

Evento	Salão UFRGS 2013: Feira de Inovação Tecnológica UFRGS – FINOVA2013
Ano	2013
Local	Porto Alegre - RS
Título	Desenvolvimento de Software Embarcado de Módulo de Gerenciamento Eletrônico para Motor Rotativo de Combustão Interna
Autor	FABRÍCIO DA SILVA STEIN
Orientador	CARLOS EDUARDO PEREIRA

Desenvolvimento de Software Embarcado de Módulo de Gerenciamento Eletrônico para Motor Rotativo de Combustão Interna

Fabrício da Silva Stein; Dr. Carlos Eduardo Pereira Universidade Federal do Rio Grande do Sul – UFRGS

O objetivo do projeto da BIT - Bolsa de Iniciação Tecnológica foi desenvolver um *software* embarcado em linguagem C de programação para utilização em microcontroladores capaz de gerenciar todo o sistema de injeção de combustível e ignição da mistura, acionando válvulas injetoras de combustível e bobinas de ignição, realizando a leitura de sensores espalhados pelo motor e a interpolação desses valores em tabelas de rotação, temperatura e pressão, tudo isso em tempo real de funcionamento - com tempos determinados e cíclicos de execução das operações. Com o lançamento da plataforma de desenvolvimento *Arduino*, a implementação da programação ficou mais fácil e acessível a um público maior, devido ao seu grande número de bibliotecas disponíveis e o caráter de código-aberto, dessa forma, contribuições de programadores passam de projeto para projeto na rede. Aproveitando essa facilidade, no final do primeiro ano de atividades da BIT aderiu-se à plataforma *Arduino* para desenvolvimento das atividades. Todas as rotinas antes desenvolvidas foram adaptadas e aperfeiçoadas para a nova plataforma e outras rotinas necessárias que ainda não tinham sido feitas, foram criadas.

No momento tem-se um *software* embarcado capaz de realizar várias tarefas quase que simultaneamente, caracterizando a partir de suas rotinas uma injeção eletrônica de combustível. O programa já começa com a leitura de valores *A/D* dos sensores e ajuste de alguns parâmetros. Depois disso *flags* são disparadas sequencialmente no final de cada rotina para ativar a sua rotina sucessora. As subrotinas principais do programa são compostas por: cálculo de velocidade *RPM* através de sensor óptico ou magnético acoplado ao motor; leitura da porta serial, a qual é usada como comunicação do microcontrolador com o computador, dessa maneira pode-se enviar matrizes usadas no programa, por exemplo; *Datalogger*, que é a rotina criada para se armazenar informações importantes do andamento do programa em um cartão *SD*, que depois poderá servir para rastrear falhas do processo; cálculos de injeção, onde se usa a interpolação de matrizes de grande ordem, a fim de se obter o valor ideal de tempo de abertura da válvula de combustível; injeção e ignição da mistura, onde se tem o acionamento por pulsos simples no caso das bobinas que fornecem a centelha, ou por pulsos *PWM - Pulse Width Modulation -* no caso das válvulas injetoras de combustível.

Com o desenvolvimento desse *software* conseguiu-se um vasto aprendizado sobre programação na plataforma *Arduino* e em lógica de programação. Ainda aprendeu-se sobre *Processing e Matlab*, ferramentas muito completas e interessantes.

Atualmente o continua-se executando testes dos programas desenvolvidos usando protótipo de motor desenvolvido pela empresa Gyrum, sendo que um refinamento das rotinas desenvolvidas está sendo proposto a partir de experiências colhidas em laboratório e da teoria de controle aprendida.