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From the atomic limit to a metal-insulator transition in the Hubbard model 
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Starting from the exact solution of the Hubbard model in the atomic limit, and treating the 
hopping term as a perturbation by means of a diagram technique, we discuss the electronic structure 
of the model in some simple approximations. We show that a metal-insulator transition is obtained 
above a criticai value of the on-site Coulomb interaction in a self-consistent evaluation of the one­
particle Green's function to one-loop order. A relationship with results in infinite dimensions is 
briefly discussed. 

I. INTRODUCTION 

Since the early works of Hubbard, 1- 4 much effort has 
been invested in developing a useful method to study the 
Hubbard Hamiltonian and related models using pertur­
bation theory around the solution of the atomic limit.1- 6 

The advantage of such an approach lies on the nonper­
turbative treatment of the on-site Coulomb interaction 
U, which is a desirable feature in the case of strongly 
correlated systems. However, the price to pay for the in­
clusion of interaction in the unperturbed Hamiltonian is 
the breakdown of Wick's theorem, preventing utilization 
of well-known many-body techniques. Besides that, the 
simplest approximations tend to retain a strong memory 
of the atomic limit, favoring an insulating state in the 
case of a half-filled band. Thus, the search for a metal­
insulator transition and Fermi-liquid behavior is not a 
trivial task. 

We will mainly refer here to a systematization of the 
perturbative treatment of the hopping term presented 
by Metzner,5 whose diagrammatic representation we will 
adopt to some extent. We will discuss the formal summa­
tion of the perturbation series, and develop the simplest 
approximations, namely, the zero-loop (ZLA) and self­
consistent one-loop (SC1LA) approximations. The first 
one reproduces the well-known Hubbard I decoupling of 
the equations of motion,1 which predicts an insulating 
state at half filling for any nonzero value of U. The last 
one shows evidence of a metal-insulator transition for fi­
nite U, with a metallic state that is not a normal Fermi 
liquid. 

Our analysis will be based on the calculation of finite 
temperature (Matsubara) Green's functions, from which 
the retarded Green's functions can be obtained by ana­
lytical continuation in frequency space. The insulating 
or metallic nature of the state of the system will be in­
ferred from the shape of the one-particle density of states 
(DOS) and frequency dependence of the self-energy. 

We will focus on the case of a half-filled band system, 
and impose a paramagnetic solution. It is well known 
that this state is unstable against antiferromagnetism in 
a bipartite tight-binding lattice as considered here, due 

0163-1829/95/52(24)/17135(8)/$06.00 52 

to the nesting properties of the Fermi surface. Neverthe­
less, one can assume that a small next-nearest-neighbor 
hopping will break the nesting condition and stabilize the 
paramagnetic solution. It is this situation that we have 
in mind here, and we will be able to compare our results 
with other approaches where the same kind of assump­
tion is implied.3 ' 7 ' 8 

The paper is organized as follows. In Sec. II we de­
scribe the perturbation method in a general way. The 
simplest approximations are described in Sec. IV, where 
a detailed evaluation of the one-loop diagrams is pre­
sented. Calculations for the half-filled paramagnetic case 
are presented in Sec. V. Final comments anda discus­
sion of our results in comparison with other approaches 
appear in Sec. VI. 

11. PERTURBATION METHOD 

We start with the usual form of the Hubbard Hamil­
tonian, 

H = ( ~; - J.t) L n,.,. + U L nitni.l-
ia i 

-h L (nit- ni.l-)- t L c!.,.cj.,. , (1) 
(ij)u 

in standard notation, with explicit inclusion of the chem­
ical potential J.t, and with an applied uniform magnetic 
field h, whose role will be discussed later. The first three 
terms on the right-hand si de o f Eq. ( 1) will be considered 
as the unperturbed Hamiltonian, while the last one will 
be the perturbation. 

The temperature-dependent one-particle Green's func­
tion (1PGF) is defined as 

(2) 

where T stands for the time ordering operator for 
fermions, and the "time" r is defined in the interval 
[-,B,,B], ,B being the inverse temperature. Applying the 
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usual perturbation theory for many-body systems,9 we 
can rewrite Eq. (2} in the form 

(3} 

where the subscript zero indicates that the average is 
performed with respect to the unperturbed Hamiltonian, 
which also defines the time dependence of the operators. 
Representing by H 1 the hopping term in Eq. (1}, S(/3) is 
given by 

(4} 

and expanded in powers of H 1 • 

The perturbation series for the 1PGF can be expressed 
in terms of local (unperturbed) cumulant averages, and 
represented by means of Feynman-like diagrams, as dis­
cussed in detail by Metzner. 5 The relevant diagrams for 
bipartite lattices up to fourth order are shown in Ref. 
5. Inspection of the general structure of those diagrams 
shows that they are made up of irreducible parts con­
nected together by hopping lines. The irreducible parts 
cannot be divided in two pieces by the operation of cut­
ting a single hopping line. With such a structure, the 
entire perturbation series can be formally summed by 
means of a Dyson-like equation. After Fourier transform­
ing in space and time, we can write 

where Wn is a fermionic Matsubara frequency, €k is the 
tight-binding dispersion relation, which gives the allowed 
energies for noninteracting particles in the lattice, and 
Qk.,.(iwn) stands for the irreducible part of the 1PGF, 
whose first few diagrams are shown in Fig. 1. 

The formal solution of Eq. (5) is 

G (iw } - 1 
ko- n - [Qk.,.(iwn}]-1 - €k 

(6) 

(~( 

FIG. 1. Diagrams of the irreducible Green's function Ç} up 
to fourth order in the hopping. 

It is possible to express this 1PGF in the usual way in 
terms of a self-energy, provided the latter is defined as 

(7) 

111. ONE-PARTICLE DENSITY OF STATES 

We can analytically continue Gko-(iwn) to the entire 
complex plane, obtaining a function Gko-(z). Then, the 
retarded Green's function is just Gk.,.(w + iO+), for real 
w, and the single-particle density of states (for particles 
o f spin u) is given by 

p.,.(w) = -~~L: ImGku(w + iO+} . (8} 
k 

This analytic continuation may be highly nontrivial, 
depending on the kind of approximation employed. For 
some approximations the simple substitution of w + i8 
(8 -t O} for iwn in the final expressions works perfectly 
well. It fails, however, in certain cases, mainly when one 
utilizes self-consistent solutions, as will be the case in our 
SC1LA. This failure manifests itself in the breakdown of 
the sum rule J p(w)dw = 1. In principie, we could be in 
the presence of a nonconserving approximation.10 This 
is not true for our SC1LA, since the number of parti­
eles calculated by a direct (numerical) summation of the 
1PGF over Matsubara frequencies is consistent with the 
choice of chemical potential. The identity 

(n.,.) = ~L:_!:_ L: Gk.,.(iwn) =f dwpa(w)f(w) 
N k {3 w,. 

has to be satisfied if the spectral representation 

G ( ) = fd ,Aka-(w') 
ko- z - w z- w' 

(9} 

(10) 

is utilized. Notice that the spectral function Ak.,.(w) is 
related to the imaginary part of the 1PGF through 

(11} 

and its sum over momentum gives the single-particle den­
sity of states [see Eq. (8)]. 

Given that the first equality in Eq. (9} is correctly sat­
isfied, the failure of the second equality must lie on the 
evaluation of Ak.,.(w) through Eq. (11}, with the implied 
analytic continuation on the complex frequency plane. 

By summing Eq. {10} over momentum, we can di­
rectly relate the local Matsubara Green's function with 
the DOS through 

G .. (~wn) = dw. . . f p.,.(w) 
nu 'tWn-W 

{12} 

Our method gives us the values of the left-hand side, 
while we want to know the function p.,.(w) appearing on 
the right-hand side. We are thus faced with the problem 
of inverting a Hilbert transform. This is a common prob­
lem in image reconstruction, 11 as well as in the process of 
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obtaining densities of states from Monte Carlo data for 
Matsubara Green's functions. 12 In both cases one utilizes 
the so-called maximum entropy method to obtain the de­
sired image [in our case, p.,.(w)] starting from a default 
model (which we have chosen as the result of the direct 
substitution iwn --+ w + i~). In the next section we will 
show a practical example in which this method provided 
good results. 

IV. SIMPLE APPROXIMATIONS 

The simplest approximation is obtained when one con­
siders just the first diagram in Fig. 1, using the zeroth­
order solution as the irreducible part of the 1PGF. This 
takes into account the sum of all zero-loop diagrams. For 
this reason we call it zero-loop approximation. Actually, 
one has to renormalize the average number of particles 
appearing in the zeroth-order Green's function, 

go(. ) _ 1- (nu) (n.,.) 
.,.tWn-. +. , 

tWn - ê + J-t tWn - ê - U + J-t 
(13) 

calculating it self-consistently. This is necessary because 
for a given chemical potential the number of particles in 
the atomic limit and in the lattice can be quite differ­
ent. When considering corrections to the ZLA, one has 
to be careful and subtract the parts of new diagrams that 
account for this renormalization of the number of parti­
eles in order to avoid double counting their contribution. 
This point is discussed in further detail in the Appendix, 
in connection with the calculation of the one-loop correc­
tion. 

The ZLA reproduces exactly the results of the so-called 
Hubbard I decoupling of the equations of motion for the 
1PGF.1 This approximation gives qualitatively the ex­
pected behavior in the strong correlation limit U » t, 
where a lower and an upper Hubbard subband are sep­
arated by a correlation gap in the single-particle DOS. 
However, this structure appears for any nonzero value of 
U, with the gap collapsing only strictly at U =O, where 
the exact tight-binding band is recovered. An expected 
metal-insulator transition at some finite U is not present. 

One-loop corrections to the ZLA are obtained by 
adding to the irreducible Green's function Q.,.(iwn) the 
diagram depicted in Fig. 2. In that diagram the double 
line represents the fully renormalized 1PGF (with im­
portant subtractions that will be discussed later), and 
the problem must be solved self-consistently. In this case 
one has to evaluate the local cumulant average of four 
fermion operators 

(14) 

where we have dropped the site index. To calculate it 
we rewrite the fermion operators in terms of Hubbard 
operators, 2 and utilize the standard algebra for the lat­
ter, as well as a generalized Wick's theorem. 13 Although 
straightforward, some details o f this calculation are worth 
making explicit, mainly a nonstandard intrasite diagram­
matics, and the important point on subtractions of con­
tributions accounted for by the renormalization of the 

FIG. 2. Fully renormalized one-loop diagram for the irre­
ducible lPGF. The double line represents a complete Green's 
function, with subtractions that are discussed in the. text. 

average number of particles in the zeroth-order Green's 
function. For this reason, we develop it more or less ex­
tensively in the Appendix. 

We can write the irreducible Green's function to one­
loop order as 

g!L(iwn) = Q2(iwn) + LAau•(iwn), (15) 
u' 

where 

Auu•(iwn) = ~ L:r~4!,(iwn,iw,)Hu•(iwz). (16) 
w, 

Here r~4!, (iwn, iwz) is the Fourier transform of (14), and 
H.,., ( iwz) stands for the contribution of the loop in Fig. 
2. As we mentioned before, the double line that ap­
pears in that diagram is to be interpreted as the fully 
renormalized 1PGF with some important subtractions. 
To see what these subtractions are we must remember 
that Gku ( iwn) is the sum o f all possible chains of irre­
ducible local Green's functions, Q17 (iwn), connected by 
hopping lines. In order to count only the one-loop con­
tribution in Fig. 2 we must not allow any of the Q17 's of 
those chains to belong to the site where the average r 4 is 
being evaluated. Notice that this subtraction is necessary 
only because we are renonnalizing the intraloop Green's 
function. If we counted diagrams order by order the nec­
essary subtractions would be automatically accounted for 
by the cumulant averages. In fact, we are just rearrang­
ing the cumulant expansion to explicitly avoid counting 
"paths" that come back to the original site. Instead, 
the normal cumulant expansion would add corrections 
for their wrong contributions at higher-order terms. The 
confirmation that this is a better choice comes from the 
form of the DOS obtained with each procedure, as we will 
show below. Without any subtractions, H 17 (iwn) would 
be replaced by 

ÍÍ17 (iwn) = ~ L:e~Gku(iwn). 
k 

(17) 

For each intermediate visit to the reference site in the 
process of building up Gk17 (iwn) we have to subtract 
H 17 (iwn)Q.,.(iwn)H17 (iwn)· Continuing this process, we 
can see that 
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o r 

H ( . ) _ Hu(iwn) 
u ~Wn - -

1 + Hu(iwn)Çu(iwn) 
(19) 

Utilizing Eq. (6) for the general form of Gku(iwn) we get 

(20) 

and 

1 
(21) 

where Giiu(iwn) = -Jt .Ek Gku(iwn) is the fully renormal­
ized local Green's function. 

With Hu(iwn) given by Eq. (21), and utilizing 

r~4~,(iwn,iwz) as calculated in the Appendix, we obtain 

(22) 

and 

Auü(iwn) = [9ü2(iwn)- You(iwn)] ~L { [Q2(iwn) + Ç~(iwz)] 9o2(iwn + iwz) 
INI 

which are used in Eq. (15) to give the self-consistent one­
loop correction to the irreducible part of the 1PGF. 

Equation (23) shows why it was necessary to include an 
externai magnetic field in the problem, since the function 
91'tu(iwn -iwz) for Wz = Wn diverges in the zero-field limit. 
Thus, when considering the absence of an applied field, 
the limit h -+ O must be taken with some care. Also, the 
function Yo2 ( iwn + iwz) diverges for wz = -wn in the half­
filled band case, which makes this another limit that must 
be approached with care. These divergencies reflect the 
spin-inversion and particle-hole symmetries of the unper­
turbed Hamiltonian. At zero magnetic field local singly 
occupied states are degenerate, so that spin-reversal exci­
tations are massless. Similarly, at half filling both empty 
or doubly occupied states are degenerate, and local ex­
citations corresponding to transitions between these two 
states become massless too. The contributions of such 
(virtual) massless excitations to the renormalization of 
the single-particle propagator should not introduce new 
singularities. Thus, solving the problem for an arbitrary 
band filling and in the presence of an externai field con­
stitutes a regularization procedure that yields finite cor­
rections in the limits commented above. 

V. HALF-FILLED BAND, 
PARAMAGNETIC CASE 

Without loss of generality, we will chose e = -U /2, so 
that we have J.t =O for n = 1, where n = .Eu(nu) is the 
total number of particles. There are two delicate limits 
that one has to take in Eq. (23), which are J.t -+ O (to­
gether with (nu) -+ 1/2) and h-+ O. One ofthe problems 
is the divergence of Yüu(iwn- iwz) in the limit h-+ O for 
Wn = wz. However, simple algebraic manipulations show 
that the prefactor Ç~(iwn) - gg(iwn) is proportional to 
(nu-nu), the local magnetization, which goes to zero lin-

(23) 

early with h in the paramagnetic case. Notice that this 
would not be the case in an antiferromagnetic solution, 
and it would be necessary to consider higher-order terms 
that should renormalize h by the addition of an internai 
effective field, presumably proportional to the local mag­
netization. As far as the half-filled limit is concerned, the 
divergence of 9o2(iwn + iwz) for wz = -wn when J.t-+ Ois 
compensated by the fact that Ç~(iwn) +Qg( -iwn) is pro­
portional to (1- nu- nü), which goes to zero with J.t· By 
studying numerically these two limits we observed that 
the contribution o f Ault ( iwn) tends to be much smaller 
than that of Auu(iwn) for low temperatures. Based on 
this, and for reasons of simplicity, we will keep only the 
equal spin term in the remaining of this calculation. 
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FIG. 3. Comparison between values of Gii.,.(Íwn) directly 
obtained (continuous) and calculated from Eq. (12) with the 
DOS one has before (dash-dotted) and after (dotted) utiliza­
tion of the maximum entropy method. 
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In Fig. 3 we show typical data for the left-hand side of 
Eq. {12), as well as plots of the right-hand side for the 
initial DOS (direct substitution) and the final one, after 
the maximum entropy method has been applied. The 
residual error may still be diminished by improvements 
in the algorithm. Thus, the maximum entropy method 
allows us to obtain the correct DOS from our calculated 
Matsubara Green's functions. 

In Fig. 4 we present, for comparison, the DOS in 
SClLA when one utilizes either fi,Aiwn) or HCT(iwn)· 
One can see that the unpleasant sharp features at the po­
sition of the atomic leveis that appear in the former case 
are not present in the latter. Both curves have been ob­
tained through the maximum entropy method with data 
for Gii<T(iwn)· We have chosen the uncorrelated DOS to 
be a Gaussian distribution in order to make contact with 
results in infinite dimensions. The energy scale is set by 
l = t/2-/d, which must be kept constant in the limit 
d --t 00. 

We present in Fig. 5 the DOS obtained in the SClLA 
for some values of U. One can see that, in contrast to the 
ZLA, in the SClLA the correlation gap is not present for 
sufficiently small values of the Coulomb interaction. This 
means that we have obtained a metal-insulator transi­
tion in the half-filled Hubbard model. The metallic state, 
however, does not correspond to a normal Fermi liquid. 
We have checked this by studying the frequency behav­
ior of the self-energy, which does not show the expected 
w 2 dependence. We can also see that the DOS does not 
show a central peak, which would be a necessary conse­
quence of a local (k-independent) self-energy in a normal 
Fermi liquid.7 We determined numerically that the criti­
cai value of U for occurrence of the metal-insulator tran­
sition is U* "' 1.5t. We will compare this with results of 
other approaches in the next section. 
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~b 
0.. 

0.20 

FIG. 4. Typical DOS obtained with (continuous) and with­
out (dotted) the subtractions that lead to the substitution 
fl<T --t H(T (see text) in the renormalized one-loop diagram. 
Here Ujt = 1.5. 
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FIG. 5. DOS as a function of frequency (in units of l) in 
the SCILA for various values of the Coulomb interaction. 

VI. CONCLUSIONS 

We have presented here a Green's function study of 
the Hubbard model, utilizing perturhation theory around 
the atomic limit. We have shown that it is possible to 
formally sum the perturbation series for the Matsubara 
lPGF, writing it down in terms of an irreducible Green's 
function [see Eq. {6}], which can have nonlocal contribu­
tions ( although these vanish in the infinite dimensional 
limit). The local cumulant averages appearing in the 
evaluation of the lPGF (Ref. 5) can be dealt with, simi­
larly to usual many-body theory, by means of a general­
ized Wick's theorem, provided that fermion operators are 
represented in terms of Hubbard operators. Even though 
this is a quite standard procedure, we have shown that 
terms in which the operators that define the Green's func­
tion appear in direct contraction (in the sense of Wick's 
theorem} are eliminated by the renormalization of the av­
erage number ofparticles appearing in the (zeroth-order) 
atomic Green's function. This renormalization is neces­
sary in order to have a self-consistent solution for the 
lattice. 

We have discussed common problems related to the 
calculation of the single-particle DOS starting from 
finite-temperature Green's functions. We have shown 
that violation of the sum rule for the frequency integral 
of the DOS can be due to a bad analytic continuation in 
the complex frequency plane. In cases where the direct 
substitution of w + iQ+ for iwn fails, a good resort is the 
maximum entropy method, with which one can obtain the 
DOS from data on the finite-temperature Green's func­
tion. 

In this paper we analyzed in more detail the first cor­
rection to the zero-loop approximation {Hubbard I). By 
considering the one-loop diagram for the irreducible part 
of the lPGF, and properly renormalizing the contribu­
tion of this single loop, we obtained a self-consistent 
problem whose solution for the DOS shows the existence 
of a metal-insulator transition for a criticai value of the 
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Coulomb interaction U* 1.5t, for a Gaussian noncor­
related DOS. Similarly to what occurs in the so-called 
Hubbard III approximation,3 the metallic state does not 
present Fermi-liquid characteristics. However, the one­
loop result is much more strong coupling in nature than 
the Hubbard III approximation, as can be seen by the 
comparative behavior of the DOS in both approaches 
shown in Fig. 6. There, we also plot, for comparison, 
the DOS obtained for the Falikov-Kimball model14 in 
infinite dimensions, obtained from the Green's function 
calculated by Brandt and Mielsch.15 We can see that the 
agreement with this result is much better. In particular, 
the criticai values of U for the metal-insulator transition 
are nearly the same in both approaches. 

It is worth mentioning that, although similar in struc­
ture to the Hubbard III and Falikov-Kimball equations, 
our results are not based on any extra assumptions as, 
for instance, the alloy analogy.3 They are obtained com­
pletely within perturbation theory around the atomic 
limit by summation of certain classes of diagrams for the 
Green's function. Their importance lies exactly in the 
fact that it is the first time a continuous crossover from 
the atomic limit to a noninsulating behavior in the Hub­
bard model was obtained within a systematic approach. 
The only simplifying assumption adopted here was ne­
glecting the opposite spin contributions in the one-loop 
corrections. In some sense, it is equivalent to freezing 
one-spin species, which can probably explain the similar­
ity with the Falikov-Kimball model. It could also be a 
possible reason for the absence of Fermi-liquid behavior, 
since we are neglecting spin fiuctuations that should be 
important at least in the small-U regime. However, due 
to technical difficulties in dealing with the limits h -+ O 
and p, -+ O, as commented in the previous section, we 
will not explore this point further here. 

As a final comment, we wish to point out that the 
structure of the equations obtained by the perturbation 
method has strong similarities with current mean-field so­
lutions of the infinite dimensional problem.16•8 The good 
agreement with the Falikov-Kimball model in d -+ oo, 
commented above, is also an indication that these simi­
larities are more profound. Further investigation on this 
line is currently in progress. 
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APPENDIX A 

In dealing with the average in Eq. (14) we rewrite the 
fermion operators in terms of Hubbard operators. 2 These 
are defined as Xa/3 = la)(,BI, in terms of basis states be­
longing to the orthonormal set {lO), lu), lu), 12)}, which 
represent an empty, a singly occupied (both spin orienta­
tions), anda doubly occupied site, respectively. Hubbard 
operators may be fermionlike or bosonlike. The former 
refer to creation or annihilation of a single electron, while 
the latter are related to local transitions between states 
in which the number of electrons is either the same or 
differs by two. In terms of Xa/3• the relevant electron 
operators are cu = Xou + uX1n, nu = Xuu + X22, and 
ntn.j. = x22• with u = ±1. 

Simple commutation relations hold between these op­
erators and the local Hamiltonian, which ensure that all 
the Xaa are time independent, and the nondiagonal ones 
follow the evolution law Xaf3 = e-eaf3T Xaf3• éaf3 being the 
energy difference between the initial and final states. For 
instance, 

éou = é - p, - uh , é~t2 = é + U - p, - uh , 

éo2 = 2é + U- 2p,, é~tu = -2uh . (Al) 

A generalized Wick's theorem may be written (in com­
pact notation) as follows: 

3.5 

FIG. 6. Comparison between densities of 
states obtained by the SClLA (continuous), 
Hubbard 111 approximation (dotted), and 
the Falicov-Kimball model in infinite dimen­
sions (dashed}, for U/f = 1.25 (left} and 2.5 
(right). 
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with -y1 defined through the commutation relation 

In Eqs. (A2) and (A3), whenever two signs appear to­
gether the upper (lower) applies when xl is fermionlike 
(bosonlike). The subscripts on (anti)commutators indi­
cate the time at which they are evaluated. The time 
dependence of the remaining operators is left implicit. 
Equation (A2) must be applied recursively on all the av­
erages that are generated at each step. 

In the calculation of 1PGF's, the initial averages in­
volve only fermionlike operators, for which the nonzero 
anticommutators entering the contractions (with the con-

(A2) 

vention that all contractions begin with an annihilation 
operator) are 

{Xoa,Xüo} = Xüa, {Xü2,X2a} = Xüa, 

{ Xoa, Xa2} = Xo2 . (A5) 

Here we have chosen to write the diagonal Hubbard op­
erators in terms of the electron number operators. No­
tice that, in contrast to the expansion around the free­
electron limit, there exist nonzero contractions involving 
two annihilation operators, provided they refer to oppo­
site spin states. These contractions will bring into play 
the bosonlike Hubbard operators. The next rule is that 
whenever an average contains a bosonlike operator the 
contractions must begin with it. The nonzero commuta­
tors involving at least one bosonlike operator are 

[Xo2, X2o] = 1- na- nü , [Xa.,, Xüa] =na- nü , 

[Xo2, Xao] = -Xa2 , [Xo2, X2a] = Xoa , [Xüa, X ao] = Xüo , 

[Xüa,Xoü] = -Xoa, [Xüa,Xa2] = Xõ-2, [Xüa,X2a] = -X2a. (A6) 

By the conventions stated above, the only operators 
that can have the role of X1 in Eq. (A2) are Xoa, Xü2, 
Xo2, and Xüa• for which the corresponding g1 's, after 
Fourier transforming in -r, are 

FIG. 7. Detailed view of the possible internai contractions 
in the four-operator average appearing in Fig. 2. Dotted lines 
represent either ofthe fermionic Green's functions ofHubbard 
operators, g0 " and Yct2 , while dashed and wavy lines represent 
the bosonic ones, g02 and gittr, respectively [see Eq. (A 7)). 

Yoa(iwn) = . 1 , 
ZWn- éoa 

9ü2(iwn) = . 1 , 
ZWn - é"õ-2 

Yo2(ivn) = . 1 , 
ZVn- €"02 

9üa(ivn) = . 1 , 
ZVn- é"üa 

(A7) 

respectively, were Vn is a bosonic Matsubara frequency. 
Next we will show that the sum of all terms that in­

volve a direct contraction between the externai operators 
(those that define the Green's function) give the zeroth­
order local Green's function corrected for the full renor­
malization of the average number of particles. To do this 
we start with the zeroth-order form of Eq. (3) for the 
site-diagonal Green's function, 

G?ia(-r) = -(T Xoa(-r)Xao(O))o- (T Xü2(-r)X2,.(0))o 

= Yoa(-r)(1- nü)o + 9ü2(-r)(nü)o. (A8) 

When we take into account the perturbation through 
S(/3) in Eq. (3), but do not consider any other contrac­
tions, we obtain the 1PGF in the atomic limit, 

whose Fourier transform is given by Eq. (13). Notice 
that Ç2(-r) gives the contribution of the first diagram 
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(single dot) for the irreducible Green's function Q.,.(r) 
(see Fig. 1). Hence, when evaluating other contributions 
to Q.,.(r) we must leave out any terms coming from a 
direct contraction o f the external operators. 

Utilizing the generalized Wick's theorem, with the 
rules we commented above, the relevant terms originated 
from the diagram in Fig. 2 may be represented by dia­
grams with the topology shown in Fig. 7, in which we 
have blown up the four-legged vertex, and included in­
ternai lines to indicate the local contractions. Only dia­
grams like the first one survive when all spin índices in 
the four-operator average are the same. The remaining 
diagrams involve opposite spin índices between externai 
and internai operators, in which case there is no decou­
pling of the four-operator average, the cumulant being 
equal to the simple average. Each disconnected part in­
side a bubble, besides the product of 9af3 's associated to 
it, includes a factor n.,. or 1 - n.,., depending on the op-
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