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Effects of band filling in the Anderson-Falicov-Kimball model
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In this work, we study the Anderson-Falicov-Kimball model within the dynamical mean field theory for the
Bethe lattice, restricting our analysis to the nonmagnetic case. The one-particle density of states is obtained by
both arithmetic and geometric averages over disorder, since only the latter can detect localization in the absence
of an energy gap. Varying the strengths of Coulomb interaction and disorder at zero temperature, we construct
phase diagrams for this model, where we distinguish spectral regions with localized states, with extended states,
or with a correlation-induced gap. With this, we identify metal-insulator transitions driven by correlation and
disorder, as well as the competition between these effects. This is done for various band fillings, since our main
interest here is to study how the variation of the electron density affects the phase diagrams previously obtained
for half-filling. The picture revealed by the density of states is further checked by evaluating the static and
dynamic conductivities, including temperature effects.
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I. INTRODUCTION

Electrons in narrowband solids are strongly affected by
the Coulomb interaction as well as lattice disorder. Both
effects can lead to a metal-insulator transition (MIT), but of
different nature: a correlation-induced Mott insulating state1,2

and disorder-induced Anderson localization.3 The existence
of the Mott phase is also significantly dependent on band
filling, and one can expect the interplay between correlations
and disorder to be substantially affected by variations of the
number of electrons.

Theoretical approaches to deal with this kind of system are
usually based on the Hubbard Hamiltonian or related models,
including disorder as a distribution of on-site energies. The
Mott-Hubbard MIT is characterized by a gap opening at the
Fermi level in the one-particle density of states (DOS).2 Hence,
it seems appropriate to utilize the DOS at the Fermi level as a
monitoring parameter of an MIT. However, in the disordered
case one has to average the DOS over disorder. As it happens,
the simple (arithmetic) averaged DOS does not show any
gap at the Anderson localization transition. It is the typical
value of the DOS, obtained by means of a geometric average
over disorder4 (with possible extensions involving generalized
averages5), that does go to zero when the states at the Fermi
level become localized, and thus can be used as indicative of the
Anderson transition. Nevertheless, the information provided
by the arithmetic average is also important in that it keeps
track of all the states. Thus, the combined information from
both averages of the DOS in the whole energy range allows
one to locate the regions of localized and extended states.

Apart from the effect of disorder, one of the most employed
approaches to the problem of determining electronic structure
in strongly correlated systems is the dynamical mean field
theory (DMFT), introduced by Metzner and Vollhardt6 in
1989 (for a review, see Refs. 7 and 8). The theory is formally
exact in the limit of infinite dimensions, in the sense that in
this limit the self-energy becomes purely local, allowing for
an exact self-consistent connection between the site-diagonal
one-particle Green’s function of the lattice and that of an
effective single-site (or impurity) problem. Nevertheless, the
latter has no closed analytical solution in general, and one must

resort to approximate impurity solvers, mostly numerical.9

Alternatively, one can use “simplified” models that allow
for closed analytic relations which can be solved by a
simple numerical iteration procedure. This is the case of the
simplified Hubbard model, as introduced by van Dongen and
Vollhardt.10 It is a reinterpretation of the Falicov-Kimball
(FK) model11 in which the two spinless fermions of the latter
represent the two spin states of the electrons, thus eliminating
spin-flip processes. The FK model has an exact solution in
infinite dimensions,12–14 and it has been used with relative
success15–17 to obtain phase diagrams in the presence of local
disorder, characterizing the Anderson-Falicov-Kimball (AFK)
model.

Essentially all the previous studies of correlation and
disorder in the the Hubbard or FK models15–17 were restricted
to the half-filled case. The obtained phase diagrams for
varying disorder strength and Coulomb interaction show a
metallic state, a Mott-insulator phase (which might be hidden
by antiferromagnetic order), and an Anderson-localization
regime. Here we focus on the AFK model away from half-
filling, in the nonmagnetic case. We follow the evolution of
the phase diagram from the strongly correlated regime near
half-filling, where the Mott-insulator phase is suppressed by
doping, toward the uncorrelated Anderson-localization limit
at very low filling. We will also discuss the characteristics
of the metallic regimes as probed by the optical and static
conductivities.

The paper is organized as follows. In Sec. II we present
the model and the DMFT approach to solve it, including the
disorder averages of the DOS and calculation of conductivity.
Section III describes our results for the DOS at various
band fillings, typical values of the Coulomb interaction U ,
and a broad range of values of disorder strength �. It also
includes spectral diagrams showing the frequency regions
with extended or localized states as U and � are varied,
and � versus U phase diagrams for different filling fractions.
Complementary results for the conductivity (both static and
frequency-dependent) are shown in Sec. IV, including its
behavior with temperature. Final comments and conclusions
are presented in Sec. V.
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II. MODEL AND METHOD

The Anderson-Falicov-Kimball model can be represented
by the Hamiltonian

H =
∑

i

εi

(
nc

i + n
f

i

) − t
∑
〈ij〉

c
†
i cj + U

∑
i

nc
i n

f

i , (1)

where we employ the usual notation of creation, annihilation,
and number operators (in the Wannier representation) for two
kinds of spinless fermions. The c fermions can move with a
nearest-neighbor hopping integral t , and experience Coulomb
repulsion U by the nonmoving f fermions. The local energies
εi are random, with a uniform probability distribution of
width �.

The exact solution of the FK model in infinite
dimensions12–14 is an example of DMFT with an analytic
solution of the impurity problem. It yields a closed form for
the c -particle Green’s function at a finite temperature T ,

Gii(ωn) = 1 − p

iωn − ε̄i − λ(ωn)
+ p

iωn − ε̄i − U − λ(ωn)
,

(2)
where ωn = (2n + 1)πT , for integer n, are Matsubara frequen-
cies, ε̄i ≡ εi − μ is the local energy measured with respect to
the chemical potential, p measures the probability of finding
an f particle at site i, and λ(ωn) are the Fourier components of
the dynamical mean field connecting this site to the c -particle
reservoir that replaces the lattice.

Clearly, p can be viewed as the average number of f

particles per site, and must be determined self-consistently.
Keeping in mind the analogy of c and f fermions with spin-up
and spin-down electrons in the Hubbard model, the total
number of particles per site corresponds to the band-filling
fraction n. At half-filling (n = 1) and low temperatures, an
antiferromagnetic phase is known to be stable,13 correspond-
ing to a chess-board-like distribution of c and f particles on
a bipartite lattice. This ordered state is stable in the presence
of Anderson-like disorder17 up to a critical disorder strength
�c which depends on the value of U . On the other hand,
a paramagnetic state must have equal average numbers for
both particles, i.e., 〈nc〉 = 〈nf 〉, independent of the site index.
Since we are interested in the effect of band filling, and
since the magnetic state tends to be suppressed away from
half-filling, we will focus on the nonmagnetic case, for which
the self-consistent solution implies that p = n/2. Then the
only unknown in Eq. (2) is the dynamical mean field λ(ωn),
which can be determined from the self-consistent condition
that the site-diagonal lattice Green’s function must be equal
to the effective single-site solution with the same self-energy
�i(ωn), which is purely local in the limit d → ∞. This can be
expressed by the equality∫

ρ0(ε) dε

iωn − ε̄i − ε − �i(ωn)
= 1

iωn − ε̄i − λ(ωn) − �i(ωn)
,

(3)
ρ0(ε) being the density of states (DOS) for the uncorrelated
band. The right-hand side of this last equation reproduces the
local Green’s function (2) if we write the self-energy as

�i(ωn) = pU + p(1 − p)U 2

ω − ε̄i + μ − (1 − p)U − λ(ωn)
. (4)

With disorder, the Green’s functions must be averaged over
the distribution of local energies εi . Then, Eq. (3) implies that

Gav
ii (ωn) =

∫
ρ0(ε) dε[

Gav
ii (ωn)

]−1 + λ(ωn) − ε
, (5)

complemented by the disorder average of Eq. (2). Actually,
we have to determine the single-site spectral density ρi(ω),
for each disorder realization, by performing the analytic
continuation iωn → ω + i0+ to obtain the retarded Green’s
function Gii(ω), which yields ρi(ω) = −Im Gii(ω)/π . The
latter is then averaged to obtain the final spectral density, or
local DOS.

At this point, it is worth recalling that we must use two
kinds of averages, arithmetic and geometric. With [· · ·]a
denoting the arithmetic average, we have ρa(ω) = [ρi(ω)]a and
ρg(ω) = exp [ln ρi(ω)]a . The self-consistent determination of
the corresponding Ga(ω) or Gg(ω) implies that we have
different hybridization functions λa(ω) and λg(ω).

We will consider an uncorrelated DOS corresponding to a
Bethe lattice18 in the limit of infinite coordination (z → ∞),
ρ0(ε) = 4

πW

√
1 − 4(ε/W )2, where W = 4t∗ is the bandwidth,

t∗ = √
zt being the scaled hopping integral.19 Since no hop-

ping loops are possible in the Bethe lattice, the only way for an
electron to visit the rest of the lattice is by going out and coming
back through the same nearest-neighbor site (any one of them).
This implies a simple relation for the hybridization function,
λα(ω) = zt2Gα(ω) = W 2Gα(ω)/16, where α = a,g. In the
following, we will choose the bandwidth as the unit of energy,
so that W = 1. In addition, we will adopt the usual convention
of dropping the Planck and Boltzmann constants, so that
energy, temperature, and frequency are all measured in the
same units, and will be given here by pure numbers.

III. DOS AND PHASE DIAGRAMS

To perform a detailed analysis of the problem, we solved
numerically the DMFT equations, obtaining densities of states
for a variety of values of the relevant parameters. All the calcu-
lations reported in this section are for T = 0. The most prob-
able value of the DOS is used to monitor the metal-insulator
transition mediated by correlation and/or disorder. Both ρg(ω)
and ρa(ω) are used to distinguish between spectral regions
with a gap, with extended states, or with localized states.

The phase diagrams previously obtained16,17 for the half-
filling case without magnetic order allow us to distinguish
three different regimes: (i) the weak-interaction regime for
U < 1/2, where one sees Anderson localization as � becomes
sufficiently large, but there are no significant correlation
effects; (ii) the intermediate-interaction regime for 1/2 < U �
1.4, where Mott-insulator, metallic, and Anderson-localization
regions exist for varying �; and (iii) the strong-interaction
regime for U � 1.4, where no metallic state exists, but the
insulating state shows a competition between correlation and
disorder effects. For our analysis, we will choose a typical
value of U in each of these regimes, namely U = 0.3, 0.9, and
1.5. We will then determine the averaged densities of states
for five band fillings, ranging from n = 0.2 to 1.0.

In the first regime (U = 0.3), Fig. 1 shows densities of
states with arithmetic and geometric average for a moderate
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ω

U = 0.3
n = 1.0

ρ(ω)

Δ = 0.0
= 1.0
= 1.0

ω

U = 0.3
n = 0

ρ(ω)

Δ = 0.0
= 1.0
= 1.0

FIG. 1. (Color online) Local DOS at half-filling (top) and at n =
0.6 (bottom) for U = 0.3, showing the effect of a moderate disorder
(� = 1.0) with both kinds of averages. Notice the reduction of the
number of extended states (given by the geometric average) and the
overall band broadening (shown by the arithmetic average).

disorder (� = 1.0) in comparison with the clean limit. For
this low interaction value there is no Mott gap, only a shallow
depletion of the DOS at the Fermi level for the half-filled band
in the clean limit. The main difference when moving away from
half-filling is the loss of particle-hole symmetry, with the Fermi
level being displaced towards the band bottom. The general
behavior of the two kinds of averages is clearly noticeable
in Fig. 1, that is, the arithmetic-averaged DOS is broadened
but preserves the area, while the geometric-averaged one loses
spectral weight due to a reduction in the number of extended
states. It is then clear that the states at the band edges are the
first to become localized.

This situation does not change qualitatively when further
reducing the band filling, as can be seen from the spectral
diagrams shown in Fig. 2. These diagrams show the spectral
regions where there are extended or localized states in the
band. Also clearly visible are the overall band broadening as
well as the suppression of extended states above a critical
disorder strength that characterizes the localization transition.
Observing the dashed vertical line that marks the Fermi level,
one can see that Anderson localization occurs at different
values of � for different band fillings.

In the intermediate-interaction regime we observe the
opening of a Mott gap, as shown in the top panel of Fig. 3. This
gap shrinks with increasing disorder and eventually closes. It
happens first for the arithmetic-averaged DOS, implying that
the gap observed in the geometric average is actually filled

Δ

ω

U = 0.3
n = 1.0

Δ

ω

U = 0.3
n = 0.2

FIG. 2. (Color online) Spectral diagrams for U = 0.3 at half-
filling (top) and very low filling (bottom). No qualitative changes
are noticed, except for the loss of particle-hole symmetry and the
displacement of the Fermi level toward the band’s lower edge when
the band filling is reduced.

with localized states. Away from half-filling (bottom panel of
Fig. 3), the Fermi level drops into the lower Hubbard subband
and the system becomes metallic. This is confirmed by the
spectral diagrams of Fig. 4. There we can see that the topology
of the spectral diagrams changes as the band filling is reduced.
The half-filled case (not shown) is similar to the top panel of
Fig. 4, but it shows particle-hole symmetry, so that the gap at
weak disorder contains the Fermi level. Then, with increasing
disorder the system evolves from a Mott insulator, through a
regime in which the Mott gap is filled with localized states
(corresponding to the DOS in the top panel of Fig. 3), into a
metallic state (when the gap in the geometric-averaged DOS
also closes), finally becoming an Anderson insulator when all
the states localize.

For the strong-interaction regime, shown for U = 1.5 in
Fig. 5, we see a more robust correlation gap, as expected. At
half-filling (top panel of Fig. 5), the low-disorder behavior
is the same as in the intermediate regime, but it changes
significantly for strong disorder. For instance, the Mott gap
never closes in the region where extended states still exist, so
that we have a direct transition between Mott and Anderson
insulators. In contrast, for low band filling (bottom panel of
Fig. 5), the low-energy physics is essentially the same for all
correlation regimes, showing only the Anderson-localization
transition from the metallic state, although the diagrams are
very different on the higher-energy part of the spectrum.
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ρa(ω)
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U = 0.9
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Δ = 0.0
= 0.8
= 0.8

ω

U = 0.9
n = 0.6

ρa(ω)

Δ = 0.0
= 0.8
= 0.8

FIG. 3. (Color online) DOS for n = 1.0 (top) and 0.6 (bottom),
U = 0.9, and � = 0.8, a disorder strength for which a gap still exists
in the geometric average but no longer in the arithmetic one.

The above results can be summed up in phase diagrams of
the Anderson-Falicov-Kimball model for varying U and � at
different band fillings, which are shown in Fig. 6. The lines
for each n correspond to the � values at which the Fermi level
crosses the borderline between extended and localized states
in the spectral diagrams for each U . The only exception is the
point at U = 0.5 and � = 0 at n = 1, for which the transition
is the Mott MIT. For all the other band fillings, as can be
seen in Fig. 6, the Mott phase does not exist. Nevertheless, the
Anderson MIT is clearly affected by correlation. Obviously,
this effect is stronger near half-filling, and tends to disappear
as the electron density becomes very low. At electron densities
not far from n = 1, we can see that the weak-disorder metallic
state is quickly suppressed as the disorder increases. In this
correlated Anderson-localization regime, the Fermi level falls
in a region of localized states close to a correlation gap. As
the disorder is further increased, we see a reentrance of the
metallic state, now much less correlated (as will be better seen
in Sec. IV), which is finally suppressed in the strong-disorder
region, where the normal Anderson-insulator state sets in.

IV. CONDUCTIVITY

The features that we observed in the spectral diagrams must
show up in the optical conductivity, and it is interesting to study
this quantity in detail. In general, the frequency-dependent
conductivity σ (ν), in the context of linear-response theory,
is described by the Kubo formula, which involves a current-
current correlation function. In DMFT, the calculation of this

Δ

ω

U = 0.9
n = 0.6

Δ

ω

U = 0.9
n = 0.2

FIG. 4. (Color online) Spectral phase diagram for U = 0.9, with
n = 0.6 (top) and 0.2 (bottom). The half-filling diagram is similar to
the top panel, except that particle-hole symmetry is restored, so that
the system is a Mott insulator for weak disorder.

function is simplified due to the absence of vertex corrections,
which vanish in the limit d → ∞. We then have20

σ (ν) = π

∫
dε ρ0(ε)

∫
dω ρ(ε,ω) ρ(ε,ω + ν)

× f (ω) − f (ω + ν)

ν
, (6)

where f (ε) is the Fermi-Dirac function, ρ0(ε) is the uncorre-
lated DOS, and ρ(ε,ω) is the spectral density of the correlated
energy-dependent Green’s function. From Eq. (5), after the
analytic continuation iωn → ω + i0+, we have

ρ(ε,ω) = − 1

π
Im

{[
Gav

ii (ω)
]−1 + λ(ω) − ε

}−1
, (7)

and we must choose the geometric average, since only
extended states contribute to the conductivity.

The limit ν → 0 in Eq. (6) gives us the static conductivity
as a function of temperature,

σ (T ) = π

T

∫
dε ρ0(ε)

∫
dω [ρ(ε,ω)]2f (ω)[1 − f (ω)]. (8)

Results for the weak-interaction regime are shown in
Fig. 7. The behavior is essentially what one should expect
for a conductor, but the low-frequency peak is progressively
reduced as disorder increases, and eventually disappears at the
Anderson-localization transition, where all the states become
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Δ

ω

U = 1.5
n = 1.0

Δ

ω

U = 1.5
n = 0.2

FIG. 5. (Color online) Spectral phase diagram in the strong-
coupling regime (U = 1.5) for n = 1.0 (top) and 0.2 (bottom).

localized and the conductivity vanishes. In the inset of the
top panel of Fig. 7 we highlight the existence of thermal
activation in the clean limit at half-filling, as we can see that
the conductivity for ν → 0 grows with temperature. This can
be understood by inspecting the corresponding DOS, shown
in the top panel of Fig. 1, where it is clear that there are
regions of higher DOS slightly away from the Fermi level. Both
this feature of the DOS and the conductivity behavior at low
frequencies are non-Fermi-liquid characteristics, as expected
for the FK model due to the absence of spin-flip processes.

Δ

U

n = 1.00
0.99
0.96
0.80
0.60
0.40
0.20

FIG. 6. (Color online) Phase diagram of the Anderson-Falicov-
Kimball model for various concentrations. A Mott insulator phase
exists only at half-filling.

σ(ν)

ν

U = 0.3
n = 1.0

Δ = 0.0

Δ = 1.0

Δ = 1.2

Δ = 0

T = 0.00
0.05
0.10

σ(ν)

ν

U = 0.3
n = 0.2

Δ = 0.0
= 0.4
= 0.6

FIG. 7. (Color online) Optical conductivity in the weak-
interaction regime (U = 0.3) at half-filling (top) and in the low-
density limit (n = 0.2). In both cases, we see a typical conductor
behavior, with a more pronounced Drude-like peak at low density
and in the clean limit. The inset in the top panel shows an activation
behavior at low frequencies for n = 1 and no disorder, due to the
lower DOS at the Fermi level observed in Fig. 1.

The low-density scenario does not change in the other
interaction regimes, except for the overall scale and for
the visibility of high-frequency “bumps” coming from the

σ(ν)

ν

U = 0.9
n = 0.2
T = 0.0

Δ = 0.0
= 0.3

FIG. 8. (Color online) Optical conductivity in the intermediate-
interaction regime (U = 0.9) in the low-density limit (n = 0.2). Apart
from the Drude-like behavior, a nonzero conductivity appears in the
clean limit at high frequencies due to extended states existing above
the correlation gap. This is suppressed by a moderately low disorder.
For much higher disorder (not shown), the low-frequency peak also
vanishes and the system becomes an Anderson insulator.
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σ(ν)

ν

U = 0.9
n = 1.0
T = 0.0

Δ = 0.0
= 0.5
= 0.8
= 1.0

FIG. 9. (Color online) Optical conductivity in the intermediate-
interaction regime (U = 0.9) at half-filling. The Mott gap is visible
for weak disorder, but a metallic behavior is recovered for a certain
range of values of � (exemplified by � = 1.0).

upper Hubbard subband, which quickly vanish with increasing
disorder. This is exemplified for U = 0.9 in Fig. 8, but it also
occurs for U = 1.5. One can easily correlate these conductivity
features with the low-density spectral diagrams of Figs. 4 or 5.

The situation is very different at half-filling, as we begin
with a Mott insulator in the clean limit for intermediate or
strong Coulomb interaction. Again we illustrate this with
results for U = 0.9, shown in Fig. 9. There we can see a
progressive suppression of the high-frequency peak in the
optical conductivity as disorder grows, and the appearance of
a low-frequency one when the system becomes metallic. This
metallic peak first grows, then diminishes, and finally vanishes
at the critical disorder strength for Anderson localization. For
this case, the sequence of states, from Mott-insulator to metal
to Anderson insulator, can be followed along a vertical line
at U = 0.9 in the phase diagram for n = 1.0 in Fig. 6. Notice
that a low-frequency peak always exists away from half-filling,
although only for very weak disorder as n → 1.

We now turn to the effect of temperature on the conductivity.
It is worth mentioning that this effect comes essentially from
the Fermi functions appearing in Eqs. (6) and (8). The spectral
functions are not affected by temperature, except for a very

σ(ν)

ν

U = 1.5
n = 1.0
Δ = 0.5

T = 0.0
= 0.3

FIG. 10. (Color online) Effect of temperature on the optical
conductivity for U = 1.5 and n = 1. A finite temperature yields a
nonzero conductivity for frequencies inside the Mott gap.

σ(T )

T

U = 0.9
n = 1.0

Δ = 0.0
= 0.2
= 0.5
= 0.8
= 1.0
= 1.7

FIG. 11. (Color online) Static conductivity as a function of
temperature for U = 0.9 at half-filling. The activated conductivity
in the insulating region at low disorder evolves to a metallic behavior
as the disorder increases.

small displacement of the chemical potential, which does not
occur at half-filling due to particle-hole symmetry.

The most striking thermal effect in the optical conductivity
occurs for a Mott-insulator ground state, as illustrated in
Fig. 10 for U = 1.5 at half-filling. The temperature effect
is to “turn on” the optical conductivity inside the Mott gap.
Of course, the obtained intensity depends on the temperature
and on the gap size. For the strong-coupling case shown in
Fig. 10, the temperature necessary for such a visible effect is
unphysically high.

Indeed, a better visualization of temperature effects in a
reasonable range is obtained from the static conductivity. An
illustrative case is that of U = 0.9 at half-filling, shown in
Fig. 11 for various disorder strengths. In the Mott state at
low disorder, the conductivity is thermally activated, but this
behavior changes to that of a metal as the disorder increases.
In this last regime, further growth of disorder intensity causes
a reduction of the conductivity and leads to its vanishing in the
Anderson-localization regime. Even though it is restricted to
a specific interaction value and band filling, Fig. 11 contains
the two kinds of behavior observed for the other cases studied.

(T )

T 2

U = 0.9
n = 1.0
Δ = 1.0

FIG. 12. (Color online) Resistivity in the low-temperature region
for a case of a disorder-induced metallic state. Notice that the
horizontal axis is the temperature squared. The dotted straight line is
just an aid to visualize the initial Fermi-liquid behavior.
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For U = 0.3, one observes only the metallic behavior, while
for U = 1.5 the behavior is always of the activated type.

It is interesting to point out that plotting the resistivity

(T ) = 1/σ (T ) allows us to see a T 2 dependence (on top of
a finite residual resistivity) at very low temperatures. This is
shown in Fig. 12, and it indicates that the metallic regime
induced by disorder is of a Fermi-liquid nature. However,
this is not the case in the clean limit when a metallic state
exists at weak coupling, as we already observed in the optical
conductivity for U = 0.3.

V. CONCLUSIONS

We have analyzed the combined effects of Coulomb
correlation, local disorder, and band filling using an Anderson-
Falicov-Kimball model, which means including Coulomb cor-
relations in a simplified version of the Hubbard model without
spin-flip, and adding disorder through a uniform distribution
of on-site energies. This analysis involved calculation of
one-particle Green’s functions in the DMFT scheme, with
arithmetic and geometric averages over disorder. With this,
we obtained the single-particle DOS and built up diagrams
showing the spectral distribution of extended and localized
states, as well as the presence of correlation gaps for typical
interaction or disorder regimes, with special focus on the
effects of varying the electron density.

One of our main results is a set of phase diagrams for
various band fillings as a function of the controlling parameters
of correlation (U ) and disorder (�). It shows clearly that a

Mott-insulator state exists only at half-filling. Nevertheless,
for densities not far from n = 1 the presence of a correlation
gap, even though it does not contain the Fermi level, is
relevant, affecting the nature of the Anderson-localization
regime induced at moderate disorder. In this region, the phase
diagram shows reentrance of the metallic phase before the final
establishment of Anderson localization at strong disorder.

Our study was complemented by calculation of the optical
and static conductivities for the various cases, which could
be consistently compared with the scenario inferred from the
spectral diagrams. Here we obtain that, although the Falicov-
Kimball model with finite Coulomb interaction and no disorder
is not a Fermi liquid, the metallic state induced by disorder does
show Fermi-liquid behavior in the low-temperature variation
of the resistivity.

As a final comment, we would like to stress that, despite the
simplification introduced by the Falicov-Kimball model in the
description of a true electronic conduction band, the possibility
of an exact solution within the DMFT scheme allows for a
detailed investigation of the interplay between correlation and
disorder. In addition, it is worth mentioning that actual FK
systems can be experimentally realized in cold-atom optical
lattices,21 for which the kind of calculations performed in the
present work can be of significant value.
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