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We discuss criteria for determining the optimal nesting vector from the maximum of the zero-field suscep-
tibility for imperfectly nested Fermi surfaces. In particular, we present results for some of the bis~ethylene-
dithio! tetrathiafulvalene charge-transfer salts, a family of quasi-two-dimensional organic conductors. The
criteria proposed gives better nesting than the previous criteria that has been applied to the tetramethyltetra-
selenafulvalene family, in which the nesting vector translates a point of inflection on the Fermi surface. We
discuss the nesting vectors deduced, and consequences for Fermi-surface reconstruction and low-temperature
behavior.@S0163-1829~96!01648-7#

I. INTRODUCTION

In the search for solids with interesting conducting prop-
erties one of the most fruitful approaches has been the syn-
thesis and study of organic charge-transfer salts.1 Such salts
tend to have highly anisotropic conducting properties, since
the molecular orbitals responsible for conduction are aniso-
tropic. The first class extensively studied, tetrathiafulvalene-
tetracyano-p-quinodimethane~TTF-TCNQ!,2 has electronic
properties determined by a quasi-one-dimensional herring-
bone structure. The properties of low-dimensional metals are
dominated by instabilities toward formation of spin- or
charge-density waves that compete with superconducting in-
stabilities. To improve the conducting properties at low tem-
perature, attempts were made to develop structures with
higher dimensionality in order to avoid such instabilities.
The family of Bechgaard salts3 ~TMTSF! 2X retain open
Fermi surfaces but present larger transverse couplings. Some
of the compounds are superconducting, and there have been
extensive studies of the competition between density-wave
and superconducting instabilities as a function of applied
pressure and magnetic field.4,5

Another class of metallic charge-transfer salts is based on
the molecule known as BEDT-TTF or ET~Ref. 6! @bis-
ethylenedithio~tetrathiafulvalene!#. Typically, salts based on
this molecule present a stacked-layer structure. Observations
of Shubnikov–de Haas and de Haas–van Alphen oscillations
have given information on the Fermi-surface properties
which are in good agreement with band-structure calcula-
tions based on the overlap of the molecularp orbitals. Such
extended Hu¨ckel calculations7–9 predict, in some cases such
as thea phases of~BEDT-TTF! 2X, Fermi surfaces which
have an open electron part and a closed holelike pocket.
Frequently the open part is referred to asquasi-one-
dimensional, as it leads to open orbits in an applied magnetic
field. In fact the Fermi surfaces calculated are not only far
from parallel but depart substantially from the sinusoidal
form which comes from weakly coupled chains. Neverthe-
less, from the geometry it is clear that there is an approxi-
mate nesting which will give enhanced charge or spin sus-
ceptibilities. Consistent with this, some of the compounds
suffer transitions to magnetically ordered states at low tem-

peratures, while others become superconducting. So far, to
our knowledge, there has not been a systematic study to ex-
plain what determines the low-temperature behavior, and it is
part of the aim of this paper to explore this issue. We will be
mostly concerned with the behavior in zero external mag-
netic field, but we will discuss its relevance to field-
dependent phenomena, since studies in finite magnetic field
give the most direct information on the low-temperature
electronic structure.

II. NESTING CRITERIA

Within a Stoner-type theory of electronic instability, the
Q vector at low temperature is determined by the maximum
of the noninteracting susceptibility
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whereV is the volume of the first Brillouin zone,n(e) is the
Fermi-Dirac distribution function~which becomes a step
function at zero temperature!, and ea(k) is the dispersion
relation of the banda. In BEDT-TTF salts the susceptibility
is summed over the contributions of two partially filled
bands.

For a model with perfectly planar energy surfaces ink
space, where the planes are taken to be parallel in thex
direction,ek5e(kx), with e(kF)5eF . Then there is a degen-
eracy, in that for any vectorQ5(2kF ,Qy ,Qz) we have
ek1Q5ek for all k5(2kF ,ky ,kz) on the Fermi surface. In-
tegration perpendicular to the Fermi surface in Eq.~1! gives
a logarithmically divergent contribution from the lower limit
of the integrand in

E
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whereku is an upper cutoff andvF5]e(kx)/]kxukx5kF
.

From now on we will refer to two-dimensional vectors
k, both for simplicity of notation and because we are prima-
rily interested in quasi-two-dimensional systems. If we take a
two-dimensional model with dispersione(k)5vF(ukxu
2kF)22tbcosky, then the above degeneracy is broken, since
only the vector (2kF ,p) gives perfect nesting, and the
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susceptibility remains infinite for this value ofQ only. Mon-
tambaux and co-workers4,5 considered the model of Gor’kov
and Lebed’,10 in which a small second harmonic is added in
the y direction:e(k)5vF(ukxu2kF)22tbcosky22tb8cos(2ky).
This second harmonic does two things: it reduces the suscep-
tibility at (2kF ,p) to a finite value, and moves the maximum
susceptibility to a differentQ which is incommensurate in
both coordinates. This agrees with an argument due to
Jafarey11 that the nesting vector is determined by the point of
inflection of the Fermi surface.

For a general surface~or line in two-dimensional cases!
the denominator in Eq.~1! for a givenQ vanishes only at a
point or points, so that the logarithmic singularity from inte-
gration perpendicular to the Fermi surface occurs at discrete
points. If we now integrate in the tangential direction, the
singularity~2! contributes a finite amount. How much it con-
tributes depends on how good the nesting is locally, that is to
say, how fast the denominator increases from zero. We will
denote byk1 and k2 the components of the wave vector
normal and tangential to the Fermi surface measured from a
point at which there is nesting, i.e., where the denominator in
Eq. ~1! vanishes. These directions will in general be rotated
with respect tox and y. We first integrate in the normal
direction,

E
0

ku 1

r ~k2!1vFk11•••

dk1 . ~3!

The functionr (k2) cuts off the logarithmic divergence in Eq.
~3!. Taking the leading term inr (k2)5apk2

p, and introduc-
ing a cutoff k2co , the second integration makes a singular
but finite contribution
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If all else is equal this contribution increases withp, the
degree of nesting.

Let us now consider a model in which the Fermi surface
has two open branches. If the wave vector is such that a point
on one branch is translated to a point on the other, with
parallel tangent, the nesting makes a contribution with
p52. This is associated with a Kohn anomaly, i.e., a singu-
lar dependence of the susceptibility as a function of wave
vector. For surfaces displaying a center of inversion, this
tangential condition can be satisfied starting with any point
on the open surface: it suffices to translate through the origin.
An example of this is shown in Fig. 1. If we choose a point
of inflection on the Fermi surface as the starting point, how-
ever, the difference is of higher order (p54). Thus it is quite
likely that it will have a larger integral. This cannot guaran-
tee an absolute maximum, since Eq.~4! is finite; but it is
plausible, and indeed was numerically verified for the case of
a weak second harmonic commented upon above. It is tempt-
ing then to apply this geometric criterion to more general
cases. There are other possibilities, however. For instance,
the criterion for quadratic nesting is not exclusive to transla-
tions through the origin. Let us define the two branches of an
open Fermi surface by the functionskx5 f2(ky) for the
branchkx,0 andkx5 f1(ky) for the branchkx.0 ~see Fig.
1!. If there is inversion symmetry the functions are related by

f1(y)52 f2(2y). A general translation (Qx ,Qy) from a
point on the left-hand open Fermi surface@ f2(ky

0),ky
0# to

another on the right-hand branch with a parallel tangent
gives two equations:

Qx1 f2~ky
0!5 f1~ky

01Qy!,

f28 ~ky
0!5 f18 ~ky

01Qy!. ~5!

Using inversion symmetry, this second equation can be writ-
ten as

f28 ~ky
0!5 f28 ~2ky

02Qy!, ~6!

which clearly gives the parametric solution to Eq.~5!:

Qy522ky
0 ,

Qx522 f2~ky
0!, ~7!

which corresponds to inversion through the origin as previ-
ously described. Depending onky

0 there may be other solu-
tions which must be found numerically for a general curve. If
we take the particular case

f2~ky!52kF22tb„cosky1rcos~2ky!…, ~8!

which corresponds to the model of Gor’kov and Lebed’ com-
mented upon above, withr[tb8/tb , we have the solution
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This was studied4 for the case of ~TMTSF! 2ClO4 for
r5 1

30. The extra solution defines other line segments in the
space of (Qx ,Qy) where the susceptibility has a cusp, and
may define local or global maxima. Montambaux4 showed

FIG. 1. Nesting vector determined from taking a point on one
branch of the Fermi surface to the other passing through the origin.
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that the additional line meets the lines defined by Eq.~7! at
the points of inflection, so that the quartic nesting may be
considered as coming from the fusion of two quadratic nest-
ings. It has been considered that this criterion of quartic nest-
ing associated with the point of inflection may be generally
applicable.

We now come to another possible criterion based on
purely geometric considerations, that is to say the shape of
the Fermi surface, and not the form of the whole energy
surface. This comes from the observation that there is at least
one other special point in the space of nesting vectors which,
rather than a quartic nesting, givestwo simultaneousqua-
dratic divergences, coming from the touching of twodistinct
points on the open Fermi surfaces. From the form of the
singular criterion~4! two singularities withp52 can easily
contribute as much as a single withp54. Such a point must
occur sinceQx passestwiceacross the first Brillouin zone as
ky
0 varies between 0 and 2p in the parametric equations~5!.
The two lines so defined must intersect by periodicity. At
this point theQ vectors come fromky

0 and ky
01p, so the

condition onky
0 is that f2(ky

0)5 f2(ky
01p). Geometrically,

the contours ofe(k1Q) touch those ofe(k) at two points.
In the model given above~with a second harmonic! this oc-
curs at (2kF ,p) sincef2(2p/2)5 f2(p/2). In that case, for
the parameters appropriate to TMTSF, this nesting was
worse by the criteria of having larger area and smaller sus-
ceptibility, at least at zero temperature and field. For other
compounds the vector is not necessarily at the zone bound-
ary, but can be considered a generalization of that nesting to
more general forms of the open Fermi surface. It must be
considered a possibility for nesting, and in fact we will see
that there are cases in which it is better than the point of
inflection.

III. NESTING IN THE ALPHA PHASE
OF BEDT-TTF SALTS

As an illustration of these ideas, and to apply to an
interesting case, we turn to a model which is used

to interpret data in the family of compounds
a-~BEDT-TTF! 2XHg(SCN)4 (X5K, NH4, Rb, and Tl!.7,12

As already mentioned, this material is quasi-two-
dimensional, with a ratio of anisotropy in and out of the
plane13 typically 103. The electronic properties in the plane
are described by an anisotropic tight-binding model which
differs from that of a square lattice by addition of next-
nearest-neighbor hopping terms. There are four molecules
per unit cell, and the overlap parameters forX5K have been
calculated by Moriet al.7 by the extended Hu¨ckel method.
There have been recent recalculations of the tight-binding
parameters by Ducasse and Fritsch,8 and by Rousseauet al.11

including other compounds of the family. These parameters
are rather different, in part because there has been refinement
of the structures, and in part because the values of the over-
laps are sensitive to the basis set.8 The total electron filling
corresponds to three full bands. As the third and fourth bands
overlap in energy, the third has a hole pocket with a closed
Fermi surface, while the fourth presents open orbits. In Fig. 2
we show the Fermi surface for the potassium compound,
calculated with the parameters obtained by Mori
et al.7

In order to calculate the noninteracting susceptibility we
evaluate the integral in Eq.~1! numerically, and sum over the
two surfaces. In Fig. 3 we show theQ-dependent suscepti-
bility for the parameters corresponding to the potassium
compound. Here we used the parameters calculated by Du-
casse and Fritsch,8 but the results are qualitatively similar for
all sets of parameters. The obvious features are lines of cusps
that correspond to nesting vectors of the open Fermi sur-
faces, but also other weaker cusps that correspond to dis-
placed hole pockets that just touch. The maximum suscepti-
bility corresponds to thatQ vector where the two cusp lines
from the open branches meet. This is a case in which one has
two simultaneous quadratic nestings, as discussed in Sec. II.

FIG. 2. Fermi surface ofa-(BEDT-TTF)2KHg(SCN)4 for the
parameters given by Moriet al.7 The k vectors are in units of
(p/a,p/c).

FIG. 3. Susceptibility ofa-(BEDT-TTF)2KHg(SCN)4 as a
function of wave vector.
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ThisQ vector is quite distinct from that given by the point of
inflection, and the susceptibility is distinctly higher. In Fig. 4
we show the lines given by the solutions of Eq.~7! for the
Fermi surface of the BEDT-TTF potassium compound, both
for the open and closed branches. Comparing with Fig. 3,
one sees that these lines coincide with the cusps of the sus-
ceptibility. We note that the point where the cusp lines cor-
responding to the open branches cross is also a point on the
line of singularities coming from the hole pocket nesting
condition. This fact, which may be assumed accidental, im-
plies that even though the predicted nesting vector depends
primarily on the geometry of theopen Fermi surfaces, it
gives rise to near nesting of the closed part as well. Partly
because of this the contribution to the total susceptibility~10
eV21) that comes from the closed surface~3.5 eV21) is
comparable to that coming from the open part~6.5 eV21).
Similarly for the other compounds the contributions from
both surfaces must be included. The calculation here is at
zero temperature, and of course one should consider the
wave vectorQ of maximum susceptibility as a function of
temperature. With this proviso, we find that the nesting vec-
tor determined from the maximum in the susceptibility from
the energy band with open orbits is not that given by the
usual point of inflection criterion, but rather by our criterion.
For the family of compounds we consider here we have
found that, as the nesting of the open Fermi surface deterio-
rates, the absolute maximum when both energy bands are
taken into account can come from nesting vectors which give
simultaneous touching of both the open and closed Fermi
surfaces. To determine the absolute maximum of the total
susceptibility its value must be calculated numerically at the
small number of vectors for which either the open surfaces
touch twice, or for which there is simultaneous touching of
both the open and closed Fermi surfaces. These vectors are
identified from the intersections of the lines of cusps con-
structed as in Fig. 4.

We should remark that in taking the criterion of the maxi-
mum noninteracting susceptibility for the instability in a
multiband Hamiltonian, we are assuming that the interaction
matrix is not only smoothly varying as a function of momen-
tum but also has elementsUa,b that are independent of the
band indicesa andb. If we take a Hubbard-type interaction
U that is diagonal on site, when it is transformed into the
band representation,Uab this condition is well satisfied over
the Brillouin zone. It remains to be studied whether screen-
ing effects seriously modify this assumption.

We now turn to a few representative cases to illustrate
these considerations. As mentioned before, within the mean-
field theory in the limit of a short-range interaction the nest-
ing vector that is ‘‘best’’ in the sense of maximizing the
noninteracting susceptibility becomes the wave vector of the
spin-density wave that is frozen in at low temperatures. The
periodicity determined by the spin-density-wave potential
should give rise to a reconstructed Fermi surface for the elec-
trons. This Fermi surface can be qualitatively inferred if one
displaces the original one by theQ vector as many times as
necessary to recover a periodic picture. Degeneracies at the
intersection of lines should then be removed by the effect of
interaction, yielding the final reconstructed structure. Here
we are faced with the first consequence of such a calculation:
that theQ vectors obtained are incommensurable with the
lattice; thus, in principle, a periodic picture is never recov-
ered. However, if we consider the effect of the spin-density
wave to first order or, alternatively, if the spin-density wave
gives an undistorted helix, only intersections of surfaces re-
lated by a single displacement byQ are relevant. We show
an example of this for the potassium compound in Fig. 5.
There are a few interesting features in this figure that we
would like to comment upon. First, there is no overlap of the
closed pockets, although they are nearly touching. This dis-
agrees with a picture such as that proposed by Kartsovnik,
Kovalev, and Kushch,14 where overlap of the closed pockets
gives rise to small closed orbits and new open orbits with
different orientation with respect to the high-temperature

FIG. 4. The lines of cusps in theQ-dependent susceptibility of
a-(BEDT-TTF)2KHg(SCN)4. The continuous~dashed! lines give
the points of quadratic nesting for the open branches of the Fermi
surface with the nesting points on each branch related~not related!
by inversion through the origin. The dotted lines correspond to
displaced hole pockets that touch the original ones. The squares
indicate the nesting vectors for the points of inflection of the open
Fermi surfaces.

FIG. 5. Original~continuous lines! and displaced~dashed lines!
Fermi surfaces of the potassium compound for the best nesting
vector. Notice the small pockets resulting from imperfect nesting of
the open branches, and the fact that the closed hole pockets just
touch.
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ones. However, the area of the closed pockets obtained with
the parameters that we are using is about 13% of the first
Brillouin zone, rather smaller than that observed experimen-
tally and assumed in Ref. 14. Thus, it is still possible to
recover such a picture if the actual size of the pockets is
larger, even if theQ vector that we calculated is not the same
as proposed in Ref. 14. The second point of note in Fig. 5 is
the presence of small closed orbits resulting from the imper-
fect nesting of the open branches of the Fermi surface. The
area of the small closed regions shown in Fig. 5 is approxi-
mately 0.66% of the Brillouin zone. Considering that an orbit
corresponding to 100% of the Brillouin zone would be ex-
perimentally observed as a frequency of about 4200 T, we
would predict low-temperature oscillations of 28 T. Even
assuming that the parameters are exact, this would actually
be an upper limit, since the final pockets should have a
smaller area due to the effect of the interaction that lifts the
degeneracy at the points where the lines touch or cross.

As we have noted, the compound with potassium in the
anion layer has a calculated band structure that is rather spe-
cial in that a single nesting vector very nearly gives nesting
at two points on the open Fermi surface and simultaneously
on the hole pocket. If we look at other structures this is no
longer true: the vector giving double nesting of the open
surface does not give a touching of the closed hole pocket. In
Fig. 6 we show the lines of cusps for the parameters calcu-
lated by Rousseauet al.9 from the structure as measured for
the compound in which thallium substitutes for potassium.
Unlike the previous case, the two cusp lines related to nest-
ing of the open Fermi surfaces intersect away from the lines
of closed pocket nesting. From our numerical calculation the
absolute maximum of the susceptibility for this case is at
Q5(0.26p/a, 0.55p/c), where the pockets and open sur-
faces each touch once. A spin-density wave with this wave
vector would give the translated Fermi surfaces shown in
Fig. 7. Such a nesting would produce two low-frequency
orbits from imperfect nesting of the open Fermi surfaces.
The vector of double nesting for the open Fermi surface has
a smaller susceptibility, and would give rise to a reconstruc-
tion as shown in Fig. 8. Such a state is, in principle, distin-
guishable from the previous low-temperature state, as there

is a single frequency from imperfect nesting. For either of
these vectors the hole pockets do not overlap with their
translates. Thus, to lowest order in the spin-density-wave
amplitude, there would not be additional low-frequency os-
cillations coming from the closed branch of the Fermi sur-
face.

If we take the compound with ammonium replacing thal-
lium, the calculated best nesting vector gives a reconstruc-
tion similar to that of Fig. 7. In addition, a competing vector
with the open surface touching at two points gives a recon-
structed Fermi surface that is rather different, as shown in
Fig. 9. In this case the susceptibilities for the two wave vec-
tors are very similar. Experimentally this compound has a
low-temperature behavior very different from the previous
two: rather than undergoing an antiferromagnetic transition it
becomes superconducting. Surprisingly, the maximum mag-
netic susceptibility is higher than that for the potassium and
thallium salts, which order antiferromagnetically at 8 and 9
K, respectively.

IV. CONCLUSIONS

We conclude that our nesting criterion, based on the co-
incidence of two quadratically nested points, can give a
higher susceptibility than the single quartic nesting given by
points of inflection. For the application developed here, i.e.,
determination of best nesting vectors for the spin-density-
wave state ofa-BEDT-TTF salts, it does indeed give the
correct criterion for the susceptibility from the energy sur-
face that contributes the open branches of the Fermi surface.
As the open surfaces are poorly nested, there is competition
from a simultaneous quadratic nesting of one point on the
open Fermi surface and one on the closed. For these systems
the contribution of the so-called ‘‘two-dimensional’’ band
cannot be neglected in the calculation of the susceptibility.
Knowledge of the geometry of the Fermi surface is enough
to predict a small number of possible nesting vectors; nu-
merical calculation is necessary to distinguish the most prob-
able. The different forms of nesting give different numbers

FIG. 6. The lines of cusps in theQ-dependent susceptibility of
a-(BEDT-TTF)2TlHg(SCN)4.

FIG. 7. Original and displaced Fermi surfaces of the thallium
compound for the nesting vector that maximizes thetotal suscepti-
bility. In this case the open branches are tangential at one point, and
cross at another. The hole pockets also touch at one point.
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of low-frequency magnetic oscillations at low temperature
due to small pockets caused by the imperfect nesting of the
open and closed Fermi surfaces. Operationally it would be
wisest to compare the experimental frequencies to each pos-
sible nesting.

In practice, both experimentally and theoretically, things
are more complicated. Experimentally at low-temperature
observation of three small frequencies for the thallium com-
pound~10.8, 12.8, and 1.15 T! has been reported,15 in addi-
tion to the basic frequency of 670 T that corresponds to the
closed hole pockets of the high-temperature phase. Other
experiments14,16 give frequencies of 200, 670, and 870 T,
consistent with a rather strong overlap of the closed pockets
and no sign of the open ones. From a theoretical point of
view we must include the possible overlap of the closed hole
pockets and hybridization between the open and closed
branches in the presence of the spin-density wave. Here we
have also neglected the effect of spin splitting.

Since the experiments are carried out in finite magnetic
field, a full analysis requires recalculation in the presence of
such a field. This is more difficult than in the model of
Gor’kov and Lebed’,12 since in that case exact propagators
can be written even in finite magnetic field, due to the fact
that the linearized spectrum eliminates the effect of the lat-
tice in that direction. For the models considered here, with a
tight-binding dispersion relation in both directions, it is not
possible to solve the resulting quasi-periodic Hamiltonian.
Given competing nesting vectors with different reconstructed
orbits, it is likely that there are field-induced transitions be-
tween different spin-density-wave states, as occurs for
TMTSF.4

Nonetheless, it is interesting that the small frequency that
we would predict from the optimal nesting vector has a value
much closer to experimental observations than that from the
points of inflection where the pockets are a factor of 20 too
large. In principle, our picture is more or less consistent with
the observations of Ujiet al.,15 in that we predict low-
frequency oscillations corresponding to small closed orbits
that result from an imperfect nesting of the open Fermi sur-

face. However, as we mentioned before, changes in param-
eter values may change, for instance, the areas of the hole
pockets of the high-temperature Fermi surface, which could
shift our results toward the picture proposed by Kartsovnik,
Kovalev, and Kushch.14 On the other hand, the high sensi-
tivity of these compounds to pressure changes,17,18,9and thus
probably to sample preparation, may explain the differences
found between different experiments. The possible recon-
structions we show in Figs. 5, 7, 8, and 9 demonstrate that
only a very precise determination of the Fermi surface can
give a firm prediction for a given compound.

We note that for both compounds that undergo a magnetic
transition, if the calculated overlap parameters are taken to
be correct, the correlation energy must be small to account
for the low ordering temperatures, at least in the random-
phase approximation~RPA!. With critical temperatures near
10 K, a Hubbard-likeU should be no more than a few tenths
of an eV, rather smaller than values deduced from optical
experiments in TTF salts19 or k-(ET)2Cu(NCS)2.

20 This
may not be serious, as we know that a simple RPA seriously
overestimates magnetic instabilities: we should renormalize
the bare interaction by multiple scattering. For example, in
the case of a single-band two-dimensional Hubbard model,
Chenet al.21 showed that good agreement between numeri-
cal results and a RPA treatment is obtained even for large
values of the Hubbard interactionU, provided the bare Hub-
bard interaction is renormalized. Thus a weak-coupling ap-
proach as taken here may apply much longer than naı¨vely
expected.

Even if there is still a large effective on-siteU, as we
would expect by comparison with other molecular conduc-
tors, the long-range order predicted by the RPA at relatively
higher temperatures may be destroyed by thermal fluctua-
tions enhanced by the quasi-two-dimensionality. To under-
stand what is happening it would be useful to have direct
measures of both the correlation energy and the interplanar
coupling, since the stability of the long-range order depends
on both. From our results, we have no immediate explanation
why the NH4 compound is not magnetic at low tempera-

FIG. 8. Original~continuous lines! and displaced~dashed lines!
Fermi surfaces of the thallium compound for the nesting vector that
maximizes theopen Fermi-surface contribution. The closed hole
pockets do not overlap or touch.

FIG. 9. Original and displaced Fermi surfaces of the ammonium
compound for the nesting vector that maximizes the contribution of
theopenFermi surface to the susceptibility. In contrast to Figs. 5, 7,
and 8, the hole pockets overlap.
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tures, since the magnetic susceptibility is no smaller, and
there are no obvious differences in the reconstructed Fermi
surfaces. It is then possible that the main difference resides
in changes of the interplanar coupling due to changes in the
anion layer that separates two consecutive BEDT-TTF
planes. The only clue we might deduce from the calculation
in the plane is that the maximum of the susceptibility for the
NH4 compound is rather slowly varying along the cusp con-
necting the two competing nesting vectors. We might specu-

late that this can enhance quantum and thermal fluctuations
sufficiently to suppress long-range magnetic order.
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