PHYSICAL REVIEW B VOLUME 57, NUMBER 3 15 JANUARY 1998-I

de Haas-van Alphen oscillations and magnetic breakdown:
Semiclassical calculation of multiband orbits
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We use an algebraic method to compute de Haas—van Alphen oscillations in two-dimensional systems in the
semiclassical approximation for cases where the Fermi surface lies on more than one sheet of the energy
surface. We treat magnetic breakdown by computing the Riemann surface associated with the Bloch energy
equation. The topology of this surface, in particular, its fundamental group, is used to classify electronic
trajectories in the complexified Brillouin zone. Three examples taken from tight-binding models of quasi-two-
dimensional organic conductors show how this can be implemented to calculate frequencies and breakdown
fields.[S0163-182698)04803-§

[. INTRODUCTION between different orbits is rather more subtle. Stark and
Friedber§ predicted interference effects between different
The most precise way of measuring the Fermi surface in arbits in the transport but not the orbital magnetization.
metal is by measuring the behavior of thermodynamic and More recently there has been a revival in what is called
transport properties in magnetic fields varying in strength‘Fermiology:” that is to say the study of the geometry of the
and directiort. For the most part, the strength of fields avail- Fermi surface with magnetic means. This has been driven
able is sufficiently weak on an electronic scale that a semiprimarily by the study of high-quality samples of increas-
classical description is entirely satisfactory to explain the reingly complex electronic structure, with larger unit cells, and
sults. This semiclassical approach leads to the prediction diy the availability of larger magnetic fields. There is also an
oscillations in the magnetization or resistance that are perimpetus from the study of two-dimensional and quasi-two-
odic in inverse field, with periodicity that is simply ex- dimensional samples, where things should be simpler. On the
pressed, in appropriate units, as the area of extremal closeldeoretical side, especially in two dimensions, there has been
orbits on the Fermi surface perpendicular to the direction oprogress with numerical means that allow one to test semi-
the applied field. In addition, the amplitude of such oscilla-classical models more quantitatively. There is room for im-
tions in the case of magnetization is simply related to theprovement even in our understanding of the problem of non-
effective mass of the carriers. It was realized in the earlyinteracting electrons. We want to extract reliable information
1960's, in studies of metals such as Magnesium and Zincabout, for example, open orbits on the Fermi surface. Such
that to explain all the oscillations that one sees it is necessamyrbits are not visible in the undamped oscillations, but they
to supplement the simplest semiclassical description of eleappear in breakdown phenomena. These orbits may be cen-
trons confined to the Fermi surface witimagnetic tral to understanding the electronic instabilities towards
breakdowrf- that is, magnetic-field-induced tunneling from charge- and spin-density waves. For example, in the quasi-
one part of the Fermi surface to another, in order to givewo-dimensional organics, fine details in the shape of the
oscillations corresponding to larger orbits than expectedpen orbité are determinant to the predicted weak-coupling
from the band structure. A semiempirical approach develinstabilities. It is important to disentangle essentially single-
oped by Pippart® and others culminated in a classification particle effects of magnetic breakdown from collective ef-
of orbits with tunneling probabilities from portion to portion fects such as field-induced changes in the magnetic structure.
of the Fermi surface depending on the local geometry. This In this paper we reanalyze within a semiclassical ap-
was successful in explaining the different frequencies obproach the problem of magnetic tunneling in two dimen-
served for a variety of metals. The question of interferencesions. We show that it is possible to calculate in a more
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systematic way than has been used previo(fslyexample, the exact solutions of an harmonic wave function to compute
in applying Chambers’ formufathe tunneling properties of the exact transmission coefficient of the problem. Our alge-
an electron when the Fermi surfaces are described by roots bfaic calculation of the multiband case is similar in spirit, in
finite-degree polynomials, as is the case for any simple dethat it makes use of analytical continuation to complex wave
scription in terms of tight-bindingor, equivalently, extended vectorsk, but this is done in order to pass from sheet to sheet
Huckel) models. In particular, experiments on the organicof the energy surfaces. Let us recapitulate their argument, in
conductors are normally interpreted in terms of such modelsiotation close to what we shall develop subsequently: we
This approach has several advantages: instead of having seveat an electron in a two-dimensional periodic potential, and
eral semiempirical formulas to choose from, there is a uniqusuppose that in the first Brillouin zone we have a saddle
answer. Commonly, Chambers’ formula can be applied irpoint, or, equivalently, a local expression for the one-
slightly different forms, depending on the local curvature ofelectron energies,

orbits on the Fermi surface or, alternatively, the energy gap

in the classically forbidden region &f space. One can also 2 2 o2

avoid questions that turn out to be irrelevant, such as “by e(k)= %(kx_)\ ky)- @
what path does the electron tunnel,” and what is the corre-

sponding area, as the answer depends on an action thatT#e solutions of(k) =C, a positive constant, consist of two
independent of path in a given topological class, and thelisconnected trajectories separated by a gap across which the
“area” in the case of real closed orbit becomes the real parparticle could tunnel along thé, direction. Settingl;z

of th!s action in the general case. As yvell as finding precise_ o g/7.c as the magnetic length, and the operafor V/i
predictions for the.break'dowr) field, this approach a_llows USy eA/fic, with the Landau gaugad=B(—y,0,0), the quan-

to go beyond the s!mple junction models for_magnet|c bre_""ktization of the Hamiltonian leads to

down. We shall discuss possible explanations of “forbid-

den” frequencies in the de Haas—van Alphen oscillations: 52

those that apparently contradict the simplest classical intu- A= —{(i8x+|;12y)2—7\2(i8y)2}- 3

ition but that have been seen in numerical studies and de- 2m

duced from experiment. A A o i2n ) ]

In the next section, Sec. II, we will review calculations of If we takeP=K, andX=I5K,, with the commutation rela-
the single-band breakdown. In Sec. lll we introduce the “al-tions [ X,P]=i, the identification with a one-dimensional
gebraic formulation” of the multiband case. The final sec-problem of momentun and positionX is straightforward.
tions deal with several examples applylng this formulation. In the space representatid’\?": —ialoX. By resca”ng theX

variable asx— A X/l ,,, we may write the differential equa-
Il. TUNNELING FOR A SINGLE-BAND MODEL tion

AND CHAMBERS’ FORMULA
2
The one-dimensional problem of tunneling between two ﬁ_+x2+ Ek2|2/)\ T(X)=0 (4)

regions separated by a gap was studied a long time ago. IX* 4-9m

Kramer§ gave the semiclassical connection formulas for the .

problem of a particle of enerdg in a potentiaV/(x). These ©Of the wave function¥(X) of energy E>0, wherek,
formulas connect wave functions in classically allowed and=2V2ME7 is the gap irk space separating the two closest
forbidden regions, wherg(x) is less than and greater than {Uning points atk,=0. The caseE<0 can be derived by

E, respectively. The transmission coefficient for the particleiSing the symmetrk,— Ak, and k,—k,/x. Two linearly
to go through a barrier in the regi@=x<b is, in the semi- independent solutions of this differential equation are the
classical limit ' odd and even parabolic cylinder functions

T=exp{—2 Im[S(a,b)]/%}, ()

where the action isS(a,b)=[2p(x)dx, p?(x)=2m[E—
V(x)], anda andb denote the turning points at which the : : 33
momentump vanishes. In one dimension, only one path _ v el 22 T IV
joins a to b, and soT is unique. In two dimensions, the Po(X)=X exp( 2X )':(16k9|m/)\Jr 4'2’IX ) ©)
situation is different A priori there are many paths which i ) . )
join a to b inside the gap. We might think then that a pathWhereF is the confluent hypergeometric function. Applying
integral theory would be necessary to compute the trajectorf? on exp(-iX?/2) one sees that this factor is associated with
which minimizes the imaginary part of the action, and soan incoming(—) or outgoing(+) current, respectively. To
maximizesT. In fact, as we will see in the next section, this calculate the transmission coefficient, following Ref. 10, one
is not necessary in the semiclassical approximation becaugerms the appropriate incoming, transmitted, and reflected
T depends on a topological invariant, and the contribution isywave packetdlinear combinations of the two basis func-
therefore, locally independent of the choice of the path.  tions) near the saddle point. The correct relations between
The simplest problem of magnetic breakdown in two di-the coefficients of the wave function are computed by ex-
mensions is that of motion in a real hyperbolic potential withpanding the parabolic functions nedr«. The tunneling
a saddle-point in the presence of an applied magnetic fielgorobability for the electron through the potential barrier
Fertig and Halperit? exploited the analytical properties of = [{ W efiection Yincoming|? is then

P (X)= —i—x2 F i—k2|2/>\+1 E-'x2 (5)
e( )_ex 2 16 g'm 4121| ’
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1 =3 n@mn®ma(r) for an energye.'? The result is expressed
T= 1+ exgl wkglzm/m\) : (7) in the first Brillouin zone as a dispersion relation,

Notice that we must use the reflected wave function and not (k)= e+ Zm,nhmneXpikyma, +ikynay)

the transmitted one to computein the (X, P)-variable for- 2 monimneXpikyma+ikynay) ’
mulation, since the former represents physically the tunnelyere

ing amplitude through the hyperbolic gap. Expressingn

terms of the positive radius of curvatuRe= kg/Z)\2 at the .

breaking points £k4/2,0), for weak field we find hm,n=J d°r 5 o N[v(r) =v(r+ Ry n)Jdmn(r),

12K
T=exp —

2 2R

This is a special case of Chambers’ expressitor the
breakdown probability in the case of orbits symmetric
around a saddle point. For the more general case Chambers sin(2mx/a,) sin(2my/a,)
replaced the factor B by (1R, —1/R_), the difference of v(r)=U(r)
the inverse radii at the nearest breaking points. For the case
of equal radii(i.e., both convex or both concave with the For smoothU, the potentialy vanishes at large distances,
same absolute radius of curvatyréhe Chambers’ formula and can be neglected for more than a few lattice spacings
gives aT that vanishes. from the origin. The quantitieg,, and h,, , are rapidly

In the next section we shall show how to compute thedecreasing. If we take all but a finite number of them to be
tunneling probability in the case where we have severakero, thene is defined in terms of a complex polynomial of
bands of a periodic potential. finite order in the variablesZ,=exp(ka,) and Z,=

exp(k,a,):

(11)

. ® ima= | €1 BT Bl 12

For a general periodic potentiél(r), a local potential can
be defined as

2mx/ay 2myla, (13

lll. ALGEBRAIC FORMULATION P(Z1.Z,.€)=0. (14

The condition that the polynomid? of the complex vari-

ablesZ; and Z, be constant defines a complex curve. In
Let us consider the Hamiltonian of a partiCIe ina Constani'nore genera| cases, for examp|e, wave functions that are a

magnetic fieldB=Be,, perpendicular to a planar periodic |inear combination of several orbitals for each atom, or when

potentialU(r), there are several atoms per unit cell, the same formulation is

applicable: the polynomial simply becomes of higher order.

Thus the restriction that we make to have different parts of

the Fermi surface defined by roots of a single finite-order

polynomial is rather mild.

We will work, as previously, with the Landau gauge. The  This formulation is useful when we apply the Peierls sub-

potential is periodic: U(r)=U(r+Rmn), with Rnn= " gijtution. Indeed, since the components of the operétare

ma.e,+nae. In the absence of a magnetic field, the wavengncommutative,

functions are expressed in terms of Bloch functiogg(r),

with energy dispersiogg(k), wheres labels the bands in the ~ A . .eB

first Brillouin zone. In the presence of a magnetic field, the [Kx.Kyl=—iter=—177, (15

Peierls approximatidd consists in taking the effective

HamiltonianH = e(K), whereK = V/i + (e/Ac)A(r). Here  the substitution of operators in a general energy dispersion is

we shall restrict our discussion to Hamiltonians in whichnot unique. If we expand the dispersieg(k) in a Fourier

there is an underlying simple algebraic structure to the bangeries, we can define a choice

dispersion. To show how this algebraic structure arises, con-

sider the case of a linear superposition of single atomic or- A= D esqexpiaK). (16)

bitals. The periodic potential is written as a sum of local a=Rmn

potentials, U(r)=2p, ov(r—Rnn), with v(r) decreasing

. - . Generally, and for the examples we will study, the coeffi-
rapidly away from the origin, a_md representing, for example,Cients of the polynomiaP depend on the energy. The sim-

af)]lest example is when only the constant term depends lin-
early on energy.

A. Semiclassical Hamiltonian operator in a magnetic field:
Polynomial formulation

2
+U(r). 9

. h? ie
H[A]:—% V+%A

first compute the eigenfunctions,, ,(r)=¢(r—Rny ), So-
lutions of the single-atom Schdinger equation,

22 B. Riemann surfaces and the topological classification
( — ﬁVZ‘F v(r)) d(r)=e€g(r), (10 of closed electronic trajectories
Consider now a closed-space trajectory at constant energy

and then try to compute an approximate wave function of thén a single band under the action of a magnetic field. The
periodic problem by forming a linear superpositidn(r) Bohr-Sommerfeld rule quantifies the actidrfk.dr along
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this trajectory, or equivalently, the ratio between the totalFermi energy, which is fixed. The imaginary part of the fre-
flux through the closed path and the quantum flgy  quencies should obviously be positive at each point of break-
=hcl/e. When the magnetic field is along a symmetry direc-down along the trajectory. Moreover, the Maslov index de-
tion z, k, is constant. The Bohr condition then becomes  pends on the energy susceptibitity linearly with the
quantity B/B.. Thus, this term is in practice negligible. At
fixed Fermi energy, we have a relation betweenkhe Eq.
(17), which defines a constant-energy manifold. Provided
we stay within this manifold, the integral in Eq18)

the contour of integration being taken in the clockwise direcis ynchanged as the path is continuously deforfhed.

the Maslov index. It can be computed to be 1/2 by an expanyyo different realk-space bands. To simplify notation, we
sion of e for smallk near an assumed quadratic minimum || write the components oK in units of (2m)/a, and

(or for a hole near its maximuipwhere we can solve exactly (277)/a, . The three-dimensional case along symmetry direc-
a free-electron Hamiltonian. Quantization of the action isijons can be studied as in two dimensions, at fiked Let us

equivalent to quantization of energy. In the de Haas—vafing|ly remark that the total probability of transmission
Alphen effect, the oscillations of the magnetization at lowaround a trajectory is, for smallB,

temperatures are determined by the area of all closed elec-
tronic trajectories at the Fermi surface, the contributions of
other electrons being mutually compensated. In three dimen- Ms.t
sions, only the extremal areas at the Fermi surface perpen-  Ts=exp{—4m Im(f)/B}=[] exp{—Bg;/B}, (20
. . . . . . i=1
dicular to the magnetic field direction contribute to the oscil-
lations. We can define a characteristic magnetic fiBld
= ¢o/(aya,) to be the reference field for the validity of the where theBg; are the breakdown fields for each region of
semiclassical approximation, for whi@<B_. For a mono- tunneling. Our aim here is to find a path that connects two
atomic solid withay,=a,=1 A, we would haveB,~4.16 bands via a tunneling effect. First, we construct the Riemann
X 10° T, much larger than available fields. In molecular con-surfaceMp defined byP. We know from Ref. 19 that the
ductors the unit cell can be much larger, typically of order 10solutionsZ,=Z,(Z;) of P=0 form a multivalued algebraic
A. Even then, for example, for thea phases of function, so that to each poit; of the complex plane are
(BEDT-TTF),MHgXCN, (to be discussed in Sec. VB, is  associated several possible valueZgf We can construct a
4200 T. With experimental fields less than 100 T, breakdowrsurface on which this function is single valued. It is called
should only be visible if the gaps happen to be unusualljthe Riemann surface associated with The hyperelliptic
small, as is the case for the organic conductt functions are a special case whéte: Zg—Q(Zl,e), Q be-
k-(ET),Cu(NCS),. For the « phases of ing a polynomial of finite degree ig;. If n is the degree of
(BEDT-TTF),MHgXCN, the question of whether magnetic P in Z,, then there aren algebraic solutions, and ddlp
breakdown should be observable or not, is a key element in eonsists ofn sheets. To each point of the complex plane are
debate about the existence of a reconstruction from a densigssociatedh equivalent points on tha sheetdeach identi-
wave at low temperaturés.t is important to eliminate any fication Z,(Z,) is associated to one shgetlefining then
uncertainty as to the predicted value of the breakdown fieldralues of the function. Conversely, each point of the Rie-
from the band structure. The principal frequendigappear- mann surface is associated with a unigue valu&.af This
ing in oscillations of the magnetizatidi =M (1/B) are pro-  provides the correct way to compute all continuous paths
portional to the area surrounded by closed paghsat the  y(t)={Z;(t),Z,[Z4(1)]}, 0<t=<1. To construcM p we first
Fermi surfact® when no breakdown effects occur: compute the singularities d@®. These are, for example, the
points where we have a degeneracy in the otherwise distinct
iR a,ay fﬁ K.dK (18) values ofZ,(Z,). There are two kinds of singular points:
sT°¢ (2m)2 v L either{P=0, VP=0,} or {P=0, 9,,P=0} the former case
being more restrictive. The singularities indicate the pres-
Pence of degeneracy among the different valueg of De-
generacy is either because the multivalued complex curves
Nt Ner Z,(Z,) intersect at these points or else because an infinite
Re=[1 ipst s » slope occurs in the curve d, as a function ofk,, for
ji=1  Tj=1 7 example. As we will see in some examples next, the latter
case corresponds to the band edges. The procedure to remove
s.t the singularities and to set the branch cuts at which we paste
]1:[1 Psj=exd —2m Im(fs)/B], (19 the different sheets can be found, for example, in Refs. 19
and 20.
introducing the amplitude factd® for each closed electron While points at infinity are not physically relevant here,
orbit, which is assumed to pass by a number of breakdowthey complicate the topological analysis. It is, therefore, con-
pointsng; at which the electron tunnels, and a numbhgf  venient to compactify the space: we construct frena ho-
where it does not. In Eq19), ps; andqs; are the absolute mogeneous polynomial as follows. Lig be the total degree
amplitudes of transmission and reflection for thgpath at of P, i.e., the highest degree id; or Z,, and letZ;
each breakdown point, and all quantities are taken at the=Y./Yy, Z,=Y,/Yy. ThenP can be expressed as

fic

g Re 3gE:EKydKX=27T(n+7), n=0,12,.., (17)

For the case of orbits coupled by breakdown we should a
ply the Falicov formuld’
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then the actions are mutually conjugate:

Syl=S[v']. (23)

Therefore, we can restrict our calculations to the physical
region onM(P), i.e., Im{§=0, corresponding t¢Z,|<1.

A different but equivalent way to see these topological
r properties is to consider the homology/cohomology groups
associated to the connected manifdidP). A closed elec-
tronic trajectory can be considered as a one-dimensional ori-
nted cyclec belonging to the set of such closed chaihs
f B, is the set of boundaries, i.e., the one-dimensional
chains ¢ that can be written as the boundary of two-
dimensional regions, we can define the simplicial homology
P can be factorized im; polynomialsP;, thenM (P) is the of M(P), the factor group—ll_zcllBl. Itis clear thf"‘t ifc;

andc; are two cycles belonging to the same clasblinthey

union ofn. independent manifolds! (P;). The integen, is i .
called the connectivity index of the Riemann surface. Physi—have the same action. On the other hand, we define the set

l 1 -
cally, an electron cannot tunnel between two pathandy, C- of all one forms onM(P) that are closedthe differen

H 1
(i#]) if they belong to two different Riemann surfaces. Let tials are ;erp an.d the seB .Of all exactone forms(_those
us suppose in the following thid (P) is connected, and take that are differentials of functionsThen we can consider the

1_cl/pl i
any two different trajectoriey; andy;, with the constraints gfeaRQacTegoct}ogofng dngiogﬁ dlz Cofl |(3:1' The inner product
{7(0)=%(0)=Pqg, %(1)=7(1)=Py}. The actionS(y;) Y L yaR Ot
is equal toS(1y;) if and only if the two paths belong to the
same homotopy class of the fundamental group m(C,w)= 3§ w, (29
w1 (M(P),Py,P,).° This is a consequence of Stoke’s theo- ¢
rem: the difference between the integral taken along two tracan be associated with the actinand is, in fact, indepen-
jectories that can be continuously deformed one to the othefent of the representative elementandw in H; andH?, so
is an integral over the area defined by following one andhat in the semiclassical calculatianacts onH,xH* as a

returning on the other. On the submanifold of constant enscalar product, which remains constant for any small change
ergy, this area is zero. As the de Haas—van Alphen frequeryt its argument.

cies are proportional t&, it is sufficient to choose one tra-

1
P(Zl,Zz,e)=WQ(YO,Yl,YZ,e), (21)
0

whereQ is the appropriate homogeneous polynomial. If we
consider the two-dimensional complex projective spae#
formed by the equivalence classes Yq(Y4,Y5)
~(\Yq,AY1,\Y>5), for A complex and non-zero, it is clea
thatQ=0 defines the same surfaceRs 0 in CP?. Points at
infinity can be defined by setting,=0. The Riemann
sphere is defined as the manifold composed of the compal
tified complex plane. It is isomorphic to the sphee by
stereographic projection.

We have the following connectivity property & (P): if

jectory representative of each class #f(M(P),Pg,Py), IV. APPLICATION TO A TWO-BAND MODEL
which is in fact independent of the basis pdiy, and use it
to compute the actio8. It is clear that, in genera§ will be A. Model

complex. The real part is identified with the real frequency. The model we consider in this section has a Fermi-surface
If there is no tunneling involved, it corresponds to the areaspape close to the quasi-two-dimensional organic material
J,ReK,)dReK,) enclosed by the trajectory in the real that we will study in the next sections. By taking a polyno-
(Kx.Ky) plane. In that case Z;,Z;) belongs to the mjal of the lowest possible order, obtaining the singular
circle S'XS'. If S contains an imaginary part, this is the points becomes completely elementary. In particular we will
signature of a tunneling effect. In this case, the real part doe§tudy the magnetic breakdown between an open Fermi sur-
not CorreSpond exaCtIy to the area in the first Brillouin Z0Nefgace and a closed circular area by Computing the associated
Indeed the contribution- [, Im(K,)d Im(K,) to the real part Riemann surface. Let us consider two planes coupled by a
does not vanish in general. Moreover, the positive imaginaryypridization parameter=0, in which the tight-binding
part of the action gives the total breakdown field. constants in thex andy directions are ¢ 1,—1/2) for the
Thus, we see that the question of the physical electronigyst plane and € 2,— 2) for the second. We also introduce

trajectory in a process of tunneling is not relevant for thean energy gag, between them. So, the Bloch Hamiltonian
calculation of frequencies, and there is no weight associateghatrix can be written as

to individual paths in a homotopy clasS:is a topological

guantity invariant by a local change of path. ~ [ €1(Ky,Ky) @
There is an important class of polynomidswhich can H= “ (K Ky ) (25
be written asP(Z;,Z,)=Z}'Z02P"(Z,+1/Z1,Z,+1/Z,). oy
Then,P=0 is equivalent toP’ =0, except at pointg,=0  Where
andZ,=0. If, i_n a_ddition, all coefficien_ts oP are_real_, we e1(Ky K,)= —cogK,) — 1/2 cogK,),
have symmetries i& under transformations that simplify the
analysis. For exampleZ,;—1/Z, implies S——S, and e(Ky,Ky)=—€5—2[cogK,) +cogK,)]. (26)

Z,—1/Z, together withZ,—1/Z,, imply S——S. If we
take a pathy between two point®, andP,, and the path/’
defined by

Here we writeK, and K, in units where the elementary
lattice vectors are of unit length. Results will appear as frac-
tions of the area of the first Brillouin zone. The Bloch bands
s s at the Fermi energy are easily found by computing the secu-
v (t)=[1/Z4(1),1/1Z5(1)], (22 lar equation,
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FIG. 1. The Fermi surface for energy = 0.35 for the two-band
model of Sec. IV, with gap energy,=0 and hybridizationa
=0.4 (full lines), and the unhybridized case=0 (dashed lines

de{H—eq1)=0. (27) -
Z2[-1,1)(Z1) 72[1,1)(Z1)

Let us first consider the casg=0 and a=0.4. We will
work with a filling ratio of 0.6, which fixes the Fermi energy
e for zero field at approximatively 0.35. The CorresF)Ondmgpoints are indicated by large dots, and the unit circles by lines on

F_erml_ surfacgsee Fig. 1has_two open orbits along théy ;@Ch of the four Riemann spheres. The spheres are connected by
direction and four rounded pieces at the corners. The dash ndles as described in the text. For simplicity, we show the gluing

lines in Fig. 1 correspond ta=0 at the same energy. In this (5gether of only two lines of branch cuts between pairs of singu-

case, there are degeneracies at four points in the BrillouiRyities in the upper Riemann spheres. The different oits, and
zone, and a nonzere lifts these degeneracies. The determi- y are indicated, and are drawn projected onto real space in Fig. 3.

nant can be transformed into the polynomial

FIG. 2. Riemann surface for the two-band model with the pa-
rameters of Fig. 1e-=0.35, eg=0, and @=0.4. The singular

This polynomial has twelve singular points, and near each of
P(Z1,Zy;a,ep)=2[(Z34+1)Zy+ 3 (Z5+1)Z1+2€:2,2Z,] these Z,=2,), the singular part of, behaves a§Z,—Z,.
This defines theramification indexas being 2. At these
X[(Z341)Z,+(Z5+ 1) 21+ €21 Z,] points, two sheets are connected Xi=2,+1/Z;, i=1,2,

then
—4a%7373. (28)

The degree of this polynomial is 4, which corresponds to the Zlo,0"]= 2[—(3X1+5er+ €g) + o\G(Xy)
number of identifications of the algebraic functiaf, NV

=Z,(Z,). Indeed, there ar&,’s in Fig. 1 for which there oA, (X)),
are four distinct solutions oK, . Therefore, in order to de-
fine a surface on whicH,, considered as a function &f,

is single valued, we must take at least four copies of the )
complex plane. The different identifications will be noted 0o(X1)=(BXy+5er+ €g—0Va(Xy))*—16. (30
Z)[+1,£1](Z,). As we have discussed, and in order t0 beryq gingular points occur where the the arguments of the
able to draw the Riemann surface, we use compactified, - roots vanish. Indeed =0, then Z,[1,0']=Z
planes that are represented by surfaces of spheres. In Fig. 210,] for o' = +1. and ifq’ ~0 7 [o1] :22 ’[U _1]2

we draw four complex planes labeled in this way. In eac he,con’ditionqzo_pr’ovides s with four solut?on,sZ [7]'
case the point at infinity is behind the visible part of the+1] which are solutions oK, = — 3eq+ e, +i47a %Nm’]
sphere. We draw the unit circles corresponding to possibl%_ ' ! Fg '

| val E h soh Let te th 1[ 7, +1] denoting the solution for which the real part is
real values oiig, on each sphere. Let us now compute egreater than that o[ ,—1]. Vanishingq,, leads to four
singular points defined by

solutions for eachr, Z,[ o, 7, = 1], which satisfy the equal-
ity X1=%[—36,:—69—377+0'\/(—6,:+eg+ 7)°+8a?],
with the solutionsZ,[ o, 7,1] and Z,[ o, ,— 1] ordered in

0(X1) = (X;+3er— €g)*+ 16a?,

P(Zl,ZZ;a,EF)ZO, ﬁzzp(zl,zz;a,EF)=0. (29)
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TABLE I. Values of the fundamental de Haas—van Alphen fre-
guencies for each value of the hybridization parameteand the
/ \ corresponding Fermi energat , for a fixed filling of 0.6.

€Ep a fa/BC fﬁ/BC f /BC

Y

| - Kx 0.341 0.3 0.286 0.4122.90x10°2% 0.486+1.77x10 ?i
0.349 0.4 0.264 0.414.71x10°% 0.465+1.18<10 3
0.363 0.5 0.242 0.4196.75x10°% 0.442+5.17x10 3

-

stand how the complex electron- or hole-trajectory scheme
- N works. The double arrows designate a hole trajectory, and
the single arrows, an electronic one. This means thaithe
orbit surrounds a maximum peak in energy, with a negative
effective mass. In Fig. 2 the orbit can be followed by
1] Z,iL-1] starting at the poinP, on the upper I?ft part of the sphere
Z,[—1,—1] and moving toward¥Q; (the path is shown
z\[_l_ Z/i\\ T slightly to the left near this point gut this is just to avoid
§ \“\ \ /2 ' \ / confusion with the trajectoryy,). It continues on the unit
circle until the singular poinZ,[ —1,—1,— 1] where it must
FIG. 3. The extended Brillouin zone in rekl space for the move onto the other sphere in the lower left of the figure.
two-band model for the same parameters as Figs. 1 artd 2 Sjmilarly it moves around part of the unit circle and returns
=0.4, €4=0, ande=0.39, showing the projection of the orbits t5 p . The handles are drawn to show the topology but note
Ya» ¥p, @ndy,, and the identificationZ. that there is no contribution to the action from the passage
from one surface to the other. As the whole path is on the
decreasing order of real paitsr, in the case of equality, of unit circles thek-vectors are real throughout. As this trajec-
the imaginary parys The distribution of the singular points tory does not include any magnetic breakdown, its frequency
is indicated on the Riemann surface in Fig. 2. The differentf , dominates at low field. As the field increases, magnetic
sheets are represented by a Riemann sphere on which weeakdown appears between hole pockets and the open elec-
have drawn the unit circle and, with black circles, marked tharonic orbits (vg), and between the open orbits themselves
singular points around it. In particular, we recognize on the(yy)_ The v, orbit is also shown in its entirety in Fig. 2,
unit circle the points delimiting the real bandg=K(K,)  where it appears in the two right-hand spheres. Starting at the
by a vertical tangentFig. 1). Z,;=0 is a singular polar point  point P., the path passes immediately to the lower right-hand
that does not play any role in the Riemann surface construgsphereZ,[ 1,1] and describes part of the unit circle. At some
tion. Itis clear that foZ, =0 orZ; = the imaginary part of point it leaves the circle, corresponding to the tunneling from
the action is infinite, so that the wave function should vanishthe right hand part of the open surface to the left. Crossing
Since the Hamiltonian has many symmetrigs—1/Z;,  the axisK,=0 it moves onto the upper right-hand sphere
Z,—Z;), we only need to count the points inside the unitZ,[1,1] and makes a second tunneling to returrPtp. The
disk on the upper half complex plane to deduce the others. limaginary part of the action comes from the two departures
fact, only five points of the twelve need to be computed.from the unit circles. Fory; we show only the first quadrant
Only one branch cut comes out at each singular point, sincef the path fromP; to Q4. The path moves outside the unit
the ramification index is 2 for each of them. Thus we joincircle in the upper right-hand sphere and passes via singular
pairs of singular points by a segment in order to close thepoints to the upper left sphere and the po@g. In the
branch cuts. Then, we glue two sheets along a correspondirigtermediate range, a combinatiofy(+ f,)/2 can appear be-
segment by cutting it in two parts, andb, and identifying  cause of the high degree of symmetry in the first Brillouin
the suitable edgeglelimiting the dark area on Fig) Dy the  zone. The values of the different frequencies, computed for a
process indicated, for example, in Ref. 19: if we take a patHilling rate of 0.6, are listed in Table I.
beginning at a poinP in the neighborhood of a singular Let us remark that forw=0.3 we findf;=0.413-7.4
point, and if we turn twice around this poithe ramification <10 %, the imaginary contribution being negligible, and
index being 2, we have to go back to the original poiRt we observe that this is generally so. The breakdown fields for
We obtain, finally, a surface of gengs=5, which allows us each tunneling region, i.e., the fields giving the probabilities
to compute all the homotopy classes. of tunneling at each “junction” where the contours of dif-
ferent branches of the Fermi surface are close, Bye
=0.148(2) and3,;=0.074(2)(the integer in brackets indi-
cates the number of breakdowns around one Rprinitunits
In this section we compute three fundamental frequenciesf B, and fora=0.4. Varying thea values between 0.3 and
that appear in the Fourier spectrum of the magnetization fo0.5 does not alter the topology of the Riemann surface. In
the parametersa=0.4, e=0.35, ande¢;=0. We have fact, the singular points move on the Riemann sphere, but the
drawn a representative path of each of theyp (yz,v,) on  connections between the sheets are not destroyed. The
the Riemann surfacg-ig. 2) and in the reak space(Fig. 3. change of topology whea decreases to zero comes from the

\\
< The comparison between the two figures helps us to under-

L1 Zy[L,1]

B. The fundamental frequencies
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FIG. 4. Fermi surface for the two-band model for the case in
which there is no crossing at zero hybridization. The parameters are
a=0.3, eg=—0.3, ande;=1 (full lines); a=0, sameer and ¢,
(dashed lines

FIG. 5. Fermi surface of the simplified tight-binding model for
) ) ) — the organic compound-(BEDT-TTF),CuNCS),. The parameters
fact that two pairs of singular pointsZ{,1/Z,) and  arec,=100.75,c,=70.75,b=60, ander = —63.52(in meV). As
(Z,,1/Z,) tend towards each other and merge to form a paiexplained in the text, the difference betwemnandc,, and there-

of conjugate points on the unit CircIeZ!iim and 1ng fore the gap between surfaceskat=, have been greatly exag-

:—gm_ When they merge, the singularities disappear begerated in order to compare to the numerical results of Figs. 6 and

h ification index i | > Indeed. wh 7. They, andyg trajectories in reak space are indicated, as well
cause the ramiiication index Is equal to 2. Indeed, waen as the identifications to be used in constructing the Riemann surface
decreases towards zeroZ,(1,—1],Z,[—1,1]) and ;

[—1 . (Fig. 8.
[—1,—1],Z,[1,1]) collapse on the unit circle tdgm and
Z" at the intersections of the “real” bands in the Brillouin different even if the overall set of values is the same. On

zone: Z;" is at the intersections of the arcs joini@[1,  these surfaces, we have the correct way of choosing the paths
—1,1] to Z4[1,1,1], andZ;[ —1,—1,1] to exp{m), respec- when we cross the degenerate point in Fig. 1, with a unit
tively. Similarly, ﬂm is at the intersections of the arcs join- probability for the pathP;—Qg. On the other hand, the

ing Zy[1,1,-1] to Z4[1,—1,—1], and expt-im) to Z;[ —1, casee,#0 avoids the degeneracies that occur on the Fermi
—1,—1]. Therefore, in this limit, the Riemann surface surface ata=0, and now the limit ofVI(P) when a—0~"
breaks into two part4.Z,[ —1,—1](Z4),Z,[ —1,1](Z;)} and  corresponds to the correct result whes 0. This is the next
{Z,[1,-1]1(Z,).Z,[1,1](Z4)}. The pathy, can no longer be  observation.

followed becauseM(P) is disconnected. Moreover, the
probability of tunneling for this path goes to 1 whan-0",
but seems to vanish at exactly equal to zero. So, if we
travel fromP to Qg (we consider one part of the paihy),
the limit of M(P) whena—0 induces a rupture of the path. In Fig. 4 we have drawn the Fermi surface choosing the
However, when we analyze Fig. 1, we see that the pativaluesa=0.3, eg=—0.3, ;=1 (full lines), and the same
should be naturally continuouby inspection of the dashed with «=0 (dashed lines For this case no degeneracy point
lines). Moreover, the continuity of the pat,— Q follow- appears in the Brillouin zone in the limit—0*. As previ-

ing vy, in the limit a—0* is not correct if we inspect the ously, the Riemann-surface topology is identical fo# 0,
same figure. These observations tell us that the Riemann suand the distribution of the 12 singular points is almost the
face obtained as the limit—0* of M(P) is wrong, in the same. The only difference is that whendecreases to zero
sense that it does not correspond to the Riemann surface we two previous pairs of singular points tend to two conju-
are expecting atr=0. In fact, fora=0, the original Hamil- gate points on the unit circle, but instead of reaching the
tonian is already diagonalized, so that we can construct twdomain of the “real” band, they reach the “complex” re-
disconnected Riemann surfaces that do not correspond egion that does not appear in the Brillouin zone. That is why
actly to those obtained by the finite— ones in the limit the calculation of the imaginary part ¢f; leads to a nonva-
a—0. Indeed, the distribution of the singular points with nishing value with a probability less than unity in the limit
respect to the disconnected parts of the Riemann surface is—0. At «=0, this probability vanishes, as before, although

C. The caseey#0 and the discontinuity
of magnetic breakdown
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FIG. 6. Magnetization curves agair®t/B for values of parameters{,c,) corresponding to the fitted experimental val(@s.5, 84.5,
as well as the valu€l00.75, 70.7bcorresponding to Figs. 5 and 7.

the similarity of the Fermi-surface shapes in the cases trivial sense that there is a selection rule that gives no break-
=0 anda# 0 could be misleading. Moreover, the Riemanndown. What is happening is that the critical field for nonzero
surface is a continuous construction wher-0. The fact « stays close to the value predicted by Chambers’ formula,
that the singular points collapse, by symmetry of the Hamil-but the amplitude must vanish. We can visualize this physi-
tonian, at the unit circle and not at infinifwhere the wave-  cally for small @ by imagining that a wave packet that ap-
function amplitude should be zérexplains why the trans- proaches the point of breakdown will only tunnel if its ve-

mission coefficient betweeR; and Q; does not vanish in  |ocity, set by the fielcH, is sufficiently small that tunneling
this limit. Therefore, we have shown a duality between tWocan occur via the small coupling,.

cases:(1) e,=0—discontinuity betweerM(P)|,_o+ and
M(P)|,=0; continuity of the transmission coefficient be-
tween P; and Qg along the pathy, (see Fig. 3 (2)
€47 0—continuity of M(P) at «=0, and discontinuity of
the previous transmission coefficient.

What does this imply for magnetic oscillations, for the
second case in particular? Strictly speaking we could say that
Chambers’ formula is inapplicable far=0, although in the

V. APPLICATION TO THE TWO-DIMENSIONAL
ORGANIC SUPERCONDUCTOR k-(BEDT-TTF ),Cu(NCYS),:
A TWO-BAND MODEL

This quasi-two-dimensional organic superconductor has
been experimentally studied by several grotipl particu-
Y—r7¥—1 lar, the influence of pressure on the different parameters of
the magnetoresistance, such as the area of the small closed
orbit and the effective mass, has been analyzed. Moreover, a
correlation between the superconducting temperature and the
effective mass has been measured. The band structure used
to interpret the experimental resdftdor this organic com-
pound is based on an effective dimer model. Consider two
dimers per unit cellA andB, whose overlag\-B within the
unit cell isc, . In thex direction, there is a coupling which
is the direct overlap\-A or B-B. A dimerA at the origin has
four neighboring dimer8, located diagonally around it. The
overlap with theB’s above isc;, while that with those be-
low is c,. The experimental values for these parameters are
(in meV) b=60, c;,=87, andc,=84.5. The Fermi energy is

FIG. 7. Intensity of the Fourier components of the curve of Fig. €e=—b. For theoretical convenience, we will allow these
6 for the parameterscq,c,)=(100.75,70.75). The frequenc§ values to change in order to deform the Fermi surface and

—a is visible as a shoulder on the primary breakdown peak ofvary the de Haas—van Alphen frequencies as pressure’tloes.
frequency 100% of the first Brillouin zone. We can express the Bloch Hamiltonian as

Intensity (arbitrary units)

Frequency in units of the first B.Z.
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FIG. 9. Comparison between the semiclassical breakdown field
Bo,/4m=1m(f /4B, and Chambers’ formula plotted as a function
of (c,—c,)/2 (meV) for thex phase.

the Brillouin zone, K,,K,)=(0,0). For energies above

) ~—100 meV, we begin to fill the other band, corresponding
— to the open surface.

We have made calculations of the de Haas—van Alphen

ganic _conductorx-(BEDT-TTF),CU(NCS), The two Riemann spectrum by diagonalization of a finite lattice with a varying

spheres are connected as indicated. The orbits of Fig. 5 are al%ansve_rse m?‘gneF'C flux. The presence of t_he flux breaks
shown. translational invariance, and the energy eigenvalues are

found by a complete diagonalization of the lattice Hamil-
tonian (in practice, a 6& 60 lattice for each value of flux.
The total energy is differentiated numerically with respect to
' flux to give the orbital magnetization. The method of calcu-
lation is outlined in Ref. 23. It is equivalent to what is some-
@D times referred to as “full quantum-mechanical
yielding the dispersion relation calcglatiqn”—.full in the sense that no semi-classical ap-
proximation is made for the magnetic flux. The three fre-
2_ 2, .2 uencies that appear in the de Haas—van Alphen spectrum
[€=2b cosK,)J"=2[ci+CyF2C1C,C08K,y)] ((:Isee Figs. 6 andI;JKp:orrespond to the area of thepsmall glosed
X[1+cogK,)], (32 orbit @, and a greater orbiB, of unit area, obtained by a
breakdown effect between the open and closed orbits. The
which is symmetrical irc; andc,. In the following, we will  third (8— «) has a total area equal to the difference between
fix b and (c,+c,)/2, and vary the differencec{—c,). We the areas of8 and« (the representation of the pathg and
also fix the filling ratio as one electron per site, i.e., weyg is indicated in Fig. & Such an orbit is classically prob-
assume the stoichiometry to correspond to the experimenté¢matic, as we shall discuss below.
situation. We have drawn in Fig. 5 the Fermi surface for an Let us first construct the Riemann surfab®(P), the
arbitrary set of parametetgiven in me\j. The two surfaces polynomial P being deduced from the dispersion relation
are such that the sum of the closed hole-orbit area added &bove. We therefore find two solutio@s[ o](Z,) by solv-
the inside area delimited by the open orbits is exactly oneing for cosK,) in terms of cosK,). So,M(P) consists of two
Indeed, we first begin to fill the band that has the lowest-
energy minimum, aé~ —300 meV, situated in the center of ~ TABLE Ill. Fundamental de Haas—van Alphen frequencies for
the two-band model presenting the structure of the organic com-
TABLE II. Singular points of the Riemann surface correspond-pound«-(BEDT-TTF),Cu(NCS),, for two representative values of

\\
N ’//,

Z72[1)(Z1)

FIG. 8. Riemann surface for the tight-binding model of the or-

2b cogK,) (1+€e'%x)(cy+ce™y)

= | .
(1+e ) (c +cre Ky) 2b cogK,)

ing to the dispersion relatio(82). the parameterd;—c,).
77/ 1 _1 Cl_CZ €Ep f(x/BC fB/BC
Z1,17%'] 7.84 —0.956+0.295i 30 —63.52 0.142 #1.63x10° 2

Z[1,-1,7"] —0.216+0.976i —0.717 0.697i 2.5 —60.05 0.157 144710 4|
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nf’ ' ' ' sense that we have curves crossing at the singular points
Zo,—1,1]=240,—1,—1]. These points are removed
from the Riemann surface as in the example of the previous
section, and the genus is reduced tavi(P) remains con-
nected, since the polynomial cannot be factorized into two
parts.

It is tempting to explain the existence of the frequency
B— «a in the topological formalism by the existence of a class
of pathsy;_,, with the correct ared; ,, which could be
ot drawn on the Riemann surface, Fig. 8. The imaginary part of
such path is the same @ The classical problem of this
choice is that the hole apparently travels temporarily in the
counterclockwise direction when it follows the small hole-
pocket contours. This is rather troubling as it violates our
classical intuition. In fact, what is required in a full semiclas-
sical analysis are selection rufébased on the conservation
of current at each region of breakdown. This analysis is nec-
essary to construct the correct frequency spectrum. The fre-

w2t 1

—n/2 1

“r quency (B— «) is absent from the fourier component of the
= 2 0 0 T frequency spectrum, but when we calculate the magnetiza-
Ky tion as a function of inverse fieldlit appears as a result of

. . imposing the constraint of constant total electron density.

FIG. 10. Fermi surface of-(BEDT-TTF),MHgXCN, with the  Thus the path drawry,_, should not be taken literally and
parameters calculated by Magt al. could even be omitted from the analysis as its imaginary part
, , , is the same as that of the pagly . If we estimated the break-
_sheets(seg F|g. 8 coming from the fact that to any f_|xddx down field from the “unphysical’y,_, or the “physical”
in the Brillouin zone there correspond two solutioks . yp We estimate the same breakdown field for the oscillation
There are eight singular points, W|t_h the same symmetry aBB— ) so this point might seem academic. However if we
the previous exampleX, andK, being expressed in terms ayrihyted the occurrence of this frequency to the existence of
pf cosine functions. Each smgular point has a ramification,q ¥5_ . Path we would then erroneously predict its appear-
index equal to two, a&, contains only square roots. There 5nce'in other correlation functions, as a function of time at
are also two polar singularities ah =—1,0. The singular  fiyeq field, for example. Thus we argue that the topological
solutions, expressed &[*1,7,7'], are solutions ofX;  4nalysis we have given must be supplemented by selection

=f[7,7'], where rules, but contrary to the case of interference between differ-
1 ent closed orbits, one still finds certain frequencigs;- (@)
{9 1= W(zer"_(Cl"_ c,m)2+ 7' (ci+Com) in particular, that narely might be excluded by arguing that

the classical motion is in the “wrong” direction. Details of
the calculation of the interference frequencies will be given
elsewheré® Experimentally, the3— a oscillation is clearly
and the solutions+1 are, as usual, ordered in decreasingseen in the magnetoresistar’r&evith amplitudes higher than
value of real or imaginary parts. Their values are shown irone expects from elementary arguments. Note, however, that
Table II. here we are not calculating transport, and the question of
The last four points are given by the symmetry interference is rather different for transpdih the case of de
Z1l0,0'1=1/Z,[—1,0,0']. Topologically, M(P) is a Haas—van Alphen oscillations, the question of the magneti-
surface of genus 4. The half path for tBeorbit from P, to  zation amplitude remains: a recent sttidfpund oscillations,
P4 has been drawn in Fig. 8. This orbit includes four break-but of weak amplitude, only a little larger than can be ex-
down points, which occur for an appropriate representativglained by demagnetization effects.
path along the unit circle out of the arcs belonging to the real

X X \J4ecb+(c,+c,7)%+8b?),

bands, between, for exampl€;[1,—1,—1] and Z,[1,1, VI. BREAKDOWN FIELD COMPUTATION
—1]. The numerical calculation has been performed at highFOR THE TWO-DIMENSIONAL ORGANIC COMPOUND
field (B./B ranging from 5 to 55 with the choice of the a-(BEDT-TTF),MHgXCN 4

parameter ¢; —c,) =30 in order to resolve the three orbits in . . . .
the spectrum. For small values of this parameter, as in the Calculatlon_s for this family of compo_unds starting from
physical case, the gap between thand 8 orbits will be too molecular orblt_als lead to a four-band tight-binding model.
weak fora to be observed at high field. By analytical com- Each unit cell is an arrgngemgnt of four atorag, az, b,
putation we found the frequencies listed in Table 1, which ar_1dc. The structure of interactions can b_e found !n Ref. 28,
are in good agreement with the numerical spectrum. We als§ith _the calculated overlap coefficientsn meV): c,=
compare the Chambers’ formula on one of herbit break- 19, ¢,=6.8, c3=—-1.1, ¢,=—1.4, p;=—10, p,=
down points with the semiclassical calculus for varyimg ( _9'7_’ P3=13.3, andp,=13.2. The four-dmgnsmnal wave-
—¢,) (see Fig. 9 which confirms that the agreement is al- fUnction tp:(xpal,xpaz,qu,xpc) then satisfies the Bloch
most perfect at small gaps. The case=c, is special in the equationHW¥ = eV, where



57 de HAAS—-van ALPHEN OSCILLATIONS A . .. 1495

0 cse vy+c, pe®x+p, pre Kyt pe KxtKy
R cse'ky+c, 0 pye” Kx+pg Py + pae Kx
A= . . - 33
p1ex+p, p,€'Fx+ps 0 c,e v+c, 33
P1e* v+ pael Y pytpaec cie e, 0

The eigensolutions in energy are four independent bandsally the solutions oP =0 anddz P=0. The choice of dif-

With three electrons per spin in the Brillouin zone, two of ferentiatingP with respect taz, instead ofZ, is purely for

spin is shared between the last two bands, as in the previoygcle of the Riemann surface. The resolution &f P=0
. . A

example. We find the Fermi energy-atl7.2 meV. The con- provides us with exact expressions 2f=2,(Z,) as three

tours of the Fermi surfacesee Fig. 1D are qualitatively the : : .
same as the ones that we studied as the first example: thesrfa)IlJtlons of a polynomial of third degree. Then, replading

are four quarter-pocket areas at each corner of the Brillouir). P, we have an algebraic equation4p that we can solve
sone an?j two cF))pemor “quasi-one-dimensionall’ curves rP]umerically. Inside the upper unit circle, we found seven
that éross the zone alorig,. Obviously, we have the single values forZ,, listed in Table IV. T@ others can be deduced
symmetry Ky,Ky)—(—Ky,—Ky). At low field, the only DY the symmetrie,—1/Z,, Z,—Z,. We do not give the
contribution to the magnetization oscillations are due to thé0'responding’, values.P, corresponds to the unique band
closed-pocket areas. The question remains whether it is po§99€ Of the closed areas. Obviously, there is no band edge
sible to see any magnetic breakdown between the pocket af@ the open parts in th&, direction. P, defines the bridge
the open surface at sufficiently low fields. Indeed, the nuPetween the closed areas and the open parts. The other points
merical diagonalization at high fields suggested the existencd'® t00 close to the origifor, symmetrically, to the point at

of such a breakdown effe¢see Fig. 11, with a frequency infinity) to play an important role in the breakdown effect.
equal to the whole area of the first Brillouin zof@orbit), in ~ 1he path we C(?n5|der for the breakdown pi¢see Fig. 12
addition to the small frequency at f,,/B,=0.196. The ex- IS the following: we begin at4,,Z;)=(-1,P,), and solve
istence of a—a orbit, that could be justified as in the for Z at each point of the parametric continuous path
previous section, was pointed out numerically in Ref. 23, and _ —r

in a similar study by Machidat al?® Substituting in the YO=(24(0),2,(1), 0<t=2,

igenval tioe'ki—Z ande Xi—1/Z., we fin _
So%inoﬁ#eﬁ ci‘qdueagr?ag 7 inZ(ll,Zaz)C,i tehe highe/stJ Eerrr? beiggaof Zo(O)=(Po=Pyt+Py,  O=t=1,
the formz1Z3. The highest degrees i, andZ, are 4. As Z4(1)=0.519-0.751,
the coefficients of the polynomial are real, afcHermitian,
the following result holds: if Z,,Z,) is a solution, Z()=(—1-P)(1=1)+P,, 1st<2,
(1/Z4,11Z,), (Z1,Z,), and (1Z,,1/Z,) are also solutions. Z,(2)=0.758-0.652. (34)

Now we want to compute the most singular points, in orderAt =1 h ¢ K h dentificati
to find a path to explain the existence of {Aerbit. As the =1 we have to make a changeyf identification as we

polynomial cannot be solved explicitly, we studied numeri-lUMP from one of the four sheets to another. This path is a
small part of the complet@-orbit action. In fact, we only

1 : e . . ——— need to calculate the numerical value of the imaginary part
of this action. The real part can in fact be seen to be exactly
sk 1 1 from a symmetry argument: the contribution from the

product of real parts of th& vectors gives 1 from stoichi-
o ometry, and the contributions from the imaginary parts can-
TABLE IV. Most singular points on the Riemann surface cor-
04l - responding to the energy dispersion for the two-dimensional tight-
binding model associated with the organic compound
a-(BEDT-TTF),MHgXCN,.

Intensity (arbitrary units)

0.1 r 1
’ Re@,) Im(Z,)
0 s A s . Lo
025 05 0.75' '1 125 15 L75 2 P, ~0.192 0.981
Frequency in units of the first B.Z. PZ —0.477 0.161
FIG. 11. Fourier spectrum of the magnetization of Ps —0.0236 0.00629
a-(BEDT-TTH),MHg(XCN), as a function oB,/B, as calculated P4 —0.138 0
on the lattice. The primary breakdown frequengys at 100% of Ps 0.00883 0
the area of the first Brillouin zone. Also visible are the peak corre-Pg 0.00869 0
sponding to the hole pocket at frequeney-19.6% and the inter- P, 0.000812 0

ference frequency— a.
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the momentum. This is then used to incorporate an applied
magnetic field via the Peierls’ substitution. The restriction to
a finite-order polynomial is very mild in physical terms, and
can be tested by including more sheets. In general, this
seems unlikely to alter the results greatly, at least for break-
down fields that are small enough to be measurable, given
that the extra sheets do not contribute to the Fermi surface. A
possible exception to this may be, for example, in the case of
aperiodic solids, where the Fermi surface should really in-
volve an infinite number of sheets. But even this case may be
tractable by taking the appropriate limit of a finite-order cal-
culation. In practice, the approach seems most useful in
cases, such as the molecular conductors, where extended
Huckel calculations are good starting points to understand
the electronic structure, and lead to rather low-order polyno-
o . mials. As we have seen, the difficulty of the calculation will
FIG. 12. A_ part of the projection of one possible breakdown,crease with the order of the polynomial, mainly because
path(dashed lingsonto realk space. the topology becomes more involved. The need to solve the

b E ic breakd | haIgebraic equation numerically is not an obstacle. It appears
cel by symmetry. Four magnetic breakdowns occur along thg, ot 5 semiclassical analysis will suffice to explain observed

orbit. We finally havef ;/B,=1+0.0333, giving magneti- oot res in numerical studies of “full” quantum-mechanical

zation oscillations corresponding to the area of the first Bril-;5|cjations. While there is not a large discrepancy between
louin zone damped with a characteristic field of 0.809 6 preakdown fields predicted here and those found from the
This can be compared with the result applying Chambersgemiempirical approach of Chambers, this is an advance at

formula: 0.20B.. Thus, from the value 0B, we predict |45t in the reliability of the results. We have discussed a
880 T for the breakdown field, based on the band structure.;se the |imit of vanishing hybridization in a two-band

This seems to exclude a singl_e—partic_le tunnelipg effect: ifmodel, where rize application of Chambers’ formula can
breakdown has been seen, as is possibly the ¥aseeems

. X e give a wrong result.
that either the band structure is not accurately giving the gap e topological analysis described allows us to systemati-

or there is a collective effect. We note that recent recalculag,y calculate the fundamental frequencies and damping of
tions of the band structure, all based on the extendezkélu

, , ) all possible magnetic oscillations. Determining which ones
approach, by DucasSeand Canadeff give slightly different .5y e actually observed requires additional selection rules

parameters, but they do not vary enough to explain any obye|ateq to current conservation. The semi-classical approach
served breakdown. For example, using Ducasse’s paranyq g allow more detailed calculation of what may be called
eters, Chambers’ formula gives a slightly smaller valueinerference effects,” namely, frequencies that correspond
0.02_80, in units of the first-Brillouin-Zone area, compared t0;5 s,ms and differences of areas. The analysis of this aspect
Mori's 0.0333 and Canadell'sat 104 K) 0.0304. We con- i not yet complete. For instance, we have not considered the

clude that breakdown cannot be a simple tunneling in th.5 e jation of effective masses. We have, however, shown

original Fermi surface, and this is in agreement with theng,y 1o calculate the dominant part of the tunneling prob-
interpretations of McKenzieet all® that the breakdown is

) abilities, which are the starting point of such an analysis.
from some, as yet undetermined, reconstructed state. Precise resolution of questions involving sums and differ-

ences of the primary frequencies in the magnetic oscillations
VIl. CONCLUSIONS may be useful, ultimately, in order to show, for example, the

We have shown how we can make systematic calculationdmitations of the single-electron picture.
of magnetic breakdown in situations where there are several
sheets to the band structure. Our algebraic approach rewrites
the energy dispersion relation as a polynomial form involv- M.G. acknowledges support from the Brazilian-French
ing complex variables constructed from the components ohgreement CAPES/COFECUB 196/96.
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