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We use an algebraic method to compute de Haas–van Alphen oscillations in two-dimensional systems in the
semiclassical approximation for cases where the Fermi surface lies on more than one sheet of the energy
surface. We treat magnetic breakdown by computing the Riemann surface associated with the Bloch energy
equation. The topology of this surface, in particular, its fundamental group, is used to classify electronic
trajectories in the complexified Brillouin zone. Three examples taken from tight-binding models of quasi-two-
dimensional organic conductors show how this can be implemented to calculate frequencies and breakdown
fields. @S0163-1829~98!04803-6#
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I. INTRODUCTION

The most precise way of measuring the Fermi surface
metal is by measuring the behavior of thermodynamic a
transport properties in magnetic fields varying in stren
and direction.1 For the most part, the strength of fields ava
able is sufficiently weak on an electronic scale that a se
classical description is entirely satisfactory to explain the
sults. This semiclassical approach leads to the predictio
oscillations in the magnetization or resistance that are p
odic in inverse field, with periodicity that is simply ex
pressed, in appropriate units, as the area of extremal cl
orbits on the Fermi surface perpendicular to the direction
the applied field. In addition, the amplitude of such oscil
tions in the case of magnetization is simply related to
effective mass of the carriers. It was realized in the ea
1960’s, in studies of metals such as Magnesium and Z
that to explain all the oscillations that one sees it is neces
to supplement the simplest semiclassical description of e
trons confined to the Fermi surface withmagnetic
breakdown,2,3 that is, magnetic-field-induced tunneling fro
one part of the Fermi surface to another, in order to g
oscillations corresponding to larger orbits than expec
from the band structure. A semiempirical approach dev
oped by Pippard4,5 and others culminated in a classificatio
of orbits with tunneling probabilities from portion to portio
of the Fermi surface depending on the local geometry. T
was successful in explaining the different frequencies
served for a variety of metals. The question of interferen
570163-1829/98/57~3!/1484~14!/$15.00
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between different orbits is rather more subtle. Stark a
Friedberg6 predicted interference effects between differe
orbits in the transport but not the orbital magnetization.

More recently there has been a revival in what is cal
‘‘Fermiology:’’ that is to say the study of the geometry of th
Fermi surface with magnetic means. This has been dri
primarily by the study of high-quality samples of increa
ingly complex electronic structure, with larger unit cells, a
by the availability of larger magnetic fields. There is also
impetus from the study of two-dimensional and quasi-tw
dimensional samples, where things should be simpler. On
theoretical side, especially in two dimensions, there has b
progress with numerical means that allow one to test se
classical models more quantitatively. There is room for i
provement even in our understanding of the problem of n
interacting electrons. We want to extract reliable informati
about, for example, open orbits on the Fermi surface. S
orbits are not visible in the undamped oscillations, but th
appear in breakdown phenomena. These orbits may be
tral to understanding the electronic instabilities towar
charge- and spin-density waves. For example, in the qu
two-dimensional organics, fine details in the shape of
open orbits7 are determinant to the predicted weak-coupli
instabilities. It is important to disentangle essentially sing
particle effects of magnetic breakdown from collective e
fects such as field-induced changes in the magnetic struc

In this paper we reanalyze within a semiclassical a
proach the problem of magnetic tunneling in two dime
sions. We show that it is possible to calculate in a mo
1484 © 1998 The American Physical Society
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57 1485de HAAS–van ALPHEN OSCILLATIONS AND . . .
systematic way than has been used previously~for example,
in applying Chambers’ formula5! the tunneling properties o
an electron when the Fermi surfaces are described by roo
finite-degree polynomials, as is the case for any simple
scription in terms of tight-binding~or, equivalently, extended
Hückel! models. In particular, experiments on the orga
conductors are normally interpreted in terms of such mod
This approach has several advantages: instead of having
eral semiempirical formulas to choose from, there is a uni
answer. Commonly, Chambers’ formula can be applied
slightly different forms, depending on the local curvature
orbits on the Fermi surface or, alternatively, the energy
in the classically forbidden region ofk space. One can als
avoid questions that turn out to be irrelevant, such as ‘
what path does the electron tunnel,’’ and what is the co
sponding area, as the answer depends on an action th
independent of path in a given topological class, and
‘‘area’’ in the case of real closed orbit becomes the real p
of this action in the general case. As well as finding prec
predictions for the breakdown field, this approach allows
to go beyond the simple junction models for magnetic bre
down. We shall discuss possible explanations of ‘‘forb
den’’ frequencies in the de Haas–van Alphen oscillatio
those that apparently contradict the simplest classical i
ition but that have been seen in numerical studies and
duced from experiment.

In the next section, Sec. II, we will review calculations
the single-band breakdown. In Sec. III we introduce the ‘‘
gebraic formulation’’ of the multiband case. The final se
tions deal with several examples applying this formulatio

II. TUNNELING FOR A SINGLE-BAND MODEL
AND CHAMBERS’ FORMULA

The one-dimensional problem of tunneling between t
regions separated by a gap was studied a long time
Kramers8 gave the semiclassical connection formulas for
problem of a particle of energyE in a potentialV(x). These
formulas connect wave functions in classically allowed a
forbidden regions, whereV(x) is less than and greater tha
E, respectively. The transmission coefficient for the parti
to go through a barrier in the regiona<x<b is, in the semi-
classical limit,

T.exp$22 Im@S~a,b!#/\%, ~1!

where the action isS(a,b)5*a
bp(x)dx, p2(x)52m@E2

V(x)#, anda and b denote the turning points at which th
momentump vanishes. In one dimension, only one pa
joins a to b, and soT is unique. In two dimensions, th
situation is different.A priori there are many paths whic
join a to b inside the gap. We might think then that a pa
integral theory would be necessary to compute the trajec
which minimizes the imaginary part of the action, and
maximizesT. In fact, as we will see in the next section, th
is not necessary in the semiclassical approximation bec
T depends on a topological invariant, and the contribution
therefore, locally independent of the choice of the path.9

The simplest problem of magnetic breakdown in two
mensions is that of motion in a real hyperbolic potential w
a saddle-point in the presence of an applied magnetic fi
Fertig and Halperin10 exploited the analytical properties o
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the exact solutions of an harmonic wave function to comp
the exact transmission coefficient of the problem. Our al
braic calculation of the multiband case is similar in spirit,
that it makes use of analytical continuation to complex wa
vectorsk, but this is done in order to pass from sheet to sh
of the energy surfaces. Let us recapitulate their argumen
notation close to what we shall develop subsequently:
treat an electron in a two-dimensional periodic potential, a
suppose that in the first Brillouin zone we have a sad
point, or, equivalently, a local expression for the on
electron energies,

e~k!5
\2

2m
~kx

22l2ky
2!. ~2!

The solutions ofe(k)5C, a positive constant, consist of tw
disconnected trajectories separated by a gap across whic
particle could tunnel along thekx direction. Settingl m

22

5eB/\c as the magnetic length, and the operatorK̂5“/ i
1eA/\c, with the Landau gaugeA5B(2y,0,0), the quan-
tization of the Hamiltonian leads to

Ĥ5
\2

2m
$~ i ]x1 l m

22y!22l2~ i ]y!2%. ~3!

If we takeP̂5K̂x andX̂5 l m
2 K̂y , with the commutation rela-

tions @X̂,P̂#5 i , the identification with a one-dimensiona
problem of momentumP and positionX is straightforward.
In the space representation,P̂52 i ]/]X. By rescaling theX
variable asX→AlX/ l m , we may write the differential equa
tion

S ]2

]X2 1X21
1

4
kg

2l m
2 /l DC~X!50 ~4!

for the wave functionC(X) of energy E.0, where kg

52A2mE/\ is the gap ink space separating the two close
turning points atky50. The caseE,0 can be derived by
using the symmetrykx→lky and ky→kx /l. Two linearly
independent solutions of this differential equation are
odd and even parabolic cylinder functions

Ce~X!5expS 2
i

2
X2DFS i

16
kg

2l m
2 /l1

1

4
,
1

2
; iX2D , ~5!

Co~X!5X expS 2
i

2
X2DFS i

16
kg

2l m
2 /l1

3

4
,
3

2
; iX2D , ~6!

whereF is the confluent hypergeometric function. Applyin
P̂ on exp(6iX2/2) one sees that this factor is associated w
an incoming~2! or outgoing~1! current, respectively. To
calculate the transmission coefficient, following Ref. 10, o
forms the appropriate incoming, transmitted, and reflec
wave packets~linear combinations of the two basis func
tions! near the saddle point. The correct relations betwe
the coefficients of the wave function are computed by
panding the parabolic functions nearX5`. The tunneling
probability for the electron through the potential barrierT
5u^Creflection,Cincoming&u2 is then
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T5
1

11exp~pkg
2l m

2 /4l!
. ~7!

Notice that we must use the reflected wave function and
the transmitted one to computeT in the (X,P)-variable for-
mulation, since the former represents physically the tunn
ing amplitude through the hyperbolic gap. ExpressingT in
terms of the positive radius of curvatureR5kg/2l2 at the
breaking points (6kg/2,0), for weak field we find

T.expS 2
p

2

l m
2 kg

3/2

A2/R
D . ~8!

This is a special case of Chambers’ expression5 for the
breakdown probability in the case of orbits symmet
around a saddle point. For the more general case Cham
replaced the factor 2/R by (1/R121/R2), the difference of
the inverse radii at the nearest breaking points. For the c
of equal radii ~i.e., both convex or both concave with th
same absolute radius of curvature!, the Chambers’ formula
gives aT that vanishes.

In the next section we shall show how to compute
tunneling probability in the case where we have seve
bands of a periodic potential.

III. ALGEBRAIC FORMULATION

A. Semiclassical Hamiltonian operator in a magnetic field:
Polynomial formulation

Let us consider the Hamiltonian of a particle in a const
magnetic fieldB5Bez, perpendicular to a planar period
potentialU(r ),

Ĥ@A#52
\2

2m S “1
ie

\c
AD 2

1U~r !. ~9!

We will work, as previously, with the Landau gauge. T
potential is periodic: U(r )5U(r1Rm,n), with Rm,n[
maxex1nayey. In the absence of a magnetic field, the wa
functions are expressed in terms of Bloch functionsus,k(r ),
with energy dispersiones(k), wheres labels the bands in the
first Brillouin zone. In the presence of a magnetic field, t
Peierls approximation11 consists in taking the effective
HamiltonianĤs5es(K̂ ), whereK̂5“/ i 1(e/\c)A(r ). Here
we shall restrict our discussion to Hamiltonians in whi
there is an underlying simple algebraic structure to the b
dispersion. To show how this algebraic structure arises, c
sider the case of a linear superposition of single atomic
bitals. The periodic potential is written as a sum of loc
potentials, U(r )5(m,nv(r2Rm,n), with v(r ) decreasing
rapidly away from the origin, and representing, for examp
the potential or pseudopotential near a single atom. We
first compute the eigenfunctionsfm,n(r )[f(r2Rm,n), so-
lutions of the single-atom Schro¨dinger equation,

H 2
\2

2m
¹21v~r !J f~r !5e0f~r !, ~10!

and then try to compute an approximate wave function of
periodic problem by forming a linear superpositionC(r )
ot
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5(m,nam,nfm,n(r ) for an energye.12 The result is expresse
in the first Brillouin zone as a dispersion relation,

e~k!5e01
(m,nhm,nexp~ ikxmax1 ikynay!

(m,nj m,nexp~ ikxmax1 ikynay!
, ~11!

where

hm,n5E d2rf0,0* ~r !@v~r !2v~r1Rm,n!#fm,n~r !,

j m,n5E d2rf0,0* ~r !fm,n~r !. ~12!

For a general periodic potentialU(r ), a local potential can
be defined as

v~r ![U~r !
sin~2px/ax!

2px/ax

sin~2py/ay!

2py/ay
. ~13!

For smoothU, the potentialv vanishes at large distance
and can be neglected for more than a few lattice spac
from the origin. The quantitiesj m,n and hm,n are rapidly
decreasing. If we take all but a finite number of them to
zero, thene is defined in terms of a complex polynomial o
finite order in the variablesZ1[exp(ikxax) and Z2[
exp(ikyay):

P~Z1 ,Z2 ,e!50. ~14!

The condition that the polynomialP of the complex vari-
ablesZ1 and Z2 be constant defines a complex curve.
more general cases, for example, wave functions that a
linear combination of several orbitals for each atom, or wh
there are several atoms per unit cell, the same formulatio
applicable: the polynomial simply becomes of higher ord
Thus the restriction that we make to have different parts
the Fermi surface defined by roots of a single finite-ord
polynomial is rather mild.

This formulation is useful when we apply the Peierls su
stitution. Indeed, since the components of the operatorK̂ are
noncommutative,

@K̂x ,K̂y#52 i\eff[2 i
eB

\c
, ~15!

the substitution of operators in a general energy dispersio
not unique. If we expand the dispersiones(k) in a Fourier
series, we can define a choice

Ĥs5 (
a5Rm,n

es,aexp~ ia•K̂ !. ~16!

Generally, and for the examples we will study, the coe
cients of the polynomialP depend on the energy. The sim
plest example is when only the constant term depends
early on energy.

B. Riemann surfaces and the topological classification
of closed electronic trajectories

Consider now a closed-space trajectory at constant en
in a single band under the action of a magnetic field. T
Bohr-Sommerfeld rule quantifies the action\rk.dr along
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57 1487de HAAS–van ALPHEN OSCILLATIONS AND . . .
this trajectory, or equivalently, the ratio between the to
flux through the closed path and the quantum fluxf0
5hc/e. When the magnetic field is along a symmetry dire
tion z, kz is constant. The Bohr condition then becomes

\c

eB
Re R

es5e
KydKx52p~n1g!, n50,1,2,..., ~17!

the contour of integration being taken in the clockwise dir
tion. The constantg in the quantization condition is calle
the Maslov index. It can be computed to be 1/2 by an exp
sion of es for small k near an assumed quadratic minimu
~or for a hole near its maximum!, where we can solve exactl
a free-electron Hamiltonian. Quantization of the action
equivalent to quantization of energy. In the de Haas–
Alphen effect, the oscillations of the magnetization at lo
temperatures are determined by the area of all closed e
tronic trajectories at the Fermi surface, the contributions
other electrons being mutually compensated. In three dim
sions, only the extremal areas at the Fermi surface per
dicular to the magnetic field direction contribute to the osc
lations. We can define a characteristic magnetic fieldBc
5f0 /(axay) to be the reference field for the validity of th
semiclassical approximation, for whichB!Bc . For a mono-
atomic solid withax5ay51 Å, we would haveBc'4.16
3105 T, much larger than available fields. In molecular co
ductors the unit cell can be much larger, typically of order
Å. Even then, for example, for thea phases of
~BEDT-TTF!2MHgXCN4 ~to be discussed in Sec. VI!, Bc is
4200 T. With experimental fields less than 100 T, breakdo
should only be visible if the gaps happen to be unusu
small, as is the case for the organic conductor13,14

k-~ET!2Cu~NCS!2. For the a phases of
~BEDT-TTF!2MHgXCN4 the question of whether magnet
breakdown should be observable or not, is a key element
debate about the existence of a reconstruction from a den
wave at low temperatures.15 It is important to eliminate any
uncertainty as to the predicted value of the breakdown fi
from the band structure. The principal frequenciesf s appear-
ing in oscillations of the magnetizationM5M (1/B) are pro-
portional to the area surrounded by closed pathsgs at the
Fermi surface16 when no breakdown effects occur:

f s5Bc

axay

~2p!2 R
gs

KydKx . ~18!

For the case of orbits coupled by breakdown we should
ply the Falicov formula,17

Rs5)
j 51

ns,t

ips, j)
j 51

ns,r

qs, j ,

)
j 51

ns,t

ps, j5exp@22p Im~ f s!/B#, ~19!

introducing the amplitude factorRs for each closed electron
orbit, which is assumed to pass by a number of breakdo
pointsns,t at which the electron tunnels, and a numberns,r
where it does not. In Eq.~19!, ps, j andqs, j are the absolute
amplitudes of transmission and reflection for thes path at
each breakdown point, and all quantities are taken at
l

-

-
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e

Fermi energy, which is fixed. The imaginary part of the fr
quencies should obviously be positive at each point of bre
down along the trajectory. Moreover, the Maslov index d
pends on the energy susceptibility18 linearly with the
quantity B/Bc . Thus, this term is in practice negligible. A
fixed Fermi energy, we have a relation between theKi , Eq.
~17!, which defines a constant-energy manifold. Provid
we stay within this manifold, the integral in Eq.~18!
is unchanged as the path is continuously deformed.9

Let us now consider possible breakdown effects betw
two different realk-space bands. To simplify notation, w
will write the components ofK in units of (2p)/ax and
(2p)/ay . The three-dimensional case along symmetry dir
tions can be studied as in two dimensions, at fixedKz . Let us
finally remark that the total probability of transmissio
around a trajectorys is, for smallB,

Ts5exp$24p Im~ f s!/B%5)
i 51

ns,t

exp$2Bs,i /B%, ~20!

where theBs,i are the breakdown fields for each region
tunneling. Our aim here is to find a path that connects t
bands via a tunneling effect. First, we construct the Riem
surfaceM P defined byP. We know from Ref. 19 that the
solutionsZ25Z2(Z1) of P50 form a multivalued algebraic
function, so that to each pointZ1 of the complex plane are
associated several possible values ofZ2 . We can construct a
surface on which this function is single valued. It is call
the Riemann surface associated withP. The hyperelliptic
functions are a special case whereP5Z2

22Q(Z1 ,e), Q be-
ing a polynomial of finite degree inZ1 . If n is the degree of
P in Z2 , then there aren algebraic solutions, and soM P
consists ofn sheets. To each point of the complex plane a
associatedn equivalent points on then sheets@each identi-
fication Z2(Z1) is associated to one sheet#, defining then
values of the function. Conversely, each point of the R
mann surface is associated with a unique value ofZ2 . This
provides the correct way to compute all continuous pa
g(t)5$Z1(t),Z2@Z1(t)#%, 0<t<1. To constructM P we first
compute the singularities ofP. These are, for example, th
points where we have a degeneracy in the otherwise dis
values ofZ2(Z1). There are two kinds of singular points
either $P50, ¹P50,% or $P50, ]Z2

P50,% the former case
being more restrictive. The singularities indicate the pr
ence of degeneracy among the different values ofZ2 . De-
generacy is either because the multivalued complex cu
Z2(Z1) intersect at these points or else because an infi
slope occurs in the curve ofkx as a function ofky , for
example. As we will see in some examples next, the la
case corresponds to the band edges. The procedure to re
the singularities and to set the branch cuts at which we p
the different sheets can be found, for example, in Refs.
and 20.

While points at infinity are not physically relevant her
they complicate the topological analysis. It is, therefore, c
venient to compactify the space: we construct fromP a ho-
mogeneous polynomial as follows. LetnP be the total degree
of P, i.e., the highest degree inZ1 or Z2 , and let Z1
5Y1 /Y0 , Z25Y2 /Y0 . ThenP can be expressed as
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1488 57FORTIN, BELLISSARD, GUSMÃO, AND ZIMAN
P~Z1 ,Z2 ,e!5
1

Y0
nP

Q~Y0 ,Y1 ,Y2 ,e!, ~21!

whereQ is the appropriate homogeneous polynomial. If w
consider the two-dimensional complex projective spaceCP2,
formed by the equivalence classes (Y0 ,Y1 ,Y2)
;(lY0 ,lY1 ,lY2), for l complex and non-zero, it is clea
thatQ50 defines the same surface asP50 in CP2. Points at
infinity can be defined by settingY050. The Riemann
sphere is defined as the manifold composed of the com
tified complex plane. It is isomorphic to the sphereS2 by
stereographic projection.

We have the following connectivity property ofM (P): if
P can be factorized innc polynomialsPi , thenM (P) is the
union ofnc independent manifoldsM (Pi). The integernc is
called the connectivity index of the Riemann surface. Phy
cally, an electron cannot tunnel between two pathsg i andg j
( iÞ j ) if they belong to two different Riemann surfaces. L
us suppose in the following thatM (P) is connected, and tak
any two different trajectoriesg i andg j , with the constraints
$g i(0)5g j (0)5P0 , g i(1)5g j (1)5P1%. The actionS(g i)
is equal toS(g j ) if and only if the two paths belong to th
same homotopy class of the fundamental gro
p1„M (P),P0 ,P1….9 This is a consequence of Stoke’s the
rem: the difference between the integral taken along two
jectories that can be continuously deformed one to the o
is an integral over the area defined by following one a
returning on the other. On the submanifold of constant
ergy, this area is zero. As the de Haas–van Alphen frequ
cies are proportional toS, it is sufficient to choose one tra
jectory representative of each class ofp1„M (P),P0 ,P0…,
which is in fact independent of the basis pointP0 , and use it
to compute the actionS. It is clear that, in general,S will be
complex. The real part is identified with the real frequen
If there is no tunneling involved, it corresponds to the a
*gRe(Ky)d Re(Kx) enclosed by the trajectory in the re
(Kx ,Ky) plane. In that case (Z1 ,Z2) belongs to the
circle S13S1. If S contains an imaginary part, this is th
signature of a tunneling effect. In this case, the real part d
not correspond exactly to the area in the first Brillouin zo
Indeed the contribution2*gIm(Ky)d Im(Kx) to the real part
does not vanish in general. Moreover, the positive imagin
part of the action gives the total breakdown field.

Thus, we see that the question of the physical electro
trajectory in a process of tunneling is not relevant for t
calculation of frequencies, and there is no weight associa
to individual paths in a homotopy class:S is a topological
quantity invariant by a local change of path.

There is an important class of polynomialsP which can
be written as P(Z1 ,Z2)5Z1

n1Z2
n2P8(Z111/Z1 ,Z211/Z2).

Then, P50 is equivalent toP850, except at pointsZ150
andZ250. If, in addition, all coefficients ofP are real, we
have symmetries inS under transformations that simplify th
analysis. For example,Z1→1/Z1 implies S→2S, and
Z1→1/Z̄1 together withZ2→1/Z2 , imply S→2 S̄. If we
take a pathg between two pointsP0 andP1 , and the pathg8
defined by

g8~ t !5@1/Z̄1~ t !,1/Z̄2~ t !#, ~22!
c-

i-

t

p
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er
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n-
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es
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y
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ed

then the actions are mutually conjugate:

S@g#5 S̄@g8#. ~23!

Therefore, we can restrict our calculations to the physi
region onM (P), i.e., Im(S)>0, corresponding touZ1u<1.

A different but equivalent way to see these topologic
properties is to consider the homology/cohomology grou
associated to the connected manifoldM (P). A closed elec-
tronic trajectory can be considered as a one-dimensional
ented cyclec belonging to the set of such closed chainsC1 .
If B1 is the set of boundaries, i.e., the one-dimensio
chains c that can be written as the boundary of tw
dimensional regions, we can define the simplicial homolo
of M (P), the factor groupH15C1 /B1 . It is clear that ifci
andcj are two cycles belonging to the same class inH1 they
have the same action. On the other hand, we define the
C1 of all one forms onM (P) that are closed~the differen-
tials are zero!, and the setB1 of all exactone forms~those
that are differentials of functions!. Then we can consider th
de Rham cohomology groupH15C1/B1. The inner product
of a cyclec of C1 andv5KydKx of C1,

p~c,v!5 R
c
v, ~24!

can be associated with the actionS, and is, in fact, indepen-
dent of the representative elementsc andv in H1 andH1, so
that in the semiclassical calculationp acts onH13H1 as a
scalar product, which remains constant for any small cha
of its argumentc.

IV. APPLICATION TO A TWO-BAND MODEL

A. Model

The model we consider in this section has a Fermi-surf
shape close to the quasi-two-dimensional organic mate
that we will study in the next sections. By taking a polyn
mial of the lowest possible order, obtaining the singu
points becomes completely elementary. In particular we w
study the magnetic breakdown between an open Fermi
face and a closed circular area by computing the associ
Riemann surface. Let us consider two planes coupled b
hybridization parametera>0, in which the tight-binding
constants in thex and y directions are (21,21/2) for the
first plane and (22,22) for the second. We also introduc
an energy gapeg between them. So, the Bloch Hamiltonia
matrix can be written as

Ĥ5S e1~Kx ,Ky! a

a e2~Kx ,Ky!
D , ~25!

where

e1~Kx ,Ky!52cos~Kx!21/2 cos~Ky!,

e2~Kx ,Ky!52eg22@cos~Kx!1cos~Ky!#. ~26!

Here we writeKx and Ky in units where the elementar
lattice vectors are of unit length. Results will appear as fr
tions of the area of the first Brillouin zone. The Bloch ban
at the Fermi energy are easily found by computing the se
lar equation,
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det~Ĥ2eFÎ !50. ~27!

Let us first consider the caseeg50 and a50.4. We will
work with a filling ratio of 0.6, which fixes the Fermi energ
eF for zero field at approximatively 0.35. The correspondi
Fermi surface~see Fig. 1! has two open orbits along theKy
direction and four rounded pieces at the corners. The das
lines in Fig. 1 correspond toa50 at the same energy. In thi
case, there are degeneracies at four points in the Brillo
zone, and a nonzeroa lifts these degeneracies. The determ
nant can be transformed into the polynomial

P~Z1 ,Z2 ;a,eF!52@~Z1
211!Z21 1

2 ~Z2
211!Z112eFZ1Z2#

3@~Z1
211!Z21~Z2

211!Z11eFZ1Z2#

24a2Z1
2Z2

2 . ~28!

The degree of this polynomial is 4, which corresponds to
number of identifications of the algebraic functionZ2
5Z2(Z1). Indeed, there areKx’s in Fig. 1 for which there
are four distinct solutions ofKy . Therefore, in order to de
fine a surface on whichZ2 , considered as a function ofZ1 ,
is single valued, we must take at least four copies of
complex plane. The different identifications will be note
Z2@61,61#(Z1). As we have discussed, and in order to
able to draw the Riemann surface, we use compacti
planes that are represented by surfaces of spheres. In F
we draw four complex planes labeled in this way. In ea
case the point at infinity is behind the visible part of t
sphere. We draw the unit circles corresponding to poss
real values ofKy on each sphere. Let us now compute t
singular points defined by

P~Z1 ,Z2 ;a,eF!50, ]Z2
P~Z1 ,Z2 ;a,eF!50. ~29!

FIG. 1. The Fermi surface for energyeF50.35 for the two-band
model of Sec. IV, with gap energyeg50 and hybridizationa
50.4 ~full lines!, and the unhybridized casea50 ~dashed lines!.
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This polynomial has twelve singular points, and near each
these (Z15Za), the singular part ofZ2 behaves asAZ12Za.
This defines theramification indexas being 2. At these
points, two sheets are connected. IfXi[Zi11/Zi , i 51,2,
then

Z2@s,s8#5 1
4 @2~3X115eF1eg!1sAq~X1!

1s8Aqs~X1!#,

q~X1!5~X113eF2eg!2116a2,

qs~X1!5„3X115eF1eg2sAq~X1!…2216. ~30!

The singular points occur where the the arguments of
square roots vanish. Indeed, ifq50, then Z2@1,s8#5Z2

@21,s8#, for s8561, and if qs50, Z2@s,1#5Z2@s,21#.
The conditionq50 provides us with four solutions,Z1@h,
61#, which are solutions ofX1523eF1eg1 i4ha, with
Z1@h,11# denoting the solution for which the real part
greater than that ofZ1@h,21#. Vanishingqs leads to four
solutions for eachs, Z1@s,h,61#, which satisfy the equal-
ity X15 1

2 @23eF2eg23h1sA(2eF1eg1h)218a2#,
with the solutionsZ1@s,h,1# and Z1@s,h,21# ordered in

FIG. 2. Riemann surface for the two-band model with the p
rameters of Fig. 1,eF50.35, eg50, and a.0.4. The singular
points are indicated by large dots, and the unit circles by lines
each of the four Riemann spheres. The spheres are connecte
handles as described in the text. For simplicity, we show the glu
together of only two lines of branch cuts between pairs of sin
larities in the upper Riemann spheres. The different orbitsa, b, and
g are indicated, and are drawn projected onto real space in Fig
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1490 57FORTIN, BELLISSARD, GUSMÃO, AND ZIMAN
decreasing order of real parts~or, in the case of equality, o
the imaginary parts!. The distribution of the singular point
is indicated on the Riemann surface in Fig. 2. The differ
sheets are represented by a Riemann sphere on whic
have drawn the unit circle and, with black circles, marked
singular points around it. In particular, we recognize on
unit circle the points delimiting the real bandsKy5Ky(Kx)
by a vertical tangent~Fig. 1!. Z150 is a singular polar poin
that does not play any role in the Riemann surface const
tion. It is clear that forZ150 or Z15` the imaginary part of
the action is infinite, so that the wave function should vani
Since the Hamiltonian has many symmetries~Z1→1/Z1 ,
Z1→ Z̄1!, we only need to count the points inside the u
disk on the upper half complex plane to deduce the others
fact, only five points of the twelve need to be compute
Only one branch cut comes out at each singular point, s
the ramification index is 2 for each of them. Thus we jo
pairs of singular points by a segment in order to close
branch cuts. Then, we glue two sheets along a correspon
segment by cutting it in two parts,a andb, and identifying
the suitable edges~delimiting the dark area on Fig. 2! by the
process indicated, for example, in Ref. 19: if we take a p
beginning at a pointP in the neighborhood of a singula
point, and if we turn twice around this point~the ramification
index being 2!, we have to go back to the original pointP.
We obtain, finally, a surface of genusg55, which allows us
to compute all the homotopy classes.

B. The fundamental frequencies

In this section we compute three fundamental frequen
that appear in the Fourier spectrum of the magnetization
the parametersa50.4, eF50.35, and eg50. We have
drawn a representative path of each of them (ga ,gb ,gg) on
the Riemann surface~Fig. 2! and in the realk space~Fig. 3!.

FIG. 3. The extended Brillouin zone in realk space for the
two-band model for the same parameters as Figs. 1 and 2~a
50.4, eg50, andeF50.35!, showing the projection of the orbit
ga , gb , andgg , and the identificationsZ2 .
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The comparison between the two figures helps us to un
stand how the complex electron- or hole-trajectory sche
works. The double arrows designate a hole trajectory,
the single arrows, an electronic one. This means that tha
orbit surrounds a maximum peak in energy, with a negat
effective mass. In Fig. 2 thea orbit can be followed by
starting at the pointPa on the upper left part of the spher
Z2@21,21# and moving towardsQb ~the path is shown
slightly to the left near this point but this is just to avo
confusion with the trajectorygb!. It continues on the unit
circle until the singular pointZ1@21,21,21# where it must
move onto the other sphere in the lower left of the figu
Similarly it moves around part of the unit circle and retur
to Pa . The handles are drawn to show the topology but n
that there is no contribution to the action from the pass
from one surface to the other. As the whole path is on
unit circles thek-vectors are real throughout. As this traje
tory does not include any magnetic breakdown, its freque
f a dominates at low field. As the field increases, magne
breakdown appears between hole pockets and the open
tronic orbits (gb), and between the open orbits themselv
(gg). The gg orbit is also shown in its entirety in Fig. 2
where it appears in the two right-hand spheres. Starting a
point Pg the path passes immediately to the lower right-ha
sphereZ2@1,1# and describes part of the unit circle. At som
point it leaves the circle, corresponding to the tunneling fro
the right hand part of the open surface to the left. Cross
the axisKy50 it moves onto the upper right-hand sphe
Z2@1,1# and makes a second tunneling to return toPg . The
imaginary part of the action comes from the two departu
from the unit circles. Forgb we show only the first quadran
of the path fromPb to Qb . The path moves outside the un
circle in the upper right-hand sphere and passes via sing
points to the upper left sphere and the pointQb . In the
intermediate range, a combination (f b1 f a)/2 can appear be
cause of the high degree of symmetry in the first Brillou
zone. The values of the different frequencies, computed f
filling rate of 0.6, are listed in Table I.

Let us remark that fora50.3 we find f b50.41327.4
31024i , the imaginary contribution being negligible, an
we observe that this is generally so. The breakdown fields
each tunneling region, i.e., the fields giving the probabilit
of tunneling at each ‘‘junction’’ where the contours of di
ferent branches of the Fermi surface are close, areBb,i
50.148(2) andBg,i50.074(2)~the integer in brackets indi
cates the number of breakdowns around one orbit!, in units
of Bc and fora50.4. Varying thea values between 0.3 an
0.5 does not alter the topology of the Riemann surface
fact, the singular points move on the Riemann sphere, but
connections between the sheets are not destroyed.
change of topology whena decreases to zero comes from t

TABLE I. Values of the fundamental de Haas–van Alphen fr
quencies for each value of the hybridization parametera, and the
corresponding Fermi energyeF , for a fixed filling of 0.6.

eF a f a /Bc f b /Bc f g /Bc

0.341 0.3 0.286 0.41212.9031022i 0.48611.7731022i
0.349 0.4 0.264 0.41114.7131022i 0.46511.1831022i
0.363 0.5 0.242 0.41016.7531022i 0.44215.1731023i
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fact that two pairs of singular points (Za,1/Z̄a) and

( Z̄a ,1/Za) tend towards each other and merge to form a p
of conjugate points on the unit circle,Za

lim and 1/Za
lim

5 Z̄a
lim . When they merge, the singularities disappear

cause the ramification index is equal to 2. Indeed, whea
decreases towards zero, (Z1@1,21#,Z1@21,1#) and (Z1

@21,21#,Z1@1,1#) collapse on the unit circle toZa
lim and

Z̄a
lim at the intersections of the ‘‘real’’ bands in the Brilloui

zone: Za
lim is at the intersections of the arcs joiningZ1@1,

21,1# to Z1@1,1,1#, and Z1@21,21,1# to exp(ip), respec-
tively. Similarly, Z̄a

lim is at the intersections of the arcs join
ing Z1@1,1,21# to Z1@1,21,21#, and exp(2ip) to Z1@21,
21,21#. Therefore, in this limit, the Riemann surfac
breaks into two parts,$Z2@21,21#(Z1),Z2@21,1#(Z1)% and
$Z2@1,21#(Z1),Z2@1,1#(Z1)%. The pathgb can no longer be
followed becauseM (P) is disconnected. Moreover, th
probability of tunneling for this path goes to 1 whena→01,
but seems to vanish ata exactly equal to zero. So, if we
travel fromPb to Qb ~we consider one part of the pathgb!,
the limit of M (P) whena→0 induces a rupture of the path
However, when we analyze Fig. 1, we see that the p
should be naturally continuous~by inspection of the dashe
lines!. Moreover, the continuity of the pathPa→Qb follow-
ing ga in the limit a→01 is not correct if we inspect the
same figure. These observations tell us that the Riemann
face obtained as the limita→01 of M (P) is wrong, in the
sense that it does not correspond to the Riemann surfac
are expecting ata50. In fact, fora50, the original Hamil-
tonian is already diagonalized, so that we can construct
disconnected Riemann surfaces that do not correspond
actly to those obtained by the finite-a2 ones in the limit
a→0. Indeed, the distribution of the singular points wi
respect to the disconnected parts of the Riemann surfac

FIG. 4. Fermi surface for the two-band model for the case
which there is no crossing at zero hybridization. The parameters
a50.3, eF520.3, andeg51 ~full lines!; a50, sameeF and eg

~dashed lines!.
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different even if the overall set of values is the same.
these surfaces, we have the correct way of choosing the p
when we cross the degenerate point in Fig. 1, with a u
probability for the pathPb→Qb . On the other hand, the
caseegÞ0 avoids the degeneracies that occur on the Fe
surface ata50, and now the limit ofM (P) when a→01

corresponds to the correct result whena50. This is the next
observation.

C. The caseegÞ0 and the discontinuity
of magnetic breakdown

In Fig. 4 we have drawn the Fermi surface choosing
valuesa50.3, eF520.3, eg51 ~full lines!, and the same
with a50 ~dashed lines!. For this case no degeneracy poi
appears in the Brillouin zone in the limita→01. As previ-
ously, the Riemann-surface topology is identical foraÞ0,
and the distribution of the 12 singular points is almost t
same. The only difference is that whena decreases to zero
the two previous pairs of singular points tend to two con
gate points on the unit circle, but instead of reaching
domain of the ‘‘real’’ band, they reach the ‘‘complex’’ re
gion that does not appear in the Brillouin zone. That is w
the calculation of the imaginary part ofgb leads to a nonva-
nishing value with a probability less than unity in the lim
a→0. At a50, this probability vanishes, as before, althou

n
re

FIG. 5. Fermi surface of the simplified tight-binding model f
the organic compoundk-~BEDT-TTF!2Cu~NCS!2. The parameters
arec15100.75,c2570.75,b560, andeF5263.52~in meV!. As
explained in the text, the difference betweenc1 andc2 , and there-
fore the gap between surfaces atKy5p, have been greatly exag
gerated in order to compare to the numerical results of Figs. 6
7. Thega andgb trajectories in realk space are indicated, as we
as the identifications to be used in constructing the Riemann sur
~Fig. 8!.
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FIG. 6. Magnetization curves againstBc /B for values of parameters (c1 ,c2) corresponding to the fitted experimental values~87.5, 84.5!,
as well as the value~100.75, 70.75! corresponding to Figs. 5 and 7.
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the similarity of the Fermi-surface shapes in the casea
50 andaÞ0 could be misleading. Moreover, the Riema
surface is a continuous construction whena→0. The fact
that the singular points collapse, by symmetry of the Ham
tonian, at the unit circle and not at infinity~where the wave-
function amplitude should be zero! explains why the trans
mission coefficient betweenPb and Qb does not vanish in
this limit. Therefore, we have shown a duality between t
cases:~1! eg50—discontinuity betweenM (P)ua→01 and
M (P)ua50 ; continuity of the transmission coefficient be
tween Pb and Qb along the pathgb ~see Fig. 3!; ~2!
egÞ0—continuity of M (P) at a50, and discontinuity of
the previous transmission coefficient.

What does this imply for magnetic oscillations, for th
second case in particular? Strictly speaking we could say
Chambers’ formula is inapplicable fora50, although in the

FIG. 7. Intensity of the Fourier components of the curve of F
6 for the parameters (c1 ,c2)5(100.75,70.75). The frequencyb
2a is visible as a shoulder on the primary breakdown peak
frequency 100% of the first Brillouin zone.
l-

at

trivial sense that there is a selection rule that gives no bre
down. What is happening is that the critical field for nonze
a stays close to the value predicted by Chambers’ formu
but the amplitude must vanish. We can visualize this phy
cally for small a by imagining that a wave packet that a
proaches the point of breakdown will only tunnel if its v
locity, set by the fieldH, is sufficiently small that tunneling
can occur via the small couplinga.

V. APPLICATION TO THE TWO-DIMENSIONAL
ORGANIC SUPERCONDUCTOR k-„BEDT-TTF …2Cu„NCS…2:

A TWO-BAND MODEL

This quasi-two-dimensional organic superconductor
been experimentally studied by several groups.21 In particu-
lar, the influence of pressure on the different parameter
the magnetoresistance, such as the area of the small cl
orbit and the effective mass, has been analyzed. Moreov
correlation between the superconducting temperature and
effective mass has been measured. The band structure
to interpret the experimental results21 for this organic com-
pound is based on an effective dimer model. Consider
dimers per unit cell,A andB, whose overlapA-B within the
unit cell isc1 . In thex direction, there is a couplingb which
is the direct overlapA-A or B-B. A dimerA at the origin has
four neighboring dimersB, located diagonally around it. Th
overlap with theB’s above isc1 , while that with those be-
low is c2 . The experimental values for these parameters
~in meV! b560, c1587, andc2584.5. The Fermi energy is
eF.2b. For theoretical convenience, we will allow thes
values to change in order to deform the Fermi surface
vary the de Haas–van Alphen frequencies as pressure do22

We can express the Bloch Hamiltonian as

.

f
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Ĥ5S 2b cos~Kx! ~11eiK x!~c11c2eiK y!

~11e2 iK x!~c11c2e2 iK y! 2b cos~Kx!
D ,

~31!

yielding the dispersion relation

@e22b cos~Kx!#
252@c1

21c2
212c1c2cos~Ky!#

3@11cos~Kx!#, ~32!

which is symmetrical inc1 andc2 . In the following, we will
fix b and (c11c2)/2, and vary the difference (c12c2). We
also fix the filling ratio as one electron per site, i.e., w
assume the stoichiometry to correspond to the experime
situation. We have drawn in Fig. 5 the Fermi surface for
arbitrary set of parameters~given in meV!. The two surfaces
are such that the sum of the closed hole-orbit area adde
the inside area delimited by the open orbits is exactly o
Indeed, we first begin to fill the band that has the lowe
energy minimum, ate;2300 meV, situated in the center o

FIG. 8. Riemann surface for the tight-binding model of the
ganic conductork-~BEDT-TTF!2CU~NCS!2. The two Riemann
spheres are connected as indicated. The orbits of Fig. 5 are
shown.

TABLE II. Singular points of the Riemann surface correspon
ing to the dispersion relation~32!.

h8 1 21

Z1@1,1,h8# 7.84 20.95610.295i
Z1@1,21,h8# 20.21610.976i 20.71710.697i
tal
n

to
e.
t-

the Brillouin zone, (Kx ,Ky)5(0,0). For energies abovee
;2100 meV, we begin to fill the other band, correspondi
to the open surface.

We have made calculations of the de Haas–van Alp
spectrum by diagonalization of a finite lattice with a varyin
transverse magnetic flux. The presence of the flux bre
translational invariance, and the energy eigenvalues
found by a complete diagonalization of the lattice Ham
tonian ~in practice, a 60360 lattice! for each value of flux.
The total energy is differentiated numerically with respect
flux to give the orbital magnetization. The method of calc
lation is outlined in Ref. 23. It is equivalent to what is som
times referred to as ‘‘full quantum-mechanic
calculation’’—full in the sense that no semi-classical a
proximation is made for the magnetic flux. The three fr
quencies that appear in the de Haas–van Alphen spec
~see Figs. 6 and 7! correspond to the area of the small clos
orbit a, and a greater orbitb, of unit area, obtained by a
breakdown effect between the open and closed orbits.
third (b2a) has a total area equal to the difference betwe
the areas ofb anda ~the representation of the pathsga and
gb is indicated in Fig. 5!. Such an orbit is classically prob
lematic, as we shall discuss below.

Let us first construct the Riemann surfaceM (P), the
polynomial P being deduced from the dispersion relatio
above. We therefore find two solutionsZ2@s#(Z1) by solv-
ing for cos(Ky) in terms of cos(Kx). So,M (P) consists of two

-

lso

FIG. 9. Comparison between the semiclassical breakdown fi
B0,i /4p5Im(fb)/4Bc and Chambers’ formula plotted as a functio
of (c12c2)/2 (meV) for thek phase.

-

TABLE III. Fundamental de Haas–van Alphen frequencies
the two-band model presenting the structure of the organic c
poundk-~BEDT-TTF!2Cu~NCS!2, for two representative values o
the parameter (c12c2).

c12c2 eF f a /Bc f b /Bc

30 263.52 0.142 111.6331022 i
2.5 260.05 0.157 114.4731024 i
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1494 57FORTIN, BELLISSARD, GUSMÃO, AND ZIMAN
sheets~see Fig. 8! coming from the fact that to any fixedKx
in the Brillouin zone there correspond two solutionsKy .
There are eight singular points, with the same symmetry
the previous examples,Kx andKy being expressed in term
of cosine functions. Each singular point has a ramificat
index equal to two, asZ2 contains only square roots. The
are also two polar singularities atZ1521,0. The singular
solutions, expressed asZ1@61,h,h8#, are solutions ofX1
5 f @h,h8#, where

f @h,h8#5
1

2b2 „2eFb1~c11c2h!21h8~c11c2h!

33A4eFb1~c11c2h!218b2
…,

and the solutions61 are, as usual, ordered in decreas
value of real or imaginary parts. Their values are shown
Table II.

The last four points are given by the symmet
Z1@1,s,s8#51/Z1@21,s,s8#. Topologically, M (P) is a
surface of genus 4. The half path for theb orbit from Pa to
Pb has been drawn in Fig. 8. This orbit includes four brea
down points, which occur for an appropriate representa
path along the unit circle out of the arcs belonging to the r
bands, between, for example,Z1@1,21,21# and Z1@1,1,
21#. The numerical calculation has been performed at h
field (Bc /B ranging from 5 to 55! with the choice of the
parameter (c12c2)530 in order to resolve the three orbits
the spectrum. For small values of this parameter, as in
physical case, the gap between thea andb orbits will be too
weak fora to be observed at high field. By analytical com
putation we found the frequencies listed in Table III, whi
are in good agreement with the numerical spectrum. We
compare the Chambers’ formula on one of theb-orbit break-
down points with the semiclassical calculus for varying (c1
2c2) ~see Fig. 9!, which confirms that the agreement is a
most perfect at small gaps. The casec15c2 is special in the

FIG. 10. Fermi surface ofa-~BEDT-TTF!2MHgXCN4 with the
parameters calculated by Moriet al.
s

n

n

-
e
l

h

e

so

sense that we have curves crossing at the singular po
Z1@s,21,1#5Z1@s,21,21#. These points are remove
from the Riemann surface as in the example of the previ
section, and the genus is reduced to 2.M (P) remains con-
nected, since the polynomial cannot be factorized into t
parts.

It is tempting to explain the existence of the frequen
b2a in the topological formalism by the existence of a cla
of pathsgb2a , with the correct areaf b2a , which could be
drawn on the Riemann surface, Fig. 8. The imaginary par
such path is the same asb. The classical problem of this
choice is that the hole apparently travels temporarily in
counterclockwise direction when it follows the small hol
pocket contours. This is rather troubling as it violates o
classical intuition. In fact, what is required in a full semicla
sical analysis are selection rules24 based on the conservatio
of current at each region of breakdown. This analysis is n
essary to construct the correct frequency spectrum. The
quency (b2a) is absent from the fourier component of th
frequency spectrum, but when we calculate the magnet
tion as a function of inverse field25 it appears as a result o
imposing the constraint of constant total electron dens
Thus the path drawngb2a should not be taken literally and
could even be omitted from the analysis as its imaginary p
is the same as that of the pathgb . If we estimated the break
down field from the ‘‘unphysical’’gb2a or the ‘‘physical’’
gb we estimate the same breakdown field for the oscillat
(b2a) so this point might seem academic. However if w
attributed the occurrence of this frequency to the existenc
thegb2a path we would then erroneously predict its appe
ance in other correlation functions, as a function of time
fixed field, for example. Thus we argue that the topologi
analysis we have given must be supplemented by selec
rules, but contrary to the case of interference between dif
ent closed orbits, one still finds certain frequencies, (b2a)
in particular, that naı¨vely might be excluded by arguing tha
the classical motion is in the ‘‘wrong’’ direction. Details o
the calculation of the interference frequencies will be giv
elsewhere.25 Experimentally, theb2a oscillation is clearly
seen in the magnetoresistance,26 with amplitudes higher than
one expects from elementary arguments. Note, however,
here we are not calculating transport, and the question
interference is rather different for transport.6 In the case of de
Haas–van Alphen oscillations, the question of the magn
zation amplitude remains: a recent study27 found oscillations,
but of weak amplitude, only a little larger than can be e
plained by demagnetization effects.

VI. BREAKDOWN FIELD COMPUTATION
FOR THE TWO-DIMENSIONAL ORGANIC COMPOUND

a-„BEDT-TTF …2MHgXCN 4

Calculations for this family of compounds starting fro
molecular orbitals lead to a four-band tight-binding mod
Each unit cell is an arrangement of four atoms,a1 , a2 , b,
andc. The structure of interactions can be found in Ref. 2
with the calculated overlap coefficients~in meV!: c15
21.9, c256.8, c3521.1, c4521.4, p15210, p25
29.7, p3513.3, andp4513.2. The four-dimensional wave
function C5(Ca1

,Ca2
,Cb ,Cc) then satisfies the Bloch

equationĤC5eC, where
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Ĥ5S 0 c3e2 iK y1c4 p1e2 iK x1p4 p1e2 iK y1p4e2 i ~Kx1Ky!

c3eiK y1c4 0 p2e2 iK x1p3 p21p3e2 iK x

p1eiK x1p4 p2eiK x1p3 0 c1e2 iK y1c2

p1eiK y1p4ei ~Kx1Ky! p21p3eiK x c1eiK y1c2 0
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The eigensolutions in energy are four independent ba
With three electrons per spin in the Brillouin zone, two
these bands are entirely filled. The third electron for ea
spin is shared between the last two bands, as in the prev
example. We find the Fermi energy at217.2 meV. The con-
tours of the Fermi surface~see Fig. 10! are qualitatively the
same as the ones that we studied as the first example:
are four quarter-pocket areas at each corner of the Brillo
zone, and two open~or ‘‘quasi-one-dimensional’’! curves
that cross the zone alongKy . Obviously, we have the singl
symmetry (Kx ,Ky)→(2Kx ,2Ky). At low field, the only
contribution to the magnetization oscillations are due to
closed-pocket areas. The question remains whether it is
sible to see any magnetic breakdown between the pocket
the open surface at sufficiently low fields. Indeed, the
merical diagonalization at high fields suggested the existe
of such a breakdown effect~see Fig. 11!, with a frequency
equal to the whole area of the first Brillouin zone~b orbit!, in
addition to the small frequencya at f a /Bc50.196. The ex-
istence of ab2a orbit, that could be justified as in th
previous section, was pointed out numerically in Ref. 23, a
in a similar study by Machidaet al.29 Substituting in the
eigenvalue equationeiK j→Zj and e2 iK j→1/Zj , we find a
polynomial of degree 7 in (Z1 ,Z2), the highest term being o
the formZ1

4Z2
3. The highest degrees inZ1 andZ2 are 4. As

the coefficients of the polynomial are real, andĤ Hermitian,
the following result holds: if (Z1 ,Z2) is a solution,
(1/Z1,1/Z2), ( Z̄1 , Z̄2), and (1/Z̄1,1/Z̄2) are also solutions
Now we want to compute the most singular points, in ord
to find a path to explain the existence of theb orbit. As the
polynomial cannot be solved explicitly, we studied nume

FIG. 11. Fourier spectrum of the magnetization
a-~BEDT-TTF!2MHg~XCN!4 as a function ofBc /B, as calculated
on the lattice. The primary breakdown frequencyb is at 100% of
the area of the first Brillouin zone. Also visible are the peak cor
sponding to the hole pocket at frequencya519.6% and the inter-
ference frequencyb2a.
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cally the solutions ofP50 and]Z1
P50. The choice of dif-

ferentiatingP with respect toZ1 instead ofZ2 is purely for
convenience. Indeed, it allows fewer band edges on the
circle of the Riemann surface. The resolution of]Z1

P50

provides us with exact expressions ofZ15Z1(Z2) as three
solutions of a polynomial of third degree. Then, replacingZ1
in P, we have an algebraic equation inZ2 that we can solve
numerically. Inside the upper unit circle, we found sev
values forZ2 , listed in Table IV. The others can be deduc
by the symmetriesZ2→1/Z2 , Z2→ Z̄2 . We do not give the
correspondingZ1 values.P1 corresponds to the unique ban
edge of the closed areas. Obviously, there is no band e
for the open parts in theKy direction.P2 defines the bridge
between the closed areas and the open parts. The other p
are too close to the origin~or, symmetrically, to the point a
infinity! to play an important role in the breakdown effec
The path we consider for the breakdown piece~see Fig. 12!
is the following: we begin at (Z1 ,Z2)5(21,P1), and solve
for Z1 at each point of the parametric continuous path

g~ t !5~Z1~ t !,Z2~ t !!, 0<t<2 ,

Z2~ t !5~P22P1!t1P1 , 0<t<1,

Z1~1!.0.51920.757i ,

Z2~ t !5~212P2!~ t21!1P2 , 1<t<2,

Z1~2!.0.75820.652i . ~34!

At t51 we have to make a change ofZ2 identification as we
jump from one of the four sheets to another. This path i
small part of the completeb-orbit action. In fact, we only
need to calculate the numerical value of the imaginary p
of this action. The real part can in fact be seen to be exa
1 from a symmetry argument: the contribution from t
product of real parts of thek vectors gives 1 from stoichi-
ometry, and the contributions from the imaginary parts c

-

TABLE IV. Most singular points on the Riemann surface co
responding to the energy dispersion for the two-dimensional tig
binding model associated with the organic compou
a-~BEDT-TTF!2MHgXCN4.

Re(Z2) Im(Z2)

P1 20.192 0.981
P2 20.477 0.161
P3 20.0236 0.00629
P4 20.138 0
P5 0.00883 0
P6 0.00869 0
P7 0.000812 0
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cel by symmetry. Four magnetic breakdowns occur along
orbit. We finally havef b /Bc.110.0333i , giving magneti-
zation oscillations corresponding to the area of the first B
louin zone damped with a characteristic field of 0.209Bc .
This can be compared with the result applying Chambe
formula: 0.202Bc . Thus, from the value ofBc we predict
880 T for the breakdown field, based on the band struct
This seems to exclude a single-particle tunneling effect
breakdown has been seen, as is possibly the case,30 it seems
that either the band structure is not accurately giving the
or there is a collective effect. We note that recent recalcu
tions of the band structure, all based on the extended Hu¨ckel
approach, by Ducasse31 and Canadell32 give slightly different
parameters, but they do not vary enough to explain any
served breakdown. For example, using Ducasse’s par
eters, Chambers’ formula gives a slightly smaller val
0.0280, in units of the first-Brillouin-Zone area, compared
Mori’s 0.0333 and Canadell’s~at 104 K! 0.0304. We con-
clude that breakdown cannot be a simple tunneling in
original Fermi surface, and this is in agreement with t
interpretations of McKenzieet al.15 that the breakdown is
from some, as yet undetermined, reconstructed state.

VII. CONCLUSIONS

We have shown how we can make systematic calculat
of magnetic breakdown in situations where there are sev
sheets to the band structure. Our algebraic approach rew
the energy dispersion relation as a polynomial form invo
ing complex variables constructed from the components

FIG. 12. A part of the projection of one possible breakdo
path ~dashed lines! onto realk space.
e
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e
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the momentum. This is then used to incorporate an app
magnetic field via the Peierls’ substitution. The restriction
a finite-order polynomial is very mild in physical terms, an
can be tested by including more sheets. In general,
seems unlikely to alter the results greatly, at least for bre
down fields that are small enough to be measurable, gi
that the extra sheets do not contribute to the Fermi surfac
possible exception to this may be, for example, in the cas
aperiodic solids, where the Fermi surface should really
volve an infinite number of sheets. But even this case may
tractable by taking the appropriate limit of a finite-order c
culation. In practice, the approach seems most usefu
cases, such as the molecular conductors, where exte
Hückel calculations are good starting points to understa
the electronic structure, and lead to rather low-order poly
mials. As we have seen, the difficulty of the calculation w
increase with the order of the polynomial, mainly becau
the topology becomes more involved. The need to solve
algebraic equation numerically is not an obstacle. It appe
that a semiclassical analysis will suffice to explain observ
features in numerical studies of ‘‘full’’ quantum-mechanic
calculations. While there is not a large discrepancy betw
the breakdown fields predicted here and those found from
semiempirical approach of Chambers, this is an advanc
least in the reliability of the results. We have discussed
case, the limit of vanishing hybridization in a two-ban
model, where naı¨ve application of Chambers’ formula ca
give a wrong result.

The topological analysis described allows us to system
cally calculate the fundamental frequencies and damping
all possible magnetic oscillations. Determining which on
can be actually observed requires additional selection r
related to current conservation. The semi-classical appro
should allow more detailed calculation of what may be cal
‘‘interference effects,’’ namely, frequencies that correspo
to sums and differences of areas. The analysis of this as
is not yet complete. For instance, we have not considered
calculation of effective masses. We have, however, sho
how to calculate the dominant part of the tunneling pro
abilities, which are the starting point of such an analys
Precise resolution of questions involving sums and diff
ences of the primary frequencies in the magnetic oscillati
may be useful, ultimately, in order to show, for example, t
limitations of the single-electron picture.
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