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Crossover exponents for the Potts model with quadratic symmetry breaking 
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The effect of quadratic symmetry breaking (QSB) on two representations for the Potts vectors in a 
continuum-field model are studied to two-loop order in renormalized perturbation theory in 
d=6-E dimensions, in extension of an earlier group-theoretical analysis by Wallace and Young. 
The explicit dependence of the crossover exponent <P that corresponds to QSB that destroys the 
equivalence between pairs of Potts vectors is obtained as a function of d and n for the p-state model 
with p = n + 1. It is shown that this exponent follows from the calculation of vertex functions in a 
representation dueto Wallace and Young, whereas a second crossover exponent ifj, that can be iden­
tified with the criticai exponent {3, and which corresponds to QSB that favors a single Potts vector 
against the others, follows from a calculation using the representation of the Potts vectors due to 
Priest and Lubensky. 

I. INTRODUCTION 

The study of the criticai properties of the p-state Potts 
model1 has already been of interest for some time.2 The 
model on a lattice with isotropic ferromagnetic nearest­
neighbor exchange interaction can be described by the 
Hamiltonian 

H= -J l: s<n-s<r'l, 
<<<·> 

( 1.1) 

where the classical "spins" s< rl can be in p states (orien­
tationsl given by the Potts vectors e a, a= 1,2, ... ,p, 
which define the vertices of an n-dimensional hyper­
tetrahedron, n =p -1, and satisfy the relations3 

p 
l": e;a=O, 
a=l 

f efet=pôij , 
a=l 

(1.2) 

The model has the discrete symmetry of the permutation 
group Sn +I· 4•5 

The relevance of symmetry-breaking perturbations for 
criticai phenomena is well known,6 and there is consider­
able interest in studying the effects of an anisotropic (in 
spin space) exchange interaction in the original lattice 
model. Wallace and Young4 (WY) showed by means of 
general group-theoretical arguments on the continuum 
field version7 of the Potts model that there are two cross­
over exponents associated with quadratic symmetry break­
ing (QSB) corresponding to the two nontrivial irreducible 
representations (n,1) and (n -1,2) of the group Sn+t· 
Combining this result with the tensorial structure of two­
point vertex functions with insertions of operators that 
correspond to these irreducible representations, together 
with scaling arguments, they predicted that one of the 
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crossover exponents takes the value <P = 1 in the limit 
n---+0, 8 to ali orders in perturbation theory, while the oth­
er exponent, ([>, must be equal to the criticai exponent f3 
for any n. Since the first crossover exponent does not 
seem to be related directly to other known exponents, the 
explicit dependence of </J(d,n) on d and on n requires a de­
tailed calculation by means of any of the momentum­
space renormalization-group (RG) procedures,9• 10 which 
was not done in Ref. 4. 

WY also showed that their results are independent of a 
choice for a representation of the vectors ea. Different 
representations amount to distinct orientations of the vec­
tors e a with respect to an orthogonal coordinate system 
in order-parameter space (i.e., the components of the 
fields </J; ). Two representations that are of particular 
physical interest have been used in the past. One, intro­
duced by Priest and Lubensky (PL), 11 is essentially the 
same (up to a normalizing factor) as that of Zia and Wal­
lace.7 The other is the WY representation which applies 
to the Potts model with p =2m states, m being an in­
teger.4 For these particular values of p the hypertetrahe­
dron defined by the Potts vectors can be embedded into a 
hypercube with the vectors e a going from the center to 
altemate vertices and the coordinate axes being perpendic­
ular to the faces, as shown in Fig. 1 for p=4. 

These two representations are equivalent for the sym­
metric theory. Indeed, the only properties of e a needed 
in that case are the relations given by Eq. (1.2). In other 
words, the symmetric theory is invariant under rotations 
of the coordinates which transform one representation 
into the other. Since crossover exponents correspond to 
QSB about the symmetric theory, it is reasonable to ex­
pect that they are independent of the representation, in ac­
cordance with the results of WY. 

An important question that was not considered in the 
work of Ref. 4 is how to proceed with a practical calcula­
tion of a crossover exponent that corresponds to a specific 
break in quadratic symmetry. The main purpose of our 
work is to study the effects of QSB on the two representa-
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(1,-1,-1) 

FIO. 1. Representation of the Poits vectors e« for the 4-state 
model with (a) the field components cfJ1 along the x1 axes, 
i= 1,2,3, in the Wallace and Young representation and (b) the 
component cfJ1 along the x; axis and the others along mutually 
orthogonal directions, not drawn for clarity, in the representa­
tion of Priest and Lubensky. 

tions for the Potts model and to relate the results to the 
group-theoretical analysis. Since there is a one-to-one 
correspondence between QSB and an irreducible represen­
tation of Sn + " and on the other hand between the latter 
and a crossover exponent, one can relate either cfJ or (fi to a 
particular break in quadratic symmetry. However, to cal­
culate cfJ or (fi one needs a choice for the representation of 
the ê a, and it will be shown here that with diagonal QSB 
the crossover exponent cfJ is obtained if the vertex func­
tions with appropriate insertion are calculated in the WY 
representation, while the exponent 'ifi=/3 follows from a 
calculation in the PL representation. The exact results of 
WY can then be used to assert that the expressions for 
t/J(d,n) and {fi(d,n) hold for ali n. 

The RG approach used here consists of renormalized 
perturbation theory with dimensional regularization and 
minimal subtraction of poles, to,l2 to two-loop order in 
d = 6-E dimensions. In Sec. li we introduce the relevant 
vertex functions with insertions that correspond to QSB in 
the continuum field Potts model and discuss the connec­
tion between each of the representations for the Potts vec­
tors and a specific break in quadratic symmetry. The 
crossover exponents are obtained from the renormaliza­
tion functions in Sec. III and the results are discussed and 
related to the group-theoretical arguments in Sec. IV. 

11. VERTEX FUNCTIONS AND 
SYMMETRY BREAKING 

In the continuum cfJ3-field theory corresponding to Eq. 
(1.1) the bare effective Hamiltonian becomes, in a stan­
dard way,3 

áY'o= J ddx [+mÕcfJ2 +i-(Vc/J)2 

+ ;!g3o ~ diikt/Jit/Jit/Jk+O(t/J4 )], (2.1) 
l,j,k 

where cfJ is a real field with components c/J1, i= 1 ,2, ... , n, 
such that n =p -1, m 0 is the bare mass, and the tensorial 
coefficients 

d .J... a a a 
lik = 2 e; e1 ek 

a=l 

(2.2) 

yield the invariance of the trilinear term under the group 
Sn + 1• The quartic term, which is necessary to stabilize 
the theory, will not be needed here since it is irrelevant in 
the disordered phase to which the present work is restrict­
ed under a RG transformation in d = 6- E dimensions. 
We also restrict the present work to a single trilinear cou­
pling, g 30 , although recent results have shown that the 
RG procedure generates trilinear symmetry breaking even 
for vanishingly small QSB, 13 and that this behavior is 
enhanced in the presence of a finite break in quadratic 
symmetry.14 However, the results reported here should 
still correspond to the usual physical realizations of the 3-
and 4-state Potts model. 15 

To study the crossover induced by QSB we follow ear­
lier works, adding to Eq. (2.1) an anisotropy term16 

(2.3) 

that favors the ordering into m "longitudinal" com­
ponents if g >O, with 

) 1 2 2 B(x =-[(n -m)t/JL(x)-mt/Jr(x)], 
n 

where 
m n 

(2.4) 

c/JI(x)= ~ t/Jt(x), c/J~(x)= ~ c/J;(x) (2.5) 
1=1 i=m+l 

and 

(2.6) 

For simplicity, we restrict ourselves in the following to 
m = 1. The effect of JY8 is to add a "mass" term to the 
remaining ( n -1 ) transverse components. 

The bare one-particle irreducible (IPI) two-point longi­
tudinal vertex function with one B insertion can then be 
written as 

r (2) ( > r(2) ( > 1 r(2,1)( > 11B Uo = 11 1 Uo -- 11 Uo , n (2.7) 

in accordance with Eq. (2.4) for m= 1, where 
u0 =:K-~12g30 is the bare dimensionless coupling constant 
in which K is an arbitrary momentum-scale parameter, 
and r~1~"r~1' 1 ) are the IPI two-point vertex functions 
with one c/JT insertion anda full cfJ2 insertion, respectively. 
lt can also be seen that Eq. (2.7) is the two-point vertex 
function with an insertion of the operator ! t/JI} 
=t/JI -c/J2 In belonging to the irreducible representation 
(n -1,2) of WY. While r~1' 1 l is just the r~1 1 l of the 
symmetric theory which is independent of the representa­
tion for the vectors -e a, the vertex function r~1~1 is repre­
sentation dependent with the explicit dependence needed 
below.4 

The vertex functions may be formally expanded as 
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r\~· 0(uo)= 1+C1u~+C2uÓ, 

r~~~~(uo)=1+Diu~+D2uÓ, 

(2J n -1 2 4) ruB(uo)=--(l+Fiuo+F2uo , 
n 

where 

(2.8) 

(2.9) 

The coefficients Ci can be taken from Amit's work,3 

while the Di are given by the i-loop diagrams shown in 
Fig. 2. The jth diagram of the ith loop yields a contribu­
tion Dii =DiiLli in which the tensorial coefficients Dii 
need to be calculated while the momentum-space integrais 
Lii• to two-loop order, can also be taken from Ref. 3. For 
the former we obtain 

A A 3 
D21 =2D2s =(n + 1) [(n -3)duu +2(n + 1)] , 

(2.10) 
A 3 

D 22 =2(n + 1) (n -2)[duu -(n + 1 )] , 
A A 3 

D23 =2D24=(n + 1) (n -1 )[duu -(n + 1)] , 

where 

(2.11) 

now depends on the representation for the e/. 
In the WY representation, ei= ± 1 for any i, meaning 

a 

b c 

A 
d 

FIG. 2. One- and two-loop diagrams for the vertex functions 
r\1~, or r\1·') with a cfl~ insertion or a cfl2 insertion, respectively, 
in Eq. (2. 7). 

that none of the vectors is along one of the coordinate 
axis. In the PL representation, instead, 

O if a<i, 

[ p(p.-i} ]112x 1 ifa=i, ei= -
p -l +1 1 

if a>i, 
p-i 

(2.12) 

showing that the Vector e I has only one component dif­
ferent from zero lying along the i= 1 axis, as shown in 
Fig. 1 for p=4, and this vector is therefore parallel to the 
field component t/J 1• Clearly, both representations satisfy 
the relations (1.2). 

Equation (2.11) then yields 

dPL _ n 3+1 
1111- n 

in the PL representation, while 

(2.13) 

(2.14) 

in the representation of WY. With these we obtain expli­
cit expansion coefficients for ri~~ 1 and ri~k in each of the 
two representations. These coefficients contain poles in 
1/E and l!é which must be cancelled by appropriate re­
normalization functions considered below, in order to 
yield renormalized vertex functions. W e wish to point out 
first, however, that the two representations correspond to 
two different ways of implementing a break in quadratic 
symmetry. 

Since e 1 has only one nonzero component in the PL 
representation, QSB along a single field component that 
favors the i= 1 direction implies a breakdown of the 
equivalence between e I and ali other vectors. This break 
in quadratic symmetry corresponds to the irreducible rep­
resentation ( n, 1) found by WY. In the WY representa­
tion for th.e 4-state model, there are two pairs of vectors 
going to diagonally opposite corners of two faces of the 
cube that are perpendicular to the direction of one of the 
fields. Then QSB along . this direction, which can be 
chosen to be the i= 1 axis, still maintains the permutation 
symmetry within each pair but breaks the equivalence be­
tween pairs. This break of quadratic symmetry belongs to 
the irreducible representation ( n -1,2). In the example 
of Fig. 1 for the 4-state model, QSB in the PL representa­
tion corresponds thus to a break in the (111) direction, 
while in the WY representation the break is along the 
(100) direction. 

Renormalization of the bare two-point vertex function 
ri~k with a B insertion requires a field renormalization 
through the function Zif> anda renormalization of the in­
sertion through another ZB, together with coupling­
constant renormalization. Thus 

ri~kren(u)=Z,(u)ZB(u)r\~k(uo) 

=ZB(u)rgk<uo> , (2.15) 
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where the new ZB follows from combining the other Z's, 
and u is the dimensionless renormalized coupling con­
stant. Since the operator 2g of Eq. (2.3) is a perturbation 

about the symmetric theory, the expansion of u0 in 
powers of u may be taken from Amit's work, which 
yields3 

(2.16) 

The renormalization functions that make finite the vertex functions r\1k in each of the representations are then ob­
tained in expansion in powers of u as 

and 

These will be used in the next section to obtain the cross­
over · exponents. 

III. CROSSOVER EXPONENTS 

Defining 

(3.1) 

where {:3( u) is the Wilson beta function, 10 the crossover ex­
ponents follow from the fixed-point values y~:=yB(u*) 
through the relation 

rp=v(2-'17-r~>, (3.2) 

whose nontrivial root gives the fixed point 

(u*)2 2€ [1+ 125n 2-544n +671 €). 
(n +02(7-3n) 18(7-3n)2 

(3.6) 

Equations (3.1) and (3.5) then yield, with Eqs. (2.17) 
and (2.18), 

y~L= -(n +1)2u 2[(n -2) 

and 

+ 2~ (23n 2-99n + 118)(n + 1)2u 2] , 

(3.7) 

r }r' =(n + 1)2u 2[ 1 + 2~ (5n -47)(n + 1)2u 2] ' (3.8) 

and the crossover exponents that follow from Eqs. 
(3.2)-(3.4) are then given by 

rp= 1 __ n_E- n(n -1)(133n -187) é (3.9) 
1-3n 36(7-3n)3 ' 

(2.17) 

(2.18) 

obtained by integrating the RG equations for the vertex 
functions in standard way, 10• 16 in which v and '17 are the 
usual exponents for the correlation length and the criticai 
correlation function for the symmetric theory. These are 
given by3 

= (n-1) €[1+43n 2-171n+206€] (3.3) 
'17 3(7-3n) 9(7-3n)2 ' 

and 

v=.!.- 5(n -0 E ( 1 + 134n2-477n +589 E) (3.4) 
2 12(7-3n) 5X9(7-3n)2 ' 

while {:J(u) can be obtained from Eq. (2.16) as 

(3.5) 

in the WY representation, and 

iiJ= 1 __ 1_€- (n -1)(79n -61) €2 (3.l0) 
1 -3n 36(7 -3n)2 

in the representation of PL. We have identified here rpwY 
with the exponent rp of WY on the grounds that QSB in 
the WY representation corresponds to the group­
theoretical irreducible representation ( n -1,2) that is as­
sociated with rp, in accordance with the discussion in Sec. 
11 and With the work of Ref. 4. On the other hand, rpPL is 
identified with (i), the exponent associated with the irredu­
cible representation ( n, 1 ). It follows immediately that 
rp---+ 1 in the limit n -.O, while (i) becomes the known ex­
pression for the criticai exponent {:3, in accordance with 
Ref.4. 

Note that n =2m-1, where m is an integer, in the rep­
resentation of WY and, in principie, our calculation of 
rp=rpwy in Eq. (3.9) is restricted to these values of n. 
Here we may use, however, the group-theoretical argu­
ment of WY that demonstrates the independence of rp 
from the representation to assert that our result is valid 
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for ali n. Similarly, the identification of (fi with {3 should 
be valid for all n. 

Comparison of Eqs. (3.9) and (3.10) shows that cp=Cfi 
for n= 1, at least to second order in €. This, indeed, 
shou1d be expected since the underlying symmetry of the 
Potts model which is responsible for the existence of two 
crossover exponents disappears for n = 1 with the vanish­
ing of the trilinear tensorial coefficients, and the model 
becomes Gaussian without the quartic terms. 

IV. DISCUSSION AND CONCLUDING REMARKS 

We have obtained in a RG calculation two crossover ex­
ponents for the Potts mode1 that correspond to two dis­
tinct ways of breaking quadratic symmetry, in agreement 
with group-theoretical expectations. Although the ex­
ponent cp = 1 was already known in the percolation limit, 
the explicit form as a function of the number of states is, 
to our knowledge, a new result. In this context it is in­
teresting to note that Coniglio17 obtained the result cp= 1, 
independent of n and of d, for the dilute p-state Potts 
model as T ~o, but there is no obvious reason to believe 
that the criticai behavior of this mode1 is the same as that 

of the usual Potts model considered in the present work. 
Also, the outcome that Cfi=/3 is a check on the relation­

ship 

(4.1) 

used in Ref. 4, together with its scaling behavior, in which 
the two-point vertex rkl has an insertion of the operator 
dmijcpicpj and r<J) is the usual three-point vertex function. 
The operator dm;Jcp;cp1 has only off-diagonal terms U=!=j) 
in the WY representation, but Eq. (4.1) should not depend 
on whether dm;1cp;cp1 is diagonal or not. It can be shown 
that it becomes diagonal in the representation of PL and 
proportional to the B insertion of Sec. II, which is just the 
{ cpi} of Ref. 4. However, once the two-point vertex func­
tion has only diagonal insertions it is not clear to us, at 
least, that the derivation of the WY result yields two 
crossover exponents. The more explicit, although less 
general work, of the present paper shows more directly 
the existence of these two crossover exponents. 

To see that dm;1cp;cp1 a: { cpi} =cpt -cp2 In (summation 
over i andj) in the PL representation, note that Eq. (2.12) 
yields 

[ 
3 ] 112 -1 if i = j > k and permutations, 

diik= X (p-i-1) ifi=j=k, 
(p -i)(p -i+ 1) 

O otherwise . 
(4.2) 

With this it can easily be checked that 

d1JkcfJJcfJk=Vn(n +0 [cpt-! cp2 ], (4.3) 

and the vertex function r\~k, with li :=d;1kcfJJcpk> will be 
proportional to the r\1k of Eq. (2.7). The choice of i= 1 
is imposed by the fact that the tensorial coefficient d;ik of 
the quadratic insertion yields an overall factor d; 11 when 
introduced into diagrams for rW, and this factor is dif­
ferent from zero only if i= 1. 

Problems associated with the ground-state instability in 
continuum-field theories with trilinear interactions have 
been known for some time.18 Owing to the presence of in­
stanton solutions the perturbation expansion for the con­
tinuum ( n + 1 )-state Potts model may be meaningless for 
general n, and one may question the interest in calculating 
criticai exponents, for what is believed to be a second­
order transition since the presence of instantons seems to 
signal a first-order transition.19 So far it has only been 
shown that a meaningful perturbation expansion is ob­
tained for n=O, the percolation problem.20 Actually, the 
classical argument showing the presence of instanton so1u­
tions breaks down as n goes to zero and one cannot ex-

clude a crossover to a different instanton solution, at some 
low n, which still allows a second-order transition. This 
may be related to the instability of the large Q (order pa­
rameter) minimum found by Pytte21 for n < 1, excluding a 
first-order transition in this case. Following this author 
we assume that the ( n + 1 )-state Potts model has a 
second-order transition for n < 1 (Ref. 22) and our calcu­
lated crossover exponents apply to this case. They could 
also eventually describe the spinodal point (the lower sta­
bility limit of cp3 theory) for 1 < n <f, as suggested by 
Pytte,21 but that seems uncertain for the moment in the 
absence of a study of the effect of instanton solutions ap­
plied to this case. 

Our paper shows how to calculate the crossover ex­
ponents cp and (fi for other situations, e.g., with long-range 
isotropic23 or dipolar interactions, that will be published 
elsewhere. It should also be of use for crossover in ran­
dom Potts models that will be considered in future work. 
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