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Simplified periodic Anderson model: Exact solution in infinite dimensions
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We present a diagrammatic perturbative treatment of the hybridization for the periodic Anderson model that
recovers the dynamical mean-field equations in the limit of infinite dimensions. The resulting effective single-
site problem is naturally addressed by perturbation theory on the dynamical mean field. We introduce a
simplified version of the model in which only electrons with a given spin orientation hybridize. The perturba-
tion series can be summed in this case, yielding an exact solution for the single-particle Green’s functions.
Electronic and transport properties are analyzed, showing the existence of a metallic regime with non-Fermi-
liquid behavior.[S0163-18207)03711-9

I. INTRODUCTION tained, and analytical approximate solutions based on expan-
sion on the Coulomb interaction have also been worked out
Despite the intense research activity of the past decade gsee Ref. 9 and references thejein
two, the physics of heavy-fermion materials still poses inter-  Starting with perturbation theory on the hybridization
esting challenges. The success of the exactly solved onéerm, we recover here the exact dynamical mean-field equa-
impurity Kondo problem in explaining features that are ob-tions for the periodic Anderson model in infinite spatial di-
served in dilute rare-earth alloys has not been matched in th@ensionality. In addition, the perturbative series on the hy-
study of concentrated Kondo systefrfsin addition to a  bridization term is naturally transformed in this limit into a
high-temperature behavior more or less consistent with indeperturbative series on the local dynamic mean field. Due to
pendent magnetic impurities, these systems present a lowhe inclusion of the Coulomb interaction in the unperturbed
temperature coherent regime, where the resistivity dropslamiltonian, this perturbation series constitutes a strong-
down to a very small residual value. In this region, the sys-coupling approach to the problem that may complement
tem can behave as a normal Fermi liquid with enhanced efweak-coupling methods as far as analytical solutions are
fective mass, or undergo a phase transition to a supercomoncerned. Of course, it is not possible to sum the entire
ducting or a magnetically ordered state, with possibleperturbation series, and all analytic solutions are approxi-
coexistence of the two. mate. However, in a similar treatméht'the corresponding
It is generally accepted that the relevant physical ingrediseries can be summed for the Falicov-Kimi&K) model?
ents of the problem are contained in the so-called periodigvhich can be viewed as a simplified Hubbard model, and has
Anderson modelPAM), or Anderson lattice. This model an exact solution®**In analogy with this, we introduce here
describes a noninteracting conduction band that hybridizes simplified periodic Anderson modé&PAM) in which only
with localized levels(intended to represeritlevels of rare- f andc electronswith a given spin orientatiohybridize. For
earth ion$. A strong on-site Coulomb repulsion reduces thethis model we were able to calculate exactly the relevant
probability of double occupancy of these levels. For simplic-Green’s functions, using them to study spectral and transport
ity, the hybridization is usually considered as a local processproperties. We restrict our analysis to the paramagnetic state,
In addition, orbital degeneracy is often neglected, whichand remain in the half-filling case, related to the physics of
would be justified by a strong crystal-field splitting of the Kondo insulators?®
levels. In contrast to the single-impurity modehere is no The exact solution of the SPAM id=o shows some
exact solution of the Anderson lattice, and many approxi-expected features of the physics of heavy-fermion materials,
mate treatments have been developed in the‘paBifferent  although some important ones are missing. For instance, the
approaches have focused on distinct aspects of the problemsingle-particle density of statéBOS) shows narrowf bands
but none of them has been able to produce a complete ceesulting from the broadening of the initially localizédev-
herent picture. els, and a hybridization gap opens in the middle of the con-
The limit of infinite spatial dimensionality for fermions on duction band for sufficiently large hybridization, but the ex-
a lattice, introduced by Metzner and Vollhafdias attracted pected Kondo resonance at the Fermi level is absent. When
much interest due to the simplifications that it brings to thethere is no gap, the low-frequency optical conductivity is
analysis of strongly correlated systems. Similarly to what hagnhanced at low temperatures, although a true Drude peak is
been done for the Hubbard model, self-consistent equationsot formed. Consistent with this, the static resistivity drops
for the Green’s functions of an effective single-site problemdown in a low-temperature “quasicoherent” regime. The re-
in the presence of a dynamical mean field have been olsistance varies linearly with temperature in this region, and
tained for the Anderson lattic Even though the self- has a finite zero-temperature limit, showing that the system
consistency equations aexactin d=«, one still has to is notin a Fermi-liquid state.
solve the effective single-site problem. Numerical solutions In Sec. Il we write down the Hamiltonian for the PAM,
for both the Hubbard and Anderson models have been oland introduce the relevant Green'’s functions and their calcu-
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lation by means of a perturbation expansion on the hybrid-
ization term. The infinite dimension limit is addressed in Sec.
lll. In Sec. IV we introduce the simplified periodic Anderson PN + + + %g +

model, and discuss its exact solution. Our final remarks and
conclusions appear in Sec. V.

IIl. MODEL AND PERTURBATION APPROACH

The basic version of the periodic Anderson model, with-
out orbital degeneracy and with a local hybridization, can be + +/@\ + + o

represented by the model Hamiltonian

H=-t E CiT(er<r+ EZ Niy+ UE nianifl FIG. 1. Some representative diagrams of thelectron irreduc-
(i ' ! ible Green’s function. The verticdsloty are cumulant averages of
f-electron creation and annihilation operators, and the internal lines
+V2 (C?Ufi0+fiTUCig), (1) represent conduction-electron unperturbed Green's funciities
lo

external lines are just a guide for the ¢ye

in usual notation. We have chosen to write the conduction

band in a tight-binding form, with a nearest-neighbor hop-assume the forne,= —ZtEfFlcosk , for a hypercubic lat-
ping amplitudet, because this will allow extension to the tice in d dimensions(with a unit lattice parametgr Equa-
infinite dimension limit. The first three terms on the right- tion (5) has precisely the same structure found for the
hand side of Eq(1) will be considered as the unperturbed Green’s function in the Hubbard model when the hopping
HamiltonianH,, which is a sum of a local and a band termsterm is treated as a perturbatibhprovided we substitute
that can be solved independently. Thus, the unperturbed b&?g; (iw,) for the tight-binding energies of that model.
sis states span the product of two decoupled spaces: the lodalith this, all formal relations obtained for the Hubbard case
eigenstates of the-electron Hamiltonian, and the conduction can be employed here to tHeelectrons, with the replace-
band Bloch states. The last term in Ef) will be taken as ment just mentioned. We will make full use of this in the

the perturbation. next sections. Equatiord) and (5) allow us to write
We will be interested in the temperature-dependent one-
particle Green’s functions c N 1
: te Gl e e Vi liwn
Gijo’( T)E_<Tci(r( T)Cj(r(o)> (2) and
and .
‘ . Gka(iwn):gko(iwn)"—gka(iwn)veﬁa(iwn)vgka(iwn)-
Gljo(1)=—(Tfi,(DF],(0)). 3) (7)

We use a diagrammatic representation of the perturbatiod/e have written the last equations in a convenient form to
series for these functions in which there are vertices correaPply the infinite-dimension formalism to be developed next.
sponding to local cumulant averagesfafperators, and lines

representing the unperturbed Green'’s function of the conduc- [ll. THE INFINITE DIMENSION LIMIT

tion band, with a factov associated with each “contact”
between a line and a vertéX.lt is possible to define an
irreducible f-electron Green’s function, that we will repre-
sent(in wave vector and Matsubara’s frequency spamg o . . .
Gro(iwp), which is the sum of all diagrams that are not sepa—Choose ¢|t2-=t*2.: 1, which means that all energies will be
rated in two disconnected parts after a single line is Cut!”neasurled. In units df* . . N
Some example diagrams of this function are shown in Fig. 1 In this limit, the diagrammatic series is greatly simplified.
It is straightforward to show that the perturbation series forquélvalently to what has been shown for the Hubbard

both conduction and-electron Green’s functions can be for- M° el,’ only.the ;lte-dLa\gonal part .Of the |r_redug|ble
mally summed in the form of Dyson-like equations: Green's function (i wn) =(1N) 2 G, (i @n) survives in
the limit d=«, and only diagrams with independent loops,

¢ (iwn) =05, (iwn) +E,(iwn) VG, (i 0n) VGE, (i wpy) as shown in_Fig. 2, are nonvanisQing. The site-diagonal

(4)  Green’s function for thé electronsG;; ,(iw,) can also be

evaluated from the same set of diagramg/a€ w,,), with a

and slight reinterpretation of each diagramit is then clear from
- _ : : c £ the diagrammatic series that the problem of obtaining the
G""(Iw“)_gk"(lw”)+gk"(lw”)vgk”(lw“)VG""(lw”)is) site-diagonalf-electron Green’s function has been reduced
to a single-site problem. The loops that go in and out of the
where g; (io,)=1/(io,+u—g) is the unperturbed vertex corresponding to this site can be viewed as a local

conduction-electron Green’s functios, being the tight- dynamic mean-field connecting the site toparticle bath
binding energies of the unhybridized conduction band, whicHthe rest of the lattice Since an electron leaves or enters a

When considering the limitl— o, in order to preserve a
finite energy per particle in the conduction band, one has to
scale the hopping amplituBlsuch thatlt?>= const. Here we
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FIG. 2. Diagrammatic series for the irreducible Green'’s function
G, or the site-diagonal Green’s functidd/., in d=o. Each line
forming a closed loop represents a fully renormalized conduction
electron Green'’s function in the case @f, or the dynamic mean
field A, (iw,) for G .
local f level through a hybridization process that takes it to
or brings it from the conduction band, at first sight the local
field should beAU(iwn)EVZGﬁU. However, when going
from a local cumulant average to a regular one we subtra
all “visits” to the original site in the renormalization of the
conduction-electron Green’s function. The true local field,
that we represent here b (i w,), can then be written as

Ag= Ayt AyGyhgt AyGrAgGy Ayt - - ={ A =G} L.
®

Self-consistency is achieved through the Fourier trans-

form, by imposing that quantities calculated directly for the
effective single-site problem are identical to the correspond
ing ones for the lattice. For instance, E¢®). and(7) yield

)

G (iwy)=— !
o n N n

fon+ 1= V2G,(i wn) — e

©)

and

Gf

) ¢
i

iio

(i0n)=Gy(iwy)[1+ G, (i 0n) V?G] (i wp)].
From Egs.(8) and(10) and the definition onl,, one obtains
A=G, = [Gji, 17"

Equations(9)—(11), together with an explicit solution of the
single-site problem foGif (iwy) interms of A,(i w,), con-

(10

f
o

13

io

SIMPLIFIED PERIODIC ANDERSON MODEL: EXACT ...

6827

(see Fig. 2 Starting with the unperturbed local
Green's function —(Tf,(7)f (0)),, each even order
in  perturbation theory introduces a product of
the type Aol(Tl—Ti)fll(Tl)fol(Ti), so that in gen-
eral one has to calculate averages of the form
(1 (1) f o (7D ] (72)f4,() - -)o. Since this is exactly
the same as in the Hubbard model, we are not going to dis-
cuss it here, and we refer the reader to Ref. 11.

Dynamic and static conductivity

Now we briefly review the calculation of the frequency-
dependent conductivity for the Anderson model in infinite
dimensions. The conductivity tensor in linear response
theory is given by Kubo’s formula in terms of the current-
gurrent correlation function. Due to the absence of hopping

Cfor the f electrons in the Anderson model, the current opera-

tor refers to the conduction electrons only. In infinite dimen-
sions the difficulties related to momentum conservation dis-
appear, and the optical conductivifieduced to a scalar due

to the hypercubic symmetrassumes the simple fofh

a’(v)zwz J'dsDo(s)jdeg(s,w)Aa(s,aH—V)

[f(w)—flo+v)]
X

14

(14)

where f(e€) is the Fermi function and\,(e,w) is the one-
particle spectral density, obtained by replacingby ¢ in

1
Aa(sk,w)E—;ImGﬁ(,(w+i0+), (15

where we perform the analytic continuation of the
conduction-electron Green’s function, E@), to real fre-
guencies.

One can obtain the static limitv(~0) of Eq. (14),

stitute a self-consistent set of equations for all the relevant

Green'’s functions and the local dynamic mean field. Notice

that from Eqs.(5) and(11) we can write

>

k

1

—
o N

1 B 1
G, ~Vii, G, -A,

where the role of4,, as a mean field is made explicit.

Since allk dependence is now restricted to the tight-
binding energieg,, we can replace the sum ovkrin Eq.
(9) by an energy integral in the form

' Do(e)
(”””):J e T = VG, (i)~

G (12

G¢

iio

13

O'(O):’IT,BJ dsDO(s)f dw[A(s,w)]zf(w)[l—f(w)],
(16)

where B=1/T stands for the inverse of the temperature.
From Eg.(16) the static resistivityp=1/0(0) can also be
calculated.

IV. THE SIMPLIFIED PERIODIC ANDERSON MODEL

Inspired by the fact that the perturbation seriesdin for
the effective single-site problem id=c can beexactly
summed in the case of the Falicov-Kimball model, we intro-

whereD(¢) is the uncorrelated density of states of the con-duce here a similar simplification of the Anderson model that

duction band ind=«. For a hypercubic latticéwith the
choice of t*=1 that we have made one ha8

Do(s) = (1\/m)exp(—s?).

will allow us to find an exact solution. The periodic Ander-
son model can be simplified by considering a spin-dependent
hybridization such that only electrons with a given spin ori-

Our method yields an approach to solve the single-siteentation (say, spin up hybridize. In this case, the Hamil-

effective problem as a perturbation series in the fieltjs

tonian (1) can be rewritten in the form
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(dotted electrons in the SPAM as a function of the hybridization
FIG. 3. Densities of states for theand ¢ electrons(top and  parameter for some values Of.

bottom, respectivelyin the half-filled SPAM in infinite dimension

for U=2 and some values of. 1/2 1/2

Twnt UI2— A (lwy) | Twn—U2— A (i)’
H=-t> clcj,+EX nl,+UX niin{, .
UM to ' The self-consistent solution of Eq4.0), (11), (13), and(19)
is easily performed numerically. We can extend these equa-
+ VE (ciTTfiTwL f;‘TciT). (170 tions to real frequencies by the direct substitution
: iw,— w+i0", which allow us to obtain single-particle den-
sities of statesD ,(w)= —(1/7r)lmGﬁT(w+i0+), where «
Actually, the dynamics of the spin-down conduction elec-refers toc or f electrons.
trons is completely decoupled from that of the other elec-
trons, and they behave as a free gas. However, they are ther- Results

modynamically coupled to the system, and their number per . . .
lattice site is nota priori fixed. Here we will only consider As far as electronlg prpperues are concerned, our main
the paramagnetic, half-filled case in the particle-hole sym—results are presenteq in Figs. 3 and 4. As we mentioned b.e'
metric situation E= —U/2). This fixes the chemical poten- fore, we have re_sj[rlcted our an_aIyS|s to the paramagnetic
tial at =0, and we will completely neglect the existence of state in the half-fllllng case. In Fig. 3 we show densities of
the spin-down conduction electrons. states for théspin-up f andc electrons fold =2 and some
As far as thef electrons are concerned, we are faced Withvalues ofV.. One can see that thg Very harrow peaks that
exactly the same problem as in the Falicov-Kimball model.glig( dtehneejlgag ;%ig:&’?:}yh%?gﬁf'gg tlr?gar?;srci‘gi\; illtsioir?s in
Summation of the perturbation series.iy yields creased. Spectral weight is displaced from these satellite
peaks to the central region of the spectrum. On the other
1—(n[> hand, the cqnduction-band spectral weight is partially shifted
o —E+ = A (1o to the §atelllte peaks. Eventually, for_ large enotgha gap
n KA @n opens in the center of the band. Asincreases from zero,
<nj> the f-electron DOS at the Fermi level first increases, reaches
t T EC Ut p—A o)’ (18  a maximum, and then decreases towards zero when the gap
n H= AU On appears. This is best seen in Fig. 4, where it is clear that the
critical value ofV for which the gap appears approaches zero
For the case that we are considering, this reduces to thasU is lowered. Of course, fov strictly zero the two bands
simple form are decoupled, and there is no gap. The most striking con-

Gl (iwy)=

Glij(iwn) =
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(a)

0.03

0.8

FIG. 5. Frequency dependence of the optical conductivity of the symmetric SP#NEeneral behavior fol =1.0x 10”2 and some
values ofV andU. (b) Detailed view of the low-frequency region with varying temperatfioe U= 3.0 andV=0.5) showing the absence
of a Drude peak(c) Low-frequency region for large hybridization/&0.9), whereo increases with temperature, in contrast with the
behavior observed itb).

trast between the DOS for the SPAM and numerical resultshe spin-up conduction electromemains finiteat zero fre-
for the complete Anderson modés the absence of a Kondo quency, and does not depend on temperature. The self-
peak at the Fermi level with a hybridization gap in theenergy is just given byng, as can be seen by the form of
middle of it. The enhancement of the DOS at the Fermi levelGy_, Eq. (6). Notice that the temperature dependence of the
is weak, and the hybridization gap is absent for certairvesistivity in the SPAM comes exclusively from the explicit
ranges of parameteftarge U, low V). factor 8 and the Fermi functions in Eq16). The Green’s

The frequency-dependent conductivity, shown in Fig. 5, isfunctions depend on temperature only through the Matsubara
consistent with the electronic structure, reflecting the gap affequencies, and this dependence disappears upon analytic
the Fermi level when it exists, and showing a finite value at
zero frequency when the system is a conductor. Notice that  os : 0.08

the conductivity enhancement observed in the low-frequency .

. . . . . . P —— 0.07
region in Fig. %a) is not the beginning of a Drude peak: the | 7~ Tee—o |
limiting value at zero temperature and frequency is always 7 e veor 0.06 Ve
finite, as can be seen in Fig(®. This limiting value is 06 — gfgﬁg - V=030
lowered by increasing temperature in the low-hybridization s 008 L
regime. In contrast, for large values \d¢fthe conductivity is P Pooaf TTTTTTTT
depleted in the low-frequency region, and its limiting value 04 i
increaseswith temperaturgFig. 5(c)]. This reflects the ex- 03 el
istence of gpseudogayn the density of states, as can be seen ‘ oo |f w7
. . . . . . 0.2 1 ] I /
in Fig. 3. Thermal excitation of carriers across the Fermi - /
surface enhances the conductivity in this situation. 0.1 0011y

A complementary view of the conduction properties in the 00 000
zero-frequency limit is provided by the static resistiviBig. I 000 00 L oelo 08
6), which shows a low-temperature “quasicoherent” regime,
with an approximatelylinear decrease towards aonzero FIG. 6. Temperature dependence of the static resistivity for

limit, signaling a breakdown of Fermi-liquid behavior in the U=3 and various values 0f. Left: change in behavior with hy-
SPAM. This is consistent with the fact that the self-energy ofbridization. Right: detailed view of the low-regime.
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continuation to real frequencies. Of course, the spectral funahe exact self-consistency equations satisfied by the Green’s
tion in Eq. (16) plays an important role in defining the rel- functions of both kinds of electrons and the local dynamic
evant integration region, with aiindirect effect on the tem-  mean-field the method provides a perturbation series on this
perature dependence of the conductivity. The temperatur@ean field for the site-diagonételectron Green’s function.
independence of real-frequency Green’s functions is a chafwe have introduced a simplified version of the periodic
acteristic of the SPAM, since the “loops™ in Fig. 2 are not Anderson model for which this perturbation seriegisctly
really closed the only frequency going around all of them is symmable. Inspired by the relationship between the Falicov-
the external one. The situation would change for the comyimpall and Hubbard models. we defined the SPAM by
plete PAM, when summation oveénternal Matsubara fre-  giminating the hybridization of down-spin electrons in the
quencies in the loops fShOUId produc_e a temperature depe \nderson model. We want to emphasize that the SRkt
dence that could survive the analytic continuation to real ot be reduced to the Falicov-Kimball model, even though
freqqenmes. . . we defined the former in analogy with the latter. Also, al-
It is interesting to compare our results for the optical CON-, uah the tight-binding solution of the Hubbard model in
ductivity or static resistivity with experimental observations . p ? di g h gb d here to deal with the di
in f-electron materials that show non-Fermi-liquid ground'™' "€ GIMENSIONS has been Used Nere 1o geal Wi e dia-

statesi®® This happens for Kondo alloys, such as grammatic representation of thieelectron Green's func-
Y,-xUsPdyor Y, Th,U,Pd;. Depending on tﬁe concen- tions, the self-consistency conditions are different, reflecting
— XX —x—y ! Hly¥x .

tration parameters, the resistivity versus temperature plotd1€ existence of the conduction band, which leads to differ-
can show the same kind of changes of the general trend &t solutions.

observed in Fig. 6, where the parameter that is varied is the A summary of the exact results that we have obtained for
hybridization strength. As a possible explanation for such dhe SPAM is as follows: There is broadening of the localized
similarity, we must notice that the SPAKAt least for non- f levels, with exchange of spectral weight between the low-
magnetic phases, as considered héias anintrinsic disor-  and high-energy regions of the spectrum. Above a critical
der built into it, since the frozen spin-dowielectrons act as value ofV (which increases with increasing) a hybridiza-
randomly distributed scattering centers. We have fixed théion gap opens up at the center of the conduction band. A
concentration of these frozen electrons by fixing the bandondo peak doesot appear. For small values of the hybrid-
filling. So, the strength of their effect on the conduction elec-ization parameter, the optical conductivity is enhanced in the
trons depends on the hybridization: it is only through theirjow-frequency region, but a true Drude peak is absent. The
acquiredf character that the moving electrons can interacfinite zero-frequency value of the conductivity is reduced
with the frozen ones via the Coulomb repulsion. In real comyith increasing temperature in this regime. We have thus a
pounds the effectiveness of the scattering mechanism is goynetallic regime where the static resistivity shows a sharp
emed by the concentration of impurities. Thus, varying thegyop with temperature, but the systermist a Fermi liquid:
hybridization in the model or the concentration of impuritiesye gependence of the resistivity with temperature is approxi-
in real materials amounts to varying the scattering raté Opately linear, and there is a finite residual resistance. When
conduction electrons, which explains the similarity betweenne hybridization parameter is large, as one approaches the
the resistivity behavior with temperature in both cases. EVefymiting value for the formation of a hybridization gap, there
though a quantitative comparison would not be justifiablejs 5 reversal of the temperature behavior of the low-
here, we can at least check orders of magnitude. Our unifgequency conductivity due to the contribution of thermal
are such that energy, frequency, and temperature are all megggitations across a pseudogap appearing in the density of
sured in units oft*, which is essentially one-half of the gtates. The overall features of the conductivity behavior with
bandwidth. On the other hand, our conductivity must be mulyemperature in the SPAM are qualitatively similar to what is
tiplied by t*“. Choosing a bandwidth of 1 eV, and insert- experimentally observed in disordered heavy-fermion sys-
ing all the relevant universal constants we obtain temperaems such as Y.,U,Pd; and related compound®. This
tures betvycien 0 and 1000 K, a unit frequency corresponds igmilarity can be traced back to the existence of an intrinsic
~10* cm a_?”d our conductivities are of the order of gisorder in the model due to the presence of randomly dis-
10° (O cm)~*. This is more or less the right order of mag- tributed scattering centers: th@onmobile down-spin f
nitude to compare with the experimental results. Of courseg|ectrons.

changes by a factor of 1 to 10 can be produced by other yj t9 now, we have restricted our calculation to the

choices of parameter values. particle-hole symmetric case in the paramagnetic phase. It
should be interesting to investigate the existence of ordered
V. CONCLUSIONS phases, as well as the spectral and transport properties for

other band fillings. Although the breakdown of spin-

In conclusion, we have presented a diagrammatic methodymmetry inherent to the simplified Anderson model is
to handle the perturbation series in the hybridization term fohighly non-physical, the fact that there is an exact solution of
one-particle Green’s functions of the Anderson lattice. Allthe problem is very important. In particular, this solution can
the relevant equations can be written in terms of an irreducbe a checking point for approximation schemes devised for
ible f-electron Green’s function, whose diagrammatic reprethe complete model. For instance, the exactly calculated
sentation can be formally related to the corresponding onguantities for up-spin electrons in the SPAM can be consid-
for the Hubbard model treated by perturbation around theered as a reasonable approximation for electrons with both

atomic limit!* With this, the reduction to a single-site effec- spin orientations in the PAM. The simplified model could,
tive problem ind= < is easily obtained. Besides reproducing then, be a starting point for studies that included corrections
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