. Prioridade a requisições normais que são acertos na linha aberta de memória;

3. Prioridade a requisições críticas que não são acertos na linha aberta de memória;;

4. Prioridade a requisições normais que não são acertos na linha aberta de memória;.

O BLAP-PADC-8L repassa a informação dos blocos para prefetches gerados pelos
acessos à memória pertencentes a cada bloco. Para emular o conceito de remoção de req-
uisições de prefetches, o BLAP-PADC-8L remove requisições de prefetches que demoram
mais que a espera média de requisições feitas por demanda. Como agora existem as in-
formações de quais requisições por demanda são críticas, quais prefetches são críticos, e
se o endereço requisitado pertence à linha aberta da memória, faz-se uso de 23 níveis de
prioridade. Os 8 níveis são:

1. Prioridade para requisições por demanda críticas na linha de memória aberta;

2. Prioridade para requisições de prefetch críticas na linha de memória aberta;

3. Prioridade para requisições por demanda normais na linha de memória aberta;

4. Prioridade para requisições de prefetch normais na linha de memória aberta;

5. Prioridade para requisições por demanda críticas em outra linha;

6. Prioridade para requisições de prefetch críticas em outra linha;

7. Prioridade para requisições por demanda normais em outra linha;

75

8. Prioridade para requisições de prefetch normais em outra linha;

Os resultados com os mecanismos apontaram médias de ganho de desempenho em
relação à arquitetura base de 1.89% para o CBP, 0.80% para o BLAP-CBP, 3.10% para o
PADC e 3.9% para o BLAP-PADC-8L, demonstrando que a granularidade de bloco básico
é de fato tão útil quanto a granularidade de instruções para caracterizar acessos à memória.

Também foi observado no Capítulo 7 que o mecanismo escala para latências e pressões
maiores na memória principal.

9.5 Conclusões

Nesta dissertação de mestrado foi apresentado o BLAP, um mecanismo capaz de car-
acterizar blocos para informar outros mecanismos sobre o comportamento de blocos. O
mecanismo se baseia na ideia de que blocos podem ser delimitados no estágio de grad-
uação do processador e caracterizados através da latência de suas instruções neste es-
tado. Para demonstração de utilidade do conceito, foram implementadas duas técnicas
do estado da arte, com as quais comparamos o desempenho quando usando suas próprias
informações e implementações contra o uso de informações do mecanismo BLAP.

Em geral, o mecanismo desenvolvido junto com o BLAP demonstrou o melhor ganho
de desempenho usando uma área de hardware reduzida quando comparado com a técnica
PADC (LEE et al., 2008). A média de desempenho foi de 3.9%, ultrapassando 10% nos
benchmarks que realmente dependiam de memória.

A informação providenciada pelo mecanismo demonstrou várias vantagens, como a
progressão automática junto às fases de programas, menor área de armazenamento e var-
iedade de caracterização. O uso do BTB demonstrou-se como forma eficiente de ar-
mazenar características referentes a blocos, devido à sua função original. A agregação
de características em uma única característica permitiu com que a informação adicionada
fosse mínima, embora no futuro tal informação possa ser expandida para abranger várias
características de um único bloco.

Esta tese gerou duas publicações distintas: "Influência das Características de Proces-
sadores e Aplicações no Nível de Blocos Básicos" no WSCAD 2013 (Workshop de Sis-
temas Computacionais de Alto Desempenho), e "Profiling and Reducing Micro-Architecture
Bottlenecks at the Hardware Level" no SBAC 2014.

Para o futuro, espera-se utilizar as informações de outras características para obtenção
de melhorias de desempenho. Objetiva-se também melhorar o próprio mecanismo ao usar
latências mínimas para filtrar quais blocos são relevantes e assim filtrar blocos que sofrem
degradação de desempenho devido ao mecanismo.

	1 Introduction
	1.1 Introduction
	1.2 Contributions
	1.3 Organization

	2 Background
	2.1 Basic Block and Relaxed Blocks
	2.2 Basic Block Characteristics and Performance
	2.3 Correlation between Characteristics and Performance

	3 Analysis of the State-of-the-Art
	3.1 Code Behavior Detection and Use
	3.2 Basic Block and Phases Use Cases
	3.3 Hardware Design Opportunities
	3.4 Summary of the State of Art

	4 Block Characterization
	4.1 Introduction
	4.2 Hardware Counter Classification
	4.3 Register Dependence Latency Classification
	4.4 Stall Commit Classification

	5 Block Level Architectural Profiler
	5.1 Behavior Detection
	5.2 Behavior Storage
	5.3 Behavior Labeling
	5.4 Critical Path Implications
	5.4.1 Profile Stability
	5.4.2 Hardware Costs

	5.5 Evaluating BLAP Precision

	6 Evaluation Methodology
	6.1 Simulation Environment and Metrics
	6.2 Evaluated Memory Controller Policies

	7 Experimental Results
	7.1 Mechanism Exploration
	7.2 Design Space Exploration
	7.2.1 Memory Latency
	7.2.2 Cores Number
	7.2.3 Cache Size

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Work

	References
	9 Appendix - Portuguese Summary
	9.1 Introdução
	9.2 Detecção de Blocos Básicos
	9.3 BLAP: Proposta de Detecção de Blocos Básicos
	9.3.1 Detecção
	9.3.2 Armazenamento
	9.3.3 Rotulamento
	9.3.4 Implicações no caminho Crítico
	9.3.5 Custos de Hardware

	9.4 Resultados
	9.5 Conclusões

