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Tight-binding treatment of the Hubbard model in infinite dimensions
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We discuss the infinite dimension limit of the Hubbard model by means of a perturbative expansion of the
one-particle Green'’s function around the atomic limit. The diagrammatic structure is simplified in this limit,
allowing a formal resummation that reproduces a previously proposed mapping to a single-site mean-field
problem. The method provides a natural way of addressing this effective problem by means of a perturbative
expansion in the local mean field. This gives the correct exact result for the Falicov-Kimball model, which is
used as a starting point to study the Hubbard cg3@163-18206)04727-3

I. INTRODUCTION spin symmetry of the Hubbard model is not completely re-
covered. The phase diagram that we obtain differs from that

The limit of infinite spatial dimensionality introduced by obtained by numerical methods? in that the critical tem-
Metzner and Vollhardthas been very useful in understand- peratures are always smaller than those of the FK model for
ing strongly correlated fermion systems. In this limit, thethe same values df). Indeed, we argue that this is what
Hubbard modél can be exactly mapped into a single-site should actually be expected on physical grounds.
problem in the presence of an effective field that describes its
connection to the rest of the lattiddn contrast to localized Il. PERTURBATIVE CALCULATION
spin models, for which the mean-field solution is exact in
infinite dimensions, an exact solution of the fermionic effec-
tive problem has not yet been found, exéépfor the
Falicov-Kimball (FK) model® that can be viewed as a sim-
plified version of the problem. The full Hubbard model has
been addressed by numerical metHo#sor a combination H=—uX n,+UX nyn —t> clec,, (@
of those and weak-coupling perturbation thebry? An al- io i (if)o
ternative approach, based ofistrong-coupling perturbation i the usual notation. The first two terms on the right hand
expansion of the one-particle Green’s function around thjde of Eq.(1) will be considered as the unperturbed Hamil-
atomic limit is discussed here. Within this approach, theignjan, while the last one will be taken as the perturbation.
structure of the diagrammatic representation of the perturbaye will be interested in the temperature dependent one-
tion series is greatly simplified in the infinite dimension particle Green'’s function,
limit. From a formal point of view, one easily recovers the
mapping to a single-site effective problem. In the case of the Gijo(7)= _<'A|'Cig( T)CJTU(O»- )

FK model, the resulting equations can be completely solved ) ] ] ]

to give the exact site-diagonal single-particle Green’s funcA .dlagrammatlc represgntatlon of the perturbation series for
tion G; (i w,)), reproducing a solution previously obtained by this function has been introduced by Met_zﬁ‘éAfter Fou-
Brandt and Mielsch.We then use this as a starting point for fi€r transforming in space and imaginary time, we can write
the study of the complete Hubbard model, constructing ap@ Dyson-like equatiof?

fpurgz:(;irggtgf fr?leug?(n;:geléddmg corrections to the Green'’s Gro(i07) = Guo (i 00) + Gieo (i 1) 4G (i 1), 3)

In this paper, we discuss the general ideas behind thigherew,=(2n+1)#T (integern) is a fermionic Matsubara
method, and exemplify their applicability by constructing afrequency,g, is the Fourier transform of the hopping term,
simple approximate solution of the Hubbard model in infiniteand G, ,(iw,) is the irreducible part of the one-particle
dimensions. For the paramagnetic case this approximatioGreen’s functiont® We can, then, formally write
besides reproducing correctly the expected behavior of the
single-particle density of statd®O9) in the larged limit, 1
yields a three-peaked DOS for small in agreement with [Goiwn) ] t—e
weak-coupling and numerical calculations, although devia-
tions from Fermi-liquid behavior are still observed. As far as  The irreducible Green'’s functiog, (i ,) has a diagram-
the physically more relevant antiferromagnethd) state is matic representatidn in which the vertices are associated
concerned, our simple approximation reveals a strongvith cumulant averages of electron creation and annihilation
memory of the FK limit from which it is derived, and the operators at the same site. These diagraméeuciblein

We consider the Hubbard model with nearest-neighbor
hopping on ad-dimensional hypercubic latticé, which is
described by the Hamiltonian

Gioliwn)= 4
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the sense that they cannot be separated in two disconnected

parts by the process of cutting a single hopping line. The

explicitly local diagrams of this function, i. e., those with a

single external vertex, can also be interpreted as the diagram- ~"% * + + + oo
matic representation of the site-diagonal Green’s function

Gii,(iw,), with an important difference: in the cumulant

average associated with the external vertex, we have to take

into account only the terms in which the two external opera- FIG. 1. Diagrammatic series representing the site-diagonal
tors appear in the same average. Equivalently, the externareen’s functionG;;,, in d=.

vertex can be considered as a simgh®ncumulant local

average, and the sum over internal sites nmasinclude the _ , _

one corresponding to the external vertex. The local averages A “’m)EE tii Go (i om)t

can be calculated by rewriting the fermion operators in terms !

of Hubbard operator$'” and introducing an intravertex , _ _

diagrammatics® This provides, in principle, a direct way of +Z tiGo(lom)t Golom)tyi+ ..., (6)
calculating the complete local Green'’s function. On the other !

hand, combining Eq. (4 the identity G; (iw,) where the sums are restricted to sites other thé&m avoid

=(1/N)Z, Gy, (iw,), and we can write having a cumulant average on this site. It is straightforward
to show that®
1 1 . A (i o)
(o) = — A (iwg)=——=— - , @
Giollon = \% oo =ey O om) = T A o Goliom)

where

If one calculates directhG;; ,(iw,) as commented above, _ 1
Eg. (5) can be viewed as a self-consistency condition to be A(iom) == £2G,(iwm). (8)

fulfilled. This is a key point in the general strategy of per- Nk

forming renormalizations of the local Green’s function, andThus,

will be particularly useful in the analysis of the infinite di- IR

mension limit, as we will see in the next sections. As=G,"~Gjs- 9
If we use this equation to eliminatg,, Eq.(5) can be writ-
ten as

Ill. THE INFINITE DIMENSION LIMIT
1
When generalizing the Hubbard model to a lattice of in- G””:NE ,1; (10
.. . . . . k G +A0'_8k
finite dimensionality one has to choose an appropriate scal- o

ing of the hopping amplitudes in order to preserve a finiteSince thek dependence is restricted to the tight-binding en-
energy per particle. This scaling has been préven be ergiese,, we can replace the sum ovierby an integral in
dt?= const. Each unconstrained sum over internal sites in @nergy in the form
diagram gives a factor of order (in hypercubic lattices the
coordination number ig=2d). However, topological con- G ZJ de Po(e) =F(G 1+ A) (11)
straints of the diagrams may severely reduce this multiplic- o G;(HA(,—S fo = =rom
e e 1 S0 () s I Lol densy ofsttesc
yze. on oughly ! nerel 'Bor a hypercubic lattice, and choosingdtd=t*2=1,
of each step in the first half of thealk, yielding a factor N N nr ) .
4. while the multiplicity factor of th d half is of po(e) = (L) exp(&?).r With this choice, from now on all
' plicity factor of the second hall1s ot an ,q energies will be expressed in unitstdf
olrder pf one to ma.tc.h the constraint of retL‘I)rnlng _to the initial From the diagrams of Fig. 1, we can see tHgtdescribes
site with the remaining steps. The factod® coming from 0 otion of an electron through tserrounding mediunof
the summation over internal sites exactly compensates thgiej je. the rest of the lattice. Its effect can be viewed as
factor (14/d)? associated with the hopping amplitudes, andequivalent to that of a time-dependdield coupling the lat-
the simple loops are d(d %). With this kind of reasoning it  tice sitei to a reservoir of particle®r rather two reservoirs,
is possible to show that only the site-diagonal part of thepne for each spin speciesThus, the problem has been re-
irreducible Green'’s functionG,(iw,)=(1/N)Z,G¢,(iw,)  duced to an effectivsingle-siteHubbard model in the pres-
survives in the limitd=<c, and only diagrams with indepen- ence of the fields4,, and subject to the self-consistency
dent loops are nonvanishing. condition(11). The single-site problem can be thought of as
From the above discussion, we can conclude that the gepeing described by the effective actfon
eral structure of the diagrams contributing & (i w,,) is
that depicted in Fig._ 1. A!I the lines that go in and out pf the S:$&+ U J'BdTnT(T)nl(T), (12
external vertex are identical, and represent the quantity 0
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Whereé‘j‘, the action for noninteracting electrons in the pres-

ence of an effective field, is given by

S?4= - jﬁdrfﬁdT'E CL(T)é;l(T— 7)e, (1),
0 0 T
(13
with

é;l(r— T)=(0,+u)d(r—7")—A(7—7"). (14
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FIG. 2. Generic diagram dg;;,, for the FK model ind= .

the local averages. Thus, the general structure of the intra-
vertex diagrams is as shown in Fig. 2. The dashed lines rep-

The method of perturbation around the atomic limit notresent any of the two possible contractions between the Hub-
only reproduces the exact mapping of the infinite dimen-bard operators that compose a fermionic one. They give rise
sional problem to a single-site effective one, but also proto factorsg,(iw,)=1/(iw,—¢,), Wheree, are the single-

vides a natural way of analyzing this effective problem bysite one-particle excitation energies,

means of an expansion in powers of the fields. This
point will be further explored in what follows.

IV. PERTURBATION APPROACH
TO THE SINGLE-SITE PROBLEM

As mentioned before, our method yields an approach for

solving the single-site effective probleth2—14 as a pertur-
bation series in the fieldsl, (see Fig. 1 Starting with the
unperturbed local Green’s function{Tc,( T)CZ(O))O, each

which can be
gg1=—p ande ,=—u+U. These factors are also multi-
plied by the projectors (£ n ) orn,, respectively. Since the
latter are orthogonal projectors, only powers of the same
g, can appear in each term. This gives two independent
power seriegin go; andg,,) that can be summed up to give

1—(n}) (n;)
ontu—Alio,) io,+u—U—-A(liw,)’
(15

Gm(iwn):i

order in perturbation theory introduces a product of theWwhere it is implicit thatA(iwn) acts only on spin-up elec-

type A,,l(rl—ri)cf,l(rl)c(,l(ri), so that, in general,

one has to calculate averages of the for
(e} (T1)Cq,(T1)E] (72)C4(75) o For this we use the
representation ¢,=Xgy,+0X53, where the Hubbard

operator®® are defined aX,z=|a)(Bl, in the basis of the
four eigenvectors representing an empty sj@®Y, a singly
occupied site with both possible spin orientatiohs)& | 1)
or |])), and a doubly occupied sit¢2)). In its initial form,

trons. This site-diagonal Green’s function, which has the
same form as obtained from tkeattering correctiorierm of

the Hubbard 11l approximation for the Hubbard mod&te-
produces the exact solution of the FK model obtained by
Brandt and Mielsch.They arrived at this form following an
argument based on the fact that the self-energy depends on
the kinetic term only througl®;; . Here, we have arrived at
the same result by means of an exact summation of the per-
turbation series in the effective field. In the more general

each average involves only the “fermionic” Hubbard opera-case of the Hubbard model, even if it remains true that the

tors appearing in the representationcgfor ¢! . The direct
contraction(in the sense of Wick’s theorefh between the

self-energf’ is site diagonal ind=%« and depends on the
kinetic term only through the local Green'’s functioffsr

two external operators must be excluded, since it is automatboth spin orientations the latter no longer have the simple
cally taken into account by the renormalization of the averform of Eq. (15).

age number of electrons in the atomic Green’s functfon.

When all operators correspond to the same spay, o)

B. Inclusion of local spin fluctuations

contractions can only generate the opposite-spin projectors

nyor 1—ng,

which act asc numbers with respect to the

We now go back to the complete Hubbard model, allow-

remaining operators. Thus, the whole process is exactly thfd for the hopping of electrons of both spin orientations.

same as in usual many-body treatments, except for a fin
average value of the relevant projector. This allows for th

glVhen operators corresponding to different spins are present,
dheir contractions give rise to “bosonic” Hubbard operators

exact solution of a simplified version of the model, as we®f the form X (spin flip of a singly occupied siteor Xo,

discuss next.

A. The Falicov-Kimball model

Although originally proposed in a different contéxthe

(annihilation of a doubly occupied sjtand their Hermitian
conjugates. In principle, in order to make full use of well
known many-body methods, these operators should be
treated in equal footing with respect to the fermionic ones. In
order to eliminate the bosonic operator as soon as possible,

Falicov-Kimball model can be viewed as a simplified Hub-we choose as a priority rule that contractidirs this case
bard model in which only electrons with a given spin orien-defined by the commutatomust be started by a bosonlike
tation (say, spin-up can hop through the lattice. The other operator. In contrast, when only fermionlike operators are
electrons(spin-down have frozen dynamics. However, they present in an average, we choose as a priority rule that con-
are thermodynamically coupled to the moving electrons, andractions should start with an annihilation operétor.

their number per lattice site is natpriori fixed. The entire

There are, however, some inconveniences in using the

analysis developed for the Hubbard model holds here, butbove rules. For instance, the operaxgr, commutes with
the single-site effective problem is simplified by the fact thatthe unperturbed Hamiltonian, due to the symmetry of the
only electron operators with the same spin index appear itubbard model under spin inversion. Similarly, at half filling
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the particle-hole symmetry of the model cau¥gs to com-

mute with the unperturbed Hamiltonian too. Then, the

Green’s functions associated with these operatarsl ap- .

pearing as a result of their contractipnsave the form Vowd

1l/iv,, diverging when the bosonic Matsubara frequency w

vp,=2n7T is equal to zero. A possible way to circumvent

this problem is to introduce an external magnetic field to

break the spin inversion symmetry, and to work at a generic

filling n, which fixes the chemical potential. However,

results at zero-field and/or for the half-filling case involve a .

delicate limiting process, at least one that is very difficult to

achieve in a practical calculatidd.On the other hand, a “
pedestrianapproach to time-ordered averages would be to

calculate the products in all possible orderings. The main

disadvantage of this procedure is that it produces a multiplic-

ity of constraints for the integrations over internal times. FIG. 3. Diagrammatic representation &f(i w,) (see text
Here, we have chosen a mixed approach: we use contractions

when only fermionlike operators are present, but work out alFFourier transforming\;, we can write

possible products whenever a bosonlike operator appears. In

general, only a very limited number of time orderings are (iw )=ig (iwy)
nonzero, which are easy to figure out due to the simple prod/—\l T g2 =0at N
uct rule for Hubbard operatorsX(,gX.,= 6zX,,)-

We will exemplify this procedure by evaluating one of the % 2 A1 ©))Gog(i ) (0,0 ,05), (22)
terms contributing to the four-operator average, wgio 7

T 770, 7)=(Te (D m)cstr)ch(0)), (16 Wit

that appears in the one-loop diagram of Fig. 1. When we (wp o uwZ)EJﬁdTZei(wl_wZ)TZJTszlei(wn_wl)Tl'
rewrite this in terms of Hubbard operators, one of the terms 0 0

is (23

Flzﬁ_xoa( 7) X50( 1) Xo5t 72) X 50(0)). (17) In order to evaluatd, we can consider five cases:
. _ _ (A) w= 0=y,

After the first contractions, led b¥,,(7), and remembering (B) wy=w,# o,

not to take into account the direct contraction with the other (C) w,=w,# w,,

external operatofat time Q, we have (D) wr# w=w,,
- (BE) wy# w; and o, # w,, .
I'1=—goo( 7= 7)(TXGo(71) X5t 72) X 50(0) ). (18) In case(A) both exponents in the integrand of E§3)

At this stage there is a bosonic operator in the average, an\ﬁamSh’ and we have

we have to write down explicitly all possible time-ordered B "

products. Actually, sincer; and 7, are integrated between I(A)=f drlf dr,=B?/2. (24
0 and B, the only nonzero product is 0 0

Xoo{ 72) X56(71)X50(0), with the constraint 7,>7,>0.  Thjs gives the first contribution

Now we use the fact thaX is time independent to elimi-

nate it by performing the product of the first two operators. (A 1 ] ] i

This gives A" (iwn) = 5 ool wn) Agtiwn)Gos(iwn). (29

1= — oo (7— 71) 0( 12— 71){TX0s(72)X,0(0)), (19)  Itis easy to show that for the next two cases, the results are

where6(7,— 7;) is the step function, and again we used the ) _ 1 Agtio,+iv) _

fact that7,>0 to reinsert the time-ordering operator in the A1 (iwn)=—go,(iwn)7 2;;0 — 5,0 Yosliwn)

remaining average. This allows us to write, finally, ! ! (26)
I'1=00o(7=71) 8(72= 71)Gos(72)(1—N5). (200  and

Calling A; the contribution of this term to the irreducible 1 Atiwn+iv))dog(iwn i)

Green’s function, and leaving aside for the moment the fac-A(lc)(iwn)zg%(iwn)—z

tor (1-n;), we have Bnzo ad @7
B ) i (D) A (B) i -Si ia-
Alzf def d71G00(7— 71) Ay (71— ) Gou(T2). while Al_ A7=0. Ir_1 Fig. 3, we show the on-site dia
0 0 grammatic representation df, when one uses only contrac-

(21 tions, introducing the bosonic Green’s functions that appear
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as wavy lines in the diagrant3.Those diagrams can be o0 , , 050
viewed as representing Eq&6) and (27), if the factors
1/iv, appearing in these equations are associated with the oao |
bosonic Green’s functions. Thus, with the above procedure ' NN
we have managed to separate the contribution corresponding R
to v,=0, obtaining a finite limit for this term. An equivalent gor i RAY o8
development can be made for all the other terms, similar in i
form toI';, that result from the Hubbard operator represen- 020

tation of the electron operators appearing in Ed). i

U=1.6 u=2.6

C. Simple approximation / i v

We now turn to a simplified treatment of the corrections RECIEE 3;0 30
due to spin fluctuations that can be viewed as a kinstatic
approximation It consists of neglecting all terms that in- FIG. 4. Densities of states in the half-filled paramagnetic state
volve nonzero bosonic frequencies in the corrections to théor the FK model(dashediand for our simple approximation to the
local irreducible Green’s function. In the example developedHubbard modelcontinuous. The results are shown for two values
above, we take only the term(lA). We see then that the new ©of U (see text for details All energies are measured in units of
terms are similar in form to those that we had when onlyt*-
equal spin contributions were considered, except for the fact
that the local effective field is that associated with electrons (952~ Y0,) Az
of opposite spin. Another important difference is that there as - A g A o)
can be mixed terms involving botly, andgy3, since the 0952~ Astdos T 9o2)
contractions that generate bosonic operatorsiatgenerate  Notice that the corrections to the FK Green’s function vanish
the projectorsy, or 1-n,. - . for Az=0 (by constructioh, and also fotJ =0 (since in this
Restricting the analysis to thg half—fllllng. case, CO"eCt'OnscasegE:go(,), which is consistent with the fact that the
coming from terms that contain a bosonic operator of thg,,, gpin species become independent in the noninteracting
kind Xy, present the same structure as obtained Xgt;, limit.
except for an overall change of sign together with a chgnge After analytically continuingG; (i ;) — Gi;,(2), for an
of sign of the'frequency argument of thg local effective f'elc,j'arbitrary complex frequencg, we can consider the retarded
Hence, they just QOubIe the terms coming from averages INgagez=»+i0*, for realw, and calculate the single-particle
volving Xz, since at half filing the equality pog. Results for the paramagnetic state are shown in Fig. 4,
Ag(—iwn)=—A,(iw,) is verified. The total change of j, comparison with the corresponding ones for the FK
Gii, with respect to the FK result to the first orderdy-is el We have chosen two valuestfclose to the critical
values for a metal-insulator transition for each solution. We
AGiioc=(9or~902) Aol (1~ N5)G0,—(N72902], (28)  gee that the transition occurs in the FK model for a substan-

where we left implicit the frequency dependence, which istially lower value ofU, with respect to the Hubbard model in

the same for all the Green’s functions and the effective field€ @pproximation that we are using. Nevertheless, the criti-
A. cal U obtained here for the Hubbard model is still low in
When we go to higher orders, téfective structuref the ~ Comparison with numerical calculatioft$! One interesting

diagrams in the static approximation is the same as in the Fi€ature noticeable in Fig. 4 is the presence of a central peak
model, shown in Fig. 2, except that effective-field lines canin the DOS for the Hubbard case in the smiallimit, which

refer to both spin orientations. The series is summable, anB€Ver happens for the FK solution. However, despite the

the single-site Green’s function, including the opposite-spirPT€Sence of a central peak, this approximation does not re-

contributions in the static approximation, can be written incover a Fermi-liquid state, except strictly &t=0. Indeed,
one can see in Fig. 4 that the central peak presents some

(31)

the form structure: a shallow dip in the middle, which becomes more
1—(n3) pronounced, although narrower, @sis further reduced. For
Giioiw,) == - [1+ai(iow,)] very largeU the Hubbard and FK solutions are essentially
|(1)n+/,l,_.,40.(|(1)n) FA A
coincident.
+ {ny) [1+as(ion)]
o+ u—U—-A (iw,) 20 @n) 1y V. THE ANTIFERROMAGNETIC STATE
(29 Up to now our analysis of the Hubbard modelr its
simplified form, the FK modeglhas been restricted to the
where paramagnetic phase. However, this phase is not expected to
be stable fon=1 in the limit of strong Coulomb interaction,
_ (Yoo~ 9o2) A 30 or even for arbitrary interaction strength in the case of hy-
a1= 1- A0, — Azt You+ Uo3) (30 percubic lattices with nearest-neighbor hopping. In the large-

U limit it is well known?? that the Hubbard model reduces to
and the AF Heisenberg model, with an effective exchange inter-
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actionJ=t?/U. In the weak coupling regime, one also ex- 0.08 '
pects an ordered state, although of a different nature: it is
driven by an instability of the paramagnetic state against the
formation of a spin-density wave of wave vector ;
Q=(m,m,m,...). This is due to the nesting property of the 0.08 r N

Fermi surface corresponding to a half-filled tight-binding
band in a hypercubic lattice with nearest-neighbor hopping
0.04
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In the search for an ordered phase of the half-filled Hub-
bard model, and still addressing the infinite dimension limit,
we will use a similar approach as for the paramagnetic case,
starting with the exact solution of the FK model, and adding 0.02 -
corrections due to the mobility of the other spin species
within the approximation introduced in the previous section.

The ordered phase of the FK model was studied by Brandt o
and Mielsch?® This phase is not exactly an antiferromagneti- 0
cally ordered state, but rathecheckerboardarrangement of

the nonmobile electrons, with the mobile ones occupying g, 5. phase diagram showing the variation of the ordering

preferably the other sublattice at low temperatures. Howevefransition temperaturg, , with the interaction strengtl for both

the asymmetry between the mobilities of the two spin speciege Fk (dashedland Hubbardcontinuou models. The dot-dashed
yields an asymmetry in sublattice occupation, and the sublaiime denotes the region where the results of the approximation con-
tice magnetization does not saturate. Brandt and MielscBidered for the Hubbard model are not reliable, due to numerical
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have chosen as order parameter the occupation number pfoblems.

nonmobile electrons in the sublattice that they populate at

low temperature. Then, the critical temperatulig)(is that ~ where we have explicitly used the value of the chemical
for which this occupation number comes down to 1/2. Ob-potential at half filling,u=U/2.

viously, T, depends on the strength of the interaction, which  For the Hubbard model, the Green’s functions associated
allows for the construction of a phase-diagragXx U. with electrons of both spin orientations are equivalent in

In order to treat the AF state in the Hubbard model or theform, and the determination of both occupation numbers by

checkerboard phase of the FK model, we divide the lattice inhe sum of the corresponding Green’s functions should give

two sublatticesA andB. Since we are dealing with a bipar- the correct results. However, if we take this approach with

the self-the approximation that we are employing here, @ not

tite lattice with nearest-neighbor
functions for electrons of spilr (to be considered as the derstand this we have to remember that our approximation
starts with the exact Green’s function of the FK model for a
given spin orientation, and adds corrections due to the mo-
g_ _ bility of the opposite-spin electrons. Since these corrections
ZF(&,), (320  are only included in an approximate form, the full spin sym-
& metry of the Hubbard model is not recovered. A more con-

) . ) sistent approach would be then to look at the changes in the
whereF(x) is defined in Eq(11), a (=A or B) labels the {5 (nonsymmetrical sublattice magnetizations introduced
sublattice, by this partial dynamics of the previously nonmobile elec-
trons. The problem now is that we no longer have an exact

(33)  partition function from which we could determifa%). We
will then look for a relation equivalent to E§34) by com-

£2=1/G],+ A2,

andg_oz\/gﬁgﬁ. The form of the Green’s function is given paring the structure of the exact solution of the FK model
by Egs.(15) or (29), depending on the model studied. The and that of the approximate one for the Hubbard case. First

hopping,
consistency condition fulfilled by the single-site Green’sfind an AF solution for any value of the interaction. To un-

mobile ones in the case of the FK modetads

Gi (iop)=

iio

-1

completely self-consistent solution requires an evaluation ofve notice that Eq(34) can be rewritten in the form
the average number of electrons with each spin orientation

per site, which is achieved, in principle, by summing the, , __1. __1. (0.0"
respective Green’s function over Matsubara’s frequency. I o) = 1+exp§ [ING o (i wn) = InG 75 (i wp) e

the FK model though the nonmobile electron Green’s func- (35)

tion is difficult to calculate, and their number is determined

directly from the partition function, which is exactly known. wherego,(iw,) and g-(iw,) are nothing but the atomic

Green’s functiong)g,,(iw,) and gz(iw,) renormalized by

the presence of the effective field. From Eq.(29), we can

The resulting relation S
see that these Green’s functions are further renormalized by
(n%)= 1+exp2 [In(i w,+U/2— A9) factors coming from the inclusion of the dynamics of the
n electrons with spinr. If we keep the form of Eq(35), but
- include the extra renormalization, we do obtain an ordered
solution. The phase diagram is shown in Fig. 5, in compari-

—In(iw,—U/2— A% el } (34)
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son with the one for the FK model. The part represented byut in extracting these corrections from the formal series in
a dot-dashed line is somewhat “guessed” to match the exadhe effective field.
point at the origin, because we have problems of conver- We have exemplified this method here with a simple ap-
gence of the self-consistency process in this region of th@roximation that keeps only the statiwero frequencycon-
phase diagram. This is consistent with the fact that this aptribution from atomic excitations involving spin-flip or
proximation becomes worse in the region of weak interaccharge-pair fluctuations. In what refers to the single-particle
tion, as we already noted in connection to the DOS. DOS in the paramagnetic phase, our approximate solution
We remark on the fact that the phase diagram obtaine8iVeS the correct IargéHln_mt, b_ut fa|I_s in the weak?cou.pllng
from the approximate solution of the Hubbard model differs’edime. Nevertheless, this failure is not dramatic, since the
from the results of numerical solutioh€ in a fundamental dualitatively expected structure of the DOS is observed: a

way: here, the FK solution appears as an upper limit for thé:entral peak, and 'ghe two s_atellifte precursors of the Hubbard
Hu}t;bard one, i.e., critical t(frlra]peratures argpsmaller in th(§UbbandS' The failure resides in the detalled shape of the

Hubbard for  val gf while th e | Central peak, and the fact that it is not pinned to the nonin-
ubbard case for equal values ol € the opposite 1S teracting DOS at the Fermi level. This is a signature of a
verified in quantum Monte Carlo calculations. Presently, W& eakdown of the Fermi-liquid state for any nonzeo

do not know the origin of this discrepancy. In principle, onenich s consistent with the fact that the spin symmetry of
would be tempted to conclude that our approximation is 10Qpe Hyubbard model is not fully recovered in this simple ap-

crude to give even qualitatively reliable results. However,,.qyimation. This asymmetry is clearly seen in the fact that
considering that we started from the exact solution of the Fihe “antiferromagnetic” phase is qualitatively similar to the
model, it seems likely that the mobility of the previously checkerboard phase of the FK model. From the comparison
frozen electrons should help in unstabilizing the ordered,gnyeen phase diagrams for the two models, we raised the
state. If this is true, the transition temperatures for the FKiyeresting question of whether or not the critical tempera-
model should indeed be an upper limit for those of the Hubyres for the FK model should provide an upper limit to those
bard case. of the Hubbard one for equal interaction strength, as ob-
tained here in contrast to quantum Monte Carlo results.

VI. CONCLUSIONS Despite the deficiencies of the approximation that we
p- have discussed, we believe that the method outlined above
can be an interesting alternative or complement to weak-
(goupling approaches to the infinite dimensional Hubbard

limit. This method provides a simple way of rederiving the qugl, as far as analytlcal methods are concerned. In our
exact mapping of the model to a single-site problem, in the’P'M'oM: the main point to be explored in the future is a better
presence of an effective field and subject to é self.vay of dealing with the intravertex diagrammatics. There is
consistency condition that relates it to the lattice problem.some foom for choice in applylng the gengrghzed Wick's
Furthermore, the method provides an alternative aIOIOroaCWeorem for Hubbard operators. Different priority rules lead

for studying this single-site problem by means of a perturba:[0 different diagrammatic structures, . and better swj[ed
chemes may be expected to show up in future explorations

tion series in the effective local field. We have shown that>c" €M
this series is exactly summable for the FK model, reproducpf this issue.
ing results previously obtained by Brandt and Miel§¢R.
Based on this, we proposed an approach to the study of the

full Hubbard model ind=<: it consists in starting with the We acknowledge support by the Brazilian agencies Con-
exact Green’s function of the FK model for electrons with aselho Nacional de Desenvolvimento Cidicb e Tecno-
given spin orientation, and adding corrections due to the dykogico (CNPg, Financiadora de Estudos e ProjetBfNEP),
namics of the opposite-spin electrons. Since the problem iand Fundga de Amparo aPesquisa do Estado do Rio

not exactly solvable, some approximation must be workedsrande do Su(FAPERGS.

We have studied the infinite dimension limit of the Hu
bard model and its simplified version, the Falicov-Kimball
model, by means of perturbation theory around the atomi
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