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We discuss the infinite dimension limit of the Hubbard model by means of a perturbative expansion of the
one-particle Green’s function around the atomic limit. The diagrammatic structure is simplified in this limit,
allowing a formal resummation that reproduces a previously proposed mapping to a single-site mean-field
problem. The method provides a natural way of addressing this effective problem by means of a perturbative
expansion in the local mean field. This gives the correct exact result for the Falicov-Kimball model, which is
used as a starting point to study the Hubbard case.@S0163-1829~96!04727-3#

I. INTRODUCTION

The limit of infinite spatial dimensionality introduced by
Metzner and Vollhardt1 has been very useful in understand-
ing strongly correlated fermion systems. In this limit, the
Hubbard model2 can be exactly mapped into a single-site
problem in the presence of an effective field that describes its
connection to the rest of the lattice.3 In contrast to localized
spin models, for which the mean-field solution is exact in
infinite dimensions, an exact solution of the fermionic effec-
tive problem has not yet been found, except4,5 for the
Falicov-Kimball ~FK! model,6 that can be viewed as a sim-
plified version of the problem. The full Hubbard model has
been addressed by numerical methods7–10 or a combination
of those and weak-coupling perturbation theory.11,12 An al-
ternative approach, based on a~strong-coupling! perturbation
expansion of the one-particle Green’s function around the
atomic limit is discussed here. Within this approach, the
structure of the diagrammatic representation of the perturba-
tion series is greatly simplified in the infinite dimension
limit. From a formal point of view, one easily recovers the
mapping to a single-site effective problem. In the case of the
FK model, the resulting equations can be completely solved
to give the exact site-diagonal single-particle Green’s func-
tionGii ( ivn), reproducing a solution previously obtained by
Brandt and Mielsch.4 We then use this as a starting point for
the study of the complete Hubbard model, constructing ap-
proximate solutions by adding corrections to the Green’s
function of the FK model.

In this paper, we discuss the general ideas behind this
method, and exemplify their applicability by constructing a
simple approximate solution of the Hubbard model in infinite
dimensions. For the paramagnetic case this approximation,
besides reproducing correctly the expected behavior of the
single-particle density of states~DOS! in the large-U limit,
yields a three-peaked DOS for smallU, in agreement with
weak-coupling and numerical calculations, although devia-
tions from Fermi-liquid behavior are still observed. As far as
the physically more relevant antiferromagnetic~AF! state is
concerned, our simple approximation reveals a strong
memory of the FK limit from which it is derived, and the

spin symmetry of the Hubbard model is not completely re-
covered. The phase diagram that we obtain differs from that
obtained by numerical methods,7,12 in that the critical tem-
peratures are always smaller than those of the FK model for
the same values ofU. Indeed, we argue that this is what
should actually be expected on physical grounds.

II. PERTURBATIVE CALCULATION

We consider the Hubbard model with nearest-neighbor
hopping on ad-dimensional hypercubic lattice,13 which is
described by the Hamiltonian

H52m(
is

nis1U(
i
ni↑ni↓2t (

^ i j &s
cis
† cjs , ~1!

in the usual notation. The first two terms on the right hand
side of Eq.~1! will be considered as the unperturbed Hamil-
tonian, while the last one will be taken as the perturbation.
We will be interested in the temperature dependent one-
particle Green’s function,

Gi j s~t![2^T̂cis~t!cjs
† ~0!&. ~2!

A diagrammatic representation of the perturbation series for
this function has been introduced by Metzner.14 After Fou-
rier transforming in space and imaginary time, we can write
a Dyson-like equation15

Gks~ ivn!5Gks~ ivn!1Gks~ ivn!«kGks~ ivn!, ~3!

wherevn[(2n11)pT ~integern) is a fermionic Matsubara
frequency,«k is the Fourier transform of the hopping term,
and Gks( ivn) is the irreducible part of the one-particle
Green’s function.15 We can, then, formally write

Gks~ ivn!5
1

@Gks~ ivn!#
212«k

. ~4!

The irreducible Green’s functionGks( ivn) has a diagram-
matic representation15 in which the vertices are associated
with cumulant averages of electron creation and annihilation
operators at the same site. These diagrams areirreducible in
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the sense that they cannot be separated in two disconnected
parts by the process of cutting a single hopping line. The
explicitly local diagrams of this function, i. e., those with a
single external vertex, can also be interpreted as the diagram-
matic representation of the site-diagonal Green’s function
Gii s( ivn), with an important difference: in the cumulant
average associated with the external vertex, we have to take
into account only the terms in which the two external opera-
tors appear in the same average. Equivalently, the external
vertex can be considered as a simple~noncumulant! local
average, and the sum over internal sites mustnot include the
one corresponding to the external vertex. The local averages
can be calculated by rewriting the fermion operators in terms
of Hubbard operators,16,17 and introducing an intravertex
diagrammatics.15 This provides, in principle, a direct way of
calculating the complete local Green’s function. On the other
hand, combining Eq. ~4! the identity Gii s( ivn)
[(1/N)(kGks( ivn), and we can write

Gii s~ ivn!5
1

N(
k

1

@Gks~ ivn!#
212«k

. ~5!

If one calculates directlyGii s( ivn) as commented above,
Eq. ~5! can be viewed as a self-consistency condition to be
fulfilled. This is a key point in the general strategy of per-
forming renormalizations of the local Green’s function, and
will be particularly useful in the analysis of the infinite di-
mension limit, as we will see in the next sections.

III. THE INFINITE DIMENSION LIMIT

When generalizing the Hubbard model to a lattice of in-
finite dimensionality one has to choose an appropriate scal-
ing of the hopping amplitudes in order to preserve a finite
energy per particle. This scaling has been proven1 to be
dt25 const. Each unconstrained sum over internal sites in a
diagram gives a factor of orderd ~in hypercubic lattices the
coordination number isz52d). However, topological con-
straints of the diagrams may severely reduce this multiplic-
ity. The case of a simple loop with 2p hopping steps is easy
to analyze: one can roughly consider that there is free choice
of each step in the first half of thewalk, yielding a factor
dp, while the multiplicity factor of the second half is of an
order of one to match the constraint of returning to the initial
site with the remainingp steps. The factordp coming from
the summation over internal sites exactly compensates the
factor (1/Ad)2p associated with the hopping amplitudes, and
the simple loops are ofO(d 0). With this kind of reasoning it
is possible to show that only the site-diagonal part of the
irreducible Green’s functionGs( ivn)[(1/N)(kGks( ivn)
survives in the limitd5`, and only diagrams with indepen-
dent loops are nonvanishing.

From the above discussion, we can conclude that the gen-
eral structure of the diagrams contributing toGii s( ivn) is
that depicted in Fig. 1. All the lines that go in and out of the
external vertex are identical, and represent the quantity

As~ ivm![( 8
l

t i lGs~ ivm!t l i

1( 8
l l 8

t i lGs~ ivm!t l l 8Gs~ ivm!t l 8 i1 . . . , ~6!

where the sums are restricted to sites other thani to avoid
having a cumulant average on this site. It is straightforward
to show that15

As~ ivm!5
Ãs~ ivm!

11Ãs~ ivm!Gs~ ivm!
, ~7!

where

Ãs~ ivm!5
1

N(
k

«k
2Gks~ ivm!. ~8!

Thus,

As5Gs
212Gii s

21 . ~9!

If we use this equation to eliminateGs , Eq. ~5! can be writ-
ten as

Gii s5
1

N(
k

1

Gii s
211As2«k

. ~10!

Since thek dependence is restricted to the tight-binding en-
ergies«k , we can replace the sum overk by an integral in
energy in the form

Gii s5E d«
r0~«!

Gii s
211As2«

[F~Gii s
211As!, ~11!

wherer0(«) is the uncorrelated density of states ind5`.
For a hypercubic lattice, and choosing 4dt2[t* 251,
r0(«)5(1/Ap)exp(2«2).1 With this choice, from now on all
the energies will be expressed in units oft* .

From the diagrams of Fig. 1, we can see thatAs describes
the motion of an electron through thesurrounding mediumof
site i , i.e., the rest of the lattice. Its effect can be viewed as
equivalent to that of a time-dependentfield coupling the lat-
tice sitei to a reservoir of particles~or rather two reservoirs,
one for each spin species!. Thus, the problem has been re-
duced to an effectivesingle-siteHubbard model in the pres-
ence of the fieldsAs , and subject to the self-consistency
condition~11!. The single-site problem can be thought of as
being described by the effective action3

S5SA0 1UE
0

b

dt n↑~t!n↓~t!, ~12!

FIG. 1. Diagrammatic series representing the site-diagonal
Green’s functionGii s in d5`.
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whereSA0 , the action for noninteracting electrons in the pres-
ence of an effective fieldA, is given by

SA0 52E
0

b

dtE
0

b

dt8(
s

cs
†~t!Ĝs

21~t2t8!cs~t8!,

~13!

with

Ĝs
21~t2t8![~]t1m!d~t2t8!2As~t2t8!. ~14!

The method of perturbation around the atomic limit not
only reproduces the exact mapping of the infinite dimen-
sional problem to a single-site effective one, but also pro-
vides a natural way of analyzing this effective problem by
means of an expansion in powers of the fieldsAs . This
point will be further explored in what follows.

IV. PERTURBATION APPROACH
TO THE SINGLE-SITE PROBLEM

As mentioned before, our method yields an approach for
solving the single-site effective problem~12–14! as a pertur-
bation series in the fieldsAs ~see Fig. 1!. Starting with the
unperturbed local Green’s function2^T̂cs(t)cs

†(0)&0 , each
order in perturbation theory introduces a product of the
type As1

(t12t18)cs1

† (t1)cs1
(t18), so that, in general,

one has to calculate averages of the form
^cs1

† (t1)cs1
(t18)cs2

† (t2)cs2
(t28)•••&0 . For this we use the

representation cs5X0s1sXs̄2 , where the Hubbard
operators16 are defined asXab[ua&^bu, in the basis of the
four eigenvectors representing an empty site (u0&), a singly
occupied site with both possible spin orientations (us&5u↑&
or u↓&), and a doubly occupied site (u2&). In its initial form,
each average involves only the ‘‘fermionic’’ Hubbard opera-
tors appearing in the representation ofcs or cs

† . The direct
contraction~in the sense of Wick’s theorem18! between the
two external operators must be excluded, since it is automati-
cally taken into account by the renormalization of the aver-
age number of electrons in the atomic Green’s function.15

When all operators correspond to the same spin~say, s)
contractions can only generate the opposite-spin projectors
ns̄ or 12ns̄ , which act asc numbers with respect to the
remaining operators. Thus, the whole process is exactly the
same as in usual many-body treatments, except for a final
average value of the relevant projector. This allows for the
exact solution of a simplified version of the model, as we
discuss next.

A. The Falicov-Kimball model

Although originally proposed in a different context,6 the
Falicov-Kimball model can be viewed as a simplified Hub-
bard model in which only electrons with a given spin orien-
tation ~say, spin-up! can hop through the lattice. The other
electrons~spin-down! have frozen dynamics. However, they
are thermodynamically coupled to the moving electrons, and
their number per lattice site is nota priori fixed. The entire
analysis developed for the Hubbard model holds here, but
the single-site effective problem is simplified by the fact that
only electron operators with the same spin index appear in

the local averages. Thus, the general structure of the intra-
vertex diagrams is as shown in Fig. 2. The dashed lines rep-
resent any of the two possible contractions between the Hub-
bard operators that compose a fermionic one. They give rise
to factorsga( ivn)51/(ivn2«a), where«a are the single-
site one-particle excitation energies, which can be
«0↑52m and «↓252m1U. These factors are also multi-
plied by the projectors (12n↓) or n↓ , respectively. Since the
latter are orthogonal projectors, only powers of the same
ga can appear in each term. This gives two independent
power series~in g0↑ andg↓2) that can be summed up to give

Gii ↑~ ivn!5
12^n↓&

ivn1m2A~ ivn!
1

^n↓&
ivn1m2U2A~ ivn!

,

~15!

where it is implicit thatA( ivn) acts only on spin-up elec-
trons. This site-diagonal Green’s function, which has the
same form as obtained from thescattering correctionterm of
the Hubbard III approximation for the Hubbard model,19 re-
produces the exact solution of the FK model obtained by
Brandt and Mielsch.4 They arrived at this form following an
argument based on the fact that the self-energy depends on
the kinetic term only throughGii . Here, we have arrived at
the same result by means of an exact summation of the per-
turbation series in the effective fieldA. In the more general
case of the Hubbard model, even if it remains true that the
self-energy20 is site diagonal ind5` and depends on the
kinetic term only through the local Green’s functions~for
both spin orientations!, the latter no longer have the simple
form of Eq. ~15!.

B. Inclusion of local spin fluctuations

We now go back to the complete Hubbard model, allow-
ing for the hopping of electrons of both spin orientations.
When operators corresponding to different spins are present,
their contractions give rise to ‘‘bosonic’’ Hubbard operators
of the formXs̄s ~spin flip of a singly occupied site! or X02
~annihilation of a doubly occupied site! and their Hermitian
conjugates. In principle, in order to make full use of well
known many-body methods, these operators should be
treated in equal footing with respect to the fermionic ones. In
order to eliminate the bosonic operator as soon as possible,
we choose as a priority rule that contractions~in this case
defined by the commutator! must be started by a bosonlike
operator. In contrast, when only fermionlike operators are
present in an average, we choose as a priority rule that con-
tractions should start with an annihilation operator.21

There are, however, some inconveniences in using the
above rules. For instance, the operatorXs̄s commutes with
the unperturbed Hamiltonian, due to the symmetry of the
Hubbard model under spin inversion. Similarly, at half filling

FIG. 2. Generic diagram ofGii s for the FK model ind5`.
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the particle-hole symmetry of the model causesX02 to com-
mute with the unperturbed Hamiltonian too. Then, the
Green’s functions associated with these operators~and ap-
pearing as a result of their contractions! have the form
1/inn , diverging when the bosonic Matsubara frequency
nn[2npT is equal to zero. A possible way to circumvent
this problem is to introduce an external magnetic field to
break the spin inversion symmetry, and to work at a generic
filling n, which fixes the chemical potentialm. However,
results at zero-field and/or for the half-filling case involve a
delicate limiting process, at least one that is very difficult to
achieve in a practical calculation.15 On the other hand, a
pedestrianapproach to time-ordered averages would be to
calculate the products in all possible orderings. The main
disadvantage of this procedure is that it produces a multiplic-
ity of constraints for the integrations over internal times.
Here, we have chosen a mixed approach: we use contractions
when only fermionlike operators are present, but work out all
possible products whenever a bosonlike operator appears. In
general, only a very limited number of time orderings are
nonzero, which are easy to figure out due to the simple prod-
uct rule for Hubbard operators (XabXeg5dbeXag).

We will exemplify this procedure by evaluating one of the
terms contributing to the four-operator average,

Gss̄
~4!~t,t1 ,t2![^T̂cs~t!cs̄

† ~t1!cs̄~t2!cs
†~0!&, ~16!

that appears in the one-loop diagram of Fig. 1. When we
rewrite this in terms of Hubbard operators, one of the terms
is

G15^T̂X0s~t!Xs̄0~t1!X0s̄~t2!Xs0~0!&. ~17!

After the first contractions, led byX0s(t), and remembering
not to take into account the direct contraction with the other
external operator~at time 0!, we have

G152g0s~t2t1!^T̂Xs̄s~t1!X0s̄~t2!Xs0~0!&. ~18!

At this stage there is a bosonic operator in the average, and
we have to write down explicitly all possible time-ordered
products. Actually, sincet1 and t2 are integrated between
0 and b, the only nonzero product is
X0s̄(t2)Xs̄s(t1)Xs0(0), with the constraint t2.t1.0.
Now we use the fact thatXs̄s is time independent to elimi-
nate it by performing the product of the first two operators.
This gives

G152g0s~t2t1!u~t22t1!^T̂X0s~t2!Xs0~0!&, ~19!

whereu(t22t1) is the step function, and again we used the
fact thatt2.0 to reinsert the time-ordering operator in the
remaining average. This allows us to write, finally,

G15g0s~t2t1!u~t22t1!g0s~t2!^12ns̄&. ~20!

Calling L1 the contribution of this term to the irreducible
Green’s function, and leaving aside for the moment the fac-
tor ^12ns̄&, we have

L15E
0

b

dt2E
0

t2
dt1g0s~t2t1!As~t12t2!g0s~t2!.

~21!

Fourier transformingL1 , we can write

L1~ ivn!5
1

b2g0s~ ivn!

3 (
v2 ,v l

As̄~ iv l !g0s~ iv2!I ~vn ,v l ,v2!, ~22!

with

I ~vn ,v l ,v2![E
0

b

dt2e
i ~v l2v2!t2E

0

t2
dt1e

i ~vn2v l !t1.

~23!

In order to evaluateI , we can consider five cases:
~A! v25v l5vn ,
~B! v25vnÞv l ,
~C! v25v lÞvn ,
~D! v2Þv l5vn ,
~E! v2Þv l andv lÞvn .
In case~A! both exponents in the integrand of Eq.~23!

vanish, and we have

I ~A!5E
0

b

dt1E
0

t1
dt25b2/2. ~24!

This gives the first contribution

L1
~A!~ ivn!5

1

2
g0s~ ivn!As̄~ ivn!g0s~ ivn!. ~25!

It is easy to show that for the next two cases, the results are

L1
~B!~ ivn!52g0s~ ivn!

1

b (
n lÞ0

As̄~ ivn1 in l !

in l
g0s~ ivn!

~26!

and

L1
~C!~ ivn!5g0s~ ivn!

1

b (
n lÞ0

As̄~ ivn1 in l !g0s~ ivn1 in l !

in l
,

~27!

while L1
(D)5L1

(E)50. In Fig. 3, we show the on-site dia-
grammatic representation ofL1 when one uses only contrac-
tions, introducing the bosonic Green’s functions that appear

FIG. 3. Diagrammatic representation ofL1( ivn) ~see text!.
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as wavy lines in the diagrams.15 Those diagrams can be
viewed as representing Eqs.~26! and ~27!, if the factors
1/in l appearing in these equations are associated with the
bosonic Green’s functions. Thus, with the above procedure
we have managed to separate the contribution corresponding
to n l50, obtaining a finite limit for this term. An equivalent
development can be made for all the other terms, similar in
form to G1 , that result from the Hubbard operator represen-
tation of the electron operators appearing in Eq.~16!.

C. Simple approximation

We now turn to a simplified treatment of the corrections
due to spin fluctuations that can be viewed as a kind ofstatic
approximation. It consists of neglecting all terms that in-
volve nonzero bosonic frequencies in the corrections to the
local irreducible Green’s function. In the example developed
above, we take only the termL1

(A) . We see then that the new
terms are similar in form to those that we had when only
equal spin contributions were considered, except for the fact
that the local effective field is that associated with electrons
of opposite spin. Another important difference is that there
can be mixed terms involving bothg0s andgs̄2 , since the
contractions that generate bosonic operators donot generate
the projectorsns or 12ns .

Restricting the analysis to the half-filling case, corrections
coming from terms that contain a bosonic operator of the
kind X02 present the same structure as obtained forXs̄s ,
except for an overall change of sign together with a change
of sign of the frequency argument of the local effective field.
Hence, they just double the terms coming from averages in-
volving Xs̄s since at half filling the equality
As(2 ivn)52As( ivn) is verified. The total change of
Gii s , with respect to the FK result to the first order inAs̄ is

DGii s5~g0s2gs̄2!As̄@^12ns̄&g0s2^ns̄&gs̄2#, ~28!

where we left implicit the frequency dependence, which is
the same for all the Green’s functions and the effective field
A.

When we go to higher orders, theeffective structureof the
diagrams in the static approximation is the same as in the FK
model, shown in Fig. 2, except that effective-field lines can
refer to both spin orientations. The series is summable, and
the single-site Green’s function, including the opposite-spin
contributions in the static approximation, can be written in
the form

Gii s~ ivn!5
12^ns̄&

ivn1m2As~ ivn!
@11a1~ ivn!#

1
^n↓&

ivn1m2U2As~ ivn!
@11a2~ ivn!#,

~29!

where

a1[
~g0s2gs̄2!As̄

12Asg0s2As̄~g0s1gs̄2!
~30!

and

a2[
~gs̄22g0s!As̄

12Asgs̄22As̄~g0s1gs̄2!
. ~31!

Notice that the corrections to the FK Green’s function vanish
for As̄50 ~by construction!, and also forU50 ~since in this
casegs̄25g0s), which is consistent with the fact that the
two spin species become independent in the noninteracting
limit.

After analytically continuingGii s( ivn)→Gii s(z), for an
arbitrary complex frequencyz, we can consider the retarded
casez5v1 i01, for realv, and calculate the single-particle
DOS. Results for the paramagnetic state are shown in Fig. 4,
in comparison with the corresponding ones for the FK
model. We have chosen two values ofU close to the critical
values for a metal-insulator transition for each solution. We
see that the transition occurs in the FK model for a substan-
tially lower value ofU, with respect to the Hubbard model in
the approximation that we are using. Nevertheless, the criti-
cal U obtained here for the Hubbard model is still low in
comparison with numerical calculations.7,11 One interesting
feature noticeable in Fig. 4 is the presence of a central peak
in the DOS for the Hubbard case in the small-U limit, which
never happens for the FK solution. However, despite the
presence of a central peak, this approximation does not re-
cover a Fermi-liquid state, except strictly atU50. Indeed,
one can see in Fig. 4 that the central peak presents some
structure: a shallow dip in the middle, which becomes more
pronounced, although narrower, asU is further reduced. For
very largeU the Hubbard and FK solutions are essentially
coincident.

V. THE ANTIFERROMAGNETIC STATE

Up to now our analysis of the Hubbard model~or its
simplified form, the FK model! has been restricted to the
paramagnetic phase. However, this phase is not expected to
be stable forn51 in the limit of strong Coulomb interaction,
or even for arbitrary interaction strength in the case of hy-
percubic lattices with nearest-neighbor hopping. In the large-
U limit it is well known22 that the Hubbard model reduces to
the AF Heisenberg model, with an effective exchange inter-

FIG. 4. Densities of states in the half-filled paramagnetic state
for the FK model~dashed! and for our simple approximation to the
Hubbard model~continuous!. The results are shown for two values
of U ~see text for details!. All energies are measured in units of
t* .
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action J5t2/U. In the weak coupling regime, one also ex-
pects an ordered state, although of a different nature: it is
driven by an instability of the paramagnetic state against the
formation of a spin-density wave of wave vector
Q5(p,p,p, . . . ). This is due to the nesting property of the
Fermi surface corresponding to a half-filled tight-binding
band in a hypercubic lattice with nearest-neighbor hopping
only.

In the search for an ordered phase of the half-filled Hub-
bard model, and still addressing the infinite dimension limit,
we will use a similar approach as for the paramagnetic case,
starting with the exact solution of the FK model, and adding
corrections due to the mobility of the other spin species
within the approximation introduced in the previous section.
The ordered phase of the FK model was studied by Brandt
and Mielsch.23 This phase is not exactly an antiferromagneti-
cally ordered state, but rather acheckerboardarrangement of
the nonmobile electrons, with the mobile ones occupying
preferably the other sublattice at low temperatures. However,
the asymmetry between the mobilities of the two spin species
yields an asymmetry in sublattice occupation, and the sublat-
tice magnetization does not saturate. Brandt and Mielsch
have chosen as order parameter the occupation number of
nonmobile electrons in the sublattice that they populate at
low temperature. Then, the critical temperature (Tc) is that
for which this occupation number comes down to 1/2. Ob-
viously,Tc depends on the strength of the interaction, which
allows for the construction of a phase-diagramTc3U.

In order to treat the AF state in the Hubbard model or the
checkerboard phase of the FK model, we divide the lattice in
two sublattices,A andB. Since we are dealing with a bipar-
tite lattice with nearest-neighbor hopping, the self-
consistency condition fulfilled by the single-site Green’s
functions for electrons of spins ~to be considered as the
mobile ones in the case of the FK model! reads

Gii s
a ~ ivn!5

j̄s

js
a F~ j̄s!, ~32!

whereF(x) is defined in Eq.~11!, a (5A or B) labels the
sublattice,

js
a51/Gii s

a 1As
a , ~33!

and j̄s[Ajs
Ajs

B. The form of the Green’s function is given
by Eqs.~15! or ~29!, depending on the model studied. The
completely self-consistent solution requires an evaluation of
the average number of electrons with each spin orientation
per site, which is achieved, in principle, by summing the
respective Green’s function over Matsubara’s frequency. In
the FK model though the nonmobile electron Green’s func-
tion is difficult to calculate, and their number is determined
directly from the partition function, which is exactly known.
The resulting relation is23

^ns̄
a&5H 11exp(

n
@ ln~ ivn1U/22As

a!

2 ln~ ivn2U/22As
a!#eivn0

1J 21

, ~34!

where we have explicitly used the value of the chemical
potential at half filling,m5U/2.

For the Hubbard model, the Green’s functions associated
with electrons of both spin orientations are equivalent in
form, and the determination of both occupation numbers by
the sum of the corresponding Green’s functions should give
the correct results. However, if we take this approach with
the approximation that we are employing here, wedo not
find an AF solution for any value of the interaction. To un-
derstand this we have to remember that our approximation
starts with the exact Green’s function of the FK model for a
given spin orientation, and adds corrections due to the mo-
bility of the opposite-spin electrons. Since these corrections
are only included in an approximate form, the full spin sym-
metry of the Hubbard model is not recovered. A more con-
sistent approach would be then to look at the changes in the
two ~nonsymmetrical! sublattice magnetizations introduced
by this partial dynamics of the previously nonmobile elec-
trons. The problem now is that we no longer have an exact
partition function from which we could determine^ns̄

a&. We
will then look for a relation equivalent to Eq.~34! by com-
paring the structure of the exact solution of the FK model
and that of the approximate one for the Hubbard case. First
we notice that Eq.~34! can be rewritten in the form

^ns̄
a&5H 11exp(

n
@ lng̃ 0s

21~ ivn!2 lng̃ s̄2
21~ ivn!#e

ivn0
1J 21

,

~35!

where g̃0s( ivn) and g̃s̄2( ivn) are nothing but the atomic
Green’s functionsg0s( ivn) andgs̄2( ivn) renormalized by
the presence of the effective fieldA. From Eq.~29!, we can
see that these Green’s functions are further renormalized by
factors coming from the inclusion of the dynamics of the
electrons with spins̄. If we keep the form of Eq.~35!, but
include the extra renormalization, we do obtain an ordered
solution. The phase diagram is shown in Fig. 5, in compari-

FIG. 5. Phase diagram showing the variation of the ordering
transition temperatureTc , with the interaction strengthU for both
the FK ~dashed! and Hubbard~continuous! models. The dot-dashed
line denotes the region where the results of the approximation con-
sidered for the Hubbard model are not reliable, due to numerical
problems.
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son with the one for the FK model. The part represented by
a dot-dashed line is somewhat ‘‘guessed’’ to match the exact
point at the origin, because we have problems of conver-
gence of the self-consistency process in this region of the
phase diagram. This is consistent with the fact that this ap-
proximation becomes worse in the region of weak interac-
tion, as we already noted in connection to the DOS.

We remark on the fact that the phase diagram obtained
from the approximate solution of the Hubbard model differs
from the results of numerical solutions7,12 in a fundamental
way: here, the FK solution appears as an upper limit for the
Hubbard one, i.e., critical temperatures are smaller in the
Hubbard case for equal values ofU, while the opposite is
verified in quantum Monte Carlo calculations. Presently, we
do not know the origin of this discrepancy. In principle, one
would be tempted to conclude that our approximation is too
crude to give even qualitatively reliable results. However,
considering that we started from the exact solution of the FK
model, it seems likely that the mobility of the previously
frozen electrons should help in unstabilizing the ordered
state. If this is true, the transition temperatures for the FK
model should indeed be an upper limit for those of the Hub-
bard case.

VI. CONCLUSIONS

We have studied the infinite dimension limit of the Hub-
bard model and its simplified version, the Falicov-Kimball
model, by means of perturbation theory around the atomic
limit. This method provides a simple way of rederiving the
exact mapping of the model to a single-site problem, in the
presence of an effective field and subject to a self-
consistency condition that relates it to the lattice problem.
Furthermore, the method provides an alternative approach
for studying this single-site problem by means of a perturba-
tion series in the effective local field. We have shown that
this series is exactly summable for the FK model, reproduc-
ing results previously obtained by Brandt and Mielsch.4,23

Based on this, we proposed an approach to the study of the
full Hubbard model ind5`: it consists in starting with the
exact Green’s function of the FK model for electrons with a
given spin orientation, and adding corrections due to the dy-
namics of the opposite-spin electrons. Since the problem is
not exactly solvable, some approximation must be worked

out in extracting these corrections from the formal series in
the effective field.

We have exemplified this method here with a simple ap-
proximation that keeps only the static~zero frequency! con-
tribution from atomic excitations involving spin-flip or
charge-pair fluctuations. In what refers to the single-particle
DOS in the paramagnetic phase, our approximate solution
gives the correct large-U limit, but fails in the weak-coupling
regime. Nevertheless, this failure is not dramatic, since the
qualitatively expected structure of the DOS is observed: a
central peak, and the two satellite precursors of the Hubbard
subbands. The failure resides in the detailed shape of the
central peak, and the fact that it is not pinned to the nonin-
teracting DOS at the Fermi level. This is a signature of a
breakdown of the Fermi-liquid state for any nonzeroU,
which is consistent with the fact that the spin symmetry of
the Hubbard model is not fully recovered in this simple ap-
proximation. This asymmetry is clearly seen in the fact that
the ‘‘antiferromagnetic’’ phase is qualitatively similar to the
checkerboard phase of the FK model. From the comparison
between phase diagrams for the two models, we raised the
interesting question of whether or not the critical tempera-
tures for the FK model should provide an upper limit to those
of the Hubbard one for equal interaction strength, as ob-
tained here in contrast to quantum Monte Carlo results.

Despite the deficiencies of the approximation that we
have discussed, we believe that the method outlined above
can be an interesting alternative or complement to weak-
coupling approaches to the infinite dimensional Hubbard
model, as far as analytical methods are concerned. In our
opinion, the main point to be explored in the future is a better
way of dealing with the intravertex diagrammatics. There is
some room for choice in applying the generalized Wick’s
theorem for Hubbard operators. Different priority rules lead
to different diagrammatic structures, and better suited
schemes may be expected to show up in future explorations
of this issue.
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