

Evento	XXI FEIRA DE INICIAÇÃO À INOVAÇÃO E AO DESENVOLVIMENTO TECNOLÓGICO – FINOVA/2012
Ano	2012
Local	Porto Alegre - RS
Título	Utilização de um tribômetro veicular em ensaios de materiais de fricção
Autores	BRUNO CHRISTIANO CORREA RUIZ ZART PATRIC DANIEL NEIS MÁRIO FEDATTO NETO
Orientador	NEY FRANCISCO FERREIRA

UTILIZAÇÃO DE UM TRIBÔMETRO VEICULAR EM ENSAIOS DE MATERIAIS DE FRICÇÃO

Inicialmente (até a década de 50), os sistemas de freio eram avaliados e testados somente nos veículos, através de ensaios em campo, chamados de "on road". Entretanto, esse tipo de teste apresenta algumas dificuldades devido a variações nos resultados, que são acarretadas por fatores humanos (diferentes motoristas), ambientais (oscilações de temperatura e umidade) e externos (trafegabilidade). Atualmente, a maioria dos testes com materiais de atrito utilizados em freios é realizada em laboratório. Isso se deve a uma maior facilidade de instrumentação bem como a um controle preciso das condições dos ensaios. Uma máquina chamada de tribômetro vem sendo utilizado por muitos autores para fins de pesquisa de base com relação ao entendimento do comportamento e dos mecanismos de atrito e desgaste dos materiais. O Laboratório de Tribologia - LATRIB possui uma versão patenteada desta máquina, a qual possui potencialidades importantes e que serão discutidas no presente trabalho.

O equipamento acima citado é uma máquina de pequeno porte (dimensões reduzidas), a fim de permitir ensaios rápidos e de baixo custo. O sistema atuador e de rotação foi dimensionado a partir de faixas de velocidade e pressão de contato que ocorrem em sistemas de freio comerciais. O tribômetro permite a troca rápida dos corpos de prova além do ajuste do raio de deslizamento do par de atrito. Além disso, um mecanismo de atuação próprio permite a realização de ensaios sem a influência do tipo de sistema de freio empregado. O sistema de automação, composto por *hardware* para aquisição de dados e programa para gerar interface gráfica, gerencia todos os processos envolvidos na máquina, além de tornar a sua operacionalidade simples e racional. Um conjunto composto por resistência aquecedora, soprador de ar, relé e termopares é responsável por controlar a temperatura do disco, separando esta variável dos demais parâmetros de operação (pressão e velocidade de escorregamento) durante os ensaios.

O objetivo do trabalho é demonstrar os diferentes procedimentos de ensaios que podem ser realizados no tribômetro veicular desenvolvido pelo LATRIB, assim como o comportamento do material de fricção, pastilha e disco de freio, quando submetidos a estes. A seguir, são citados os diferentes tipos de avaliações que podem ser feitas a partir do tribômetro:

- Caracterização do atrito: analisado sob variação dos parâmetros de força, velocidade, desaceleração e temperatura;

- Avaliações de desgaste: estudo da perda de massa (com e sem umidade) e da perda de volume (relógio comparador, apalpador e scanner 3D digitalização);
- Análise do efeito de vibrações induzidas pelo atrito (*stick-slip*): análise das vibrações em termos de variação do torque e do coeficiente de atrito.

Como exemplo, a Figura 1 apresenta o resultado de um ensaio obtido a partir do tribômetro, esse, que apresenta quatro ciclos com 19 frenagens cada. Esse experimento foi executado com um material semi-metálico sob carga de 1200N, velocidade variando de 2220 rpm a 0 e com uma desaceleração de 222 rpm/s². Os resultados mostram que o atrito varia com a temperatura, aumentando sua magnitude em 200°C e sofrendo redução nos patamares mais elevados (300°C e 350°C).

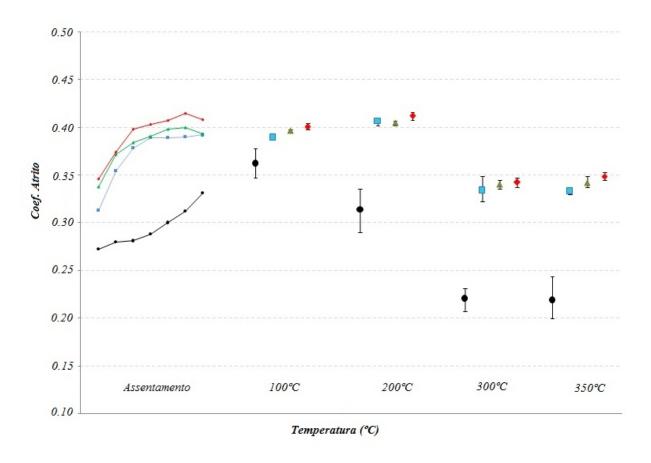


Figura 1 – Metodologia de ensaio do tribômetro.