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We start from an effective Hamiltonian for Ru ions in a square lattice, which includes the on-site interactions
betweent2g orbitals derived from Coulomb repulsion, and a tetragonal crystal-field splitting. Using perturba-
tion theory in the hopping terms, we derive effective Hamiltonians to describe the RuO2 planes of
RuSr2sEu,GddCu2O8. For undoped planes(formal valence Ru+5), depending on the parameters we find three
possible orderings of spin and orbitals, and construct a phase diagram. This allows us to put constraints on the
parameters based on experimental data. When electron doping consistent with the hole doping of the super-
conducting RuO2 planes is included, we obtain(for reasonable parameters) a double-exchange model with
infinite antiferromagnetic coupling between itinerant electrons and localized spins. This model is equivalent to
one used before[H. Aliaga and A. A. Aligia, Physica B320, 34 (2002)], which consistently explains the
seemingly contradictory magnetic properties of RuSr2sEu,GddCu2O8.
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I. INTRODUCTION

In recent years, there has been much interest in ruthenates
because of their interesting magnetic and superconducting
properties. For example, SrRuO3 is a ferromagnet that orders
at TM =165 K,1 Sr2RuO4 is an exoticp-wave superconductor
with transition temperatureTS=1.5 K,2 and Sr3Ru2O7 pre-
sents a metamagnetic transition3 and non-Fermi liquid
behavior.4 A close relationship between ferromagnetic(FM)
exchange and tripletp-wave superconductivity is expected in
analogy with3He (Ref. 5) or from bosonization studies in
one dimension.6,7

RuSr2sEu,GddCu2O8 has a magnetic transition atTM

,133 K, and a superconducting transition atTS,33 K for
Eu or TS,15–40 K for Gd(depending on the conditions of
preparation and annealing).8,9 Below TS, superconductivity
coexists with magnetic order, which was first believed to be
FM,9–12 since the magnetization shows a rapid increase with
magnetic field for fields below 5 T, and the inverse magnetic
susceptibility at high temperatures yields a positive Curie
constantQ=100±3 K.12 However, neutron diffraction ex-
periments found superlattice reflections consistent with an
usual antiferromagnetic(AF) order with nearest-neighbor
spins antiparallel in all three directions.13 This seems difficult
to reconcile with the above-mentioned magnetic properties,
in particular with a positive Curie constant. Nevertheless, a
double-exchange model could consistently account for these
observations.14

The crystal structure of RuSr2sEu,GddCu2O8 is similar to
that of YBa2Cu3O7, except that Y is replaced by Eu or Gd,
and the CuO chain layer is replaced by a square planar RuO2
layer, with resulting tetragonal symmetry, except for small
distortions typical of perovskites.9 The sequence of layers
perpendicular to the tetragonal axis is RuO2/SrO/CuO2/
sEu or Gdd /CuO2/SrO. Several experiments, like muon spin
rotation,9 magnetization,9,12 electron paramagnetic reso-
nance, and ferromagnetic resonance,10 demonstrate that the
development of superconductivity does not affect the mag-

netic order. This suggests that, at least as a first approxima-
tion, the superconducting CuO2 planes and the magnetic
RuO2 planes behave as separate entities related only by
charge transfer, as it happens with CuO planes and chains in
YBa2Cu3O6+x.

15 Band structure calculations are consistent
with this picture.11 From what is known for
YBa2Cu3O6+x,

15,16 a superconducting critical temperature
TS,30–40 K suggests a doping of slightly less than 0.1
holes per CuO2 plane. This implies a doping of&0.2 elec-
trons to the RuO2 planes with respect to the formal oxidation
states Ru+5 and O−2. Taking into account a certain degree of
Ru-O covalence, this doping is consistent with x-ray absorp-
tion near-edge structure experiments, which suggest a Ru
valence near 4.6.17 This situation is at variance with the com-
pounds of the Ruddlesden-Popper seriessCu,Srdn+1RunO3n+1

(like those mentioned above) for which the formal oxidation
state of Ru is Ru+4.

The main features of the puzzling magnetic behavior of
RuO2 planes in RuSr2sEu,GddCu2O8 were explained in
terms of a double-exchange model in which Ru+5 spins have
a strong Hund coupling with a band of itinerant electrons.14

Within this picture, the undoped system presents usual AF
ordering. Additional electrons form FM polarons that tend to
align easily in the direction of an applied magnetic field.
Consequently, in spite of the AF order, the magnetic suscep-
tibility at temperaturesT.TM can be well described byx
=C/ sT−Qd, with Q.0, in agreement with experiment.12

Further support to the double-exchange model is brought
by the negative magnetoresistance aboveTM, or below TM
for high enough magnetic field.18,19 While this model has
been successful in explaining several properties of
manganites,20,21 where the itinerant electrons are in 3d eg
orbitals, there is so far no justification for its application to
ruthenates, where the relevant orbitals are the 4d t2g
ones,11,22,23in which case crystal-field effects are expected to
be more important, and correlations should be smaller due to
the larger extent of the Ru 4d orbitals, in comparison with
Mn 3d ones.
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In this work, we start from an effective HamiltonianH for
the Ru 4d t2g orbitals in a square lattice, after integrating out
the O orbitals.H includes all atomic Coulomb interactions,
and a tetragonal crystal-field splittingD. We treatH in per-
turbation theory in the effective Ru-Ru hopping. Since the
effective parameters are difficult to estimate, the quantitative
validity of this strong-coupling approach is difficult to ad-
dress. However, for reasonable parameters our results are
consistent with experiment, and confirm results previously
obtained with the double-exchange model. In the case of
Sr2RuO4, which has been studied in more detail, there is a
wide range of proposed parameters, but it is clear that the
correlations are significant, and the system is believed to be
in the intermediate-coupling regime.24,25 Notice that ap-
proaches that neglect quantum fluctuations should assume
smaller interactions to avoid magnetic ordering in Sr2RuO4,
while instead RuO2 planes in RuSr2sEu,GddCu2O8 do order
magnetically atTM.

The paper is organized as follows. In Sec. II, we present
the model and discuss its parameters. In Sec. III, we describe
the eigenstates and energies of the local Hamiltonian. In Sec.
IV, we derive effective Hamiltonians that describe spin and
orbital degrees of freedom in the undoped case, after inte-
grating out the charge fluctuations. Section V contains the
phase diagram for this case. In Sec. VI, we discuss the ef-
fective Hamiltonians for the doped case, and their relation to
the double-exchange model. Our results are summarized and
discussed in Sec. VII.

II. THE MODEL

We start with an effective model for the 4d t2g orbitals of
Ru ions in a square lattice. It can be derived from an appro-
priate multiband model for RuO2 planes by a canonical
transformation eliminating Ru-O hopping terms,26 or by the
cell perturbation method if Ru-O covalence were
important.27,28 The Hamiltonian is

H = o
i

sHI
i + HCF

i d + Hh, s1d

whereHI
i contains the local interaction terms at sitei, HCF

i is
a tetragonal crystal-field splitting, andHh contains the hop-
ping terms which we restrict to nearest neighbors. SinceHI

i

contains only intrasite interactions, we assume for it the
same form as for an isolated Ru ion, neglecting spin-orbit
coupling. This form can be calculated in a straightforward
way using known methods of atomic physics.29,30Expanding
the Coulomb interaction terme2/ ur 1−r 2u in spherical har-
monics, all Coulomb integrals can be expressed in terms of
Slater parametersF0, F2, and F4 (as done earlier31 for eg
orbitals). Here, we writeHI

i using the Kanamori parameters
(which seem to be more popular in condensed matter32,33) for
t2g orbitals: U=F0+4F2+36F4, J=J8=3F2+20F4, and U8
=U−2J. Then,

HI
i = Uo

a

nia↑nia↓ +
1

2 o
aÞb,ss8

sU8niasnibs8

+ Jdias
† dibs8

† dias8dibsd + J8 o
aÞb

dia↑
† dia↓

† dib↓dib↑, s2d

wherenias=dias
† dias, anddias

† creates an electron in thet2g

orbital a (xy, yz, or zx), with spin s at sitei.
Choosingz as the tetragonal axis, we write the crystal

field term in the form

HCF
i = DSo

s

dixys
† dixys − 1D , s3d

in such a way that it changes sign under an electron-hole
transformation.

Denoting byd= ± x̂, ±ŷ the four vectors that connect a site
with its four nearest neighbors, the hopping term has the
form

Hh = − to
is

sdi+x̂,zxs
† dizxs + di+ŷ,yzs

† diyzs + H.c.d

− t8o
ids

di+d,xys
† dixys. s4d

Notice that, since we neglect the distortions, electrons occu-
pying zx syzd orbitals do not hop in they sxd direction due to
the symmetry of the intermediate O 2p orbitals.26,28

While the parameters ofH are difficult to estimate, we
expect that the order of magnitude oft and t8 is near
1/4 eV14,24–26,28(see also Sec. VII). Since the exchange in-
teractions are not expected to be strongly screened in the
solid, one may estimateJ from atomic spectra.34 From the
low-lying levels of Ru+ (with three holes in the 4d shell), we
obtain F2,863 cm−1 and F4,78 cm−1, leading to J
,0.5 eV. Optical experiments in Sr2RuO4 suggest thatU
,1.5 eV.35 Notice that the expectation value of the Coulomb
repulsion in any state with two electrons and total spinS
=1 should be positive. This implies, for two differentt2g
orbitals in the atomic case,F0−5F2−24F4.0, or

U − 3J = U8 − J . 0. s5d

For a Slater determinant with botheg orbitals, one obtains
F0−8F2−9F4.0.31 This condition is expected to be more
restrictive than Eq.(5), sinceF2 is usually more than one
order of magnitude larger thanF4. For example, using the
above estimates forF2 and F4, this givesF0.0.94 eV and
U8−J.0.17 eV. We assume Eq.(5) to be valid in general.
Otherwise, for largeuDu, there is a charge-transfer instability
of the ground state for the undoped system. The physics of
Sr2RuO4 suggests thatD is small and negative.25

III. EIGENSTATES OF THE LOCAL HAMILTONIAN

The local partHI
i +HCF

i can be easily diagonalized. To
describe the undoped system, we need the eigenstates with
three electrons, and those with two and four electrons are
needed when the effects of the hopping termHh or doping
are included. We denote the eigenstates byuinGSMl, wherei
is the site index,n is the number of electrons,G denotes the
symmetry(irreducible representation of the point groupD4h
or symmetry of the basis function for the two-dimensional
representation), S is the total spin andM its projection on the
tetragonal axisz. If S=0, M is suppressed. For simplicity, we
drop the site index in this section. The subscriptg is also
dropped in the irreducible representations. Some eigenstates
and their energies are listed in Table I. The remaining ones
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for n=3 andn=2 are obtained by applying the operatorS− or
a rotation ofp /2 aroundz to those listed. The corresponding
results forn=4 can be obtained from those ofn=2 using
electron-hole symmetry: replace creation by annihilation op-
erators with the opposite spin,dias

† →dia,−s, replace the
vacuum by the state with allt2g orbitals occupied, change the
sign of D, and addU+4U8−2J=5U8 to the resulting ener-
gies.

Since we started with a local interaction HamiltonianHI
i

with full rotational symmetry, the symmetry group ofHI
i

+HCF
i is actually higher thanD4h. For example, rotations

aroundz of the orbitalsyz andzx keeping thexy fixed leave
HI

i +HCF
i invariant. As a consequence, the stateu2b10l is de-

generate withu2b20l, and the statesu3a1
1
2Ml and u3a2

1
2M8l

also become degenerate. This degeneracy is broken if the
conditionsU=U8+2J, J8=J are relaxed, but a degeneracy
betweenu3a1

1
2Ml and u3b1

1
2M8l persists, which is broken

only if an exchange interactionJ between the orbitalsyzand
zx different from the other two is introduced.

For n=3, the ground state is the spin quadrupletu3b1
3
2Ml

if uDuøÎ15J, while for uDuùÎ15J the ground state is also
fourfold degenerate, but it is the spin and orbitalEg doublet
u3x1

2Ml, u3y1
2Ml. These two possibilities lead to two different

effective Hamiltonians in the undoped case, after integrating
out the charge degrees of freedom.

IV. EFFECTIVE HAMILTONIANS FOR UNDOPED
PLANES

In this section, we construct effective HamiltoniansHeff
for the undoped case, using second-order degenerate pertur-
bation theory inHh. Depending on the ground state ofH
−Hh, there are two possibilities forHeff.

A. D2,15J

In this case, the ground-state manifold ofH−Hh is the
spin quadrupletui3b1

3
2Ml at each sitei. The degeneracy is

lifted by second-order contributions in which the intermedi-
ate states have two nearest-neighbor sites with two and four
electrons, both with total spinS=1 and both with the same
symmetryB2g, x or y. The different matrix elements are eas-
ily calculated using Eq.(4) and Table I. We omit the details.
The resultingHeff is a Heisenberg model for the effectiveS
=3/2 spins:

Heff
a = Ko

ki j l
SSi.Sj −

9

4
D ; K =

4st2 + t82d
9sU + 2Jd

. s6d

The coupling constantK turns out to be independent ofD.
The ground state of this model is a two-sublattice antiferro-
magnet with antiparallel nearest-neighboring spins. We call it
AFI. The energy per site can be calculated accurately enough
using spin waves, and is given by36

EAFI − E3b13/2 . − 2KSsS+ 0.158d = − 4.974K, s7d

where E3b13/2 is the energy of the stateui3b1
3
2Ml given in

Table I.

B. Large D2

For D2.15J, the ground state ofHI
i +HCF

i is the spin and
orbital doubletui3g 1

2Ml, with g=x or y, which we denote
briefly as uigsl. The number of intermediate states is much
larger than in the previous case, andHeff becomes very com-
plicated. Since forD2.15J the structure of the states in-
volved in the derivation is already very similar to that for
D→ ±` (as can be checked by inspection of Table I), we
restrict the calculation to this case. The result is

TABLE I. Eigenstates and energies ofHI
i +HCF

i for two and three particles. Hereuj ,v j .0, uj
2+v j

2=1,
u2

2=f1−sD−J8 /2d / r2g /2, r2=fsD−J8 /2d2+2sJ8d2g1/2, u3
2=f1−D / r3g /2, andr3=fD2+sJ8d2g1/2. A prime indi-

cates a new appearance of the same irreducible representation of the point group. States obtained by applying
the spin lowering operatorS− or rotation ofp /2 in thexy plane are not shown.

Notation Eigenstate Energy

u2a10l fu2dxy↓
† dxy↑

† −1/Î2v2sdzx↓
† dzx↑

† +dyz↓
† dyz↑

† dgu0l U+J8 /2−r2

u2a180l fu2dxy↓
† dxy↑

† +1/Î2v2sdzx↓
† dzx↑

† +dyz↓
† dyz↑

† dgu0l U+J8 /2+r2

u2b10l 1/Î2sdzx↓
† dzx↑

† −dyz↓
† dyz↑

† du0l U−J8−D

u2b20l 1/Î2sdyz↑
† dzx↓

† −dyz↓
† dzx↑

† du0l U8+J−D

u2x0l 1/Î2sdxy↓
† dyz↑

† −dxy↓
† dyz↑

† du0l U8+J

u2a211l dyz↑
† dzx↑

† u0l U8−J−D

u2x11l dxy↑
† dyz↑

† u0l U8−J

u3a1
1
2

1
2l 1/Î2dxy↑

† sdyz↑
† dzx↓

† −dyz↓
† dzx↑

† du0l 3U8

u3a2
1
2

1
2l 1/Î2dxy↑

† sdzx↓
† dzx↑

† −dyz↓
† dyz↑

† du0l U+2U8−J−J8

u3b1
1
2

1
2l 1/Î6fdxy↑

† sdyz↑
† dzx↓

† +dyz↓
† dzx↑

† d−2dxy↓
† dyz↑

† dzx↑
† gu0l 3U8

u3b2
1
2

1
2l 1/Î2dxy↑

† sdzx↓
† dzx↑

† +dyz↓
† dyz↑

† du0l U+2U8

u3x1
2

1
2l su3dxy↓

† dxy↑
† −v3dyz↓

† dyz↑
† ddzx↑

† u0l U+2U8−J−r3

u3x8
1
2

1
2l sv3dxy↓

† dxy↑
† +u3dyz↓

† dyz↑
† ddzx↑

† u0l U+2U8−J+r3

u3b1
3
2

3
2l dxy↑

† dyz↑
† dzx↑

† u0l 3U8−3J
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Heff
b = o

i
HJAo

g

PigPi+ĝ,gSSi.Si+ĝ −
1

4
D

− o
d

PixPi+d,ysJFSi.Si+d + AdJ , s8d

where nowSi are spin-1/2 operators,Pig are the orbital pro-
jectors

Pig = o
s

uigslkigsu, s9d

and

JA = 2t2S 1

U8 + J
+

1

U8 + 3J
D, JF =

2Jt2

U82 − J2 ,

A =
t2

U8 − J
−

JF

4
. s10d

The first term ofHeff
b is a one-dimensional interaction, FM in

the orbital degrees of freedom, and AF in spin. The term
proportional toA is a spin-independent AF orbital interac-
tion, while theJF term is FM in spin and AF in orbital vari-
ables.

Clearly, there are two possible competing ground states of
Heff

b : (i) a FM orbital ordering(all sites uixsl, for example),
with spin degrees of freedom determined by the critical one-
dimensional AF Heisenberg model; and(ii ) a spin FM and
orbital Néel ordered phase(for exampleuix↑l in one sublat-
tice anduiy↑l in the other). In the first case, for finiteD, a
small AF couplingJ' between the chains appears[see Eqs.
(13) and (14)], which yields long-range order atT=0. We
call this phase AFII. From Bethe ansatz results,37 the energy
of this phase forD→ ±` is

EAFII = E3x1/2 − JA ln 2. s11d

The second phase will be denoted FM-AFO, and its ground-
state energy is given by

EFM−AFO − E3x1/2 = − 2SA +
JF

4
D = −

2t2

U8 − J
. s12d

V. THE PHASE DIAGRAM

We now turn to the construction of a phase diagram for
undoped planes, comparing the energies of the phases de-
scribed in Sec. IV, but now for arbitraryD. Since the correc-
tion terms forÎ15J, uDu, +` are small, we do not expect
any new phases to appear in this interval, except perhaps
near the borderline between two phases, as we will discuss at
the end of this section.

The energy of the AFI phase is still given by Eq.(7), due
to the independence ofHeff

a [Eq. (6)] on the crystal-field split-
ting. The most important change occurs in the part ofHeff

b

[Eq. (8)] that describes the AFII phase, in which an inter-
chain coupling is generated. Thus, the effective Hamiltonian
of the AFII phase, assuming that the chains are oriented
along thex direction, is

Heff
b2 = o

i
HJA8SSi.Si+x̂ −

1

4
D + J'Si.Si+ŷ + CJ , s13d

whereJA8 is the AF coupling along the chains, which coin-
cides withJA for uDu→`, J'=4sC↑↑−C↑↓d, C=C↑↑+C↑↓, and
C↑↑sC↑↓d is the negative correction of the energy due to vir-
tual hoppings from sitei to i + ŷ and back when the spin of
both sites are equal(opposite). The expressions forJA8, Css8,
as well as the energy of the FM-AFO phase are lengthy but
straightforward to obtain, and we do not reproduce them
here. Instead,J' takes a simpler form, given by

J'

=
2J4st2 + t82d

sD2 + J2dfu8 + 2sr3 − JdghU82 + 4fD2 + J2 + U8s2r3 − Jdgj
,

s14d

where r3=sD2+J2d1/2. Equation(5) and the stability condi-
tion of the AFII phase against AFI for vanishingt and t8
sD2.15Jd imply J' /JA,6.80310−4.

The energy of the AFII phase up to second order inHh is
given by

EAFII8 = E3x1/2 − JA8 ln 2 + C + EJ'
, s15d

whereEJ'
is the correction due to the interchain coupling.

This correction can be calculated treating theJ' term in a
mean-field approximation, by a straightforward generaliza-
tion of Schulz’s results38 for the case in which each chain has
z nearest-neighboring chains(he consideredz=4 while we
havez=2). The energy gain due to the appearance of a spon-
taneous staggered expectation value of the spin projection in
the chain directionm=s−1dikSi

zl is (for any sign ofJ')

EJ'
= zuJ'um2 −

7

10
spJA8d−1/3szuJ'umd4/3. s16d

Minimizing with respect tom, one obtains the equilibrium
value of the sublattice magnetization

m= S14

15
D3/2SzuJ'u

pJA8
D1/2

. s17d

The resulting phase diagram is shown in Fig. 1. Due to
electron-hole symmetry, the boundaries between the phases
do not depend on the sign ofD. The spin AF phase AFI, and

FIG. 1. Phase diagram of undoped RuO2 planes fort= t8=J/4
(thin line) and t= t8=J (thick line).
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the spin FM and orbital AF(FM-AFO) phase dominate the
phase diagram. Comparing Eqs.(11) and(12), one obtains a
critical valueUc8.8.52J for the boundary between the AFII
phase and the FM-AFO in the limituDu→`. ForU8.Uc8, the
only stable phases are the spin AF ones. The main difference
between these phases is that the staggered magnetization is
very small in the AFII phase. In fact, from Eq.(17), we
obtainm,0.03 for the parameters of Fig. 1.

Within our perturbation theory up to second order int and
t8, the boundary between the FM-AFO phase and the AFII
phase is independent oft and t8. The boundary of the AFI
phase is also weakly dependent on hopping. ForU8 /J.2,
the stability region of the AFI phase is slightly enlarged by
increasing the hopping parameters, as can be seen in Fig. 1.
For smaller values ofU8 /J, the energy of the FM-AFO phase
decreases due to the proximity of a charge instability near
which our perturbative treatment becomes invalid. The main
effect of increasingt and t8 is to enhance the energy differ-
ence between the stable and unstable phases in each region.
These differences tend to be very small when the hopping
parameters are small. For instance, the energies of the AFII
and FM-AFO phases completely coincide in the limitt= t8
→0. Thus, narrow-band systems are likely to show phase
coexistence due to inhomogeneities. In addition, we cannot
rule out the appearance of more complex phases in a small
region of parameters for whichEFM-AFO,EAFII. One candi-
date is a phase in which orbitals display FM order in one
direction (say x) and AF order in they direction, while the
spins are ordered antiferromagnetically in thex direction and
ferromagnetically in they direction.

VI. THE DOPED SYSTEM

RuO2 planes in RuSr2sEu,GddCu2O8 are expected to have
electron doping corresponding in our effective Hamiltonian
H to a fraction below 20% of Ru sites with four electrons.
Depending on the ratioD /J, there are three possibilities for
the ground state of the local HamiltonianHI

i +HCF
i for four

electrons(see Table I):
(1) D,0: The ground state is the spin tripletui4a21Ml

(e.g., ui4a211l=dixy↑
† dixy↓

† diyz↑
† dizx↑

† u0l).
(2) 0,D,DcsÎ41−1dJ/2.2.70J: The ground state is

the spin triplet and orbital doubletui4x1Ml, ui4y1Ml.
(3) D.Dc: The ground state is the spin singlet and orbital

doubletui4x0l, ui4y0l.
Treating the hopping term in first-order degenerate pertur-

bation theory, and combining with the results of Sec. IV, we
can construct effective HamiltoniansHeff for the doped case.
We begin by consideringuD /Ju,Î15.3.87, as suggested by
the observed robust AF order,13 and the results of Sec. V.
Then the ground state ofHI

i +HCF
i for three electrons is the

spin quadruplet with symmetryB1g.

A. −Î15J,D,0

In this case, the problem of findingHeff reduces to calcu-
lating matrix elements ofdixys

† dixys (all others vanish by sym-

metry) in the basis ofui3b1
3
2M1l and ui4a21M0l. For brevity

we shall denote these states asui 3
2M1l and ui1M0l. Using the

Wigner-Eckart theorem, all matrix elements can be calcu-
lated in terms of one of them(e.g., that for maximum pro-
jections, which is easily calculated), and Clebsch-Gordan co-
efficients kJ0jM0muJ1M1l for the combination of angular
momentaJ0 and j to give J1. A similar approach was used
before in problems of valence fluctuation with two magnetic
configurations.39 Including the second-order terms described
before[Eq. (6)], Heff becomes

Heff
s1d = − t8 o

idhMj
K1

1

2
M0sU3

2
M1K1

1

2
M08sU3

2
M18

3 Usi + dd
3

2
M18Lksi + dd1M08uui1M0lKi

3

2
M1U

+ Ko
ki j l
SSi.Sj −

9

4
D , s18d

where hMj denotes the setM0, M1, M08 , M18. Using the
same method as above, it can be easily shown that this model
is equivalent to a double-exchange model with infiniteanti-
ferromagneticcoupling Jde between localized and itinerant
electrons:

Heff
de = − t8o

ki j ls
scis

† cjs + H.c.d + Jdeo
i

si.Si

+ Ko
ki j l
SSi.Sj −

9

4
D . s19d

Here,cis
† is the operator creating an itinerant electron of spin

s at site i, andsi =oabcia
† sabcib gives the spin of this elec-

tron.
The physics of this model is expected to be quite similar

to that of the model with FM exchange, as long as both Ru+5

and Ru+4 ground-state configurations are magnetic, which is
this case. In fact, treating the spins classically as in Ref. 14,
the sign ofJde is irrelevant for the electron dynamics, and
only affects the effective magnetic moment of Ru+4. Thus,
these results bring support to the model that successfully
explained the magnetic properties of RuSr2sEu,GddCu2O8.

14

B. 0,D,Dc

The 4d4 configuration has orbital degeneracy in addition
to spin degeneracy. Proceeding as before,Heff can again be
written as a double-exchange model, but now there are two
types of carriers, each hopping only in one direction:

Heff
s2d = − to

is

sxi+x̂,s
† xis + yi+ŷ,s

† yis + H.c.d + J8o
i

si.Si

+ Ko
ki j l

SSi.Sj −
9

4
D . s20d

While the magnetic properties ofHeff
s2d should display

some similarities to those of the previousHeff
de, anisotropic

properties and the formation of stripes are more clearly ex-
pected here. No evidence of stripes in this system has been
reported so far. A preferential direction was not observed in
neutron experiments.13 However, an equal amount of small
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domains with stripes oriented in thex andy directions cannot
be completely ruled out by these experiments. Furthermore,
although we explore here, for completeness, all the possibili-
ties of our model, the available experimental results seem to
indicate thatD,0.

C. Dc,D,Î15J

In this case, the first-order effective hopping vanishes. It
is necessary to go to third order inHh to effectively exchange
a 4d3 spin quadruplet with a 4d3 spin singlet and orbital
doublet. Thus, the added electrons are essentially localized,
and the observed magnetic properties would be difficult to
explain within this picture.

D. zDz.Î15J

Now, for any sign ofD, the ground state ofHI
i +HCF

i for
n=3 is the spin and orbital doubletui3x1

2Ml, ui3y1
2Ml. We

assume that the system is in the AFII phase to be consistent
with neutron experiments, in spite of the different magnitude
of the localized moment. Thus, the orbital degree of freedom
is ferromagnetically frozen in the directiong=x or y. For
negative D, Heff turns out to be equivalent to a double-
exchange model with itinerant electrons coupled ferromag-
netically to the localized spins12, and one-dimensional hop-
ping in the directionperpendicularto g. Instead, for positive
D.Î15J, the resultingHeff is equivalent to at−J model with
isotropic hopping and anisotropic exchange.

VII. DISCUSSION

We have studied the electronic structure of RuO2 planes
in RuSr2sEu,GddCu2O8 using a strong-coupling approach to
describe the 4d t2g orbitals of Ru and their interactions. For
undoped planes(corresponding to formal valence +5 for Ru
ions), we find three possible phases. Two of them are favored
for large tetragonal crystal field(of any sign), and have or-
bital degrees of freedom which order at zero temperature
(also at finite temperatures if hopping along the tetragonal
axis were included). The spins order either ferromagnetically
or in a particular AF order with very small staggered mag-
netic moment compared to the experimentally observed one
m,1.2 mB,13 due to strong one-dimensional fluctuations.
The dominant phase for small crystal-field splitting consists
of spins 3

2 which order antiferromagnetically, with nearest-
neighboring spins pointing in opposite directions, as ob-
served in neutron experiments.13 One might wonder whether
the effective measured staggered moment,1.2 mB is closer
to that of a localized spin12 rather than3

2. However, for both

mentioned AF phases, there are several physical ingredients
that reduce the measured moment:(i) spin fluctuations that
reduce the sublattice magnetization,(ii ) effective Ru-Ru
charge fluctuations(that are easily calculated within our per-
turbative approach), (iii ) Ru-O charge fluctuations,26 and(iv)
doping, particularly if FM polarons are formed.14

When the system is doped with electrons, there are two
main possibilities depending on the sign of the tetragonal
crystal-field parameterD. If it is negative(as it seems to be
the case25 in Sr2RuO4), the additional carriers are described
by a double-exchange model with infinite AF coupling with
the localizedS=3/2 spins. This model is able to qualitatively
explain the apparent contradiction between observed AF or-
der, magnetic field dependence of the magnetization, and
temperature dependence of the magnetic susceptibility.14 It is
also consistent with the observed magnetoresistance.18,19Us-
ing previous results of the effective double exchange
model,14 the experimental positive Curie constantQ
=100±3 K suggests that thexy hopping t8,0.25 eV. A
more quantitative description of the magnetic properties re-
quires an accurate calculation of the magnetic moment. It is
also possible that the double-exchange model should be
supplemented by interatomic Coulomb repulsions of a mod-
erate range,15 since the number of carriers in the system is
low, particularly taking into account the low superconducting
critical temperature. In addition, previous studies of the
double-exchange model suggest that there is macroscopic
phase separation at small doping21,40 which is inhibited by
long-range Coulomb repulsion.

If D is positive, the effective model for the doped case is
similar, but the carriers have an orbital degree of freedom, as
in manganites,41,42 which might lead to the observation of
orbitons by Raman scattering43 for enough doping. We also
expect the formation of stripes in this case. However, there is
no experimental evidence of stripes so far in the system, and
fitting of optical properties of another layered ruthenate
Sr2RuO4 suggests thatD is small and negative.25 More de-
tailed studies of the effects of doping would be possible if
the superconducting critical temperatureTS could be further
enhanced, either by appropriate substitution of the rare earth
or by applied pressure.
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